1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass does not attempt to throttle itself to limit register pressure. 14 // The register allocation phases are expected to perform rematerialization 15 // to recover when register pressure is high. 16 // 17 // This pass is not intended to be a replacement or a complete alternative 18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 19 // constructs that are not exposed before lowering and instruction selection. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/MC/MCInstrItineraries.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetInstrInfo.h" 39 #include "llvm/Target/TargetLowering.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "machine-licm" 45 46 static cl::opt<bool> 47 AvoidSpeculation("avoid-speculation", 48 cl::desc("MachineLICM should avoid speculation"), 49 cl::init(true), cl::Hidden); 50 51 STATISTIC(NumHoisted, 52 "Number of machine instructions hoisted out of loops"); 53 STATISTIC(NumLowRP, 54 "Number of instructions hoisted in low reg pressure situation"); 55 STATISTIC(NumHighLatency, 56 "Number of high latency instructions hoisted"); 57 STATISTIC(NumCSEed, 58 "Number of hoisted machine instructions CSEed"); 59 STATISTIC(NumPostRAHoisted, 60 "Number of machine instructions hoisted out of loops post regalloc"); 61 62 namespace { 63 class MachineLICM : public MachineFunctionPass { 64 const TargetMachine *TM; 65 const TargetInstrInfo *TII; 66 const TargetLoweringBase *TLI; 67 const TargetRegisterInfo *TRI; 68 const MachineFrameInfo *MFI; 69 MachineRegisterInfo *MRI; 70 const InstrItineraryData *InstrItins; 71 bool PreRegAlloc; 72 73 // Various analyses that we use... 74 AliasAnalysis *AA; // Alias analysis info. 75 MachineLoopInfo *MLI; // Current MachineLoopInfo 76 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 77 78 // State that is updated as we process loops 79 bool Changed; // True if a loop is changed. 80 bool FirstInLoop; // True if it's the first LICM in the loop. 81 MachineLoop *CurLoop; // The current loop we are working on. 82 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 83 84 // Exit blocks for CurLoop. 85 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 86 87 bool isExitBlock(const MachineBasicBlock *MBB) const { 88 return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) != 89 ExitBlocks.end(); 90 } 91 92 // Track 'estimated' register pressure. 93 SmallSet<unsigned, 32> RegSeen; 94 SmallVector<unsigned, 8> RegPressure; 95 96 // Register pressure "limit" per register class. If the pressure 97 // is higher than the limit, then it's considered high. 98 SmallVector<unsigned, 8> RegLimit; 99 100 // Register pressure on path leading from loop preheader to current BB. 101 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 102 103 // For each opcode, keep a list of potential CSE instructions. 104 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 105 106 enum { 107 SpeculateFalse = 0, 108 SpeculateTrue = 1, 109 SpeculateUnknown = 2 110 }; 111 112 // If a MBB does not dominate loop exiting blocks then it may not safe 113 // to hoist loads from this block. 114 // Tri-state: 0 - false, 1 - true, 2 - unknown 115 unsigned SpeculationState; 116 117 public: 118 static char ID; // Pass identification, replacement for typeid 119 MachineLICM() : 120 MachineFunctionPass(ID), PreRegAlloc(true) { 121 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 122 } 123 124 explicit MachineLICM(bool PreRA) : 125 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 126 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 127 } 128 129 bool runOnMachineFunction(MachineFunction &MF) override; 130 131 void getAnalysisUsage(AnalysisUsage &AU) const override { 132 AU.addRequired<MachineLoopInfo>(); 133 AU.addRequired<MachineDominatorTree>(); 134 AU.addRequired<AliasAnalysis>(); 135 AU.addPreserved<MachineLoopInfo>(); 136 AU.addPreserved<MachineDominatorTree>(); 137 MachineFunctionPass::getAnalysisUsage(AU); 138 } 139 140 void releaseMemory() override { 141 RegSeen.clear(); 142 RegPressure.clear(); 143 RegLimit.clear(); 144 BackTrace.clear(); 145 for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator 146 CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI) 147 CI->second.clear(); 148 CSEMap.clear(); 149 } 150 151 private: 152 /// CandidateInfo - Keep track of information about hoisting candidates. 153 struct CandidateInfo { 154 MachineInstr *MI; 155 unsigned Def; 156 int FI; 157 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 158 : MI(mi), Def(def), FI(fi) {} 159 }; 160 161 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 162 /// invariants out to the preheader. 163 void HoistRegionPostRA(); 164 165 /// HoistPostRA - When an instruction is found to only use loop invariant 166 /// operands that is safe to hoist, this instruction is called to do the 167 /// dirty work. 168 void HoistPostRA(MachineInstr *MI, unsigned Def); 169 170 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 171 /// gather register def and frame object update information. 172 void ProcessMI(MachineInstr *MI, 173 BitVector &PhysRegDefs, 174 BitVector &PhysRegClobbers, 175 SmallSet<int, 32> &StoredFIs, 176 SmallVectorImpl<CandidateInfo> &Candidates); 177 178 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the 179 /// current loop. 180 void AddToLiveIns(unsigned Reg); 181 182 /// IsLICMCandidate - Returns true if the instruction may be a suitable 183 /// candidate for LICM. e.g. If the instruction is a call, then it's 184 /// obviously not safe to hoist it. 185 bool IsLICMCandidate(MachineInstr &I); 186 187 /// IsLoopInvariantInst - Returns true if the instruction is loop 188 /// invariant. I.e., all virtual register operands are defined outside of 189 /// the loop, physical registers aren't accessed (explicitly or implicitly), 190 /// and the instruction is hoistable. 191 /// 192 bool IsLoopInvariantInst(MachineInstr &I); 193 194 /// HasLoopPHIUse - Return true if the specified instruction is used by any 195 /// phi node in the current loop. 196 bool HasLoopPHIUse(const MachineInstr *MI) const; 197 198 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 199 /// and an use in the current loop, return true if the target considered 200 /// it 'high'. 201 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 202 unsigned Reg) const; 203 204 bool IsCheapInstruction(MachineInstr &MI) const; 205 206 /// CanCauseHighRegPressure - Visit BBs from header to current BB, 207 /// check if hoisting an instruction of the given cost matrix can cause high 208 /// register pressure. 