Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the SystemZ target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZTargetMachine.h"
     15 #include "llvm/Analysis/AliasAnalysis.h"
     16 #include "llvm/CodeGen/SelectionDAGISel.h"
     17 #include "llvm/Support/Debug.h"
     18 #include "llvm/Support/raw_ostream.h"
     19 
     20 using namespace llvm;
     21 
     22 namespace {
     23 // Used to build addressing modes.
     24 struct SystemZAddressingMode {
     25   // The shape of the address.
     26   enum AddrForm {
     27     // base+displacement
     28     FormBD,
     29 
     30     // base+displacement+index for load and store operands
     31     FormBDXNormal,
     32 
     33     // base+displacement+index for load address operands
     34     FormBDXLA,
     35 
     36     // base+displacement+index+ADJDYNALLOC
     37     FormBDXDynAlloc
     38   };
     39   AddrForm Form;
     40 
     41   // The type of displacement.  The enum names here correspond directly
     42   // to the definitions in SystemZOperand.td.  We could split them into
     43   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
     44   enum DispRange {
     45     Disp12Only,
     46     Disp12Pair,
     47     Disp20Only,
     48     Disp20Only128,
     49     Disp20Pair
     50   };
     51   DispRange DR;
     52 
     53   // The parts of the address.  The address is equivalent to:
     54   //
     55   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
     56   SDValue Base;
     57   int64_t Disp;
     58   SDValue Index;
     59   bool IncludesDynAlloc;
     60 
     61   SystemZAddressingMode(AddrForm form, DispRange dr)
     62     : Form(form), DR(dr), Base(), Disp(0), Index(),
     63       IncludesDynAlloc(false) {}
     64 
     65   // True if the address can have an index register.
     66   bool hasIndexField() { return Form != FormBD; }
     67 
     68   // True if the address can (and must) include ADJDYNALLOC.
     69   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
     70 
     71   void dump() {
     72     errs() << "SystemZAddressingMode " << this << '\n';
     73 
     74     errs() << " Base ";
     75     if (Base.getNode() != 0)
     76       Base.getNode()->dump();
     77     else
     78       errs() << "null\n";
     79 
     80     if (hasIndexField()) {
     81       errs() << " Index ";
     82       if (Index.getNode() != 0)
     83         Index.getNode()->dump();
     84       else
     85         errs() << "null\n";
     86     }
     87 
     88     errs() << " Disp " << Disp;
     89     if (IncludesDynAlloc)
     90       errs() << " + ADJDYNALLOC";
     91     errs() << '\n';
     92   }
     93 };
     94 
     95 // Return a mask with Count low bits set.
     96 static uint64_t allOnes(unsigned int Count) {
     97   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
     98 }
     99 
    100 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
    101 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
    102 // Rotate (I5).  The combined operand value is effectively:
    103 //
    104 //   (or (rotl Input, Rotate), ~Mask)
    105 //
    106 // for RNSBG and:
    107 //
    108 //   (and (rotl Input, Rotate), Mask)
    109 //
    110 // otherwise.  The value has BitSize bits.
    111 struct RxSBGOperands {
    112   RxSBGOperands(unsigned Op, SDValue N)
    113     : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
    114       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
    115       Rotate(0) {}
    116 
    117   unsigned Opcode;
    118   unsigned BitSize;
    119   uint64_t Mask;
    120   SDValue Input;
    121   unsigned Start;
    122   unsigned End;
    123   unsigned Rotate;
    124 };
    125 
    126 class SystemZDAGToDAGISel : public SelectionDAGISel {
    127   const SystemZTargetLowering &Lowering;
    128   const SystemZSubtarget &Subtarget;
    129 
    130   // Used by SystemZOperands.td to create integer constants.
    131   inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
    132     return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
    133   }
    134 
    135   const SystemZTargetMachine &getTargetMachine() const {
    136     return static_cast<const SystemZTargetMachine &>(TM);
    137   }
    138 
    139   const SystemZInstrInfo *getInstrInfo() const {
    140     return getTargetMachine().getInstrInfo();
    141   }
    142 
    143   // Try to fold more of the base or index of AM into AM, where IsBase
    144   // selects between the base and index.
    145   bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
    146 
    147   // Try to describe N in AM, returning true on success.
    148   bool selectAddress(SDValue N, SystemZAddressingMode &AM);
    149 
    150   // Extract individual target operands from matched address AM.
    151   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
    152                           SDValue &Base, SDValue &Disp);
    153   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
    154                           SDValue &Base, SDValue &Disp, SDValue &Index);
    155 
    156   // Try to match Addr as a FormBD address with displacement type DR.
