1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Methods common to all machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineInstr.h" 15 #include "llvm/ADT/FoldingSet.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Assembly/Writer.h" 19 #include "llvm/CodeGen/MachineConstantPool.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineMemOperand.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/PseudoSourceValue.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/MC/MCInstrDesc.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // MachineOperand Implementation 47 //===----------------------------------------------------------------------===// 48 49 void MachineOperand::setReg(unsigned Reg) { 50 if (getReg() == Reg) return; // No change. 51 52 // Otherwise, we have to change the register. If this operand is embedded 53 // into a machine function, we need to update the old and new register's 54 // use/def lists. 55 if (MachineInstr *MI = getParent()) 56 if (MachineBasicBlock *MBB = MI->getParent()) 57 if (MachineFunction *MF = MBB->getParent()) { 58 MachineRegisterInfo &MRI = MF->getRegInfo(); 59 MRI.removeRegOperandFromUseList(this); 60 SmallContents.RegNo = Reg; 61 MRI.addRegOperandToUseList(this); 62 return; 63 } 64 65 // Otherwise, just change the register, no problem. :) 66 SmallContents.RegNo = Reg; 67 } 68 69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, 70 const TargetRegisterInfo &TRI) { 71 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 72 if (SubIdx && getSubReg()) 73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); 74 setReg(Reg); 75 if (SubIdx) 76 setSubReg(SubIdx); 77 } 78 79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { 80 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 81 if (getSubReg()) { 82 Reg = TRI.getSubReg(Reg, getSubReg()); 83 // Note that getSubReg() may return 0 if the sub-register doesn't exist. 84 // That won't happen in legal code. 85 setSubReg(0); 86 } 87 setReg(Reg); 88 } 89 90 /// Change a def to a use, or a use to a def. 91 void MachineOperand::setIsDef(bool Val) { 92 assert(isReg() && "Wrong MachineOperand accessor"); 93 assert((!Val || !isDebug()) && "Marking a debug operation as def"); 94 if (IsDef == Val) 95 return; 96 // MRI may keep uses and defs in different list positions. 97 if (MachineInstr *MI = getParent()) 98 if (MachineBasicBlock *MBB = MI->getParent()) 99 if (MachineFunction *MF = MBB->getParent()) { 100 MachineRegisterInfo &MRI = MF->getRegInfo(); 101 MRI.removeRegOperandFromUseList(this); 102 IsDef = Val; 103 MRI.addRegOperandToUseList(this); 104 return; 105 } 106 IsDef = Val; 107 } 108 109 /// ChangeToImmediate - Replace this operand with a new immediate operand of 110 /// the specified value. If an operand is known to be an immediate already, 111 /// the setImm method should be used. 112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) { 113 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm"); 114 // If this operand is currently a register operand, and if this is in a 115 // function, deregister the operand from the register's use/def list. 116 if (isReg() && isOnRegUseList()) 117 if (MachineInstr *MI = getParent()) 118 if (MachineBasicBlock *MBB = MI->getParent()) 119 if (MachineFunction *MF = MBB->getParent()) 120 MF->getRegInfo().removeRegOperandFromUseList(this); 121 122 OpKind = MO_Immediate; 123 Contents.ImmVal = ImmVal; 124 } 125 126 /// ChangeToRegister - Replace this operand with a new register operand of 127 /// the specified value. If an operand is known to be an register already, 128 /// the setReg method should be used. 129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, 130 bool isKill, bool isDead, bool isUndef, 131 bool isDebug) { 132 MachineRegisterInfo *RegInfo = 0; 133 if (MachineInstr *MI = getParent()) 134 if (MachineBasicBlock *MBB = MI->getParent()) 135 if (MachineFunction *MF = MBB->getParent()) 136 RegInfo = &MF->getRegInfo(); 137 // If this operand is already a register operand, remove it from the 138 // register's use/def lists. 139 bool WasReg = isReg(); 140 if (RegInfo && WasReg) 141 RegInfo->removeRegOperandFromUseList(this); 142 143 // Change this to a register and set the reg#. 144 OpKind = MO_Register; 145 SmallContents.RegNo = Reg; 146 SubReg_TargetFlags = 0; 147 IsDef = isDef; 148 IsImp = isImp; 149 IsKill = isKill; 150 IsDead = isDead; 151 IsUndef = isUndef; 152 IsInternalRead = false; 153 IsEarlyClobber = false; 154 IsDebug = isDebug; 155 // Ensure isOnRegUseList() returns false. 156 Contents.Reg.Prev = 0; 157 // Preserve the tie when the operand was already a register. 158 if (!WasReg) 159 TiedTo = 0; 160 161 // If this operand is embedded in a function, add the operand to the 162 // register's use/def list. 163 if (RegInfo) 164 RegInfo->addRegOperandToUseList(this); 165 } 166 167 /// isIdenticalTo - Return true if this operand is identical to the specified 168 /// operand. Note that this should stay in sync with the hash_value overload 169 /// below. 170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { 171 if (getType() != Other.getType() || 172 getTargetFlags() != Other.getTargetFlags()) 173 return false; 174 175 switch (getType()) { 176 case MachineOperand::MO_Register: 177 return getReg() == Other.getReg() && isDef() == Other.isDef() && 178 getSubReg() == Other.getSubReg(); 179 case MachineOperand::MO_Immediate: 180 return getImm() == Other.getImm(); 181 case MachineOperand::MO_CImmediate: 182 return getCImm() == Other.getCImm(); 183 case MachineOperand::MO_FPImmediate: 184 return getFPImm() == Other.getFPImm(); 185 case MachineOperand::MO_MachineBasicBlock: 186 return getMBB() == Other.getMBB(); 187 case MachineOperand::MO_FrameIndex: 188 return getIndex() == Other.getIndex(); 189 case MachineOperand::MO_ConstantPoolIndex: 190 case MachineOperand::MO_TargetIndex: 191 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); 192 case MachineOperand::MO_JumpTableIndex: 193 return getIndex() == Other.getIndex(); 194 case MachineOperand::MO_GlobalAddress: 195 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); 196 case MachineOperand::MO_ExternalSymbol: 197 return !strcmp(getSymbolName(), Other.getSymbolName()) && 198 getOffset() == Other.getOffset(); 199 case MachineOperand::MO_BlockAddress: 200 return getBlockAddress() == Other.getBlockAddress() && 201 getOffset() == Other.getOffset(); 202 case MO_RegisterMask: 203 return getRegMask() == Other.getRegMask(); 204 case MachineOperand::MO_MCSymbol: 205 return getMCSymbol() == Other.getMCSymbol(); 206 case MachineOperand::MO_Metadata: 207 return getMetadata() == Other.getMetadata(); 208 } 209 llvm_unreachable("Invalid machine operand type"); 210 } 211 212 // Note: this must stay exactly in sync with isIdenticalTo above. 213 hash_code llvm::hash_value(const MachineOperand &MO) { 214 switch (MO.getType()) { 215 case MachineOperand::MO_Register: 216 // Register operands don't have target flags. 217 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef()); 218 case MachineOperand::MO_Immediate: 219 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm()); 220 case MachineOperand::MO_CImmediate: 221 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm()); 222 case MachineOperand::MO_FPImmediate: 223 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm()); 224 case MachineOperand::MO_MachineBasicBlock: 225 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB()); 226 case MachineOperand::MO_FrameIndex: 227 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 228 case MachineOperand::MO_ConstantPoolIndex: 229 case MachineOperand::MO_TargetIndex: 230 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(), 231 MO.getOffset()); 232 case MachineOperand::MO_JumpTableIndex: 233 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex()); 234 case MachineOperand::MO_ExternalSymbol: 235 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(), 236 MO.getSymbolName()); 237 case MachineOperand::MO_GlobalAddress: 238 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(), 239 MO.getOffset()); 240 case MachineOperand::MO_BlockAddress: 241 return hash_combine(MO.getType(), MO.getTargetFlags(), 242 MO.getBlockAddress(), MO.getOffset()); 243 case MachineOperand::MO_RegisterMask: 244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask()); 245 case MachineOperand::MO_Metadata: 246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata()); 247 case MachineOperand::MO_MCSymbol: 248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol()); 249 } 250 llvm_unreachable("Invalid machine operand type"); 251 } 252 253 /// print - Print the specified machine operand. 