Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the ARM target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "arm-isel"
     15 #include "ARM.h"
     16 #include "ARMBaseInstrInfo.h"
     17 #include "ARMTargetMachine.h"
     18 #include "MCTargetDesc/ARMAddressingModes.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/SelectionDAG.h"
     24 #include "llvm/CodeGen/SelectionDAGISel.h"
     25 #include "llvm/IR/CallingConv.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Compiler.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetLowering.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 
     39 using namespace llvm;
     40 
     41 static cl::opt<bool>
     42 DisableShifterOp("disable-shifter-op", cl::Hidden,
     43   cl::desc("Disable isel of shifter-op"),
     44   cl::init(false));
     45 
     46 static cl::opt<bool>
     47 CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
     48   cl::desc("Check fp vmla / vmls hazard at isel time"),
     49   cl::init(true));
     50 
     51 //===--------------------------------------------------------------------===//
     52 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
     53 /// instructions for SelectionDAG operations.
     54 ///
     55 namespace {
     56 
     57 enum AddrMode2Type {
     58   AM2_BASE, // Simple AM2 (+-imm12)
     59   AM2_SHOP  // Shifter-op AM2
     60 };
     61 
     62 class ARMDAGToDAGISel : public SelectionDAGISel {
     63   ARMBaseTargetMachine &TM;
     64 
     65   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     66   /// make the right decision when generating code for different targets.
     67   const ARMSubtarget *Subtarget;
     68 
     69 public:
     70   explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
     71                            CodeGenOpt::Level OptLevel)
     72     : SelectionDAGISel(tm, OptLevel), TM(tm),
     73       Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
     74   }
     75 
     76   virtual const char *getPassName() const {
     77     return "ARM Instruction Selection";
     78   }
     79 
     80   virtual void PreprocessISelDAG();
     81 
     82   /// getI32Imm - Return a target constant of type i32 with the specified
     83   /// value.
     84   inline SDValue getI32Imm(unsigned Imm) {
     85     return CurDAG->getTargetConstant(Imm, MVT::i32);
     86   }
     87 
     88   SDNode *Select(SDNode *N);
     89 
     90 
     91   bool hasNoVMLxHazardUse(SDNode *N) const;
     92   bool isShifterOpProfitable(const SDValue &Shift,
     93                              ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
     94   bool SelectRegShifterOperand(SDValue N, SDValue &A,
     95                                SDValue &B, SDValue &C,
     96                                bool CheckProfitability = true);
     97   bool SelectImmShifterOperand(SDValue N, SDValue &A,
     98                                SDValue &B, bool CheckProfitability = true);
     99   bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
    100                                     SDValue &B, SDValue &C) {
    101     // Don't apply the profitability check
    102     return SelectRegShifterOperand(N, A, B, C, false);
    103   }
    104   bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
    105                                     SDValue &B) {
    106     // Don't apply the profitability check
    107     return SelectImmShifterOperand(N, A, B, false);
    108   }
    109 
    110   bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
    111   bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
    112 
    113   AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
    114                                       SDValue &Offset, SDValue &Opc);
    115   bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
    116                            SDValue &Opc) {
    117     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
    118   }
    119 
    120   bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
    121                            SDValue &Opc) {
    122     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
    123   }
    124 
    125   bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
    126                        SDValue &Opc) {
    127     SelectAddrMode2Worker(N, Base, Offset, Opc);
    128 //    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
    129     // This always matches one way or another.
    130     return true;
    131   }
    132 
    133   bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
    134                              SDValue &Offset, SDValue &Opc);
    135   bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
    136                              SDValue &Offset, SDValue &Opc);
    137   bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
    138                              SDValue &Offset, SDValue &Opc);
    139   bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
    140   bool SelectAddrMode3(SDValue N, SDValue &Base,
    141                        SDValue &Offset, SDValue &Opc);
    142   bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
    143                              SDValue &Offset, SDValue &Opc);
    144   bool SelectAddrMode5(SDValue N, SDValue &Base,
    145                        SDValue &Offset);
    146   bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
    147   bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
    148 
    149   bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
    150 
    151   // Thumb Addressing Modes:
    152   bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
    153   bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
    154                              unsigned Scale);
    155   bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
    156   bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
    157   bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
    158   bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
    159                                 SDValue &OffImm);
    160   bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
    161                                  SDValue &OffImm);
    162   bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
    163                                  SDValue &OffImm);
    164   bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
    165                                  SDValue &OffImm);
    166   bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
    167 
    168   // Thumb 2 Addressing Modes:
    169   bool SelectT2ShifterOperandReg(SDValue N,
    170                                  SDValue &BaseReg, SDValue &Opc);
    171   bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
    172   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
    173                             SDValue &OffImm);
    174   bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
    175                                  SDValue &OffImm);
    176   bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
    177                              SDValue &OffReg, SDValue &ShImm);
    178   bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
    179 
    180   inline bool is_so_imm(unsigned Imm) const {
    181     return ARM_AM::getSOImmVal(Imm) != -1;
    182   }
    183 
    184   inline bool is_so_imm_not(unsigned Imm) const {
    185     return ARM_AM::getSOImmVal(~Imm) != -1;
    186   }
    187 
    188   inline bool is_t2_so_imm(unsigned Imm) const {
    189     return ARM_AM::getT2SOImmVal(Imm) != -1;
    190   }
    191 
    192   inline bool is_t2_so_imm_not(unsigned Imm) const {
    193     return ARM_AM::getT2SOImmVal(~Imm) != -1;
    194   }
    195 
    196   // Include the pieces autogenerated from the target description.
    197 #include "ARMGenDAGISel.inc"
    198 
    199 private:
    200   /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
    201   /// ARM.
    202   SDNode *SelectARMIndexedLoad(SDNode *N);
    203   SDNode *SelectT2IndexedLoad(SDNode *N);
    204 
    205   /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
    206   /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
    207   /// loads of D registers and even subregs and odd subregs of Q registers.
    208   /// For NumVecs <= 2, QOpcodes1 is not used.
    209   SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
    210                     const uint16_t *DOpcodes,
    211                     const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
    212 
    213   /// SelectVST - Select NEON store intrinsics.  NumVecs should
    214   /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
    215   /// stores of D registers and even subregs and odd subregs of Q registers.
    216   /// For NumVecs <= 2, QOpcodes1 is not used.
    217   SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
    218                     const uint16_t *DOpcodes,
    219                     const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
    220 
    221   /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
    222   /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
    223   /// load/store of D registers and Q registers.
    224   SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
    225                           bool isUpdating, unsigned NumVecs,
    226                           const uint16_t *DOpcodes, const uint16_t *QOpcodes);
    227 
    228   /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
    229   /// should be 2, 3 or 4.  The opcode array specifies the instructions used
    230   /// for loading D registers.  (Q registers are not supported.)
    231   SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
    232                        const uint16_t *Opcodes);
    233 
    234   /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
    235   /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
    236   /// generated to force the table registers to be consecutive.
    237   SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
    238 
    239   /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
    240   SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
    241 
    242   /// SelectCMOVOp - Select CMOV instructions for ARM.
    243   SDNode *SelectCMOVOp(SDNode *N);
    244   SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    245                               ARMCC::CondCodes CCVal, SDValue CCR,
    246                               SDValue InFlag);
    247   SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    248                                ARMCC::CondCodes CCVal, SDValue CCR,
    249                                SDValue InFlag);
    250   SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    251                               ARMCC::CondCodes CCVal, SDValue CCR,
    252                               SDValue InFlag);
    253   SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    254                                ARMCC::CondCodes CCVal, SDValue CCR,
    255                                SDValue InFlag);
    256 
    257   // Select special operations if node forms integer ABS pattern
    258   SDNode *SelectABSOp(SDNode *N);
    259 
    260   SDNode *SelectInlineAsm(SDNode *N);
    261 
    262   SDNode *SelectConcatVector(SDNode *N);
    263 
    264   SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    265 
    266   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    267   /// inline asm expressions.
    268   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    269                                             char ConstraintCode,
    270                                             std::vector<SDValue> &OutOps);
    271 
    272   // Form pairs of consecutive R, S, D, or Q registers.
    273   SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
    274   SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
    275   SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
    276   SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
    277 
    278   // Form sequences of 4 consecutive S, D, or Q registers.
    279   SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    280   SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    281   SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    282 
    283   // Get the alignment operand for a NEON VLD or VST instruction.
    284   SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
    285 };
    286 }
    287 
    288 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    289 /// operand. If so Imm will receive the 32-bit value.
    290 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    291   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    292     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    293     return true;
    294   }
    295   return false;
    296 }
    297 
    298 // isInt32Immediate - This method tests to see if a constant operand.
    299 // If so Imm will receive the 32 bit value.
    300 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    301   return isInt32Immediate(N.getNode(), Imm);
    302 }
    303 
    304 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    305 // opcode and that it has a immediate integer right operand.
    306 // If so Imm will receive the 32 bit value.
    307 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    308   return N->getOpcode() == Opc &&
    309          isInt32Immediate(N->getOperand(1).getNode(), Imm);
    310 }
    311 
    312 /// \brief Check whether a particular node is a constant value representable as
    313 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
    314 ///
    315 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
    316 static bool isScaledConstantInRange(SDValue Node, int Scale,
    317                                     int RangeMin, int RangeMax,
    318                                     int &ScaledConstant) {
    319   assert(Scale > 0 && "Invalid scale!");
    320 
    321   // Check that this is a constant.
    322   const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
    323   if (!C)
    324     return false;
    325 
    326   ScaledConstant = (int) C->getZExtValue();
    327   if ((ScaledConstant % Scale) != 0)
    328     return false;
    329 
    330   ScaledConstant /= Scale;
    331   return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
    332 }
    333 
    334 void ARMDAGToDAGISel::PreprocessISelDAG() {
    335   if (!Subtarget->hasV6T2Ops())
    336     return;
    337 
    338   bool isThumb2 = Subtarget->isThumb();
    339   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
    340        E = CurDAG->allnodes_end(); I != E; ) {
    341     SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
    342 
    343     if (N->getOpcode() != ISD::ADD)
    344       continue;
    345 
    346     // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
    347     // leading zeros, followed by consecutive set bits, followed by 1 or 2
    348     // trailing zeros, e.g. 1020.
    349     // Transform the expression to
    350     // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
    351     // of trailing zeros of c2. The left shift would be folded as an shifter
    352     // operand of 'add' and the 'and' and 'srl' would become a bits extraction
    353     // node (UBFX).
    354 
    355     SDValue N0 = N->getOperand(0);
    356     SDValue N1 = N->getOperand(1);
    357     unsigned And_imm = 0;
    358     if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
    359       if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
    360         std::swap(N0, N1);
    361     }
    362     if (!And_imm)
    363       continue;
    364 
    365     // Check if the AND mask is an immediate of the form: 000.....1111111100
    366     unsigned TZ = countTrailingZeros(And_imm);
    367     if (TZ != 1 && TZ != 2)
    368       // Be conservative here. Shifter operands aren't always free. e.g. On
    369       // Swift, left shifter operand of 1 / 2 for free but others are not.
    370       // e.g.
    371       //  ubfx   r3, r1, #16, #8
    372       //  ldr.w  r3, [r0, r3, lsl #2]
    373       // vs.
    374       //  mov.w  r9, #1020
    375       //  and.w  r2, r9, r1, lsr #14
    376       //  ldr    r2, [r0, r2]
    377       continue;
    378     And_imm >>= TZ;
    379     if (And_imm & (And_imm + 1))
    380       continue;
    381 
    382     // Look for (and (srl X, c1), c2).
    383     SDValue Srl = N1.getOperand(0);
    384     unsigned Srl_imm = 0;
    385     if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
    386         (Srl_imm <= 2))
    387       continue;
    388 
    389     // Make sure first operand is not a shifter operand which would prevent
    390     // folding of the left shift.
    391     SDValue CPTmp0;
    392     SDValue CPTmp1;
    393     SDValue CPTmp2;
    394     if (isThumb2) {
    395       if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
    396         continue;
    397     } else {
    398       if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
    399           SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
    400         continue;
    401     }
    402 
    403     // Now make the transformation.
    404     Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
    405                           Srl.getOperand(0),
    406                           CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
    407     N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
    408                          Srl, CurDAG->getConstant(And_imm, MVT::i32));
    409     N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
    410                          N1, CurDAG->getConstant(TZ, MVT::i32));
    411     CurDAG->UpdateNodeOperands(N, N0, N1);
    412   }
    413 }
    414 
    415 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
    416 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
    417 /// least on current ARM implementations) which should be avoidded.
    418 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
    419   if (OptLevel == CodeGenOpt::None)
    420     return true;
    421 
    422   if (!CheckVMLxHazard)
    423     return true;
    424 
    425   if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9() &&
    426       !Subtarget->isSwift())
    427     return true;
    428 
    429   if (!N->hasOneUse())
    430     return false;
    431 
    432   SDNode *Use = *N->use_begin();
    433   if (Use->getOpcode() == ISD::CopyToReg)
    434     return true;
    435   if (Use->isMachineOpcode()) {
    436     const ARMBaseInstrInfo *TII =
    437       static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
    438 
    439     const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
    440     if (MCID.mayStore())
    441       return true;
    442     unsigned Opcode = MCID.getOpcode();
    443     if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
    444       return true;
    445     // vmlx feeding into another vmlx. We actually want to unfold
    446     // the use later in the MLxExpansion pass. e.g.
    447     // vmla
    448     // vmla (stall 8 cycles)
    449     //
    450     // vmul (5 cycles)
    451     // vadd (5 cycles)
    452     // vmla
    453     // This adds up to about 18 - 19 cycles.
    454     //
    455     // vmla
    456     // vmul (stall 4 cycles)
    457     // vadd adds up to about 14 cycles.
    458     return TII->isFpMLxInstruction(Opcode);
    459   }
    460 
    461   return false;
    462 }
    463 
    464 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
    465                                             ARM_AM::ShiftOpc ShOpcVal,
    466                                             unsigned ShAmt) {
    467   if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
    468     return true;
    469   if (Shift.hasOneUse())
    470     return true;
    471   // R << 2 is free.
    472   return ShOpcVal == ARM_AM::lsl &&
    473          (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
    474 }
    475 
    476 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
    477                                               SDValue &BaseReg,
    478                                               SDValue &Opc,
    479                                               bool CheckProfitability) {
    480   if (DisableShifterOp)
    481     return false;
    482 
    483   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    484 
    485   // Don't match base register only case. That is matched to a separate
    486   // lower complexity pattern with explicit register operand.
    487   if (ShOpcVal == ARM_AM::no_shift) return false;
    488 
    489   BaseReg = N.getOperand(0);
    490   unsigned ShImmVal = 0;
    491   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
    492   if (!RHS) return false;
    493   ShImmVal = RHS->getZExtValue() & 31;
    494   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
    495                                   MVT::i32);
    496   return true;
    497 }
    498 
    499 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
    500                                               SDValue &BaseReg,
    501                                               SDValue &ShReg,
    502                                               SDValue &Opc,
    503                                               bool CheckProfitability) {
    504   if (DisableShifterOp)
    505     return false;
    506 
    507   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    508 
    509   // Don't match base register only case. That is matched to a separate
    510   // lower complexity pattern with explicit register operand.
