Home | History | Annotate | Download | only in CodeGen
      1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the SplitAnalysis class as well as mutator functions for
     11 // live range splitting.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "SplitKit.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     18 #include "llvm/CodeGen/LiveRangeEdit.h"
     19 #include "llvm/CodeGen/MachineDominators.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineLoopInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/VirtRegMap.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 #include "llvm/Target/TargetInstrInfo.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 
     29 using namespace llvm;
     30 
     31 #define DEBUG_TYPE "regalloc"
     32 
     33 STATISTIC(NumFinished, "Number of splits finished");
     34 STATISTIC(NumSimple,   "Number of splits that were simple");
     35 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
     36 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
     37 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                                 Split Analysis
     41 //===----------------------------------------------------------------------===//
     42 
     43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
     44                              const LiveIntervals &lis,
     45                              const MachineLoopInfo &mli)
     46   : MF(vrm.getMachineFunction()),
     47     VRM(vrm),
     48     LIS(lis),
     49     Loops(mli),
     50     TII(*MF.getTarget().getInstrInfo()),
     51     CurLI(nullptr),
     52     LastSplitPoint(MF.getNumBlockIDs()) {}
     53 
     54 void SplitAnalysis::clear() {
     55   UseSlots.clear();
     56   UseBlocks.clear();
     57   ThroughBlocks.clear();
     58   CurLI = nullptr;
     59   DidRepairRange = false;
     60 }
     61 
     62 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
     63   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
     64   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
     65   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
     66   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
     67 
     68   // Compute split points on the first call. The pair is independent of the
     69   // current live interval.
     70   if (!LSP.first.isValid()) {
     71     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
     72     if (FirstTerm == MBB->end())
     73       LSP.first = MBBEnd;
     74     else
     75       LSP.first = LIS.getInstructionIndex(FirstTerm);
     76 
     77     // If there is a landing pad successor, also find the call instruction.
     78     if (!LPad)
     79       return LSP.first;
     80     // There may not be a call instruction (?) in which case we ignore LPad.
     81     LSP.second = LSP.first;
     82     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
     83          I != E;) {
     84       --I;
     85       if (I->isCall()) {
     86         LSP.second = LIS.getInstructionIndex(I);
     87         break;
     88       }
     89     }
     90   }
     91 
     92   // If CurLI is live into a landing pad successor, move the last split point
     93   // back to the call that may throw.
     94   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
     95     return LSP.first;
     96 
     97   // Find the value leaving MBB.
     98   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
     99   if (!VNI)
    100     return LSP.first;
    101 
    102   // If the value leaving MBB was defined after the call in MBB, it can't
    103   // really be live-in to the landing pad.  This can happen if the landing pad
    104   // has a PHI, and this register is undef on the exceptional edge.
    105   // <rdar://problem/10664933>
    106   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
    107     return LSP.first;
    108 
    109   // Value is properly live-in to the landing pad.
    110   // Only allow splits before the call.
    111   return LSP.second;
    112 }
    113 
    114 MachineBasicBlock::iterator
    115 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
    116   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
    117   if (LSP == LIS.getMBBEndIdx(MBB))
    118     return MBB->end();
    119   return LIS.getInstructionFromIndex(LSP);
    120 }
    121 
    122 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
    123 void SplitAnalysis::analyzeUses() {
    124   assert(UseSlots.empty() && "Call clear first");
    125 
    126   // First get all the defs from the interval values. This provides the correct
    127   // slots for early clobbers.
    128   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
    129        E = CurLI->vni_end(); I != E; ++I)
    130     if (!(*I)->isPHIDef() && !(*I)->isUnused())
    131       UseSlots.push_back((*I)->def);
    132 
    133   // Get use slots form the use-def chain.
    134   const MachineRegisterInfo &MRI = MF.getRegInfo();
    135   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
    136     if (!MO.isUndef())
    137       UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
    138 
    139   array_pod_sort(UseSlots.begin(), UseSlots.end());
    140 
    141   // Remove duplicates, keeping the smaller slot for each instruction.
    142   // That is what we want for early clobbers.
    143   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
    144                              SlotIndex::isSameInstr),
    145                  UseSlots.end());
    146 
    147   // Compute per-live block info.
    148   if (!calcLiveBlockInfo()) {
    149     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
    150     // I am looking at you, RegisterCoalescer!
    151     DidRepairRange = true;
    152     ++NumRepairs;
    153     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
    154     const_cast<LiveIntervals&>(LIS)
    155       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
    156     UseBlocks.clear();
    157     ThroughBlocks.clear();
    158     bool fixed = calcLiveBlockInfo();
    159     (void)fixed;
    160     assert(fixed && "Couldn't fix broken live interval");
    161   }
    162 
    163   DEBUG(dbgs() << "Analyze counted "
    164                << UseSlots.size() << " instrs in "
    165                << UseBlocks.size() << " blocks, through "
    166                << NumThroughBlocks << " blocks.\n");
    167 }
    168 
    169 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
    170 /// where CurLI is live.
    171 bool SplitAnalysis::calcLiveBlockInfo() {
    172   ThroughBlocks.resize(MF.getNumBlockIDs());
    173   NumThroughBlocks = NumGapBlocks = 0;
    174   if (CurLI->empty())
    175     return true;
    176 
    177   LiveInterval::const_iterator LVI = CurLI->begin();
    178   LiveInterval::const_iterator LVE = CurLI->end();
    179 
    180   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
    181   UseI = UseSlots.begin();
    182   UseE = UseSlots.end();
    183 
    184   // Loop over basic blocks where CurLI is live.
    185   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
    186   for (;;) {
    187     BlockInfo BI;
    188     BI.MBB = MFI;
    189     SlotIndex Start, Stop;
    190     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
    191 
    192     // If the block contains no uses, the range must be live through. At one
    193     // point, RegisterCoalescer could create dangling ranges that ended
    194     // mid-block.