254 /// 255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { 256 // If the instruction is embedded into a basic block, we can find the 257 // target info for the instruction. 258 if (!TM) 259 if (const MachineInstr *MI = getParent()) 260 if (const MachineBasicBlock *MBB = MI->getParent()) 261 if (const MachineFunction *MF = MBB->getParent()) 262 TM = &MF->getTarget(); 263 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 264 265 switch (getType()) { 266 case MachineOperand::MO_Register: 267 OS << PrintReg(getReg(), TRI, getSubReg()); 268 269 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || 270 isInternalRead() || isEarlyClobber() || isTied()) { 271 OS << '<'; 272 bool NeedComma = false; 273 if (isDef()) { 274 if (NeedComma) OS << ','; 275 if (isEarlyClobber()) 276 OS << "earlyclobber,"; 277 if (isImplicit()) 278 OS << "imp-"; 279 OS << "def"; 280 NeedComma = true; 281 // <def,read-undef> only makes sense when getSubReg() is set. 282 // Don't clutter the output otherwise. 283 if (isUndef() && getSubReg()) 284 OS << ",read-undef"; 285 } else if (isImplicit()) { 286 OS << "imp-use"; 287 NeedComma = true; 288 } 289 290 if (isKill()) { 291 if (NeedComma) OS << ','; 292 OS << "kill"; 293 NeedComma = true; 294 } 295 if (isDead()) { 296 if (NeedComma) OS << ','; 297 OS << "dead"; 298 NeedComma = true; 299 } 300 if (isUndef() && isUse()) { 301 if (NeedComma) OS << ','; 302 OS << "undef"; 303 NeedComma = true; 304 } 305 if (isInternalRead()) { 306 if (NeedComma) OS << ','; 307 OS << "internal"; 308 NeedComma = true; 309 } 310 if (isTied()) { 311 if (NeedComma) OS << ','; 312 OS << "tied"; 313 if (TiedTo != 15) 314 OS << unsigned(TiedTo - 1); 315 NeedComma = true; 316 } 317 OS << '>'; 318 } 319 break; 320 case MachineOperand::MO_Immediate: 321 OS << getImm(); 322 break; 323 case MachineOperand::MO_CImmediate: 324 getCImm()->getValue().print(OS, false); 325 break; 326 case MachineOperand::MO_FPImmediate: 327 if (getFPImm()->getType()->isFloatTy()) 328 OS << getFPImm()->getValueAPF().convertToFloat(); 329 else 330 OS << getFPImm()->getValueAPF().convertToDouble(); 331 break; 332 case MachineOperand::MO_MachineBasicBlock: 333 OS << "<BB#" << getMBB()->getNumber() << ">"; 334 break; 335 case MachineOperand::MO_FrameIndex: 336 OS << "<fi#" << getIndex() << '>'; 337 break; 338 case MachineOperand::MO_ConstantPoolIndex: 339 OS << "<cp#" << getIndex(); 340 if (getOffset()) OS << "+" << getOffset(); 341 OS << '>'; 342 break; 343 case MachineOperand::MO_TargetIndex: 344 OS << "<ti#" << getIndex(); 345 if (getOffset()) OS << "+" << getOffset(); 346 OS << '>'; 347 break; 348 case MachineOperand::MO_JumpTableIndex: 349 OS << "<jt#" << getIndex() << '>'; 350 break; 351 case MachineOperand::MO_GlobalAddress: 352 OS << "<ga:"; 353 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); 354 if (getOffset()) OS << "+" << getOffset(); 355 OS << '>'; 356 break; 357 case MachineOperand::MO_ExternalSymbol: 358 OS << "<es:" << getSymbolName(); 359 if (getOffset()) OS << "+" << getOffset(); 360 OS << '>'; 361 break; 362 case MachineOperand::MO_BlockAddress: 363 OS << '<'; 364 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); 365 if (getOffset()) OS << "+" << getOffset(); 366 OS << '>'; 367 break; 368 case MachineOperand::MO_RegisterMask: 369 OS << "<regmask>"; 370 break; 371 case MachineOperand::MO_Metadata: 372 OS << '<'; 373 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); 374 OS << '>'; 375 break; 376 case MachineOperand::MO_MCSymbol: 377 OS << "<MCSym=" << *getMCSymbol() << '>'; 378 break; 379 } 380 381 if (unsigned TF = getTargetFlags()) 382 OS << "[TF=" << TF << ']'; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // MachineMemOperand Implementation 387 //===----------------------------------------------------------------------===// 388 389 /// getAddrSpace - Return the LLVM IR address space number that this pointer 390 /// points into. 391 unsigned MachinePointerInfo::getAddrSpace() const { 392 if (V == 0) return 0; 393 return cast<PointerType>(V->getType())->getAddressSpace(); 394 } 395 396 /// getConstantPool - Return a MachinePointerInfo record that refers to the 397 /// constant pool. 398 MachinePointerInfo MachinePointerInfo::getConstantPool() { 399 return MachinePointerInfo(PseudoSourceValue::getConstantPool()); 400 } 401 402 /// getFixedStack - Return a MachinePointerInfo record that refers to the 403 /// the specified FrameIndex. 404 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { 405 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); 406 } 407 408 MachinePointerInfo MachinePointerInfo::getJumpTable() { 409 return MachinePointerInfo(PseudoSourceValue::getJumpTable()); 410 } 411 412 MachinePointerInfo MachinePointerInfo::getGOT() { 413 return MachinePointerInfo(PseudoSourceValue::getGOT()); 414 } 415 416 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { 417 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); 418 } 419 420 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, 421 uint64_t s, unsigned int a, 422 const MDNode *TBAAInfo, 423 const MDNode *Ranges) 424 : PtrInfo(ptrinfo), Size(s), 425 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), 426 TBAAInfo(TBAAInfo), Ranges(Ranges) { 427 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && 428 "invalid pointer value"); 429 assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); 430 assert((isLoad() || isStore()) && "Not a load/store!"); 431 } 432 433 /// Profile - Gather unique data for the object. 434 /// 435 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { 436 ID.AddInteger(getOffset()); 437 ID.AddInteger(Size); 438 ID.AddPointer(getValue()); 439 ID.AddInteger(Flags); 440 } 441 442 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { 443 // The Value and Offset may differ due to CSE. But the flags and size 444 // should be the same. 445 assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); 446 assert(MMO->getSize() == getSize() && "Size mismatch!"); 447 448 if (MMO->getBaseAlignment() >= getBaseAlignment()) { 449 // Update the alignment value. 450 Flags = (Flags & ((1 << MOMaxBits) - 1)) | 451 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); 452 // Also update the base and offset, because the new alignment may 453 // not be applicable with the old ones. 454 PtrInfo = MMO->PtrInfo; 455 } 456 } 457 458 /// getAlignment - Return the minimum known alignment in bytes of the 459 /// actual memory reference. 460 uint64_t MachineMemOperand::getAlignment() const { 461 return MinAlign(getBaseAlignment(), getOffset()); 462 } 463 464 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { 465 assert((MMO.isLoad() || MMO.isStore()) && 466 "SV has to be a load, store or both."); 467 468 if (MMO.isVolatile()) 469 OS << "Volatile "; 470 471 if (MMO.isLoad()) 472 OS << "LD"; 473 if (MMO.isStore()) 474 OS << "ST"; 475 OS << MMO.getSize(); 476 477 // Print the address information. 478 OS << "["; 479 if (!MMO.getValue()) 480 OS << "<unknown>"; 481 else 482 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); 483 484 // If the alignment of the memory reference itself differs from the alignment 485 // of the base pointer, print the base alignment explicitly, next to the base 486 // pointer. 