Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 //
      3 // Redistribution and use in source and binary forms, with or without
      4 // modification, are permitted provided that the following conditions are
      5 // met:
      6 //
      7 //     * Redistributions of source code must retain the above copyright
      8 //       notice, this list of conditions and the following disclaimer.
      9 //     * Redistributions in binary form must reproduce the above
     10 //       copyright notice, this list of conditions and the following
     11 //       disclaimer in the documentation and/or other materials provided
     12 //       with the distribution.
     13 //     * Neither the name of Google Inc. nor the names of its
     14 //       contributors may be used to endorse or promote products derived
     15 //       from this software without specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28 
     29 #include "src/v8.h"
     30 
     31 #if V8_TARGET_ARCH_ARM64
     32 
     33 #define ARM64_DEFINE_REG_STATICS
     34 
     35 #include "src/arm64/assembler-arm64-inl.h"
     36 #include "src/base/bits.h"
     37 #include "src/base/cpu.h"
     38 
     39 namespace v8 {
     40 namespace internal {
     41 
     42 
     43 // -----------------------------------------------------------------------------
     44 // CpuFeatures implementation.
     45 
     46 void CpuFeatures::ProbeImpl(bool cross_compile) {
     47   if (cross_compile) {
     48     // Always align csp in cross compiled code - this is safe and ensures that
     49     // csp will always be aligned if it is enabled by probing at runtime.
     50     if (FLAG_enable_always_align_csp) supported_ |= 1u << ALWAYS_ALIGN_CSP;
     51   } else {
     52     base::CPU cpu;
     53     if (FLAG_enable_always_align_csp &&
     54         (cpu.implementer() == base::CPU::NVIDIA || FLAG_debug_code)) {
     55       supported_ |= 1u << ALWAYS_ALIGN_CSP;
     56     }
     57   }
     58 }
     59 
     60 
     61 void CpuFeatures::PrintTarget() { }
     62 void CpuFeatures::PrintFeatures() { }
     63 
     64 
     65 // -----------------------------------------------------------------------------
     66 // CPURegList utilities.
     67 
     68 CPURegister CPURegList::PopLowestIndex() {
     69   DCHECK(IsValid());
     70   if (IsEmpty()) {
     71     return NoCPUReg;
     72   }
     73   int index = CountTrailingZeros(list_, kRegListSizeInBits);
     74   DCHECK((1 << index) & list_);
     75   Remove(index);
     76   return CPURegister::Create(index, size_, type_);
     77 }
     78 
     79 
     80 CPURegister CPURegList::PopHighestIndex() {
     81   DCHECK(IsValid());
     82   if (IsEmpty()) {
     83     return NoCPUReg;
     84   }
     85   int index = CountLeadingZeros(list_, kRegListSizeInBits);
     86   index = kRegListSizeInBits - 1 - index;
     87   DCHECK((1 << index) & list_);
     88   Remove(index);
     89   return CPURegister::Create(index, size_, type_);
     90 }
     91 
     92 
     93 void CPURegList::RemoveCalleeSaved() {
     94   if (type() == CPURegister::kRegister) {
     95     Remove(GetCalleeSaved(RegisterSizeInBits()));
     96   } else if (type() == CPURegister::kFPRegister) {
     97     Remove(GetCalleeSavedFP(RegisterSizeInBits()));
     98   } else {
     99     DCHECK(type() == CPURegister::kNoRegister);
    100     DCHECK(IsEmpty());
    101     // The list must already be empty, so do nothing.
    102   }
    103 }
    104 
    105 
    106 CPURegList CPURegList::GetCalleeSaved(unsigned size) {
    107   return CPURegList(CPURegister::kRegister, size, 19, 29);
    108 }
    109 
    110 
    111 CPURegList CPURegList::GetCalleeSavedFP(unsigned size) {
    112   return CPURegList(CPURegister::kFPRegister, size, 8, 15);
    113 }
    114 
    115 
    116 CPURegList CPURegList::GetCallerSaved(unsigned size) {
    117   // Registers x0-x18 and lr (x30) are caller-saved.
    118   CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
    119   list.Combine(lr);
    120   return list;
    121 }
    122 
    123 
    124 CPURegList CPURegList::GetCallerSavedFP(unsigned size) {
    125   // Registers d0-d7 and d16-d31 are caller-saved.
    126   CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
    127   list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
    128   return list;
    129 }
    130 
    131 
    132 // This function defines the list of registers which are associated with a
    133 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
    134 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
    135 // code to index in the safepoint register slots. Any change here can affect
    136 // this mapping.