    157   // Return true on success, storing the base and displacement in
    158   // Base and Disp respectively.
    159   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
    160                     SDValue &Base, SDValue &Disp);
    161 
    162   // Try to match Addr as a FormBDX* address of form Form with
    163   // displacement type DR.  Return true on success, storing the base,
    164   // displacement and index in Base, Disp and Index respectively.
    165   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
    166                      SystemZAddressingMode::DispRange DR, SDValue Addr,
    167                      SDValue &Base, SDValue &Disp, SDValue &Index);
    168 
    169   // PC-relative address matching routines used by SystemZOperands.td.
    170   bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
    171     if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
    172       Target = Addr.getOperand(0);
    173       return true;
    174     }
    175     return false;
    176   }
    177 
    178   // BD matching routines used by SystemZOperands.td.
    179   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
    180     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
    181   }
    182   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
    183     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
    184   }
    185   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
    186     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
    187   }
    188   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
    189     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
    190   }
    191 
    192   // BDX matching routines used by SystemZOperands.td.
    193   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
    194                            SDValue &Index) {
    195     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
    196                          SystemZAddressingMode::Disp12Only,
    197                          Addr, Base, Disp, Index);
    198   }
    199   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
    200                            SDValue &Index) {
    201     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
    202                          SystemZAddressingMode::Disp12Pair,
    203                          Addr, Base, Disp, Index);
    204   }
    205   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
    206                             SDValue &Index) {
    207     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
    208                          SystemZAddressingMode::Disp12Only,
    209                          Addr, Base, Disp, Index);
    210   }
    211   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
    212                            SDValue &Index) {
    213     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
    214                          SystemZAddressingMode::Disp20Only,
    215                          Addr, Base, Disp, Index);
    216   }
    217   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
    218                               SDValue &Index) {
    219     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
    220                          SystemZAddressingMode::Disp20Only128,
    221                          Addr, Base, Disp, Index);
    222   }
    223   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
    224                            SDValue &Index) {
    225     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
    226                          SystemZAddressingMode::Disp20Pair,
    227                          Addr, Base, Disp, Index);
    228   }
    229   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
    230                           SDValue &Index) {
    231     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
    232                          SystemZAddressingMode::Disp12Pair,
    233                          Addr, Base, Disp, Index);
    234   }
    235   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
    236                           SDValue &Index) {
    237     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
    238                          SystemZAddressingMode::Disp20Pair,
    239                          Addr, Base, Disp, Index);
    240   }
    241 
    242   // Check whether (or Op (and X InsertMask)) is effectively an insertion
    243   // of X into bits InsertMask of some Y != Op.  Return true if so and
    244   // set Op to that Y.
    245   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask);
    246 
    247   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
    248   // Return true on success.
    249   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask);
    250 
    251   // Try to fold some of RxSBG.Input into other fields of RxSBG.
    252   // Return true on success.
    253   bool expandRxSBG(RxSBGOperands &RxSBG);
    254 
    255   // Return an undefined i64 value.
    256   SDValue getUNDEF64(SDLoc DL);
    257 
    258   // Convert N to VT, if it isn't already.
    259   SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
    260 
    261   // Try to implement AND or shift node N using RISBG with the zero flag set.
    262   // Return the selected node on success, otherwise return null.
    263   SDNode *tryRISBGZero(SDNode *N);
    264 
    265   // Try to use RISBG or Opcode to implement OR or XOR node N.
    266   // Return the selected node on success, otherwise return null.
    267   SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
    268 
    269   // If Op0 is null, then Node is a constant that can be loaded using:
    270   //
    271   //   (Opcode UpperVal LowerVal)
    272   //
    273   // If Op0 is nonnull, then Node can be implemented using:
    274   //
    275   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
    276   SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
    277                               uint64_t UpperVal, uint64_t LowerVal);
    278 
    279   bool storeLoadCanUseMVC(SDNode *N) const;
    280 
    281 public:
    282   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
    283     : SelectionDAGISel(TM, OptLevel),
    284       Lowering(*TM.getTargetLowering()),
    285       Subtarget(*TM.getSubtargetImpl()) { }
    286 
    287   // Override MachineFunctionPass.
    288   virtual const char *getPassName() const LLVM_OVERRIDE {
    289     return "SystemZ DAG->DAG Pattern Instruction Selection";
    290   }
    291 
    292   // Override SelectionDAGISel.
