Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file describes how to lower LLVM code to machine code.  This has two
     12 /// main components:
     13 ///
     14 ///  1. Which ValueTypes are natively supported by the target.
     15 ///  2. Which operations are supported for supported ValueTypes.
     16 ///  3. Cost thresholds for alternative implementations of certain operations.
     17 ///
     18 /// In addition it has a few other components, like information about FP
     19 /// immediates.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_TARGET_TARGETLOWERING_H
     24 #define LLVM_TARGET_TARGETLOWERING_H
     25 
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/CodeGen/DAGCombine.h"
     28 #include "llvm/CodeGen/RuntimeLibcalls.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/IR/Attributes.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/InlineAsm.h"
     34 #include "llvm/IR/IRBuilder.h"
     35 #include "llvm/MC/MCRegisterInfo.h"
     36 #include "llvm/Target/TargetCallingConv.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include <climits>
     39 #include <map>
     40 #include <vector>
     41 
     42 namespace llvm {
     43   class CallInst;
     44   class CCState;
     45   class FastISel;
     46   class FunctionLoweringInfo;
     47   class ImmutableCallSite;
     48   class IntrinsicInst;
     49   class MachineBasicBlock;
     50   class MachineFunction;
     51   class MachineInstr;
     52   class MachineJumpTableInfo;
     53   class Mangler;
     54   class MCContext;
     55   class MCExpr;
     56   class MCSymbol;
     57   template<typename T> class SmallVectorImpl;
     58   class DataLayout;
     59   class TargetRegisterClass;
     60   class TargetLibraryInfo;
     61   class TargetLoweringObjectFile;
     62   class Value;
     63 
     64   namespace Sched {
     65     enum Preference {
     66       None,             // No preference
     67       Source,           // Follow source order.
     68       RegPressure,      // Scheduling for lowest register pressure.
     69       Hybrid,           // Scheduling for both latency and register pressure.
     70       ILP,              // Scheduling for ILP in low register pressure mode.
     71       VLIW              // Scheduling for VLIW targets.
     72     };
     73   }
     74 
     75 /// This base class for TargetLowering contains the SelectionDAG-independent
     76 /// parts that can be used from the rest of CodeGen.
     77 class TargetLoweringBase {
     78   TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
     79   void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
     80 
     81 public:
     82   /// This enum indicates whether operations are valid for a target, and if not,
     83   /// what action should be used to make them valid.
     84   enum LegalizeAction {
     85     Legal,      // The target natively supports this operation.
     86     Promote,    // This operation should be executed in a larger type.
     87     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     88     Custom      // Use the LowerOperation hook to implement custom lowering.
     89   };
     90 
     91   /// This enum indicates whether a types are legal for a target, and if not,
     92   /// what action should be used to make them valid.
     93   enum LegalizeTypeAction {
     94     TypeLegal,           // The target natively supports this type.
     95     TypePromoteInteger,  // Replace this integer with a larger one.
     96     TypeExpandInteger,   // Split this integer into two of half the size.
     97     TypeSoftenFloat,     // Convert this float to a same size integer type.
     98     TypeExpandFloat,     // Split this float into two of half the size.
     99     TypeScalarizeVector, // Replace this one-element vector with its element.
    100     TypeSplitVector,     // Split this vector into two of half the size.
    101     TypeWidenVector      // This vector should be widened into a larger vector.
    102   };
    103 
    104   /// LegalizeKind holds the legalization kind that needs to happen to EVT
    105   /// in order to type-legalize it.
    106   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
    107 
    108   /// Enum that describes how the target represents true/false values.
    109   enum BooleanContent {
    110     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    111     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    112     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    113   };
    114 
    115   /// Enum that describes what type of support for selects the target has.
    116   enum SelectSupportKind {
    117     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    118     ScalarCondVectorVal,  // The target supports selects with a scalar condition
    119                           // and vector values (ex: cmov).
    120     VectorMaskSelect      // The target supports vector selects with a vector
    121                           // mask (ex: x86 blends).
    122   };
    123 
    124   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    125     switch (Content) {
    126     case UndefinedBooleanContent:
    127       // Extend by adding rubbish bits.
    128       return ISD::ANY_EXTEND;
    129     case ZeroOrOneBooleanContent:
    130       // Extend by adding zero bits.
    131       return ISD::ZERO_EXTEND;
    132     case ZeroOrNegativeOneBooleanContent:
    133       // Extend by copying the sign bit.
    134       return ISD::SIGN_EXTEND;
    135     }
    136     llvm_unreachable("Invalid content kind");
    137   }
    138 
    139   /// NOTE: The constructor takes ownership of TLOF.
    140   explicit TargetLoweringBase(const TargetMachine &TM,
    141                               const TargetLoweringObjectFile *TLOF);
    142   virtual ~TargetLoweringBase();
    143 
    144 protected:
    145   /// \brief Initialize all of the actions to default values.
    146   void initActions();
    147 
    148 public:
    149   const TargetMachine &getTargetMachine() const { return TM; }
    150   const DataLayout *getDataLayout() const { return DL; }
    151   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
    152 
    153   bool isBigEndian() const { return !IsLittleEndian; }
    154   bool isLittleEndian() const { return IsLittleEndian; }
    155 
    156   /// Return the pointer type for the given address space, defaults to
    157   /// the pointer type from the data layout.
    158   /// FIXME: The default needs to be removed once all the code is updated.
    159   virtual MVT getPointerTy(uint32_t /*AS*/ = 0) const;
    160   unsigned getPointerSizeInBits(uint32_t AS = 0) const;
    161   unsigned getPointerTypeSizeInBits(Type *Ty) const;
    162   virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
    163 
    164   EVT getShiftAmountTy(EVT LHSTy) const;
    165 
    166   /// Returns the type to be used for the index operand of:
    167   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
    168   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
    169   virtual MVT getVectorIdxTy() const {
    170     return getPointerTy();
    171   }
    172 
    173   /// Return true if the select operation is expensive for this target.
    174   bool isSelectExpensive() const { return SelectIsExpensive; }
    175 
    176   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
    177     return true;
    178   }
    179 
    180   /// Return true if multiple condition registers are available.
    181   bool hasMultipleConditionRegisters() const {
    182     return HasMultipleConditionRegisters;
    183   }
    184 
    185   /// Return true if the target has BitExtract instructions.
    186   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
    187 
    188   /// Return the preferred vector type legalization action.
    189   virtual TargetLoweringBase::LegalizeTypeAction
    190   getPreferredVectorAction(EVT VT) const {
    191     // The default action for one element vectors is to scalarize
    192     if (VT.getVectorNumElements() == 1)
    193       return TypeScalarizeVector;
    194     // The default action for other vectors is to promote
    195     return TypePromoteInteger;
    196   }
    197 
    198   // There are two general methods for expanding a BUILD_VECTOR node:
    199   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
    200   //     them together.
    201   //  2. Build the vector on the stack and then load it.
    202   // If this function returns true, then method (1) will be used, subject to
    203   // the constraint that all of the necessary shuffles are legal (as determined
    204   // by isShuffleMaskLegal). If this function returns false, then method (2) is
    205   // always used. The vector type, and the number of defined values, are
    206   // provided.
    207   virtual bool
    208   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
    209                                       unsigned DefinedValues) const {
    210     return DefinedValues < 3;
    211   }
    212 
    213   /// Return true if integer divide is usually cheaper than a sequence of
    214   /// several shifts, adds, and multiplies for this target.
    215   bool isIntDivCheap() const { return IntDivIsCheap; }
    216 
    217   /// Returns true if target has indicated at least one type should be bypassed.
    218   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
    219 
    220   /// Returns map of slow types for division or remainder with corresponding
    221   /// fast types
    222   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
    223     return BypassSlowDivWidths;
    224   }
    225 
    226   /// Return true if pow2 div is cheaper than a chain of srl/add/sra.
    227   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
    228 
    229   /// Return true if Flow Control is an expensive operation that should be
    230   /// avoided.
    231   bool isJumpExpensive() const { return JumpIsExpensive; }
    232 
    233   /// Return true if selects are only cheaper than branches if the branch is
    234   /// unlikely to be predicted right.
    235   bool isPredictableSelectExpensive() const {
    236     return PredictableSelectIsExpensive;
    237   }
    238 
    239   /// isLoadBitCastBeneficial() - Return true if the following transform
    240   /// is beneficial.
    241   /// fold (conv (load x)) -> (load (conv*)x)
    242   /// On architectures that don't natively support some vector loads efficiently,
    243   /// casting the load to a smaller vector of larger types and loading
    244   /// is more efficient, however, this can be undone by optimizations in
    245   /// dag combiner.
    246   virtual bool isLoadBitCastBeneficial(EVT /* Load */, EVT /* Bitcast */) const {
    247     return true;
    248   }
    249 
    250   /// \brief Return if the target supports combining a
    251   /// chain like:
    252   /// \code
    253   ///   %andResult = and %val1, #imm-with-one-bit-set;
    254   ///   %icmpResult = icmp %andResult, 0
    255   ///   br i1 %icmpResult, label %dest1, label %dest2
    256   /// \endcode
    257   /// into a single machine instruction of a form like:
    258   /// \code
    259   ///   brOnBitSet %register, #bitNumber, dest
    260   /// \endcode
    261   bool isMaskAndBranchFoldingLegal() const {
    262     return MaskAndBranchFoldingIsLegal;
    263   }
    264 
    265   /// Return the ValueType of the result of SETCC operations.  Also used to
    266   /// obtain the target's preferred type for the condition operand of SELECT and
    267   /// BRCOND nodes.  In the case of BRCOND the argument passed is MVT::Other
    268   /// since there are no other operands to get a type hint from.
    269   virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
    270 
    271   /// Return the ValueType for comparison libcalls. Comparions libcalls include
    272   /// floating point comparion calls, and Ordered/Unordered check calls on
    273   /// floating point numbers.
    274   virtual
    275   MVT::SimpleValueType getCmpLibcallReturnType() const;
    276 
    277   /// For targets without i1 registers, this gives the nature of the high-bits
    278   /// of boolean values held in types wider than i1.
    279   ///
    280   /// "Boolean values" are special true/false values produced by nodes like
    281   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    282   /// Not to be confused with general values promoted from i1.  Some cpus
    283   /// distinguish between vectors of boolean and scalars; the isVec parameter
    284   /// selects between the two kinds.  For example on X86 a scalar boolean should
    285   /// be zero extended from i1, while the elements of a vector of booleans
    286   /// should be sign extended from i1.
    287   ///
    288   /// Some cpus also treat floating point types the same way as they treat
    289   /// vectors instead of the way they treat scalars.
    290   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
    291     if (isVec)
    292       return BooleanVectorContents;
    293     return isFloat ? BooleanFloatContents : BooleanContents;
    294   }
    295 
    296   BooleanContent getBooleanContents(EVT Type) const {
    297     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
    298   }
    299 
    300   /// Return target scheduling preference.
    301   Sched::Preference getSchedulingPreference() const {
    302     return SchedPreferenceInfo;
    303   }
    304 
    305   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
    306   /// for different nodes. This function returns the preference (or none) for
    307   /// the given node.
    308   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    309     return Sched::None;
    310   }
    311 
    312   /// Return the register class that should be used for the specified value
    313   /// type.
    314   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
    315     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    316     assert(RC && "This value type is not natively supported!");
    317     return RC;
    318   }
    319 
    320   /// Return the 'representative' register class for the specified value
    321   /// type.
    322   ///
    323   /// The 'representative' register class is the largest legal super-reg
    324   /// register class for the register class of the value type.  For example, on
    325   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
    326   /// register class is GR64 on x86_64.
    327   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
    328     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
    329     return RC;
    330   }
    331 
    332   /// Return the cost of the 'representative' register class for the specified
    333   /// value type.
    334   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
    335     return RepRegClassCostForVT[VT.SimpleTy];
    336   }
    337 
    338   /// Return true if the target has native support for the specified value type.
    339   /// This means that it has a register that directly holds it without
    340   /// promotions or expansions.
    341   bool isTypeLegal(EVT VT) const {
    342     assert(!VT.isSimple() ||
    343            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    344     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
    345   }
    346 
    347   class ValueTypeActionImpl {
    348     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    349     /// that indicates how instruction selection should deal with the type.