487 if (MMO.getBaseAlignment() != MMO.getAlignment()) 488 OS << "(align=" << MMO.getBaseAlignment() << ")"; 489 490 if (MMO.getOffset() != 0) 491 OS << "+" << MMO.getOffset(); 492 OS << "]"; 493 494 // Print the alignment of the reference. 495 if (MMO.getBaseAlignment() != MMO.getAlignment() || 496 MMO.getBaseAlignment() != MMO.getSize()) 497 OS << "(align=" << MMO.getAlignment() << ")"; 498 499 // Print TBAA info. 500 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { 501 OS << "(tbaa="; 502 if (TBAAInfo->getNumOperands() > 0) 503 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); 504 else 505 OS << "<unknown>"; 506 OS << ")"; 507 } 508 509 // Print nontemporal info. 510 if (MMO.isNonTemporal()) 511 OS << "(nontemporal)"; 512 513 return OS; 514 } 515 516 //===----------------------------------------------------------------------===// 517 // MachineInstr Implementation 518 //===----------------------------------------------------------------------===// 519 520 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 521 if (MCID->ImplicitDefs) 522 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) 523 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 524 if (MCID->ImplicitUses) 525 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) 526 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 527 } 528 529 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 530 /// implicit operands. It reserves space for the number of operands specified by 531 /// the MCInstrDesc. 532 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 533 const DebugLoc dl, bool NoImp) 534 : MCID(&tid), Parent(0), Operands(0), NumOperands(0), 535 Flags(0), AsmPrinterFlags(0), 536 NumMemRefs(0), MemRefs(0), debugLoc(dl) { 537 // Reserve space for the expected number of operands. 538 if (unsigned NumOps = MCID->getNumOperands() + 539 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 540 CapOperands = OperandCapacity::get(NumOps); 541 Operands = MF.allocateOperandArray(CapOperands); 542 } 543 544 if (!NoImp) 545 addImplicitDefUseOperands(MF); 546 } 547 548 /// MachineInstr ctor - Copies MachineInstr arg exactly 549 /// 550 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 551 : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0), 552 Flags(0), AsmPrinterFlags(0), 553 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), 554 debugLoc(MI.getDebugLoc()) { 555 CapOperands = OperandCapacity::get(MI.getNumOperands()); 556 Operands = MF.allocateOperandArray(CapOperands); 557 558 // Copy operands. 559 for (unsigned i = 0; i != MI.getNumOperands(); ++i) 560 addOperand(MF, MI.getOperand(i)); 561 562 // Copy all the sensible flags. 563 setFlags(MI.Flags); 564 } 565 566 /// getRegInfo - If this instruction is embedded into a MachineFunction, 567 /// return the MachineRegisterInfo object for the current function, otherwise 568 /// return null. 569 MachineRegisterInfo *MachineInstr::getRegInfo() { 570 if (MachineBasicBlock *MBB = getParent()) 571 return &MBB->getParent()->getRegInfo(); 572 return 0; 573 } 574 575 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 576 /// this instruction from their respective use lists. This requires that the 577 /// operands already be on their use lists. 578 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 579 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 580 if (Operands[i].isReg()) 581 MRI.removeRegOperandFromUseList(&Operands[i]); 582 } 583 584 /// AddRegOperandsToUseLists - Add all of the register operands in 585 /// this instruction from their respective use lists. This requires that the 586 /// operands not be on their use lists yet. 587 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 588 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 589 if (Operands[i].isReg()) 590 MRI.addRegOperandToUseList(&Operands[i]); 591 } 592 593 void MachineInstr::addOperand(const MachineOperand &Op) { 594 MachineBasicBlock *MBB = getParent(); 595 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 596 MachineFunction *MF = MBB->getParent(); 597 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 598 addOperand(*MF, Op); 599 } 600 601 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 602 /// ranges. If MRI is non-null also update use-def chains. 603 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 604 unsigned NumOps, MachineRegisterInfo *MRI) { 605 if (MRI) 606 return MRI->moveOperands(Dst, Src, NumOps); 607 608 // Here it would be convenient to call memmove, so that isn't allowed because 609 // MachineOperand has a constructor and so isn't a POD type. 610 if (Dst < Src) 611 for (unsigned i = 0; i != NumOps; ++i) 612 new (Dst + i) MachineOperand(Src[i]); 613 else 614 for (unsigned i = NumOps; i ; --i) 615 new (Dst + i - 1) MachineOperand(Src[i - 1]); 616 } 617 618 /// addOperand - Add the specified operand to the instruction. If it is an 619 /// implicit operand, it is added to the end of the operand list. If it is 620 /// an explicit operand it is added at the end of the explicit operand list 621 /// (before the first implicit operand). 622 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 623 assert(MCID && "Cannot add operands before providing an instr descriptor"); 624 625 // Check if we're adding one of our existing operands. 626 if (&Op >= Operands && &Op < Operands + NumOperands) { 627 // This is unusual: MI->addOperand(MI->getOperand(i)). 628 // If adding Op requires reallocating or moving existing operands around, 629 // the Op reference could go stale. Support it by copying Op. 630 MachineOperand CopyOp(Op); 631 return addOperand(MF, CopyOp); 632 } 633 634 // Find the insert location for the new operand. Implicit registers go at 635 // the end, everything else goes before the implicit regs. 636 // 637 // FIXME: Allow mixed explicit and implicit operands on inline asm. 638 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 639 // implicit-defs, but they must not be moved around. See the FIXME in 640 // InstrEmitter.cpp. 641 unsigned OpNo = getNumOperands(); 642 bool isImpReg = Op.isReg() && Op.isImplicit(); 643 if (!isImpReg && !isInlineAsm()) { 644 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 645 --OpNo; 646 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 647 } 648 } 649 650 // OpNo now points as the desired insertion point. Unless this is a variadic 651 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 652 // RegMask operands go between the explicit and implicit operands. 653 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 654 OpNo < MCID->getNumOperands()) && 655 "Trying to add an operand to a machine instr that is already done!"); 656 657 MachineRegisterInfo *MRI = getRegInfo(); 658 659 // Determine if the Operands array needs to be reallocated. 660 // Save the old capacity and operand array. 661 OperandCapacity OldCap = CapOperands; 662 MachineOperand *OldOperands = Operands; 663 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 664 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 665 Operands = MF.allocateOperandArray(CapOperands); 666 // Move the operands before the insertion point. 667 if (OpNo) 668 moveOperands(Operands, OldOperands, OpNo, MRI); 669 } 670 671 // Move the operands following the insertion point. 672 if (OpNo != NumOperands) 673 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 674 MRI); 675 ++NumOperands; 676 677 // Deallocate the old operand array. 678 if (OldOperands != Operands && OldOperands) 679 MF.deallocateOperandArray(OldCap, OldOperands); 680 681 // Copy Op into place. It still needs to be inserted into the MRI use lists. 682 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 683 NewMO->ParentMI = this; 684 685 // When adding a register operand, tell MRI about it. 686 if (NewMO->isReg()) { 687 // Ensure isOnRegUseList() returns false, regardless of Op's status. 