    137 CPURegList CPURegList::GetSafepointSavedRegisters() {
    138   CPURegList list = CPURegList::GetCalleeSaved();
    139   list.Combine(
    140       CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
    141 
    142   // Note that unfortunately we can't use symbolic names for registers and have
    143   // to directly use register codes. This is because this function is used to
    144   // initialize some static variables and we can't rely on register variables
    145   // to be initialized due to static initialization order issues in C++.
    146 
    147   // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
    148   // preserved outside of the macro assembler.
    149   list.Remove(16);
    150   list.Remove(17);
    151 
    152   // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
    153   // is a caller-saved register according to the procedure call standard.
    154   list.Combine(18);
    155 
    156   // Drop jssp as the stack pointer doesn't need to be included.
    157   list.Remove(28);
    158 
    159   // Add the link register (x30) to the safepoint list.
    160   list.Combine(30);
    161 
    162   return list;
    163 }
    164 
    165 
    166 // -----------------------------------------------------------------------------
    167 // Implementation of RelocInfo
    168 
    169 const int RelocInfo::kApplyMask = 0;
    170 
    171 
    172 bool RelocInfo::IsCodedSpecially() {
    173   // The deserializer needs to know whether a pointer is specially coded. Being
    174   // specially coded on ARM64 means that it is a movz/movk sequence. We don't
    175   // generate those for relocatable pointers.
    176   return false;
    177 }
    178 
    179 
    180 bool RelocInfo::IsInConstantPool() {
    181   Instruction* instr = reinterpret_cast<Instruction*>(pc_);
    182   return instr->IsLdrLiteralX();
    183 }
    184 
    185 
    186 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
    187   // Patch the code at the current address with the supplied instructions.
    188   Instr* pc = reinterpret_cast<Instr*>(pc_);
    189   Instr* instr = reinterpret_cast<Instr*>(instructions);
    190   for (int i = 0; i < instruction_count; i++) {
    191     *(pc + i) = *(instr + i);
    192   }
    193 
    194   // Indicate that code has changed.
    195   CpuFeatures::FlushICache(pc_, instruction_count * kInstructionSize);
    196 }
    197 
    198 
    199 // Patch the code at the current PC with a call to the target address.
    200 // Additional guard instructions can be added if required.
    201 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
    202   UNIMPLEMENTED();
    203 }
    204 
    205 
    206 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
    207                                               Register reg3, Register reg4) {
    208   CPURegList regs(reg1, reg2, reg3, reg4);
    209   for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
    210     Register candidate = Register::FromAllocationIndex(i);
    211     if (regs.IncludesAliasOf(candidate)) continue;
    212     return candidate;
    213   }
    214   UNREACHABLE();
    215   return NoReg;
    216 }
    217 
    218 
    219 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
    220                 const CPURegister& reg3, const CPURegister& reg4,
    221                 const CPURegister& reg5, const CPURegister& reg6,
    222                 const CPURegister& reg7, const CPURegister& reg8) {
    223   int number_of_valid_regs = 0;
    224   int number_of_valid_fpregs = 0;
    225 
    226   RegList unique_regs = 0;
    227   RegList unique_fpregs = 0;
    228 
    229   const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
    230 
    231   for (unsigned i = 0; i < arraysize(regs); i++) {
    232     if (regs[i].IsRegister()) {
    233       number_of_valid_regs++;
    234       unique_regs |= regs[i].Bit();
    235     } else if (regs[i].IsFPRegister()) {
    236       number_of_valid_fpregs++;
    237       unique_fpregs |= regs[i].Bit();
    238     } else {
    239       DCHECK(!regs[i].IsValid());
    240     }
    241   }
    242 
    243   int number_of_unique_regs =
    244     CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
    245   int number_of_unique_fpregs =
    246     CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
    247 
    248   DCHECK(number_of_valid_regs >= number_of_unique_regs);
    249   DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
    250 
    251   return (number_of_valid_regs != number_of_unique_regs) ||
    252          (number_of_valid_fpregs != number_of_unique_fpregs);
    253 }
    254 
    255 
    256 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
    257                         const CPURegister& reg3, const CPURegister& reg4,
    258                         const CPURegister& reg5, const CPURegister& reg6,
    259                         const CPURegister& reg7, const CPURegister& reg8) {
    260   DCHECK(reg1.IsValid());
    261   bool match = true;
    262   match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
    263   match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
    264   match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
    265   match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
    266   match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
    267   match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
    268   match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
    269   return match;
    270 }
    271 
    272 
    273 void Immediate::InitializeHandle(Handle<Object> handle) {
    274   AllowDeferredHandleDereference using_raw_address;
    275 
    276   // Verify all Objects referred by code are NOT in new space.