    350     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
    351 
    352   public:
    353     ValueTypeActionImpl() {
    354       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 0);
    355     }
    356 
    357     LegalizeTypeAction getTypeAction(MVT VT) const {
    358       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    359     }
    360 
    361     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
    362       unsigned I = VT.SimpleTy;
    363       ValueTypeActions[I] = Action;
    364     }
    365   };
    366 
    367   const ValueTypeActionImpl &getValueTypeActions() const {
    368     return ValueTypeActions;
    369   }
    370 
    371   /// Return how we should legalize values of this type, either it is already
    372   /// legal (return 'Legal') or we need to promote it to a larger type (return
    373   /// 'Promote'), or we need to expand it into multiple registers of smaller
    374   /// integer type (return 'Expand').  'Custom' is not an option.
    375   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    376     return getTypeConversion(Context, VT).first;
    377   }
    378   LegalizeTypeAction getTypeAction(MVT VT) const {
    379     return ValueTypeActions.getTypeAction(VT);
    380   }
    381 
    382   /// For types supported by the target, this is an identity function.  For
    383   /// types that must be promoted to larger types, this returns the larger type
    384   /// to promote to.  For integer types that are larger than the largest integer
    385   /// register, this contains one step in the expansion to get to the smaller
    386   /// register. For illegal floating point types, this returns the integer type
    387   /// to transform to.
    388   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    389     return getTypeConversion(Context, VT).second;
    390   }
    391 
    392   /// For types supported by the target, this is an identity function.  For
    393   /// types that must be expanded (i.e. integer types that are larger than the
    394   /// largest integer register or illegal floating point types), this returns
    395   /// the largest legal type it will be expanded to.
    396   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    397     assert(!VT.isVector());
    398     while (true) {
    399       switch (getTypeAction(Context, VT)) {
    400       case TypeLegal:
    401         return VT;
    402       case TypeExpandInteger:
    403         VT = getTypeToTransformTo(Context, VT);
    404         break;
    405       default:
    406         llvm_unreachable("Type is not legal nor is it to be expanded!");
    407       }
    408     }
    409   }
    410 
    411   /// Vector types are broken down into some number of legal first class types.
    412   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
    413   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
    414   /// turns into 4 EVT::i32 values with both PPC and X86.
    415   ///
    416   /// This method returns the number of registers needed, and the VT for each
    417   /// register.  It also returns the VT and quantity of the intermediate values
    418   /// before they are promoted/expanded.
    419   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    420                                   EVT &IntermediateVT,
    421                                   unsigned &NumIntermediates,
    422                                   MVT &RegisterVT) const;
    423 
    424   struct IntrinsicInfo {
    425     unsigned     opc;         // target opcode
    426     EVT          memVT;       // memory VT
    427     const Value* ptrVal;      // value representing memory location
    428     int          offset;      // offset off of ptrVal
    429     unsigned     align;       // alignment
    430     bool         vol;         // is volatile?
    431     bool         readMem;     // reads memory?
    432     bool         writeMem;    // writes memory?
    433   };
    434 
    435   /// Given an intrinsic, checks if on the target the intrinsic will need to map
    436   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    437   /// true and store the intrinsic information into the IntrinsicInfo that was
    438   /// passed to the function.
    439   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    440                                   unsigned /*Intrinsic*/) const {
    441     return false;
    442   }
    443 
    444   /// Returns true if the target can instruction select the specified FP
    445   /// immediate natively. If false, the legalizer will materialize the FP
    446   /// immediate as a load from a constant pool.
    447   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    448     return false;
    449   }
    450 
    451   /// Targets can use this to indicate that they only support *some*
    452   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
    453   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
    454   /// legal.
    455   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    456                                   EVT /*VT*/) const {
    457     return true;
    458   }
    459 
    460   /// Returns true if the operation can trap for the value type.
    461   ///
    462   /// VT must be a legal type. By default, we optimistically assume most
    463   /// operations don't trap except for divide and remainder.
    464   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    465 
    466   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    467   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
    468   /// a VAND with a constant pool entry.
    469   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    470                                       EVT /*VT*/) const {
    471     return false;
    472   }
    473 
    474   /// Return how this operation should be treated: either it is legal, needs to
    475   /// be promoted to a larger size, needs to be expanded to some other code
    476   /// sequence, or the target has a custom expander for it.
    477   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    478     if (VT.isExtended()) return Expand;
    479     // If a target-specific SDNode requires legalization, require the target
    480     // to provide custom legalization for it.
    481     if (Op > array_lengthof(OpActions[0])) return Custom;
    482     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    483     return (LegalizeAction)OpActions[I][Op];
    484   }
    485 
    486   /// Return true if the specified operation is legal on this target or can be
    487   /// made legal with custom lowering. This is used to help guide high-level
    488   /// lowering decisions.
    489   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    490     return (VT == MVT::Other || isTypeLegal(VT)) &&
    491       (getOperationAction(Op, VT) == Legal ||
    492        getOperationAction(Op, VT) == Custom);
    493   }
    494 
    495   /// Return true if the specified operation is legal on this target or can be
    496   /// made legal using promotion. This is used to help guide high-level lowering
    497   /// decisions.
    498   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
    499     return (VT == MVT::Other || isTypeLegal(VT)) &&
    500       (getOperationAction(Op, VT) == Legal ||
    501        getOperationAction(Op, VT) == Promote);
    502   }
    503 
    504   /// Return true if the specified operation is illegal on this target or
    505   /// unlikely to be made legal with custom lowering. This is used to help guide
    506   /// high-level lowering decisions.
    507   bool isOperationExpand(unsigned Op, EVT VT) const {
    508     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
    509   }
    510 
    511   /// Return true if the specified operation is legal on this target.
    512   bool isOperationLegal(unsigned Op, EVT VT) const {
    513     return (VT == MVT::Other || isTypeLegal(VT)) &&
    514            getOperationAction(Op, VT) == Legal;
    515   }
    516 
    517   /// Return how this load with extension should be treated: either it is legal,
    518   /// needs to be promoted to a larger size, needs to be expanded to some other
    519   /// code sequence, or the target has a custom expander for it.
    520   LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
    521     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
    522            "Table isn't big enough!");
    523     return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
    524   }
    525 
    526   /// Return true if the specified load with extension is legal on this target.
    527   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
    528     return VT.isSimple() &&
    529       getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
    530   }
    531 
    532   /// Return how this store with truncation should be treated: either it is
    533   /// legal, needs to be promoted to a larger size, needs to be expanded to some
    534   /// other code sequence, or the target has a custom expander for it.
    535   LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
    536     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
    537            "Table isn't big enough!");
    538     return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
    539                                             [MemVT.SimpleTy];
    540   }
    541 
    542   /// Return true if the specified store with truncation is legal on this
    543   /// target.
    544   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    545     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    546       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
    547   }
    548 
    549   /// Return how the indexed load should be treated: either it is legal, needs
    550   /// to be promoted to a larger size, needs to be expanded to some other code
    551   /// sequence, or the target has a custom expander for it.
    552   LegalizeAction
    553   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    554     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
    555            "Table isn't big enough!");
    556     unsigned Ty = (unsigned)VT.SimpleTy;
    557     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    558   }
    559 
    560   /// Return true if the specified indexed load is legal on this target.
    561   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    562     return VT.isSimple() &&
    563       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
    564        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
    565   }
    566 
    567   /// Return how the indexed store should be treated: either it is legal, needs
    568   /// to be promoted to a larger size, needs to be expanded to some other code
    569   /// sequence, or the target has a custom expander for it.
    570   LegalizeAction
    571   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
    572     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
    573            "Table isn't big enough!");
    574     unsigned Ty = (unsigned)VT.SimpleTy;
    575     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    576   }
    577 
    578   /// Return true if the specified indexed load is legal on this target.
    579   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    580     return VT.isSimple() &&
    581       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
    582        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
    583   }
    584 
    585   /// Return how the condition code should be treated: either it is legal, needs
    586   /// to be expanded to some other code sequence, or the target has a custom
    587   /// expander for it.
    588   LegalizeAction
    589   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
    590     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    591            ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
    592            "Table isn't big enough!");
    593     // See setCondCodeAction for how this is encoded.
    594     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
    595     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 4];
    596     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0x3);
    597     assert(Action != Promote && "Can't promote condition code!");
    598     return Action;
    599   }
    600 
    601   /// Return true if the specified condition code is legal on this target.
    602   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
    603     return
    604       getCondCodeAction(CC, VT) == Legal ||
    605       getCondCodeAction(CC, VT) == Custom;
    606   }
    607 
    608 
    609   /// If the action for this operation is to promote, this method returns the
    610   /// ValueType to promote to.
    611   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
    612     assert(getOperationAction(Op, VT) == Promote &&
    613            "This operation isn't promoted!");
    614 
    615     // See if this has an explicit type specified.
    616     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    617              MVT::SimpleValueType>::const_iterator PTTI =
    618       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
    619     if (PTTI != PromoteToType.end()) return PTTI->second;
    620 
    621     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    622            "Cannot autopromote this type, add it with AddPromotedToType.");
    623 
    624     MVT NVT = VT;
    625     do {
    626       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
    627       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    628              "Didn't find type to promote to!");
    629     } while (!isTypeLegal(NVT) ||
    630               getOperationAction(Op, NVT) == Promote);
    631     return NVT;
    632   }
    633 
    634   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
    635   /// operations except for the pointer size.  If AllowUnknown is true, this
    636   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
    637   /// otherwise it will assert.
    638   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    639     // Lower scalar pointers to native pointer types.
    640     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    641       return getPointerTy(PTy->getAddressSpace());
    642 
    643     if (Ty->isVectorTy()) {
    644       VectorType *VTy = cast<VectorType>(Ty);
    645       Type *Elm = VTy->getElementType();
    646       // Lower vectors of pointers to native pointer types.
    647       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
    648         EVT PointerTy(getPointerTy(PT->getAddressSpace()));
    649         Elm = PointerTy.getTypeForEVT(Ty->getContext());
    650       }
    651 
    652       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
    653                        VTy->getNumElements());
    654     }
    655     return EVT::getEVT(Ty, AllowUnknown);
    656   }
    657 
    658   /// Return the MVT corresponding to this LLVM type. See getValueType.
    659   MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
    660     return getValueType(Ty, AllowUnknown).getSimpleVT();
    661   }
    662 
    663   /// Return the desired alignment for ByVal or InAlloca aggregate function
    664   /// arguments in the caller parameter area.  This is the actual alignment, not
    665   /// its logarithm.
    666   virtual unsigned getByValTypeAlignment(Type *Ty) const;
    667 
    668   /// Return the type of registers that this ValueType will eventually require.
    669   MVT getRegisterType(MVT VT) const {
    670     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    671     return RegisterTypeForVT[VT.SimpleTy];
    672   }
    673 
    674   /// Return the type of registers that this ValueType will eventually require.
    675   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
    676     if (VT.isSimple()) {
    677       assert((unsigned)VT.getSimpleVT().SimpleTy <
    678                 array_lengthof(RegisterTypeForVT));
    679       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    680     }
    681     if (VT.isVector()) {
    682       EVT VT1;
    683       MVT RegisterVT;
    684       unsigned NumIntermediates;
    685       (void)getVectorTypeBreakdown(Context, VT, VT1,
    686                                    NumIntermediates, RegisterVT);
    687       return RegisterVT;
    688     }
    689     if (VT.isInteger()) {
    690       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    691     }
    692     llvm_unreachable("Unsupported extended type!");
    693   }
    694 
    695   /// Return the number of registers that this ValueType will eventually
    696   /// require.
    697   ///
    698   /// This is one for any types promoted to live in larger registers, but may be
    699   /// more than one for types (like i64) that are split into pieces.  For types
    700   /// like i140, which are first promoted then expanded, it is the number of
    701   /// registers needed to hold all the bits of the original type.  For an i140
    702   /// on a 32 bit machine this means 5 registers.
    703   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    704     if (VT.isSimple()) {
    705       assert((unsigned)VT.getSimpleVT().SimpleTy <
    706                 array_lengthof(NumRegistersForVT));
    707       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    708     }
    709     if (VT.isVector()) {
    710       EVT VT1;
    711       MVT VT2;
    712       unsigned NumIntermediates;
    713       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    714     }
    715     if (VT.isInteger()) {
    716       unsigned BitWidth = VT.getSizeInBits();
    717       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    718       return (BitWidth + RegWidth - 1) / RegWidth;
    719     }
    720     llvm_unreachable("Unsupported extended type!");
    721   }
    722 
    723   /// If true, then instruction selection should seek to shrink the FP constant
    724   /// of the specified type to a smaller type in order to save space and / or
    725   /// reduce runtime.
