1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SplitKit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveRangeEdit.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/VirtRegMap.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetMachine.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "regalloc" 32 33 STATISTIC(NumFinished, "Number of splits finished"); 34 STATISTIC(NumSimple, "Number of splits that were simple"); 35 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 36 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 37 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 38 39 //===----------------------------------------------------------------------===// 40 // Split Analysis 41 //===----------------------------------------------------------------------===// 42 43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, 44 const LiveIntervals &lis, 45 const MachineLoopInfo &mli) 46 : MF(vrm.getMachineFunction()), 47 VRM(vrm), 48 LIS(lis), 49 Loops(mli), 50 TII(*MF.getTarget().getInstrInfo()), 51 CurLI(nullptr), 52 LastSplitPoint(MF.getNumBlockIDs()) {} 53 54 void SplitAnalysis::clear() { 55 UseSlots.clear(); 56 UseBlocks.clear(); 57 ThroughBlocks.clear(); 58 CurLI = nullptr; 59 DidRepairRange = false; 60 } 61 62 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 63 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 64 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 65 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 66 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 67 68 // Compute split points on the first call. The pair is independent of the 69 // current live interval. 70 if (!LSP.first.isValid()) { 71 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 72 if (FirstTerm == MBB->end()) 73 LSP.first = MBBEnd; 74 else 75 LSP.first = LIS.getInstructionIndex(FirstTerm); 76 77 // If there is a landing pad successor, also find the call instruction. 78 if (!LPad) 79 return LSP.first; 80 // There may not be a call instruction (?) in which case we ignore LPad. 81 LSP.second = LSP.first; 82 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 83 I != E;) { 84 --I; 85 if (I->isCall()) { 86 LSP.second = LIS.getInstructionIndex(I); 87 break; 88 } 89 } 90 } 91 92 // If CurLI is live into a landing pad successor, move the last split point 93 // back to the call that may throw. 94 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 95 return LSP.first; 96 97 // Find the value leaving MBB. 98 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 99 if (!VNI) 100 return LSP.first; 101 102 // If the value leaving MBB was defined after the call in MBB, it can't 103 // really be live-in to the landing pad. This can happen if the landing pad 104 // has a PHI, and this register is undef on the exceptional edge. 105 // <rdar://problem/10664933> 106 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 107 return LSP.first; 108 109 // Value is properly live-in to the landing pad. 110 // Only allow splits before the call. 111 return LSP.second; 112 } 113 114 MachineBasicBlock::iterator 115 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 116 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 117 if (LSP == LIS.getMBBEndIdx(MBB)) 118 return MBB->end(); 119 return LIS.getInstructionFromIndex(LSP); 120 } 121 122 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 123 void SplitAnalysis::analyzeUses() { 124 assert(UseSlots.empty() && "Call clear first"); 125 126 // First get all the defs from the interval values. This provides the correct 127 // slots for early clobbers. 128 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 129 E = CurLI->vni_end(); I != E; ++I) 130 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 131 UseSlots.push_back((*I)->def); 132 133 // Get use slots form the use-def chain. 134 const MachineRegisterInfo &MRI = MF.getRegInfo(); 135 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 136 if (!MO.isUndef()) 137 UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot()); 138 139 array_pod_sort(UseSlots.begin(), UseSlots.end()); 140 141 // Remove duplicates, keeping the smaller slot for each instruction. 142 // That is what we want for early clobbers. 143 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 144 SlotIndex::isSameInstr), 145 UseSlots.end()); 146 147 // Compute per-live block info. 148 if (!calcLiveBlockInfo()) { 149 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 150 // I am looking at you, RegisterCoalescer! 151 DidRepairRange = true; 152 ++NumRepairs; 153 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 154 const_cast<LiveIntervals&>(LIS) 155 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 156 UseBlocks.clear(); 157 ThroughBlocks.clear(); 158 bool fixed = calcLiveBlockInfo(); 159 (void)fixed; 160 assert(fixed && "Couldn't fix broken live interval"); 161 } 162 163 DEBUG(dbgs() << "Analyze counted " 164 << UseSlots.size() << " instrs in " 165 << UseBlocks.size() << " blocks, through " 166 << NumThroughBlocks << " blocks.\n"); 167 } 168 169 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 170 /// where CurLI is live. 171 bool SplitAnalysis::calcLiveBlockInfo() { 172 ThroughBlocks.resize(MF.getNumBlockIDs()); 173 NumThroughBlocks = NumGapBlocks = 0; 174 if (CurLI->empty()) 175 return true; 176 177 LiveInterval::const_iterator LVI = CurLI->begin(); 178 LiveInterval::const_iterator LVE = CurLI->end(); 179 180 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 181 UseI = UseSlots.begin(); 182 UseE = UseSlots.end(); 183 184 // Loop over basic blocks where CurLI is live. 185 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 186 for (;;) { 187 BlockInfo BI; 188 BI.MBB = MFI; 189 SlotIndex Start, Stop; 190 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 191 192 // If the block contains no uses, the range must be live through. At one 193 // point, RegisterCoalescer could create dangling ranges that ended 194 // mid-block. 195 if (UseI == UseE || *UseI >= Stop) { 196 ++NumThroughBlocks; 197 ThroughBlocks.set(BI.MBB->getNumber()); 198 // The range shouldn't end mid-block if there are no uses. This shouldn't 199 // happen. 