    293   virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
    294   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    295                                             char ConstraintCode,
    296                                             std::vector<SDValue> &OutOps)
    297     LLVM_OVERRIDE;
    298 
    299   // Include the pieces autogenerated from the target description.
    300   #include "SystemZGenDAGISel.inc"
    301 };
    302 } // end anonymous namespace
    303 
    304 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
    305                                          CodeGenOpt::Level OptLevel) {
    306   return new SystemZDAGToDAGISel(TM, OptLevel);
    307 }
    308 
    309 // Return true if Val should be selected as a displacement for an address
    310 // with range DR.  Here we're interested in the range of both the instruction
    311 // described by DR and of any pairing instruction.
    312 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
    313   switch (DR) {
    314   case SystemZAddressingMode::Disp12Only:
    315     return isUInt<12>(Val);
    316 
    317   case SystemZAddressingMode::Disp12Pair:
    318   case SystemZAddressingMode::Disp20Only:
    319   case SystemZAddressingMode::Disp20Pair:
    320     return isInt<20>(Val);
    321 
    322   case SystemZAddressingMode::Disp20Only128:
    323     return isInt<20>(Val) && isInt<20>(Val + 8);
    324   }
    325   llvm_unreachable("Unhandled displacement range");
    326 }
    327 
    328 // Change the base or index in AM to Value, where IsBase selects
    329 // between the base and index.
    330 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
    331                             SDValue Value) {
    332   if (IsBase)
    333     AM.Base = Value;
    334   else
    335     AM.Index = Value;
    336 }
    337 
    338 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
    339 // where IsBase selects between the base and index.  Try to fold the
    340 // ADJDYNALLOC into AM.
    341 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
    342                               SDValue Value) {
    343   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
    344     changeComponent(AM, IsBase, Value);
    345     AM.IncludesDynAlloc = true;
    346     return true;
    347   }
    348   return false;
    349 }
    350 
    351 // The base of AM is equivalent to Base + Index.  Try to use Index as
    352 // the index register.
    353 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
    354                         SDValue Index) {
    355   if (AM.hasIndexField() && !AM.Index.getNode()) {
    356     AM.Base = Base;
    357     AM.Index = Index;
    358     return true;
    359   }
    360   return false;
    361 }
    362 
    363 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
    364 // between the base and index.  Try to fold Op1 into AM's displacement.
    365 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
    366                        SDValue Op0, ConstantSDNode *Op1) {
    367   // First try adjusting the displacement.
    368   int64_t TestDisp = AM.Disp + Op1->getSExtValue();
    369   if (selectDisp(AM.DR, TestDisp)) {
    370     changeComponent(AM, IsBase, Op0);
    371     AM.Disp = TestDisp;
    372     return true;
    373   }
    374 
    375   // We could consider forcing the displacement into a register and
    376   // using it as an index, but it would need to be carefully tuned.
    377   return false;
    378 }
    379 
    380 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
    381                                         bool IsBase) {
    382   SDValue N = IsBase ? AM.Base : AM.Index;
    383   unsigned Opcode = N.getOpcode();
    384   if (Opcode == ISD::TRUNCATE) {
    385     N = N.getOperand(0);
    386     Opcode = N.getOpcode();
    387   }
    388   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
    389     SDValue Op0 = N.getOperand(0);
    390     SDValue Op1 = N.getOperand(1);
    391 
    392     unsigned Op0Code = Op0->getOpcode();
    393     unsigned Op1Code = Op1->getOpcode();
    394 
    395     if (Op0Code == SystemZISD::ADJDYNALLOC)
    396       return expandAdjDynAlloc(AM, IsBase, Op1);
    397     if (Op1Code == SystemZISD::ADJDYNALLOC)
    398       return expandAdjDynAlloc(AM, IsBase, Op0);
    399 
    400     if (Op0Code == ISD::Constant)
    401       return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
    402     if (Op1Code == ISD::Constant)
    403       return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
    404 
    405     if (IsBase && expandIndex(AM, Op0, Op1))
    406       return true;
    407   }
    408   return false;
    409 }
    410 
    411 // Return true if an instruction with displacement range DR should be
    412 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
    413 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
    414   assert(selectDisp(DR, Val) && "Invalid displacement");
    415   switch (DR) {
    416   case SystemZAddressingMode::Disp12Only:
    417   case SystemZAddressingMode::Disp20Only:
    418   case SystemZAddressingMode::Disp20Only128:
    419     return true;
    420 
    421   case SystemZAddressingMode::Disp12Pair:
    422     // Use the other instruction if the displacement is too large.