    195     if (UseI == UseE || *UseI >= Stop) {
    196       ++NumThroughBlocks;
    197       ThroughBlocks.set(BI.MBB->getNumber());
    198       // The range shouldn't end mid-block if there are no uses. This shouldn't
    199       // happen.
    200       if (LVI->end < Stop)
    201         return false;
    202     } else {
    203       // This block has uses. Find the first and last uses in the block.
    204       BI.FirstInstr = *UseI;
    205       assert(BI.FirstInstr >= Start);
    206       do ++UseI;
    207       while (UseI != UseE && *UseI < Stop);
    208       BI.LastInstr = UseI[-1];
    209       assert(BI.LastInstr < Stop);
    210 
    211       // LVI is the first live segment overlapping MBB.
    212       BI.LiveIn = LVI->start <= Start;
    213 
    214       // When not live in, the first use should be a def.
    215       if (!BI.LiveIn) {
    216         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
    217         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
    218         BI.FirstDef = BI.FirstInstr;
    219       }
    220 
    221       // Look for gaps in the live range.
    222       BI.LiveOut = true;
    223       while (LVI->end < Stop) {
    224         SlotIndex LastStop = LVI->end;
    225         if (++LVI == LVE || LVI->start >= Stop) {
    226           BI.LiveOut = false;
    227           BI.LastInstr = LastStop;
    228           break;
    229         }
    230 
    231         if (LastStop < LVI->start) {
    232           // There is a gap in the live range. Create duplicate entries for the
    233           // live-in snippet and the live-out snippet.
    234           ++NumGapBlocks;
    235 
    236           // Push the Live-in part.
    237           BI.LiveOut = false;
    238           UseBlocks.push_back(BI);
    239           UseBlocks.back().LastInstr = LastStop;
    240 
    241           // Set up BI for the live-out part.
    242           BI.LiveIn = false;
    243           BI.LiveOut = true;
    244           BI.FirstInstr = BI.FirstDef = LVI->start;
    245         }
    246 
    247         // A Segment that starts in the middle of the block must be a def.
    248         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
    249         if (!BI.FirstDef)
    250           BI.FirstDef = LVI->start;
    251       }
    252 
    253       UseBlocks.push_back(BI);
    254 
    255       // LVI is now at LVE or LVI->end >= Stop.
    256       if (LVI == LVE)
    257         break;
    258     }
    259 
    260     // Live segment ends exactly at Stop. Move to the next segment.
    261     if (LVI->end == Stop && ++LVI == LVE)
    262       break;
    263 
    264     // Pick the next basic block.
    265     if (LVI->start < Stop)
    266       ++MFI;
    267     else
    268       MFI = LIS.getMBBFromIndex(LVI->start);
    269   }
    270 
    271   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
    272   return true;
    273 }
    274 
    275 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
    276   if (cli->empty())
    277     return 0;
    278   LiveInterval *li = const_cast<LiveInterval*>(cli);
    279   LiveInterval::iterator LVI = li->begin();
    280   LiveInterval::iterator LVE = li->end();
    281   unsigned Count = 0;
    282 
    283   // Loop over basic blocks where li is live.
    284   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
    285   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
    286   for (;;) {
    287     ++Count;
    288     LVI = li->advanceTo(LVI, Stop);
    289     if (LVI == LVE)
    290       return Count;
    291     do {
    292       ++MFI;
    293       Stop = LIS.getMBBEndIdx(MFI);
    294     } while (Stop <= LVI->start);
    295   }
    296 }
    297 
    298 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
    299   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
    300   const LiveInterval &Orig = LIS.getInterval(OrigReg);
    301   assert(!Orig.empty() && "Splitting empty interval?");
    302   LiveInterval::const_iterator I = Orig.find(Idx);
    303 
    304   // Range containing Idx should begin at Idx.
    305   if (I != Orig.end() && I->start <= Idx)
    306     return I->start == Idx;
    307 
    308   // Range does not contain Idx, previous must end at Idx.
    309   return I != Orig.begin() && (--I)->end == Idx;
    310 }
    311 
    312 void SplitAnalysis::analyze(const LiveInterval *li) {
    313   clear();
    314   CurLI = li;
    315   analyzeUses();
    316 }
    317 
    318 
    319 //===----------------------------------------------------------------------===//
    320 //                               Split Editor
    321 //===----------------------------------------------------------------------===//
    322 
    323 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
    324 SplitEditor::SplitEditor(SplitAnalysis &sa,
    325                          LiveIntervals &lis,
    326                          VirtRegMap &vrm,
    327                          MachineDominatorTree &mdt,
    328                          MachineBlockFrequencyInfo &mbfi)
    329   : SA(sa), LIS(lis), VRM(vrm),
    330     MRI(vrm.getMachineFunction().getRegInfo()),
    331     MDT(mdt),
    332     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
    333     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
    334     MBFI(mbfi),
    335     Edit(nullptr),
    336     OpenIdx(0),
    337     SpillMode(SM_Partition),
    338     RegAssign(Allocator)
    339 {}
    340 
    341 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
    342   Edit = &LRE;
    343   SpillMode = SM;
    344   OpenIdx = 0;
    345   RegAssign.clear();
    346   Values.clear();
    347 
    348   // Reset the LiveRangeCalc instances needed for this spill mode.
    349   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
    350                   &LIS.getVNInfoAllocator());
    351   if (SpillMode)
    352     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
    353                     &LIS.getVNInfoAllocator());
    354 
    355   // We don't need an AliasAnalysis since we will only be performing
    356   // cheap-as-a-copy remats anyway.
    357   Edit->anyRematerializable(nullptr);
    358 }
    359 
    360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    361 void SplitEditor::dump() const {
    362   if (RegAssign.empty()) {
    363     dbgs() << " empty\n";
    364     return;
    365   }
    366 
    367   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
    368     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
    369   dbgs() << '\n';
    370 }
    371 #endif
    372 
    373 VNInfo *SplitEditor::defValue(unsigned RegIdx,
    374                               const VNInfo *ParentVNI,
    375                               SlotIndex Idx) {
    376   assert(ParentVNI && "Mapping  NULL value");
    377   assert(Idx.isValid() && "Invalid SlotIndex");
    378   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
    379   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    380 
    381   // Create a new value.