209 bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap); 210 211 /// UpdateBackTraceRegPressure - Traverse the back trace from header to 212 /// the current block and update their register pressures to reflect the 213 /// effect of hoisting MI from the current block to the preheader. 214 void UpdateBackTraceRegPressure(const MachineInstr *MI); 215 216 /// IsProfitableToHoist - Return true if it is potentially profitable to 217 /// hoist the given loop invariant. 218 bool IsProfitableToHoist(MachineInstr &MI); 219 220 /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 221 /// If not then a load from this mbb may not be safe to hoist. 222 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 223 224 void EnterScope(MachineBasicBlock *MBB); 225 226 void ExitScope(MachineBasicBlock *MBB); 227 228 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given 229 /// dominator tree node if its a leaf or all of its children are done. Walk 230 /// up the dominator tree to destroy ancestors which are now done. 231 void ExitScopeIfDone(MachineDomTreeNode *Node, 232 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 233 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); 234 235 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 236 /// blocks dominated by the specified header block, and that are in the 237 /// current loop) in depth first order w.r.t the DominatorTree. This allows 238 /// us to visit definitions before uses, allowing us to hoist a loop body in 239 /// one pass without iteration. 240 /// 241 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 242 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 243 244 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 245 /// index, return the ID and cost of its representative register class by 246 /// reference. 247 void getRegisterClassIDAndCost(const MachineInstr *MI, 248 unsigned Reg, unsigned OpIdx, 249 unsigned &RCId, unsigned &RCCost) const; 250 251 /// InitRegPressure - Find all virtual register references that are liveout 252 /// of the preheader to initialize the starting "register pressure". Note 253 /// this does not count live through (livein but not used) registers. 254 void InitRegPressure(MachineBasicBlock *BB); 255 256 /// UpdateRegPressure - Update estimate of register pressure after the 257 /// specified instruction. 258 void UpdateRegPressure(const MachineInstr *MI); 259 260 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if 261 /// the load itself could be hoisted. Return the unfolded and hoistable 262 /// load, or null if the load couldn't be unfolded or if it wouldn't 263 /// be hoistable. 264 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 265 266 /// LookForDuplicate - Find an instruction amount PrevMIs that is a 267 /// duplicate of MI. Return this instruction if it's found. 268 const MachineInstr *LookForDuplicate(const MachineInstr *MI, 269 std::vector<const MachineInstr*> &PrevMIs); 270 271 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on 272 /// the preheader that compute the same value. If it's found, do a RAU on 273 /// with the definition of the existing instruction rather than hoisting 274 /// the instruction to the preheader. 275 bool EliminateCSE(MachineInstr *MI, 276 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); 277 278 /// MayCSE - Return true if the given instruction will be CSE'd if it's 279 /// hoisted out of the loop. 280 bool MayCSE(MachineInstr *MI); 281 282 /// Hoist - When an instruction is found to only use loop invariant operands 283 /// that is safe to hoist, this instruction is called to do the dirty work. 284 /// It returns true if the instruction is hoisted. 285 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 286 287 /// InitCSEMap - Initialize the CSE map with instructions that are in the 288 /// current loop preheader that may become duplicates of instructions that 289 /// are hoisted out of the loop. 290 void InitCSEMap(MachineBasicBlock *BB); 291 292 /// getCurPreheader - Get the preheader for the current loop, splitting 293 /// a critical edge if needed. 294 MachineBasicBlock *getCurPreheader(); 295 }; 296 } // end anonymous namespace 297 298 char MachineLICM::ID = 0; 299 char &llvm::MachineLICMID = MachineLICM::ID; 300 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 301 "Machine Loop Invariant Code Motion", false, false) 302 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 303 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 304 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 305 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 306 "Machine Loop Invariant Code Motion", false, false) 307 308 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most 309 /// loop that has a unique predecessor. 310 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 311 // Check whether this loop even has a unique predecessor. 312 if (!CurLoop->getLoopPredecessor()) 313 return false; 314 // Ok, now check to see if any of its outer loops do. 315 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 316 if (L->getLoopPredecessor()) 317 return false; 318 // None of them did, so this is the outermost with a unique predecessor. 319 return true; 320 } 321 322 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 323 if (skipOptnoneFunction(*MF.getFunction())) 324 return false; 325 326 Changed = FirstInLoop = false; 327 TM = &MF.getTarget(); 328 TII = TM->getInstrInfo(); 329 TLI = TM->getTargetLowering(); 330 TRI = TM->getRegisterInfo(); 331 MFI = MF.getFrameInfo(); 332 MRI = &MF.getRegInfo(); 333 InstrItins = TM->getInstrItineraryData(); 334 335 PreRegAlloc = MRI->isSSA(); 336 337 if (PreRegAlloc) 338 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 339 else 340 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 341 DEBUG(dbgs() << MF.getName() << " ********\n"); 342 343 if (PreRegAlloc) { 344 // Estimate register pressure during pre-regalloc pass. 345 unsigned NumRC = TRI->getNumRegClasses(); 346 RegPressure.resize(NumRC); 347 std::fill(RegPressure.begin(), RegPressure.end(), 0); 348 RegLimit.resize(NumRC); 349 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), 350 E = TRI->regclass_end(); I != E; ++I) 351 RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF); 352 } 353 354 // Get our Loop information... 