    726   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
    727 
    728   /// When splitting a value of the specified type into parts, does the Lo
    729   /// or Hi part come first?  This usually follows the endianness, except
    730   /// for ppcf128, where the Hi part always comes first.
    731   bool hasBigEndianPartOrdering(EVT VT) const {
    732     return isBigEndian() || VT == MVT::ppcf128;
    733   }
    734 
    735   /// If true, the target has custom DAG combine transformations that it can
    736   /// perform for the specified node.
    737   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    738     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    739     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    740   }
    741 
    742   /// \brief Get maximum # of store operations permitted for llvm.memset
    743   ///
    744   /// This function returns the maximum number of store operations permitted
    745   /// to replace a call to llvm.memset. The value is set by the target at the
    746   /// performance threshold for such a replacement. If OptSize is true,
    747   /// return the limit for functions that have OptSize attribute.
    748   unsigned getMaxStoresPerMemset(bool OptSize) const {
    749     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
    750   }
    751 
    752   /// \brief Get maximum # of store operations permitted for llvm.memcpy
    753   ///
    754   /// This function returns the maximum number of store operations permitted
    755   /// to replace a call to llvm.memcpy. The value is set by the target at the
    756   /// performance threshold for such a replacement. If OptSize is true,
    757   /// return the limit for functions that have OptSize attribute.
    758   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    759     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
    760   }
    761 
    762   /// \brief Get maximum # of store operations permitted for llvm.memmove
    763   ///
    764   /// This function returns the maximum number of store operations permitted
    765   /// to replace a call to llvm.memmove. The value is set by the target at the
    766   /// performance threshold for such a replacement. If OptSize is true,
    767   /// return the limit for functions that have OptSize attribute.
    768   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    769     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
    770   }
    771 
    772   /// \brief Determine if the target supports unaligned memory accesses.
    773   ///
    774   /// This function returns true if the target allows unaligned memory accesses
    775   /// of the specified type in the given address space. If true, it also returns
    776   /// whether the unaligned memory access is "fast" in the third argument by
    777   /// reference. This is used, for example, in situations where an array
    778   /// copy/move/set is converted to a sequence of store operations. Its use
    779   /// helps to ensure that such replacements don't generate code that causes an
    780   /// alignment error (trap) on the target machine.
    781   virtual bool allowsUnalignedMemoryAccesses(EVT,
    782                                              unsigned AddrSpace = 0,
    783                                              bool * /*Fast*/ = nullptr) const {
    784     return false;
    785   }
    786 
    787   /// Returns the target specific optimal type for load and store operations as
    788   /// a result of memset, memcpy, and memmove lowering.
    789   ///
    790   /// If DstAlign is zero that means it's safe to destination alignment can
    791   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
    792   /// a need to check it against alignment requirement, probably because the
    793   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
    794   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
    795   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
    796   /// does not need to be loaded.  It returns EVT::Other if the type should be
    797   /// determined using generic target-independent logic.
    798   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
    799                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
    800                                   bool /*IsMemset*/,
    801                                   bool /*ZeroMemset*/,
    802                                   bool /*MemcpyStrSrc*/,
    803                                   MachineFunction &/*MF*/) const {
    804     return MVT::Other;
    805   }
    806 
    807   /// Returns true if it's safe to use load / store of the specified type to
    808   /// expand memcpy / memset inline.
    809   ///
    810   /// This is mostly true for all types except for some special cases. For
    811   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
    812   /// fstpl which also does type conversion. Note the specified type doesn't
    813   /// have to be legal as the hook is used before type legalization.
    814   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
    815 
    816   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
    817   bool usesUnderscoreSetJmp() const {
    818     return UseUnderscoreSetJmp;
    819   }
    820 
    821   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
    822   bool usesUnderscoreLongJmp() const {
    823     return UseUnderscoreLongJmp;
    824   }
    825 
    826   /// Return whether the target can generate code for jump tables.
    827   bool supportJumpTables() const {
    828     return SupportJumpTables;
    829   }
    830 
    831   /// Return integer threshold on number of blocks to use jump tables rather
    832   /// than if sequence.
    833   int getMinimumJumpTableEntries() const {
    834     return MinimumJumpTableEntries;
    835   }
    836 
    837   /// If a physical register, this specifies the register that
    838   /// llvm.savestack/llvm.restorestack should save and restore.
    839   unsigned getStackPointerRegisterToSaveRestore() const {
    840     return StackPointerRegisterToSaveRestore;
    841   }
    842 
    843   /// If a physical register, this returns the register that receives the
    844   /// exception address on entry to a landing pad.
    845   unsigned getExceptionPointerRegister() const {
    846     return ExceptionPointerRegister;
    847   }
    848 
    849   /// If a physical register, this returns the register that receives the
    850   /// exception typeid on entry to a landing pad.
    851   unsigned getExceptionSelectorRegister() const {
    852     return ExceptionSelectorRegister;
    853   }
    854 
    855   /// Returns the target's jmp_buf size in bytes (if never set, the default is
    856   /// 200)
    857   unsigned getJumpBufSize() const {
    858     return JumpBufSize;
    859   }
    860 
    861   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
    862   /// is 0)
    863   unsigned getJumpBufAlignment() const {
    864     return JumpBufAlignment;
    865   }
    866 
    867   /// Return the minimum stack alignment of an argument.
    868   unsigned getMinStackArgumentAlignment() const {
    869     return MinStackArgumentAlignment;
    870   }
    871 
    872   /// Return the minimum function alignment.
    873   unsigned getMinFunctionAlignment() const {
    874     return MinFunctionAlignment;
    875   }
    876 
    877   /// Return the preferred function alignment.
    878   unsigned getPrefFunctionAlignment() const {
    879     return PrefFunctionAlignment;
    880   }
    881 
    882   /// Return the preferred loop alignment.
    883   unsigned getPrefLoopAlignment() const {
    884     return PrefLoopAlignment;
    885   }
    886 
    887   /// Return whether the DAG builder should automatically insert fences and
    888   /// reduce ordering for atomics.
    889   bool getInsertFencesForAtomic() const {
    890     return InsertFencesForAtomic;
    891   }
    892 
    893   /// Return true if the target stores stack protector cookies at a fixed offset
    894   /// in some non-standard address space, and populates the address space and
    895   /// offset as appropriate.
    896   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
    897                                       unsigned &/*Offset*/) const {
    898     return false;
    899   }
    900 
    901   /// Returns the maximal possible offset which can be used for loads / stores
    902   /// from the global.
    903   virtual unsigned getMaximalGlobalOffset() const {
    904     return 0;
    905   }
    906 
    907   /// Returns true if a cast between SrcAS and DestAS is a noop.
    908   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
    909     return false;
    910   }
    911 
    912   //===--------------------------------------------------------------------===//
    913   /// \name Helpers for TargetTransformInfo implementations
    914   /// @{
    915 
    916   /// Get the ISD node that corresponds to the Instruction class opcode.
    917   int InstructionOpcodeToISD(unsigned Opcode) const;
    918 
    919   /// Estimate the cost of type-legalization and the legalized type.
    920   std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
    921 
    922   /// @}
    923 
    924   //===--------------------------------------------------------------------===//
    925   /// \name Helpers for load-linked/store-conditional atomic expansion.
    926   /// @{
    927 
    928   /// Perform a load-linked operation on Addr, returning a "Value *" with the
    929   /// corresponding pointee type. This may entail some non-trivial operations to
    930   /// truncate or reconstruct types that will be illegal in the backend. See
    931   /// ARMISelLowering for an example implementation.
    932   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
    933                                 AtomicOrdering Ord) const {
    934     llvm_unreachable("Load linked unimplemented on this target");
    935   }
    936 
    937   /// Perform a store-conditional operation to Addr. Return the status of the
    938   /// store. This should be 0 if the store succeeded, non-zero otherwise.
    939   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
    940                                       Value *Addr, AtomicOrdering Ord) const {
    941     llvm_unreachable("Store conditional unimplemented on this target");
    942   }
    943 
    944   /// Return true if the given (atomic) instruction should be expanded by the
    945   /// IR-level AtomicExpandLoadLinked pass into a loop involving
    946   /// load-linked/store-conditional pairs. Atomic stores will be expanded in the
    947   /// same way as "atomic xchg" operations which ignore their output if needed.
    948   virtual bool shouldExpandAtomicInIR(Instruction *Inst) const {
    949     return false;
    950   }
    951 
    952 
    953   //===--------------------------------------------------------------------===//
    954   // TargetLowering Configuration Methods - These methods should be invoked by
    955   // the derived class constructor to configure this object for the target.
    956   //
    957 
    958   /// \brief Reset the operation actions based on target options.
    959   virtual void resetOperationActions() {}
    960 
    961 protected:
    962   /// Specify how the target extends the result of integer and floating point
    963   /// boolean values from i1 to a wider type.  See getBooleanContents.
    964   void setBooleanContents(BooleanContent Ty) {
    965     BooleanContents = Ty;
    966     BooleanFloatContents = Ty;
    967   }
    968 
    969   /// Specify how the target extends the result of integer and floating point
    970   /// boolean values from i1 to a wider type.  See getBooleanContents.
    971   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
    972     BooleanContents = IntTy;
    973     BooleanFloatContents = FloatTy;
    974   }
    975 
    976   /// Specify how the target extends the result of a vector boolean value from a
    977   /// vector of i1 to a wider type.  See getBooleanContents.
    978   void setBooleanVectorContents(BooleanContent Ty) {
    979     BooleanVectorContents = Ty;
    980   }
    981 
    982   /// Specify the target scheduling preference.
    983   void setSchedulingPreference(Sched::Preference Pref) {
    984     SchedPreferenceInfo = Pref;
    985   }
    986 
    987   /// Indicate whether this target prefers to use _setjmp to implement
    988   /// llvm.setjmp or the version without _.  Defaults to false.
    989   void setUseUnderscoreSetJmp(bool Val) {
    990     UseUnderscoreSetJmp = Val;
    991   }
    992 
    993   /// Indicate whether this target prefers to use _longjmp to implement
    994   /// llvm.longjmp or the version without _.  Defaults to false.
    995   void setUseUnderscoreLongJmp(bool Val) {
    996     UseUnderscoreLongJmp = Val;
    997   }
    998 
    999   /// Indicate whether the target can generate code for jump tables.
   1000   void setSupportJumpTables(bool Val) {
   1001     SupportJumpTables = Val;
   1002   }
   1003 
   1004   /// Indicate the number of blocks to generate jump tables rather than if
   1005   /// sequence.
   1006   void setMinimumJumpTableEntries(int Val) {
   1007     MinimumJumpTableEntries = Val;
   1008   }
   1009 
   1010   /// If set to a physical register, this specifies the register that
   1011   /// llvm.savestack/llvm.restorestack should save and restore.
   1012   void setStackPointerRegisterToSaveRestore(unsigned R) {
   1013     StackPointerRegisterToSaveRestore = R;
   1014   }
   1015 
   1016   /// If set to a physical register, this sets the register that receives the
   1017   /// exception address on entry to a landing pad.
   1018   void setExceptionPointerRegister(unsigned R) {
   1019     ExceptionPointerRegister = R;
   1020   }
   1021 
   1022   /// If set to a physical register, this sets the register that receives the
   1023   /// exception typeid on entry to a landing pad.
   1024   void setExceptionSelectorRegister(unsigned R) {
   1025     ExceptionSelectorRegister = R;
   1026   }
   1027 
   1028   /// Tells the code generator not to expand operations into sequences that use
   1029   /// the select operations if possible.
   1030   void setSelectIsExpensive(bool isExpensive = true) {
   1031     SelectIsExpensive = isExpensive;
   1032   }
   1033 
   1034   /// Tells the code generator that the target has multiple (allocatable)
   1035   /// condition registers that can be used to store the results of comparisons
   1036   /// for use by selects and conditional branches. With multiple condition
   1037   /// registers, the code generator will not aggressively sink comparisons into
   1038   /// the blocks of their users.