    511   if (ShOpcVal == ARM_AM::no_shift) return false;
    512 
    513   BaseReg = N.getOperand(0);
    514   unsigned ShImmVal = 0;
    515   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
    516   if (RHS) return false;
    517 
    518   ShReg = N.getOperand(1);
    519   if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
    520     return false;
    521   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
    522                                   MVT::i32);
    523   return true;
    524 }
    525 
    526 
    527 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
    528                                           SDValue &Base,
    529                                           SDValue &OffImm) {
    530   // Match simple R + imm12 operands.
    531 
    532   // Base only.
    533   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    534       !CurDAG->isBaseWithConstantOffset(N)) {
    535     if (N.getOpcode() == ISD::FrameIndex) {
    536       // Match frame index.
    537       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    538       Base = CurDAG->getTargetFrameIndex(FI,
    539                                          getTargetLowering()->getPointerTy());
    540       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    541       return true;
    542     }
    543 
    544     if (N.getOpcode() == ARMISD::Wrapper &&
    545         !(Subtarget->useMovt() &&
    546                      N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    547       Base = N.getOperand(0);
    548     } else
    549       Base = N;
    550     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    551     return true;
    552   }
    553 
    554   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    555     int RHSC = (int)RHS->getZExtValue();
    556     if (N.getOpcode() == ISD::SUB)
    557       RHSC = -RHSC;
    558 
    559     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
    560       Base   = N.getOperand(0);
    561       if (Base.getOpcode() == ISD::FrameIndex) {
    562         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    563         Base = CurDAG->getTargetFrameIndex(FI,
    564                                            getTargetLowering()->getPointerTy());
    565       }
    566       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
    567       return true;
    568     }
    569   }
    570 
    571   // Base only.
    572   Base = N;
    573   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    574   return true;
    575 }
    576 
    577 
    578 
    579 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
    580                                       SDValue &Opc) {
    581   if (N.getOpcode() == ISD::MUL &&
    582       ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
    583     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    584       // X * [3,5,9] -> X + X * [2,4,8] etc.
    585       int RHSC = (int)RHS->getZExtValue();
    586       if (RHSC & 1) {
    587         RHSC = RHSC & ~1;
    588         ARM_AM::AddrOpc AddSub = ARM_AM::add;
    589         if (RHSC < 0) {
    590           AddSub = ARM_AM::sub;
    591           RHSC = - RHSC;
    592         }
    593         if (isPowerOf2_32(RHSC)) {
    594           unsigned ShAmt = Log2_32(RHSC);
    595           Base = Offset = N.getOperand(0);
    596           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
    597                                                             ARM_AM::lsl),
    598                                           MVT::i32);
    599           return true;
    600         }
    601       }
    602     }
    603   }
    604 
    605   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    606       // ISD::OR that is equivalent to an ISD::ADD.
    607       !CurDAG->isBaseWithConstantOffset(N))
    608     return false;
    609 
    610   // Leave simple R +/- imm12 operands for LDRi12
    611   if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
    612     int RHSC;
    613     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    614                                 -0x1000+1, 0x1000, RHSC)) // 12 bits.
    615       return false;
    616   }
    617 
    618   // Otherwise this is R +/- [possibly shifted] R.
    619   ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
    620   ARM_AM::ShiftOpc ShOpcVal =
    621     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
    622   unsigned ShAmt = 0;
    623 
    624   Base   = N.getOperand(0);
    625   Offset = N.getOperand(1);
    626 
    627   if (ShOpcVal != ARM_AM::no_shift) {
    628     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    629     // it.
    630     if (ConstantSDNode *Sh =
    631            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
    632       ShAmt = Sh->getZExtValue();
    633       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
    634         Offset = N.getOperand(1).getOperand(0);
    635       else {
    636         ShAmt = 0;
    637         ShOpcVal = ARM_AM::no_shift;
    638       }
    639     } else {
    640       ShOpcVal = ARM_AM::no_shift;
    641     }
    642   }
    643 
    644   // Try matching (R shl C) + (R).
    645   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
    646       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
    647         N.getOperand(0).hasOneUse())) {
    648     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
    649     if (ShOpcVal != ARM_AM::no_shift) {
    650       // Check to see if the RHS of the shift is a constant, if not, we can't
    651       // fold it.
    652       if (ConstantSDNode *Sh =
    653           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
    654         ShAmt = Sh->getZExtValue();
    655         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
    656           Offset = N.getOperand(0).getOperand(0);
    657           Base = N.getOperand(1);
    658         } else {
    659           ShAmt = 0;
    660           ShOpcVal = ARM_AM::no_shift;
    661         }
    662       } else {
    663         ShOpcVal = ARM_AM::no_shift;
    664       }
    665     }
    666   }
    667 
    668   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    669                                   MVT::i32);
    670   return true;
    671 }
    672 
    673 
    674 //-----
    675 
    676 AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
    677                                                      SDValue &Base,
    678                                                      SDValue &Offset,
    679                                                      SDValue &Opc) {
    680   if (N.getOpcode() == ISD::MUL &&
    681       (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
    682     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    683       // X * [3,5,9] -> X + X * [2,4,8] etc.
    684       int RHSC = (int)RHS->getZExtValue();
    685       if (RHSC & 1) {
    686         RHSC = RHSC & ~1;
    687         ARM_AM::AddrOpc AddSub = ARM_AM::add;
    688         if (RHSC < 0) {
    689           AddSub = ARM_AM::sub;
    690           RHSC = - RHSC;
    691         }
    692         if (isPowerOf2_32(RHSC)) {
    693           unsigned ShAmt = Log2_32(RHSC);
    694           Base = Offset = N.getOperand(0);
    695           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
    696                                                             ARM_AM::lsl),
    697                                           MVT::i32);
    698           return AM2_SHOP;
    699         }
    700       }
    701     }
    702   }
    703 
    704   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    705       // ISD::OR that is equivalent to an ADD.
    706       !CurDAG->isBaseWithConstantOffset(N)) {
    707     Base = N;
    708     if (N.getOpcode() == ISD::FrameIndex) {
    709       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    710       Base = CurDAG->getTargetFrameIndex(FI,
    711                                          getTargetLowering()->getPointerTy());
    712     } else if (N.getOpcode() == ARMISD::Wrapper &&
    713                !(Subtarget->useMovt() &&
    714                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    715       Base = N.getOperand(0);
    716     }
    717     Offset = CurDAG->getRegister(0, MVT::i32);
    718     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
    719                                                       ARM_AM::no_shift),
    720                                     MVT::i32);
    721     return AM2_BASE;
    722   }
    723 
    724   // Match simple R +/- imm12 operands.
    725   if (N.getOpcode() != ISD::SUB) {
    726     int RHSC;
    727     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    728                                 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
    729       Base = N.getOperand(0);
    730       if (Base.getOpcode() == ISD::FrameIndex) {
    731         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    732         Base = CurDAG->getTargetFrameIndex(FI,
    733                                            getTargetLowering()->getPointerTy());
    734       }
    735       Offset = CurDAG->getRegister(0, MVT::i32);
    736 
    737       ARM_AM::AddrOpc AddSub = ARM_AM::add;
    738       if (RHSC < 0) {
    739         AddSub = ARM_AM::sub;
    740         RHSC = - RHSC;
    741       }
    742       Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
    743                                                         ARM_AM::no_shift),
    744                                       MVT::i32);
    745       return AM2_BASE;
    746     }
    747   }
    748 
    749   if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
    750     // Compute R +/- (R << N) and reuse it.
    751     Base = N;
    752     Offset = CurDAG->getRegister(0, MVT::i32);
    753     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
    754                                                       ARM_AM::no_shift),
    755                                     MVT::i32);
    756     return AM2_BASE;
    757   }
    758 
    759   // Otherwise this is R +/- [possibly shifted] R.
    760   ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
    761   ARM_AM::ShiftOpc ShOpcVal =
    762     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
    763   unsigned ShAmt = 0;
    764 
    765   Base   = N.getOperand(0);
    766   Offset = N.getOperand(1);
    767 
    768   if (ShOpcVal != ARM_AM::no_shift) {
    769     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    770     // it.
    771     if (ConstantSDNode *Sh =
    772            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
    773       ShAmt = Sh->getZExtValue();
    774       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
    775         Offset = N.getOperand(1).getOperand(0);
    776       else {
    777         ShAmt = 0;
    778         ShOpcVal = ARM_AM::no_shift;
    779       }
    780     } else {
    781       ShOpcVal = ARM_AM::no_shift;
    782     }
    783   }
    784 
    785   // Try matching (R shl C) + (R).
    786   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
    787       !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
    788         N.getOperand(0).hasOneUse())) {
    789     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
    790     if (ShOpcVal != ARM_AM::no_shift) {
    791       // Check to see if the RHS of the shift is a constant, if not, we can't
    792       // fold it.
    793       if (ConstantSDNode *Sh =
    794           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
    795         ShAmt = Sh->getZExtValue();
    796         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
    797           Offset = N.getOperand(0).getOperand(0);
    798           Base = N.getOperand(1);
    799         } else {
    800           ShAmt = 0;
    801           ShOpcVal = ARM_AM::no_shift;
    802         }
    803       } else {
    804         ShOpcVal = ARM_AM::no_shift;
    805       }
    806     }
    807   }
    808 
    809   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    810                                   MVT::i32);
    811   return AM2_SHOP;
    812 }
    813 
    814 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
    815                                             SDValue &Offset, SDValue &Opc) {
    816   unsigned Opcode = Op->getOpcode();
    817   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    818     ? cast<LoadSDNode>(Op)->getAddressingMode()
    819     : cast<StoreSDNode>(Op)->getAddressingMode();
    820   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    821     ? ARM_AM::add : ARM_AM::sub;
    822   int Val;
    823   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
    824     return false;
    825 
    826   Offset = N;
    827   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    828   unsigned ShAmt = 0;
    829   if (ShOpcVal != ARM_AM::no_shift) {
    830     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    831     // it.
    832     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    833       ShAmt = Sh->getZExtValue();
    834       if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
    835         Offset = N.getOperand(0);
    836       else {
    837         ShAmt = 0;
    838         ShOpcVal = ARM_AM::no_shift;
    839       }
    840     } else {
    841       ShOpcVal = ARM_AM::no_shift;
    842     }
    843   }
    844 
    845   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    846                                   MVT::i32);
    847   return true;
    848 }
    849 
    850 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
    851                                             SDValue &Offset, SDValue &Opc) {
    852   unsigned Opcode = Op->getOpcode();
    853   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    854     ? cast<LoadSDNode>(Op)->getAddressingMode()
    855     : cast<StoreSDNode>(Op)->getAddressingMode();
    856   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    857     ? ARM_AM::add : ARM_AM::sub;
    858   int Val;
    859   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
    860     if (AddSub == ARM_AM::sub) Val *= -1;
    861     Offset = CurDAG->getRegister(0, MVT::i32);
    862     Opc = CurDAG->getTargetConstant(Val, MVT::i32);
    863     return true;
    864   }
    865 
    866   return false;
    867 }
    868 
    869 
    870 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
    871                                             SDValue &Offset, SDValue &Opc) {
    872   unsigned Opcode = Op->getOpcode();
    873   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    874     ? cast<LoadSDNode>(Op)->getAddressingMode()
    875     : cast<StoreSDNode>(Op)->getAddressingMode();
    876   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    877     ? ARM_AM::add : ARM_AM::sub;
    878   int Val;
    879   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
    880     Offset = CurDAG->getRegister(0, MVT::i32);
    881     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
    882                                                       ARM_AM::no_shift),
    883                                     MVT::i32);
    884     return true;
    885   }
    886 
    887   return false;
    888 }
    889 
    890 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
    891   Base = N;
    892   return true;
    893 }
    894 
    895 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
    896                                       SDValue &Base, SDValue &Offset,
    897                                       SDValue &Opc) {
    898   if (N.getOpcode() == ISD::SUB) {
    899     // X - C  is canonicalize to X + -C, no need to handle it here.
    900     Base = N.getOperand(0);
    901     Offset = N.getOperand(1);
    902     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
    903     return true;
    904   }
    905 
    906   if (!CurDAG->isBaseWithConstantOffset(N)) {
    907     Base = N;
    908     if (N.getOpcode() == ISD::FrameIndex) {
    909       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    910       Base = CurDAG->getTargetFrameIndex(FI,
    911                                          getTargetLowering()->getPointerTy());
    912     }
    913     Offset = CurDAG->getRegister(0, MVT::i32);
    914     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
    915     return true;
    916   }
    917 
    918   // If the RHS is +/- imm8, fold into addr mode.
    919   int RHSC;
    920   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    921                               -256 + 1, 256, RHSC)) { // 8 bits.
    922     Base = N.getOperand(0);
    923     if (Base.getOpcode() == ISD::FrameIndex) {
    924       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    925       Base = CurDAG->getTargetFrameIndex(FI,
    926                                          getTargetLowering()->getPointerTy());
    927     }
    928     Offset = CurDAG->getRegister(0, MVT::i32);
    929 
    930     ARM_AM::AddrOpc AddSub = ARM_AM::add;
    931     if (RHSC < 0) {
    932       AddSub = ARM_AM::sub;
    933       RHSC = -RHSC;
    934     }
    935     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
    936     return true;
    937   }
    938 
    939   Base = N.getOperand(0);
    940   Offset = N.getOperand(1);
    941   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
    942   return true;
    943 }
    944 
    945 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
    946                                             SDValue &Offset, SDValue &Opc) {
    947   unsigned Opcode = Op->getOpcode();
    948   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    949     ? cast<LoadSDNode>(Op)->getAddressingMode()
    950     : cast<StoreSDNode>(Op)->getAddressingMode();
    951   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    952     ? ARM_AM::add : ARM_AM::sub;
    953   int Val;
    954   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
    955     Offset = CurDAG->getRegister(0, MVT::i32);
    956     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
    957     return true;
    958   }
    959 
    960   Offset = N;
    961   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
    962   return true;
    963 }
    964 
    965 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
    966                                       SDValue &Base, SDValue &Offset) {
    967   if (!CurDAG->isBaseWithConstantOffset(N)) {
    968     Base = N;
    969     if (N.getOpcode() == ISD::FrameIndex) {
    970       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    971       Base = CurDAG->getTargetFrameIndex(FI,
    972                                          getTargetLowering()->getPointerTy());
    973     } else if (N.getOpcode() == ARMISD::Wrapper &&
    974                !(Subtarget->useMovt() &&
    975                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    976       Base = N.getOperand(0);
    977     }
    978     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
    979                                        MVT::i32);
    980     return true;
    981   }
    982 
    983   // If the RHS is +/- imm8, fold into addr mode.