200 if (LVI->end < Stop) 201 return false; 202 } else { 203 // This block has uses. Find the first and last uses in the block. 204 BI.FirstInstr = *UseI; 205 assert(BI.FirstInstr >= Start); 206 do ++UseI; 207 while (UseI != UseE && *UseI < Stop); 208 BI.LastInstr = UseI[-1]; 209 assert(BI.LastInstr < Stop); 210 211 // LVI is the first live segment overlapping MBB. 212 BI.LiveIn = LVI->start <= Start; 213 214 // When not live in, the first use should be a def. 215 if (!BI.LiveIn) { 216 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 217 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 218 BI.FirstDef = BI.FirstInstr; 219 } 220 221 // Look for gaps in the live range. 222 BI.LiveOut = true; 223 while (LVI->end < Stop) { 224 SlotIndex LastStop = LVI->end; 225 if (++LVI == LVE || LVI->start >= Stop) { 226 BI.LiveOut = false; 227 BI.LastInstr = LastStop; 228 break; 229 } 230 231 if (LastStop < LVI->start) { 232 // There is a gap in the live range. Create duplicate entries for the 233 // live-in snippet and the live-out snippet. 234 ++NumGapBlocks; 235 236 // Push the Live-in part. 237 BI.LiveOut = false; 238 UseBlocks.push_back(BI); 239 UseBlocks.back().LastInstr = LastStop; 240 241 // Set up BI for the live-out part. 242 BI.LiveIn = false; 243 BI.LiveOut = true; 244 BI.FirstInstr = BI.FirstDef = LVI->start; 245 } 246 247 // A Segment that starts in the middle of the block must be a def. 248 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 249 if (!BI.FirstDef) 250 BI.FirstDef = LVI->start; 251 } 252 253 UseBlocks.push_back(BI); 254 255 // LVI is now at LVE or LVI->end >= Stop. 256 if (LVI == LVE) 257 break; 258 } 259 260 // Live segment ends exactly at Stop. Move to the next segment. 261 if (LVI->end == Stop && ++LVI == LVE) 262 break; 263 264 // Pick the next basic block. 265 if (LVI->start < Stop) 266 ++MFI; 267 else 268 MFI = LIS.getMBBFromIndex(LVI->start); 269 } 270 271 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 272 return true; 273 } 274 275 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 276 if (cli->empty()) 277 return 0; 278 LiveInterval *li = const_cast<LiveInterval*>(cli); 279 LiveInterval::iterator LVI = li->begin(); 280 LiveInterval::iterator LVE = li->end(); 281 unsigned Count = 0; 282 283 // Loop over basic blocks where li is live. 284 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 285 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 286 for (;;) { 287 ++Count; 288 LVI = li->advanceTo(LVI, Stop); 289 if (LVI == LVE) 290 return Count; 291 do { 292 ++MFI; 293 Stop = LIS.getMBBEndIdx(MFI); 294 } while (Stop <= LVI->start); 295 } 296 } 297 298 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 299 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 300 const LiveInterval &Orig = LIS.getInterval(OrigReg); 301 assert(!Orig.empty() && "Splitting empty interval?"); 302 LiveInterval::const_iterator I = Orig.find(Idx); 303 304 // Range containing Idx should begin at Idx. 305 if (I != Orig.end() && I->start <= Idx) 306 return I->start == Idx; 307 308 // Range does not contain Idx, previous must end at Idx. 309 return I != Orig.begin() && (--I)->end == Idx; 310 } 311 312 void SplitAnalysis::analyze(const LiveInterval *li) { 313 clear(); 314 CurLI = li; 315 analyzeUses(); 316 } 317 318 319 //===----------------------------------------------------------------------===// 320 // Split Editor 321 //===----------------------------------------------------------------------===// 322 323 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 324 SplitEditor::SplitEditor(SplitAnalysis &sa, 325 LiveIntervals &lis, 326 VirtRegMap &vrm, 327 MachineDominatorTree &mdt, 328 MachineBlockFrequencyInfo &mbfi) 329 : SA(sa), LIS(lis), VRM(vrm), 330 MRI(vrm.getMachineFunction().getRegInfo()), 331 MDT(mdt), 332 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), 333 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 334 MBFI(mbfi), 335 Edit(nullptr), 336 OpenIdx(0), 337 SpillMode(SM_Partition), 338 RegAssign(Allocator) 339 {} 340 341 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 342 Edit = &LRE; 343 SpillMode = SM; 344 OpenIdx = 0; 345 RegAssign.clear(); 346 Values.clear(); 347 348 // Reset the LiveRangeCalc instances needed for this spill mode. 349 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 350 &LIS.getVNInfoAllocator()); 351 if (SpillMode) 352 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 353 &LIS.getVNInfoAllocator()); 354 355 // We don't need an AliasAnalysis since we will only be performing 356 // cheap-as-a-copy remats anyway. 357 Edit->anyRematerializable(nullptr); 358 } 359 360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 361 void SplitEditor::dump() const { 362 if (RegAssign.empty()) { 363 dbgs() << " empty\n"; 364 return; 365 } 366 367 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 368 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 369 dbgs() << '\n'; 370 } 371 #endif 372 373 VNInfo *SplitEditor::defValue(unsigned RegIdx, 374 const VNInfo *ParentVNI, 375 SlotIndex Idx) { 376 assert(ParentVNI && "Mapping NULL value"); 377 assert(Idx.isValid() && "Invalid SlotIndex"); 378 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 379 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 380 381 // Create a new value. 382 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 383 384 // Use insert for lookup, so we can add missing values with a second lookup. 385 std::pair<ValueMap::iterator, bool> InsP = 386 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 387 ValueForcePair(VNI, false))); 388 389 // This was the first time (RegIdx, ParentVNI) was mapped. 390 // Keep it as a simple def without any liveness. 391 if (InsP.second) 392 return VNI; 393 394 // If the previous value was a simple mapping, add liveness for it now. 395 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 396 SlotIndex Def = OldVNI->def; 397 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI)); 398 // No longer a simple mapping. Switch to a complex, non-forced mapping. 