    277   Object* obj = *handle;
    278   if (obj->IsHeapObject()) {
    279     DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    280     value_ = reinterpret_cast<intptr_t>(handle.location());
    281     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    282   } else {
    283     STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
    284     value_ = reinterpret_cast<intptr_t>(obj);
    285     rmode_ = RelocInfo::NONE64;
    286   }
    287 }
    288 
    289 
    290 bool Operand::NeedsRelocation(const Assembler* assembler) const {
    291   RelocInfo::Mode rmode = immediate_.rmode();
    292 
    293   if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
    294     return assembler->serializer_enabled();
    295   }
    296 
    297   return !RelocInfo::IsNone(rmode);
    298 }
    299 
    300 
    301 // Constant Pool.
    302 void ConstPool::RecordEntry(intptr_t data,
    303                             RelocInfo::Mode mode) {
    304   DCHECK(mode != RelocInfo::COMMENT &&
    305          mode != RelocInfo::POSITION &&
    306          mode != RelocInfo::STATEMENT_POSITION &&
    307          mode != RelocInfo::CONST_POOL &&
    308          mode != RelocInfo::VENEER_POOL &&
    309          mode != RelocInfo::CODE_AGE_SEQUENCE);
    310 
    311   uint64_t raw_data = static_cast<uint64_t>(data);
    312   int offset = assm_->pc_offset();
    313   if (IsEmpty()) {
    314     first_use_ = offset;
    315   }
    316 
    317   std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
    318   if (CanBeShared(mode)) {
    319     shared_entries_.insert(entry);
    320     if (shared_entries_.count(entry.first) == 1) {
    321       shared_entries_count++;
    322     }
    323   } else {
    324     unique_entries_.push_back(entry);
    325   }
    326 
    327   if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
    328     // Request constant pool emission after the next instruction.
    329     assm_->SetNextConstPoolCheckIn(1);
    330   }
    331 }
    332 
    333 
    334 int ConstPool::DistanceToFirstUse() {
    335   DCHECK(first_use_ >= 0);
    336   return assm_->pc_offset() - first_use_;
    337 }
    338 
    339 
    340 int ConstPool::MaxPcOffset() {
    341   // There are no pending entries in the pool so we can never get out of
    342   // range.
    343   if (IsEmpty()) return kMaxInt;
    344 
    345   // Entries are not necessarily emitted in the order they are added so in the
    346   // worst case the first constant pool use will be accessing the last entry.
    347   return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
    348 }
    349 
    350 
    351 int ConstPool::WorstCaseSize() {
    352   if (IsEmpty()) return 0;
    353 
    354   // Max size prologue:
    355   //   b   over
    356   //   ldr xzr, #pool_size
    357   //   blr xzr
    358   //   nop
    359   // All entries are 64-bit for now.
    360   return 4 * kInstructionSize + EntryCount() * kPointerSize;
    361 }
    362 
    363 
    364 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
    365   if (IsEmpty()) return 0;
    366 
    367   // Prologue is:
    368   //   b   over  ;; if require_jump
    369   //   ldr xzr, #pool_size
    370   //   blr xzr
    371   //   nop       ;; if not 64-bit aligned
    372   int prologue_size = require_jump ? kInstructionSize : 0;
    373   prologue_size += 2 * kInstructionSize;
    374   prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
    375                    0 : kInstructionSize;
    376 
    377   // All entries are 64-bit for now.
    378   return prologue_size + EntryCount() * kPointerSize;
    379 }
    380 
    381 
    382 void ConstPool::Emit(bool require_jump) {
    383   DCHECK(!assm_->is_const_pool_blocked());
    384   // Prevent recursive pool emission and protect from veneer pools.
    385   Assembler::BlockPoolsScope block_pools(assm_);
    386 
    387   int size = SizeIfEmittedAtCurrentPc(require_jump);
    388   Label size_check;
    389   assm_->bind(&size_check);
    390 
    391   assm_->RecordConstPool(size);
    392   // Emit the constant pool. It is preceded by an optional branch if
    393   // require_jump and a header which will:
    394   //  1) Encode the size of the constant pool, for use by the disassembler.
