Home | History | Annotate | Download | only in XCore
      1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the XCoreTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "XCoreISelLowering.h"
     15 #include "XCore.h"
     16 #include "XCoreMachineFunctionInfo.h"
     17 #include "XCoreSubtarget.h"
     18 #include "XCoreTargetMachine.h"
     19 #include "XCoreTargetObjectFile.h"
     20 #include "llvm/CodeGen/CallingConvLower.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/SelectionDAGISel.h"
     27 #include "llvm/CodeGen/ValueTypes.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <algorithm>
     39 
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "xcore-lower"
     43 
     44 const char *XCoreTargetLowering::
     45 getTargetNodeName(unsigned Opcode) const
     46 {
     47   switch (Opcode)
     48   {
     49     case XCoreISD::BL                : return "XCoreISD::BL";
     50     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
     51     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
     52     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
     53     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
     54     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
     55     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
     56     case XCoreISD::LADD              : return "XCoreISD::LADD";
     57     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
     58     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
     59     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
     60     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
     61     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
     62     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
     63     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
     64     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
     65     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
     66     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
     67     default                          : return nullptr;
     68   }
     69 }
     70 
     71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM)
     72     : TargetLowering(TM, new XCoreTargetObjectFile()), TM(TM),
     73       Subtarget(TM.getSubtarget<XCoreSubtarget>()) {
     74 
     75   // Set up the register classes.
     76   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
     77 
     78   // Compute derived properties from the register classes
     79   computeRegisterProperties();
     80 
     81   // Division is expensive
     82   setIntDivIsCheap(false);
     83 
     84   setStackPointerRegisterToSaveRestore(XCore::SP);
     85 
     86   setSchedulingPreference(Sched::Source);
     87 
     88   // Use i32 for setcc operations results (slt, sgt, ...).
     89   setBooleanContents(ZeroOrOneBooleanContent);
     90   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     91 
     92   // XCore does not have the NodeTypes below.
     93   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
     94   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
     95   setOperationAction(ISD::ADDC, MVT::i32, Expand);
     96   setOperationAction(ISD::ADDE, MVT::i32, Expand);
     97   setOperationAction(ISD::SUBC, MVT::i32, Expand);
     98   setOperationAction(ISD::SUBE, MVT::i32, Expand);
     99 
    100   // 64bit
    101   setOperationAction(ISD::ADD, MVT::i64, Custom);
    102   setOperationAction(ISD::SUB, MVT::i64, Custom);
    103   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
    104   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
    105   setOperationAction(ISD::MULHS, MVT::i32, Expand);
    106   setOperationAction(ISD::MULHU, MVT::i32, Expand);
    107   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    108   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    109   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
    110 
    111   // Bit Manipulation
    112   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    113   setOperationAction(ISD::ROTL , MVT::i32, Expand);
    114   setOperationAction(ISD::ROTR , MVT::i32, Expand);
    115   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    116   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    117 
    118   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    119 
    120   // Jump tables.
    121   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
    122 
    123   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    124   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
    125 
    126   // Conversion of i64 -> double produces constantpool nodes
    127   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
    128 
    129   // Loads
    130   setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
    131   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
    132   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    133 
    134   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
    135   setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
    136 
    137   // Custom expand misaligned loads / stores.
    138   setOperationAction(ISD::LOAD, MVT::i32, Custom);
    139   setOperationAction(ISD::STORE, MVT::i32, Custom);
    140 
    141   // Varargs
    142   setOperationAction(ISD::VAEND, MVT::Other, Expand);
    143   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
    144   setOperationAction(ISD::VAARG, MVT::Other, Custom);
    145   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    146 
    147   // Dynamic stack
    148   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
    149   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
    150   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    151 
    152   // Exception handling
    153   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
    154   setExceptionPointerRegister(XCore::R0);
    155   setExceptionSelectorRegister(XCore::R1);
    156   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    157 
    158   // Atomic operations
    159   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
    160   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
    161   setInsertFencesForAtomic(true);
    162   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    163   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    164   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    165 
    166   // TRAMPOLINE is custom lowered.
    167   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    168   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    169 
    170   // We want to custom lower some of our intrinsics.
    171   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    172 
    173   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
    174   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
    175     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
    176 
    177   // We have target-specific dag combine patterns for the following nodes:
    178   setTargetDAGCombine(ISD::STORE);
    179   setTargetDAGCombine(ISD::ADD);
    180   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    181   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    182 
    183   setMinFunctionAlignment(1);
    184   setPrefFunctionAlignment(2);
    185 }
    186 
    187 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
    188   if (Val.getOpcode() != ISD::LOAD)
    189     return false;
    190 
    191   EVT VT1 = Val.getValueType();
    192   if (!VT1.isSimple() || !VT1.isInteger() ||
    193       !VT2.isSimple() || !VT2.isInteger())
    194     return false;
    195 
    196   switch (VT1.getSimpleVT().SimpleTy) {
    197   default: break;
    198   case MVT::i8:
    199     return true;
    200   }
    201 
    202   return false;
    203 }
    204 
    205 SDValue XCoreTargetLowering::
    206 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
    207   switch (Op.getOpcode())
    208   {
    209   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
    210   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
    211   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
    212   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
    213   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
    214   case ISD::LOAD:               return LowerLOAD(Op, DAG);
    215   case ISD::STORE:              return LowerSTORE(Op, DAG);
    216   case ISD::VAARG:              return LowerVAARG(Op, DAG);
    217   case ISD::VASTART:            return LowerVASTART(Op, DAG);
    218   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
    219   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
    220   // FIXME: Remove these when LegalizeDAGTypes lands.
    221   case ISD::ADD:
    222   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
    223   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
    224   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
    225   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
    226   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
    227   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
    228   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    229   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
    230   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
    231   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
    232   default:
    233     llvm_unreachable("unimplemented operand");
    234   }
    235 }
    236 
    237 /// ReplaceNodeResults - Replace the results of node with an illegal result
    238 /// type with new values built out of custom code.
    239 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
    240                                              SmallVectorImpl<SDValue>&Results,
    241                                              SelectionDAG &DAG) const {
    242   switch (N->getOpcode()) {
    243   default:
    244     llvm_unreachable("Don't know how to custom expand this!");
    245   case ISD::ADD:
    246   case ISD::SUB:
    247     Results.push_back(ExpandADDSUB(N, DAG));
    248     return;
    249   }
    250 }
    251 
    252 //===----------------------------------------------------------------------===//
    253 //  Misc Lower Operation implementation
    254 //===----------------------------------------------------------------------===//
    255 
    256 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
    257                                                      const GlobalValue *GV,
    258                                                      SelectionDAG &DAG) const {
    259   // FIXME there is no actual debug info here
    260   SDLoc dl(GA);
    261 
    262   if (GV->getType()->getElementType()->isFunctionTy())
    263     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
    264 
    265   const auto *GVar = dyn_cast<GlobalVariable>(GV);
    266   if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
    267       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
    268     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
    269 
    270   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
    271 }
    272 
    273 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
    274   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
    275     return true;
    276 
    277   Type *ObjType = GV->getType()->getPointerElementType();
    278   if (!ObjType->isSized())
    279     return false;
    280 
    281   unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
    282   return ObjSize < CodeModelLargeSize && ObjSize != 0;
    283 }
    284 
    285 SDValue XCoreTargetLowering::
    286 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
    287 {
    288   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
    289   const GlobalValue *GV = GN->getGlobal();
    290   SDLoc DL(GN);
    291   int64_t Offset = GN->getOffset();
    292   if (IsSmallObject(GV, *this)) {
    293     // We can only fold positive offsets that are a multiple of the word size.
    294     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
    295     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
    296     GA = getGlobalAddressWrapper(GA, GV, DAG);
    297     // Handle the rest of the offset.
    298     if (Offset != FoldedOffset) {
    299       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
    300       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
    301     }
    302     return GA;
    303   } else {
    304     // Ideally we would not fold in offset with an index <= 11.