399 InsP.first->second = ValueForcePair(); 400 } 401 402 // This is a complex mapping, add liveness for VNI 403 SlotIndex Def = VNI->def; 404 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 405 406 return VNI; 407 } 408 409 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 410 assert(ParentVNI && "Mapping NULL value"); 411 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 412 VNInfo *VNI = VFP.getPointer(); 413 414 // ParentVNI was either unmapped or already complex mapped. Either way, just 415 // set the force bit. 416 if (!VNI) { 417 VFP.setInt(true); 418 return; 419 } 420 421 // This was previously a single mapping. Make sure the old def is represented 422 // by a trivial live range. 423 SlotIndex Def = VNI->def; 424 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 425 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 426 // Mark as complex mapped, forced. 427 VFP = ValueForcePair(nullptr, true); 428 } 429 430 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 431 VNInfo *ParentVNI, 432 SlotIndex UseIdx, 433 MachineBasicBlock &MBB, 434 MachineBasicBlock::iterator I) { 435 MachineInstr *CopyMI = nullptr; 436 SlotIndex Def; 437 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 438 439 // We may be trying to avoid interference that ends at a deleted instruction, 440 // so always begin RegIdx 0 early and all others late. 441 bool Late = RegIdx != 0; 442 443 // Attempt cheap-as-a-copy rematerialization. 444 LiveRangeEdit::Remat RM(ParentVNI); 445 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 446 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 447 ++NumRemats; 448 } else { 449 // Can't remat, just insert a copy from parent. 450 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 451 .addReg(Edit->getReg()); 452 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 453 .getRegSlot(); 454 ++NumCopies; 455 } 456 457 // Define the value in Reg. 458 return defValue(RegIdx, ParentVNI, Def); 459 } 460 461 /// Create a new virtual register and live interval. 462 unsigned SplitEditor::openIntv() { 463 // Create the complement as index 0. 464 if (Edit->empty()) 465 Edit->createEmptyInterval(); 466 467 // Create the open interval. 468 OpenIdx = Edit->size(); 469 Edit->createEmptyInterval(); 470 return OpenIdx; 471 } 472 473 void SplitEditor::selectIntv(unsigned Idx) { 474 assert(Idx != 0 && "Cannot select the complement interval"); 475 assert(Idx < Edit->size() && "Can only select previously opened interval"); 476 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 477 OpenIdx = Idx; 478 } 479 480 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 481 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 482 DEBUG(dbgs() << " enterIntvBefore " << Idx); 483 Idx = Idx.getBaseIndex(); 484 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 485 if (!ParentVNI) { 486 DEBUG(dbgs() << ": not live\n"); 487 return Idx; 488 } 489 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 490 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 491 assert(MI && "enterIntvBefore called with invalid index"); 492 493 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 494 return VNI->def; 495 } 496 497 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 498 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 499 DEBUG(dbgs() << " enterIntvAfter " << Idx); 500 Idx = Idx.getBoundaryIndex(); 501 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 502 if (!ParentVNI) { 503 DEBUG(dbgs() << ": not live\n"); 504 return Idx; 505 } 506 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 507 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 508 assert(MI && "enterIntvAfter called with invalid index"); 509 510 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 511 std::next(MachineBasicBlock::iterator(MI))); 512 return VNI->def; 513 } 514 515 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 516 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 517 SlotIndex End = LIS.getMBBEndIdx(&MBB); 518 SlotIndex Last = End.getPrevSlot(); 519 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 520 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 521 if (!ParentVNI) { 522 DEBUG(dbgs() << ": not live\n"); 523 return End; 524 } 525 DEBUG(dbgs() << ": valno " << ParentVNI->id); 526 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 527 SA.getLastSplitPointIter(&MBB)); 528 RegAssign.insert(VNI->def, End, OpenIdx); 529 DEBUG(dump()); 530 return VNI->def; 531 } 532 533 /// useIntv - indicate that all instructions in MBB should use OpenLI. 534 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 535 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 536 } 537 538 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 539 assert(OpenIdx && "openIntv not called before useIntv"); 540 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 541 RegAssign.insert(Start, End, OpenIdx); 542 DEBUG(dump()); 543 } 544 545 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 546 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 547 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 548 549 // The interval must be live beyond the instruction at Idx. 550 SlotIndex Boundary = Idx.getBoundaryIndex(); 551 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 552 if (!ParentVNI) { 553 DEBUG(dbgs() << ": not live\n"); 554 return Boundary.getNextSlot(); 555 } 556 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 557 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 558 assert(MI && "No instruction at index"); 559 560 // In spill mode, make live ranges as short as possible by inserting the copy 561 // before MI. This is only possible if that instruction doesn't redefine the 562 // value. The inserted COPY is not a kill, and we don't need to recompute 563 // the source live range. The spiller also won't try to hoist this copy. 564 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 565 MI->readsVirtualRegister(Edit->getReg())) { 