   1039   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
   1040     HasMultipleConditionRegisters = hasManyRegs;
   1041   }
   1042 
   1043   /// Tells the code generator that the target has BitExtract instructions.
   1044   /// The code generator will aggressively sink "shift"s into the blocks of
   1045   /// their users if the users will generate "and" instructions which can be
   1046   /// combined with "shift" to BitExtract instructions.
   1047   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
   1048     HasExtractBitsInsn = hasExtractInsn;
   1049   }
   1050 
   1051   /// Tells the code generator not to expand sequence of operations into a
   1052   /// separate sequences that increases the amount of flow control.
   1053   void setJumpIsExpensive(bool isExpensive = true) {
   1054     JumpIsExpensive = isExpensive;
   1055   }
   1056 
   1057   /// Tells the code generator that integer divide is expensive, and if
   1058   /// possible, should be replaced by an alternate sequence of instructions not
   1059   /// containing an integer divide.
   1060   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
   1061 
   1062   /// Tells the code generator which bitwidths to bypass.
   1063   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
   1064     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
   1065   }
   1066 
   1067   /// Tells the code generator that it shouldn't generate srl/add/sra for a
   1068   /// signed divide by power of two, and let the target handle it.
   1069   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
   1070 
   1071   /// Add the specified register class as an available regclass for the
   1072   /// specified value type. This indicates the selector can handle values of
   1073   /// that class natively.
   1074   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
   1075     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
   1076     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1077     RegClassForVT[VT.SimpleTy] = RC;
   1078   }
   1079 
   1080   /// Remove all register classes.
   1081   void clearRegisterClasses() {
   1082     memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
   1083 
   1084     AvailableRegClasses.clear();
   1085   }
   1086 
   1087   /// \brief Remove all operation actions.
   1088   void clearOperationActions() {
   1089   }
   1090 
   1091   /// Return the largest legal super-reg register class of the register class
   1092   /// for the specified type and its associated "cost".
   1093   virtual std::pair<const TargetRegisterClass*, uint8_t>
   1094   findRepresentativeClass(MVT VT) const;
   1095 
   1096   /// Once all of the register classes are added, this allows us to compute
   1097   /// derived properties we expose.
   1098   void computeRegisterProperties();
   1099 
   1100   /// Indicate that the specified operation does not work with the specified
   1101   /// type and indicate what to do about it.
   1102   void setOperationAction(unsigned Op, MVT VT,
   1103                           LegalizeAction Action) {
   1104     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1105     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
   1106   }
   1107 
   1108   /// Indicate that the specified load with extension does not work with the
   1109   /// specified type and indicate what to do about it.
   1110   void setLoadExtAction(unsigned ExtType, MVT VT,
   1111                         LegalizeAction Action) {
   1112     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
   1113            "Table isn't big enough!");
   1114     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
   1115   }
   1116 
   1117   /// Indicate that the specified truncating store does not work with the
   1118   /// specified type and indicate what to do about it.
   1119   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1120                            LegalizeAction Action) {
   1121     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
   1122            "Table isn't big enough!");
   1123     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
   1124   }
   1125 
   1126   /// Indicate that the specified indexed load does or does not work with the
   1127   /// specified type and indicate what to do abort it.
   1128   ///
   1129   /// NOTE: All indexed mode loads are initialized to Expand in
   1130   /// TargetLowering.cpp
   1131   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1132                             LegalizeAction Action) {
   1133     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1134            (unsigned)Action < 0xf && "Table isn't big enough!");
   1135     // Load action are kept in the upper half.
   1136     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1137     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1138   }
   1139 
   1140   /// Indicate that the specified indexed store does or does not work with the
   1141   /// specified type and indicate what to do about it.
   1142   ///
   1143   /// NOTE: All indexed mode stores are initialized to Expand in
   1144   /// TargetLowering.cpp
   1145   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1146                              LegalizeAction Action) {
   1147     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1148            (unsigned)Action < 0xf && "Table isn't big enough!");
   1149     // Store action are kept in the lower half.
   1150     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1151     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1152   }
   1153 
   1154   /// Indicate that the specified condition code is or isn't supported on the
   1155   /// target and indicate what to do about it.
   1156   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1157                          LegalizeAction Action) {
   1158     assert(VT < MVT::LAST_VALUETYPE &&
   1159            (unsigned)CC < array_lengthof(CondCodeActions) &&
   1160            "Table isn't big enough!");
   1161     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 32-bit
   1162     /// value and the upper 27 bits index into the second dimension of the array
   1163     /// to select what 32-bit value to use.
   1164     uint32_t Shift = 2 * (VT.SimpleTy & 0xF);
   1165     CondCodeActions[CC][VT.SimpleTy >> 4] &= ~((uint32_t)0x3 << Shift);
   1166     CondCodeActions[CC][VT.SimpleTy >> 4] |= (uint32_t)Action << Shift;
   1167   }
   1168 
   1169   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
   1170   /// to trying a larger integer/fp until it can find one that works. If that
   1171   /// default is insufficient, this method can be used by the target to override
   1172   /// the default.
   1173   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1174     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1175   }
   1176 
   1177   /// Targets should invoke this method for each target independent node that
   1178   /// they want to provide a custom DAG combiner for by implementing the
   1179   /// PerformDAGCombine virtual method.
   1180   void setTargetDAGCombine(ISD::NodeType NT) {
   1181     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1182     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1183   }
   1184 
   1185   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
   1186   void setJumpBufSize(unsigned Size) {
   1187     JumpBufSize = Size;
   1188   }
   1189 
   1190   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
   1191   /// 0
   1192   void setJumpBufAlignment(unsigned Align) {
   1193     JumpBufAlignment = Align;
   1194   }
   1195 
   1196   /// Set the target's minimum function alignment (in log2(bytes))
   1197   void setMinFunctionAlignment(unsigned Align) {
   1198     MinFunctionAlignment = Align;
   1199   }
   1200 
   1201   /// Set the target's preferred function alignment.  This should be set if
   1202   /// there is a performance benefit to higher-than-minimum alignment (in
   1203   /// log2(bytes))
   1204   void setPrefFunctionAlignment(unsigned Align) {
   1205     PrefFunctionAlignment = Align;
   1206   }
   1207 
   1208   /// Set the target's preferred loop alignment. Default alignment is zero, it
   1209   /// means the target does not care about loop alignment.  The alignment is
   1210   /// specified in log2(bytes).
   1211   void setPrefLoopAlignment(unsigned Align) {
   1212     PrefLoopAlignment = Align;
   1213   }
   1214 
   1215   /// Set the minimum stack alignment of an argument (in log2(bytes)).
   1216   void setMinStackArgumentAlignment(unsigned Align) {
   1217     MinStackArgumentAlignment = Align;
   1218   }
   1219 
   1220   /// Set if the DAG builder should automatically insert fences and reduce the
   1221   /// order of atomic memory operations to Monotonic.
   1222   void setInsertFencesForAtomic(bool fence) {
   1223     InsertFencesForAtomic = fence;
   1224   }
   1225 
   1226 public:
   1227   //===--------------------------------------------------------------------===//
   1228   // Addressing mode description hooks (used by LSR etc).
   1229   //
   1230 
   1231   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
   1232   /// instructions reading the address. This allows as much computation as
   1233   /// possible to be done in the address mode for that operand. This hook lets
   1234   /// targets also pass back when this should be done on intrinsics which
   1235   /// load/store.
   1236   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
   1237                                     SmallVectorImpl<Value*> &/*Ops*/,
   1238                                     Type *&/*AccessTy*/) const {
   1239     return false;
   1240   }
   1241 
   1242   /// This represents an addressing mode of:
   1243   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1244   /// If BaseGV is null,  there is no BaseGV.
   1245   /// If BaseOffs is zero, there is no base offset.
   1246   /// If HasBaseReg is false, there is no base register.
   1247   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1248   /// no scale.
   1249   struct AddrMode {
   1250     GlobalValue *BaseGV;
   1251     int64_t      BaseOffs;
   1252     bool         HasBaseReg;
   1253     int64_t      Scale;
   1254     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1255   };
   1256 
   1257   /// Return true if the addressing mode represented by AM is legal for this
   1258   /// target, for a load/store of the specified type.
   1259   ///
   1260   /// The type may be VoidTy, in which case only return true if the addressing
   1261   /// mode is legal for a load/store of any legal type.  TODO: Handle
   1262   /// pre/postinc as well.
   1263   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
   1264 
   1265   /// \brief Return the cost of the scaling factor used in the addressing mode
   1266   /// represented by AM for this target, for a load/store of the specified type.
   1267   ///
   1268   /// If the AM is supported, the return value must be >= 0.
   1269   /// If the AM is not supported, it returns a negative value.
   1270   /// TODO: Handle pre/postinc as well.
   1271   virtual int getScalingFactorCost(const AddrMode &AM, Type *Ty) const {
   1272     // Default: assume that any scaling factor used in a legal AM is free.
   1273     if (isLegalAddressingMode(AM, Ty)) return 0;
   1274     return -1;
   1275   }
   1276 
   1277   /// Return true if the specified immediate is legal icmp immediate, that is
   1278   /// the target has icmp instructions which can compare a register against the
   1279   /// immediate without having to materialize the immediate into a register.
   1280   virtual bool isLegalICmpImmediate(int64_t) const {
   1281     return true;
   1282   }
   1283 
   1284   /// Return true if the specified immediate is legal add immediate, that is the
   1285   /// target has add instructions which can add a register with the immediate
   1286   /// without having to materialize the immediate into a register.
   1287   virtual bool isLegalAddImmediate(int64_t) const {
   1288     return true;
   1289   }
   1290 
   1291   /// Return true if it's significantly cheaper to shift a vector by a uniform
   1292   /// scalar than by an amount which will vary across each lane. On x86, for
   1293   /// example, there is a "psllw" instruction for the former case, but no simple
   1294   /// instruction for a general "a << b" operation on vectors.
   1295   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
   1296     return false;
   1297   }
   1298 
   1299   /// Return true if it's free to truncate a value of type Ty1 to type
   1300   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
   1301   /// by referencing its sub-register AX.
   1302   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1303     return false;
   1304   }
   1305 
   1306   /// Return true if a truncation from Ty1 to Ty2 is permitted when deciding
   1307   /// whether a call is in tail position. Typically this means that both results
   1308   /// would be assigned to the same register or stack slot, but it could mean
   1309   /// the target performs adequate checks of its own before proceeding with the
   1310   /// tail call.
   1311   virtual bool allowTruncateForTailCall(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1312     return false;
   1313   }
   1314 
   1315   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1316     return false;
   1317   }
   1318 
   1319   /// Return true if any actual instruction that defines a value of type Ty1
   1320   /// implicitly zero-extends the value to Ty2 in the result register.
   1321   ///
   1322   /// This does not necessarily include registers defined in unknown ways, such
   1323   /// as incoming arguments, or copies from unknown virtual registers. Also, if
   1324   /// isTruncateFree(Ty2, Ty1) is true, this does not necessarily apply to
   1325   /// truncate instructions. e.g. on x86-64, all instructions that define 32-bit
   1326   /// values implicit zero-extend the result out to 64 bits.
   1327   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1328     return false;
   1329   }
   1330 
   1331   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1332     return false;
   1333   }
   1334 
   1335   /// Return true if the target supplies and combines to a paired load
   1336   /// two loaded values of type LoadedType next to each other in memory.
   1337   /// RequiredAlignment gives the minimal alignment constraints that must be met
   1338   /// to be able to select this paired load.
   1339   ///
   1340   /// This information is *not* used to generate actual paired loads, but it is
   1341   /// used to generate a sequence of loads that is easier to combine into a
   1342   /// paired load.
   1343   /// For instance, something like this:
   1344   /// a = load i64* addr
   1345   /// b = trunc i64 a to i32
   1346   /// c = lshr i64 a, 32
   1347   /// d = trunc i64 c to i32
   1348   /// will be optimized into:
   1349   /// b = load i32* addr1
   1350   /// d = load i32* addr2
   1351   /// Where addr1 = addr2 +/- sizeof(i32).
   1352   ///
   1353   /// In other words, unless the target performs a post-isel load combining,
   1354   /// this information should not be provided because it will generate more
   1355   /// loads.