    305     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
    306     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
    307     Ty = Type::getInt32Ty(*DAG.getContext());
    308     Constant *Idx = ConstantInt::get(Ty, Offset);
    309     Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx);
    310     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
    311     return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
    312                        MachinePointerInfo(), false, false, false, 0);
    313   }
    314 }
    315 
    316 SDValue XCoreTargetLowering::
    317 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
    318 {
    319   SDLoc DL(Op);
    320 
    321   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
    322   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
    323 
    324   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
    325 }
    326 
    327 SDValue XCoreTargetLowering::
    328 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
    329 {
    330   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
    331   // FIXME there isn't really debug info here
    332   SDLoc dl(CP);
    333   EVT PtrVT = Op.getValueType();
    334   SDValue Res;
    335   if (CP->isMachineConstantPoolEntry()) {
    336     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
    337                                     CP->getAlignment(), CP->getOffset());
    338   } else {
    339     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
    340                                     CP->getAlignment(), CP->getOffset());
    341   }
    342   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
    343 }
    344 
    345 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
    346   return MachineJumpTableInfo::EK_Inline;
    347 }
    348 
    349 SDValue XCoreTargetLowering::
    350 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
    351 {
    352   SDValue Chain = Op.getOperand(0);
    353   SDValue Table = Op.getOperand(1);
    354   SDValue Index = Op.getOperand(2);
    355   SDLoc dl(Op);
    356   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
    357   unsigned JTI = JT->getIndex();
    358   MachineFunction &MF = DAG.getMachineFunction();
    359   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
    360   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
    361 
    362   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
    363   if (NumEntries <= 32) {
    364     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
    365   }
    366   assert((NumEntries >> 31) == 0);
    367   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
    368                                     DAG.getConstant(1, MVT::i32));
    369   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
    370                      ScaledIndex);
    371 }
    372 
    373 SDValue XCoreTargetLowering::
    374 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
    375                                        int64_t Offset, SelectionDAG &DAG) const
    376 {
    377   if ((Offset & 0x3) == 0) {
    378     return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
    379                        false, false, false, 0);
    380   }
    381   // Lower to pair of consecutive word aligned loads plus some bit shifting.
    382   int32_t HighOffset = RoundUpToAlignment(Offset, 4);
    383   int32_t LowOffset = HighOffset - 4;
    384   SDValue LowAddr, HighAddr;
    385   if (GlobalAddressSDNode *GASD =
    386         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
    387     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
    388                                    LowOffset);
    389     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
    390                                     HighOffset);
    391   } else {
    392     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
    393                           DAG.getConstant(LowOffset, MVT::i32));
    394     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
    395                            DAG.getConstant(HighOffset, MVT::i32));
    396   }
    397   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
    398   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
    399 
    400   SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
    401                             LowAddr, MachinePointerInfo(),
    402                             false, false, false, 0);
    403   SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
    404                              HighAddr, MachinePointerInfo(),
    405                              false, false, false, 0);
    406   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
    407   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
    408   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
    409   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
    410                       High.getValue(1));
    411   SDValue Ops[] = { Result, Chain };
    412   return DAG.getMergeValues(Ops, DL);
    413 }
    414 
    415 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
    416 {
    417   APInt KnownZero, KnownOne;
    418   DAG.computeKnownBits(Value, KnownZero, KnownOne);
    419   return KnownZero.countTrailingOnes() >= 2;
    420 }
    421 
    422 SDValue XCoreTargetLowering::
    423 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
    424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    425   LoadSDNode *LD = cast<LoadSDNode>(Op);
    426   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
    427          "Unexpected extension type");
    428   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
    429   if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
    430     return SDValue();
    431 
    432   unsigned ABIAlignment = getDataLayout()->
    433     getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
    434   // Leave aligned load alone.
    435   if (LD->getAlignment() >= ABIAlignment)
    436     return SDValue();
    437 
    438   SDValue Chain = LD->getChain();
    439   SDValue BasePtr = LD->getBasePtr();
    440   SDLoc DL(Op);
    441 
    442   if (!LD->isVolatile()) {
    443     const GlobalValue *GV;
    444     int64_t Offset = 0;
    445     if (DAG.isBaseWithConstantOffset(BasePtr) &&
    446         isWordAligned(BasePtr->getOperand(0), DAG)) {
    447       SDValue NewBasePtr = BasePtr->getOperand(0);
    448       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
    449       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
    450                                                     Offset, DAG);
    451     }
    452     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
    453         MinAlign(GV->getAlignment(), 4) == 4) {
    454       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
    455                                                 BasePtr->getValueType(0));
    456       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
    457                                                     Offset, DAG);
    458     }
    459   }
    460 
    461   if (LD->getAlignment() == 2) {
    462     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
    463                                  BasePtr, LD->getPointerInfo(), MVT::i16,
    464                                  LD->isVolatile(), LD->isNonTemporal(), 2);
    465     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
    466                                    DAG.getConstant(2, MVT::i32));
    467     SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
    468                                   HighAddr,
    469                                   LD->getPointerInfo().getWithOffset(2),
    470                                   MVT::i16, LD->isVolatile(),
    471                                   LD->isNonTemporal(), 2);
    472     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
    473                                       DAG.getConstant(16, MVT::i32));
    474     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
    475     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
    476                              High.getValue(1));
    477     SDValue Ops[] = { Result, Chain };
    478     return DAG.getMergeValues(Ops, DL);
    479   }
    480 
    481   // Lower to a call to __misaligned_load(BasePtr).
    482   Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
    483   TargetLowering::ArgListTy Args;
    484   TargetLowering::ArgListEntry Entry;
    485 
    486   Entry.Ty = IntPtrTy;
    487   Entry.Node = BasePtr;
    488   Args.push_back(Entry);
    489 
    490   TargetLowering::CallLoweringInfo CLI(DAG);
    491   CLI.setDebugLoc(DL).setChain(Chain)
    492     .setCallee(CallingConv::C, IntPtrTy,
    493                DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
    494                std::move(Args), 0);
    495 
    496   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    497   SDValue Ops[] = { CallResult.first, CallResult.second };
    498   return DAG.getMergeValues(Ops, DL);
    499 }
    500 
    501 SDValue XCoreTargetLowering::
    502 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
    503 {
    504   StoreSDNode *ST = cast<StoreSDNode>(Op);
    505   assert(!ST->isTruncatingStore() && "Unexpected store type");
    506   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
    507   if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
    508     return SDValue();
    509   }
    510   unsigned ABIAlignment = getDataLayout()->
    511     getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
    512   // Leave aligned store alone.
    513   if (ST->getAlignment() >= ABIAlignment) {
    514     return SDValue();
    515   }
    516   SDValue Chain = ST->getChain();
    517   SDValue BasePtr = ST->getBasePtr();
    518   SDValue Value = ST->getValue();
    519   SDLoc dl(Op);
    520 
    521   if (ST->getAlignment() == 2) {
    522     SDValue Low = Value;
    523     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
    524                                       DAG.getConstant(16, MVT::i32));
    525     SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
    526                                          ST->getPointerInfo(), MVT::i16,
    527                                          ST->isVolatile(), ST->isNonTemporal(),
    528                                          2);
    529     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
    530                                    DAG.getConstant(2, MVT::i32));
    531     SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
    532                                           ST->getPointerInfo().getWithOffset(2),
    533                                           MVT::i16, ST->isVolatile(),
    534                                           ST->isNonTemporal(), 2);
    535     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
    536   }
    537 
    538   // Lower to a call to __misaligned_store(BasePtr, Value).