566 forceRecompute(0, ParentVNI); 567 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 568 return Idx; 569 } 570 571 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 572 std::next(MachineBasicBlock::iterator(MI))); 573 return VNI->def; 574 } 575 576 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 577 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 578 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 579 580 // The interval must be live into the instruction at Idx. 581 Idx = Idx.getBaseIndex(); 582 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 583 if (!ParentVNI) { 584 DEBUG(dbgs() << ": not live\n"); 585 return Idx.getNextSlot(); 586 } 587 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 588 589 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 590 assert(MI && "No instruction at index"); 591 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 592 return VNI->def; 593 } 594 595 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 596 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 597 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 598 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 599 600 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 601 if (!ParentVNI) { 602 DEBUG(dbgs() << ": not live\n"); 603 return Start; 604 } 605 606 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 607 MBB.SkipPHIsAndLabels(MBB.begin())); 608 RegAssign.insert(Start, VNI->def, OpenIdx); 609 DEBUG(dump()); 610 return VNI->def; 611 } 612 613 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 614 assert(OpenIdx && "openIntv not called before overlapIntv"); 615 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 616 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 617 "Parent changes value in extended range"); 618 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 619 "Range cannot span basic blocks"); 620 621 // The complement interval will be extended as needed by LRCalc.extend(). 622 if (ParentVNI) 623 forceRecompute(0, ParentVNI); 624 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 625 RegAssign.insert(Start, End, OpenIdx); 626 DEBUG(dump()); 627 } 628 629 //===----------------------------------------------------------------------===// 630 // Spill modes 631 //===----------------------------------------------------------------------===// 632 633 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 634 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 635 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 636 RegAssignMap::iterator AssignI; 637 AssignI.setMap(RegAssign); 638 639 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 640 VNInfo *VNI = Copies[i]; 641 SlotIndex Def = VNI->def; 642 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 643 assert(MI && "No instruction for back-copy"); 644 645 MachineBasicBlock *MBB = MI->getParent(); 646 MachineBasicBlock::iterator MBBI(MI); 647 bool AtBegin; 648 do AtBegin = MBBI == MBB->begin(); 649 while (!AtBegin && (--MBBI)->isDebugValue()); 650 651 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 652 LI->removeValNo(VNI); 653 LIS.RemoveMachineInstrFromMaps(MI); 654 MI->eraseFromParent(); 655 656 // Adjust RegAssign if a register assignment is killed at VNI->def. We 657 // want to avoid calculating the live range of the source register if 658 // possible. 659 AssignI.find(Def.getPrevSlot()); 660 if (!AssignI.valid() || AssignI.start() >= Def) 661 continue; 662 // If MI doesn't kill the assigned register, just leave it. 663 if (AssignI.stop() != Def) 664 continue; 665 unsigned RegIdx = AssignI.value(); 666 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 667 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 668 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 669 } else { 670 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 671 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 672 AssignI.setStop(Kill); 673 } 674 } 675 } 676 677 MachineBasicBlock* 678 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 679 MachineBasicBlock *DefMBB) { 680 if (MBB == DefMBB) 681 return MBB; 682 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 683 684 const MachineLoopInfo &Loops = SA.Loops; 685 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 686 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 687 688 // Best candidate so far. 689 MachineBasicBlock *BestMBB = MBB; 690 unsigned BestDepth = UINT_MAX; 691 692 for (;;) { 693 const MachineLoop *Loop = Loops.getLoopFor(MBB); 694 695 // MBB isn't in a loop, it doesn't get any better. All dominators have a 696 // higher frequency by definition. 697 if (!Loop) { 698 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 699 << MBB->getNumber() << " at depth 0\n"); 700 return MBB; 701 } 702 703 // We'll never be able to exit the DefLoop. 704 if (Loop == DefLoop) { 705 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 706 << MBB->getNumber() << " in the same loop\n"); 707 return MBB; 708 } 709 710 // Least busy dominator seen so far. 711 unsigned Depth = Loop->getLoopDepth(); 712 if (Depth < BestDepth) { 713 BestMBB = MBB; 714 BestDepth = Depth; 715 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 716 << MBB->getNumber() << " at depth " << Depth << '\n'); 717 } 718 719 // Leave loop by going to the immediate dominator of the loop header. 720 // This is a bigger stride than simply walking up the dominator tree. 721 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 722 723 // Too far up the dominator tree? 724 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 725 return BestMBB; 726 727 MBB = IDom->getBlock(); 728 } 729 } 730 731 void SplitEditor::hoistCopiesForSize() { 732 // Get the complement interval, always RegIdx 0. 733 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 734 LiveInterval *Parent = &Edit->getParent(); 735 736 // Track the nearest common dominator for all back-copies for each ParentVNI, 737 // indexed by ParentVNI->id. 738 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 739 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 740 741 // Find the nearest common dominator for parent values with multiple 742 // back-copies. If a single back-copy dominates, put it in DomPair.second. 