    382   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
    383 
    384   // Use insert for lookup, so we can add missing values with a second lookup.
    385   std::pair<ValueMap::iterator, bool> InsP =
    386     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
    387                                  ValueForcePair(VNI, false)));
    388 
    389   // This was the first time (RegIdx, ParentVNI) was mapped.
    390   // Keep it as a simple def without any liveness.
    391   if (InsP.second)
    392     return VNI;
    393 
    394   // If the previous value was a simple mapping, add liveness for it now.
    395   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
    396     SlotIndex Def = OldVNI->def;
    397     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
    398     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
    399     InsP.first->second = ValueForcePair();
    400   }
    401 
    402   // This is a complex mapping, add liveness for VNI
    403   SlotIndex Def = VNI->def;
    404   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
    405 
    406   return VNI;
    407 }
    408 
    409 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
    410   assert(ParentVNI && "Mapping  NULL value");
    411   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
    412   VNInfo *VNI = VFP.getPointer();
    413 
    414   // ParentVNI was either unmapped or already complex mapped. Either way, just
    415   // set the force bit.
    416   if (!VNI) {
    417     VFP.setInt(true);
    418     return;
    419   }
    420 
    421   // This was previously a single mapping. Make sure the old def is represented
    422   // by a trivial live range.
    423   SlotIndex Def = VNI->def;
    424   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    425   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
    426   // Mark as complex mapped, forced.
    427   VFP = ValueForcePair(nullptr, true);
    428 }
    429 
    430 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
    431                                    VNInfo *ParentVNI,
    432                                    SlotIndex UseIdx,
    433                                    MachineBasicBlock &MBB,
    434                                    MachineBasicBlock::iterator I) {
    435   MachineInstr *CopyMI = nullptr;
    436   SlotIndex Def;
    437   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    438 
    439   // We may be trying to avoid interference that ends at a deleted instruction,
    440   // so always begin RegIdx 0 early and all others late.
    441   bool Late = RegIdx != 0;
    442 
    443   // Attempt cheap-as-a-copy rematerialization.
    444   LiveRangeEdit::Remat RM(ParentVNI);
    445   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
    446     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
    447     ++NumRemats;
    448   } else {
    449     // Can't remat, just insert a copy from parent.
    450     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
    451                .addReg(Edit->getReg());
    452     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
    453             .getRegSlot();
    454     ++NumCopies;
    455   }
    456 
    457   // Define the value in Reg.
    458   return defValue(RegIdx, ParentVNI, Def);
    459 }
    460 
    461 /// Create a new virtual register and live interval.
    462 unsigned SplitEditor::openIntv() {
    463   // Create the complement as index 0.
    464   if (Edit->empty())
    465     Edit->createEmptyInterval();
    466 
    467   // Create the open interval.
    468   OpenIdx = Edit->size();
    469   Edit->createEmptyInterval();
    470   return OpenIdx;
    471 }
    472 
    473 void SplitEditor::selectIntv(unsigned Idx) {
    474   assert(Idx != 0 && "Cannot select the complement interval");
    475   assert(Idx < Edit->size() && "Can only select previously opened interval");
    476   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
    477   OpenIdx = Idx;
    478 }
    479 
    480 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
    481   assert(OpenIdx && "openIntv not called before enterIntvBefore");
    482   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
    483   Idx = Idx.getBaseIndex();
    484   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    485   if (!ParentVNI) {
    486     DEBUG(dbgs() << ": not live\n");
    487     return Idx;
    488   }
    489   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    490   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    491   assert(MI && "enterIntvBefore called with invalid index");
    492 
    493   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
    494   return VNI->def;
    495 }
    496 
    497 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
    498   assert(OpenIdx && "openIntv not called before enterIntvAfter");
    499   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
    500   Idx = Idx.getBoundaryIndex();
    501   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    502   if (!ParentVNI) {
    503     DEBUG(dbgs() << ": not live\n");
    504     return Idx;
    505   }
    506   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    507   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    508   assert(MI && "enterIntvAfter called with invalid index");
    509 
    510   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
    511                               std::next(MachineBasicBlock::iterator(MI)));
    512   return VNI->def;
    513 }
    514 
    515 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
    516   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
    517   SlotIndex End = LIS.getMBBEndIdx(&MBB);
    518   SlotIndex Last = End.getPrevSlot();
    519   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
    520   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
    521   if (!ParentVNI) {
    522     DEBUG(dbgs() << ": not live\n");
    523     return End;
    524   }
    525   DEBUG(dbgs() << ": valno " << ParentVNI->id);
    526   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
    527                               SA.getLastSplitPointIter(&MBB));
    528   RegAssign.insert(VNI->def, End, OpenIdx);
    529   DEBUG(dump());
    530   return VNI->def;
    531 }
    532 
    533 /// useIntv - indicate that all instructions in MBB should use OpenLI.
    534 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
    535   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
    536 }
    537 
    538 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
    539   assert(OpenIdx && "openIntv not called before useIntv");
    540   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
    541   RegAssign.insert(Start, End, OpenIdx);
    542   DEBUG(dump());
    543 }
    544 
    545 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
    546   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
    547   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
    548 
    549   // The interval must be live beyond the instruction at Idx.
    550   SlotIndex Boundary = Idx.getBoundaryIndex();
    551   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
    552   if (!ParentVNI) {
    553     DEBUG(dbgs() << ": not live\n");
    554     return Boundary.getNextSlot();
    555   }
    556   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    557   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
    558   assert(MI && "No instruction at index");
    559 
    560   // In spill mode, make live ranges as short as possible by inserting the copy
    561   // before MI.  This is only possible if that instruction doesn't redefine the
    562   // value.  The inserted COPY is not a kill, and we don't need to recompute
    563   // the source live range.  The spiller also won't try to hoist this copy.