355 MLI = &getAnalysis<MachineLoopInfo>(); 356 DT = &getAnalysis<MachineDominatorTree>(); 357 AA = &getAnalysis<AliasAnalysis>(); 358 359 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 360 while (!Worklist.empty()) { 361 CurLoop = Worklist.pop_back_val(); 362 CurPreheader = nullptr; 363 ExitBlocks.clear(); 364 365 // If this is done before regalloc, only visit outer-most preheader-sporting 366 // loops. 367 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 368 Worklist.append(CurLoop->begin(), CurLoop->end()); 369 continue; 370 } 371 372 CurLoop->getExitBlocks(ExitBlocks); 373 374 if (!PreRegAlloc) 375 HoistRegionPostRA(); 376 else { 377 // CSEMap is initialized for loop header when the first instruction is 378 // being hoisted. 379 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 380 FirstInLoop = true; 381 HoistOutOfLoop(N); 382 CSEMap.clear(); 383 } 384 } 385 386 return Changed; 387 } 388 389 /// InstructionStoresToFI - Return true if instruction stores to the 390 /// specified frame. 391 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 392 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 393 oe = MI->memoperands_end(); o != oe; ++o) { 394 if (!(*o)->isStore() || !(*o)->getPseudoValue()) 395 continue; 396 if (const FixedStackPseudoSourceValue *Value = 397 dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) { 398 if (Value->getFrameIndex() == FI) 399 return true; 400 } 401 } 402 return false; 403 } 404 405 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 406 /// gather register def and frame object update information. 407 void MachineLICM::ProcessMI(MachineInstr *MI, 408 BitVector &PhysRegDefs, 409 BitVector &PhysRegClobbers, 410 SmallSet<int, 32> &StoredFIs, 411 SmallVectorImpl<CandidateInfo> &Candidates) { 412 bool RuledOut = false; 413 bool HasNonInvariantUse = false; 414 unsigned Def = 0; 415 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 416 const MachineOperand &MO = MI->getOperand(i); 417 if (MO.isFI()) { 418 // Remember if the instruction stores to the frame index. 419 int FI = MO.getIndex(); 420 if (!StoredFIs.count(FI) && 421 MFI->isSpillSlotObjectIndex(FI) && 422 InstructionStoresToFI(MI, FI)) 423 StoredFIs.insert(FI); 424 HasNonInvariantUse = true; 425 continue; 426 } 427 428 // We can't hoist an instruction defining a physreg that is clobbered in 429 // the loop. 430 if (MO.isRegMask()) { 431 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 432 continue; 433 } 434 435 if (!MO.isReg()) 436 continue; 437 unsigned Reg = MO.getReg(); 438 if (!Reg) 439 continue; 440 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 441 "Not expecting virtual register!"); 442 443 if (!MO.isDef()) { 444 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 445 // If it's using a non-loop-invariant register, then it's obviously not 446 // safe to hoist. 447 HasNonInvariantUse = true; 448 continue; 449 } 450 451 if (MO.isImplicit()) { 452 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 453 PhysRegClobbers.set(*AI); 454 if (!MO.isDead()) 455 // Non-dead implicit def? This cannot be hoisted. 456 RuledOut = true; 457 // No need to check if a dead implicit def is also defined by 458 // another instruction. 459 continue; 460 } 461 462 // FIXME: For now, avoid instructions with multiple defs, unless 463 // it's a dead implicit def. 464 if (Def) 465 RuledOut = true; 466 else 467 Def = Reg; 468 469 // If we have already seen another instruction that defines the same 470 // register, then this is not safe. Two defs is indicated by setting a 471 // PhysRegClobbers bit. 472 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 473 if (PhysRegDefs.test(*AS)) 474 PhysRegClobbers.set(*AS); 475 PhysRegDefs.set(*AS); 476 } 477 if (PhysRegClobbers.test(Reg)) 478 // MI defined register is seen defined by another instruction in 479 // the loop, it cannot be a LICM candidate. 480 RuledOut = true; 481 } 482 483 // Only consider reloads for now and remats which do not have register 484 // operands. FIXME: Consider unfold load folding instructions. 485 if (Def && !RuledOut) { 486 int FI = INT_MIN; 487 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 488 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 489 Candidates.push_back(CandidateInfo(MI, Def, FI)); 490 } 491 } 492 493 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 494 /// invariants out to the preheader. 495 void MachineLICM::HoistRegionPostRA() { 496 MachineBasicBlock *Preheader = getCurPreheader(); 497 if (!Preheader) 498 return; 499 500 unsigned NumRegs = TRI->getNumRegs(); 501 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 502 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 503 504 SmallVector<CandidateInfo, 32> Candidates; 505 SmallSet<int, 32> StoredFIs; 506 507 // Walk the entire region, count number of defs for each register, and 508 // collect potential LICM candidates. 509 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 510 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 511 MachineBasicBlock *BB = Blocks[i]; 512 513 // If the header of the loop containing this basic block is a landing pad, 514 // then don't try to hoist instructions out of this loop. 515 const MachineLoop *ML = MLI->getLoopFor(BB); 516 if (ML && ML->getHeader()->isLandingPad()) continue; 517 518 // Conservatively treat live-in's as an external def. 519 // FIXME: That means a reload that're reused in successor block(s) will not 520 // be LICM'ed. 521 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), 522 E = BB->livein_end(); I != E; ++I) { 523 unsigned Reg = *I; 524 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 525 PhysRegDefs.set(*AI); 526 } 527 528 SpeculationState = SpeculateUnknown; 529 for (MachineBasicBlock::iterator 530 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 531 MachineInstr *MI = &*MII; 532 ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 533 } 534 } 535 536 // Gather the registers read / clobbered by the terminator. 537 BitVector TermRegs(NumRegs); 538 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 539 if (TI != Preheader->end()) { 540 for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) { 541 const MachineOperand &MO = TI->getOperand(i); 542 if (!MO.isReg()) 543 continue; 544 unsigned Reg = MO.getReg(); 545 if (!Reg) 546 continue; 547 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 548 TermRegs.set(*AI); 549 } 550 } 551 552 // Now evaluate whether the potential candidates qualify. 553 // 1. Check if the candidate defined register is defined by another 554 // instruction in the loop. 555 // 2. If the candidate is a load from stack slot (always true for now), 556 // check if the slot is stored anywhere in the loop. 557 // 3. Make sure candidate def should not clobber 558 // registers read by the terminator. Similarly its def should not be 559 // clobbered by the terminator. 