743 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 744 VI != VE; ++VI) { 745 VNInfo *VNI = *VI; 746 if (VNI->isUnused()) 747 continue; 748 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 749 assert(ParentVNI && "Parent not live at complement def"); 750 751 // Don't hoist remats. The complement is probably going to disappear 752 // completely anyway. 753 if (Edit->didRematerialize(ParentVNI)) 754 continue; 755 756 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 757 DomPair &Dom = NearestDom[ParentVNI->id]; 758 759 // Keep directly defined parent values. This is either a PHI or an 760 // instruction in the complement range. All other copies of ParentVNI 761 // should be eliminated. 762 if (VNI->def == ParentVNI->def) { 763 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 764 Dom = DomPair(ValMBB, VNI->def); 765 continue; 766 } 767 // Skip the singly mapped values. There is nothing to gain from hoisting a 768 // single back-copy. 769 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 770 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 771 continue; 772 } 773 774 if (!Dom.first) { 775 // First time we see ParentVNI. VNI dominates itself. 776 Dom = DomPair(ValMBB, VNI->def); 777 } else if (Dom.first == ValMBB) { 778 // Two defs in the same block. Pick the earlier def. 779 if (!Dom.second.isValid() || VNI->def < Dom.second) 780 Dom.second = VNI->def; 781 } else { 782 // Different basic blocks. Check if one dominates. 783 MachineBasicBlock *Near = 784 MDT.findNearestCommonDominator(Dom.first, ValMBB); 785 if (Near == ValMBB) 786 // Def ValMBB dominates. 787 Dom = DomPair(ValMBB, VNI->def); 788 else if (Near != Dom.first) 789 // None dominate. Hoist to common dominator, need new def. 790 Dom = DomPair(Near, SlotIndex()); 791 } 792 793 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 794 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 795 << " hoist to BB#" << Dom.first->getNumber() << ' ' 796 << Dom.second << '\n'); 797 } 798 799 // Insert the hoisted copies. 800 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 801 DomPair &Dom = NearestDom[i]; 802 if (!Dom.first || Dom.second.isValid()) 803 continue; 804 // This value needs a hoisted copy inserted at the end of Dom.first. 805 VNInfo *ParentVNI = Parent->getValNumInfo(i); 806 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 807 // Get a less loopy dominator than Dom.first. 808 Dom.first = findShallowDominator(Dom.first, DefMBB); 809 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 810 Dom.second = 811 defFromParent(0, ParentVNI, Last, *Dom.first, 812 SA.getLastSplitPointIter(Dom.first))->def; 813 } 814 815 // Remove redundant back-copies that are now known to be dominated by another 816 // def with the same value. 817 SmallVector<VNInfo*, 8> BackCopies; 818 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 819 VI != VE; ++VI) { 820 VNInfo *VNI = *VI; 821 if (VNI->isUnused()) 822 continue; 823 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 824 const DomPair &Dom = NearestDom[ParentVNI->id]; 825 if (!Dom.first || Dom.second == VNI->def) 826 continue; 827 BackCopies.push_back(VNI); 828 forceRecompute(0, ParentVNI); 829 } 830 removeBackCopies(BackCopies); 831 } 832 833 834 /// transferValues - Transfer all possible values to the new live ranges. 835 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 836 bool SplitEditor::transferValues() { 837 bool Skipped = false; 838 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 839 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 840 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 841 DEBUG(dbgs() << " blit " << *ParentI << ':'); 842 VNInfo *ParentVNI = ParentI->valno; 843 // RegAssign has holes where RegIdx 0 should be used. 844 SlotIndex Start = ParentI->start; 845 AssignI.advanceTo(Start); 846 do { 847 unsigned RegIdx; 848 SlotIndex End = ParentI->end; 849 if (!AssignI.valid()) { 850 RegIdx = 0; 851 } else if (AssignI.start() <= Start) { 852 RegIdx = AssignI.value(); 853 if (AssignI.stop() < End) { 854 End = AssignI.stop(); 855 ++AssignI; 856 } 857 } else { 858 RegIdx = 0; 859 End = std::min(End, AssignI.start()); 860 } 861 862 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 863 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 864 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 865 866 // Check for a simply defined value that can be blitted directly. 867 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 868 if (VNInfo *VNI = VFP.getPointer()) { 869 DEBUG(dbgs() << ':' << VNI->id); 870 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 871 Start = End; 872 continue; 873 } 874 875 // Skip values with forced recomputation. 876 if (VFP.getInt()) { 877 DEBUG(dbgs() << "(recalc)"); 878 Skipped = true; 879 Start = End; 880 continue; 881 } 882 883 LiveRangeCalc &LRC = getLRCalc(RegIdx); 884 885 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 886 // so the live range is accurate. Add live-in blocks in [Start;End) to the 887 // LiveInBlocks. 888 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 889 SlotIndex BlockStart, BlockEnd; 890 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 891 892 // The first block may be live-in, or it may have its own def. 893 if (Start != BlockStart) { 894 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 895 assert(VNI && "Missing def for complex mapped value"); 896 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 897 // MBB has its own def. Is it also live-out? 898 if (BlockEnd <= End) 899 LRC.setLiveOutValue(MBB, VNI); 900 901 // Skip to the next block for live-in. 902 ++MBB; 903 BlockStart = BlockEnd; 904 } 905 906 // Handle the live-in blocks covered by [Start;End). 