    539   Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
    540   TargetLowering::ArgListTy Args;
    541   TargetLowering::ArgListEntry Entry;
    542 
    543   Entry.Ty = IntPtrTy;
    544   Entry.Node = BasePtr;
    545   Args.push_back(Entry);
    546 
    547   Entry.Node = Value;
    548   Args.push_back(Entry);
    549 
    550   TargetLowering::CallLoweringInfo CLI(DAG);
    551   CLI.setDebugLoc(dl).setChain(Chain)
    552     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
    553                DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
    554                std::move(Args), 0);
    555 
    556   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    557   return CallResult.second;
    558 }
    559 
    560 SDValue XCoreTargetLowering::
    561 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
    562 {
    563   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
    564          "Unexpected operand to lower!");
    565   SDLoc dl(Op);
    566   SDValue LHS = Op.getOperand(0);
    567   SDValue RHS = Op.getOperand(1);
    568   SDValue Zero = DAG.getConstant(0, MVT::i32);
    569   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
    570                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
    571                            LHS, RHS);
    572   SDValue Lo(Hi.getNode(), 1);
    573   SDValue Ops[] = { Lo, Hi };
    574   return DAG.getMergeValues(Ops, dl);
    575 }
    576 
    577 SDValue XCoreTargetLowering::
    578 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
    579 {
    580   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
    581          "Unexpected operand to lower!");
    582   SDLoc dl(Op);
    583   SDValue LHS = Op.getOperand(0);
    584   SDValue RHS = Op.getOperand(1);
    585   SDValue Zero = DAG.getConstant(0, MVT::i32);
    586   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
    587                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
    588                            Zero, Zero);
    589   SDValue Lo(Hi.getNode(), 1);
    590   SDValue Ops[] = { Lo, Hi };
    591   return DAG.getMergeValues(Ops, dl);
    592 }
    593 
    594 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
    595 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
    596 /// each intermediate result in the calculation must also have a single use.
    597 /// If the Op is in the correct form the constituent parts are written to Mul0,
    598 /// Mul1, Addend0 and Addend1.
    599 static bool
    600 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
    601             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
    602 {
    603   if (Op.getOpcode() != ISD::ADD)
    604     return false;
    605   SDValue N0 = Op.getOperand(0);
    606   SDValue N1 = Op.getOperand(1);
    607   SDValue AddOp;
    608   SDValue OtherOp;
    609   if (N0.getOpcode() == ISD::ADD) {
    610     AddOp = N0;
    611     OtherOp = N1;
    612   } else if (N1.getOpcode() == ISD::ADD) {
    613     AddOp = N1;
    614     OtherOp = N0;
    615   } else {
    616     return false;
    617   }
    618   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
    619     return false;
    620   if (OtherOp.getOpcode() == ISD::MUL) {
    621     // add(add(a,b),mul(x,y))
    622     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
    623       return false;
    624     Mul0 = OtherOp.getOperand(0);
    625     Mul1 = OtherOp.getOperand(1);
    626     Addend0 = AddOp.getOperand(0);
    627     Addend1 = AddOp.getOperand(1);
    628     return true;
    629   }
    630   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
    631     // add(add(mul(x,y),a),b)
    632     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
    633       return false;
    634     Mul0 = AddOp.getOperand(0).getOperand(0);
    635     Mul1 = AddOp.getOperand(0).getOperand(1);
    636     Addend0 = AddOp.getOperand(1);
    637     Addend1 = OtherOp;
    638     return true;
    639   }
    640   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
    641     // add(add(a,mul(x,y)),b)
    642     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
    643       return false;
    644     Mul0 = AddOp.getOperand(1).getOperand(0);
    645     Mul1 = AddOp.getOperand(1).getOperand(1);
    646     Addend0 = AddOp.getOperand(0);
    647     Addend1 = OtherOp;
    648     return true;
    649   }
    650   return false;
    651 }
    652 
    653 SDValue XCoreTargetLowering::
    654 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
    655 {
    656   SDValue Mul;
    657   SDValue Other;
    658   if (N->getOperand(0).getOpcode() == ISD::MUL) {
    659     Mul = N->getOperand(0);
    660     Other = N->getOperand(1);
    661   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
    662     Mul = N->getOperand(1);
    663     Other = N->getOperand(0);
    664   } else {
    665     return SDValue();
    666   }
    667   SDLoc dl(N);
    668   SDValue LL, RL, AddendL, AddendH;
    669   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    670                    Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
    671   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    672                    Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
    673   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    674                         Other,  DAG.getConstant(0, MVT::i32));
    675   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    676                         Other,  DAG.getConstant(1, MVT::i32));
    677   APInt HighMask = APInt::getHighBitsSet(64, 32);
    678   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
    679   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
    680   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
    681       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
    682     // The inputs are both zero-extended.
    683     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
    684                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    685                              AddendL, LL, RL);
    686     SDValue Lo(Hi.getNode(), 1);
    687     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    688   }
    689   if (LHSSB > 32 && RHSSB > 32) {
    690     // The inputs are both sign-extended.
    691     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
    692                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    693                              AddendL, LL, RL);
    694     SDValue Lo(Hi.getNode(), 1);
    695     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    696   }
    697   SDValue LH, RH;
    698   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    699                    Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
    700   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    701                    Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
    702   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
    703                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    704                            AddendL, LL, RL);
    705   SDValue Lo(Hi.getNode(), 1);
    706   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
    707   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
    708   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
    709   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
    710   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    711 }
    712 
    713 SDValue XCoreTargetLowering::
    714 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
    715 {
    716   assert(N->getValueType(0) == MVT::i64 &&
    717          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
    718         "Unknown operand to lower!");
    719 
    720   if (N->getOpcode() == ISD::ADD) {
    721     SDValue Result = TryExpandADDWithMul(N, DAG);
    722     if (Result.getNode())
    723       return Result;
    724   }
    725 
    726   SDLoc dl(N);
    727 
    728   // Extract components
    729   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    730                             N->getOperand(0),  DAG.getConstant(0, MVT::i32));
    731   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    732                             N->getOperand(0),  DAG.getConstant(1, MVT::i32));
    733   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    734                              N->getOperand(1), DAG.getConstant(0, MVT::i32));
    735   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    736                              N->getOperand(1), DAG.getConstant(1, MVT::i32));
    737 
    738   // Expand
    739   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
    740                                                    XCoreISD::LSUB;
    741   SDValue Zero = DAG.getConstant(0, MVT::i32);
    742   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
    743                            LHSL, RHSL, Zero);
    744   SDValue Carry(Lo.getNode(), 1);
    745 
    746   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
    747                            LHSH, RHSH, Carry);
    748   SDValue Ignored(Hi.getNode(), 1);
    749   // Merge the pieces
    750   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    751 }
    752 
    753 SDValue XCoreTargetLowering::
    754 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
    755 {
    756   // Whist llvm does not support aggregate varargs we can ignore
    757   // the possibility of the ValueType being an implicit byVal vararg.
    758   SDNode *Node = Op.getNode();
    759   EVT VT = Node->getValueType(0); // not an aggregate
    760   SDValue InChain = Node->getOperand(0);
    761   SDValue VAListPtr = Node->getOperand(1);
    762   EVT PtrVT = VAListPtr.getValueType();
    763   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
    764   SDLoc dl(Node);
    765   SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
    766                                VAListPtr, MachinePointerInfo(SV),
    767                                false, false, false, 0);
    768   // Increment the pointer, VAList, to the next vararg
    769   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
    770                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
    771   // Store the incremented VAList to the legalized pointer
    772   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
    773                          MachinePointerInfo(SV), false, false, 0);
    774   // Load the actual argument out of the pointer VAList
    775   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
    776                      false, false, false, 0);
    777 }
    778 
    779 SDValue XCoreTargetLowering::
    780 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
    781 {
    782   SDLoc dl(Op);
    783   // vastart stores the address of the VarArgsFrameIndex slot into the
    784   // memory location argument
    785   MachineFunction &MF = DAG.getMachineFunction();
    786   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
    787   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
    788   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
    789                       MachinePointerInfo(), false, false, 0);
    790 }
    791 
    792 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
    793                                             SelectionDAG &DAG) const {
    794   // This nodes represent llvm.frameaddress on the DAG.
    795   // It takes one operand, the index of the frame address to return.
    796   // An index of zero corresponds to the current function's frame address.
    797   // An index of one to the parent's frame address, and so on.
    798   // Depths > 0 not supported yet!
    799   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
    800     return SDValue();
    801 
    802   MachineFunction &MF = DAG.getMachineFunction();
    803   const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
    804   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
    805                             RegInfo->getFrameRegister(MF), MVT::i32);
    806 }
    807 
    808 SDValue XCoreTargetLowering::
    809 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
    810   // This nodes represent llvm.returnaddress on the DAG.
    811   // It takes one operand, the index of the return address to return.
    812   // An index of zero corresponds to the current function's return address.
    813   // An index of one to the parent's return address, and so on.
    814   // Depths > 0 not supported yet!