560 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { 561 if (Candidates[i].FI != INT_MIN && 562 StoredFIs.count(Candidates[i].FI)) 563 continue; 564 565 unsigned Def = Candidates[i].Def; 566 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 567 bool Safe = true; 568 MachineInstr *MI = Candidates[i].MI; 569 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { 570 const MachineOperand &MO = MI->getOperand(j); 571 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 572 continue; 573 unsigned Reg = MO.getReg(); 574 if (PhysRegDefs.test(Reg) || 575 PhysRegClobbers.test(Reg)) { 576 // If it's using a non-loop-invariant register, then it's obviously 577 // not safe to hoist. 578 Safe = false; 579 break; 580 } 581 } 582 if (Safe) 583 HoistPostRA(MI, Candidates[i].Def); 584 } 585 } 586 } 587 588 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current 589 /// loop, and make sure it is not killed by any instructions in the loop. 590 void MachineLICM::AddToLiveIns(unsigned Reg) { 591 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 592 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 593 MachineBasicBlock *BB = Blocks[i]; 594 if (!BB->isLiveIn(Reg)) 595 BB->addLiveIn(Reg); 596 for (MachineBasicBlock::iterator 597 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 598 MachineInstr *MI = &*MII; 599 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 600 MachineOperand &MO = MI->getOperand(i); 601 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 602 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 603 MO.setIsKill(false); 604 } 605 } 606 } 607 } 608 609 /// HoistPostRA - When an instruction is found to only use loop invariant 610 /// operands that is safe to hoist, this instruction is called to do the 611 /// dirty work. 612 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 613 MachineBasicBlock *Preheader = getCurPreheader(); 614 615 // Now move the instructions to the predecessor, inserting it before any 616 // terminator instructions. 617 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 618 << MI->getParent()->getNumber() << ": " << *MI); 619 620 // Splice the instruction to the preheader. 621 MachineBasicBlock *MBB = MI->getParent(); 622 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 623 624 // Add register to livein list to all the BBs in the current loop since a 625 // loop invariant must be kept live throughout the whole loop. This is 626 // important to ensure later passes do not scavenge the def register. 627 AddToLiveIns(Def); 628 629 ++NumPostRAHoisted; 630 Changed = true; 631 } 632 633 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute. 634 // If not then a load from this mbb may not be safe to hoist. 635 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 636 if (SpeculationState != SpeculateUnknown) 637 return SpeculationState == SpeculateFalse; 638 639 if (BB != CurLoop->getHeader()) { 640 // Check loop exiting blocks. 641 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 642 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 643 for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i) 644 if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) { 645 SpeculationState = SpeculateTrue; 646 return false; 647 } 648 } 649 650 SpeculationState = SpeculateFalse; 651 return true; 652 } 653 654 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 655 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); 656 657 // Remember livein register pressure. 658 BackTrace.push_back(RegPressure); 659 } 660 661 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 662 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); 663 BackTrace.pop_back(); 664 } 665 666 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given 667 /// dominator tree node if its a leaf or all of its children are done. Walk 668 /// up the dominator tree to destroy ancestors which are now done. 669 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 670 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 671 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 672 if (OpenChildren[Node]) 673 return; 674 675 // Pop scope. 676 ExitScope(Node->getBlock()); 677 678 // Now traverse upwards to pop ancestors whose offsprings are all done. 679 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 680 unsigned Left = --OpenChildren[Parent]; 681 if (Left != 0) 682 break; 683 ExitScope(Parent->getBlock()); 684 Node = Parent; 685 } 686 } 687 688 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all 689 /// blocks dominated by the specified header block, and that are in the 690 /// current loop) in depth first order w.r.t the DominatorTree. This allows 691 /// us to visit definitions before uses, allowing us to hoist a loop body in 692 /// one pass without iteration. 693 /// 694 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 695 SmallVector<MachineDomTreeNode*, 32> Scopes; 696 SmallVector<MachineDomTreeNode*, 8> WorkList; 697 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 698 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 699 700 // Perform a DFS walk to determine the order of visit. 701 WorkList.push_back(HeaderN); 702 do { 703 MachineDomTreeNode *Node = WorkList.pop_back_val(); 704 assert(Node && "Null dominator tree node?"); 705 MachineBasicBlock *BB = Node->getBlock(); 706 707 // If the header of the loop containing this basic block is a landing pad, 708 // then don't try to hoist instructions out of this loop. 709 const MachineLoop *ML = MLI->getLoopFor(BB); 710 if (ML && ML->getHeader()->isLandingPad()) 711 continue; 712 713 // If this subregion is not in the top level loop at all, exit. 714 if (!CurLoop->contains(BB)) 715 continue; 716 717 Scopes.push_back(Node); 718 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 719 unsigned NumChildren = Children.size(); 720 721 // Don't hoist things out of a large switch statement. This often causes 722 // code to be hoisted that wasn't going to be executed, and increases 723 // register pressure in a situation where it's likely to matter. 724 if (BB->succ_size() >= 25) 725 NumChildren = 0; 726 727 OpenChildren[Node] = NumChildren; 728 // Add children in reverse order as then the next popped worklist node is 729 // the first child of this node. This means we ultimately traverse the 730 // DOM tree in exactly the same order as if we'd recursed. 