    423     return isUInt<12>(Val);
    424 
    425   case SystemZAddressingMode::Disp20Pair:
    426     // Use the other instruction if the displacement is small enough.
    427     return !isUInt<12>(Val);
    428   }
    429   llvm_unreachable("Unhandled displacement range");
    430 }
    431 
    432 // Return true if Base + Disp + Index should be performed by LA(Y).
    433 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
    434   // Don't use LA(Y) for constants.
    435   if (!Base)
    436     return false;
    437 
    438   // Always use LA(Y) for frame addresses, since we know that the destination
    439   // register is almost always (perhaps always) going to be different from
    440   // the frame register.
    441   if (Base->getOpcode() == ISD::FrameIndex)
    442     return true;
    443 
    444   if (Disp) {
    445     // Always use LA(Y) if there is a base, displacement and index.
    446     if (Index)
    447       return true;
    448 
    449     // Always use LA if the displacement is small enough.  It should always
    450     // be no worse than AGHI (and better if it avoids a move).
    451     if (isUInt<12>(Disp))
    452       return true;
    453 
    454     // For similar reasons, always use LAY if the constant is too big for AGHI.
    455     // LAY should be no worse than AGFI.
    456     if (!isInt<16>(Disp))
    457       return true;
    458   } else {
    459     // Don't use LA for plain registers.
    460     if (!Index)
    461       return false;
    462 
    463     // Don't use LA for plain addition if the index operand is only used
    464     // once.  It should be a natural two-operand addition in that case.
    465     if (Index->hasOneUse())
    466       return false;
    467 
    468     // Prefer addition if the second operation is sign-extended, in the
    469     // hope of using AGF.
    470     unsigned IndexOpcode = Index->getOpcode();
    471     if (IndexOpcode == ISD::SIGN_EXTEND ||
    472         IndexOpcode == ISD::SIGN_EXTEND_INREG)
    473       return false;
    474   }
    475 
    476   // Don't use LA for two-operand addition if either operand is only
    477   // used once.  The addition instructions are better in that case.
    478   if (Base->hasOneUse())
    479     return false;
    480 
    481   return true;
    482 }
    483 
    484 // Return true if Addr is suitable for AM, updating AM if so.
    485 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
    486                                         SystemZAddressingMode &AM) {
    487   // Start out assuming that the address will need to be loaded separately,
    488   // then try to extend it as much as we can.
    489   AM.Base = Addr;
    490 
    491   // First try treating the address as a constant.
    492   if (Addr.getOpcode() == ISD::Constant &&
    493       expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
    494     ;
    495   else
    496     // Otherwise try expanding each component.
    497     while (expandAddress(AM, true) ||
    498            (AM.Index.getNode() && expandAddress(AM, false)))
    499       continue;
    500 
    501   // Reject cases where it isn't profitable to use LA(Y).
    502   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
    503       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
    504     return false;
    505 
    506   // Reject cases where the other instruction in a pair should be used.
    507   if (!isValidDisp(AM.DR, AM.Disp))
    508     return false;
    509 
    510   // Make sure that ADJDYNALLOC is included where necessary.
    511   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
    512     return false;
    513 
    514   DEBUG(AM.dump());
    515   return true;
    516 }
    517 
    518 // Insert a node into the DAG at least before Pos.  This will reposition
    519 // the node as needed, and will assign it a node ID that is <= Pos's ID.
    520 // Note that this does *not* preserve the uniqueness of node IDs!
    521 // The selection DAG must no longer depend on their uniqueness when this
    522 // function is used.
    523 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
    524   if (N.getNode()->getNodeId() == -1 ||
    525       N.getNode()->getNodeId() > Pos->getNodeId()) {
    526     DAG->RepositionNode(Pos, N.getNode());
    527     N.getNode()->setNodeId(Pos->getNodeId());
    528   }
    529 }
    530 
    531 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
    532                                              EVT VT, SDValue &Base,
    533                                              SDValue &Disp) {
    534   Base = AM.Base;
    535   if (!Base.getNode())
    536     // Register 0 means "no base".  This is mostly useful for shifts.
    537     Base = CurDAG->getRegister(0, VT);
    538   else if (Base.getOpcode() == ISD::FrameIndex) {
    539     // Lower a FrameIndex to a TargetFrameIndex.
    540     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
    541     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
    542   } else if (Base.getValueType() != VT) {
    543     // Truncate values from i64 to i32, for shifts.