688 NewMO->Contents.Reg.Prev = 0; 689 // Ignore existing ties. This is not a property that can be copied. 690 NewMO->TiedTo = 0; 691 // Add the new operand to MRI, but only for instructions in an MBB. 692 if (MRI) 693 MRI->addRegOperandToUseList(NewMO); 694 // The MCID operand information isn't accurate until we start adding 695 // explicit operands. The implicit operands are added first, then the 696 // explicits are inserted before them. 697 if (!isImpReg) { 698 // Tie uses to defs as indicated in MCInstrDesc. 699 if (NewMO->isUse()) { 700 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 701 if (DefIdx != -1) 702 tieOperands(DefIdx, OpNo); 703 } 704 // If the register operand is flagged as early, mark the operand as such. 705 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 706 NewMO->setIsEarlyClobber(true); 707 } 708 } 709 } 710 711 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 712 /// fewer operand than it started with. 713 /// 714 void MachineInstr::RemoveOperand(unsigned OpNo) { 715 assert(OpNo < getNumOperands() && "Invalid operand number"); 716 untieRegOperand(OpNo); 717 718 #ifndef NDEBUG 719 // Moving tied operands would break the ties. 720 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 721 if (Operands[i].isReg()) 722 assert(!Operands[i].isTied() && "Cannot move tied operands"); 723 #endif 724 725 MachineRegisterInfo *MRI = getRegInfo(); 726 if (MRI && Operands[OpNo].isReg()) 727 MRI->removeRegOperandFromUseList(Operands + OpNo); 728 729 // Don't call the MachineOperand destructor. A lot of this code depends on 730 // MachineOperand having a trivial destructor anyway, and adding a call here 731 // wouldn't make it 'destructor-correct'. 732 733 if (unsigned N = NumOperands - 1 - OpNo) 734 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 735 --NumOperands; 736 } 737 738 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 739 /// This function should be used only occasionally. The setMemRefs function 740 /// is the primary method for setting up a MachineInstr's MemRefs list. 741 void MachineInstr::addMemOperand(MachineFunction &MF, 742 MachineMemOperand *MO) { 743 mmo_iterator OldMemRefs = MemRefs; 744 unsigned OldNumMemRefs = NumMemRefs; 745 746 unsigned NewNum = NumMemRefs + 1; 747 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); 748 749 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); 750 NewMemRefs[NewNum - 1] = MO; 751 setMemRefs(NewMemRefs, NewMemRefs + NewNum); 752 } 753 754 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { 755 assert(!isBundledWithPred() && "Must be called on bundle header"); 756 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) { 757 if (MII->getDesc().getFlags() & Mask) { 758 if (Type == AnyInBundle) 759 return true; 760 } else { 761 if (Type == AllInBundle && !MII->isBundle()) 762 return false; 763 } 764 // This was the last instruction in the bundle. 765 if (!MII->isBundledWithSucc()) 766 return Type == AllInBundle; 767 } 768 } 769 770 bool MachineInstr::isIdenticalTo(const MachineInstr *Other, 771 MICheckType Check) const { 772 // If opcodes or number of operands are not the same then the two 773 // instructions are obviously not identical. 774 if (Other->getOpcode() != getOpcode() || 775 Other->getNumOperands() != getNumOperands()) 776 return false; 777 778 if (isBundle()) { 779 // Both instructions are bundles, compare MIs inside the bundle. 780 MachineBasicBlock::const_instr_iterator I1 = *this; 781 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); 782 MachineBasicBlock::const_instr_iterator I2 = *Other; 783 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); 784 while (++I1 != E1 && I1->isInsideBundle()) { 785 ++I2; 786 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) 787 return false; 788 } 789 } 790 791 // Check operands to make sure they match. 792 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 793 const MachineOperand &MO = getOperand(i); 794 const MachineOperand &OMO = Other->getOperand(i); 795 if (!MO.isReg()) { 796 if (!MO.isIdenticalTo(OMO)) 797 return false; 798 continue; 799 } 800 801 // Clients may or may not want to ignore defs when testing for equality. 802 // For example, machine CSE pass only cares about finding common 803 // subexpressions, so it's safe to ignore virtual register defs. 804 if (MO.isDef()) { 805 if (Check == IgnoreDefs) 806 continue; 807 else if (Check == IgnoreVRegDefs) { 808 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 809 TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) 810 if (MO.getReg() != OMO.getReg()) 811 return false; 812 } else { 813 if (!MO.isIdenticalTo(OMO)) 814 return false; 815 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 816 return false; 817 } 818 } else { 819 if (!MO.isIdenticalTo(OMO)) 820 return false; 821 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 822 return false; 823 } 824 } 825 // If DebugLoc does not match then two dbg.values are not identical. 826 if (isDebugValue()) 827 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() 828 && getDebugLoc() != Other->getDebugLoc()) 829 return false; 830 return true; 831 } 832 833 MachineInstr *MachineInstr::removeFromParent() { 834 assert(getParent() && "Not embedded in a basic block!"); 835 return getParent()->remove(this); 836 } 837 838 MachineInstr *MachineInstr::removeFromBundle() { 839 assert(getParent() && "Not embedded in a basic block!"); 840 return getParent()->remove_instr(this); 841 } 842 843 void MachineInstr::eraseFromParent() { 844 assert(getParent() && "Not embedded in a basic block!"); 845 getParent()->erase(this); 846 } 847 848 void MachineInstr::eraseFromBundle() { 849 assert(getParent() && "Not embedded in a basic block!"); 850 getParent()->erase_instr(this); 851 } 852 853 /// getNumExplicitOperands - Returns the number of non-implicit operands. 854 /// 855 unsigned MachineInstr::getNumExplicitOperands() const { 856 unsigned NumOperands = MCID->getNumOperands(); 857 if (!MCID->isVariadic()) 858 return NumOperands; 859 860 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { 861 const MachineOperand &MO = getOperand(i); 862 if (!MO.isReg() || !MO.isImplicit()) 863 NumOperands++; 864 } 865 return NumOperands; 866 } 867 868 void MachineInstr::bundleWithPred() { 869 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 870 setFlag(BundledPred); 871 MachineBasicBlock::instr_iterator Pred = this; 872 --Pred; 873 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 874 Pred->setFlag(BundledSucc); 875 } 876 877 void MachineInstr::bundleWithSucc() { 878 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 879 setFlag(BundledSucc); 880 MachineBasicBlock::instr_iterator Succ = this; 881 ++Succ; 882 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 883 Succ->setFlag(BundledPred); 884 } 885 886 void MachineInstr::unbundleFromPred() { 887 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 888 clearFlag(BundledPred); 889 MachineBasicBlock::instr_iterator Pred = this; 890 --Pred; 891 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 892 Pred->clearFlag(BundledSucc); 893 } 894 895 void MachineInstr::unbundleFromSucc() { 896 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 897 clearFlag(BundledSucc); 898 MachineBasicBlock::instr_iterator Succ = this; 899 ++Succ; 900 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 901 Succ->clearFlag(BundledPred); 902 } 903 904 bool MachineInstr::isStackAligningInlineAsm() const { 905 if (isInlineAsm()) { 906 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 907 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 908 return true; 909 } 910 return false; 911 } 912 913 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 914 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 915 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 916 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 917 } 918 919 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 920 unsigned *GroupNo) const { 921 assert(isInlineAsm() && "Expected an inline asm instruction"); 922 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 923 924 // Ignore queries about the initial operands. 