907 assert(Start <= BlockStart && "Expected live-in block"); 908 while (BlockStart < End) { 909 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 910 BlockEnd = LIS.getMBBEndIdx(MBB); 911 if (BlockStart == ParentVNI->def) { 912 // This block has the def of a parent PHI, so it isn't live-in. 913 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 914 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 915 assert(VNI && "Missing def for complex mapped parent PHI"); 916 if (End >= BlockEnd) 917 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 918 } else { 919 // This block needs a live-in value. The last block covered may not 920 // be live-out. 921 if (End < BlockEnd) 922 LRC.addLiveInBlock(LR, MDT[MBB], End); 923 else { 924 // Live-through, and we don't know the value. 925 LRC.addLiveInBlock(LR, MDT[MBB]); 926 LRC.setLiveOutValue(MBB, nullptr); 927 } 928 } 929 BlockStart = BlockEnd; 930 ++MBB; 931 } 932 Start = End; 933 } while (Start != ParentI->end); 934 DEBUG(dbgs() << '\n'); 935 } 936 937 LRCalc[0].calculateValues(); 938 if (SpillMode) 939 LRCalc[1].calculateValues(); 940 941 return Skipped; 942 } 943 944 void SplitEditor::extendPHIKillRanges() { 945 // Extend live ranges to be live-out for successor PHI values. 946 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 947 E = Edit->getParent().vni_end(); I != E; ++I) { 948 const VNInfo *PHIVNI = *I; 949 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 950 continue; 951 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 952 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 953 LiveRangeCalc &LRC = getLRCalc(RegIdx); 954 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 955 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 956 PE = MBB->pred_end(); PI != PE; ++PI) { 957 SlotIndex End = LIS.getMBBEndIdx(*PI); 958 SlotIndex LastUse = End.getPrevSlot(); 959 // The predecessor may not have a live-out value. That is OK, like an 960 // undef PHI operand. 961 if (Edit->getParent().liveAt(LastUse)) { 962 assert(RegAssign.lookup(LastUse) == RegIdx && 963 "Different register assignment in phi predecessor"); 964 LRC.extend(LR, End); 965 } 966 } 967 } 968 } 969 970 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 971 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 972 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 973 RE = MRI.reg_end(); RI != RE;) { 974 MachineOperand &MO = *RI; 975 MachineInstr *MI = MO.getParent(); 976 ++RI; 977 // LiveDebugVariables should have handled all DBG_VALUE instructions. 978 if (MI->isDebugValue()) { 979 DEBUG(dbgs() << "Zapping " << *MI); 980 MO.setReg(0); 981 continue; 982 } 983 984 // <undef> operands don't really read the register, so it doesn't matter 985 // which register we choose. When the use operand is tied to a def, we must 986 // use the same register as the def, so just do that always. 987 SlotIndex Idx = LIS.getInstructionIndex(MI); 988 if (MO.isDef() || MO.isUndef()) 989 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 990 991 // Rewrite to the mapped register at Idx. 992 unsigned RegIdx = RegAssign.lookup(Idx); 993 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 994 MO.setReg(LI->reg); 995 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 996 << Idx << ':' << RegIdx << '\t' << *MI); 997 998 // Extend liveness to Idx if the instruction reads reg. 999 if (!ExtendRanges || MO.isUndef()) 1000 continue; 1001 1002 // Skip instructions that don't read Reg. 1003 if (MO.isDef()) { 1004 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1005 continue; 1006 // We may wan't to extend a live range for a partial redef, or for a use 1007 // tied to an early clobber. 1008 Idx = Idx.getPrevSlot(); 1009 if (!Edit->getParent().liveAt(Idx)) 1010 continue; 1011 } else 1012 Idx = Idx.getRegSlot(true); 1013 1014 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot()); 1015 } 1016 } 1017 1018 void SplitEditor::deleteRematVictims() { 1019 SmallVector<MachineInstr*, 8> Dead; 1020 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 1021 LiveInterval *LI = &LIS.getInterval(*I); 1022 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 1023 LII != LIE; ++LII) { 1024 // Dead defs end at the dead slot. 1025 if (LII->end != LII->valno->def.getDeadSlot()) 1026 continue; 1027 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 1028 assert(MI && "Missing instruction for dead def"); 1029 MI->addRegisterDead(LI->reg, &TRI); 1030 1031 if (!MI->allDefsAreDead()) 1032 continue; 1033 1034 DEBUG(dbgs() << "All defs dead: " << *MI); 1035 Dead.push_back(MI); 1036 } 1037 } 1038 1039 if (Dead.empty()) 1040 return; 1041 1042 Edit->eliminateDeadDefs(Dead); 1043 } 1044 1045 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1046 ++NumFinished; 1047 1048 // At this point, the live intervals in Edit contain VNInfos corresponding to 1049 // the inserted copies. 1050 1051 // Add the original defs from the parent interval. 1052 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 1053 E = Edit->getParent().vni_end(); I != E; ++I) { 1054 const VNInfo *ParentVNI = *I; 1055 if (ParentVNI->isUnused()) 1056 continue; 1057 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1058 defValue(RegIdx, ParentVNI, ParentVNI->def); 1059 1060 // Force rematted values to be recomputed everywhere. 1061 // The new live ranges may be truncated. 1062 if (Edit->didRematerialize(ParentVNI)) 1063 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1064 forceRecompute(i, ParentVNI); 1065 } 1066 1067 // Hoist back-copies to the complement interval when in spill mode. 1068 switch (SpillMode) { 1069 case SM_Partition: 1070 // Leave all back-copies as is. 1071 break; 1072 case SM_Size: 1073 hoistCopiesForSize(); 1074 break; 1075 case SM_Speed: 1076 llvm_unreachable("Spill mode 'speed' not implemented yet"); 1077 } 1078 1079 // Transfer the simply mapped values, check if any are skipped. 1080 bool Skipped = transferValues(); 1081 if (Skipped) 1082 extendPHIKillRanges(); 1083 else 1084 ++NumSimple; 1085 1086 // Rewrite virtual registers, possibly extending ranges. 1087 rewriteAssigned(Skipped); 1088 1089 // Delete defs that were rematted everywhere. 1090 if (Skipped) 1091 deleteRematVictims(); 1092 1093 // Get rid of unused values and set phi-kill flags. 