    815   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
    816     return SDValue();
    817 
    818   MachineFunction &MF = DAG.getMachineFunction();
    819   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
    820   int FI = XFI->createLRSpillSlot(MF);
    821   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
    822   return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
    823                      MachinePointerInfo::getFixedStack(FI), false, false,
    824                      false, 0);
    825 }
    826 
    827 SDValue XCoreTargetLowering::
    828 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
    829   // This node represents offset from frame pointer to first on-stack argument.
    830   // This is needed for correct stack adjustment during unwind.
    831   // However, we don't know the offset until after the frame has be finalised.
    832   // This is done during the XCoreFTAOElim pass.
    833   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
    834 }
    835 
    836 SDValue XCoreTargetLowering::
    837 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
    838   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
    839   // This node represents 'eh_return' gcc dwarf builtin, which is used to
    840   // return from exception. The general meaning is: adjust stack by OFFSET and
    841   // pass execution to HANDLER.
    842   MachineFunction &MF = DAG.getMachineFunction();
    843   SDValue Chain     = Op.getOperand(0);
    844   SDValue Offset    = Op.getOperand(1);
    845   SDValue Handler   = Op.getOperand(2);
    846   SDLoc dl(Op);
    847 
    848   // Absolute SP = (FP + FrameToArgs) + Offset
    849   const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
    850   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
    851                             RegInfo->getFrameRegister(MF), MVT::i32);
    852   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
    853                                     MVT::i32);
    854   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
    855   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
    856 
    857   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
    858   // which leaves 2 caller saved registers, R2 & R3 for us to use.
    859   unsigned StackReg = XCore::R2;
    860   unsigned HandlerReg = XCore::R3;
    861 
    862   SDValue OutChains[] = {
    863     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
    864     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
    865   };
    866 
    867   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
    868 
    869   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
    870                      DAG.getRegister(StackReg, MVT::i32),
    871                      DAG.getRegister(HandlerReg, MVT::i32));
    872 
    873 }
    874 
    875 SDValue XCoreTargetLowering::
    876 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
    877   return Op.getOperand(0);
    878 }
    879 
    880 SDValue XCoreTargetLowering::
    881 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
    882   SDValue Chain = Op.getOperand(0);
    883   SDValue Trmp = Op.getOperand(1); // trampoline
    884   SDValue FPtr = Op.getOperand(2); // nested function
    885   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
    886 
    887   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
    888 
    889   // .align 4
    890   // LDAPF_u10 r11, nest
    891   // LDW_2rus r11, r11[0]
    892   // STWSP_ru6 r11, sp[0]
    893   // LDAPF_u10 r11, fptr
    894   // LDW_2rus r11, r11[0]
    895   // BAU_1r r11
    896   // nest:
    897   // .word nest
    898   // fptr:
    899   // .word fptr
    900   SDValue OutChains[5];
    901 
    902   SDValue Addr = Trmp;
    903 
    904   SDLoc dl(Op);
    905   OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
    906                               Addr, MachinePointerInfo(TrmpAddr), false, false,
    907                               0);
    908 
    909   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    910                      DAG.getConstant(4, MVT::i32));
    911   OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
    912                               Addr, MachinePointerInfo(TrmpAddr, 4), false,
    913                               false, 0);
    914 
    915   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    916                      DAG.getConstant(8, MVT::i32));
    917   OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
    918                               Addr, MachinePointerInfo(TrmpAddr, 8), false,
    919                               false, 0);
    920 
    921   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    922                      DAG.getConstant(12, MVT::i32));
    923   OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
    924                               MachinePointerInfo(TrmpAddr, 12), false, false,
    925                               0);
    926 
    927   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    928                      DAG.getConstant(16, MVT::i32));
    929   OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
    930                               MachinePointerInfo(TrmpAddr, 16), false, false,
    931                               0);
    932 
    933   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
    934 }
    935 
    936 SDValue XCoreTargetLowering::
    937 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
    938   SDLoc DL(Op);
    939   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    940   switch (IntNo) {
    941     case Intrinsic::xcore_crc8:
    942       EVT VT = Op.getValueType();
    943       SDValue Data =
    944         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
    945                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
    946       SDValue Crc(Data.getNode(), 1);
    947       SDValue Results[] = { Crc, Data };
    948       return DAG.getMergeValues(Results, DL);
    949   }
    950   return SDValue();
    951 }
    952 
    953 SDValue XCoreTargetLowering::
    954 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
    955   SDLoc DL(Op);
    956   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
    957 }
    958 
    959 SDValue XCoreTargetLowering::
    960 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
    961   AtomicSDNode *N = cast<AtomicSDNode>(Op);
    962   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
    963   assert(N->getOrdering() <= Monotonic &&
    964          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
    965   if (N->getMemoryVT() == MVT::i32) {
    966     if (N->getAlignment() < 4)
    967       report_fatal_error("atomic load must be aligned");
    968     return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
    969                        N->getBasePtr(), N->getPointerInfo(),
    970                        N->isVolatile(), N->isNonTemporal(),
    971                        N->isInvariant(), N->getAlignment(),
    972                        N->getTBAAInfo(), N->getRanges());
    973   }
    974   if (N->getMemoryVT() == MVT::i16) {
    975     if (N->getAlignment() < 2)
    976       report_fatal_error("atomic load must be aligned");
    977     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
    978                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
    979                           N->isVolatile(), N->isNonTemporal(),
    980                           N->getAlignment(), N->getTBAAInfo());
    981   }
    982   if (N->getMemoryVT() == MVT::i8)
    983     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
    984                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
    985                           N->isVolatile(), N->isNonTemporal(),
    986                           N->getAlignment(), N->getTBAAInfo());
    987   return SDValue();
    988 }
    989 
    990 SDValue XCoreTargetLowering::
    991 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
    992   AtomicSDNode *N = cast<AtomicSDNode>(Op);
    993   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
    994   assert(N->getOrdering() <= Monotonic &&
    995          "setInsertFencesForAtomic(true) and yet greater than Monotonic");
    996   if (N->getMemoryVT() == MVT::i32) {
    997     if (N->getAlignment() < 4)
    998       report_fatal_error("atomic store must be aligned");
    999     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
   1000                         N->getBasePtr(), N->getPointerInfo(),
   1001                         N->isVolatile(), N->isNonTemporal(),
   1002                         N->getAlignment(), N->getTBAAInfo());
   1003   }
   1004   if (N->getMemoryVT() == MVT::i16) {
   1005     if (N->getAlignment() < 2)
   1006       report_fatal_error("atomic store must be aligned");
   1007     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
   1008                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
   1009                              N->isVolatile(), N->isNonTemporal(),
   1010                              N->getAlignment(), N->getTBAAInfo());
   1011   }
   1012   if (N->getMemoryVT() == MVT::i8)
   1013     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
   1014                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
   1015                              N->isVolatile(), N->isNonTemporal(),
   1016                              N->getAlignment(), N->getTBAAInfo());
   1017   return SDValue();
   1018 }
   1019 
   1020 //===----------------------------------------------------------------------===//
   1021 //                      Calling Convention Implementation
   1022 //===----------------------------------------------------------------------===//
   1023 
   1024 #include "XCoreGenCallingConv.inc"
   1025 
   1026 //===----------------------------------------------------------------------===//
   1027 //                  Call Calling Convention Implementation
   1028 //===----------------------------------------------------------------------===//
   1029 
   1030 /// XCore call implementation
   1031 SDValue
   1032 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1033                                SmallVectorImpl<SDValue> &InVals) const {
   1034   SelectionDAG &DAG                     = CLI.DAG;
   1035   SDLoc &dl                             = CLI.DL;
   1036   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1037   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1038   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1039   SDValue Chain                         = CLI.Chain;
   1040   SDValue Callee                        = CLI.Callee;
   1041   bool &isTailCall                      = CLI.IsTailCall;
   1042   CallingConv::ID CallConv              = CLI.CallConv;
   1043   bool isVarArg                         = CLI.IsVarArg;
   1044 
   1045   // XCore target does not yet support tail call optimization.