925 if (OpIdx < InlineAsm::MIOp_FirstOperand) 926 return -1; 927 928 unsigned Group = 0; 929 unsigned NumOps; 930 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 931 i += NumOps) { 932 const MachineOperand &FlagMO = getOperand(i); 933 // If we reach the implicit register operands, stop looking. 934 if (!FlagMO.isImm()) 935 return -1; 936 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 937 if (i + NumOps > OpIdx) { 938 if (GroupNo) 939 *GroupNo = Group; 940 return i; 941 } 942 ++Group; 943 } 944 return -1; 945 } 946 947 const TargetRegisterClass* 948 MachineInstr::getRegClassConstraint(unsigned OpIdx, 949 const TargetInstrInfo *TII, 950 const TargetRegisterInfo *TRI) const { 951 assert(getParent() && "Can't have an MBB reference here!"); 952 assert(getParent()->getParent() && "Can't have an MF reference here!"); 953 const MachineFunction &MF = *getParent()->getParent(); 954 955 // Most opcodes have fixed constraints in their MCInstrDesc. 956 if (!isInlineAsm()) 957 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 958 959 if (!getOperand(OpIdx).isReg()) 960 return NULL; 961 962 // For tied uses on inline asm, get the constraint from the def. 963 unsigned DefIdx; 964 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 965 OpIdx = DefIdx; 966 967 // Inline asm stores register class constraints in the flag word. 968 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 969 if (FlagIdx < 0) 970 return NULL; 971 972 unsigned Flag = getOperand(FlagIdx).getImm(); 973 unsigned RCID; 974 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) 975 return TRI->getRegClass(RCID); 976 977 // Assume that all registers in a memory operand are pointers. 978 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 979 return TRI->getPointerRegClass(MF); 980 981 return NULL; 982 } 983 984 /// Return the number of instructions inside the MI bundle, not counting the 985 /// header instruction. 986 unsigned MachineInstr::getBundleSize() const { 987 MachineBasicBlock::const_instr_iterator I = this; 988 unsigned Size = 0; 989 while (I->isBundledWithSucc()) 990 ++Size, ++I; 991 return Size; 992 } 993 994 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 995 /// the specific register or -1 if it is not found. It further tightens 996 /// the search criteria to a use that kills the register if isKill is true. 997 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, 998 const TargetRegisterInfo *TRI) const { 999 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1000 const MachineOperand &MO = getOperand(i); 1001 if (!MO.isReg() || !MO.isUse()) 1002 continue; 1003 unsigned MOReg = MO.getReg(); 1004 if (!MOReg) 1005 continue; 1006 if (MOReg == Reg || 1007 (TRI && 1008 TargetRegisterInfo::isPhysicalRegister(MOReg) && 1009 TargetRegisterInfo::isPhysicalRegister(Reg) && 1010 TRI->isSubRegister(MOReg, Reg))) 1011 if (!isKill || MO.isKill()) 1012 return i; 1013 } 1014 return -1; 1015 } 1016 1017 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1018 /// indicating if this instruction reads or writes Reg. This also considers 1019 /// partial defines. 1020 std::pair<bool,bool> 1021 MachineInstr::readsWritesVirtualRegister(unsigned Reg, 1022 SmallVectorImpl<unsigned> *Ops) const { 1023 bool PartDef = false; // Partial redefine. 1024 bool FullDef = false; // Full define. 1025 bool Use = false; 1026 1027 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1028 const MachineOperand &MO = getOperand(i); 1029 if (!MO.isReg() || MO.getReg() != Reg) 1030 continue; 1031 if (Ops) 1032 Ops->push_back(i); 1033 if (MO.isUse()) 1034 Use |= !MO.isUndef(); 1035 else if (MO.getSubReg() && !MO.isUndef()) 1036 // A partial <def,undef> doesn't count as reading the register. 1037 PartDef = true; 1038 else 1039 FullDef = true; 1040 } 1041 // A partial redefine uses Reg unless there is also a full define. 1042 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1043 } 1044 1045 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1046 /// the specified register or -1 if it is not found. If isDead is true, defs 1047 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1048 /// also checks if there is a def of a super-register. 1049 int 1050 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, 1051 const TargetRegisterInfo *TRI) const { 1052 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); 1053 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1054 const MachineOperand &MO = getOperand(i); 1055 // Accept regmask operands when Overlap is set. 1056 // Ignore them when looking for a specific def operand (Overlap == false). 1057 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1058 return i; 1059 if (!MO.isReg() || !MO.isDef()) 1060 continue; 1061 unsigned MOReg = MO.getReg(); 1062 bool Found = (MOReg == Reg); 1063 if (!Found && TRI && isPhys && 1064 TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1065 if (Overlap) 1066 Found = TRI->regsOverlap(MOReg, Reg); 1067 else 1068 Found = TRI->isSubRegister(MOReg, Reg); 1069 } 1070 if (Found && (!isDead || MO.isDead())) 1071 return i; 1072 } 1073 return -1; 1074 } 1075 1076 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1077 /// operand list that is used to represent the predicate. It returns -1 if 1078 /// none is found. 1079 int MachineInstr::findFirstPredOperandIdx() const { 1080 // Don't call MCID.findFirstPredOperandIdx() because this variant 1081 // is sometimes called on an instruction that's not yet complete, and 1082 // so the number of operands is less than the MCID indicates. In 1083 // particular, the PTX target does this. 1084 const MCInstrDesc &MCID = getDesc(); 1085 if (MCID.isPredicable()) { 1086 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1087 if (MCID.OpInfo[i].isPredicate()) 1088 return i; 1089 } 1090 1091 return -1; 1092 } 1093 1094 // MachineOperand::TiedTo is 4 bits wide. 1095 const unsigned TiedMax = 15; 1096 1097 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1098 /// 1099 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1100 /// field. TiedTo can have these values: 1101 /// 1102 /// 0: Operand is not tied to anything. 1103 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1104 /// TiedMax: Tied to an operand >= TiedMax-1. 1105 /// 1106 /// The tied def must be one of the first TiedMax operands on a normal 1107 /// instruction. INLINEASM instructions allow more tied defs. 1108 /// 1109 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1110 MachineOperand &DefMO = getOperand(DefIdx); 1111 MachineOperand &UseMO = getOperand(UseIdx); 1112 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1113 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1114 assert(!DefMO.isTied() && "Def is already tied to another use"); 1115 assert(!UseMO.isTied() && "Use is already tied to another def"); 1116 1117 if (DefIdx < TiedMax) 1118 UseMO.TiedTo = DefIdx + 1; 1119 else { 1120 // Inline asm can use the group descriptors to find tied operands, but on 1121 // normal instruction, the tied def must be within the first TiedMax 1122 // operands. 1123 assert(isInlineAsm() && "DefIdx out of range"); 1124 UseMO.TiedTo = TiedMax; 1125 } 1126 1127 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1128 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1129 } 1130 1131 /// Given the index of a tied register operand, find the operand it is tied to. 1132 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1133 /// which must exist. 