   1356   virtual bool hasPairedLoad(Type * /*LoadedType*/,
   1357                              unsigned & /*RequiredAligment*/) const {
   1358     return false;
   1359   }
   1360 
   1361   virtual bool hasPairedLoad(EVT /*LoadedType*/,
   1362                              unsigned & /*RequiredAligment*/) const {
   1363     return false;
   1364   }
   1365 
   1366   /// Return true if zero-extending the specific node Val to type VT2 is free
   1367   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
   1368   /// because it's folded such as X86 zero-extending loads).
   1369   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
   1370     return isZExtFree(Val.getValueType(), VT2);
   1371   }
   1372 
   1373   /// Return true if an fneg operation is free to the point where it is never
   1374   /// worthwhile to replace it with a bitwise operation.
   1375   virtual bool isFNegFree(EVT VT) const {
   1376     assert(VT.isFloatingPoint());
   1377     return false;
   1378   }
   1379 
   1380   /// Return true if an fabs operation is free to the point where it is never
   1381   /// worthwhile to replace it with a bitwise operation.
   1382   virtual bool isFAbsFree(EVT VT) const {
   1383     assert(VT.isFloatingPoint());
   1384     return false;
   1385   }
   1386 
   1387   /// Return true if an FMA operation is faster than a pair of fmul and fadd
   1388   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
   1389   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
   1390   ///
   1391   /// NOTE: This may be called before legalization on types for which FMAs are
   1392   /// not legal, but should return true if those types will eventually legalize
   1393   /// to types that support FMAs. After legalization, it will only be called on
   1394   /// types that support FMAs (via Legal or Custom actions)
   1395   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
   1396     return false;
   1397   }
   1398 
   1399   /// Return true if it's profitable to narrow operations of type VT1 to
   1400   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
   1401   /// i32 to i16.
   1402   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   1403     return false;
   1404   }
   1405 
   1406   /// \brief Return true if it is beneficial to convert a load of a constant to
   1407   /// just the constant itself.
   1408   /// On some targets it might be more efficient to use a combination of
   1409   /// arithmetic instructions to materialize the constant instead of loading it
   1410   /// from a constant pool.
   1411   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
   1412                                                  Type *Ty) const {
   1413     return false;
   1414   }
   1415   //===--------------------------------------------------------------------===//
   1416   // Runtime Library hooks
   1417   //
   1418 
   1419   /// Rename the default libcall routine name for the specified libcall.
   1420   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1421     LibcallRoutineNames[Call] = Name;
   1422   }
   1423 
   1424   /// Get the libcall routine name for the specified libcall.
   1425   const char *getLibcallName(RTLIB::Libcall Call) const {
   1426     return LibcallRoutineNames[Call];
   1427   }
   1428 
   1429   /// Override the default CondCode to be used to test the result of the
   1430   /// comparison libcall against zero.
   1431   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1432     CmpLibcallCCs[Call] = CC;
   1433   }
   1434 
   1435   /// Get the CondCode that's to be used to test the result of the comparison
   1436   /// libcall against zero.
   1437   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1438     return CmpLibcallCCs[Call];
   1439   }
   1440 
   1441   /// Set the CallingConv that should be used for the specified libcall.
   1442   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1443     LibcallCallingConvs[Call] = CC;
   1444   }
   1445 
   1446   /// Get the CallingConv that should be used for the specified libcall.
   1447   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1448     return LibcallCallingConvs[Call];
   1449   }
   1450 
   1451 private:
   1452   const TargetMachine &TM;
   1453   const DataLayout *DL;
   1454   const TargetLoweringObjectFile &TLOF;
   1455 
   1456   /// True if this is a little endian target.
   1457   bool IsLittleEndian;
   1458 
   1459   /// Tells the code generator not to expand operations into sequences that use
   1460   /// the select operations if possible.
   1461   bool SelectIsExpensive;
   1462 
   1463   /// Tells the code generator that the target has multiple (allocatable)
   1464   /// condition registers that can be used to store the results of comparisons
   1465   /// for use by selects and conditional branches. With multiple condition
   1466   /// registers, the code generator will not aggressively sink comparisons into
   1467   /// the blocks of their users.
   1468   bool HasMultipleConditionRegisters;
   1469 
   1470   /// Tells the code generator that the target has BitExtract instructions.
   1471   /// The code generator will aggressively sink "shift"s into the blocks of
   1472   /// their users if the users will generate "and" instructions which can be
   1473   /// combined with "shift" to BitExtract instructions.
   1474   bool HasExtractBitsInsn;
   1475 
   1476   /// Tells the code generator not to expand integer divides by constants into a
   1477   /// sequence of muls, adds, and shifts.  This is a hack until a real cost
   1478   /// model is in place.  If we ever optimize for size, this will be set to true
   1479   /// unconditionally.
   1480   bool IntDivIsCheap;
   1481 
   1482   /// Tells the code generator to bypass slow divide or remainder
   1483   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
   1484   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
   1485   /// div/rem when the operands are positive and less than 256.
   1486   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
   1487 
   1488   /// Tells the code generator that it shouldn't generate srl/add/sra for a
   1489   /// signed divide by power of two, and let the target handle it.
   1490   bool Pow2DivIsCheap;
   1491 
   1492   /// Tells the code generator that it shouldn't generate extra flow control
   1493   /// instructions and should attempt to combine flow control instructions via
   1494   /// predication.
   1495   bool JumpIsExpensive;
   1496 
   1497   /// This target prefers to use _setjmp to implement llvm.setjmp.
   1498   ///
   1499   /// Defaults to false.
   1500   bool UseUnderscoreSetJmp;
   1501 
   1502   /// This target prefers to use _longjmp to implement llvm.longjmp.
   1503   ///
   1504   /// Defaults to false.
   1505   bool UseUnderscoreLongJmp;
   1506 
   1507   /// Whether the target can generate code for jumptables.  If it's not true,
   1508   /// then each jumptable must be lowered into if-then-else's.
   1509   bool SupportJumpTables;
   1510 
   1511   /// Number of blocks threshold to use jump tables.
   1512   int MinimumJumpTableEntries;
   1513 
   1514   /// Information about the contents of the high-bits in boolean values held in
   1515   /// a type wider than i1. See getBooleanContents.
   1516   BooleanContent BooleanContents;
   1517 
   1518   /// Information about the contents of the high-bits in boolean values held in
   1519   /// a type wider than i1. See getBooleanContents.
   1520   BooleanContent BooleanFloatContents;
   1521 
   1522   /// Information about the contents of the high-bits in boolean vector values
   1523   /// when the element type is wider than i1. See getBooleanContents.
   1524   BooleanContent BooleanVectorContents;
   1525 
   1526   /// The target scheduling preference: shortest possible total cycles or lowest
   1527   /// register usage.
   1528   Sched::Preference SchedPreferenceInfo;
   1529 
   1530   /// The size, in bytes, of the target's jmp_buf buffers
   1531   unsigned JumpBufSize;
   1532 
   1533   /// The alignment, in bytes, of the target's jmp_buf buffers
   1534   unsigned JumpBufAlignment;
   1535 
   1536   /// The minimum alignment that any argument on the stack needs to have.
   1537   unsigned MinStackArgumentAlignment;
   1538 
   1539   /// The minimum function alignment (used when optimizing for size, and to
   1540   /// prevent explicitly provided alignment from leading to incorrect code).
   1541   unsigned MinFunctionAlignment;
   1542 
   1543   /// The preferred function alignment (used when alignment unspecified and
   1544   /// optimizing for speed).
   1545   unsigned PrefFunctionAlignment;
   1546 
   1547   /// The preferred loop alignment.
   1548   unsigned PrefLoopAlignment;
   1549 
   1550   /// Whether the DAG builder should automatically insert fences and reduce
   1551   /// ordering for atomics.  (This will be set for for most architectures with
   1552   /// weak memory ordering.)
   1553   bool InsertFencesForAtomic;
   1554 
   1555   /// If set to a physical register, this specifies the register that
   1556   /// llvm.savestack/llvm.restorestack should save and restore.
   1557   unsigned StackPointerRegisterToSaveRestore;
   1558 
   1559   /// If set to a physical register, this specifies the register that receives
   1560   /// the exception address on entry to a landing pad.
   1561   unsigned ExceptionPointerRegister;
   1562 
   1563   /// If set to a physical register, this specifies the register that receives
   1564   /// the exception typeid on entry to a landing pad.
   1565   unsigned ExceptionSelectorRegister;
   1566 
   1567   /// This indicates the default register class to use for each ValueType the
   1568   /// target supports natively.
   1569   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1570   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1571   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1572 
   1573   /// This indicates the "representative" register class to use for each
   1574   /// ValueType the target supports natively. This information is used by the
   1575   /// scheduler to track register pressure. By default, the representative
   1576   /// register class is the largest legal super-reg register class of the
   1577   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
   1578   /// representative class would be GR32.
   1579   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1580 
   1581   /// This indicates the "cost" of the "representative" register class for each
   1582   /// ValueType. The cost is used by the scheduler to approximate register
   1583   /// pressure.
   1584   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1585 
   1586   /// For any value types we are promoting or expanding, this contains the value
   1587   /// type that we are changing to.  For Expanded types, this contains one step
   1588   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
   1589   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
   1590   /// the same type (e.g. i32 -> i32).
   1591   MVT TransformToType[MVT::LAST_VALUETYPE];
   1592 
   1593   /// For each operation and each value type, keep a LegalizeAction that
   1594   /// indicates how instruction selection should deal with the operation.  Most
   1595   /// operations are Legal (aka, supported natively by the target), but
   1596   /// operations that are not should be described.  Note that operations on
   1597   /// non-legal value types are not described here.
   1598   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1599 
   1600   /// For each load extension type and each value type, keep a LegalizeAction
   1601   /// that indicates how instruction selection should deal with a load of a
   1602   /// specific value type and extension type.
   1603   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
   1604 
   1605   /// For each value type pair keep a LegalizeAction that indicates whether a
   1606   /// truncating store of a specific value type and truncating type is legal.
   1607   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1608 
   1609   /// For each indexed mode and each value type, keep a pair of LegalizeAction
   1610   /// that indicates how instruction selection should deal with the load /
   1611   /// store.
   1612   ///
   1613   /// The first dimension is the value_type for the reference. The second
   1614   /// dimension represents the various modes for load store.
   1615   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1616 
   1617   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
   1618   /// indicates how instruction selection should deal with the condition code.
   1619   ///
   1620   /// Because each CC action takes up 2 bits, we need to have the array size be
   1621   /// large enough to fit all of the value types. This can be done by rounding
   1622   /// up the MVT::LAST_VALUETYPE value to the next multiple of 16.
   1623   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 15) / 16];
   1624 
   1625   ValueTypeActionImpl ValueTypeActions;
   1626 
   1627 public:
   1628   LegalizeKind
   1629   getTypeConversion(LLVMContext &Context, EVT VT) const {
   1630     // If this is a simple type, use the ComputeRegisterProp mechanism.
   1631     if (VT.isSimple()) {
   1632       MVT SVT = VT.getSimpleVT();
   1633       assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
   1634       MVT NVT = TransformToType[SVT.SimpleTy];
   1635       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
   1636 
   1637       assert(
   1638         (LA == TypeLegal ||
   1639          ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
   1640          && "Promote may not follow Expand or Promote");
   1641 
   1642       if (LA == TypeSplitVector)
   1643         return LegalizeKind(LA, EVT::getVectorVT(Context,
   1644                                                  SVT.getVectorElementType(),
   1645                                                  SVT.getVectorNumElements()/2));
   1646       if (LA == TypeScalarizeVector)
   1647         return LegalizeKind(LA, SVT.getVectorElementType());
   1648       return LegalizeKind(LA, NVT);
   1649     }
   1650 
   1651     // Handle Extended Scalar Types.
   1652     if (!VT.isVector()) {
   1653       assert(VT.isInteger() && "Float types must be simple");
   1654       unsigned BitSize = VT.getSizeInBits();
   1655       // First promote to a power-of-two size, then expand if necessary.
   1656       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
   1657         EVT NVT = VT.getRoundIntegerType(Context);
   1658         assert(NVT != VT && "Unable to round integer VT");
   1659         LegalizeKind NextStep = getTypeConversion(Context, NVT);
   1660         // Avoid multi-step promotion.
   1661         if (NextStep.first == TypePromoteInteger) return NextStep;
   1662         // Return rounded integer type.