    544     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
    545            "Unexpected truncation");
    546     SDLoc DL(Base);
    547     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
    548     insertDAGNode(CurDAG, Base.getNode(), Trunc);
    549     Base = Trunc;
    550   }
    551 
    552   // Lower the displacement to a TargetConstant.
    553   Disp = CurDAG->getTargetConstant(AM.Disp, VT);
    554 }
    555 
    556 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
    557                                              EVT VT, SDValue &Base,
    558                                              SDValue &Disp, SDValue &Index) {
    559   getAddressOperands(AM, VT, Base, Disp);
    560 
    561   Index = AM.Index;
    562   if (!Index.getNode())
    563     // Register 0 means "no index".
    564     Index = CurDAG->getRegister(0, VT);
    565 }
    566 
    567 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
    568                                        SDValue Addr, SDValue &Base,
    569                                        SDValue &Disp) {
    570   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
    571   if (!selectAddress(Addr, AM))
    572     return false;
    573 
    574   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
    575   return true;
    576 }
    577 
    578 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
    579                                         SystemZAddressingMode::DispRange DR,
    580                                         SDValue Addr, SDValue &Base,
    581                                         SDValue &Disp, SDValue &Index) {
    582   SystemZAddressingMode AM(Form, DR);
    583   if (!selectAddress(Addr, AM))
    584     return false;
    585 
    586   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
    587   return true;
    588 }
    589 
    590 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
    591                                                uint64_t InsertMask) {
    592   // We're only interested in cases where the insertion is into some operand
    593   // of Op, rather than into Op itself.  The only useful case is an AND.
    594   if (Op.getOpcode() != ISD::AND)
    595     return false;
    596 
    597   // We need a constant mask.
    598   ConstantSDNode *MaskNode =
    599     dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
    600   if (!MaskNode)
    601     return false;
    602 
    603   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
    604   uint64_t AndMask = MaskNode->getZExtValue();
    605   if (InsertMask & AndMask)
    606     return false;
    607 
    608   // It's only an insertion if all bits are covered or are known to be zero.
    609   // The inner check covers all cases but is more expensive.
    610   uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
    611   if (Used != (AndMask | InsertMask)) {
    612     APInt KnownZero, KnownOne;
    613     CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
    614     if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
    615       return false;
    616   }
    617 
    618   Op = Op.getOperand(0);
    619   return true;
    620 }
    621 
    622 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) {
    623   const SystemZInstrInfo *TII = getInstrInfo();
    624   if (RxSBG.Rotate != 0)
    625     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
    626   Mask &= RxSBG.Mask;
    627   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
    628     RxSBG.Mask = Mask;
    629     return true;
    630   }
    631   return false;
    632 }
    633 
    634 // RxSBG.Input is a shift of Count bits in the direction given by IsLeft.
    635 // Return true if the result depends on the signs or zeros that are
    636 // shifted in.
    637 static bool shiftedInBitsMatter(RxSBGOperands &RxSBG, uint64_t Count,
    638                                 bool IsLeft) {
    639   // Work out which bits of the shift result are zeros or sign copies.
    640   uint64_t ShiftedIn = allOnes(Count);
    641   if (!IsLeft)
    642     ShiftedIn <<= RxSBG.BitSize - Count;
    643 
    644   // Rotate that mask in the same way as RxSBG.Input is rotated.
    645   if (RxSBG.Rotate != 0)
    646     ShiftedIn = ((ShiftedIn << RxSBG.Rotate) |
    647                  (ShiftedIn >> (64 - RxSBG.Rotate)));
    648 
    649   // Fail if any of the zero or sign bits are used.
    650   return (ShiftedIn & RxSBG.Mask) != 0;
    651 }
    652 
    653 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) {
    654   SDValue N = RxSBG.Input;
    655   unsigned Opcode = N.getOpcode();
    656   switch (Opcode) {
    657   case ISD::AND: {
    658     if (RxSBG.Opcode == SystemZ::RNSBG)
    659       return false;
    660 
    661     ConstantSDNode *MaskNode =
    662       dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    663     if (!MaskNode)
    664       return false;
    665 
    666     SDValue Input = N.getOperand(0);
    667     uint64_t Mask = MaskNode->getZExtValue();
    668     if (!refineRxSBGMask(RxSBG, Mask)) {
    669       // If some bits of Input are already known zeros, those bits will have
    670       // been removed from the mask.  See if adding them back in makes the
    671       // mask suitable.