1094 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) { 1095 LiveInterval &LI = LIS.getInterval(*I); 1096 LI.RenumberValues(); 1097 } 1098 1099 // Provide a reverse mapping from original indices to Edit ranges. 1100 if (LRMap) { 1101 LRMap->clear(); 1102 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1103 LRMap->push_back(i); 1104 } 1105 1106 // Now check if any registers were separated into multiple components. 1107 ConnectedVNInfoEqClasses ConEQ(LIS); 1108 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1109 // Don't use iterators, they are invalidated by create() below. 1110 LiveInterval *li = &LIS.getInterval(Edit->get(i)); 1111 unsigned NumComp = ConEQ.Classify(li); 1112 if (NumComp <= 1) 1113 continue; 1114 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1115 SmallVector<LiveInterval*, 8> dups; 1116 dups.push_back(li); 1117 for (unsigned j = 1; j != NumComp; ++j) 1118 dups.push_back(&Edit->createEmptyInterval()); 1119 ConEQ.Distribute(&dups[0], MRI); 1120 // The new intervals all map back to i. 1121 if (LRMap) 1122 LRMap->resize(Edit->size(), i); 1123 } 1124 1125 // Calculate spill weight and allocation hints for new intervals. 1126 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 1127 1128 assert(!LRMap || LRMap->size() == Edit->size()); 1129 } 1130 1131 1132 //===----------------------------------------------------------------------===// 1133 // Single Block Splitting 1134 //===----------------------------------------------------------------------===// 1135 1136 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1137 bool SingleInstrs) const { 1138 // Always split for multiple instructions. 1139 if (!BI.isOneInstr()) 1140 return true; 1141 // Don't split for single instructions unless explicitly requested. 1142 if (!SingleInstrs) 1143 return false; 1144 // Splitting a live-through range always makes progress. 1145 if (BI.LiveIn && BI.LiveOut) 1146 return true; 1147 // No point in isolating a copy. It has no register class constraints. 1148 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1149 return false; 1150 // Finally, don't isolate an end point that was created by earlier splits. 1151 return isOriginalEndpoint(BI.FirstInstr); 1152 } 1153 1154 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1155 openIntv(); 1156 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 1157 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1158 LastSplitPoint)); 1159 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1160 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1161 } else { 1162 // The last use is after the last valid split point. 1163 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1164 useIntv(SegStart, SegStop); 1165 overlapIntv(SegStop, BI.LastInstr); 1166 } 1167 } 1168 1169 1170 //===----------------------------------------------------------------------===// 1171 // Global Live Range Splitting Support 1172 //===----------------------------------------------------------------------===// 1173 1174 // These methods support a method of global live range splitting that uses a 1175 // global algorithm to decide intervals for CFG edges. They will insert split 1176 // points and color intervals in basic blocks while avoiding interference. 1177 // 1178 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1179 // are on the stack. 1180 1181 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1182 unsigned IntvIn, SlotIndex LeaveBefore, 1183 unsigned IntvOut, SlotIndex EnterAfter){ 1184 SlotIndex Start, Stop; 1185 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1186 1187 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 1188 << ") intf " << LeaveBefore << '-' << EnterAfter 1189 << ", live-through " << IntvIn << " -> " << IntvOut); 1190 1191 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1192 1193 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1194 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1195 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1196 1197 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1198 1199 if (!IntvOut) { 1200 DEBUG(dbgs() << ", spill on entry.\n"); 1201 // 1202 // <<<<<<<<< Possible LeaveBefore interference. 1203 // |-----------| Live through. 1204 // -____________ Spill on entry. 1205 // 1206 selectIntv(IntvIn); 1207 SlotIndex Idx = leaveIntvAtTop(*MBB); 1208 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1209 (void)Idx; 1210 return; 1211 } 1212 1213 if (!IntvIn) { 1214 DEBUG(dbgs() << ", reload on exit.\n"); 1215 // 1216 // >>>>>>> Possible EnterAfter interference. 1217 // |-----------| Live through. 1218 // ___________-- Reload on exit. 1219 // 1220 selectIntv(IntvOut); 1221 SlotIndex Idx = enterIntvAtEnd(*MBB); 1222 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1223 (void)Idx; 1224 return; 1225 } 1226 1227 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1228 DEBUG(dbgs() << ", straight through.\n"); 1229 // 1230 // |-----------| Live through. 1231 // ------------- Straight through, same intv, no interference. 1232 // 1233 selectIntv(IntvOut); 1234 useIntv(Start, Stop); 1235 return; 1236 } 1237 1238 // We cannot legally insert splits after LSP. 1239 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1240 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1241 1242 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1243 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1244 DEBUG(dbgs() << ", switch avoiding interference.\n"); 1245 // 1246 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1247 // |-----------| Live through. 1248 // ------======= Switch intervals between interference. 1249 // 1250 selectIntv(IntvOut); 1251 SlotIndex Idx; 1252 if (LeaveBefore && LeaveBefore < LSP) { 1253 Idx = enterIntvBefore(LeaveBefore); 1254 useIntv(Idx, Stop); 1255 } else { 1256 Idx = enterIntvAtEnd(*MBB); 1257 } 1258 selectIntv(IntvIn); 1259 useIntv(Start, Idx); 1260 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1261 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1262 return; 1263 } 1264 1265 DEBUG(dbgs() << ", create local intv for interference.