    984   int RHSC;
    985   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
    986                               -256 + 1, 256, RHSC)) {
    987     Base = N.getOperand(0);
    988     if (Base.getOpcode() == ISD::FrameIndex) {
    989       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    990       Base = CurDAG->getTargetFrameIndex(FI,
    991                                          getTargetLowering()->getPointerTy());
    992     }
    993 
    994     ARM_AM::AddrOpc AddSub = ARM_AM::add;
    995     if (RHSC < 0) {
    996       AddSub = ARM_AM::sub;
    997       RHSC = -RHSC;
    998     }
    999     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
   1000                                        MVT::i32);
   1001     return true;
   1002   }
   1003 
   1004   Base = N;
   1005   Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
   1006                                      MVT::i32);
   1007   return true;
   1008 }
   1009 
   1010 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
   1011                                       SDValue &Align) {
   1012   Addr = N;
   1013 
   1014   unsigned Alignment = 0;
   1015   if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
   1016     // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
   1017     // The maximum alignment is equal to the memory size being referenced.
   1018     unsigned LSNAlign = LSN->getAlignment();
   1019     unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
   1020     if (LSNAlign >= MemSize && MemSize > 1)
   1021       Alignment = MemSize;
   1022   } else {
   1023     // All other uses of addrmode6 are for intrinsics.  For now just record
   1024     // the raw alignment value; it will be refined later based on the legal
   1025     // alignment operands for the intrinsic.
   1026     Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
   1027   }
   1028 
   1029   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   1030   return true;
   1031 }
   1032 
   1033 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
   1034                                             SDValue &Offset) {
   1035   LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
   1036   ISD::MemIndexedMode AM = LdSt->getAddressingMode();
   1037   if (AM != ISD::POST_INC)
   1038     return false;
   1039   Offset = N;
   1040   if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
   1041     if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
   1042       Offset = CurDAG->getRegister(0, MVT::i32);
   1043   }
   1044   return true;
   1045 }
   1046 
   1047 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
   1048                                        SDValue &Offset, SDValue &Label) {
   1049   if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
   1050     Offset = N.getOperand(0);
   1051     SDValue N1 = N.getOperand(1);
   1052     Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
   1053                                       MVT::i32);
   1054     return true;
   1055   }
   1056 
   1057   return false;
   1058 }
   1059 
   1060 
   1061 //===----------------------------------------------------------------------===//
   1062 //                         Thumb Addressing Modes
   1063 //===----------------------------------------------------------------------===//
   1064 
   1065 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
   1066                                             SDValue &Base, SDValue &Offset){
   1067   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
   1068     ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
   1069     if (!NC || !NC->isNullValue())
   1070       return false;
   1071 
   1072     Base = Offset = N;
   1073     return true;
   1074   }
   1075 
   1076   Base = N.getOperand(0);
   1077   Offset = N.getOperand(1);
   1078   return true;
   1079 }
   1080 
   1081 bool
   1082 ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
   1083                                        SDValue &Offset, unsigned Scale) {
   1084   if (Scale == 4) {
   1085     SDValue TmpBase, TmpOffImm;
   1086     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
   1087       return false;  // We want to select tLDRspi / tSTRspi instead.
   1088 
   1089     if (N.getOpcode() == ARMISD::Wrapper &&
   1090         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
   1091       return false;  // We want to select tLDRpci instead.
   1092   }
   1093 
   1094   if (!CurDAG->isBaseWithConstantOffset(N))
   1095     return false;
   1096 
   1097   // Thumb does not have [sp, r] address mode.
   1098   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1099   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
   1100   if ((LHSR && LHSR->getReg() == ARM::SP) ||
   1101       (RHSR && RHSR->getReg() == ARM::SP))
   1102     return false;
   1103 
   1104   // FIXME: Why do we explicitly check for a match here and then return false?
   1105   // Presumably to allow something else to match, but shouldn't this be
   1106   // documented?
   1107   int RHSC;
   1108   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
   1109     return false;
   1110 
   1111   Base = N.getOperand(0);
   1112   Offset = N.getOperand(1);
   1113   return true;
   1114 }
   1115 
   1116 bool
   1117 ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
   1118                                           SDValue &Base,
   1119                                           SDValue &Offset) {
   1120   return SelectThumbAddrModeRI(N, Base, Offset, 1);
   1121 }
   1122 
   1123 bool
   1124 ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
   1125                                           SDValue &Base,
   1126                                           SDValue &Offset) {
   1127   return SelectThumbAddrModeRI(N, Base, Offset, 2);
   1128 }
   1129 
   1130 bool
   1131 ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
   1132                                           SDValue &Base,
   1133                                           SDValue &Offset) {
   1134   return SelectThumbAddrModeRI(N, Base, Offset, 4);
   1135 }
   1136 
   1137 bool
   1138 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
   1139                                           SDValue &Base, SDValue &OffImm) {
   1140   if (Scale == 4) {
   1141     SDValue TmpBase, TmpOffImm;
   1142     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
   1143       return false;  // We want to select tLDRspi / tSTRspi instead.
   1144 
   1145     if (N.getOpcode() == ARMISD::Wrapper &&
   1146         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
   1147       return false;  // We want to select tLDRpci instead.
   1148   }
   1149 
   1150   if (!CurDAG->isBaseWithConstantOffset(N)) {
   1151     if (N.getOpcode() == ARMISD::Wrapper &&
   1152         !(Subtarget->useMovt() &&
   1153           N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
   1154       Base = N.getOperand(0);
   1155     } else {
   1156       Base = N;
   1157     }
   1158 
   1159     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1160     return true;
   1161   }
   1162 
   1163   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1164   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
   1165   if ((LHSR && LHSR->getReg() == ARM::SP) ||
   1166       (RHSR && RHSR->getReg() == ARM::SP)) {
   1167     ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
   1168     ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1169     unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
   1170     unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
   1171 
   1172     // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
   1173     if (LHSC != 0 || RHSC != 0) return false;
   1174 
   1175     Base = N;
   1176     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1177     return true;
   1178   }
   1179 
   1180   // If the RHS is + imm5 * scale, fold into addr mode.
   1181   int RHSC;
   1182   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
   1183     Base = N.getOperand(0);
   1184     OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1185     return true;
   1186   }
   1187 
   1188   Base = N.getOperand(0);
   1189   OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1190   return true;
   1191 }
   1192 
   1193 bool
   1194 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
   1195                                            SDValue &OffImm) {
   1196   return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
   1197 }
   1198 
   1199 bool
   1200 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
   1201                                            SDValue &OffImm) {
   1202   return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
   1203 }
   1204 
   1205 bool
   1206 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
   1207                                            SDValue &OffImm) {
   1208   return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
   1209 }
   1210 
   1211 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
   1212                                             SDValue &Base, SDValue &OffImm) {
   1213   if (N.getOpcode() == ISD::FrameIndex) {
   1214     int FI = cast<FrameIndexSDNode>(N)->getIndex();
   1215     Base = CurDAG->getTargetFrameIndex(FI,
   1216                                        getTargetLowering()->getPointerTy());
   1217     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1218     return true;
   1219   }
   1220 
   1221   if (!CurDAG->isBaseWithConstantOffset(N))
   1222     return false;
   1223 
   1224   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1225   if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
   1226       (LHSR && LHSR->getReg() == ARM::SP)) {
   1227     // If the RHS is + imm8 * scale, fold into addr mode.
   1228     int RHSC;
   1229     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
   1230       Base = N.getOperand(0);
   1231       if (Base.getOpcode() == ISD::FrameIndex) {
   1232         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1233         Base = CurDAG->getTargetFrameIndex(FI,
   1234                                            getTargetLowering()->getPointerTy());
   1235       }
   1236       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1237       return true;
   1238     }
   1239   }
   1240 
   1241   return false;
   1242 }
   1243 
   1244 
   1245 //===----------------------------------------------------------------------===//
   1246 //                        Thumb 2 Addressing Modes
   1247 //===----------------------------------------------------------------------===//
   1248 
   1249 
   1250 bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
   1251                                                 SDValue &Opc) {
   1252   if (DisableShifterOp)
   1253     return false;
   1254 
   1255   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
   1256 
   1257   // Don't match base register only case. That is matched to a separate
   1258   // lower complexity pattern with explicit register operand.
   1259   if (ShOpcVal == ARM_AM::no_shift) return false;
   1260 
   1261   BaseReg = N.getOperand(0);
   1262   unsigned ShImmVal = 0;
   1263   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1264     ShImmVal = RHS->getZExtValue() & 31;
   1265     Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
   1266     return true;
   1267   }
   1268 
   1269   return false;
   1270 }
   1271 
   1272 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
   1273                                             SDValue &Base, SDValue &OffImm) {
   1274   // Match simple R + imm12 operands.
   1275 
   1276   // Base only.
   1277   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
   1278       !CurDAG->isBaseWithConstantOffset(N)) {
   1279     if (N.getOpcode() == ISD::FrameIndex) {
   1280       // Match frame index.
   1281       int FI = cast<FrameIndexSDNode>(N)->getIndex();
   1282       Base = CurDAG->getTargetFrameIndex(FI,
   1283                                          getTargetLowering()->getPointerTy());
   1284       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1285       return true;
   1286     }
   1287 
   1288     if (N.getOpcode() == ARMISD::Wrapper &&
   1289                !(Subtarget->useMovt() &&
   1290                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
   1291       Base = N.getOperand(0);
   1292       if (Base.getOpcode() == ISD::TargetConstantPool)
   1293         return false;  // We want to select t2LDRpci instead.
   1294     } else
   1295       Base = N;
   1296     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1297     return true;
   1298   }
   1299 
   1300   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1301     if (SelectT2AddrModeImm8(N, Base, OffImm))
   1302       // Let t2LDRi8 handle (R - imm8).
   1303       return false;
   1304 
   1305     int RHSC = (int)RHS->getZExtValue();
   1306     if (N.getOpcode() == ISD::SUB)
   1307       RHSC = -RHSC;
   1308 
   1309     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
   1310       Base   = N.getOperand(0);
   1311       if (Base.getOpcode() == ISD::FrameIndex) {
   1312         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1313         Base = CurDAG->getTargetFrameIndex(FI,
   1314                                            getTargetLowering()->getPointerTy());
   1315       }
   1316       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1317       return true;
   1318     }
   1319   }
   1320 
   1321   // Base only.
   1322   Base = N;
   1323   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1324   return true;
   1325 }
   1326 
   1327 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
   1328                                            SDValue &Base, SDValue &OffImm) {
   1329   // Match simple R - imm8 operands.
   1330   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
   1331       !CurDAG->isBaseWithConstantOffset(N))
   1332     return false;
   1333 
   1334   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1335     int RHSC = (int)RHS->getSExtValue();
   1336     if (N.getOpcode() == ISD::SUB)
   1337       RHSC = -RHSC;
   1338 
   1339     if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
   1340       Base = N.getOperand(0);
   1341       if (Base.getOpcode() == ISD::FrameIndex) {
   1342         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1343         Base = CurDAG->getTargetFrameIndex(FI,
   1344                                            getTargetLowering()->getPointerTy());
   1345       }
   1346       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1347       return true;
   1348     }
   1349   }
   1350 
   1351   return false;
   1352 }
   1353 
   1354 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
   1355                                                  SDValue &OffImm){
   1356   unsigned Opcode = Op->getOpcode();
   1357   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
   1358     ? cast<LoadSDNode>(Op)->getAddressingMode()
   1359     : cast<StoreSDNode>(Op)->getAddressingMode();
   1360   int RHSC;
   1361   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
   1362     OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
   1363       ? CurDAG->getTargetConstant(RHSC, MVT::i32)
   1364       : CurDAG->getTargetConstant(-RHSC, MVT::i32);
   1365     return true;
   1366   }
   1367 
   1368   return false;
   1369 }
   1370 
   1371 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
   1372                                             SDValue &Base,
   1373                                             SDValue &OffReg, SDValue &ShImm) {
   1374   // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
   1375   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
   1376     return false;
   1377 
   1378   // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
   1379   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1380     int RHSC = (int)RHS->getZExtValue();
   1381     if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
   1382       return false;
   1383     else if (RHSC < 0 && RHSC >= -255) // 8 bits
   1384       return false;
   1385   }
   1386 
   1387   // Look for (R + R) or (R + (R << [1,2,3])).
   1388   unsigned ShAmt = 0;
   1389   Base   = N.getOperand(0);
   1390   OffReg = N.getOperand(1);
   1391 
   1392   // Swap if it is ((R << c) + R).
   1393   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
   1394   if (ShOpcVal != ARM_AM::lsl) {
   1395     ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
   1396     if (ShOpcVal == ARM_AM::lsl)
   1397       std::swap(Base, OffReg);
   1398   }
   1399 
   1400   if (ShOpcVal == ARM_AM::lsl) {
   1401     // Check to see if the RHS of the shift is a constant, if not, we can't fold
   1402     // it.
   1403     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
   1404       ShAmt = Sh->getZExtValue();
   1405       if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
   1406         OffReg = OffReg.getOperand(0);
   1407       else {
   1408         ShAmt = 0;
   1409         ShOpcVal = ARM_AM::no_shift;
   1410       }
   1411     } else {
   1412       ShOpcVal = ARM_AM::no_shift;
   1413     }
   1414   }
   1415 
   1416   ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
   1417 
   1418   return true;
   1419 }
   1420 
   1421 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
   1422                                                 SDValue &OffImm) {
   1423   // This *must* succeed since it's used for the irreplacable ldrex and strex
   1424   // instructions.
   1425   Base = N;
   1426   OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1427 
   1428   if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
   1429     return true;
   1430 
   1431   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1432   if (!RHS)
   1433     return true;
   1434 
   1435   uint32_t RHSC = (int)RHS->getZExtValue();
   1436   if (RHSC > 1020 || RHSC % 4 != 0)
   1437     return true;
   1438 
   1439   Base = N.getOperand(0);
   1440   if (Base.getOpcode() == ISD::FrameIndex) {
   1441     int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1442     Base = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy());
   1443   }
   1444 
   1445   OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
   1446   return true;
   1447 }
   1448 
   1449 //===--------------------------------------------------------------------===//
   1450 
   1451 /// getAL - Returns a ARMCC::AL immediate node.