    672       APInt KnownZero, KnownOne;
    673       CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
    674       Mask |= KnownZero.getZExtValue();
    675       if (!refineRxSBGMask(RxSBG, Mask))
    676         return false;
    677     }
    678     RxSBG.Input = Input;
    679     return true;
    680   }
    681 
    682   case ISD::OR: {
    683     if (RxSBG.Opcode != SystemZ::RNSBG)
    684       return false;
    685 
    686     ConstantSDNode *MaskNode =
    687       dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    688     if (!MaskNode)
    689       return false;
    690 
    691     SDValue Input = N.getOperand(0);
    692     uint64_t Mask = ~MaskNode->getZExtValue();
    693     if (!refineRxSBGMask(RxSBG, Mask)) {
    694       // If some bits of Input are already known ones, those bits will have
    695       // been removed from the mask.  See if adding them back in makes the
    696       // mask suitable.
    697       APInt KnownZero, KnownOne;
    698       CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
    699       Mask &= ~KnownOne.getZExtValue();
    700       if (!refineRxSBGMask(RxSBG, Mask))
    701         return false;
    702     }
    703     RxSBG.Input = Input;
    704     return true;
    705   }
    706 
    707   case ISD::ROTL: {
    708     // Any 64-bit rotate left can be merged into the RxSBG.
    709     if (RxSBG.BitSize != 64)
    710       return false;
    711     ConstantSDNode *CountNode
    712       = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    713     if (!CountNode)
    714       return false;
    715 
    716     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
    717     RxSBG.Input = N.getOperand(0);
    718     return true;
    719   }
    720 
    721   case ISD::SHL: {
    722     ConstantSDNode *CountNode =
    723       dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    724     if (!CountNode)
    725       return false;
    726 
    727     uint64_t Count = CountNode->getZExtValue();
    728     if (Count < 1 || Count >= RxSBG.BitSize)
    729       return false;
    730 
    731     if (RxSBG.Opcode == SystemZ::RNSBG) {
    732       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
    733       // count bits from RxSBG.Input are ignored.
    734       if (shiftedInBitsMatter(RxSBG, Count, true))
    735         return false;
    736     } else {
    737       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
    738       if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count) << Count))
    739         return false;
    740     }
    741 
    742     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
    743     RxSBG.Input = N.getOperand(0);
    744     return true;
    745   }
    746 
    747   case ISD::SRL:
    748   case ISD::SRA: {
    749     ConstantSDNode *CountNode =
    750       dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
    751     if (!CountNode)
    752       return false;
    753 
    754     uint64_t Count = CountNode->getZExtValue();
    755     if (Count < 1 || Count >= RxSBG.BitSize)
    756       return false;
    757 
    758     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
    759       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
    760       // count bits from RxSBG.Input are ignored.
    761       if (shiftedInBitsMatter(RxSBG, Count, false))
    762         return false;
    763     } else {
    764       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
    765       // which is similar to SLL above.
    766       if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count)))
    767         return false;
    768     }
    769 
    770     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
    771     RxSBG.Input = N.getOperand(0);
    772     return true;
    773   }
    774   default:
    775     return false;
    776   }
    777 }
    778 
    779 SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
    780   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
    781   return SDValue(N, 0);
    782 }
    783 
    784 SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
    785   if (N.getValueType() == MVT::i32 && VT == MVT::i64) {
    786     SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
    787     SDNode *Insert = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG,
    788                                             DL, VT, getUNDEF64(DL), N, Index);
    789     return SDValue(Insert, 0);
    790   }
    791   if (N.getValueType() == MVT::i64 && VT == MVT::i32) {
    792     SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
    793     SDNode *Extract = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
    794                                              DL, VT, N, Index);
    795     return SDValue(Extract, 0);
    796   }
    797   assert(N.getValueType() == VT && "Unexpected value types");
    798   return N;
    799 }
    800 
    801 SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
    802   EVT VT = N->getValueType(0);
    803   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
    804   unsigned Count = 0;
    805   while (expandRxSBG(RISBG))
    806     Count += 1;
    807   if (Count == 0)
    808     return 0;
    809   if (Count == 1) {
    810     // Prefer to use normal shift instructions over RISBG, since they can handle
    811     // all cases and are sometimes shorter.
    812     if (N->getOpcode() != ISD::AND)
    813       return 0;
    814 
    815     // Prefer register extensions like LLC over RISBG.  Also prefer to start
    816     // out with normal ANDs if one instruction would be enough.  We can convert
    817     // these ANDs into an RISBG later if a three-address instruction is useful.