   1046   isTailCall = false;
   1047 
   1048   // For now, only CallingConv::C implemented
   1049   switch (CallConv)
   1050   {
   1051     default:
   1052       llvm_unreachable("Unsupported calling convention");
   1053     case CallingConv::Fast:
   1054     case CallingConv::C:
   1055       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
   1056                             Outs, OutVals, Ins, dl, DAG, InVals);
   1057   }
   1058 }
   1059 
   1060 /// LowerCallResult - Lower the result values of a call into the
   1061 /// appropriate copies out of appropriate physical registers / memory locations.
   1062 static SDValue
   1063 LowerCallResult(SDValue Chain, SDValue InFlag,
   1064                 const SmallVectorImpl<CCValAssign> &RVLocs,
   1065                 SDLoc dl, SelectionDAG &DAG,
   1066                 SmallVectorImpl<SDValue> &InVals) {
   1067   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
   1068   // Copy results out of physical registers.
   1069   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1070     const CCValAssign &VA = RVLocs[i];
   1071     if (VA.isRegLoc()) {
   1072       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
   1073                                  InFlag).getValue(1);
   1074       InFlag = Chain.getValue(2);
   1075       InVals.push_back(Chain.getValue(0));
   1076     } else {
   1077       assert(VA.isMemLoc());
   1078       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
   1079                                              InVals.size()));
   1080       // Reserve space for this result.
   1081       InVals.push_back(SDValue());
   1082     }
   1083   }
   1084 
   1085   // Copy results out of memory.
   1086   SmallVector<SDValue, 4> MemOpChains;
   1087   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
   1088     int offset = ResultMemLocs[i].first;
   1089     unsigned index = ResultMemLocs[i].second;
   1090     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
   1091     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
   1092     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
   1093     InVals[index] = load;
   1094     MemOpChains.push_back(load.getValue(1));
   1095   }
   1096 
   1097   // Transform all loads nodes into one single node because
   1098   // all load nodes are independent of each other.
   1099   if (!MemOpChains.empty())
   1100     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1101 
   1102   return Chain;
   1103 }
   1104 
   1105 /// LowerCCCCallTo - functions arguments are copied from virtual
   1106 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
   1107 /// CALLSEQ_END are emitted.
   1108 /// TODO: isTailCall, sret.
   1109 SDValue
   1110 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
   1111                                     CallingConv::ID CallConv, bool isVarArg,
   1112                                     bool isTailCall,
   1113                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1114                                     const SmallVectorImpl<SDValue> &OutVals,
   1115                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1116                                     SDLoc dl, SelectionDAG &DAG,
   1117                                     SmallVectorImpl<SDValue> &InVals) const {
   1118 
   1119   // Analyze operands of the call, assigning locations to each operand.
   1120   SmallVector<CCValAssign, 16> ArgLocs;
   1121   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1122                  getTargetMachine(), ArgLocs, *DAG.getContext());
   1123 
   1124   // The ABI dictates there should be one stack slot available to the callee
   1125   // on function entry (for saving lr).
   1126   CCInfo.AllocateStack(4, 4);
   1127 
   1128   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
   1129 
   1130   SmallVector<CCValAssign, 16> RVLocs;
   1131   // Analyze return values to determine the number of bytes of stack required.
   1132   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1133                     getTargetMachine(), RVLocs, *DAG.getContext());
   1134   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
   1135   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
   1136 
   1137   // Get a count of how many bytes are to be pushed on the stack.
   1138   unsigned NumBytes = RetCCInfo.getNextStackOffset();
   1139 
   1140   Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
   1141                                  getPointerTy(), true), dl);
   1142 
   1143   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
   1144   SmallVector<SDValue, 12> MemOpChains;
   1145 
   1146   // Walk the register/memloc assignments, inserting copies/loads.
   1147   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1148     CCValAssign &VA = ArgLocs[i];
   1149     SDValue Arg = OutVals[i];
   1150 
   1151     // Promote the value if needed.
   1152     switch (VA.getLocInfo()) {
   1153       default: llvm_unreachable("Unknown loc info!");
   1154       case CCValAssign::Full: break;
   1155       case CCValAssign::SExt:
   1156         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1157         break;
   1158       case CCValAssign::ZExt:
   1159         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1160         break;
   1161       case CCValAssign::AExt:
   1162         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1163         break;
   1164     }
   1165 
   1166     // Arguments that can be passed on register must be kept at
   1167     // RegsToPass vector
   1168     if (VA.isRegLoc()) {
   1169       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1170     } else {
   1171       assert(VA.isMemLoc());
   1172 
   1173       int Offset = VA.getLocMemOffset();
   1174 
   1175       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
   1176                                         Chain, Arg,
   1177                                         DAG.getConstant(Offset/4, MVT::i32)));
   1178     }
   1179   }
   1180 
   1181   // Transform all store nodes into one single node because
   1182   // all store nodes are independent of each other.
   1183   if (!MemOpChains.empty())
   1184     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1185 
   1186   // Build a sequence of copy-to-reg nodes chained together with token
   1187   // chain and flag operands which copy the outgoing args into registers.
   1188   // The InFlag in necessary since all emitted instructions must be
   1189   // stuck together.
   1190   SDValue InFlag;
   1191   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1192     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1193                              RegsToPass[i].second, InFlag);
   1194     InFlag = Chain.getValue(1);
   1195   }
   1196 
   1197   // If the callee is a GlobalAddress node (quite common, every direct call is)
   1198   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
   1199   // Likewise ExternalSymbol -> TargetExternalSymbol.
   1200   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   1201     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
   1202   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
   1203     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
   1204 
   1205   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
   1206   //             = Chain, Callee, Reg#1, Reg#2, ...
   1207   //
   1208   // Returns a chain & a flag for retval copy to use.
   1209   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1210   SmallVector<SDValue, 8> Ops;
   1211   Ops.push_back(Chain);
   1212   Ops.push_back(Callee);
   1213 
   1214   // Add argument registers to the end of the list so that they are
   1215   // known live into the call.
   1216   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1217     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1218                                   RegsToPass[i].second.getValueType()));
   1219 
   1220   if (InFlag.getNode())
   1221     Ops.push_back(InFlag);
   1222 
   1223   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
   1224   InFlag = Chain.getValue(1);
   1225 
   1226   // Create the CALLSEQ_END node.
   1227   Chain = DAG.getCALLSEQ_END(Chain,
   1228                              DAG.getConstant(NumBytes, getPointerTy(), true),
   1229                              DAG.getConstant(0, getPointerTy(), true),
   1230                              InFlag, dl);
   1231   InFlag = Chain.getValue(1);
   1232 
   1233   // Handle result values, copying them out of physregs into vregs that we
   1234   // return.
   1235   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
   1236 }
   1237 
   1238 //===----------------------------------------------------------------------===//
   1239 //             Formal Arguments Calling Convention Implementation
   1240 //===----------------------------------------------------------------------===//
   1241 
   1242 namespace {
   1243   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
   1244 }
   1245 
   1246 /// XCore formal arguments implementation
   1247 SDValue
   1248 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
   1249                                           CallingConv::ID CallConv,
   1250                                           bool isVarArg,
   1251                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   1252                                           SDLoc dl,
   1253                                           SelectionDAG &DAG,
   1254                                           SmallVectorImpl<SDValue> &InVals)
   1255                                             const {
   1256   switch (CallConv)
   1257   {
   1258     default:
   1259       llvm_unreachable("Unsupported calling convention");
   1260     case CallingConv::C:
   1261     case CallingConv::Fast:
   1262       return LowerCCCArguments(Chain, CallConv, isVarArg,
   1263                                Ins, dl, DAG, InVals);
   1264   }
   1265 }
   1266 
   1267 /// LowerCCCArguments - transform physical registers into
   1268 /// virtual registers and generate load operations for
   1269 /// arguments places on the stack.
   1270 /// TODO: sret
   1271 SDValue
   1272 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
   1273                                        CallingConv::ID CallConv,
   1274                                        bool isVarArg,
   1275                                        const SmallVectorImpl<ISD::InputArg>
   1276                                          &Ins,
   1277                                        SDLoc dl,
   1278                                        SelectionDAG &DAG,
   1279                                        SmallVectorImpl<SDValue> &InVals) const {
   1280   MachineFunction &MF = DAG.getMachineFunction();
   1281   MachineFrameInfo *MFI = MF.getFrameInfo();
   1282   MachineRegisterInfo &RegInfo = MF.getRegInfo();
   1283   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
   1284 
   1285   // Assign locations to all of the incoming arguments.