    564   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
    565       MI->readsVirtualRegister(Edit->getReg())) {
    566     forceRecompute(0, ParentVNI);
    567     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    568     return Idx;
    569   }
    570 
    571   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
    572                               std::next(MachineBasicBlock::iterator(MI)));
    573   return VNI->def;
    574 }
    575 
    576 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
    577   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
    578   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
    579 
    580   // The interval must be live into the instruction at Idx.
    581   Idx = Idx.getBaseIndex();
    582   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
    583   if (!ParentVNI) {
    584     DEBUG(dbgs() << ": not live\n");
    585     return Idx.getNextSlot();
    586   }
    587   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
    588 
    589   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
    590   assert(MI && "No instruction at index");
    591   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
    592   return VNI->def;
    593 }
    594 
    595 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
    596   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
    597   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
    598   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
    599 
    600   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
    601   if (!ParentVNI) {
    602     DEBUG(dbgs() << ": not live\n");
    603     return Start;
    604   }
    605 
    606   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
    607                               MBB.SkipPHIsAndLabels(MBB.begin()));
    608   RegAssign.insert(Start, VNI->def, OpenIdx);
    609   DEBUG(dump());
    610   return VNI->def;
    611 }
    612 
    613 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
    614   assert(OpenIdx && "openIntv not called before overlapIntv");
    615   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
    616   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
    617          "Parent changes value in extended range");
    618   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
    619          "Range cannot span basic blocks");
    620 
    621   // The complement interval will be extended as needed by LRCalc.extend().
    622   if (ParentVNI)
    623     forceRecompute(0, ParentVNI);
    624   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
    625   RegAssign.insert(Start, End, OpenIdx);
    626   DEBUG(dump());
    627 }
    628 
    629 //===----------------------------------------------------------------------===//
    630 //                                  Spill modes
    631 //===----------------------------------------------------------------------===//
    632 
    633 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
    634   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
    635   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
    636   RegAssignMap::iterator AssignI;
    637   AssignI.setMap(RegAssign);
    638 
    639   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
    640     VNInfo *VNI = Copies[i];
    641     SlotIndex Def = VNI->def;
    642     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
    643     assert(MI && "No instruction for back-copy");
    644 
    645     MachineBasicBlock *MBB = MI->getParent();
    646     MachineBasicBlock::iterator MBBI(MI);
    647     bool AtBegin;
    648     do AtBegin = MBBI == MBB->begin();
    649     while (!AtBegin && (--MBBI)->isDebugValue());
    650 
    651     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
    652     LI->removeValNo(VNI);
    653     LIS.RemoveMachineInstrFromMaps(MI);
    654     MI->eraseFromParent();
    655 
    656     // Adjust RegAssign if a register assignment is killed at VNI->def.  We
    657     // want to avoid calculating the live range of the source register if
    658     // possible.
    659     AssignI.find(Def.getPrevSlot());
    660     if (!AssignI.valid() || AssignI.start() >= Def)
    661       continue;
    662     // If MI doesn't kill the assigned register, just leave it.
    663     if (AssignI.stop() != Def)
    664       continue;
    665     unsigned RegIdx = AssignI.value();
    666     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
    667       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
    668       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
    669     } else {
    670       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
    671       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
    672       AssignI.setStop(Kill);
    673     }
    674   }
    675 }
    676 
    677 MachineBasicBlock*
    678 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
    679                                   MachineBasicBlock *DefMBB) {
    680   if (MBB == DefMBB)
    681     return MBB;
    682   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
    683 
    684   const MachineLoopInfo &Loops = SA.Loops;
    685   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
    686   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
    687 
    688   // Best candidate so far.
    689   MachineBasicBlock *BestMBB = MBB;
    690   unsigned BestDepth = UINT_MAX;
    691 
    692   for (;;) {
    693     const MachineLoop *Loop = Loops.getLoopFor(MBB);
    694 
    695     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
    696     // higher frequency by definition.
    697     if (!Loop) {
    698       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    699                    << MBB->getNumber() << " at depth 0\n");
    700       return MBB;
    701     }
    702 
    703     // We'll never be able to exit the DefLoop.
    704     if (Loop == DefLoop) {
    705       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    706                    << MBB->getNumber() << " in the same loop\n");
    707       return MBB;
    708     }
    709 
    710     // Least busy dominator seen so far.
    711     unsigned Depth = Loop->getLoopDepth();
    712     if (Depth < BestDepth) {
    713       BestMBB = MBB;
    714       BestDepth = Depth;
    715       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
    716                    << MBB->getNumber() << " at depth " << Depth << '\n');
    717     }
    718 
    719     // Leave loop by going to the immediate dominator of the loop header.
    720     // This is a bigger stride than simply walking up the dominator tree.
    721     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
    722 
    723     // Too far up the dominator tree?
    724     if (!IDom || !MDT.dominates(DefDomNode, IDom))
    725       return BestMBB;
    726 
    727     MBB = IDom->getBlock();
    728   }
    729 }
    730 
    731 void SplitEditor::hoistCopiesForSize() {
    732   // Get the complement interval, always RegIdx 0.
    733   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
    734   LiveInterval *Parent = &Edit->getParent();
    735 
    736   // Track the nearest common dominator for all back-copies for each ParentVNI,
    737   // indexed by ParentVNI->id.
    738   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
    739   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
    740 
    741   // Find the nearest common dominator for parent values with multiple
    742   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
    743   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
    744        VI != VE; ++VI) {
    745     VNInfo *VNI = *VI;
    746     if (VNI->isUnused())
    747       continue;
    748     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    749     assert(ParentVNI && "Parent not live at complement def");
    750 
    751     // Don't hoist remats.  The complement is probably going to disappear
    752     // completely anyway.
    753     if (Edit->didRematerialize(ParentVNI))
    754       continue;
    755 
    756     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
    757     DomPair &Dom = NearestDom[ParentVNI->id];
    758 
    759     // Keep directly defined parent values.  This is either a PHI or an
    760     // instruction in the complement range.  All other copies of ParentVNI
    761     // should be eliminated.