    818     if (VT == MVT::i32 ||
    819         RISBG.Mask == 0xff ||
    820         RISBG.Mask == 0xffff ||
    821         SystemZ::isImmLF(~RISBG.Mask) ||
    822         SystemZ::isImmHF(~RISBG.Mask)) {
    823       // Force the new mask into the DAG, since it may include known-one bits.
    824       ConstantSDNode *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
    825       if (MaskN->getZExtValue() != RISBG.Mask) {
    826         SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
    827         N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
    828         return SelectCode(N);
    829       }
    830       return 0;
    831     }
    832   }
    833 
    834   SDValue Ops[5] = {
    835     getUNDEF64(SDLoc(N)),
    836     convertTo(SDLoc(N), MVT::i64, RISBG.Input),
    837     CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
    838     CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
    839     CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
    840   };
    841   N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
    842   return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
    843 }
    844 
    845 SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
    846   // Try treating each operand of N as the second operand of the RxSBG
    847   // and see which goes deepest.
    848   RxSBGOperands RxSBG[] = {
    849     RxSBGOperands(Opcode, N->getOperand(0)),
    850     RxSBGOperands(Opcode, N->getOperand(1))
    851   };
    852   unsigned Count[] = { 0, 0 };
    853   for (unsigned I = 0; I < 2; ++I)
    854     while (expandRxSBG(RxSBG[I]))
    855       Count[I] += 1;
    856 
    857   // Do nothing if neither operand is suitable.
    858   if (Count[0] == 0 && Count[1] == 0)
    859     return 0;
    860 
    861   // Pick the deepest second operand.
    862   unsigned I = Count[0] > Count[1] ? 0 : 1;
    863   SDValue Op0 = N->getOperand(I ^ 1);
    864 
    865   // Prefer IC for character insertions from memory.
    866   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
    867     if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
    868       if (Load->getMemoryVT() == MVT::i8)
    869         return 0;
    870 
    871   // See whether we can avoid an AND in the first operand by converting
    872   // ROSBG to RISBG.
    873   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
    874     Opcode = SystemZ::RISBG;
    875 
    876   EVT VT = N->getValueType(0);
    877   SDValue Ops[5] = {
    878     convertTo(SDLoc(N), MVT::i64, Op0),
    879     convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
    880     CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
    881     CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
    882     CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
    883   };
    884   N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
    885   return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
    886 }
    887 
    888 SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
    889                                                  SDValue Op0, uint64_t UpperVal,
    890                                                  uint64_t LowerVal) {
    891   EVT VT = Node->getValueType(0);
    892   SDLoc DL(Node);
    893   SDValue Upper = CurDAG->getConstant(UpperVal, VT);
    894   if (Op0.getNode())
    895     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
    896   Upper = SDValue(Select(Upper.getNode()), 0);
    897 
    898   SDValue Lower = CurDAG->getConstant(LowerVal, VT);
    899   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
    900   return Or.getNode();
    901 }
    902 
    903 // N is a (store (load ...), ...) pattern.  Return true if it can use MVC.
    904 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
    905   StoreSDNode *Store = cast<StoreSDNode>(N);
    906   LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
    907 
    908   // MVC is logically a bytewise copy, so can't be used for volatile accesses.
    909   if (Load->isVolatile() || Store->isVolatile())
    910     return false;
    911 
    912   // Prefer not to use MVC if either address can use ... RELATIVE LONG
    913   // instructions.
    914   assert(Load->getMemoryVT() == Store->getMemoryVT() &&
    915          "Should already have checked that the types match");
    916   uint64_t Size = Load->getMemoryVT().getStoreSize();
    917   if (Size > 1 && Size <= 8) {
    918     // Prefer LHRL, LRL and LGRL.
    919     if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
    920       return false;
    921     // Prefer STHRL, STRL and STGRL.
    922     if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
    923       return false;
    924   }
    925 
    926   // There's no chance of overlap if the load is invariant.
    927   if (Load->isInvariant())
    928     return true;
    929 
    930   // If both operands are aligned, they must be equal or not overlap.
    931   if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
    932     return true;
    933 
    934   // Otherwise we need to check whether there's an alias.
    935   const Value *V1 = Load->getSrcValue();
    936   const Value *V2 = Store->getSrcValue();
    937   if (!V1 || !V2)
    938     return false;
    939 
    940   int64_t End1 = Load->getSrcValueOffset() + Size;
    941   int64_t End2 = Store->getSrcValueOffset() + Size;
    942   return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
    943                     AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
    944 }
    945 
    946 SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
    947   // Dump information about the Node being selected
    948   DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
    949 
    950   // If we have a custom node, we already have selected!