   1452 static inline SDValue getAL(SelectionDAG *CurDAG) {
   1453   return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
   1454 }
   1455 
   1456 SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
   1457   LoadSDNode *LD = cast<LoadSDNode>(N);
   1458   ISD::MemIndexedMode AM = LD->getAddressingMode();
   1459   if (AM == ISD::UNINDEXED)
   1460     return NULL;
   1461 
   1462   EVT LoadedVT = LD->getMemoryVT();
   1463   SDValue Offset, AMOpc;
   1464   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
   1465   unsigned Opcode = 0;
   1466   bool Match = false;
   1467   if (LoadedVT == MVT::i32 && isPre &&
   1468       SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
   1469     Opcode = ARM::LDR_PRE_IMM;
   1470     Match = true;
   1471   } else if (LoadedVT == MVT::i32 && !isPre &&
   1472       SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
   1473     Opcode = ARM::LDR_POST_IMM;
   1474     Match = true;
   1475   } else if (LoadedVT == MVT::i32 &&
   1476       SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
   1477     Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
   1478     Match = true;
   1479 
   1480   } else if (LoadedVT == MVT::i16 &&
   1481              SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
   1482     Match = true;
   1483     Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
   1484       ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
   1485       : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
   1486   } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
   1487     if (LD->getExtensionType() == ISD::SEXTLOAD) {
   1488       if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
   1489         Match = true;
   1490         Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
   1491       }
   1492     } else {
   1493       if (isPre &&
   1494           SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
   1495         Match = true;
   1496         Opcode = ARM::LDRB_PRE_IMM;
   1497       } else if (!isPre &&
   1498                   SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
   1499         Match = true;
   1500         Opcode = ARM::LDRB_POST_IMM;
   1501       } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
   1502         Match = true;
   1503         Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
   1504       }
   1505     }
   1506   }
   1507 
   1508   if (Match) {
   1509     if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
   1510       SDValue Chain = LD->getChain();
   1511       SDValue Base = LD->getBasePtr();
   1512       SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
   1513                        CurDAG->getRegister(0, MVT::i32), Chain };
   1514       return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
   1515                                     MVT::i32, MVT::Other, Ops);
   1516     } else {
   1517       SDValue Chain = LD->getChain();
   1518       SDValue Base = LD->getBasePtr();
   1519       SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
   1520                        CurDAG->getRegister(0, MVT::i32), Chain };
   1521       return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
   1522                                     MVT::i32, MVT::Other, Ops);
   1523     }
   1524   }
   1525 
   1526   return NULL;
   1527 }
   1528 
   1529 SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
   1530   LoadSDNode *LD = cast<LoadSDNode>(N);
   1531   ISD::MemIndexedMode AM = LD->getAddressingMode();
   1532   if (AM == ISD::UNINDEXED)
   1533     return NULL;
   1534 
   1535   EVT LoadedVT = LD->getMemoryVT();
   1536   bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
   1537   SDValue Offset;
   1538   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
   1539   unsigned Opcode = 0;
   1540   bool Match = false;
   1541   if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
   1542     switch (LoadedVT.getSimpleVT().SimpleTy) {
   1543     case MVT::i32:
   1544       Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
   1545       break;
   1546     case MVT::i16:
   1547       if (isSExtLd)
   1548         Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
   1549       else
   1550         Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
   1551       break;
   1552     case MVT::i8:
   1553     case MVT::i1:
   1554       if (isSExtLd)
   1555         Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
   1556       else
   1557         Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
   1558       break;
   1559     default:
   1560       return NULL;
   1561     }
   1562     Match = true;
   1563   }
   1564 
   1565   if (Match) {
   1566     SDValue Chain = LD->getChain();
   1567     SDValue Base = LD->getBasePtr();
   1568     SDValue Ops[]= { Base, Offset, getAL(CurDAG),
   1569                      CurDAG->getRegister(0, MVT::i32), Chain };
   1570     return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
   1571                                   MVT::Other, Ops);
   1572   }
   1573 
   1574   return NULL;
   1575 }
   1576 
   1577 /// \brief Form a GPRPair pseudo register from a pair of GPR regs.
   1578 SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
   1579   SDLoc dl(V0.getNode());
   1580   SDValue RegClass =
   1581     CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
   1582   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
   1583   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
   1584   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1585   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1586 }
   1587 
   1588 /// \brief Form a D register from a pair of S registers.
   1589 SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
   1590   SDLoc dl(V0.getNode());
   1591   SDValue RegClass =
   1592     CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
   1593   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
   1594   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
   1595   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1596   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1597 }
   1598 
   1599 /// \brief Form a quad register from a pair of D registers.
   1600 SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
   1601   SDLoc dl(V0.getNode());
   1602   SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
   1603   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
   1604   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
   1605   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1606   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1607 }
   1608 
   1609 /// \brief Form 4 consecutive D registers from a pair of Q registers.
   1610 SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
   1611   SDLoc dl(V0.getNode());
   1612   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
   1613   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
   1614   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
   1615   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1616   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1617 }
   1618 
   1619 /// \brief Form 4 consecutive S registers.
   1620 SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
   1621                                    SDValue V2, SDValue V3) {
   1622   SDLoc dl(V0.getNode());
   1623   SDValue RegClass =
   1624     CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
   1625   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
   1626   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
   1627   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
   1628   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
   1629   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1630                                     V2, SubReg2, V3, SubReg3 };
   1631   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1632 }
   1633 
   1634 /// \brief Form 4 consecutive D registers.
   1635 SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
   1636                                    SDValue V2, SDValue V3) {
   1637   SDLoc dl(V0.getNode());
   1638   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
   1639   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
   1640   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
   1641   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
   1642   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
   1643   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1644                                     V2, SubReg2, V3, SubReg3 };
   1645   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1646 }
   1647 
   1648 /// \brief Form 4 consecutive Q registers.
   1649 SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
   1650                                    SDValue V2, SDValue V3) {
   1651   SDLoc dl(V0.getNode());
   1652   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
   1653   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
   1654   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
   1655   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
   1656   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
   1657   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1658                                     V2, SubReg2, V3, SubReg3 };
   1659   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
   1660 }
   1661 
   1662 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
   1663 /// of a NEON VLD or VST instruction.  The supported values depend on the
   1664 /// number of registers being loaded.
   1665 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
   1666                                        bool is64BitVector) {
   1667   unsigned NumRegs = NumVecs;
   1668   if (!is64BitVector && NumVecs < 3)
   1669     NumRegs *= 2;
   1670 
   1671   unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   1672   if (Alignment >= 32 && NumRegs == 4)
   1673     Alignment = 32;
   1674   else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
   1675     Alignment = 16;
   1676   else if (Alignment >= 8)
   1677     Alignment = 8;
   1678   else
   1679     Alignment = 0;
   1680 
   1681   return CurDAG->getTargetConstant(Alignment, MVT::i32);
   1682 }
   1683 
   1684 // Get the register stride update opcode of a VLD/VST instruction that
   1685 // is otherwise equivalent to the given fixed stride updating instruction.
   1686 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
   1687   switch (Opc) {
   1688   default: break;
   1689   case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
   1690   case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
   1691   case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
   1692   case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
   1693   case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
   1694   case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
   1695   case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
   1696   case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
   1697 
   1698   case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
   1699   case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
   1700   case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
   1701   case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
   1702   case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
   1703   case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
   1704   case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
   1705   case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
   1706   case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
   1707   case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
   1708 
   1709   case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
   1710   case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
   1711   case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
   1712   case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
   1713   case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
   1714   case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
   1715 
   1716   case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
   1717   case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
   1718   case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
   1719   case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
   1720   case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
   1721   case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
   1722 
   1723   case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
   1724   case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
   1725   case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
   1726   }
   1727   return Opc; // If not one we handle, return it unchanged.
   1728 }
   1729 
   1730 SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
   1731                                    const uint16_t *DOpcodes,
   1732                                    const uint16_t *QOpcodes0,
   1733                                    const uint16_t *QOpcodes1) {
   1734   assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
   1735   SDLoc dl(N);
   1736 
   1737   SDValue MemAddr, Align;
   1738   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1739   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1740     return NULL;
   1741 
   1742   SDValue Chain = N->getOperand(0);
   1743   EVT VT = N->getValueType(0);
   1744   bool is64BitVector = VT.is64BitVector();
   1745   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
   1746 
   1747   unsigned OpcodeIndex;
   1748   switch (VT.getSimpleVT().SimpleTy) {
   1749   default: llvm_unreachable("unhandled vld type");
   1750     // Double-register operations:
   1751   case MVT::v8i8:  OpcodeIndex = 0; break;
   1752   case MVT::v4i16: OpcodeIndex = 1; break;
   1753   case MVT::v2f32:
   1754   case MVT::v2i32: OpcodeIndex = 2; break;
   1755   case MVT::v1i64: OpcodeIndex = 3; break;
   1756     // Quad-register operations:
   1757   case MVT::v16i8: OpcodeIndex = 0; break;
   1758   case MVT::v8i16: OpcodeIndex = 1; break;
   1759   case MVT::v4f32:
   1760   case MVT::v4i32: OpcodeIndex = 2; break;
   1761   case MVT::v2i64: OpcodeIndex = 3;
   1762     assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
   1763     break;
   1764   }
   1765 
   1766   EVT ResTy;
   1767   if (NumVecs == 1)
   1768     ResTy = VT;
   1769   else {
   1770     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   1771     if (!is64BitVector)
   1772       ResTyElts *= 2;
   1773     ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
   1774   }
   1775   std::vector<EVT> ResTys;
   1776   ResTys.push_back(ResTy);
   1777   if (isUpdating)
   1778     ResTys.push_back(MVT::i32);
   1779   ResTys.push_back(MVT::Other);
   1780 
   1781   SDValue Pred = getAL(CurDAG);
   1782   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1783   SDNode *VLd;
   1784   SmallVector<SDValue, 7> Ops;
   1785 
   1786   // Double registers and VLD1/VLD2 quad registers are directly supported.
   1787   if (is64BitVector || NumVecs <= 2) {
   1788     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1789                     QOpcodes0[OpcodeIndex]);
   1790     Ops.push_back(MemAddr);
   1791     Ops.push_back(Align);
   1792     if (isUpdating) {
   1793       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1794       // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
   1795       // case entirely when the rest are updated to that form, too.
   1796       if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode()))
   1797         Opc = getVLDSTRegisterUpdateOpcode(Opc);
   1798       // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
   1799       // check for that explicitly too. Horribly hacky, but temporary.
   1800       if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) ||
   1801           !isa<ConstantSDNode>(Inc.getNode()))
   1802         Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1803     }
   1804     Ops.push_back(Pred);
   1805     Ops.push_back(Reg0);
   1806     Ops.push_back(Chain);
   1807     VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1808 
   1809   } else {
   1810     // Otherwise, quad registers are loaded with two separate instructions,
   1811     // where one loads the even registers and the other loads the odd registers.
   1812     EVT AddrTy = MemAddr.getValueType();
   1813 
   1814     // Load the even subregs.  This is always an updating load, so that it
   1815     // provides the address to the second load for the odd subregs.
   1816     SDValue ImplDef =
   1817       SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
   1818     const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
   1819     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
   1820                                           ResTy, AddrTy, MVT::Other, OpsA);
   1821     Chain = SDValue(VLdA, 2);
   1822 
   1823     // Load the odd subregs.
   1824     Ops.push_back(SDValue(VLdA, 1));
   1825     Ops.push_back(Align);
   1826     if (isUpdating) {
   1827       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1828       assert(isa<ConstantSDNode>(Inc.getNode()) &&
   1829              "only constant post-increment update allowed for VLD3/4");
   1830       (void)Inc;
   1831       Ops.push_back(Reg0);
   1832     }
   1833     Ops.push_back(SDValue(VLdA, 0));
   1834     Ops.push_back(Pred);
   1835     Ops.push_back(Reg0);
   1836     Ops.push_back(Chain);
   1837     VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
   1838   }
   1839 
   1840   // Transfer memoperands.
   1841   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1842   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1843   cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
   1844 
   1845   if (NumVecs == 1)
   1846     return VLd;
   1847 
   1848   // Extract out the subregisters.
   1849   SDValue SuperReg = SDValue(VLd, 0);
   1850   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
   1851          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
   1852   unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
   1853   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   1854     ReplaceUses(SDValue(N, Vec),
   1855                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
   1856   ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
   1857   if (isUpdating)
   1858     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
   1859   return NULL;
   1860 }
   1861 
   1862 SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
   1863                                    const uint16_t *DOpcodes,
   1864                                    const uint16_t *QOpcodes0,
   1865                                    const uint16_t *QOpcodes1) {
   1866   assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
   1867   SDLoc dl(N);
   1868 
   1869   SDValue MemAddr, Align;
   1870   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1871   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
   1872   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1873     return NULL;
   1874 
   1875   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1876   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1877 
   1878   SDValue Chain = N->getOperand(0);
   1879   EVT VT = N->getOperand(Vec0Idx).getValueType();
   1880   bool is64BitVector = VT.is64BitVector();
   1881   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
   1882 
   1883   unsigned OpcodeIndex;
   1884   switch (VT.getSimpleVT().SimpleTy) {
   1885   default: llvm_unreachable("unhandled vst type");
   1886     // Double-register operations:
   1887   case MVT::v8i8:  OpcodeIndex = 0; break;
   1888   case MVT::v4i16: OpcodeIndex = 1; break;
   1889   case MVT::v2f32:
   1890   case MVT::v2i32: OpcodeIndex = 2; break;
   1891   case MVT::v1i64: OpcodeIndex = 3; break;
   1892     // Quad-register operations:
   1893   case MVT::v16i8: OpcodeIndex = 0; break;
   1894   case MVT::v8i16: OpcodeIndex = 1; break;
   1895   case MVT::v4f32:
   1896   case MVT::v4i32: OpcodeIndex = 2; break;
   1897   case MVT::v2i64: OpcodeIndex = 3;
   1898     assert(NumVecs == 1 && "v2i64 type only supported for VST1");
   1899     break;
   1900   }
   1901 
   1902   std::vector<EVT> ResTys;
   1903   if (isUpdating)
   1904     ResTys.push_back(MVT::i32);
   1905   ResTys.push_back(MVT::Other);
   1906 
   1907   SDValue Pred = getAL(CurDAG);
   1908   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1909   SmallVector<SDValue, 7> Ops;
   1910 
   1911   // Double registers and VST1/VST2 quad registers are directly supported.
   1912   if (is64BitVector || NumVecs <= 2) {
   1913     SDValue SrcReg;
   1914     if (NumVecs == 1) {
   1915       SrcReg = N->getOperand(Vec0Idx);
   1916     } else if (is64BitVector) {
   1917       // Form a REG_SEQUENCE to force register allocation.
   1918       SDValue V0 = N->getOperand(Vec0Idx + 0);
   1919       SDValue V1 = N->getOperand(Vec0Idx + 1);
   1920       if (NumVecs == 2)
   1921         SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
   1922       else {
   1923         SDValue V2 = N->getOperand(Vec0Idx + 2);
   1924         // If it's a vst3, form a quad D-register and leave the last part as
   1925         // an undef.
   1926         SDValue V3 = (NumVecs == 3)
   1927           ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
   1928           : N->getOperand(Vec0Idx + 3);
   1929         SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
   1930       }
   1931     } else {
   1932       // Form a QQ register.
   1933       SDValue Q0 = N->getOperand(Vec0Idx);
   1934       SDValue Q1 = N->getOperand(Vec0Idx + 1);
   1935       SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
   1936     }
   1937 
   1938     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1939                     QOpcodes0[OpcodeIndex]);
   1940     Ops.push_back(MemAddr);
   1941     Ops.push_back(Align);
   1942     if (isUpdating) {
   1943       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1944       // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
   1945       // case entirely when the rest are updated to that form, too.
   1946       if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
   1947         Opc = getVLDSTRegisterUpdateOpcode(Opc);
   1948       // We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
   1949       // check for that explicitly too. Horribly hacky, but temporary.
   1950       if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) ||
   1951           !isa<ConstantSDNode>(Inc.getNode()))
   1952         Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1953     }
   1954     Ops.push_back(SrcReg);
   1955     Ops.push_back(Pred);
   1956     Ops.push_back(Reg0);
   1957     Ops.push_back(Chain);
   1958     SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   1959 
   1960     // Transfer memoperands.