731 for (int i = (int)NumChildren-1; i >= 0; --i) { 732 MachineDomTreeNode *Child = Children[i]; 733 ParentMap[Child] = Node; 734 WorkList.push_back(Child); 735 } 736 } while (!WorkList.empty()); 737 738 if (Scopes.size() != 0) { 739 MachineBasicBlock *Preheader = getCurPreheader(); 740 if (!Preheader) 741 return; 742 743 // Compute registers which are livein into the loop headers. 744 RegSeen.clear(); 745 BackTrace.clear(); 746 InitRegPressure(Preheader); 747 } 748 749 // Now perform LICM. 750 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { 751 MachineDomTreeNode *Node = Scopes[i]; 752 MachineBasicBlock *MBB = Node->getBlock(); 753 754 MachineBasicBlock *Preheader = getCurPreheader(); 755 if (!Preheader) 756 continue; 757 758 EnterScope(MBB); 759 760 // Process the block 761 SpeculationState = SpeculateUnknown; 762 for (MachineBasicBlock::iterator 763 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 764 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 765 MachineInstr *MI = &*MII; 766 if (!Hoist(MI, Preheader)) 767 UpdateRegPressure(MI); 768 MII = NextMII; 769 } 770 771 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 772 ExitScopeIfDone(Node, OpenChildren, ParentMap); 773 } 774 } 775 776 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 777 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 778 } 779 780 /// getRegisterClassIDAndCost - For a given MI, register, and the operand 781 /// index, return the ID and cost of its representative register class. 782 void 783 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI, 784 unsigned Reg, unsigned OpIdx, 785 unsigned &RCId, unsigned &RCCost) const { 786 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 787 MVT VT = *RC->vt_begin(); 788 if (VT == MVT::Untyped) { 789 RCId = RC->getID(); 790 RCCost = 1; 791 } else { 792 RCId = TLI->getRepRegClassFor(VT)->getID(); 793 RCCost = TLI->getRepRegClassCostFor(VT); 794 } 795 } 796 797 /// InitRegPressure - Find all virtual register references that are liveout of 798 /// the preheader to initialize the starting "register pressure". Note this 799 /// does not count live through (livein but not used) registers. 800 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 801 std::fill(RegPressure.begin(), RegPressure.end(), 0); 802 803 // If the preheader has only a single predecessor and it ends with a 804 // fallthrough or an unconditional branch, then scan its predecessor for live 805 // defs as well. This happens whenever the preheader is created by splitting 806 // the critical edge from the loop predecessor to the loop header. 807 if (BB->pred_size() == 1) { 808 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 809 SmallVector<MachineOperand, 4> Cond; 810 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 811 InitRegPressure(*BB->pred_begin()); 812 } 813 814 for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end(); 815 MII != E; ++MII) { 816 MachineInstr *MI = &*MII; 817 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 818 const MachineOperand &MO = MI->getOperand(i); 819 if (!MO.isReg() || MO.isImplicit()) 820 continue; 821 unsigned Reg = MO.getReg(); 822 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 823 continue; 824 825 bool isNew = RegSeen.insert(Reg); 826 unsigned RCId, RCCost; 827 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 828 if (MO.isDef()) 829 RegPressure[RCId] += RCCost; 830 else { 831 bool isKill = isOperandKill(MO, MRI); 832 if (isNew && !isKill) 833 // Haven't seen this, it must be a livein. 834 RegPressure[RCId] += RCCost; 835 else if (!isNew && isKill) 836 RegPressure[RCId] -= RCCost; 837 } 838 } 839 } 840 } 841 842 /// UpdateRegPressure - Update estimate of register pressure after the 843 /// specified instruction. 844 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) { 845 if (MI->isImplicitDef()) 846 return; 847 848 SmallVector<unsigned, 4> Defs; 849 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 850 const MachineOperand &MO = MI->getOperand(i); 851 if (!MO.isReg() || MO.isImplicit()) 852 continue; 853 unsigned Reg = MO.getReg(); 854 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 855 continue; 856 857 bool isNew = RegSeen.insert(Reg); 858 if (MO.isDef()) 859 Defs.push_back(Reg); 860 else if (!isNew && isOperandKill(MO, MRI)) { 861 unsigned RCId, RCCost; 862 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 863 if (RCCost > RegPressure[RCId]) 864 RegPressure[RCId] = 0; 865 else 866 RegPressure[RCId] -= RCCost; 867 } 868 } 869 870 unsigned Idx = 0; 871 while (!Defs.empty()) { 872 unsigned Reg = Defs.pop_back_val(); 873 unsigned RCId, RCCost; 874 getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost); 875 RegPressure[RCId] += RCCost; 876 ++Idx; 877 } 878 } 879 880 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction 881 /// loads from global offset table or constant pool. 882 static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) { 883 assert (MI.mayLoad() && "Expected MI that loads!"); 884 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 885 E = MI.memoperands_end(); I != E; ++I) { 886 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) { 887 if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool()) 888 return true; 889 } 890 } 891 return false; 892 } 893 894 /// IsLICMCandidate - Returns true if the instruction may be a suitable 895 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously 896 /// not safe to hoist it. 897 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 898 // Check if it's safe to move the instruction. 899 bool DontMoveAcrossStore = true; 900 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) 901 return false; 902 903 // If it is load then check if it is guaranteed to execute by making sure that 904 // it dominates all exiting blocks. If it doesn't, then there is a path out of 905 // the loop which does not execute this load, so we can't hoist it. Loads 906 // from constant memory are not safe to speculate all the time, for example 907 // indexed load from a jump table. 908 // Stores and side effects are already checked by isSafeToMove. 909 if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) && 910 !IsGuaranteedToExecute(I.getParent())) 911 return false; 912 913 return true; 914 } 915 916 /// IsLoopInvariantInst - Returns true if the instruction is loop 917 /// invariant. I.e., all virtual register operands are defined outside of the 918 /// loop, physical registers aren't accessed explicitly, and there are no side 919 /// effects that aren't captured by the operands or other flags. 