   1286   SmallVector<CCValAssign, 16> ArgLocs;
   1287   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1288                  getTargetMachine(), ArgLocs, *DAG.getContext());
   1289 
   1290   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
   1291 
   1292   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
   1293 
   1294   unsigned LRSaveSize = StackSlotSize;
   1295 
   1296   if (!isVarArg)
   1297     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
   1298 
   1299   // All getCopyFromReg ops must precede any getMemcpys to prevent the
   1300   // scheduler clobbering a register before it has been copied.
   1301   // The stages are:
   1302   // 1. CopyFromReg (and load) arg & vararg registers.
   1303   // 2. Chain CopyFromReg nodes into a TokenFactor.
   1304   // 3. Memcpy 'byVal' args & push final InVals.
   1305   // 4. Chain mem ops nodes into a TokenFactor.
   1306   SmallVector<SDValue, 4> CFRegNode;
   1307   SmallVector<ArgDataPair, 4> ArgData;
   1308   SmallVector<SDValue, 4> MemOps;
   1309 
   1310   // 1a. CopyFromReg (and load) arg registers.
   1311   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1312 
   1313     CCValAssign &VA = ArgLocs[i];
   1314     SDValue ArgIn;
   1315 
   1316     if (VA.isRegLoc()) {
   1317       // Arguments passed in registers
   1318       EVT RegVT = VA.getLocVT();
   1319       switch (RegVT.getSimpleVT().SimpleTy) {
   1320       default:
   1321         {
   1322 #ifndef NDEBUG
   1323           errs() << "LowerFormalArguments Unhandled argument type: "
   1324                  << RegVT.getSimpleVT().SimpleTy << "\n";
   1325 #endif
   1326           llvm_unreachable(nullptr);
   1327         }
   1328       case MVT::i32:
   1329         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
   1330         RegInfo.addLiveIn(VA.getLocReg(), VReg);
   1331         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
   1332         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
   1333       }
   1334     } else {
   1335       // sanity check
   1336       assert(VA.isMemLoc());
   1337       // Load the argument to a virtual register
   1338       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
   1339       if (ObjSize > StackSlotSize) {
   1340         errs() << "LowerFormalArguments Unhandled argument type: "
   1341                << EVT(VA.getLocVT()).getEVTString()
   1342                << "\n";
   1343       }
   1344       // Create the frame index object for this incoming parameter...
   1345       int FI = MFI->CreateFixedObject(ObjSize,
   1346                                       LRSaveSize + VA.getLocMemOffset(),
   1347                                       true);
   1348 
   1349       // Create the SelectionDAG nodes corresponding to a load
   1350       //from this parameter
   1351       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1352       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
   1353                           MachinePointerInfo::getFixedStack(FI),
   1354                           false, false, false, 0);
   1355     }
   1356     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
   1357     ArgData.push_back(ADP);
   1358   }
   1359 
   1360   // 1b. CopyFromReg vararg registers.
   1361   if (isVarArg) {
   1362     // Argument registers
   1363     static const MCPhysReg ArgRegs[] = {
   1364       XCore::R0, XCore::R1, XCore::R2, XCore::R3
   1365     };
   1366     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
   1367     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
   1368                                                      array_lengthof(ArgRegs));
   1369     if (FirstVAReg < array_lengthof(ArgRegs)) {
   1370       int offset = 0;
   1371       // Save remaining registers, storing higher register numbers at a higher
   1372       // address
   1373       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
   1374         // Create a stack slot
   1375         int FI = MFI->CreateFixedObject(4, offset, true);
   1376         if (i == (int)FirstVAReg) {
   1377           XFI->setVarArgsFrameIndex(FI);
   1378         }
   1379         offset -= StackSlotSize;
   1380         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1381         // Move argument from phys reg -> virt reg
   1382         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
   1383         RegInfo.addLiveIn(ArgRegs[i], VReg);
   1384         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   1385         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
   1386         // Move argument from virt reg -> stack
   1387         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1388                                      MachinePointerInfo(), false, false, 0);
   1389         MemOps.push_back(Store);
   1390       }
   1391     } else {
   1392       // This will point to the next argument passed via stack.
   1393       XFI->setVarArgsFrameIndex(
   1394         MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
   1395                                true));
   1396     }
   1397   }
   1398 
   1399   // 2. chain CopyFromReg nodes into a TokenFactor.
   1400   if (!CFRegNode.empty())
   1401     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
   1402 
   1403   // 3. Memcpy 'byVal' args & push final InVals.
   1404   // Aggregates passed "byVal" need to be copied by the callee.
   1405   // The callee will use a pointer to this copy, rather than the original
   1406   // pointer.
   1407   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
   1408                                                     ArgDE = ArgData.end();
   1409        ArgDI != ArgDE; ++ArgDI) {
   1410     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
   1411       unsigned Size = ArgDI->Flags.getByValSize();
   1412       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
   1413       // Create a new object on the stack and copy the pointee into it.
   1414       int FI = MFI->CreateStackObject(Size, Align, false);
   1415       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1416       InVals.push_back(FIN);
   1417       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
   1418                                      DAG.getConstant(Size, MVT::i32),
   1419                                      Align, false, false,
   1420                                      MachinePointerInfo(),
   1421                                      MachinePointerInfo()));
   1422     } else {
   1423       InVals.push_back(ArgDI->SDV);
   1424     }
   1425   }
   1426 
   1427   // 4, chain mem ops nodes into a TokenFactor.
   1428   if (!MemOps.empty()) {
   1429     MemOps.push_back(Chain);
   1430     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   1431   }
   1432 
   1433   return Chain;
   1434 }
   1435 
   1436 //===----------------------------------------------------------------------===//
   1437 //               Return Value Calling Convention Implementation
   1438 //===----------------------------------------------------------------------===//
   1439 
   1440 bool XCoreTargetLowering::
   1441 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
   1442                bool isVarArg,
   1443                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1444                LLVMContext &Context) const {
   1445   SmallVector<CCValAssign, 16> RVLocs;
   1446   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
   1447   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
   1448     return false;
   1449   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
   1450     return false;
   1451   return true;
   1452 }
   1453 
   1454 SDValue
   1455 XCoreTargetLowering::LowerReturn(SDValue Chain,
   1456                                  CallingConv::ID CallConv, bool isVarArg,
   1457                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
   1458                                  const SmallVectorImpl<SDValue> &OutVals,
   1459                                  SDLoc dl, SelectionDAG &DAG) const {
   1460 
   1461   XCoreFunctionInfo *XFI =
   1462     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
   1463   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1464 
   1465   // CCValAssign - represent the assignment of
   1466   // the return value to a location
   1467   SmallVector<CCValAssign, 16> RVLocs;
   1468 
   1469   // CCState - Info about the registers and stack slot.
   1470   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1471                  getTargetMachine(), RVLocs, *DAG.getContext());
   1472 
   1473   // Analyze return values.
   1474   if (!isVarArg)
   1475     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
   1476 
   1477   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
   1478 
   1479   SDValue Flag;
   1480   SmallVector<SDValue, 4> RetOps(1, Chain);
   1481 
   1482   // Return on XCore is always a "retsp 0"
   1483   RetOps.push_back(DAG.getConstant(0, MVT::i32));
   1484 
   1485   SmallVector<SDValue, 4> MemOpChains;
   1486   // Handle return values that must be copied to memory.
   1487   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1488     CCValAssign &VA = RVLocs[i];
   1489     if (VA.isRegLoc())
   1490       continue;
   1491     assert(VA.isMemLoc());
   1492     if (isVarArg) {
   1493       report_fatal_error("Can't return value from vararg function in memory");
   1494     }
   1495 
   1496     int Offset = VA.getLocMemOffset();
   1497     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
   1498     // Create the frame index object for the memory location.
   1499     int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
   1500 
   1501     // Create a SelectionDAG node corresponding to a store
   1502     // to this memory location.