    762     if (VNI->def == ParentVNI->def) {
    763       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
    764       Dom = DomPair(ValMBB, VNI->def);
    765       continue;
    766     }
    767     // Skip the singly mapped values.  There is nothing to gain from hoisting a
    768     // single back-copy.
    769     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
    770       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
    771       continue;
    772     }
    773 
    774     if (!Dom.first) {
    775       // First time we see ParentVNI.  VNI dominates itself.
    776       Dom = DomPair(ValMBB, VNI->def);
    777     } else if (Dom.first == ValMBB) {
    778       // Two defs in the same block.  Pick the earlier def.
    779       if (!Dom.second.isValid() || VNI->def < Dom.second)
    780         Dom.second = VNI->def;
    781     } else {
    782       // Different basic blocks. Check if one dominates.
    783       MachineBasicBlock *Near =
    784         MDT.findNearestCommonDominator(Dom.first, ValMBB);
    785       if (Near == ValMBB)
    786         // Def ValMBB dominates.
    787         Dom = DomPair(ValMBB, VNI->def);
    788       else if (Near != Dom.first)
    789         // None dominate. Hoist to common dominator, need new def.
    790         Dom = DomPair(Near, SlotIndex());
    791     }
    792 
    793     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
    794                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
    795                  << " hoist to BB#" << Dom.first->getNumber() << ' '
    796                  << Dom.second << '\n');
    797   }
    798 
    799   // Insert the hoisted copies.
    800   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
    801     DomPair &Dom = NearestDom[i];
    802     if (!Dom.first || Dom.second.isValid())
    803       continue;
    804     // This value needs a hoisted copy inserted at the end of Dom.first.
    805     VNInfo *ParentVNI = Parent->getValNumInfo(i);
    806     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
    807     // Get a less loopy dominator than Dom.first.
    808     Dom.first = findShallowDominator(Dom.first, DefMBB);
    809     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
    810     Dom.second =
    811       defFromParent(0, ParentVNI, Last, *Dom.first,
    812                     SA.getLastSplitPointIter(Dom.first))->def;
    813   }
    814 
    815   // Remove redundant back-copies that are now known to be dominated by another
    816   // def with the same value.
    817   SmallVector<VNInfo*, 8> BackCopies;
    818   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
    819        VI != VE; ++VI) {
    820     VNInfo *VNI = *VI;
    821     if (VNI->isUnused())
    822       continue;
    823     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
    824     const DomPair &Dom = NearestDom[ParentVNI->id];
    825     if (!Dom.first || Dom.second == VNI->def)
    826       continue;
    827     BackCopies.push_back(VNI);
    828     forceRecompute(0, ParentVNI);
    829   }
    830   removeBackCopies(BackCopies);
    831 }
    832 
    833 
    834 /// transferValues - Transfer all possible values to the new live ranges.
    835 /// Values that were rematerialized are left alone, they need LRCalc.extend().
    836 bool SplitEditor::transferValues() {
    837   bool Skipped = false;
    838   RegAssignMap::const_iterator AssignI = RegAssign.begin();
    839   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
    840          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
    841     DEBUG(dbgs() << "  blit " << *ParentI << ':');
    842     VNInfo *ParentVNI = ParentI->valno;
    843     // RegAssign has holes where RegIdx 0 should be used.
    844     SlotIndex Start = ParentI->start;
    845     AssignI.advanceTo(Start);
    846     do {
    847       unsigned RegIdx;
    848       SlotIndex End = ParentI->end;
    849       if (!AssignI.valid()) {
    850         RegIdx = 0;
    851       } else if (AssignI.start() <= Start) {
    852         RegIdx = AssignI.value();
    853         if (AssignI.stop() < End) {
    854           End = AssignI.stop();
    855           ++AssignI;
    856         }
    857       } else {
    858         RegIdx = 0;
    859         End = std::min(End, AssignI.start());
    860       }
    861 
    862       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
    863       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
    864       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
    865 
    866       // Check for a simply defined value that can be blitted directly.
    867       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
    868       if (VNInfo *VNI = VFP.getPointer()) {
    869         DEBUG(dbgs() << ':' << VNI->id);
    870         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
    871         Start = End;
    872         continue;
    873       }
    874 
    875       // Skip values with forced recomputation.
    876       if (VFP.getInt()) {
    877         DEBUG(dbgs() << "(recalc)");
    878         Skipped = true;
    879         Start = End;
    880         continue;
    881       }
    882 
    883       LiveRangeCalc &LRC = getLRCalc(RegIdx);
    884 
    885       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
    886       // so the live range is accurate. Add live-in blocks in [Start;End) to the
    887       // LiveInBlocks.
    888       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
    889       SlotIndex BlockStart, BlockEnd;
    890       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
    891 
    892       // The first block may be live-in, or it may have its own def.
    893       if (Start != BlockStart) {
    894         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
    895         assert(VNI && "Missing def for complex mapped value");
    896         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
    897         // MBB has its own def. Is it also live-out?
    898         if (BlockEnd <= End)
    899           LRC.setLiveOutValue(MBB, VNI);
    900 
    901         // Skip to the next block for live-in.
    902         ++MBB;
    903         BlockStart = BlockEnd;
    904       }
    905 
    906       // Handle the live-in blocks covered by [Start;End).
    907       assert(Start <= BlockStart && "Expected live-in block");
    908       while (BlockStart < End) {
    909         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
    910         BlockEnd = LIS.getMBBEndIdx(MBB);
    911         if (BlockStart == ParentVNI->def) {
    912           // This block has the def of a parent PHI, so it isn't live-in.
    913           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
    914           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
    915           assert(VNI && "Missing def for complex mapped parent PHI");
    916           if (End >= BlockEnd)
    917             LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
    918         } else {
    919           // This block needs a live-in value.  The last block covered may not
    920           // be live-out.
    921           if (End < BlockEnd)
    922             LRC.addLiveInBlock(LR, MDT[MBB], End);
    923           else {
    924             // Live-through, and we don't know the value.