920 /// 921 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 922 if (!IsLICMCandidate(I)) 923 return false; 924 925 // The instruction is loop invariant if all of its operands are. 926 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 927 const MachineOperand &MO = I.getOperand(i); 928 929 if (!MO.isReg()) 930 continue; 931 932 unsigned Reg = MO.getReg(); 933 if (Reg == 0) continue; 934 935 // Don't hoist an instruction that uses or defines a physical register. 936 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 937 if (MO.isUse()) { 938 // If the physreg has no defs anywhere, it's just an ambient register 939 // and we can freely move its uses. Alternatively, if it's allocatable, 940 // it could get allocated to something with a def during allocation. 941 if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent())) 942 return false; 943 // Otherwise it's safe to move. 944 continue; 945 } else if (!MO.isDead()) { 946 // A def that isn't dead. We can't move it. 947 return false; 948 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 949 // If the reg is live into the loop, we can't hoist an instruction 950 // which would clobber it. 951 return false; 952 } 953 } 954 955 if (!MO.isUse()) 956 continue; 957 958 assert(MRI->getVRegDef(Reg) && 959 "Machine instr not mapped for this vreg?!"); 960 961 // If the loop contains the definition of an operand, then the instruction 962 // isn't loop invariant. 963 if (CurLoop->contains(MRI->getVRegDef(Reg))) 964 return false; 965 } 966 967 // If we got this far, the instruction is loop invariant! 968 return true; 969 } 970 971 972 /// HasLoopPHIUse - Return true if the specified instruction is used by a 973 /// phi node and hoisting it could cause a copy to be inserted. 974 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 975 SmallVector<const MachineInstr*, 8> Work(1, MI); 976 do { 977 MI = Work.pop_back_val(); 978 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 979 if (!MO->isReg() || !MO->isDef()) 980 continue; 981 unsigned Reg = MO->getReg(); 982 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 983 continue; 984 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 985 // A PHI may cause a copy to be inserted. 986 if (UseMI.isPHI()) { 987 // A PHI inside the loop causes a copy because the live range of Reg is 988 // extended across the PHI. 989 if (CurLoop->contains(&UseMI)) 990 return true; 991 // A PHI in an exit block can cause a copy to be inserted if the PHI 992 // has multiple predecessors in the loop with different values. 993 // For now, approximate by rejecting all exit blocks. 994 if (isExitBlock(UseMI.getParent())) 995 return true; 996 continue; 997 } 998 // Look past copies as well. 999 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1000 Work.push_back(&UseMI); 1001 } 1002 } 1003 } while (!Work.empty()); 1004 return false; 1005 } 1006 1007 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg' 1008 /// and an use in the current loop, return true if the target considered 1009 /// it 'high'. 1010 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 1011 unsigned DefIdx, unsigned Reg) const { 1012 if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg)) 1013 return false; 1014 1015 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1016 if (UseMI.isCopyLike()) 1017 continue; 1018 if (!CurLoop->contains(UseMI.getParent())) 1019 continue; 1020 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1021 const MachineOperand &MO = UseMI.getOperand(i); 1022 if (!MO.isReg() || !MO.isUse()) 1023 continue; 1024 unsigned MOReg = MO.getReg(); 1025 if (MOReg != Reg) 1026 continue; 1027 1028 if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i)) 1029 return true; 1030 } 1031 1032 // Only look at the first in loop use. 1033 break; 1034 } 1035 1036 return false; 1037 } 1038 1039 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or 1040 /// the operand latency between its def and a use is one or less. 1041 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 1042 if (MI.isAsCheapAsAMove() || MI.isCopyLike()) 1043 return true; 1044 if (!InstrItins || InstrItins->isEmpty()) 1045 return false; 1046 1047 bool isCheap = false; 1048 unsigned NumDefs = MI.getDesc().getNumDefs(); 1049 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1050 MachineOperand &DefMO = MI.getOperand(i); 1051 if (!DefMO.isReg() || !DefMO.isDef()) 1052 continue; 1053 --NumDefs; 1054 unsigned Reg = DefMO.getReg(); 1055 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1056 continue; 1057 1058 if (!TII->hasLowDefLatency(InstrItins, &MI, i)) 1059 return false; 1060 isCheap = true; 1061 } 1062 1063 return isCheap; 1064 } 1065 1066 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check 1067 /// if hoisting an instruction of the given cost matrix can cause high 1068 /// register pressure. 1069 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, 1070 bool CheapInstr) { 1071 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1072 CI != CE; ++CI) { 1073 if (CI->second <= 0) 1074 continue; 1075 1076 unsigned RCId = CI->first; 1077 unsigned Limit = RegLimit[RCId]; 1078 int Cost = CI->second; 1079 1080 // Don't hoist cheap instructions if they would increase register pressure, 1081 // even if we're under the limit. 1082 if (CheapInstr) 1083 return true; 1084 1085 for (unsigned i = BackTrace.size(); i != 0; --i) { 1086 SmallVectorImpl<unsigned> &RP = BackTrace[i-1]; 1087 if (RP[RCId] + Cost >= Limit) 1088 return true; 1089 } 1090 } 1091 1092 return false; 1093 } 1094 1095 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the 1096 /// current block and update their register pressures to reflect the effect 1097 /// of hoisting MI from the current block to the preheader. 1098 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1099 if (MI->isImplicitDef()) 1100 return; 1101 1102 // First compute the 'cost' of the instruction, i.e. its contribution 1103 // to register pressure. 1104 DenseMap<unsigned, int> Cost; 1105 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1106 const MachineOperand &MO = MI->getOperand(i); 1107 if (!MO.isReg() || MO.isImplicit()) 1108 continue; 1109 unsigned Reg = MO.getReg(); 1110 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1111 continue; 1112 1113 unsigned RCId, RCCost; 1114 getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost); 1115 if (MO.isDef()) { 1116 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1117 if (CI != Cost.end()) 1118 CI->second += RCCost; 1119 else 1120 Cost.insert(std::make_pair(RCId, RCCost)); 1121 } else if (isOperandKill(MO, MRI)) { 1122 DenseMap<unsigned, int>::iterator CI = Cost.find(RCId); 1123 if (CI != Cost.end()) 1124 CI->second -= RCCost; 1125 else 1126 Cost.insert(std::make_pair(RCId, -RCCost)); 1127 } 1128 } 1129 1130 // Update register pressure of blocks from loop header to current block. 