   1961     cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
   1962 
   1963     return VSt;
   1964   }
   1965 
   1966   // Otherwise, quad registers are stored with two separate instructions,
   1967   // where one stores the even registers and the other stores the odd registers.
   1968 
   1969   // Form the QQQQ REG_SEQUENCE.
   1970   SDValue V0 = N->getOperand(Vec0Idx + 0);
   1971   SDValue V1 = N->getOperand(Vec0Idx + 1);
   1972   SDValue V2 = N->getOperand(Vec0Idx + 2);
   1973   SDValue V3 = (NumVecs == 3)
   1974     ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   1975     : N->getOperand(Vec0Idx + 3);
   1976   SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
   1977 
   1978   // Store the even D registers.  This is always an updating store, so that it
   1979   // provides the address to the second store for the odd subregs.
   1980   const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
   1981   SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
   1982                                         MemAddr.getValueType(),
   1983                                         MVT::Other, OpsA);
   1984   cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
   1985   Chain = SDValue(VStA, 1);
   1986 
   1987   // Store the odd D registers.
   1988   Ops.push_back(SDValue(VStA, 0));
   1989   Ops.push_back(Align);
   1990   if (isUpdating) {
   1991     SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1992     assert(isa<ConstantSDNode>(Inc.getNode()) &&
   1993            "only constant post-increment update allowed for VST3/4");
   1994     (void)Inc;
   1995     Ops.push_back(Reg0);
   1996   }
   1997   Ops.push_back(RegSeq);
   1998   Ops.push_back(Pred);
   1999   Ops.push_back(Reg0);
   2000   Ops.push_back(Chain);
   2001   SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
   2002                                         Ops);
   2003   cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
   2004   return VStB;
   2005 }
   2006 
   2007 SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
   2008                                          bool isUpdating, unsigned NumVecs,
   2009                                          const uint16_t *DOpcodes,
   2010                                          const uint16_t *QOpcodes) {
   2011   assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
   2012   SDLoc dl(N);
   2013 
   2014   SDValue MemAddr, Align;
   2015   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   2016   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
   2017   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   2018     return NULL;
   2019 
   2020   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2021   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   2022 
   2023   SDValue Chain = N->getOperand(0);
   2024   unsigned Lane =
   2025     cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
   2026   EVT VT = N->getOperand(Vec0Idx).getValueType();
   2027   bool is64BitVector = VT.is64BitVector();
   2028 
   2029   unsigned Alignment = 0;
   2030   if (NumVecs != 3) {
   2031     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   2032     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
   2033     if (Alignment > NumBytes)
   2034       Alignment = NumBytes;
   2035     if (Alignment < 8 && Alignment < NumBytes)
   2036       Alignment = 0;
   2037     // Alignment must be a power of two; make sure of that.
   2038     Alignment = (Alignment & -Alignment);
   2039     if (Alignment == 1)
   2040       Alignment = 0;
   2041   }
   2042   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   2043 
   2044   unsigned OpcodeIndex;
   2045   switch (VT.getSimpleVT().SimpleTy) {
   2046   default: llvm_unreachable("unhandled vld/vst lane type");
   2047     // Double-register operations:
   2048   case MVT::v8i8:  OpcodeIndex = 0; break;
   2049   case MVT::v4i16: OpcodeIndex = 1; break;
   2050   case MVT::v2f32:
   2051   case MVT::v2i32: OpcodeIndex = 2; break;
   2052     // Quad-register operations:
   2053   case MVT::v8i16: OpcodeIndex = 0; break;
   2054   case MVT::v4f32:
   2055   case MVT::v4i32: OpcodeIndex = 1; break;
   2056   }
   2057 
   2058   std::vector<EVT> ResTys;
   2059   if (IsLoad) {
   2060     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   2061     if (!is64BitVector)
   2062       ResTyElts *= 2;
   2063     ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
   2064                                       MVT::i64, ResTyElts));
   2065   }
   2066   if (isUpdating)
   2067     ResTys.push_back(MVT::i32);
   2068   ResTys.push_back(MVT::Other);
   2069 
   2070   SDValue Pred = getAL(CurDAG);
   2071   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2072 
   2073   SmallVector<SDValue, 8> Ops;
   2074   Ops.push_back(MemAddr);
   2075   Ops.push_back(Align);
   2076   if (isUpdating) {
   2077     SDValue Inc = N->getOperand(AddrOpIdx + 1);
   2078     Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   2079   }
   2080 
   2081   SDValue SuperReg;
   2082   SDValue V0 = N->getOperand(Vec0Idx + 0);
   2083   SDValue V1 = N->getOperand(Vec0Idx + 1);
   2084   if (NumVecs == 2) {
   2085     if (is64BitVector)
   2086       SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
   2087     else
   2088       SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
   2089   } else {
   2090     SDValue V2 = N->getOperand(Vec0Idx + 2);
   2091     SDValue V3 = (NumVecs == 3)
   2092       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   2093       : N->getOperand(Vec0Idx + 3);
   2094     if (is64BitVector)
   2095       SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
   2096     else
   2097       SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
   2098   }
   2099   Ops.push_back(SuperReg);
   2100   Ops.push_back(getI32Imm(Lane));
   2101   Ops.push_back(Pred);
   2102   Ops.push_back(Reg0);
   2103   Ops.push_back(Chain);
   2104 
   2105   unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   2106                                   QOpcodes[OpcodeIndex]);
   2107   SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   2108   cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
   2109   if (!IsLoad)
   2110     return VLdLn;
   2111 
   2112   // Extract the subregisters.
   2113   SuperReg = SDValue(VLdLn, 0);
   2114   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
   2115          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
   2116   unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
   2117   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   2118     ReplaceUses(SDValue(N, Vec),
   2119                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
   2120   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
   2121   if (isUpdating)
   2122     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
   2123   return NULL;
   2124 }
   2125 
   2126 SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
   2127                                       unsigned NumVecs,
   2128                                       const uint16_t *Opcodes) {
   2129   assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
   2130   SDLoc dl(N);
   2131 
   2132   SDValue MemAddr, Align;
   2133   if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
   2134     return NULL;
   2135 
   2136   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2137   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   2138 
   2139   SDValue Chain = N->getOperand(0);
   2140   EVT VT = N->getValueType(0);
   2141 
   2142   unsigned Alignment = 0;
   2143   if (NumVecs != 3) {
   2144     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   2145     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
   2146     if (Alignment > NumBytes)
   2147       Alignment = NumBytes;
   2148     if (Alignment < 8 && Alignment < NumBytes)
   2149       Alignment = 0;
   2150     // Alignment must be a power of two; make sure of that.
   2151     Alignment = (Alignment & -Alignment);
   2152     if (Alignment == 1)
   2153       Alignment = 0;
   2154   }
   2155   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   2156 
   2157   unsigned OpcodeIndex;
   2158   switch (VT.getSimpleVT().SimpleTy) {
   2159   default: llvm_unreachable("unhandled vld-dup type");
   2160   case MVT::v8i8:  OpcodeIndex = 0; break;
   2161   case MVT::v4i16: OpcodeIndex = 1; break;
   2162   case MVT::v2f32:
   2163   case MVT::v2i32: OpcodeIndex = 2; break;
   2164   }
   2165 
   2166   SDValue Pred = getAL(CurDAG);
   2167   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2168   SDValue SuperReg;
   2169   unsigned Opc = Opcodes[OpcodeIndex];
   2170   SmallVector<SDValue, 6> Ops;
   2171   Ops.push_back(MemAddr);
   2172   Ops.push_back(Align);
   2173   if (isUpdating) {
   2174     // fixed-stride update instructions don't have an explicit writeback
   2175     // operand. It's implicit in the opcode itself.
   2176     SDValue Inc = N->getOperand(2);
   2177     if (!isa<ConstantSDNode>(Inc.getNode()))
   2178       Ops.push_back(Inc);
   2179     // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
   2180     else if (NumVecs > 2)
   2181       Ops.push_back(Reg0);
   2182   }
   2183   Ops.push_back(Pred);
   2184   Ops.push_back(Reg0);
   2185   Ops.push_back(Chain);
   2186 
   2187   unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   2188   std::vector<EVT> ResTys;
   2189   ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
   2190   if (isUpdating)
   2191     ResTys.push_back(MVT::i32);
   2192   ResTys.push_back(MVT::Other);
   2193   SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
   2194   cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
   2195   SuperReg = SDValue(VLdDup, 0);
   2196 
   2197   // Extract the subregisters.
   2198   assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
   2199   unsigned SubIdx = ARM::dsub_0;
   2200   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   2201     ReplaceUses(SDValue(N, Vec),
   2202                 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
   2203   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
   2204   if (isUpdating)
   2205     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
   2206   return NULL;
   2207 }
   2208 
   2209 SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
   2210                                     unsigned Opc) {
   2211   assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
   2212   SDLoc dl(N);
   2213   EVT VT = N->getValueType(0);
   2214   unsigned FirstTblReg = IsExt ? 2 : 1;
   2215 
   2216   // Form a REG_SEQUENCE to force register allocation.
   2217   SDValue RegSeq;
   2218   SDValue V0 = N->getOperand(FirstTblReg + 0);
   2219   SDValue V1 = N->getOperand(FirstTblReg + 1);
   2220   if (NumVecs == 2)
   2221     RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
   2222   else {
   2223     SDValue V2 = N->getOperand(FirstTblReg + 2);
   2224     // If it's a vtbl3, form a quad D-register and leave the last part as
   2225     // an undef.
   2226     SDValue V3 = (NumVecs == 3)
   2227       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   2228       : N->getOperand(FirstTblReg + 3);
   2229     RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
   2230   }
   2231 
   2232   SmallVector<SDValue, 6> Ops;
   2233   if (IsExt)
   2234     Ops.push_back(N->getOperand(1));
   2235   Ops.push_back(RegSeq);
   2236   Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
   2237   Ops.push_back(getAL(CurDAG)); // predicate
   2238   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
   2239   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
   2240 }
   2241 
   2242 SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
   2243                                                      bool isSigned) {
   2244   if (!Subtarget->hasV6T2Ops())
   2245     return NULL;
   2246 
   2247   unsigned Opc = isSigned
   2248     ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
   2249     : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
   2250 
   2251   // For unsigned extracts, check for a shift right and mask
   2252   unsigned And_imm = 0;
   2253   if (N->getOpcode() == ISD::AND) {
   2254     if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
   2255 
   2256       // The immediate is a mask of the low bits iff imm & (imm+1) == 0
   2257       if (And_imm & (And_imm + 1))
   2258         return NULL;
   2259 
   2260       unsigned Srl_imm = 0;
   2261       if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
   2262                                 Srl_imm)) {
   2263         assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
   2264 
   2265         // Note: The width operand is encoded as width-1.
   2266         unsigned Width = CountTrailingOnes_32(And_imm) - 1;
   2267         unsigned LSB = Srl_imm;
   2268 
   2269         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2270 
   2271         if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
   2272           // It's cheaper to use a right shift to extract the top bits.
   2273           if (Subtarget->isThumb()) {
   2274             Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
   2275             SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2276                               CurDAG->getTargetConstant(LSB, MVT::i32),
   2277                               getAL(CurDAG), Reg0, Reg0 };
   2278             return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2279           }
   2280 
   2281           // ARM models shift instructions as MOVsi with shifter operand.
   2282           ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
   2283           SDValue ShOpc =
   2284             CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
   2285                                       MVT::i32);
   2286           SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
   2287                             getAL(CurDAG), Reg0, Reg0 };
   2288           return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops, 5);
   2289         }
   2290 
   2291         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2292                           CurDAG->getTargetConstant(LSB, MVT::i32),
   2293                           CurDAG->getTargetConstant(Width, MVT::i32),
   2294           getAL(CurDAG), Reg0 };
   2295         return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2296       }
   2297     }
   2298     return NULL;
   2299   }
   2300 
   2301   // Otherwise, we're looking for a shift of a shift
   2302   unsigned Shl_imm = 0;
   2303   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
   2304     assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
   2305     unsigned Srl_imm = 0;
   2306     if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
   2307       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
   2308       // Note: The width operand is encoded as width-1.
   2309       unsigned Width = 32 - Srl_imm - 1;
   2310       int LSB = Srl_imm - Shl_imm;
   2311       if (LSB < 0)
   2312         return NULL;
   2313       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2314       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2315                         CurDAG->getTargetConstant(LSB, MVT::i32),
   2316                         CurDAG->getTargetConstant(Width, MVT::i32),
   2317                         getAL(CurDAG), Reg0 };
   2318       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2319     }
   2320   }
   2321   return NULL;
   2322 }
   2323 
   2324 SDNode *ARMDAGToDAGISel::
   2325 SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2326                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2327   SDValue CPTmp0;
   2328   SDValue CPTmp1;
   2329   if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
   2330     unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
   2331     unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
   2332     unsigned Opc = 0;
   2333     switch (SOShOp) {
   2334     case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
   2335     case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
   2336     case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
   2337     case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
   2338     default:
   2339       llvm_unreachable("Unknown so_reg opcode!");
   2340     }
   2341     SDValue SOShImm =
   2342       CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
   2343     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2344     SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
   2345     return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
   2346   }
   2347   return 0;
   2348 }
   2349 
   2350 SDNode *ARMDAGToDAGISel::
   2351 SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2352                      ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2353   SDValue CPTmp0;
   2354   SDValue CPTmp1;
   2355   SDValue CPTmp2;
   2356   if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
   2357     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2358     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag };
   2359     return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6);
   2360   }
   2361 
   2362   if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
   2363     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2364     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
   2365     return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7);
   2366   }
   2367   return 0;
   2368 }
   2369 
   2370 SDNode *ARMDAGToDAGISel::
   2371 SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2372                   ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2373   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2374   if (!T)
   2375     return 0;
   2376 
   2377   unsigned Opc = 0;
   2378   unsigned TrueImm = T->getZExtValue();
   2379   if (is_t2_so_imm(TrueImm)) {
   2380     Opc = ARM::t2MOVCCi;
   2381   } else if (TrueImm <= 0xffff) {
   2382     Opc = ARM::t2MOVCCi16;
   2383   } else if (is_t2_so_imm_not(TrueImm)) {
   2384     TrueImm = ~TrueImm;
   2385     Opc = ARM::t2MVNCCi;
   2386   } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) {
   2387     // Large immediate.
   2388     Opc = ARM::t2MOVCCi32imm;
   2389   }
   2390 
   2391   if (Opc) {
   2392     SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2393     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2394     SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
   2395     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2396   }
   2397 
   2398   return 0;
   2399 }
   2400 
   2401 SDNode *ARMDAGToDAGISel::
   2402 SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2403                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2404   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2405   if (!T)
   2406     return 0;
   2407 
   2408   unsigned Opc = 0;
   2409   unsigned TrueImm = T->getZExtValue();
   2410   bool isSoImm = is_so_imm(TrueImm);
   2411   if (isSoImm) {
   2412     Opc = ARM::MOVCCi;
   2413   } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) {
   2414     Opc = ARM::MOVCCi16;
   2415   } else if (is_so_imm_not(TrueImm)) {
   2416     TrueImm = ~TrueImm;
   2417     Opc = ARM::MVNCCi;
   2418   } else if (TrueVal.getNode()->hasOneUse() &&
   2419              (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) {
   2420     // Large immediate.