1134 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1135 const MachineOperand &MO = getOperand(OpIdx); 1136 assert(MO.isTied() && "Operand isn't tied"); 1137 1138 // Normally TiedTo is in range. 1139 if (MO.TiedTo < TiedMax) 1140 return MO.TiedTo - 1; 1141 1142 // Uses on normal instructions can be out of range. 1143 if (!isInlineAsm()) { 1144 // Normal tied defs must be in the 0..TiedMax-1 range. 1145 if (MO.isUse()) 1146 return TiedMax - 1; 1147 // MO is a def. Search for the tied use. 1148 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1149 const MachineOperand &UseMO = getOperand(i); 1150 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1151 return i; 1152 } 1153 llvm_unreachable("Can't find tied use"); 1154 } 1155 1156 // Now deal with inline asm by parsing the operand group descriptor flags. 1157 // Find the beginning of each operand group. 1158 SmallVector<unsigned, 8> GroupIdx; 1159 unsigned OpIdxGroup = ~0u; 1160 unsigned NumOps; 1161 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1162 i += NumOps) { 1163 const MachineOperand &FlagMO = getOperand(i); 1164 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1165 unsigned CurGroup = GroupIdx.size(); 1166 GroupIdx.push_back(i); 1167 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1168 // OpIdx belongs to this operand group. 1169 if (OpIdx > i && OpIdx < i + NumOps) 1170 OpIdxGroup = CurGroup; 1171 unsigned TiedGroup; 1172 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1173 continue; 1174 // Operands in this group are tied to operands in TiedGroup which must be 1175 // earlier. Find the number of operands between the two groups. 1176 unsigned Delta = i - GroupIdx[TiedGroup]; 1177 1178 // OpIdx is a use tied to TiedGroup. 1179 if (OpIdxGroup == CurGroup) 1180 return OpIdx - Delta; 1181 1182 // OpIdx is a def tied to this use group. 1183 if (OpIdxGroup == TiedGroup) 1184 return OpIdx + Delta; 1185 } 1186 llvm_unreachable("Invalid tied operand on inline asm"); 1187 } 1188 1189 /// clearKillInfo - Clears kill flags on all operands. 1190 /// 1191 void MachineInstr::clearKillInfo() { 1192 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1193 MachineOperand &MO = getOperand(i); 1194 if (MO.isReg() && MO.isUse()) 1195 MO.setIsKill(false); 1196 } 1197 } 1198 1199 void MachineInstr::substituteRegister(unsigned FromReg, 1200 unsigned ToReg, 1201 unsigned SubIdx, 1202 const TargetRegisterInfo &RegInfo) { 1203 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { 1204 if (SubIdx) 1205 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1206 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1207 MachineOperand &MO = getOperand(i); 1208 if (!MO.isReg() || MO.getReg() != FromReg) 1209 continue; 1210 MO.substPhysReg(ToReg, RegInfo); 1211 } 1212 } else { 1213 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1214 MachineOperand &MO = getOperand(i); 1215 if (!MO.isReg() || MO.getReg() != FromReg) 1216 continue; 1217 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1218 } 1219 } 1220 } 1221 1222 /// isSafeToMove - Return true if it is safe to move this instruction. If 1223 /// SawStore is set to true, it means that there is a store (or call) between 1224 /// the instruction's location and its intended destination. 1225 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, 1226 AliasAnalysis *AA, 1227 bool &SawStore) const { 1228 // Ignore stuff that we obviously can't move. 1229 // 1230 // Treat volatile loads as stores. This is not strictly necessary for 1231 // volatiles, but it is required for atomic loads. It is not allowed to move 1232 // a load across an atomic load with Ordering > Monotonic. 1233 if (mayStore() || isCall() || 1234 (mayLoad() && hasOrderedMemoryRef())) { 1235 SawStore = true; 1236 return false; 1237 } 1238 1239 if (isLabel() || isDebugValue() || 1240 isTerminator() || hasUnmodeledSideEffects()) 1241 return false; 1242 1243 // See if this instruction does a load. If so, we have to guarantee that the 1244 // loaded value doesn't change between the load and the its intended 1245 // destination. The check for isInvariantLoad gives the targe the chance to 1246 // classify the load as always returning a constant, e.g. a constant pool 1247 // load. 1248 if (mayLoad() && !isInvariantLoad(AA)) 1249 // Otherwise, this is a real load. If there is a store between the load and 1250 // end of block, we can't move it. 1251 return !SawStore; 1252 1253 return true; 1254 } 1255 1256 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1257 /// or volatile memory reference, or if the information describing the memory 1258 /// reference is not available. Return false if it is known to have no ordered 1259 /// memory references. 1260 bool MachineInstr::hasOrderedMemoryRef() const { 1261 // An instruction known never to access memory won't have a volatile access. 1262 if (!mayStore() && 1263 !mayLoad() && 1264 !isCall() && 1265 !hasUnmodeledSideEffects()) 1266 return false; 1267 1268 // Otherwise, if the instruction has no memory reference information, 1269 // conservatively assume it wasn't preserved. 1270 if (memoperands_empty()) 1271 return true; 1272 1273 // Check the memory reference information for ordered references. 1274 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) 1275 if (!(*I)->isUnordered()) 1276 return true; 1277 1278 return false; 1279 } 1280 1281 /// isInvariantLoad - Return true if this instruction is loading from a 1282 /// location whose value is invariant across the function. For example, 1283 /// loading a value from the constant pool or from the argument area 1284 /// of a function if it does not change. This should only return true of 1285 /// *all* loads the instruction does are invariant (if it does multiple loads). 1286 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { 1287 // If the instruction doesn't load at all, it isn't an invariant load. 1288 if (!mayLoad()) 1289 return false; 1290 1291 // If the instruction has lost its memoperands, conservatively assume that 1292 // it may not be an invariant load. 1293 if (memoperands_empty()) 1294 return false; 1295 1296 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); 1297 1298 for (mmo_iterator I = memoperands_begin(), 1299 E = memoperands_end(); I != E; ++I) { 1300 if ((*I)->isVolatile()) return false; 1301 if ((*I)->isStore()) return false; 1302 if ((*I)->isInvariant()) return true; 1303 1304 if (const Value *V = (*I)->getValue()) { 1305 // A load from a constant PseudoSourceValue is invariant. 1306 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) 1307 if (PSV->isConstant(MFI)) 1308 continue; 1309 // If we have an AliasAnalysis, ask it whether the memory is constant. 1310 if (AA && AA->pointsToConstantMemory( 1311 AliasAnalysis::Location(V, (*I)->getSize(), 1312 (*I)->getTBAAInfo()))) 1313 continue; 1314 } 1315 1316 // Otherwise assume conservatively. 1317 return false; 1318 } 1319 1320 // Everything checks out. 1321 return true; 1322 } 1323 1324 /// isConstantValuePHI - If the specified instruction is a PHI that always 1325 /// merges together the same virtual register, return the register, otherwise 1326 /// return 0. 1327 unsigned MachineInstr::isConstantValuePHI() const { 1328 if (!isPHI()) 1329 return 0; 1330 assert(getNumOperands() >= 3 && 1331 "It's illegal to have a PHI without source operands"); 1332 1333 unsigned Reg = getOperand(1).getReg(); 1334 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1335 if (getOperand(i).getReg() != Reg) 1336 return 0; 1337 return Reg; 1338 } 1339 1340 bool MachineInstr::hasUnmodeledSideEffects() const { 1341 if (hasProperty(MCID::UnmodeledSideEffects)) 1342 return true; 1343 if (isInlineAsm()) { 1344 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1345 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1346 return true; 1347 } 1348 1349 return false; 1350 } 1351 1352 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1353 /// 1354 bool MachineInstr::allDefsAreDead() const { 1355 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { 1356 const MachineOperand &MO = getOperand(i); 1357 if (!MO.isReg() || MO.isUse()) 1358 continue; 1359 if (!MO.isDead()) 1360 return false; 1361 } 1362 return true; 1363 } 1364 1365 /// copyImplicitOps - Copy implicit register operands from specified 1366 /// instruction to this instruction. 