1131 for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) { 1132 SmallVectorImpl<unsigned> &RP = BackTrace[i]; 1133 for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end(); 1134 CI != CE; ++CI) { 1135 unsigned RCId = CI->first; 1136 RP[RCId] += CI->second; 1137 } 1138 } 1139 } 1140 1141 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist 1142 /// the given loop invariant. 1143 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1144 if (MI.isImplicitDef()) 1145 return true; 1146 1147 // Besides removing computation from the loop, hoisting an instruction has 1148 // these effects: 1149 // 1150 // - The value defined by the instruction becomes live across the entire 1151 // loop. This increases register pressure in the loop. 1152 // 1153 // - If the value is used by a PHI in the loop, a copy will be required for 1154 // lowering the PHI after extending the live range. 1155 // 1156 // - When hoisting the last use of a value in the loop, that value no longer 1157 // needs to be live in the loop. This lowers register pressure in the loop. 1158 1159 bool CheapInstr = IsCheapInstruction(MI); 1160 bool CreatesCopy = HasLoopPHIUse(&MI); 1161 1162 // Don't hoist a cheap instruction if it would create a copy in the loop. 1163 if (CheapInstr && CreatesCopy) { 1164 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1165 return false; 1166 } 1167 1168 // Rematerializable instructions should always be hoisted since the register 1169 // allocator can just pull them down again when needed. 1170 if (TII->isTriviallyReMaterializable(&MI, AA)) 1171 return true; 1172 1173 // Estimate register pressure to determine whether to LICM the instruction. 1174 // In low register pressure situation, we can be more aggressive about 1175 // hoisting. Also, favors hoisting long latency instructions even in 1176 // moderately high pressure situation. 1177 // Cheap instructions will only be hoisted if they don't increase register 1178 // pressure at all. 1179 // FIXME: If there are long latency loop-invariant instructions inside the 1180 // loop at this point, why didn't the optimizer's LICM hoist them? 1181 DenseMap<unsigned, int> Cost; 1182 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1183 const MachineOperand &MO = MI.getOperand(i); 1184 if (!MO.isReg() || MO.isImplicit()) 1185 continue; 1186 unsigned Reg = MO.getReg(); 1187 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1188 continue; 1189 1190 unsigned RCId, RCCost; 1191 getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost); 1192 if (MO.isDef()) { 1193 if (HasHighOperandLatency(MI, i, Reg)) { 1194 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1195 ++NumHighLatency; 1196 return true; 1197 } 1198 Cost[RCId] += RCCost; 1199 } else if (isOperandKill(MO, MRI)) { 1200 // Is a virtual register use is a kill, hoisting it out of the loop 1201 // may actually reduce register pressure or be register pressure 1202 // neutral. 1203 Cost[RCId] -= RCCost; 1204 } 1205 } 1206 1207 // Visit BBs from header to current BB, if hoisting this doesn't cause 1208 // high register pressure, then it's safe to proceed. 1209 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1210 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1211 ++NumLowRP; 1212 return true; 1213 } 1214 1215 // Don't risk increasing register pressure if it would create copies. 1216 if (CreatesCopy) { 1217 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1218 return false; 1219 } 1220 1221 // Do not "speculate" in high register pressure situation. If an 1222 // instruction is not guaranteed to be executed in the loop, it's best to be 1223 // conservative. 1224 if (AvoidSpeculation && 1225 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1226 DEBUG(dbgs() << "Won't speculate: " << MI); 1227 return false; 1228 } 1229 1230 // High register pressure situation, only hoist if the instruction is going 1231 // to be remat'ed. 1232 if (!TII->isTriviallyReMaterializable(&MI, AA) && 1233 !MI.isInvariantLoad(AA)) { 1234 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1235 return false; 1236 } 1237 1238 return true; 1239 } 1240 1241 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1242 // Don't unfold simple loads. 1243 if (MI->canFoldAsLoad()) 1244 return nullptr; 1245 1246 // If not, we may be able to unfold a load and hoist that. 1247 // First test whether the instruction is loading from an amenable 1248 // memory location. 1249 if (!MI->isInvariantLoad(AA)) 1250 return nullptr; 1251 1252 // Next determine the register class for a temporary register. 1253 unsigned LoadRegIndex; 1254 unsigned NewOpc = 1255 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1256 /*UnfoldLoad=*/true, 1257 /*UnfoldStore=*/false, 1258 &LoadRegIndex); 1259 if (NewOpc == 0) return nullptr; 1260 const MCInstrDesc &MID = TII->get(NewOpc); 1261 if (MID.getNumDefs() != 1) return nullptr; 1262 MachineFunction &MF = *MI->getParent()->getParent(); 1263 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1264 // Ok, we're unfolding. Create a temporary register and do the unfold. 1265 unsigned Reg = MRI->createVirtualRegister(RC); 1266 1267 SmallVector<MachineInstr *, 2> NewMIs; 1268 bool Success = 1269 TII->unfoldMemoryOperand(MF, MI, Reg, 1270 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 1271 NewMIs); 1272 (void)Success; 1273 assert(Success && 1274 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1275 "succeeded!"); 1276 assert(NewMIs.size() == 2 && 1277 "Unfolded a load into multiple instructions!"); 1278 MachineBasicBlock *MBB = MI->getParent(); 1279 MachineBasicBlock::iterator Pos = MI; 1280 MBB->insert(Pos, NewMIs[0]); 1281 MBB->insert(Pos, NewMIs[1]); 1282 // If unfolding produced a load that wasn't loop-invariant or profitable to 1283 // hoist, discard the new instructions and bail. 1284 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1285 NewMIs[0]->eraseFromParent(); 1286 NewMIs[1]->eraseFromParent(); 1287 return nullptr; 1288 } 1289 1290 // Update register pressure for the unfolded instruction. 1291 UpdateRegPressure(NewMIs[1]); 1292 1293 // Otherwise we successfully unfolded a load that we can hoist. 