   2421     Opc = ARM::MOVCCi32imm;
   2422   }
   2423 
   2424   if (Opc) {
   2425     SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2426     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2427     SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
   2428     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2429   }
   2430 
   2431   return 0;
   2432 }
   2433 
   2434 SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
   2435   EVT VT = N->getValueType(0);
   2436   SDValue FalseVal = N->getOperand(0);
   2437   SDValue TrueVal  = N->getOperand(1);
   2438   SDValue CC = N->getOperand(2);
   2439   SDValue CCR = N->getOperand(3);
   2440   SDValue InFlag = N->getOperand(4);
   2441   assert(CC.getOpcode() == ISD::Constant);
   2442   assert(CCR.getOpcode() == ISD::Register);
   2443   ARMCC::CondCodes CCVal =
   2444     (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
   2445 
   2446   if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
   2447     // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
   2448     // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
   2449     // Pattern complexity = 18  cost = 1  size = 0
   2450     if (Subtarget->isThumb()) {
   2451       SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
   2452                                         CCVal, CCR, InFlag);
   2453       if (!Res)
   2454         Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
   2455                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2456       if (Res)
   2457         return Res;
   2458     } else {
   2459       SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
   2460                                          CCVal, CCR, InFlag);
   2461       if (!Res)
   2462         Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
   2463                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2464       if (Res)
   2465         return Res;
   2466     }
   2467 
   2468     // Pattern: (ARMcmov:i32 GPR:i32:$false,
   2469     //             (imm:i32)<<P:Pred_so_imm>>:$true,
   2470     //             (imm:i32):$cc)
   2471     // Emits: (MOVCCi:i32 GPR:i32:$false,
   2472     //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
   2473     // Pattern complexity = 10  cost = 1  size = 0
   2474     if (Subtarget->isThumb()) {
   2475       SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal,
   2476                                         CCVal, CCR, InFlag);
   2477       if (!Res)
   2478         Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal,
   2479                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2480       if (Res)
   2481         return Res;
   2482     } else {
   2483       SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal,
   2484                                          CCVal, CCR, InFlag);
   2485       if (!Res)
   2486         Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal,
   2487                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2488       if (Res)
   2489         return Res;
   2490     }
   2491   }
   2492 
   2493   // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2494   // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2495   // Pattern complexity = 6  cost = 1  size = 0
   2496   //
   2497   // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2498   // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2499   // Pattern complexity = 6  cost = 11  size = 0
   2500   //
   2501   // Also VMOVScc and VMOVDcc.
   2502   SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2503   SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
   2504   unsigned Opc = 0;
   2505   switch (VT.getSimpleVT().SimpleTy) {
   2506   default: llvm_unreachable("Illegal conditional move type!");
   2507   case MVT::i32:
   2508     Opc = Subtarget->isThumb()
   2509       ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
   2510       : ARM::MOVCCr;
   2511     break;
   2512   case MVT::f32:
   2513     Opc = ARM::VMOVScc;
   2514     break;
   2515   case MVT::f64:
   2516     Opc = ARM::VMOVDcc;
   2517     break;
   2518   }
   2519   return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
   2520 }
   2521 
   2522 /// Target-specific DAG combining for ISD::XOR.
   2523 /// Target-independent combining lowers SELECT_CC nodes of the form
   2524 /// select_cc setg[ge] X,  0,  X, -X
   2525 /// select_cc setgt    X, -1,  X, -X
   2526 /// select_cc setl[te] X,  0, -X,  X
   2527 /// select_cc setlt    X,  1, -X,  X
   2528 /// which represent Integer ABS into:
   2529 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
   2530 /// ARM instruction selection detects the latter and matches it to
   2531 /// ARM::ABS or ARM::t2ABS machine node.
   2532 SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
   2533   SDValue XORSrc0 = N->getOperand(0);
   2534   SDValue XORSrc1 = N->getOperand(1);
   2535   EVT VT = N->getValueType(0);
   2536 
   2537   if (Subtarget->isThumb1Only())
   2538     return NULL;
   2539 
   2540   if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
   2541     return NULL;
   2542 
   2543   SDValue ADDSrc0 = XORSrc0.getOperand(0);
   2544   SDValue ADDSrc1 = XORSrc0.getOperand(1);
   2545   SDValue SRASrc0 = XORSrc1.getOperand(0);
   2546   SDValue SRASrc1 = XORSrc1.getOperand(1);
   2547   ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
   2548   EVT XType = SRASrc0.getValueType();
   2549   unsigned Size = XType.getSizeInBits() - 1;
   2550 
   2551   if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
   2552       XType.isInteger() && SRAConstant != NULL &&
   2553       Size == SRAConstant->getZExtValue()) {
   2554     unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
   2555     return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
   2556   }
   2557 
   2558   return NULL;
   2559 }
   2560 
   2561 SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
   2562   // The only time a CONCAT_VECTORS operation can have legal types is when
   2563   // two 64-bit vectors are concatenated to a 128-bit vector.
   2564   EVT VT = N->getValueType(0);
   2565   if (!VT.is128BitVector() || N->getNumOperands() != 2)
   2566     llvm_unreachable("unexpected CONCAT_VECTORS");
   2567   return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
   2568 }
   2569 
   2570 SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   2571   SmallVector<SDValue, 6> Ops;
   2572   Ops.push_back(Node->getOperand(1)); // Ptr
   2573   Ops.push_back(Node->getOperand(2)); // Low part of Val1
   2574   Ops.push_back(Node->getOperand(3)); // High part of Val1
   2575   if (Opc == ARM::ATOMCMPXCHG6432) {
   2576     Ops.push_back(Node->getOperand(4)); // Low part of Val2
   2577     Ops.push_back(Node->getOperand(5)); // High part of Val2
   2578   }
   2579   Ops.push_back(Node->getOperand(0)); // Chain
   2580   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2581   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   2582   SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
   2583                                            MVT::i32, MVT::i32, MVT::Other,
   2584                                            Ops);
   2585   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   2586   return ResNode;
   2587 }
   2588 
   2589 SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
   2590   SDLoc dl(N);
   2591 
   2592   if (N->isMachineOpcode())
   2593     return NULL;   // Already selected.
   2594 
   2595   switch (N->getOpcode()) {
   2596   default: break;
   2597   case ISD::INLINEASM: {
   2598     SDNode *ResNode = SelectInlineAsm(N);
   2599     if (ResNode)
   2600       return ResNode;
   2601     break;
   2602   }
   2603   case ISD::XOR: {
   2604     // Select special operations if XOR node forms integer ABS pattern
   2605     SDNode *ResNode = SelectABSOp(N);
   2606     if (ResNode)
   2607       return ResNode;
   2608     // Other cases are autogenerated.
   2609     break;
   2610   }
   2611   case ISD::Constant: {
   2612     unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
   2613     bool UseCP = true;
   2614     if (Subtarget->hasThumb2())
   2615       // Thumb2-aware targets have the MOVT instruction, so all immediates can
   2616       // be done with MOV + MOVT, at worst.
   2617       UseCP = 0;
   2618     else {
   2619       if (Subtarget->isThumb()) {
   2620         UseCP = (Val > 255 &&                          // MOV
   2621                  ~Val > 255 &&                         // MOV + MVN
   2622                  !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
   2623       } else
   2624         UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
   2625                  ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
   2626                  !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
   2627     }
   2628 
   2629     if (UseCP) {
   2630       SDValue CPIdx =
   2631         CurDAG->getTargetConstantPool(ConstantInt::get(
   2632                                   Type::getInt32Ty(*CurDAG->getContext()), Val),
   2633                                       getTargetLowering()->getPointerTy());
   2634 
   2635       SDNode *ResNode;
   2636       if (Subtarget->isThumb1Only()) {
   2637         SDValue Pred = getAL(CurDAG);
   2638         SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2639         SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
   2640         ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
   2641                                          Ops);
   2642       } else {
   2643         SDValue Ops[] = {
   2644           CPIdx,
   2645           CurDAG->getTargetConstant(0, MVT::i32),
   2646           getAL(CurDAG),
   2647           CurDAG->getRegister(0, MVT::i32),
   2648           CurDAG->getEntryNode()
   2649         };
   2650         ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
   2651                                        Ops);
   2652       }
   2653       ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
   2654       return NULL;
   2655     }
   2656 
   2657     // Other cases are autogenerated.
   2658     break;
   2659   }
   2660   case ISD::FrameIndex: {
   2661     // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
   2662     int FI = cast<FrameIndexSDNode>(N)->getIndex();
   2663     SDValue TFI = CurDAG->getTargetFrameIndex(FI,
   2664                                            getTargetLowering()->getPointerTy());
   2665     if (Subtarget->isThumb1Only()) {
   2666       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2667                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2668       return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
   2669     } else {
   2670       unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
   2671                       ARM::t2ADDri : ARM::ADDri);
   2672       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2673                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2674                         CurDAG->getRegister(0, MVT::i32) };
   2675       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2676     }
   2677   }
   2678   case ISD::SRL:
   2679     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
   2680       return I;
   2681     break;
   2682   case ISD::SRA:
   2683     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
   2684       return I;
   2685     break;
   2686   case ISD::MUL:
   2687     if (Subtarget->isThumb1Only())
   2688       break;
   2689     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
   2690       unsigned RHSV = C->getZExtValue();
   2691       if (!RHSV) break;
   2692       if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
   2693         unsigned ShImm = Log2_32(RHSV-1);
   2694         if (ShImm >= 32)
   2695           break;
   2696         SDValue V = N->getOperand(0);
   2697         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
   2698         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
   2699         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2700         if (Subtarget->isThumb()) {
   2701           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2702           return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
   2703         } else {
   2704           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2705           return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
   2706         }
   2707       }
   2708       if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
   2709         unsigned ShImm = Log2_32(RHSV+1);
   2710         if (ShImm >= 32)
   2711           break;
   2712         SDValue V = N->getOperand(0);
   2713         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
   2714         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
   2715         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2716         if (Subtarget->isThumb()) {
   2717           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2718           return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
   2719         } else {
   2720           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2721           return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
   2722         }
   2723       }
   2724     }
   2725     break;
   2726   case ISD::AND: {
   2727     // Check for unsigned bitfield extract
   2728     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
   2729       return I;
   2730 
   2731     // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
   2732     // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
   2733     // are entirely contributed by c2 and lower 16-bits are entirely contributed
   2734     // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
   2735     // Select it to: "movt x, ((c1 & 0xffff) >> 16)
   2736     EVT VT = N->getValueType(0);
   2737     if (VT != MVT::i32)
   2738       break;
   2739     unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
   2740       ? ARM::t2MOVTi16
   2741       : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
   2742     if (!Opc)
   2743       break;
   2744     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
   2745     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   2746     if (!N1C)
   2747       break;
   2748     if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
   2749       SDValue N2 = N0.getOperand(1);
   2750       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
   2751       if (!N2C)
   2752         break;
   2753       unsigned N1CVal = N1C->getZExtValue();
   2754       unsigned N2CVal = N2C->getZExtValue();
   2755       if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
   2756           (N1CVal & 0xffffU) == 0xffffU &&
   2757           (N2CVal & 0xffffU) == 0x0U) {
   2758         SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
   2759                                                   MVT::i32);
   2760         SDValue Ops[] = { N0.getOperand(0), Imm16,
   2761                           getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2762         return CurDAG->getMachineNode(Opc, dl, VT, Ops);
   2763       }
   2764     }
   2765     break;
   2766   }
   2767   case ARMISD::VMOVRRD:
   2768     return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
   2769                                   N->getOperand(0), getAL(CurDAG),
   2770                                   CurDAG->getRegister(0, MVT::i32));
   2771   case ISD::UMUL_LOHI: {
   2772     if (Subtarget->isThumb1Only())
   2773       break;
   2774     if (Subtarget->isThumb()) {
   2775       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2776                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2777       return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
   2778     } else {
   2779       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2780                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2781                         CurDAG->getRegister(0, MVT::i32) };
   2782       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2783                                     ARM::UMULL : ARM::UMULLv5,
   2784                                     dl, MVT::i32, MVT::i32, Ops);
   2785     }
   2786   }
   2787   case ISD::SMUL_LOHI: {
   2788     if (Subtarget->isThumb1Only())
   2789       break;
   2790     if (Subtarget->isThumb()) {
   2791       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2792                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2793       return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
   2794     } else {
   2795       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2796                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2797                         CurDAG->getRegister(0, MVT::i32) };
   2798       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2799                                     ARM::SMULL : ARM::SMULLv5,
   2800                                     dl, MVT::i32, MVT::i32, Ops);
   2801     }
   2802   }
   2803   case ARMISD::UMLAL:{
   2804     if (Subtarget->isThumb()) {
   2805       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
   2806                         N->getOperand(3), getAL(CurDAG),
   2807                         CurDAG->getRegister(0, MVT::i32)};
   2808       return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
   2809     }else{
   2810       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
   2811                         N->getOperand(3), getAL(CurDAG),
   2812                         CurDAG->getRegister(0, MVT::i32),
   2813                         CurDAG->getRegister(0, MVT::i32) };
   2814       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2815                                       ARM::UMLAL : ARM::UMLALv5,
   2816                                       dl, MVT::i32, MVT::i32, Ops);
   2817     }
   2818   }
   2819   case ARMISD::SMLAL:{
   2820     if (Subtarget->isThumb()) {
   2821       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
   2822                         N->getOperand(3), getAL(CurDAG),
   2823                         CurDAG->getRegister(0, MVT::i32)};
   2824       return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
   2825     }else{
   2826       SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
   2827                         N->getOperand(3), getAL(CurDAG),
   2828                         CurDAG->getRegister(0, MVT::i32),
   2829                         CurDAG->getRegister(0, MVT::i32) };
   2830       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2831                                       ARM::SMLAL : ARM::SMLALv5,
   2832                                       dl, MVT::i32, MVT::i32, Ops);
   2833     }
   2834   }
   2835   case ISD::LOAD: {
   2836     SDNode *ResNode = 0;
   2837     if (Subtarget->isThumb() && Subtarget->hasThumb2())
   2838       ResNode = SelectT2IndexedLoad(N);
   2839     else
   2840       ResNode = SelectARMIndexedLoad(N);
   2841     if (ResNode)
   2842       return ResNode;
   2843     // Other cases are autogenerated.
   2844     break;
   2845   }
   2846   case ARMISD::BRCOND: {
   2847     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2848     // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
   2849     // Pattern complexity = 6  cost = 1  size = 0
   2850 
   2851     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2852     // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
   2853     // Pattern complexity = 6  cost = 1  size = 0
   2854 
   2855     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2856     // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
   2857     // Pattern complexity = 6  cost = 1  size = 0
   2858 
   2859     unsigned Opc = Subtarget->isThumb() ?