   1503     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1504     MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
   1505                           MachinePointerInfo::getFixedStack(FI), false, false,
   1506                           0));
   1507   }
   1508 
   1509   // Transform all store nodes into one single node because
   1510   // all stores are independent of each other.
   1511   if (!MemOpChains.empty())
   1512     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1513 
   1514   // Now handle return values copied to registers.
   1515   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1516     CCValAssign &VA = RVLocs[i];
   1517     if (!VA.isRegLoc())
   1518       continue;
   1519     // Copy the result values into the output registers.
   1520     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
   1521 
   1522     // guarantee that all emitted copies are
   1523     // stuck together, avoiding something bad
   1524     Flag = Chain.getValue(1);
   1525     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   1526   }
   1527 
   1528   RetOps[0] = Chain;  // Update chain.
   1529 
   1530   // Add the flag if we have it.
   1531   if (Flag.getNode())
   1532     RetOps.push_back(Flag);
   1533 
   1534   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
   1535 }
   1536 
   1537 //===----------------------------------------------------------------------===//
   1538 //  Other Lowering Code
   1539 //===----------------------------------------------------------------------===//
   1540 
   1541 MachineBasicBlock *
   1542 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   1543                                                  MachineBasicBlock *BB) const {
   1544   const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
   1545   DebugLoc dl = MI->getDebugLoc();
   1546   assert((MI->getOpcode() == XCore::SELECT_CC) &&
   1547          "Unexpected instr type to insert");
   1548 
   1549   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
   1550   // control-flow pattern.  The incoming instruction knows the destination vreg
   1551   // to set, the condition code register to branch on, the true/false values to
   1552   // select between, and a branch opcode to use.
   1553   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1554   MachineFunction::iterator It = BB;
   1555   ++It;
   1556 
   1557   //  thisMBB:
   1558   //  ...
   1559   //   TrueVal = ...
   1560   //   cmpTY ccX, r1, r2
   1561   //   bCC copy1MBB
   1562   //   fallthrough --> copy0MBB
   1563   MachineBasicBlock *thisMBB = BB;
   1564   MachineFunction *F = BB->getParent();
   1565   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1566   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   1567   F->insert(It, copy0MBB);
   1568   F->insert(It, sinkMBB);
   1569 
   1570   // Transfer the remainder of BB and its successor edges to sinkMBB.
   1571   sinkMBB->splice(sinkMBB->begin(), BB,
   1572                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1573   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   1574 
   1575   // Next, add the true and fallthrough blocks as its successors.
   1576   BB->addSuccessor(copy0MBB);
   1577   BB->addSuccessor(sinkMBB);
   1578 
   1579   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
   1580     .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
   1581 
   1582   //  copy0MBB:
   1583   //   %FalseValue = ...
   1584   //   # fallthrough to sinkMBB
   1585   BB = copy0MBB;
   1586 
   1587   // Update machine-CFG edges
   1588   BB->addSuccessor(sinkMBB);
   1589 
   1590   //  sinkMBB:
   1591   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   1592   //  ...
   1593   BB = sinkMBB;
   1594   BuildMI(*BB, BB->begin(), dl,
   1595           TII.get(XCore::PHI), MI->getOperand(0).getReg())
   1596     .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
   1597     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   1598 
   1599   MI->eraseFromParent();   // The pseudo instruction is gone now.
   1600   return BB;
   1601 }
   1602 
   1603 //===----------------------------------------------------------------------===//
   1604 // Target Optimization Hooks
   1605 //===----------------------------------------------------------------------===//
   1606 
   1607 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
   1608                                              DAGCombinerInfo &DCI) const {
   1609   SelectionDAG &DAG = DCI.DAG;
   1610   SDLoc dl(N);
   1611   switch (N->getOpcode()) {
   1612   default: break;
   1613   case ISD::INTRINSIC_VOID:
   1614     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   1615     case Intrinsic::xcore_outt:
   1616     case Intrinsic::xcore_outct:
   1617     case Intrinsic::xcore_chkct: {
   1618       SDValue OutVal = N->getOperand(3);
   1619       // These instructions ignore the high bits.
   1620       if (OutVal.hasOneUse()) {
   1621         unsigned BitWidth = OutVal.getValueSizeInBits();
   1622         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
   1623         APInt KnownZero, KnownOne;
   1624         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1625                                               !DCI.isBeforeLegalizeOps());
   1626         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1627         if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
   1628             TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
   1629                                      TLO))
   1630           DCI.CommitTargetLoweringOpt(TLO);
   1631       }
   1632       break;
   1633     }
   1634     case Intrinsic::xcore_setpt: {
   1635       SDValue Time = N->getOperand(3);
   1636       // This instruction ignores the high bits.
   1637       if (Time.hasOneUse()) {
   1638         unsigned BitWidth = Time.getValueSizeInBits();
   1639         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
   1640         APInt KnownZero, KnownOne;
   1641         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1642                                               !DCI.isBeforeLegalizeOps());
   1643         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1644         if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
   1645             TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
   1646                                      TLO))
   1647           DCI.CommitTargetLoweringOpt(TLO);
   1648       }
   1649       break;
   1650     }
   1651     }
   1652     break;
   1653   case XCoreISD::LADD: {
   1654     SDValue N0 = N->getOperand(0);
   1655     SDValue N1 = N->getOperand(1);
   1656     SDValue N2 = N->getOperand(2);
   1657     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1658     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1659     EVT VT = N0.getValueType();
   1660 
   1661     // canonicalize constant to RHS
   1662     if (N0C && !N1C)
   1663       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
   1664 
   1665     // fold (ladd 0, 0, x) -> 0, x & 1
   1666     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
   1667       SDValue Carry = DAG.getConstant(0, VT);
   1668       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
   1669                                    DAG.getConstant(1, VT));
   1670       SDValue Ops[] = { Result, Carry };
   1671       return DAG.getMergeValues(Ops, dl);
   1672     }
   1673 
   1674     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
   1675     // low bit set
   1676     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
   1677       APInt KnownZero, KnownOne;
   1678       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1679                                          VT.getSizeInBits() - 1);
   1680       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1681       if ((KnownZero & Mask) == Mask) {
   1682         SDValue Carry = DAG.getConstant(0, VT);
   1683         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
   1684         SDValue Ops[] = { Result, Carry };
   1685         return DAG.getMergeValues(Ops, dl);
   1686       }
   1687     }
   1688   }
   1689   break;
   1690   case XCoreISD::LSUB: {
   1691     SDValue N0 = N->getOperand(0);
   1692     SDValue N1 = N->getOperand(1);
   1693     SDValue N2 = N->getOperand(2);
   1694     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1695     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1696     EVT VT = N0.getValueType();
   1697 
   1698     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
   1699     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
   1700       APInt KnownZero, KnownOne;
   1701       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1702                                          VT.getSizeInBits() - 1);
   1703       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1704       if ((KnownZero & Mask) == Mask) {
   1705         SDValue Borrow = N2;
   1706         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
   1707                                      DAG.getConstant(0, VT), N2);
   1708         SDValue Ops[] = { Result, Borrow };
   1709         return DAG.getMergeValues(Ops, dl);
   1710       }
   1711     }
   1712 
   1713     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
   1714     // low bit set
   1715     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
   1716       APInt KnownZero, KnownOne;
   1717       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1718                                          VT.getSizeInBits() - 1);
   1719       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1720       if ((KnownZero & Mask) == Mask) {
   1721         SDValue Borrow = DAG.getConstant(0, VT);
   1722         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
   1723         SDValue Ops[] = { Result, Borrow };
   1724         return DAG.getMergeValues(Ops, dl);
   1725       }
   1726     }
   1727   }
   1728   break;
   1729   case XCoreISD::LMUL: {
   1730     SDValue N0 = N->getOperand(0);
   1731     SDValue N1 = N->getOperand(1);
   1732     SDValue N2 = N->getOperand(2);
   1733     SDValue N3 = N->getOperand(3);
   1734     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1735     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1736     EVT VT = N0.getValueType();
   1737     // Canonicalize multiplicative constant to RHS. If both multiplicative
   1738     // operands are constant canonicalize smallest to RHS.