    925             LRC.addLiveInBlock(LR, MDT[MBB]);
    926             LRC.setLiveOutValue(MBB, nullptr);
    927           }
    928         }
    929         BlockStart = BlockEnd;
    930         ++MBB;
    931       }
    932       Start = End;
    933     } while (Start != ParentI->end);
    934     DEBUG(dbgs() << '\n');
    935   }
    936 
    937   LRCalc[0].calculateValues();
    938   if (SpillMode)
    939     LRCalc[1].calculateValues();
    940 
    941   return Skipped;
    942 }
    943 
    944 void SplitEditor::extendPHIKillRanges() {
    945     // Extend live ranges to be live-out for successor PHI values.
    946   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
    947        E = Edit->getParent().vni_end(); I != E; ++I) {
    948     const VNInfo *PHIVNI = *I;
    949     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
    950       continue;
    951     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
    952     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
    953     LiveRangeCalc &LRC = getLRCalc(RegIdx);
    954     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
    955     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    956          PE = MBB->pred_end(); PI != PE; ++PI) {
    957       SlotIndex End = LIS.getMBBEndIdx(*PI);
    958       SlotIndex LastUse = End.getPrevSlot();
    959       // The predecessor may not have a live-out value. That is OK, like an
    960       // undef PHI operand.
    961       if (Edit->getParent().liveAt(LastUse)) {
    962         assert(RegAssign.lookup(LastUse) == RegIdx &&
    963                "Different register assignment in phi predecessor");
    964         LRC.extend(LR, End);
    965       }
    966     }
    967   }
    968 }
    969 
    970 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
    971 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
    972   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
    973        RE = MRI.reg_end(); RI != RE;) {
    974     MachineOperand &MO = *RI;
    975     MachineInstr *MI = MO.getParent();
    976     ++RI;
    977     // LiveDebugVariables should have handled all DBG_VALUE instructions.
    978     if (MI->isDebugValue()) {
    979       DEBUG(dbgs() << "Zapping " << *MI);
    980       MO.setReg(0);
    981       continue;
    982     }
    983 
    984     // <undef> operands don't really read the register, so it doesn't matter
    985     // which register we choose.  When the use operand is tied to a def, we must
    986     // use the same register as the def, so just do that always.
    987     SlotIndex Idx = LIS.getInstructionIndex(MI);
    988     if (MO.isDef() || MO.isUndef())
    989       Idx = Idx.getRegSlot(MO.isEarlyClobber());
    990 
    991     // Rewrite to the mapped register at Idx.
    992     unsigned RegIdx = RegAssign.lookup(Idx);
    993     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
    994     MO.setReg(LI->reg);
    995     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
    996                  << Idx << ':' << RegIdx << '\t' << *MI);
    997 
    998     // Extend liveness to Idx if the instruction reads reg.
    999     if (!ExtendRanges || MO.isUndef())
   1000       continue;
   1001 
   1002     // Skip instructions that don't read Reg.
   1003     if (MO.isDef()) {
   1004       if (!MO.getSubReg() && !MO.isEarlyClobber())
   1005         continue;
   1006       // We may wan't to extend a live range for a partial redef, or for a use
   1007       // tied to an early clobber.
   1008       Idx = Idx.getPrevSlot();
   1009       if (!Edit->getParent().liveAt(Idx))
   1010         continue;
   1011     } else
   1012       Idx = Idx.getRegSlot(true);
   1013 
   1014     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
   1015   }
   1016 }
   1017 
   1018 void SplitEditor::deleteRematVictims() {
   1019   SmallVector<MachineInstr*, 8> Dead;
   1020   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
   1021     LiveInterval *LI = &LIS.getInterval(*I);
   1022     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
   1023            LII != LIE; ++LII) {
   1024       // Dead defs end at the dead slot.
   1025       if (LII->end != LII->valno->def.getDeadSlot())
   1026         continue;
   1027       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
   1028       assert(MI && "Missing instruction for dead def");
   1029       MI->addRegisterDead(LI->reg, &TRI);
   1030 
   1031       if (!MI->allDefsAreDead())
   1032         continue;
   1033 
   1034       DEBUG(dbgs() << "All defs dead: " << *MI);
   1035       Dead.push_back(MI);
   1036     }
   1037   }
   1038 
   1039   if (Dead.empty())
   1040     return;
   1041 
   1042   Edit->eliminateDeadDefs(Dead);
   1043 }
   1044 
   1045 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
   1046   ++NumFinished;
   1047 
   1048   // At this point, the live intervals in Edit contain VNInfos corresponding to
   1049   // the inserted copies.
   1050 
   1051   // Add the original defs from the parent interval.
   1052   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
   1053          E = Edit->getParent().vni_end(); I != E; ++I) {
   1054     const VNInfo *ParentVNI = *I;
   1055     if (ParentVNI->isUnused())
   1056       continue;
   1057     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
   1058     defValue(RegIdx, ParentVNI, ParentVNI->def);
   1059 
   1060     // Force rematted values to be recomputed everywhere.
   1061     // The new live ranges may be truncated.
   1062     if (Edit->didRematerialize(ParentVNI))
   1063       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
   1064         forceRecompute(i, ParentVNI);
   1065   }
   1066 
   1067   // Hoist back-copies to the complement interval when in spill mode.
   1068   switch (SpillMode) {
   1069   case SM_Partition:
   1070     // Leave all back-copies as is.
   1071     break;
   1072   case SM_Size:
   1073     hoistCopiesForSize();
   1074     break;
   1075   case SM_Speed:
   1076     llvm_unreachable("Spill mode 'speed' not implemented yet");
   1077   }
   1078 
   1079   // Transfer the simply mapped values, check if any are skipped.
   1080   bool Skipped = transferValues();
   1081   if (Skipped)
   1082     extendPHIKillRanges();
   1083   else
   1084     ++NumSimple;
   1085 
   1086   // Rewrite virtual registers, possibly extending ranges.
   1087   rewriteAssigned(Skipped);
   1088 
   1089   // Delete defs that were rematted everywhere.