1367 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1368 const MachineInstr *MI) { 1369 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); 1370 i != e; ++i) { 1371 const MachineOperand &MO = MI->getOperand(i); 1372 if (MO.isReg() && MO.isImplicit()) 1373 addOperand(MF, MO); 1374 } 1375 } 1376 1377 void MachineInstr::dump() const { 1378 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1379 dbgs() << " " << *this; 1380 #endif 1381 } 1382 1383 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, 1384 raw_ostream &CommentOS) { 1385 const LLVMContext &Ctx = MF->getFunction()->getContext(); 1386 if (!DL.isUnknown()) { // Print source line info. 1387 DIScope Scope(DL.getScope(Ctx)); 1388 assert((!Scope || Scope.isScope()) && 1389 "Scope of a DebugLoc should be null or a DIScope."); 1390 // Omit the directory, because it's likely to be long and uninteresting. 1391 if (Scope) 1392 CommentOS << Scope.getFilename(); 1393 else 1394 CommentOS << "<unknown>"; 1395 CommentOS << ':' << DL.getLine(); 1396 if (DL.getCol() != 0) 1397 CommentOS << ':' << DL.getCol(); 1398 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); 1399 if (!InlinedAtDL.isUnknown()) { 1400 CommentOS << " @[ "; 1401 printDebugLoc(InlinedAtDL, MF, CommentOS); 1402 CommentOS << " ]"; 1403 } 1404 } 1405 } 1406 1407 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM, 1408 bool SkipOpers) const { 1409 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. 1410 const MachineFunction *MF = 0; 1411 const MachineRegisterInfo *MRI = 0; 1412 if (const MachineBasicBlock *MBB = getParent()) { 1413 MF = MBB->getParent(); 1414 if (!TM && MF) 1415 TM = &MF->getTarget(); 1416 if (MF) 1417 MRI = &MF->getRegInfo(); 1418 } 1419 1420 // Save a list of virtual registers. 1421 SmallVector<unsigned, 8> VirtRegs; 1422 1423 // Print explicitly defined operands on the left of an assignment syntax. 1424 unsigned StartOp = 0, e = getNumOperands(); 1425 for (; StartOp < e && getOperand(StartOp).isReg() && 1426 getOperand(StartOp).isDef() && 1427 !getOperand(StartOp).isImplicit(); 1428 ++StartOp) { 1429 if (StartOp != 0) OS << ", "; 1430 getOperand(StartOp).print(OS, TM); 1431 unsigned Reg = getOperand(StartOp).getReg(); 1432 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1433 VirtRegs.push_back(Reg); 1434 } 1435 1436 if (StartOp != 0) 1437 OS << " = "; 1438 1439 // Print the opcode name. 1440 if (TM && TM->getInstrInfo()) 1441 OS << TM->getInstrInfo()->getName(getOpcode()); 1442 else 1443 OS << "UNKNOWN"; 1444 1445 if (SkipOpers) 1446 return; 1447 1448 // Print the rest of the operands. 1449 bool OmittedAnyCallClobbers = false; 1450 bool FirstOp = true; 1451 unsigned AsmDescOp = ~0u; 1452 unsigned AsmOpCount = 0; 1453 1454 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1455 // Print asm string. 1456 OS << " "; 1457 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); 1458 1459 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1460 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1461 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1462 OS << " [sideeffect]"; 1463 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1464 OS << " [mayload]"; 1465 if (ExtraInfo & InlineAsm::Extra_MayStore) 1466 OS << " [maystore]"; 1467 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1468 OS << " [alignstack]"; 1469 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1470 OS << " [attdialect]"; 1471 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1472 OS << " [inteldialect]"; 1473 1474 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1475 FirstOp = false; 1476 } 1477 1478 1479 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1480 const MachineOperand &MO = getOperand(i); 1481 1482 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1483 VirtRegs.push_back(MO.getReg()); 1484 1485 // Omit call-clobbered registers which aren't used anywhere. This makes 1486 // call instructions much less noisy on targets where calls clobber lots 1487 // of registers. Don't rely on MO.isDead() because we may be called before 1488 // LiveVariables is run, or we may be looking at a non-allocatable reg. 1489 if (MF && isCall() && 1490 MO.isReg() && MO.isImplicit() && MO.isDef()) { 1491 unsigned Reg = MO.getReg(); 1492 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1493 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1494 if (MRI.use_empty(Reg)) { 1495 bool HasAliasLive = false; 1496 for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true); 1497 AI.isValid(); ++AI) { 1498 unsigned AliasReg = *AI; 1499 if (!MRI.use_empty(AliasReg)) { 1500 HasAliasLive = true; 1501 break; 1502 } 1503 } 1504 if (!HasAliasLive) { 1505 OmittedAnyCallClobbers = true; 1506 continue; 1507 } 1508 } 1509 } 1510 } 1511 1512 if (FirstOp) FirstOp = false; else OS << ","; 1513 OS << " "; 1514 if (i < getDesc().NumOperands) { 1515 const MCOperandInfo &MCOI = getDesc().OpInfo[i]; 1516 if (MCOI.isPredicate()) 1517 OS << "pred:"; 1518 if (MCOI.isOptionalDef()) 1519 OS << "opt:"; 1520 } 1521 if (isDebugValue() && MO.isMetadata()) { 1522 // Pretty print DBG_VALUE instructions. 1523 const MDNode *MD = MO.getMetadata(); 1524 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) 1525 OS << "!\"" << MDS->getString() << '\"'; 1526 else 1527 MO.print(OS, TM); 1528 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { 1529 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); 1530 } else if (i == AsmDescOp && MO.isImm()) { 1531 // Pretty print the inline asm operand descriptor. 1532 OS << '$' << AsmOpCount++; 1533 unsigned Flag = MO.getImm(); 1534 switch (InlineAsm::getKind(Flag)) { 1535 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; 1536 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; 1537 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; 1538 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; 1539 case InlineAsm::Kind_Imm: OS << ":[imm"; break; 1540 case InlineAsm::Kind_Mem: OS << ":[mem"; break; 1541 default: OS << ":[??" << InlineAsm::getKind(Flag); break; 1542 } 1543 1544 unsigned RCID = 0; 1545 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1546 if (TM) 1547 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); 1548 else 1549 OS << ":RC" << RCID; 1550 } 1551 1552 unsigned TiedTo = 0; 1553 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1554 OS << " tiedto:$" << TiedTo; 1555 1556 OS << ']'; 1557 1558 // Compute the index of the next operand descriptor. 1559 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1560 } else 1561 MO.print(OS, TM); 1562 } 1563 1564 // Briefly indicate whether any call clobbers were omitted. 1565 if (OmittedAnyCallClobbers) { 1566 if (!FirstOp) OS << ","; 1567 OS << " ..."; 1568 } 1569 1570 bool HaveSemi = false; 1571 const unsigned PrintableFlags = FrameSetup; 1572 if (Flags & PrintableFlags) { 1573 if (!HaveSemi) OS << ";"; HaveSemi = true; 1574 OS << " flags: "; 1575 1576 if (Flags & FrameSetup) 1577 OS << "FrameSetup"; 1578 } 1579 1580 if (!memoperands_empty()) { 1581 if (!HaveSemi) OS << ";"; HaveSemi = true; 1582 1583 OS << " mem:"; 1584 for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); 1585 i != e; ++i) { 1586 OS << **i; 1587 if (llvm::next(i) != e) 1588 OS << " "; 1589 } 1590 } 1591 1592 // Print the regclass of any virtual registers encountered. 