   2860       ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
   2861     SDValue Chain = N->getOperand(0);
   2862     SDValue N1 = N->getOperand(1);
   2863     SDValue N2 = N->getOperand(2);
   2864     SDValue N3 = N->getOperand(3);
   2865     SDValue InFlag = N->getOperand(4);
   2866     assert(N1.getOpcode() == ISD::BasicBlock);
   2867     assert(N2.getOpcode() == ISD::Constant);
   2868     assert(N3.getOpcode() == ISD::Register);
   2869 
   2870     SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
   2871                                cast<ConstantSDNode>(N2)->getZExtValue()),
   2872                                MVT::i32);
   2873     SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
   2874     SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
   2875                                              MVT::Glue, Ops);
   2876     Chain = SDValue(ResNode, 0);
   2877     if (N->getNumValues() == 2) {
   2878       InFlag = SDValue(ResNode, 1);
   2879       ReplaceUses(SDValue(N, 1), InFlag);
   2880     }
   2881     ReplaceUses(SDValue(N, 0),
   2882                 SDValue(Chain.getNode(), Chain.getResNo()));
   2883     return NULL;
   2884   }
   2885   case ARMISD::CMOV:
   2886     return SelectCMOVOp(N);
   2887   case ARMISD::VZIP: {
   2888     unsigned Opc = 0;
   2889     EVT VT = N->getValueType(0);
   2890     switch (VT.getSimpleVT().SimpleTy) {
   2891     default: return NULL;
   2892     case MVT::v8i8:  Opc = ARM::VZIPd8; break;
   2893     case MVT::v4i16: Opc = ARM::VZIPd16; break;
   2894     case MVT::v2f32:
   2895     // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
   2896     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2897     case MVT::v16i8: Opc = ARM::VZIPq8; break;
   2898     case MVT::v8i16: Opc = ARM::VZIPq16; break;
   2899     case MVT::v4f32:
   2900     case MVT::v4i32: Opc = ARM::VZIPq32; break;
   2901     }
   2902     SDValue Pred = getAL(CurDAG);
   2903     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2904     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2905     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
   2906   }
   2907   case ARMISD::VUZP: {
   2908     unsigned Opc = 0;
   2909     EVT VT = N->getValueType(0);
   2910     switch (VT.getSimpleVT().SimpleTy) {
   2911     default: return NULL;
   2912     case MVT::v8i8:  Opc = ARM::VUZPd8; break;
   2913     case MVT::v4i16: Opc = ARM::VUZPd16; break;
   2914     case MVT::v2f32:
   2915     // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
   2916     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2917     case MVT::v16i8: Opc = ARM::VUZPq8; break;
   2918     case MVT::v8i16: Opc = ARM::VUZPq16; break;
   2919     case MVT::v4f32:
   2920     case MVT::v4i32: Opc = ARM::VUZPq32; break;
   2921     }
   2922     SDValue Pred = getAL(CurDAG);
   2923     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2924     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2925     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
   2926   }
   2927   case ARMISD::VTRN: {
   2928     unsigned Opc = 0;
   2929     EVT VT = N->getValueType(0);
   2930     switch (VT.getSimpleVT().SimpleTy) {
   2931     default: return NULL;
   2932     case MVT::v8i8:  Opc = ARM::VTRNd8; break;
   2933     case MVT::v4i16: Opc = ARM::VTRNd16; break;
   2934     case MVT::v2f32:
   2935     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2936     case MVT::v16i8: Opc = ARM::VTRNq8; break;
   2937     case MVT::v8i16: Opc = ARM::VTRNq16; break;
   2938     case MVT::v4f32:
   2939     case MVT::v4i32: Opc = ARM::VTRNq32; break;
   2940     }
   2941     SDValue Pred = getAL(CurDAG);
   2942     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2943     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2944     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
   2945   }
   2946   case ARMISD::BUILD_VECTOR: {
   2947     EVT VecVT = N->getValueType(0);
   2948     EVT EltVT = VecVT.getVectorElementType();
   2949     unsigned NumElts = VecVT.getVectorNumElements();
   2950     if (EltVT == MVT::f64) {
   2951       assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
   2952       return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
   2953     }
   2954     assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
   2955     if (NumElts == 2)
   2956       return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
   2957     assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
   2958     return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
   2959                      N->getOperand(2), N->getOperand(3));
   2960   }
   2961 
   2962   case ARMISD::VLD2DUP: {
   2963     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
   2964                                         ARM::VLD2DUPd32 };
   2965     return SelectVLDDup(N, false, 2, Opcodes);
   2966   }
   2967 
   2968   case ARMISD::VLD3DUP: {
   2969     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
   2970                                         ARM::VLD3DUPd16Pseudo,
   2971                                         ARM::VLD3DUPd32Pseudo };
   2972     return SelectVLDDup(N, false, 3, Opcodes);
   2973   }
   2974 
   2975   case ARMISD::VLD4DUP: {
   2976     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
   2977                                         ARM::VLD4DUPd16Pseudo,
   2978                                         ARM::VLD4DUPd32Pseudo };
   2979     return SelectVLDDup(N, false, 4, Opcodes);
   2980   }
   2981 
   2982   case ARMISD::VLD2DUP_UPD: {
   2983     static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
   2984                                         ARM::VLD2DUPd16wb_fixed,
   2985                                         ARM::VLD2DUPd32wb_fixed };
   2986     return SelectVLDDup(N, true, 2, Opcodes);
   2987   }
   2988 
   2989   case ARMISD::VLD3DUP_UPD: {
   2990     static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
   2991                                         ARM::VLD3DUPd16Pseudo_UPD,
   2992                                         ARM::VLD3DUPd32Pseudo_UPD };
   2993     return SelectVLDDup(N, true, 3, Opcodes);
   2994   }
   2995 
   2996   case ARMISD::VLD4DUP_UPD: {
   2997     static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
   2998                                         ARM::VLD4DUPd16Pseudo_UPD,
   2999                                         ARM::VLD4DUPd32Pseudo_UPD };
   3000     return SelectVLDDup(N, true, 4, Opcodes);
   3001   }
   3002 
   3003   case ARMISD::VLD1_UPD: {
   3004     static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
   3005                                          ARM::VLD1d16wb_fixed,
   3006                                          ARM::VLD1d32wb_fixed,
   3007                                          ARM::VLD1d64wb_fixed };
   3008     static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
   3009                                          ARM::VLD1q16wb_fixed,
   3010                                          ARM::VLD1q32wb_fixed,
   3011                                          ARM::VLD1q64wb_fixed };
   3012     return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
   3013   }
   3014 
   3015   case ARMISD::VLD2_UPD: {
   3016     static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
   3017                                          ARM::VLD2d16wb_fixed,
   3018                                          ARM::VLD2d32wb_fixed,
   3019                                          ARM::VLD1q64wb_fixed};
   3020     static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
   3021                                          ARM::VLD2q16PseudoWB_fixed,
   3022                                          ARM::VLD2q32PseudoWB_fixed };
   3023     return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
   3024   }
   3025 
   3026   case ARMISD::VLD3_UPD: {
   3027     static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
   3028                                          ARM::VLD3d16Pseudo_UPD,
   3029                                          ARM::VLD3d32Pseudo_UPD,
   3030                                          ARM::VLD1q64wb_fixed};
   3031     static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
   3032                                           ARM::VLD3q16Pseudo_UPD,
   3033                                           ARM::VLD3q32Pseudo_UPD };
   3034     static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
   3035                                           ARM::VLD3q16oddPseudo_UPD,
   3036                                           ARM::VLD3q32oddPseudo_UPD };
   3037     return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3038   }
   3039 
   3040   case ARMISD::VLD4_UPD: {
   3041     static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
   3042                                          ARM::VLD4d16Pseudo_UPD,
   3043                                          ARM::VLD4d32Pseudo_UPD,
   3044                                          ARM::VLD1q64wb_fixed};
   3045     static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
   3046                                           ARM::VLD4q16Pseudo_UPD,
   3047                                           ARM::VLD4q32Pseudo_UPD };
   3048     static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
   3049                                           ARM::VLD4q16oddPseudo_UPD,
   3050                                           ARM::VLD4q32oddPseudo_UPD };
   3051     return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3052   }
   3053 
   3054   case ARMISD::VLD2LN_UPD: {
   3055     static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
   3056                                          ARM::VLD2LNd16Pseudo_UPD,
   3057                                          ARM::VLD2LNd32Pseudo_UPD };
   3058     static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
   3059                                          ARM::VLD2LNq32Pseudo_UPD };
   3060     return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
   3061   }
   3062 
   3063   case ARMISD::VLD3LN_UPD: {
   3064     static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
   3065                                          ARM::VLD3LNd16Pseudo_UPD,
   3066                                          ARM::VLD3LNd32Pseudo_UPD };
   3067     static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
   3068                                          ARM::VLD3LNq32Pseudo_UPD };
   3069     return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
   3070   }
   3071 
   3072   case ARMISD::VLD4LN_UPD: {
   3073     static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
   3074                                          ARM::VLD4LNd16Pseudo_UPD,
   3075                                          ARM::VLD4LNd32Pseudo_UPD };
   3076     static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
   3077                                          ARM::VLD4LNq32Pseudo_UPD };
   3078     return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
   3079   }
   3080 
   3081   case ARMISD::VST1_UPD: {
   3082     static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
   3083                                          ARM::VST1d16wb_fixed,
   3084                                          ARM::VST1d32wb_fixed,
   3085                                          ARM::VST1d64wb_fixed };
   3086     static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
   3087                                          ARM::VST1q16wb_fixed,
   3088                                          ARM::VST1q32wb_fixed,
   3089                                          ARM::VST1q64wb_fixed };
   3090     return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
   3091   }
   3092 
   3093   case ARMISD::VST2_UPD: {
   3094     static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
   3095                                          ARM::VST2d16wb_fixed,
   3096                                          ARM::VST2d32wb_fixed,
   3097                                          ARM::VST1q64wb_fixed};
   3098     static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
   3099                                          ARM::VST2q16PseudoWB_fixed,
   3100                                          ARM::VST2q32PseudoWB_fixed };
   3101     return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
   3102   }
   3103 
   3104   case ARMISD::VST3_UPD: {
   3105     static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
   3106                                          ARM::VST3d16Pseudo_UPD,
   3107                                          ARM::VST3d32Pseudo_UPD,
   3108                                          ARM::VST1d64TPseudoWB_fixed};
   3109     static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
   3110                                           ARM::VST3q16Pseudo_UPD,
   3111                                           ARM::VST3q32Pseudo_UPD };
   3112     static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
   3113                                           ARM::VST3q16oddPseudo_UPD,
   3114                                           ARM::VST3q32oddPseudo_UPD };
   3115     return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3116   }
   3117 
   3118   case ARMISD::VST4_UPD: {
   3119     static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
   3120                                          ARM::VST4d16Pseudo_UPD,
   3121                                          ARM::VST4d32Pseudo_UPD,
   3122                                          ARM::VST1d64QPseudoWB_fixed};
   3123     static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
   3124                                           ARM::VST4q16Pseudo_UPD,
   3125                                           ARM::VST4q32Pseudo_UPD };
   3126     static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
   3127                                           ARM::VST4q16oddPseudo_UPD,
   3128                                           ARM::VST4q32oddPseudo_UPD };
   3129     return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3130   }
   3131 
   3132   case ARMISD::VST2LN_UPD: {
   3133     static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
   3134                                          ARM::VST2LNd16Pseudo_UPD,
   3135                                          ARM::VST2LNd32Pseudo_UPD };
   3136     static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
   3137                                          ARM::VST2LNq32Pseudo_UPD };
   3138     return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
   3139   }
   3140 
   3141   case ARMISD::VST3LN_UPD: {
   3142     static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
   3143                                          ARM::VST3LNd16Pseudo_UPD,
   3144                                          ARM::VST3LNd32Pseudo_UPD };
   3145     static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
   3146                                          ARM::VST3LNq32Pseudo_UPD };
   3147     return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
   3148   }
   3149 
   3150   case ARMISD::VST4LN_UPD: {
   3151     static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
   3152                                          ARM::VST4LNd16Pseudo_UPD,
   3153                                          ARM::VST4LNd32Pseudo_UPD };
   3154     static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
   3155                                          ARM::VST4LNq32Pseudo_UPD };
   3156     return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
   3157   }
   3158 
   3159   case ISD::INTRINSIC_VOID:
   3160   case ISD::INTRINSIC_W_CHAIN: {
   3161     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   3162     switch (IntNo) {
   3163     default:
   3164       break;
   3165 
   3166     case Intrinsic::arm_ldrexd: {
   3167       SDValue MemAddr = N->getOperand(2);
   3168       SDLoc dl(N);
   3169       SDValue Chain = N->getOperand(0);
   3170 
   3171       bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
   3172       unsigned NewOpc = isThumb ? ARM::t2LDREXD :ARM::LDREXD;
   3173 
   3174       // arm_ldrexd returns a i64 value in {i32, i32}
   3175       std::vector<EVT> ResTys;
   3176       if (isThumb) {
   3177         ResTys.push_back(MVT::i32);
   3178         ResTys.push_back(MVT::i32);
   3179       } else
   3180         ResTys.push_back(MVT::Untyped);
   3181       ResTys.push_back(MVT::Other);
   3182 
   3183       // Place arguments in the right order.
   3184       SmallVector<SDValue, 7> Ops;
   3185       Ops.push_back(MemAddr);
   3186       Ops.push_back(getAL(CurDAG));
   3187       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
   3188       Ops.push_back(Chain);
   3189       SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
   3190       // Transfer memoperands.
   3191       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   3192       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   3193       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
   3194 
   3195       // Remap uses.
   3196       SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
   3197       if (!SDValue(N, 0).use_empty()) {
   3198         SDValue Result;
   3199         if (isThumb)
   3200           Result = SDValue(Ld, 0);
   3201         else {
   3202           SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
   3203           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
   3204               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
   3205           Result = SDValue(ResNode,0);
   3206         }
   3207         ReplaceUses(SDValue(N, 0), Result);
   3208       }
   3209       if (!SDValue(N, 1).use_empty()) {
   3210         SDValue Result;
   3211         if (isThumb)
   3212           Result = SDValue(Ld, 1);
   3213         else {
   3214           SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
   3215           SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
   3216               dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
   3217           Result = SDValue(ResNode,0);
   3218         }
   3219         ReplaceUses(SDValue(N, 1), Result);
   3220       }
   3221       ReplaceUses(SDValue(N, 2), OutChain);
   3222       return NULL;
   3223     }
   3224 
   3225     case Intrinsic::arm_strexd: {
   3226       SDLoc dl(N);
   3227       SDValue Chain = N->getOperand(0);
   3228       SDValue Val0 = N->getOperand(2);
   3229       SDValue Val1 = N->getOperand(3);
   3230       SDValue MemAddr = N->getOperand(4);
   3231 
   3232       // Store exclusive double return a i32 value which is the return status
   3233       // of the issued store.
   3234       EVT ResTys[] = { MVT::i32, MVT::Other };
   3235 
   3236       bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
   3237       // Place arguments in the right order.