   1090   if (Skipped)
   1091     deleteRematVictims();
   1092 
   1093   // Get rid of unused values and set phi-kill flags.
   1094   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
   1095     LiveInterval &LI = LIS.getInterval(*I);
   1096     LI.RenumberValues();
   1097   }
   1098 
   1099   // Provide a reverse mapping from original indices to Edit ranges.
   1100   if (LRMap) {
   1101     LRMap->clear();
   1102     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
   1103       LRMap->push_back(i);
   1104   }
   1105 
   1106   // Now check if any registers were separated into multiple components.
   1107   ConnectedVNInfoEqClasses ConEQ(LIS);
   1108   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
   1109     // Don't use iterators, they are invalidated by create() below.
   1110     LiveInterval *li = &LIS.getInterval(Edit->get(i));
   1111     unsigned NumComp = ConEQ.Classify(li);
   1112     if (NumComp <= 1)
   1113       continue;
   1114     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
   1115     SmallVector<LiveInterval*, 8> dups;
   1116     dups.push_back(li);
   1117     for (unsigned j = 1; j != NumComp; ++j)
   1118       dups.push_back(&Edit->createEmptyInterval());
   1119     ConEQ.Distribute(&dups[0], MRI);
   1120     // The new intervals all map back to i.
   1121     if (LRMap)
   1122       LRMap->resize(Edit->size(), i);
   1123   }
   1124 
   1125   // Calculate spill weight and allocation hints for new intervals.
   1126   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
   1127 
   1128   assert(!LRMap || LRMap->size() == Edit->size());
   1129 }
   1130 
   1131 
   1132 //===----------------------------------------------------------------------===//
   1133 //                            Single Block Splitting
   1134 //===----------------------------------------------------------------------===//
   1135 
   1136 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
   1137                                            bool SingleInstrs) const {
   1138   // Always split for multiple instructions.
   1139   if (!BI.isOneInstr())
   1140     return true;
   1141   // Don't split for single instructions unless explicitly requested.
   1142   if (!SingleInstrs)
   1143     return false;
   1144   // Splitting a live-through range always makes progress.
   1145   if (BI.LiveIn && BI.LiveOut)
   1146     return true;
   1147   // No point in isolating a copy. It has no register class constraints.
   1148   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
   1149     return false;
   1150   // Finally, don't isolate an end point that was created by earlier splits.
   1151   return isOriginalEndpoint(BI.FirstInstr);
   1152 }
   1153 
   1154 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
   1155   openIntv();
   1156   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
   1157   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
   1158     LastSplitPoint));
   1159   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
   1160     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
   1161   } else {
   1162       // The last use is after the last valid split point.
   1163     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
   1164     useIntv(SegStart, SegStop);
   1165     overlapIntv(SegStop, BI.LastInstr);
   1166   }
   1167 }
   1168 
   1169 
   1170 //===----------------------------------------------------------------------===//
   1171 //                    Global Live Range Splitting Support
   1172 //===----------------------------------------------------------------------===//
   1173 
   1174 // These methods support a method of global live range splitting that uses a
   1175 // global algorithm to decide intervals for CFG edges. They will insert split
   1176 // points and color intervals in basic blocks while avoiding interference.
   1177 //
   1178 // Note that splitSingleBlock is also useful for blocks where both CFG edges
   1179 // are on the stack.
   1180 
   1181 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
   1182                                         unsigned IntvIn, SlotIndex LeaveBefore,
   1183                                         unsigned IntvOut, SlotIndex EnterAfter){
   1184   SlotIndex Start, Stop;
   1185   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
   1186 
   1187   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
   1188                << ") intf " << LeaveBefore << '-' << EnterAfter
   1189                << ", live-through " << IntvIn << " -> " << IntvOut);
   1190 
   1191   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
   1192 
   1193   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
   1194   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
   1195   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
   1196 
   1197   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
   1198 
   1199   if (!IntvOut) {
   1200     DEBUG(dbgs() << ", spill on entry.\n");
   1201     //
   1202     //        <<<<<<<<<    Possible LeaveBefore interference.
   1203     //    |-----------|    Live through.
   1204     //    -____________    Spill on entry.
   1205     //
   1206     selectIntv(IntvIn);
   1207     SlotIndex Idx = leaveIntvAtTop(*MBB);
   1208     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1209     (void)Idx;
   1210     return;
   1211   }
   1212 
   1213   if (!IntvIn) {
   1214     DEBUG(dbgs() << ", reload on exit.\n");
   1215     //
   1216     //    >>>>>>>          Possible EnterAfter interference.
   1217     //    |-----------|    Live through.
   1218     //    ___________--    Reload on exit.
   1219     //
   1220     selectIntv(IntvOut);
   1221     SlotIndex Idx = enterIntvAtEnd(*MBB);
   1222     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1223     (void)Idx;
   1224     return;
   1225   }
   1226 
   1227   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
   1228     DEBUG(dbgs() << ", straight through.\n");
   1229     //
   1230     //    |-----------|    Live through.
   1231     //    -------------    Straight through, same intv, no interference.
   1232     //
   1233     selectIntv(IntvOut);
   1234     useIntv(Start, Stop);
   1235     return;
   1236   }
   1237 
   1238   // We cannot legally insert splits after LSP.
   1239   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
   1240   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
   1241 
   1242   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
   1243                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
   1244     DEBUG(dbgs() << ", switch avoiding interference.\n");
   1245     //
   1246     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
   1247     //    |-----------|    Live through.
   1248     //    ------=======    Switch intervals between interference.
   1249     //
   1250     selectIntv(IntvOut);
   1251     SlotIndex Idx;
   1252     if (LeaveBefore && LeaveBefore < LSP) {
   1253       Idx = enterIntvBefore(LeaveBefore);
   1254       useIntv(Idx, Stop);
   1255     } else {
   1256       Idx = enterIntvAtEnd(*MBB);
   1257     }
   1258     selectIntv(IntvIn);
   1259     useIntv(Start, Idx);
   1260     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1261     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1262     return;
   1263   }
   1264 
   1265   DEBUG(dbgs() << ", create local intv for interference.\n");
   1266   //
   1267   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
   1268   //    |-----------|    Live through.