   1663         return LegalizeKind(TypePromoteInteger, NVT);
   1664       }
   1665 
   1666       return LegalizeKind(TypeExpandInteger,
   1667                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
   1668     }
   1669 
   1670     // Handle vector types.
   1671     unsigned NumElts = VT.getVectorNumElements();
   1672     EVT EltVT = VT.getVectorElementType();
   1673 
   1674     // Vectors with only one element are always scalarized.
   1675     if (NumElts == 1)
   1676       return LegalizeKind(TypeScalarizeVector, EltVT);
   1677 
   1678     // Try to widen vector elements until the element type is a power of two and
   1679     // promote it to a legal type later on, for example:
   1680     // <3 x i8> -> <4 x i8> -> <4 x i32>
   1681     if (EltVT.isInteger()) {
   1682       // Vectors with a number of elements that is not a power of two are always
   1683       // widened, for example <3 x i8> -> <4 x i8>.
   1684       if (!VT.isPow2VectorType()) {
   1685         NumElts = (unsigned)NextPowerOf2(NumElts);
   1686         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
   1687         return LegalizeKind(TypeWidenVector, NVT);
   1688       }
   1689 
   1690       // Examine the element type.
   1691       LegalizeKind LK = getTypeConversion(Context, EltVT);
   1692 
   1693       // If type is to be expanded, split the vector.
   1694       //  <4 x i140> -> <2 x i140>
   1695       if (LK.first == TypeExpandInteger)
   1696         return LegalizeKind(TypeSplitVector,
   1697                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
   1698 
   1699       // Promote the integer element types until a legal vector type is found
   1700       // or until the element integer type is too big. If a legal type was not
   1701       // found, fallback to the usual mechanism of widening/splitting the
   1702       // vector.
   1703       EVT OldEltVT = EltVT;
   1704       while (1) {
   1705         // Increase the bitwidth of the element to the next pow-of-two
   1706         // (which is greater than 8 bits).
   1707         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
   1708                                  ).getRoundIntegerType(Context);
   1709 
   1710         // Stop trying when getting a non-simple element type.
   1711         // Note that vector elements may be greater than legal vector element
   1712         // types. Example: X86 XMM registers hold 64bit element on 32bit
   1713         // systems.
   1714         if (!EltVT.isSimple()) break;
   1715 
   1716         // Build a new vector type and check if it is legal.
   1717         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1718         // Found a legal promoted vector type.
   1719         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
   1720           return LegalizeKind(TypePromoteInteger,
   1721                               EVT::getVectorVT(Context, EltVT, NumElts));
   1722       }
   1723 
   1724       // Reset the type to the unexpanded type if we did not find a legal vector
   1725       // type with a promoted vector element type.
   1726       EltVT = OldEltVT;
   1727     }
   1728 
   1729     // Try to widen the vector until a legal type is found.
   1730     // If there is no wider legal type, split the vector.
   1731     while (1) {
   1732       // Round up to the next power of 2.
   1733       NumElts = (unsigned)NextPowerOf2(NumElts);
   1734 
   1735       // If there is no simple vector type with this many elements then there
   1736       // cannot be a larger legal vector type.  Note that this assumes that
   1737       // there are no skipped intermediate vector types in the simple types.
   1738       if (!EltVT.isSimple()) break;
   1739       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1740       if (LargerVector == MVT()) break;
   1741 
   1742       // If this type is legal then widen the vector.
   1743       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1744         return LegalizeKind(TypeWidenVector, LargerVector);
   1745     }
   1746 
   1747     // Widen odd vectors to next power of two.
   1748     if (!VT.isPow2VectorType()) {
   1749       EVT NVT = VT.getPow2VectorType(Context);
   1750       return LegalizeKind(TypeWidenVector, NVT);
   1751     }
   1752 
   1753     // Vectors with illegal element types are expanded.
   1754     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1755     return LegalizeKind(TypeSplitVector, NVT);
   1756   }
   1757 
   1758 private:
   1759   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
   1760 
   1761   /// Targets can specify ISD nodes that they would like PerformDAGCombine
   1762   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
   1763   /// array.
   1764   unsigned char
   1765   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   1766 
   1767   /// For operations that must be promoted to a specific type, this holds the
   1768   /// destination type.  This map should be sparse, so don't hold it as an
   1769   /// array.
   1770   ///
   1771   /// Targets add entries to this map with AddPromotedToType(..), clients access
   1772   /// this with getTypeToPromoteTo(..).
   1773   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   1774     PromoteToType;
   1775 
   1776   /// Stores the name each libcall.
   1777   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   1778 
   1779   /// The ISD::CondCode that should be used to test the result of each of the
   1780   /// comparison libcall against zero.
   1781   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   1782 
   1783   /// Stores the CallingConv that should be used for each libcall.
   1784   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   1785 
   1786 protected:
   1787   /// \brief Specify maximum number of store instructions per memset call.
   1788   ///
   1789   /// When lowering \@llvm.memset this field specifies the maximum number of
   1790   /// store operations that may be substituted for the call to memset. Targets
   1791   /// must set this value based on the cost threshold for that target. Targets
   1792   /// should assume that the memset will be done using as many of the largest
   1793   /// store operations first, followed by smaller ones, if necessary, per
   1794   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   1795   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   1796   /// store.  This only applies to setting a constant array of a constant size.
   1797   unsigned MaxStoresPerMemset;
   1798 
   1799   /// Maximum number of stores operations that may be substituted for the call
   1800   /// to memset, used for functions with OptSize attribute.
   1801   unsigned MaxStoresPerMemsetOptSize;
   1802 
   1803   /// \brief Specify maximum bytes of store instructions per memcpy call.
   1804   ///
   1805   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   1806   /// store operations that may be substituted for a call to memcpy. Targets
   1807   /// must set this value based on the cost threshold for that target. Targets
   1808   /// should assume that the memcpy will be done using as many of the largest
   1809   /// store operations first, followed by smaller ones, if necessary, per
   1810   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   1811   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   1812   /// and one 1-byte store. This only applies to copying a constant array of
   1813   /// constant size.
   1814   unsigned MaxStoresPerMemcpy;
   1815 
   1816   /// Maximum number of store operations that may be substituted for a call to
   1817   /// memcpy, used for functions with OptSize attribute.
   1818   unsigned MaxStoresPerMemcpyOptSize;
   1819 
   1820   /// \brief Specify maximum bytes of store instructions per memmove call.
   1821   ///
   1822   /// When lowering \@llvm.memmove this field specifies the maximum number of
   1823   /// store instructions that may be substituted for a call to memmove. Targets
   1824   /// must set this value based on the cost threshold for that target. Targets
   1825   /// should assume that the memmove will be done using as many of the largest
   1826   /// store operations first, followed by smaller ones, if necessary, per
   1827   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   1828   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   1829   /// applies to copying a constant array of constant size.
   1830   unsigned MaxStoresPerMemmove;
   1831 
   1832   /// Maximum number of store instructions that may be substituted for a call to
   1833   /// memmove, used for functions with OpSize attribute.
   1834   unsigned MaxStoresPerMemmoveOptSize;
   1835 
   1836   /// Tells the code generator that select is more expensive than a branch if
   1837   /// the branch is usually predicted right.
   1838   bool PredictableSelectIsExpensive;
   1839 
   1840   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
   1841   /// a mask of a single bit, a compare, and a branch into a single instruction.
   1842   bool MaskAndBranchFoldingIsLegal;
   1843 
   1844 protected:
   1845   /// Return true if the value types that can be represented by the specified
   1846   /// register class are all legal.
   1847   bool isLegalRC(const TargetRegisterClass *RC) const;
   1848 
   1849   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   1850   /// sequence of memory operands that is recognized by PrologEpilogInserter.
   1851   MachineBasicBlock *emitPatchPoint(MachineInstr *MI, MachineBasicBlock *MBB) const;
   1852 };
   1853 
   1854 /// This class defines information used to lower LLVM code to legal SelectionDAG
   1855 /// operators that the target instruction selector can accept natively.
   1856 ///
   1857 /// This class also defines callbacks that targets must implement to lower
   1858 /// target-specific constructs to SelectionDAG operators.
   1859 class TargetLowering : public TargetLoweringBase {
   1860   TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
   1861   void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
   1862 
   1863 public:
   1864   /// NOTE: The constructor takes ownership of TLOF.
   1865   explicit TargetLowering(const TargetMachine &TM,
   1866                           const TargetLoweringObjectFile *TLOF);
   1867 
   1868   /// Returns true by value, base pointer and offset pointer and addressing mode
   1869   /// by reference if the node's address can be legally represented as
   1870   /// pre-indexed load / store address.
   1871   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
   1872                                          SDValue &/*Offset*/,
   1873                                          ISD::MemIndexedMode &/*AM*/,
   1874                                          SelectionDAG &/*DAG*/) const {
   1875     return false;
   1876   }
   1877 
   1878   /// Returns true by value, base pointer and offset pointer and addressing mode
   1879   /// by reference if this node can be combined with a load / store to form a
   1880   /// post-indexed load / store.
   1881   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
   1882                                           SDValue &/*Base*/,
   1883                                           SDValue &/*Offset*/,
   1884                                           ISD::MemIndexedMode &/*AM*/,
   1885                                           SelectionDAG &/*DAG*/) const {
   1886     return false;
   1887   }
   1888 
   1889   /// Return the entry encoding for a jump table in the current function.  The
   1890   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
   1891   virtual unsigned getJumpTableEncoding() const;
   1892 
   1893   virtual const MCExpr *
   1894   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
   1895                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
   1896                             MCContext &/*Ctx*/) const {
   1897     llvm_unreachable("Need to implement this hook if target has custom JTIs");
   1898   }
   1899 
   1900   /// Returns relocation base for the given PIC jumptable.
   1901   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
   1902                                            SelectionDAG &DAG) const;
   1903 
   1904   /// This returns the relocation base for the given PIC jumptable, the same as
   1905   /// getPICJumpTableRelocBase, but as an MCExpr.
   1906   virtual const MCExpr *
   1907   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   1908                                unsigned JTI, MCContext &Ctx) const;
   1909 
   1910   /// Return true if folding a constant offset with the given GlobalAddress is
   1911   /// legal.  It is frequently not legal in PIC relocation models.
   1912   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
   1913 
   1914   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
   1915                             SDValue &Chain) const;
   1916 
   1917   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
   1918                            SDValue &NewLHS, SDValue &NewRHS,
   1919                            ISD::CondCode &CCCode, SDLoc DL) const;
   1920 
   1921   /// Returns a pair of (return value, chain).
   1922   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
   1923                                           EVT RetVT, const SDValue *Ops,
   1924                                           unsigned NumOps, bool isSigned,
   1925                                           SDLoc dl, bool doesNotReturn = false,
   1926                                           bool isReturnValueUsed = true) const;
   1927 
   1928   //===--------------------------------------------------------------------===//
   1929   // TargetLowering Optimization Methods
   1930   //
   1931 
   1932   /// A convenience struct that encapsulates a DAG, and two SDValues for
   1933   /// returning information from TargetLowering to its clients that want to
   1934   /// combine.
   1935   struct TargetLoweringOpt {
   1936     SelectionDAG &DAG;
   1937     bool LegalTys;
   1938     bool LegalOps;
   1939     SDValue Old;
   1940     SDValue New;
   1941 
   1942     explicit TargetLoweringOpt(SelectionDAG &InDAG,
   1943                                bool LT, bool LO) :
   1944       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
   1945 
   1946     bool LegalTypes() const { return LegalTys; }
   1947     bool LegalOperations() const { return LegalOps; }
   1948 
   1949     bool CombineTo(SDValue O, SDValue N) {
   1950       Old = O;
   1951       New = N;
   1952       return true;
   1953     }
   1954 
   1955     /// Check to see if the specified operand of the specified instruction is a
   1956     /// constant integer.  If so, check to see if there are any bits set in the
   1957     /// constant that are not demanded.  If so, shrink the constant and return
   1958     /// true.
   1959     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
   1960 
   1961     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
   1962     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
   1963     /// generalized for targets with other types of implicit widening casts.