   3238       SmallVector<SDValue, 7> Ops;
   3239       if (isThumb) {
   3240         Ops.push_back(Val0);
   3241         Ops.push_back(Val1);
   3242       } else
   3243         // arm_strexd uses GPRPair.
   3244         Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
   3245       Ops.push_back(MemAddr);
   3246       Ops.push_back(getAL(CurDAG));
   3247       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
   3248       Ops.push_back(Chain);
   3249 
   3250       unsigned NewOpc = isThumb ? ARM::t2STREXD : ARM::STREXD;
   3251 
   3252       SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
   3253       // Transfer memoperands.
   3254       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   3255       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   3256       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
   3257 
   3258       return St;
   3259     }
   3260 
   3261     case Intrinsic::arm_neon_vld1: {
   3262       static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
   3263                                            ARM::VLD1d32, ARM::VLD1d64 };
   3264       static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
   3265                                            ARM::VLD1q32, ARM::VLD1q64};
   3266       return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
   3267     }
   3268 
   3269     case Intrinsic::arm_neon_vld2: {
   3270       static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
   3271                                            ARM::VLD2d32, ARM::VLD1q64 };
   3272       static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
   3273                                            ARM::VLD2q32Pseudo };
   3274       return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
   3275     }
   3276 
   3277     case Intrinsic::arm_neon_vld3: {
   3278       static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
   3279                                            ARM::VLD3d16Pseudo,
   3280                                            ARM::VLD3d32Pseudo,
   3281                                            ARM::VLD1d64TPseudo };
   3282       static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
   3283                                             ARM::VLD3q16Pseudo_UPD,
   3284                                             ARM::VLD3q32Pseudo_UPD };
   3285       static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
   3286                                             ARM::VLD3q16oddPseudo,
   3287                                             ARM::VLD3q32oddPseudo };
   3288       return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3289     }
   3290 
   3291     case Intrinsic::arm_neon_vld4: {
   3292       static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
   3293                                            ARM::VLD4d16Pseudo,
   3294                                            ARM::VLD4d32Pseudo,
   3295                                            ARM::VLD1d64QPseudo };
   3296       static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
   3297                                             ARM::VLD4q16Pseudo_UPD,
   3298                                             ARM::VLD4q32Pseudo_UPD };
   3299       static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
   3300                                             ARM::VLD4q16oddPseudo,
   3301                                             ARM::VLD4q32oddPseudo };
   3302       return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3303     }
   3304 
   3305     case Intrinsic::arm_neon_vld2lane: {
   3306       static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
   3307                                            ARM::VLD2LNd16Pseudo,
   3308                                            ARM::VLD2LNd32Pseudo };
   3309       static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
   3310                                            ARM::VLD2LNq32Pseudo };
   3311       return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
   3312     }
   3313 
   3314     case Intrinsic::arm_neon_vld3lane: {
   3315       static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
   3316                                            ARM::VLD3LNd16Pseudo,
   3317                                            ARM::VLD3LNd32Pseudo };
   3318       static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
   3319                                            ARM::VLD3LNq32Pseudo };
   3320       return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
   3321     }
   3322 
   3323     case Intrinsic::arm_neon_vld4lane: {
   3324       static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
   3325                                            ARM::VLD4LNd16Pseudo,
   3326                                            ARM::VLD4LNd32Pseudo };
   3327       static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
   3328                                            ARM::VLD4LNq32Pseudo };
   3329       return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
   3330     }
   3331 
   3332     case Intrinsic::arm_neon_vst1: {
   3333       static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
   3334                                            ARM::VST1d32, ARM::VST1d64 };
   3335       static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
   3336                                            ARM::VST1q32, ARM::VST1q64 };
   3337       return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
   3338     }
   3339 
   3340     case Intrinsic::arm_neon_vst2: {
   3341       static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
   3342                                            ARM::VST2d32, ARM::VST1q64 };
   3343       static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
   3344                                      ARM::VST2q32Pseudo };
   3345       return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
   3346     }
   3347 
   3348     case Intrinsic::arm_neon_vst3: {
   3349       static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
   3350                                            ARM::VST3d16Pseudo,
   3351                                            ARM::VST3d32Pseudo,
   3352                                            ARM::VST1d64TPseudo };
   3353       static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
   3354                                             ARM::VST3q16Pseudo_UPD,
   3355                                             ARM::VST3q32Pseudo_UPD };
   3356       static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
   3357                                             ARM::VST3q16oddPseudo,
   3358                                             ARM::VST3q32oddPseudo };
   3359       return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3360     }
   3361 
   3362     case Intrinsic::arm_neon_vst4: {
   3363       static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
   3364                                            ARM::VST4d16Pseudo,
   3365                                            ARM::VST4d32Pseudo,
   3366                                            ARM::VST1d64QPseudo };
   3367       static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
   3368                                             ARM::VST4q16Pseudo_UPD,
   3369                                             ARM::VST4q32Pseudo_UPD };
   3370       static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
   3371                                             ARM::VST4q16oddPseudo,
   3372                                             ARM::VST4q32oddPseudo };
   3373       return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3374     }
   3375 
   3376     case Intrinsic::arm_neon_vst2lane: {
   3377       static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
   3378                                            ARM::VST2LNd16Pseudo,
   3379                                            ARM::VST2LNd32Pseudo };
   3380       static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
   3381                                            ARM::VST2LNq32Pseudo };
   3382       return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
   3383     }
   3384 
   3385     case Intrinsic::arm_neon_vst3lane: {
   3386       static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
   3387                                            ARM::VST3LNd16Pseudo,
   3388                                            ARM::VST3LNd32Pseudo };
   3389       static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
   3390                                            ARM::VST3LNq32Pseudo };
   3391       return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
   3392     }
   3393 
   3394     case Intrinsic::arm_neon_vst4lane: {
   3395       static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
   3396                                            ARM::VST4LNd16Pseudo,
   3397                                            ARM::VST4LNd32Pseudo };
   3398       static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
   3399                                            ARM::VST4LNq32Pseudo };
   3400       return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
   3401     }
   3402     }
   3403     break;
   3404   }
   3405 
   3406   case ISD::INTRINSIC_WO_CHAIN: {
   3407     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   3408     switch (IntNo) {
   3409     default:
   3410       break;
   3411 
   3412     case Intrinsic::arm_neon_vtbl2:
   3413       return SelectVTBL(N, false, 2, ARM::VTBL2);
   3414     case Intrinsic::arm_neon_vtbl3:
   3415       return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
   3416     case Intrinsic::arm_neon_vtbl4:
   3417       return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
   3418 
   3419     case Intrinsic::arm_neon_vtbx2:
   3420       return SelectVTBL(N, true, 2, ARM::VTBX2);
   3421     case Intrinsic::arm_neon_vtbx3:
   3422       return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
   3423     case Intrinsic::arm_neon_vtbx4:
   3424       return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
   3425     }
   3426     break;
   3427   }
   3428 
   3429   case ARMISD::VTBL1: {
   3430     SDLoc dl(N);
   3431     EVT VT = N->getValueType(0);
   3432     SmallVector<SDValue, 6> Ops;
   3433 
   3434     Ops.push_back(N->getOperand(0));
   3435     Ops.push_back(N->getOperand(1));
   3436     Ops.push_back(getAL(CurDAG));                    // Predicate
   3437     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
   3438     return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
   3439   }
   3440   case ARMISD::VTBL2: {
   3441     SDLoc dl(N);
   3442     EVT VT = N->getValueType(0);
   3443 
   3444     // Form a REG_SEQUENCE to force register allocation.
   3445     SDValue V0 = N->getOperand(0);
   3446     SDValue V1 = N->getOperand(1);
   3447     SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
   3448 
   3449     SmallVector<SDValue, 6> Ops;
   3450     Ops.push_back(RegSeq);
   3451     Ops.push_back(N->getOperand(2));
   3452     Ops.push_back(getAL(CurDAG));                    // Predicate
   3453     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
   3454     return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
   3455   }
   3456 
   3457   case ISD::CONCAT_VECTORS:
   3458     return SelectConcatVector(N);
   3459 
   3460   case ARMISD::ATOMOR64_DAG:
   3461     return SelectAtomic64(N, ARM::ATOMOR6432);
   3462   case ARMISD::ATOMXOR64_DAG:
   3463     return SelectAtomic64(N, ARM::ATOMXOR6432);
   3464   case ARMISD::ATOMADD64_DAG:
   3465     return SelectAtomic64(N, ARM::ATOMADD6432);
   3466   case ARMISD::ATOMSUB64_DAG:
   3467     return SelectAtomic64(N, ARM::ATOMSUB6432);
   3468   case ARMISD::ATOMNAND64_DAG:
   3469     return SelectAtomic64(N, ARM::ATOMNAND6432);
   3470   case ARMISD::ATOMAND64_DAG:
   3471     return SelectAtomic64(N, ARM::ATOMAND6432);
   3472   case ARMISD::ATOMSWAP64_DAG:
   3473     return SelectAtomic64(N, ARM::ATOMSWAP6432);
   3474   case ARMISD::ATOMCMPXCHG64_DAG:
   3475     return SelectAtomic64(N, ARM::ATOMCMPXCHG6432);
   3476 
   3477   case ARMISD::ATOMMIN64_DAG:
   3478     return SelectAtomic64(N, ARM::ATOMMIN6432);
   3479   case ARMISD::ATOMUMIN64_DAG:
   3480     return SelectAtomic64(N, ARM::ATOMUMIN6432);
   3481   case ARMISD::ATOMMAX64_DAG:
   3482     return SelectAtomic64(N, ARM::ATOMMAX6432);
   3483   case ARMISD::ATOMUMAX64_DAG:
   3484     return SelectAtomic64(N, ARM::ATOMUMAX6432);
   3485   }
   3486 
   3487   return SelectCode(N);
   3488 }
   3489 
   3490 SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
   3491   std::vector<SDValue> AsmNodeOperands;
   3492   unsigned Flag, Kind;
   3493   bool Changed = false;
   3494   unsigned NumOps = N->getNumOperands();
   3495 
   3496   // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
   3497   // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
   3498   // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
   3499   // respectively. Since there is no constraint to explicitly specify a
   3500   // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
   3501   // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
   3502   // them into a GPRPair.
   3503 
   3504   SDLoc dl(N);
   3505   SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1) : SDValue(0,0);
   3506 
   3507   SmallVector<bool, 8> OpChanged;
   3508   // Glue node will be appended late.
   3509   for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
   3510     SDValue op = N->getOperand(i);
   3511     AsmNodeOperands.push_back(op);
   3512 
   3513     if (i < InlineAsm::Op_FirstOperand)
   3514       continue;
   3515 
   3516     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
   3517       Flag = C->getZExtValue();
   3518       Kind = InlineAsm::getKind(Flag);
   3519     }
   3520     else
   3521       continue;
   3522 
   3523     // Immediate operands to inline asm in the SelectionDAG are modeled with
   3524     // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
   3525     // the second is a constant with the value of the immediate. If we get here
   3526     // and we have a Kind_Imm, skip the next operand, and continue.
   3527     if (Kind == InlineAsm::Kind_Imm) {
   3528       SDValue op = N->getOperand(++i);
   3529       AsmNodeOperands.push_back(op);
   3530       continue;
   3531     }
   3532 
   3533     unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
   3534     if (NumRegs)
   3535       OpChanged.push_back(false);
   3536 
   3537     unsigned DefIdx = 0;
   3538     bool IsTiedToChangedOp = false;
   3539     // If it's a use that is tied with a previous def, it has no
   3540     // reg class constraint.
   3541     if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
   3542       IsTiedToChangedOp = OpChanged[DefIdx];
   3543 
   3544     if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
   3545         && Kind != InlineAsm::Kind_RegDefEarlyClobber)
   3546       continue;
   3547 
   3548     unsigned RC;
   3549     bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
   3550     if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
   3551         || NumRegs != 2)
   3552       continue;
   3553 
   3554     assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
   3555     SDValue V0 = N->getOperand(i+1);
   3556     SDValue V1 = N->getOperand(i+2);
   3557     unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
   3558     unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
   3559     SDValue PairedReg;
   3560     MachineRegisterInfo &MRI = MF->getRegInfo();
   3561 
   3562     if (Kind == InlineAsm::Kind_RegDef ||
   3563         Kind == InlineAsm::Kind_RegDefEarlyClobber) {
   3564       // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
   3565       // the original GPRs.
   3566 
   3567       unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
   3568       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
   3569       SDValue Chain = SDValue(N,0);
   3570 
   3571       SDNode *GU = N->getGluedUser();
   3572       SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
   3573                                                Chain.getValue(1));
   3574 
   3575       // Extract values from a GPRPair reg and copy to the original GPR reg.
   3576       SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
   3577                                                     RegCopy);
   3578       SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
   3579                                                     RegCopy);
   3580       SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
   3581                                         RegCopy.getValue(1));
   3582       SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
   3583 
   3584       // Update the original glue user.
   3585       std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
   3586       Ops.push_back(T1.getValue(1));
   3587       CurDAG->UpdateNodeOperands(GU, &Ops[0], Ops.size());
   3588       GU = T1.getNode();
   3589     }
   3590     else {
   3591       // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
   3592       // GPRPair and then pass the GPRPair to the inline asm.
   3593       SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
   3594 
   3595       // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
   3596       SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
   3597                                           Chain.getValue(1));
   3598       SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
   3599                                           T0.getValue(1));
   3600       SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
   3601 
   3602       // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
   3603       // i32 VRs of inline asm with it.
   3604       unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
   3605       PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
   3606       Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
   3607 
   3608       AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
   3609       Glue = Chain.getValue(1);
   3610     }
   3611 
   3612     Changed = true;
   3613 
   3614     if(PairedReg.getNode()) {
   3615       OpChanged[OpChanged.size() -1 ] = true;
   3616       Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
   3617       Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
   3618       // Replace the current flag.
   3619       AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
   3620           Flag, MVT::i32);
   3621       // Add the new register node and skip the original two GPRs.
   3622       AsmNodeOperands.push_back(PairedReg);
   3623       // Skip the next two GPRs.
   3624       i += 2;
   3625     }
   3626   }
   3627 
   3628   if (Glue.getNode())
   3629     AsmNodeOperands.push_back(Glue);
   3630   if (!Changed)
   3631     return NULL;
   3632 
   3633   SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
   3634       CurDAG->getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0],
   3635                         AsmNodeOperands.size());
   3636   New->setNodeId(-1);
   3637   return New.getNode();
   3638 }
   3639 
   3640 
   3641 bool ARMDAGToDAGISel::
   3642 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   3643                              std::vector<SDValue> &OutOps) {
   3644   assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
   3645   // Require the address to be in a register.  That is safe for all ARM
   3646   // variants and it is hard to do anything much smarter without knowing
   3647   // how the operand is used.
   3648   OutOps.push_back(Op);
   3649   return false;
   3650 }
   3651 
   3652 /// createARMISelDag - This pass converts a legalized DAG into a
   3653 /// ARM-specific DAG, ready for instruction scheduling.
   3654 ///
   3655 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
   3656                                      CodeGenOpt::Level OptLevel) {
   3657   return new ARMDAGToDAGISel(TM, OptLevel);
   3658 }
   3659