   1739     if ((N0C && !N1C) ||
   1740         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
   1741       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
   1742                          N1, N0, N2, N3);
   1743 
   1744     // lmul(x, 0, a, b)
   1745     if (N1C && N1C->isNullValue()) {
   1746       // If the high result is unused fold to add(a, b)
   1747       if (N->hasNUsesOfValue(0, 0)) {
   1748         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
   1749         SDValue Ops[] = { Lo, Lo };
   1750         return DAG.getMergeValues(Ops, dl);
   1751       }
   1752       // Otherwise fold to ladd(a, b, 0)
   1753       SDValue Result =
   1754         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
   1755       SDValue Carry(Result.getNode(), 1);
   1756       SDValue Ops[] = { Carry, Result };
   1757       return DAG.getMergeValues(Ops, dl);
   1758     }
   1759   }
   1760   break;
   1761   case ISD::ADD: {
   1762     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
   1763     // lmul(x, y, a, b). The high result of lmul will be ignored.
   1764     // This is only profitable if the intermediate results are unused
   1765     // elsewhere.
   1766     SDValue Mul0, Mul1, Addend0, Addend1;
   1767     if (N->getValueType(0) == MVT::i32 &&
   1768         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
   1769       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
   1770                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
   1771                                     Mul1, Addend0, Addend1);
   1772       SDValue Result(Ignored.getNode(), 1);
   1773       return Result;
   1774     }
   1775     APInt HighMask = APInt::getHighBitsSet(64, 32);
   1776     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
   1777     // lmul(x, y, a, b) if all operands are zero-extended. We do this
   1778     // before type legalization as it is messy to match the operands after
   1779     // that.
   1780     if (N->getValueType(0) == MVT::i64 &&
   1781         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
   1782         DAG.MaskedValueIsZero(Mul0, HighMask) &&
   1783         DAG.MaskedValueIsZero(Mul1, HighMask) &&
   1784         DAG.MaskedValueIsZero(Addend0, HighMask) &&
   1785         DAG.MaskedValueIsZero(Addend1, HighMask)) {
   1786       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1787                                   Mul0, DAG.getConstant(0, MVT::i32));
   1788       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1789                                   Mul1, DAG.getConstant(0, MVT::i32));
   1790       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1791                                      Addend0, DAG.getConstant(0, MVT::i32));
   1792       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1793                                      Addend1, DAG.getConstant(0, MVT::i32));
   1794       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
   1795                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
   1796                                Addend0L, Addend1L);
   1797       SDValue Lo(Hi.getNode(), 1);
   1798       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   1799     }
   1800   }
   1801   break;
   1802   case ISD::STORE: {
   1803     // Replace unaligned store of unaligned load with memmove.
   1804     StoreSDNode *ST  = cast<StoreSDNode>(N);
   1805     if (!DCI.isBeforeLegalize() ||
   1806         allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
   1807         ST->isVolatile() || ST->isIndexed()) {
   1808       break;
   1809     }
   1810     SDValue Chain = ST->getChain();
   1811 
   1812     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
   1813     if (StoreBits % 8) {
   1814       break;
   1815     }
   1816     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
   1817         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
   1818     unsigned Alignment = ST->getAlignment();
   1819     if (Alignment >= ABIAlignment) {
   1820       break;
   1821     }
   1822 
   1823     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
   1824       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
   1825         LD->getAlignment() == Alignment &&
   1826         !LD->isVolatile() && !LD->isIndexed() &&
   1827         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
   1828         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
   1829                               LD->getBasePtr(),
   1830                               DAG.getConstant(StoreBits/8, MVT::i32),
   1831                               Alignment, false, ST->getPointerInfo(),
   1832                               LD->getPointerInfo());
   1833       }
   1834     }
   1835     break;
   1836   }
   1837   }
   1838   return SDValue();
   1839 }
   1840 
   1841 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1842                                                         APInt &KnownZero,
   1843                                                         APInt &KnownOne,
   1844                                                         const SelectionDAG &DAG,
   1845                                                         unsigned Depth) const {
   1846   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   1847   switch (Op.getOpcode()) {
   1848   default: break;
   1849   case XCoreISD::LADD:
   1850   case XCoreISD::LSUB:
   1851     if (Op.getResNo() == 1) {
   1852       // Top bits of carry / borrow are clear.
   1853       KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1854                                         KnownZero.getBitWidth() - 1);
   1855     }
   1856     break;
   1857   case ISD::INTRINSIC_W_CHAIN:
   1858     {
   1859       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1860       switch (IntNo) {
   1861       case Intrinsic::xcore_getts:
   1862         // High bits are known to be zero.
   1863         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1864                                           KnownZero.getBitWidth() - 16);
   1865         break;
   1866       case Intrinsic::xcore_int:
   1867       case Intrinsic::xcore_inct:
   1868         // High bits are known to be zero.
   1869         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1870                                           KnownZero.getBitWidth() - 8);
   1871         break;
   1872       case Intrinsic::xcore_testct:
   1873         // Result is either 0 or 1.
   1874         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1875                                           KnownZero.getBitWidth() - 1);
   1876         break;
   1877       case Intrinsic::xcore_testwct:
   1878         // Result is in the range 0 - 4.
   1879         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1880                                           KnownZero.getBitWidth() - 3);
   1881         break;
   1882       }
   1883     }
   1884     break;
   1885   }
   1886 }
   1887 
   1888 //===----------------------------------------------------------------------===//
   1889 //  Addressing mode description hooks
   1890 //===----------------------------------------------------------------------===//
   1891 
   1892 static inline bool isImmUs(int64_t val)
   1893 {
   1894   return (val >= 0 && val <= 11);
   1895 }
   1896 
   1897 static inline bool isImmUs2(int64_t val)
   1898 {
   1899   return (val%2 == 0 && isImmUs(val/2));
   1900 }
   1901 
   1902 static inline bool isImmUs4(int64_t val)
   1903 {
   1904   return (val%4 == 0 && isImmUs(val/4));
   1905 }
   1906 
   1907 /// isLegalAddressingMode - Return true if the addressing mode represented
   1908 /// by AM is legal for this target, for a load/store of the specified type.
   1909 bool
   1910 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   1911                                               Type *Ty) const {
   1912   if (Ty->getTypeID() == Type::VoidTyID)
   1913     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
   1914 
   1915   const DataLayout *TD = TM.getDataLayout();
   1916   unsigned Size = TD->getTypeAllocSize(Ty);
   1917   if (AM.BaseGV) {
   1918     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
   1919                  AM.BaseOffs%4 == 0;
   1920   }
   1921 
   1922   switch (Size) {
   1923   case 1:
   1924     // reg + imm
   1925     if (AM.Scale == 0) {
   1926       return isImmUs(AM.BaseOffs);
   1927     }
   1928     // reg + reg
   1929     return AM.Scale == 1 && AM.BaseOffs == 0;
   1930   case 2:
   1931   case 3:
   1932     // reg + imm
   1933     if (AM.Scale == 0) {
   1934       return isImmUs2(AM.BaseOffs);
   1935     }
   1936     // reg + reg<<1
   1937     return AM.Scale == 2 && AM.BaseOffs == 0;
   1938   default:
   1939     // reg + imm
   1940     if (AM.Scale == 0) {
   1941       return isImmUs4(AM.BaseOffs);
   1942     }
   1943     // reg + reg<<2
   1944     return AM.Scale == 4 && AM.BaseOffs == 0;
   1945   }
   1946 }
   1947 
   1948 //===----------------------------------------------------------------------===//
   1949 //                           XCore Inline Assembly Support
   1950 //===----------------------------------------------------------------------===//
   1951 
   1952 std::pair<unsigned, const TargetRegisterClass*>
   1953 XCoreTargetLowering::
   1954 getRegForInlineAsmConstraint(const std::string &Constraint,
   1955                              MVT VT) const {
   1956   if (Constraint.size() == 1) {
   1957     switch (Constraint[0]) {
   1958     default : break;
   1959     case 'r':
   1960       return std::make_pair(0U, &XCore::GRRegsRegClass);
   1961     }
   1962   }
   1963   // Use the default implementation in TargetLowering to convert the register
   1964   // constraint into a member of a register class.
   1965   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   1966 }
   1967