   1964     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
   1965                           SDLoc dl);
   1966   };
   1967 
   1968   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
   1969   /// result of Op are ever used downstream.  If we can use this information to
   1970   /// simplify Op, create a new simplified DAG node and return true, returning
   1971   /// the original and new nodes in Old and New.  Otherwise, analyze the
   1972   /// expression and return a mask of KnownOne and KnownZero bits for the
   1973   /// expression (used to simplify the caller).  The KnownZero/One bits may only
   1974   /// be accurate for those bits in the DemandedMask.
   1975   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
   1976                             APInt &KnownZero, APInt &KnownOne,
   1977                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
   1978 
   1979   /// Determine which of the bits specified in Mask are known to be either zero
   1980   /// or one and return them in the KnownZero/KnownOne bitsets.
   1981   virtual void computeKnownBitsForTargetNode(const SDValue Op,
   1982                                              APInt &KnownZero,
   1983                                              APInt &KnownOne,
   1984                                              const SelectionDAG &DAG,
   1985                                              unsigned Depth = 0) const;
   1986 
   1987   /// This method can be implemented by targets that want to expose additional
   1988   /// information about sign bits to the DAG Combiner.
   1989   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
   1990                                                    const SelectionDAG &DAG,
   1991                                                    unsigned Depth = 0) const;
   1992 
   1993   struct DAGCombinerInfo {
   1994     void *DC;  // The DAG Combiner object.
   1995     CombineLevel Level;
   1996     bool CalledByLegalizer;
   1997   public:
   1998     SelectionDAG &DAG;
   1999 
   2000     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
   2001       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
   2002 
   2003     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
   2004     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
   2005     bool isAfterLegalizeVectorOps() const {
   2006       return Level == AfterLegalizeDAG;
   2007     }
   2008     CombineLevel getDAGCombineLevel() { return Level; }
   2009     bool isCalledByLegalizer() const { return CalledByLegalizer; }
   2010 
   2011     void AddToWorklist(SDNode *N);
   2012     void RemoveFromWorklist(SDNode *N);
   2013     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
   2014                       bool AddTo = true);
   2015     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
   2016     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
   2017 
   2018     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
   2019   };
   2020 
   2021   /// Return if the N is a constant or constant vector equal to the true value
   2022   /// from getBooleanContents().
   2023   bool isConstTrueVal(const SDNode *N) const;
   2024 
   2025   /// Return if the N is a constant or constant vector equal to the false value
   2026   /// from getBooleanContents().
   2027   bool isConstFalseVal(const SDNode *N) const;
   2028 
   2029   /// Try to simplify a setcc built with the specified operands and cc. If it is
   2030   /// unable to simplify it, return a null SDValue.
   2031   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   2032                           ISD::CondCode Cond, bool foldBooleans,
   2033                           DAGCombinerInfo &DCI, SDLoc dl) const;
   2034 
   2035   /// Returns true (and the GlobalValue and the offset) if the node is a
   2036   /// GlobalAddress + offset.
   2037   virtual bool
   2038   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
   2039 
   2040   /// This method will be invoked for all target nodes and for any
   2041   /// target-independent nodes that the target has registered with invoke it
   2042   /// for.
   2043   ///
   2044   /// The semantics are as follows:
   2045   /// Return Value:
   2046   ///   SDValue.Val == 0   - No change was made
   2047   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
   2048   ///   otherwise          - N should be replaced by the returned Operand.
   2049   ///
   2050   /// In addition, methods provided by DAGCombinerInfo may be used to perform
   2051   /// more complex transformations.
   2052   ///
   2053   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
   2054 
   2055   /// Return true if it is profitable to move a following shift through this
   2056   //  node, adjusting any immediate operands as necessary to preserve semantics.
   2057   //  This transformation may not be desirable if it disrupts a particularly
   2058   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
   2059   //  By default, it returns true.
   2060   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
   2061     return true;
   2062   }
   2063 
   2064   /// Return true if the target has native support for the specified value type
   2065   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
   2066   /// i16 is legal, but undesirable since i16 instruction encodings are longer
   2067   /// and some i16 instructions are slow.
   2068   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
   2069     // By default, assume all legal types are desirable.
   2070     return isTypeLegal(VT);
   2071   }
   2072 
   2073   /// Return true if it is profitable for dag combiner to transform a floating
   2074   /// point op of specified opcode to a equivalent op of an integer
   2075   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
   2076   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
   2077                                                  EVT /*VT*/) const {
   2078     return false;
   2079   }
   2080 
   2081   /// This method query the target whether it is beneficial for dag combiner to
   2082   /// promote the specified node. If true, it should return the desired
   2083   /// promotion type by reference.
   2084   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
   2085     return false;
   2086   }
   2087 
   2088   //===--------------------------------------------------------------------===//
   2089   // Lowering methods - These methods must be implemented by targets so that
   2090   // the SelectionDAGBuilder code knows how to lower these.
   2091   //
   2092 
   2093   /// This hook must be implemented to lower the incoming (formal) arguments,
   2094   /// described by the Ins array, into the specified DAG. The implementation
   2095   /// should fill in the InVals array with legal-type argument values, and
   2096   /// return the resulting token chain value.
   2097   ///
   2098   virtual SDValue
   2099     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2100                          bool /*isVarArg*/,
   2101                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
   2102                          SDLoc /*dl*/, SelectionDAG &/*DAG*/,
   2103                          SmallVectorImpl<SDValue> &/*InVals*/) const {
   2104     llvm_unreachable("Not Implemented");
   2105   }
   2106 
   2107   struct ArgListEntry {
   2108     SDValue Node;
   2109     Type* Ty;
   2110     bool isSExt     : 1;
   2111     bool isZExt     : 1;
   2112     bool isInReg    : 1;
   2113     bool isSRet     : 1;
   2114     bool isNest     : 1;
   2115     bool isByVal    : 1;
   2116     bool isInAlloca : 1;
   2117     bool isReturned : 1;
   2118     uint16_t Alignment;
   2119 
   2120     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   2121       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
   2122       isReturned(false), Alignment(0) { }
   2123 
   2124     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
   2125   };
   2126   typedef std::vector<ArgListEntry> ArgListTy;
   2127 
   2128   /// This structure contains all information that is necessary for lowering
   2129   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
   2130   /// needs to lower a call, and targets will see this struct in their LowerCall
   2131   /// implementation.
   2132   struct CallLoweringInfo {
   2133     SDValue Chain;
   2134     Type *RetTy;
   2135     bool RetSExt           : 1;
   2136     bool RetZExt           : 1;
   2137     bool IsVarArg          : 1;
   2138     bool IsInReg           : 1;
   2139     bool DoesNotReturn     : 1;
   2140     bool IsReturnValueUsed : 1;
   2141 
   2142     // IsTailCall should be modified by implementations of
   2143     // TargetLowering::LowerCall that perform tail call conversions.
   2144     bool IsTailCall;
   2145 
   2146     unsigned NumFixedArgs;
   2147     CallingConv::ID CallConv;
   2148     SDValue Callee;
   2149     ArgListTy Args;
   2150     SelectionDAG &DAG;
   2151     SDLoc DL;
   2152     ImmutableCallSite *CS;
   2153     SmallVector<ISD::OutputArg, 32> Outs;
   2154     SmallVector<SDValue, 32> OutVals;
   2155     SmallVector<ISD::InputArg, 32> Ins;
   2156 
   2157     CallLoweringInfo(SelectionDAG &DAG)
   2158       : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
   2159         IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
   2160         IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
   2161         DAG(DAG), CS(nullptr) {}
   2162 
   2163     CallLoweringInfo &setDebugLoc(SDLoc dl) {
   2164       DL = dl;
   2165       return *this;
   2166     }
   2167 
   2168     CallLoweringInfo &setChain(SDValue InChain) {
   2169       Chain = InChain;
   2170       return *this;
   2171     }
   2172 
   2173     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
   2174                                 SDValue Target, ArgListTy &&ArgsList,
   2175                                 unsigned FixedArgs = -1) {
   2176       RetTy = ResultType;
   2177       Callee = Target;
   2178       CallConv = CC;
   2179       NumFixedArgs =
   2180         (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
   2181       Args = std::move(ArgsList);
   2182       return *this;
   2183     }
   2184 
   2185     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
   2186                                 SDValue Target, ArgListTy &&ArgsList,
   2187                                 ImmutableCallSite &Call) {
   2188       RetTy = ResultType;
   2189 
   2190       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
   2191       DoesNotReturn = Call.doesNotReturn();
   2192       IsVarArg = FTy->isVarArg();
   2193       IsReturnValueUsed = !Call.getInstruction()->use_empty();
   2194       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
   2195       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
   2196 
   2197       Callee = Target;
   2198 
   2199       CallConv = Call.getCallingConv();
   2200       NumFixedArgs = FTy->getNumParams();
   2201       Args = std::move(ArgsList);
   2202 
   2203       CS = &Call;
   2204 
   2205       return *this;
   2206     }
   2207 
   2208     CallLoweringInfo &setInRegister(bool Value = true) {
   2209       IsInReg = Value;
   2210       return *this;
   2211     }
   2212 
   2213     CallLoweringInfo &setNoReturn(bool Value = true) {
   2214       DoesNotReturn = Value;
   2215       return *this;
   2216     }
   2217 
   2218     CallLoweringInfo &setVarArg(bool Value = true) {
   2219       IsVarArg = Value;
   2220       return *this;
   2221     }
   2222 
   2223     CallLoweringInfo &setTailCall(bool Value = true) {
   2224       IsTailCall = Value;
   2225       return *this;
   2226     }
   2227 
   2228     CallLoweringInfo &setDiscardResult(bool Value = true) {
   2229       IsReturnValueUsed = !Value;
   2230       return *this;
   2231     }
   2232 
   2233     CallLoweringInfo &setSExtResult(bool Value = true) {
   2234       RetSExt = Value;
   2235       return *this;
   2236     }
   2237 
   2238     CallLoweringInfo &setZExtResult(bool Value = true) {
   2239       RetZExt = Value;
   2240       return *this;
   2241     }
   2242 
   2243     ArgListTy &getArgs() {
   2244       return Args;
   2245     }
   2246   };
   2247 
   2248   /// This function lowers an abstract call to a function into an actual call.
   2249   /// This returns a pair of operands.  The first element is the return value
   2250   /// for the function (if RetTy is not VoidTy).  The second element is the
   2251   /// outgoing token chain. It calls LowerCall to do the actual lowering.
   2252   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
   2253 
   2254   /// This hook must be implemented to lower calls into the the specified
   2255   /// DAG. The outgoing arguments to the call are described by the Outs array,
   2256   /// and the values to be returned by the call are described by the Ins
   2257   /// array. The implementation should fill in the InVals array with legal-type
   2258   /// return values from the call, and return the resulting token chain value.
   2259   virtual SDValue
   2260     LowerCall(CallLoweringInfo &/*CLI*/,
   2261               SmallVectorImpl<SDValue> &/*InVals*/) const {
   2262     llvm_unreachable("Not Implemented");
   2263   }
   2264 
   2265   /// Target-specific cleanup for formal ByVal parameters.
   2266   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
   2267 
   2268   /// This hook should be implemented to check whether the return values
   2269   /// described by the Outs array can fit into the return registers.  If false
   2270   /// is returned, an sret-demotion is performed.
   2271   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   2272                               MachineFunction &/*MF*/, bool /*isVarArg*/,
   2273                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2274                LLVMContext &/*Context*/) const
   2275   {
   2276     // Return true by default to get preexisting behavior.
   2277     return true;
   2278   }
   2279 
   2280   /// This hook must be implemented to lower outgoing return values, described
   2281   /// by the Outs array, into the specified DAG. The implementation should
   2282   /// return the resulting token chain value.
   2283   virtual SDValue
   2284     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2285                 bool /*isVarArg*/,
   2286                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2287                 const SmallVectorImpl<SDValue> &/*OutVals*/,
   2288                 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
   2289     llvm_unreachable("Not Implemented");
   2290   }
   2291 
   2292   /// Return true if result of the specified node is used by a return node
   2293   /// only. It also compute and return the input chain for the tail call.
   2294   ///
   2295   /// This is used to determine whether it is possible to codegen a libcall as
   2296   /// tail call at legalization time.
   2297   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
   2298     return false;
   2299   }
   2300 
   2301   /// Return true if the target may be able emit the call instruction as a tail
   2302   /// call. This is used by optimization passes to determine if it's profitable
   2303   /// to duplicate return instructions to enable tailcall optimization.