\n"); 1266 // 1267 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1268 // |-----------| Live through. 1269 // ==---------== Switch intervals before/after interference. 1270 // 1271 assert(LeaveBefore <= EnterAfter && "Missed case"); 1272 1273 selectIntv(IntvOut); 1274 SlotIndex Idx = enterIntvAfter(EnterAfter); 1275 useIntv(Idx, Stop); 1276 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1277 1278 selectIntv(IntvIn); 1279 Idx = leaveIntvBefore(LeaveBefore); 1280 useIntv(Start, Idx); 1281 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1282 } 1283 1284 1285 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1286 unsigned IntvIn, SlotIndex LeaveBefore) { 1287 SlotIndex Start, Stop; 1288 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1289 1290 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1291 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1292 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 1293 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1294 1295 assert(IntvIn && "Must have register in"); 1296 assert(BI.LiveIn && "Must be live-in"); 1297 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1298 1299 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1300 DEBUG(dbgs() << " before interference.\n"); 1301 // 1302 // <<< Interference after kill. 1303 // |---o---x | Killed in block. 1304 // ========= Use IntvIn everywhere. 1305 // 1306 selectIntv(IntvIn); 1307 useIntv(Start, BI.LastInstr); 1308 return; 1309 } 1310 1311 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1312 1313 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1314 // 1315 // <<< Possible interference after last use. 1316 // |---o---o---| Live-out on stack. 1317 // =========____ Leave IntvIn after last use. 1318 // 1319 // < Interference after last use. 1320 // |---o---o--o| Live-out on stack, late last use. 1321 // ============ Copy to stack after LSP, overlap IntvIn. 1322 // \_____ Stack interval is live-out. 1323 // 1324 if (BI.LastInstr < LSP) { 1325 DEBUG(dbgs() << ", spill after last use before interference.\n"); 1326 selectIntv(IntvIn); 1327 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1328 useIntv(Start, Idx); 1329 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1330 } else { 1331 DEBUG(dbgs() << ", spill before last split point.\n"); 1332 selectIntv(IntvIn); 1333 SlotIndex Idx = leaveIntvBefore(LSP); 1334 overlapIntv(Idx, BI.LastInstr); 1335 useIntv(Start, Idx); 1336 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1337 } 1338 return; 1339 } 1340 1341 // The interference is overlapping somewhere we wanted to use IntvIn. That 1342 // means we need to create a local interval that can be allocated a 1343 // different register. 1344 unsigned LocalIntv = openIntv(); 1345 (void)LocalIntv; 1346 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1347 1348 if (!BI.LiveOut || BI.LastInstr < LSP) { 1349 // 1350 // <<<<<<< Interference overlapping uses. 1351 // |---o---o---| Live-out on stack. 1352 // =====----____ Leave IntvIn before interference, then spill. 1353 // 1354 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1355 SlotIndex From = enterIntvBefore(LeaveBefore); 1356 useIntv(From, To); 1357 selectIntv(IntvIn); 1358 useIntv(Start, From); 1359 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1360 return; 1361 } 1362 1363 // <<<<<<< Interference overlapping uses. 1364 // |---o---o--o| Live-out on stack, late last use. 1365 // =====------- Copy to stack before LSP, overlap LocalIntv. 1366 // \_____ Stack interval is live-out. 1367 // 1368 SlotIndex To = leaveIntvBefore(LSP); 1369 overlapIntv(To, BI.LastInstr); 1370 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1371 useIntv(From, To); 1372 selectIntv(IntvIn); 1373 useIntv(Start, From); 1374 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1375 } 1376 1377 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1378 unsigned IntvOut, SlotIndex EnterAfter) { 1379 SlotIndex Start, Stop; 1380 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1381 1382 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 1383 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 1384 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 1385 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1386 1387 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 1388 1389 assert(IntvOut && "Must have register out"); 1390 assert(BI.LiveOut && "Must be live-out"); 1391 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1392 1393 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1394 DEBUG(dbgs() << " after interference.\n"); 1395 // 1396 // >>>> Interference before def. 1397 // | o---o---| Defined in block. 1398 // ========= Use IntvOut everywhere. 1399 // 1400 selectIntv(IntvOut); 1401 useIntv(BI.FirstInstr, Stop); 1402 return; 1403 } 1404 1405 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1406 DEBUG(dbgs() << ", reload after interference.\n"); 1407 // 1408 // >>>> Interference before def. 1409 // |---o---o---| Live-through, stack-in. 1410 // ____========= Enter IntvOut before first use. 1411 // 1412 selectIntv(IntvOut); 1413 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1414 useIntv(Idx, Stop); 1415 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1416 return; 1417 } 1418 1419 // The interference is overlapping somewhere we wanted to use IntvOut. That 1420 // means we need to create a local interval that can be allocated a 1421 // different register. 1422 DEBUG(dbgs() << ", interference overlaps uses.\n"); 1423 // 1424 // >>>>>>> Interference overlapping uses. 1425 // |---o---o---| Live-through, stack-in. 1426 // ____---====== Create local interval for interference range. 1427 // 1428 selectIntv(IntvOut); 1429 SlotIndex Idx = enterIntvAfter(EnterAfter); 1430 useIntv(Idx, Stop); 1431 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1432 1433 openIntv(); 1434 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1435 useIntv(From, Idx); 1436 } 1437