1593 if (MRI && !VirtRegs.empty()) { 1594 if (!HaveSemi) OS << ";"; HaveSemi = true; 1595 for (unsigned i = 0; i != VirtRegs.size(); ++i) { 1596 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); 1597 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); 1598 for (unsigned j = i+1; j != VirtRegs.size();) { 1599 if (MRI->getRegClass(VirtRegs[j]) != RC) { 1600 ++j; 1601 continue; 1602 } 1603 if (VirtRegs[i] != VirtRegs[j]) 1604 OS << "," << PrintReg(VirtRegs[j]); 1605 VirtRegs.erase(VirtRegs.begin()+j); 1606 } 1607 } 1608 } 1609 1610 // Print debug location information. 1611 if (isDebugValue() && getOperand(e - 1).isMetadata()) { 1612 if (!HaveSemi) OS << ";"; HaveSemi = true; 1613 DIVariable DV(getOperand(e - 1).getMetadata()); 1614 OS << " line no:" << DV.getLineNumber(); 1615 if (MDNode *InlinedAt = DV.getInlinedAt()) { 1616 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); 1617 if (!InlinedAtDL.isUnknown()) { 1618 OS << " inlined @[ "; 1619 printDebugLoc(InlinedAtDL, MF, OS); 1620 OS << " ]"; 1621 } 1622 } 1623 } else if (!debugLoc.isUnknown() && MF) { 1624 if (!HaveSemi) OS << ";"; HaveSemi = true; 1625 OS << " dbg:"; 1626 printDebugLoc(debugLoc, MF, OS); 1627 } 1628 1629 OS << '\n'; 1630 } 1631 1632 bool MachineInstr::addRegisterKilled(unsigned IncomingReg, 1633 const TargetRegisterInfo *RegInfo, 1634 bool AddIfNotFound) { 1635 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1636 bool hasAliases = isPhysReg && 1637 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1638 bool Found = false; 1639 SmallVector<unsigned,4> DeadOps; 1640 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1641 MachineOperand &MO = getOperand(i); 1642 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1643 continue; 1644 unsigned Reg = MO.getReg(); 1645 if (!Reg) 1646 continue; 1647 1648 if (Reg == IncomingReg) { 1649 if (!Found) { 1650 if (MO.isKill()) 1651 // The register is already marked kill. 1652 return true; 1653 if (isPhysReg && isRegTiedToDefOperand(i)) 1654 // Two-address uses of physregs must not be marked kill. 1655 return true; 1656 MO.setIsKill(); 1657 Found = true; 1658 } 1659 } else if (hasAliases && MO.isKill() && 1660 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1661 // A super-register kill already exists. 1662 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1663 return true; 1664 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1665 DeadOps.push_back(i); 1666 } 1667 } 1668 1669 // Trim unneeded kill operands. 1670 while (!DeadOps.empty()) { 1671 unsigned OpIdx = DeadOps.back(); 1672 if (getOperand(OpIdx).isImplicit()) 1673 RemoveOperand(OpIdx); 1674 else 1675 getOperand(OpIdx).setIsKill(false); 1676 DeadOps.pop_back(); 1677 } 1678 1679 // If not found, this means an alias of one of the operands is killed. Add a 1680 // new implicit operand if required. 1681 if (!Found && AddIfNotFound) { 1682 addOperand(MachineOperand::CreateReg(IncomingReg, 1683 false /*IsDef*/, 1684 true /*IsImp*/, 1685 true /*IsKill*/)); 1686 return true; 1687 } 1688 return Found; 1689 } 1690 1691 void MachineInstr::clearRegisterKills(unsigned Reg, 1692 const TargetRegisterInfo *RegInfo) { 1693 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 1694 RegInfo = 0; 1695 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1696 MachineOperand &MO = getOperand(i); 1697 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1698 continue; 1699 unsigned OpReg = MO.getReg(); 1700 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) 1701 MO.setIsKill(false); 1702 } 1703 } 1704 1705 bool MachineInstr::addRegisterDead(unsigned IncomingReg, 1706 const TargetRegisterInfo *RegInfo, 1707 bool AddIfNotFound) { 1708 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); 1709 bool hasAliases = isPhysReg && 1710 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1711 bool Found = false; 1712 SmallVector<unsigned,4> DeadOps; 1713 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1714 MachineOperand &MO = getOperand(i); 1715 if (!MO.isReg() || !MO.isDef()) 1716 continue; 1717 unsigned Reg = MO.getReg(); 1718 if (!Reg) 1719 continue; 1720 1721 if (Reg == IncomingReg) { 1722 MO.setIsDead(); 1723 Found = true; 1724 } else if (hasAliases && MO.isDead() && 1725 TargetRegisterInfo::isPhysicalRegister(Reg)) { 1726 // There exists a super-register that's marked dead. 1727 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1728 return true; 1729 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1730 DeadOps.push_back(i); 1731 } 1732 } 1733 1734 // Trim unneeded dead operands. 1735 while (!DeadOps.empty()) { 1736 unsigned OpIdx = DeadOps.back(); 1737 if (getOperand(OpIdx).isImplicit()) 1738 RemoveOperand(OpIdx); 1739 else 1740 getOperand(OpIdx).setIsDead(false); 1741 DeadOps.pop_back(); 1742 } 1743 1744 // If not found, this means an alias of one of the operands is dead. Add a 1745 // new implicit operand if required. 1746 if (Found || !AddIfNotFound) 1747 return Found; 1748 1749 addOperand(MachineOperand::CreateReg(IncomingReg, 1750 true /*IsDef*/, 1751 true /*IsImp*/, 1752 false /*IsKill*/, 1753 true /*IsDead*/)); 1754 return true; 1755 } 1756 1757 void MachineInstr::addRegisterDefined(unsigned IncomingReg, 1758 const TargetRegisterInfo *RegInfo) { 1759 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { 1760 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); 1761 if (MO) 1762 return; 1763 } else { 1764 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1765 const MachineOperand &MO = getOperand(i); 1766 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && 1767 MO.getSubReg() == 0) 1768 return; 1769 } 1770 } 1771 addOperand(MachineOperand::CreateReg(IncomingReg, 1772 true /*IsDef*/, 1773 true /*IsImp*/)); 1774 } 1775 1776 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1777 const TargetRegisterInfo &TRI) { 1778 bool HasRegMask = false; 1779 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1780 MachineOperand &MO = getOperand(i); 1781 if (MO.isRegMask()) { 1782 HasRegMask = true; 1783 continue; 1784 } 1785 if (!MO.isReg() || !MO.isDef()) continue; 1786 unsigned Reg = MO.getReg(); 1787 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 1788 bool Dead = true; 1789 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1790 I != E; ++I) 1791 if (TRI.regsOverlap(*I, Reg)) { 1792 Dead = false; 1793 break; 1794 } 1795 // If there are no uses, including partial uses, the def is dead. 1796 if (Dead) MO.setIsDead(); 1797 } 1798 1799 // This is a call with a register mask operand. 1800 // Mask clobbers are always dead, so add defs for the non-dead defines. 1801 if (HasRegMask) 1802 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); 1803 I != E; ++I) 1804 addRegisterDefined(*I, &TRI); 1805 } 1806 1807 unsigned 1808 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 1809 // Build up a buffer of hash code components. 1810 SmallVector<size_t, 8> HashComponents; 1811 HashComponents.reserve(MI->getNumOperands() + 1); 1812 HashComponents.push_back(MI->getOpcode()); 1813 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1814 const MachineOperand &MO = MI->getOperand(i); 1815 if (MO.isReg() && MO.isDef() && 1816 TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1817 continue; // Skip virtual register defs. 1818 1819 HashComponents.push_back(hash_value(MO)); 1820 } 1821 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 1822 } 1823 1824 void MachineInstr::emitError(StringRef Msg) const { 1825 // Find the source location cookie. 1826 unsigned LocCookie = 0; 1827 const MDNode *LocMD = 0; 1828 for (unsigned i = getNumOperands(); i != 0; --i) { 1829 if (getOperand(i-1).isMetadata() && 1830 (LocMD = getOperand(i-1).getMetadata()) && 1831 LocMD->getNumOperands() != 0) { 1832 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { 1833 LocCookie = CI->getZExtValue(); 1834 break; 1835 } 1836 } 1837 } 1838 1839 if (const MachineBasicBlock *MBB = getParent()) 1840 if (const MachineFunction *MF = MBB->getParent()) 1841 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 1842 report_fatal_error(Msg); 1843 } 1844