   2304   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
   2305     return false;
   2306   }
   2307 
   2308   /// Return the builtin name for the __builtin___clear_cache intrinsic
   2309   /// Default is to invoke the clear cache library call
   2310   virtual const char * getClearCacheBuiltinName() const {
   2311     return "__clear_cache";
   2312   }
   2313 
   2314   /// Return the register ID of the name passed in. Used by named register
   2315   /// global variables extension. There is no target-independent behaviour
   2316   /// so the default action is to bail.
   2317   virtual unsigned getRegisterByName(const char* RegName, EVT VT) const {
   2318     report_fatal_error("Named registers not implemented for this target");
   2319   }
   2320 
   2321   /// Return the type that should be used to zero or sign extend a
   2322   /// zeroext/signext integer argument or return value.  FIXME: Most C calling
   2323   /// convention requires the return type to be promoted, but this is not true
   2324   /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
   2325   /// calling conventions. The frontend should handle this and include all of
   2326   /// the necessary information.
   2327   virtual MVT getTypeForExtArgOrReturn(MVT VT,
   2328                                        ISD::NodeType /*ExtendKind*/) const {
   2329     MVT MinVT = getRegisterType(MVT::i32);
   2330     return VT.bitsLT(MinVT) ? MinVT : VT;
   2331   }
   2332 
   2333   /// For some targets, an LLVM struct type must be broken down into multiple
   2334   /// simple types, but the calling convention specifies that the entire struct
   2335   /// must be passed in a block of consecutive registers.
   2336   virtual bool
   2337   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
   2338                                             bool isVarArg) const {
   2339     return false;
   2340   }
   2341 
   2342   /// Returns a 0 terminated array of registers that can be safely used as
   2343   /// scratch registers.
   2344   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
   2345     return nullptr;
   2346   }
   2347 
   2348   /// This callback is used to prepare for a volatile or atomic load.
   2349   /// It takes a chain node as input and returns the chain for the load itself.
   2350   ///
   2351   /// Having a callback like this is necessary for targets like SystemZ,
   2352   /// which allows a CPU to reuse the result of a previous load indefinitely,
   2353   /// even if a cache-coherent store is performed by another CPU.  The default
   2354   /// implementation does nothing.
   2355   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
   2356                                               SelectionDAG &DAG) const {
   2357     return Chain;
   2358   }
   2359 
   2360   /// This callback is invoked by the type legalizer to legalize nodes with an
   2361   /// illegal operand type but legal result types.  It replaces the
   2362   /// LowerOperation callback in the type Legalizer.  The reason we can not do
   2363   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
   2364   /// use this callback.
   2365   ///
   2366   /// TODO: Consider merging with ReplaceNodeResults.
   2367   ///
   2368   /// The target places new result values for the node in Results (their number
   2369   /// and types must exactly match those of the original return values of
   2370   /// the node), or leaves Results empty, which indicates that the node is not
   2371   /// to be custom lowered after all.
   2372   /// The default implementation calls LowerOperation.
   2373   virtual void LowerOperationWrapper(SDNode *N,
   2374                                      SmallVectorImpl<SDValue> &Results,
   2375                                      SelectionDAG &DAG) const;
   2376 
   2377   /// This callback is invoked for operations that are unsupported by the
   2378   /// target, which are registered to use 'custom' lowering, and whose defined
   2379   /// values are all legal.  If the target has no operations that require custom
   2380   /// lowering, it need not implement this.  The default implementation of this
   2381   /// aborts.
   2382   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   2383 
   2384   /// This callback is invoked when a node result type is illegal for the
   2385   /// target, and the operation was registered to use 'custom' lowering for that
   2386   /// result type.  The target places new result values for the node in Results
   2387   /// (their number and types must exactly match those of the original return
   2388   /// values of the node), or leaves Results empty, which indicates that the
   2389   /// node is not to be custom lowered after all.
   2390   ///
   2391   /// If the target has no operations that require custom lowering, it need not
   2392   /// implement this.  The default implementation aborts.
   2393   virtual void ReplaceNodeResults(SDNode * /*N*/,
   2394                                   SmallVectorImpl<SDValue> &/*Results*/,
   2395                                   SelectionDAG &/*DAG*/) const {
   2396     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   2397   }
   2398 
   2399   /// This method returns the name of a target specific DAG node.
   2400   virtual const char *getTargetNodeName(unsigned Opcode) const;
   2401 
   2402   /// This method returns a target specific FastISel object, or null if the
   2403   /// target does not support "fast" ISel.
   2404   virtual FastISel *createFastISel(FunctionLoweringInfo &,
   2405                                    const TargetLibraryInfo *) const {
   2406     return nullptr;
   2407   }
   2408 
   2409 
   2410   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
   2411                                              SelectionDAG &DAG) const;
   2412 
   2413   //===--------------------------------------------------------------------===//
   2414   // Inline Asm Support hooks
   2415   //
   2416 
   2417   /// This hook allows the target to expand an inline asm call to be explicit
   2418   /// llvm code if it wants to.  This is useful for turning simple inline asms
   2419   /// into LLVM intrinsics, which gives the compiler more information about the
   2420   /// behavior of the code.
   2421   virtual bool ExpandInlineAsm(CallInst *) const {
   2422     return false;
   2423   }
   2424 
   2425   enum ConstraintType {
   2426     C_Register,            // Constraint represents specific register(s).
   2427     C_RegisterClass,       // Constraint represents any of register(s) in class.
   2428     C_Memory,              // Memory constraint.
   2429     C_Other,               // Something else.
   2430     C_Unknown              // Unsupported constraint.
   2431   };
   2432 
   2433   enum ConstraintWeight {
   2434     // Generic weights.
   2435     CW_Invalid  = -1,     // No match.
   2436     CW_Okay     = 0,      // Acceptable.
   2437     CW_Good     = 1,      // Good weight.
   2438     CW_Better   = 2,      // Better weight.
   2439     CW_Best     = 3,      // Best weight.
   2440 
   2441     // Well-known weights.
   2442     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   2443     CW_Register     = CW_Good,    // Register operands.
   2444     CW_Memory       = CW_Better,  // Memory operands.
   2445     CW_Constant     = CW_Best,    // Constant operand.
   2446     CW_Default      = CW_Okay     // Default or don't know type.
   2447   };
   2448 
   2449   /// This contains information for each constraint that we are lowering.
   2450   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   2451     /// This contains the actual string for the code, like "m".  TargetLowering
   2452     /// picks the 'best' code from ConstraintInfo::Codes that most closely
   2453     /// matches the operand.
   2454     std::string ConstraintCode;
   2455 
   2456     /// Information about the constraint code, e.g. Register, RegisterClass,
   2457     /// Memory, Other, Unknown.
   2458     TargetLowering::ConstraintType ConstraintType;
   2459 
   2460     /// If this is the result output operand or a clobber, this is null,
   2461     /// otherwise it is the incoming operand to the CallInst.  This gets
   2462     /// modified as the asm is processed.
   2463     Value *CallOperandVal;
   2464 
   2465     /// The ValueType for the operand value.
   2466     MVT ConstraintVT;
   2467 
   2468     /// Return true of this is an input operand that is a matching constraint
   2469     /// like "4".
   2470     bool isMatchingInputConstraint() const;
   2471 
   2472     /// If this is an input matching constraint, this method returns the output
   2473     /// operand it matches.
   2474     unsigned getMatchedOperand() const;
   2475 
   2476     /// Copy constructor for copying from a ConstraintInfo.
   2477     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
   2478       : InlineAsm::ConstraintInfo(info),
   2479         ConstraintType(TargetLowering::C_Unknown),
   2480         CallOperandVal(nullptr), ConstraintVT(MVT::Other) {
   2481     }
   2482   };
   2483 
   2484   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   2485 
   2486   /// Split up the constraint string from the inline assembly value into the
   2487   /// specific constraints and their prefixes, and also tie in the associated
   2488   /// operand values.  If this returns an empty vector, and if the constraint
   2489   /// string itself isn't empty, there was an error parsing.
   2490   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
   2491 
   2492   /// Examine constraint type and operand type and determine a weight value.
   2493   /// The operand object must already have been set up with the operand type.
   2494   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   2495       AsmOperandInfo &info, int maIndex) const;
   2496 
   2497   /// Examine constraint string and operand type and determine a weight value.
   2498   /// The operand object must already have been set up with the operand type.
   2499   virtual ConstraintWeight getSingleConstraintMatchWeight(
   2500       AsmOperandInfo &info, const char *constraint) const;
   2501 
   2502   /// Determines the constraint code and constraint type to use for the specific
   2503   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2504   /// If the actual operand being passed in is available, it can be passed in as
   2505   /// Op, otherwise an empty SDValue can be passed.
   2506   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2507                                       SDValue Op,
   2508                                       SelectionDAG *DAG = nullptr) const;
   2509 
   2510   /// Given a constraint, return the type of constraint it is for this target.
   2511   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
   2512 
   2513   /// Given a physical register constraint (e.g.  {edx}), return the register
   2514   /// number and the register class for the register.
   2515   ///
   2516   /// Given a register class constraint, like 'r', if this corresponds directly
   2517   /// to an LLVM register class, return a register of 0 and the register class
   2518   /// pointer.
   2519   ///
   2520   /// This should only be used for C_Register constraints.  On error, this
   2521   /// returns a register number of 0 and a null register class pointer..
   2522   virtual std::pair<unsigned, const TargetRegisterClass*>
   2523     getRegForInlineAsmConstraint(const std::string &Constraint,
   2524                                  MVT VT) const;
   2525 
   2526   /// Try to replace an X constraint, which matches anything, with another that
   2527   /// has more specific requirements based on the type of the corresponding
   2528   /// operand.  This returns null if there is no replacement to make.
   2529   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   2530 
   2531   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
   2532   /// add anything to Ops.
   2533   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   2534                                             std::vector<SDValue> &Ops,
   2535                                             SelectionDAG &DAG) const;
   2536 
   2537   //===--------------------------------------------------------------------===//
   2538   // Div utility functions
   2539   //
   2540   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
   2541                          SelectionDAG &DAG) const;
   2542   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2543                     bool IsAfterLegalization,
   2544                     std::vector<SDNode *> *Created) const;
   2545   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2546                     bool IsAfterLegalization,
   2547                     std::vector<SDNode *> *Created) const;
   2548 
   2549   //===--------------------------------------------------------------------===//
   2550   // Legalization utility functions
   2551   //
   2552 
   2553   /// Expand a MUL into two nodes.  One that computes the high bits of
   2554   /// the result and one that computes the low bits.
   2555   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
   2556   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
   2557   ///        if you want to control how low bits are extracted from the LHS.
   2558   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
   2559   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
   2560   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
   2561   /// \returns true if the node has been expanded. false if it has not
   2562   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2563                  SelectionDAG &DAG, SDValue LL = SDValue(),
   2564                  SDValue LH = SDValue(), SDValue RL = SDValue(),
   2565                  SDValue RH = SDValue()) const;
   2566 
   2567   //===--------------------------------------------------------------------===//
   2568   // Instruction Emitting Hooks
   2569   //
   2570 
   2571   /// This method should be implemented by targets that mark instructions with
   2572   /// the 'usesCustomInserter' flag.  These instructions are special in various
   2573   /// ways, which require special support to insert.  The specified MachineInstr
   2574   /// is created but not inserted into any basic blocks, and this method is
   2575   /// called to expand it into a sequence of instructions, potentially also
   2576   /// creating new basic blocks and control flow.
   2577   virtual MachineBasicBlock *
   2578     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   2579 
   2580   /// This method should be implemented by targets that mark instructions with
   2581   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
   2582   /// instruction selection by target hooks.  e.g. To fill in optional defs for
   2583   /// ARM 's' setting instructions.
   2584   virtual void
   2585   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
   2586 };
   2587 
   2588 /// Given an LLVM IR type and return type attributes, compute the return value
   2589 /// EVTs and flags, and optionally also the offsets, if the return value is
   2590 /// being lowered to memory.
   2591 void GetReturnInfo(Type* ReturnType, AttributeSet attr,
   2592                    SmallVectorImpl<ISD::OutputArg> &Outs,
   2593                    const TargetLowering &TLI);
   2594 
   2595 } // end llvm namespace
   2596 
   2597 #endif
   2598