1294 MI->eraseFromParent(); 1295 return NewMIs[0]; 1296 } 1297 1298 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1299 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { 1300 const MachineInstr *MI = &*I; 1301 unsigned Opcode = MI->getOpcode(); 1302 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1303 CI = CSEMap.find(Opcode); 1304 if (CI != CSEMap.end()) 1305 CI->second.push_back(MI); 1306 else { 1307 std::vector<const MachineInstr*> CSEMIs; 1308 CSEMIs.push_back(MI); 1309 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); 1310 } 1311 } 1312 } 1313 1314 const MachineInstr* 1315 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1316 std::vector<const MachineInstr*> &PrevMIs) { 1317 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { 1318 const MachineInstr *PrevMI = PrevMIs[i]; 1319 if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr))) 1320 return PrevMI; 1321 } 1322 return nullptr; 1323 } 1324 1325 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1326 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1327 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1328 // the undef property onto uses. 1329 if (CI == CSEMap.end() || MI->isImplicitDef()) 1330 return false; 1331 1332 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1333 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1334 1335 // Replace virtual registers defined by MI by their counterparts defined 1336 // by Dup. 1337 SmallVector<unsigned, 2> Defs; 1338 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1339 const MachineOperand &MO = MI->getOperand(i); 1340 1341 // Physical registers may not differ here. 1342 assert((!MO.isReg() || MO.getReg() == 0 || 1343 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1344 MO.getReg() == Dup->getOperand(i).getReg()) && 1345 "Instructions with different phys regs are not identical!"); 1346 1347 if (MO.isReg() && MO.isDef() && 1348 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1349 Defs.push_back(i); 1350 } 1351 1352 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1353 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1354 unsigned Idx = Defs[i]; 1355 unsigned Reg = MI->getOperand(Idx).getReg(); 1356 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1357 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1358 1359 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1360 // Restore old RCs if more than one defs. 1361 for (unsigned j = 0; j != i; ++j) 1362 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1363 return false; 1364 } 1365 } 1366 1367 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1368 unsigned Idx = Defs[i]; 1369 unsigned Reg = MI->getOperand(Idx).getReg(); 1370 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1371 MRI->replaceRegWith(Reg, DupReg); 1372 MRI->clearKillFlags(DupReg); 1373 } 1374 1375 MI->eraseFromParent(); 1376 ++NumCSEed; 1377 return true; 1378 } 1379 return false; 1380 } 1381 1382 /// MayCSE - Return true if the given instruction will be CSE'd if it's 1383 /// hoisted out of the loop. 1384 bool MachineLICM::MayCSE(MachineInstr *MI) { 1385 unsigned Opcode = MI->getOpcode(); 1386 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1387 CI = CSEMap.find(Opcode); 1388 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1389 // the undef property onto uses. 1390 if (CI == CSEMap.end() || MI->isImplicitDef()) 1391 return false; 1392 1393 return LookForDuplicate(MI, CI->second) != nullptr; 1394 } 1395 1396 /// Hoist - When an instruction is found to use only loop invariant operands 1397 /// that are safe to hoist, this instruction is called to do the dirty work. 1398 /// 1399 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1400 // First check whether we should hoist this instruction. 1401 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1402 // If not, try unfolding a hoistable load. 1403 MI = ExtractHoistableLoad(MI); 1404 if (!MI) return false; 1405 } 1406 1407 // Now move the instructions to the predecessor, inserting it before any 1408 // terminator instructions. 1409 DEBUG({ 1410 dbgs() << "Hoisting " << *MI; 1411 if (Preheader->getBasicBlock()) 1412 dbgs() << " to MachineBasicBlock " 1413 << Preheader->getName(); 1414 if (MI->getParent()->getBasicBlock()) 1415 dbgs() << " from MachineBasicBlock " 1416 << MI->getParent()->getName(); 1417 dbgs() << "\n"; 1418 }); 1419 1420 // If this is the first instruction being hoisted to the preheader, 1421 // initialize the CSE map with potential common expressions. 1422 if (FirstInLoop) { 1423 InitCSEMap(Preheader); 1424 FirstInLoop = false; 1425 } 1426 1427 // Look for opportunity to CSE the hoisted instruction. 1428 unsigned Opcode = MI->getOpcode(); 1429 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1430 CI = CSEMap.find(Opcode); 1431 if (!EliminateCSE(MI, CI)) { 1432 // Otherwise, splice the instruction to the preheader. 1433 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1434 1435 // Update register pressure for BBs from header to this block. 1436 UpdateBackTraceRegPressure(MI); 1437 1438 // Clear the kill flags of any register this instruction defines, 1439 // since they may need to be live throughout the entire loop 1440 // rather than just live for part of it. 1441 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1442 MachineOperand &MO = MI->getOperand(i); 1443 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1444 MRI->clearKillFlags(MO.getReg()); 1445 } 1446 1447 // Add to the CSE map. 1448 if (CI != CSEMap.end()) 1449 CI->second.push_back(MI); 1450 else { 1451 std::vector<const MachineInstr*> CSEMIs; 1452 CSEMIs.push_back(MI); 1453 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); 1454 } 1455 } 1456 1457 ++NumHoisted; 1458 Changed = true; 1459 1460 return true; 1461 } 1462 1463 MachineBasicBlock *MachineLICM::getCurPreheader() { 1464 // Determine the block to which to hoist instructions. If we can't find a 1465 // suitable loop predecessor, we can't do any hoisting. 1466 1467 // If we've tried to get a preheader and failed, don't try again. 1468 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1469 return nullptr; 1470 1471 if (!CurPreheader) { 1472 CurPreheader = CurLoop->getLoopPreheader(); 1473 if (!CurPreheader) { 1474 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1475 if (!Pred) { 1476 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1477 return nullptr; 1478 } 1479 1480 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 1481 if (!CurPreheader) { 1482 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1483 return nullptr; 1484 } 1485 } 1486 } 1487 return CurPreheader; 1488 } 1489