   1269   //    ==---------==    Switch intervals before/after interference.
   1270   //
   1271   assert(LeaveBefore <= EnterAfter && "Missed case");
   1272 
   1273   selectIntv(IntvOut);
   1274   SlotIndex Idx = enterIntvAfter(EnterAfter);
   1275   useIntv(Idx, Stop);
   1276   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1277 
   1278   selectIntv(IntvIn);
   1279   Idx = leaveIntvBefore(LeaveBefore);
   1280   useIntv(Start, Idx);
   1281   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1282 }
   1283 
   1284 
   1285 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
   1286                                   unsigned IntvIn, SlotIndex LeaveBefore) {
   1287   SlotIndex Start, Stop;
   1288   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
   1289 
   1290   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
   1291                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
   1292                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
   1293                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
   1294 
   1295   assert(IntvIn && "Must have register in");
   1296   assert(BI.LiveIn && "Must be live-in");
   1297   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
   1298 
   1299   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
   1300     DEBUG(dbgs() << " before interference.\n");
   1301     //
   1302     //               <<<    Interference after kill.
   1303     //     |---o---x   |    Killed in block.
   1304     //     =========        Use IntvIn everywhere.
   1305     //
   1306     selectIntv(IntvIn);
   1307     useIntv(Start, BI.LastInstr);
   1308     return;
   1309   }
   1310 
   1311   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
   1312 
   1313   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
   1314     //
   1315     //               <<<    Possible interference after last use.
   1316     //     |---o---o---|    Live-out on stack.
   1317     //     =========____    Leave IntvIn after last use.
   1318     //
   1319     //                 <    Interference after last use.
   1320     //     |---o---o--o|    Live-out on stack, late last use.
   1321     //     ============     Copy to stack after LSP, overlap IntvIn.
   1322     //            \_____    Stack interval is live-out.
   1323     //
   1324     if (BI.LastInstr < LSP) {
   1325       DEBUG(dbgs() << ", spill after last use before interference.\n");
   1326       selectIntv(IntvIn);
   1327       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
   1328       useIntv(Start, Idx);
   1329       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1330     } else {
   1331       DEBUG(dbgs() << ", spill before last split point.\n");
   1332       selectIntv(IntvIn);
   1333       SlotIndex Idx = leaveIntvBefore(LSP);
   1334       overlapIntv(Idx, BI.LastInstr);
   1335       useIntv(Start, Idx);
   1336       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
   1337     }
   1338     return;
   1339   }
   1340 
   1341   // The interference is overlapping somewhere we wanted to use IntvIn. That
   1342   // means we need to create a local interval that can be allocated a
   1343   // different register.
   1344   unsigned LocalIntv = openIntv();
   1345   (void)LocalIntv;
   1346   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
   1347 
   1348   if (!BI.LiveOut || BI.LastInstr < LSP) {
   1349     //
   1350     //           <<<<<<<    Interference overlapping uses.
   1351     //     |---o---o---|    Live-out on stack.
   1352     //     =====----____    Leave IntvIn before interference, then spill.
   1353     //
   1354     SlotIndex To = leaveIntvAfter(BI.LastInstr);
   1355     SlotIndex From = enterIntvBefore(LeaveBefore);
   1356     useIntv(From, To);
   1357     selectIntv(IntvIn);
   1358     useIntv(Start, From);
   1359     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
   1360     return;
   1361   }
   1362 
   1363   //           <<<<<<<    Interference overlapping uses.
   1364   //     |---o---o--o|    Live-out on stack, late last use.
   1365   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
   1366   //            \_____    Stack interval is live-out.
   1367   //
   1368   SlotIndex To = leaveIntvBefore(LSP);
   1369   overlapIntv(To, BI.LastInstr);
   1370   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
   1371   useIntv(From, To);
   1372   selectIntv(IntvIn);
   1373   useIntv(Start, From);
   1374   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
   1375 }
   1376 
   1377 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
   1378                                    unsigned IntvOut, SlotIndex EnterAfter) {
   1379   SlotIndex Start, Stop;
   1380   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
   1381 
   1382   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
   1383                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
   1384                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
   1385                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
   1386 
   1387   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
   1388 
   1389   assert(IntvOut && "Must have register out");
   1390   assert(BI.LiveOut && "Must be live-out");
   1391   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
   1392 
   1393   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
   1394     DEBUG(dbgs() << " after interference.\n");
   1395     //
   1396     //    >>>>             Interference before def.
   1397     //    |   o---o---|    Defined in block.
   1398     //        =========    Use IntvOut everywhere.
   1399     //
   1400     selectIntv(IntvOut);
   1401     useIntv(BI.FirstInstr, Stop);
   1402     return;
   1403   }
   1404 
   1405   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
   1406     DEBUG(dbgs() << ", reload after interference.\n");
   1407     //
   1408     //    >>>>             Interference before def.
   1409     //    |---o---o---|    Live-through, stack-in.
   1410     //    ____=========    Enter IntvOut before first use.
   1411     //
   1412     selectIntv(IntvOut);
   1413     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
   1414     useIntv(Idx, Stop);
   1415     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1416     return;
   1417   }
   1418 
   1419   // The interference is overlapping somewhere we wanted to use IntvOut. That
   1420   // means we need to create a local interval that can be allocated a
   1421   // different register.
   1422   DEBUG(dbgs() << ", interference overlaps uses.\n");
   1423   //
   1424   //    >>>>>>>          Interference overlapping uses.
   1425   //    |---o---o---|    Live-through, stack-in.
   1426   //    ____---======    Create local interval for interference range.
   1427   //
   1428   selectIntv(IntvOut);
   1429   SlotIndex Idx = enterIntvAfter(EnterAfter);
   1430   useIntv(Idx, Stop);
   1431   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
   1432 
   1433   openIntv();
   1434   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
   1435   useIntv(From, Idx);
   1436 }
   1437