    951   if (Node->isMachineOpcode()) {
    952     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
    953     return 0;
    954   }
    955 
    956   unsigned Opcode = Node->getOpcode();
    957   SDNode *ResNode = 0;
    958   switch (Opcode) {
    959   case ISD::OR:
    960     if (Node->getOperand(1).getOpcode() != ISD::Constant)
    961       ResNode = tryRxSBG(Node, SystemZ::ROSBG);
    962     goto or_xor;
    963 
    964   case ISD::XOR:
    965     if (Node->getOperand(1).getOpcode() != ISD::Constant)
    966       ResNode = tryRxSBG(Node, SystemZ::RXSBG);
    967     // Fall through.
    968   or_xor:
    969     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
    970     // split the operation into two.
    971     if (!ResNode && Node->getValueType(0) == MVT::i64)
    972       if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
    973         uint64_t Val = Op1->getZExtValue();
    974         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
    975           Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
    976                                      Val - uint32_t(Val), uint32_t(Val));
    977       }
    978     break;
    979 
    980   case ISD::AND:
    981     if (Node->getOperand(1).getOpcode() != ISD::Constant)
    982       ResNode = tryRxSBG(Node, SystemZ::RNSBG);
    983     // Fall through.
    984   case ISD::ROTL:
    985   case ISD::SHL:
    986   case ISD::SRL:
    987     if (!ResNode)
    988       ResNode = tryRISBGZero(Node);
    989     break;
    990 
    991   case ISD::Constant:
    992     // If this is a 64-bit constant that is out of the range of LLILF,
    993     // LLIHF and LGFI, split it into two 32-bit pieces.
    994     if (Node->getValueType(0) == MVT::i64) {
    995       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
    996       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
    997         Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
    998                                    Val - uint32_t(Val), uint32_t(Val));
    999     }
   1000     break;
   1001 
   1002   case ISD::ATOMIC_LOAD_SUB:
   1003     // Try to convert subtractions of constants to additions.
   1004     if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
   1005       uint64_t Value = -Op2->getZExtValue();
   1006       EVT VT = Node->getValueType(0);
   1007       if (VT == MVT::i32 || isInt<32>(Value)) {
   1008         SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
   1009                           CurDAG->getConstant(int32_t(Value), VT) };
   1010         Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
   1011                                    Node->getVTList(), Ops, array_lengthof(Ops));
   1012       }
   1013     }
   1014     break;
   1015 
   1016   case SystemZISD::SELECT_CCMASK: {
   1017     SDValue Op0 = Node->getOperand(0);
   1018     SDValue Op1 = Node->getOperand(1);
   1019     // Prefer to put any load first, so that it can be matched as a
   1020     // conditional load.
   1021     if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
   1022       SDValue CCValid = Node->getOperand(2);
   1023       SDValue CCMask = Node->getOperand(3);
   1024       uint64_t ConstCCValid =
   1025         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
   1026       uint64_t ConstCCMask =
   1027         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
   1028       // Invert the condition.
   1029       CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
   1030                                    CCMask.getValueType());
   1031       SDValue Op4 = Node->getOperand(4);
   1032       Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
   1033     }
   1034     break;
   1035   }
   1036   }
   1037 
   1038   // Select the default instruction
   1039   if (!ResNode)
   1040     ResNode = SelectCode(Node);
   1041 
   1042   DEBUG(errs() << "=> ";
   1043         if (ResNode == NULL || ResNode == Node)
   1044           Node->dump(CurDAG);
   1045         else
   1046           ResNode->dump(CurDAG);
   1047         errs() << "\n";
   1048         );
   1049   return ResNode;
   1050 }
   1051 
   1052 bool SystemZDAGToDAGISel::
   1053 SelectInlineAsmMemoryOperand(const SDValue &Op,
   1054                              char ConstraintCode,
   1055                              std::vector<SDValue> &OutOps) {
   1056   assert(ConstraintCode == 'm' && "Unexpected constraint code");
   1057   // Accept addresses with short displacements, which are compatible
   1058   // with Q, R, S and T.  But keep the index operand for future expansion.
   1059   SDValue Base, Disp, Index;
   1060   if (!selectBDXAddr(SystemZAddressingMode::FormBD,
   1061                      SystemZAddressingMode::Disp12Only,
   1062                      Op, Base, Disp, Index))
   1063     return true;
   1064   OutOps.push_back(Base);
   1065   OutOps.push_back(Disp);
   1066   OutOps.push_back(Index);
   1067   return false;
   1068 }
   1069