    395   //  2) Terminate the program, to try to prevent execution from accidentally
    396   //     flowing into the constant pool.
    397   //  3) align the pool entries to 64-bit.
    398   // The header is therefore made of up to three arm64 instructions:
    399   //   ldr xzr, #<size of the constant pool in 32-bit words>
    400   //   blr xzr
    401   //   nop
    402   //
    403   // If executed, the header will likely segfault and lr will point to the
    404   // instruction following the offending blr.
    405   // TODO(all): Make the alignment part less fragile. Currently code is
    406   // allocated as a byte array so there are no guarantees the alignment will
    407   // be preserved on compaction. Currently it works as allocation seems to be
    408   // 64-bit aligned.
    409 
    410   // Emit branch if required
    411   Label after_pool;
    412   if (require_jump) {
    413     assm_->b(&after_pool);
    414   }
    415 
    416   // Emit the header.
    417   assm_->RecordComment("[ Constant Pool");
    418   EmitMarker();
    419   EmitGuard();
    420   assm_->Align(8);
    421 
    422   // Emit constant pool entries.
    423   // TODO(all): currently each relocated constant is 64 bits, consider adding
    424   // support for 32-bit entries.
    425   EmitEntries();
    426   assm_->RecordComment("]");
    427 
    428   if (after_pool.is_linked()) {
    429     assm_->bind(&after_pool);
    430   }
    431 
    432   DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
    433          static_cast<unsigned>(size));
    434 }
    435 
    436 
    437 void ConstPool::Clear() {
    438   shared_entries_.clear();
    439   shared_entries_count = 0;
    440   unique_entries_.clear();
    441   first_use_ = -1;
    442 }
    443 
    444 
    445 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
    446   // Constant pool currently does not support 32-bit entries.
    447   DCHECK(mode != RelocInfo::NONE32);
    448 
    449   return RelocInfo::IsNone(mode) ||
    450          (!assm_->serializer_enabled() && (mode >= RelocInfo::CELL));
    451 }
    452 
    453 
    454 void ConstPool::EmitMarker() {
    455   // A constant pool size is expressed in number of 32-bits words.
    456   // Currently all entries are 64-bit.
    457   // + 1 is for the crash guard.
    458   // + 0/1 for alignment.
    459   int word_count = EntryCount() * 2 + 1 +
    460                    (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
    461   assm_->Emit(LDR_x_lit                          |
    462               Assembler::ImmLLiteral(word_count) |
    463               Assembler::Rt(xzr));
    464 }
    465 
    466 
    467 MemOperand::PairResult MemOperand::AreConsistentForPair(
    468     const MemOperand& operandA,
    469     const MemOperand& operandB,
    470     int access_size_log2) {
    471   DCHECK(access_size_log2 >= 0);
    472   DCHECK(access_size_log2 <= 3);
    473   // Step one: check that they share the same base, that the mode is Offset
    474   // and that the offset is a multiple of access size.
    475   if (!operandA.base().Is(operandB.base()) ||
    476       (operandA.addrmode() != Offset) ||
    477       (operandB.addrmode() != Offset) ||
    478       ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
    479     return kNotPair;
    480   }
    481   // Step two: check that the offsets are contiguous and that the range
    482   // is OK for ldp/stp.
    483   if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
    484       is_int7(operandA.offset() >> access_size_log2)) {
    485     return kPairAB;
    486   }
    487   if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
    488       is_int7(operandB.offset() >> access_size_log2)) {
    489     return kPairBA;
    490   }
    491   return kNotPair;
    492 }
    493 
    494 
    495 void ConstPool::EmitGuard() {
    496 #ifdef DEBUG
    497   Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
    498   DCHECK(instr->preceding()->IsLdrLiteralX() &&
    499          instr->preceding()->Rt() == xzr.code());
    500 #endif
    501   assm_->EmitPoolGuard();
    502 }
    503 
    504 
    505 void ConstPool::EmitEntries() {
    506   DCHECK(IsAligned(assm_->pc_offset(), 8));
    507 
    508   typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
    509   SharedEntriesIterator value_it;
    510   // Iterate through the keys (constant pool values).
    511   for (value_it = shared_entries_.begin();
    512        value_it != shared_entries_.end();
    513        value_it = shared_entries_.upper_bound(value_it->first)) {
    514     std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
    515     uint64_t data = value_it->first;
    516     range = shared_entries_.equal_range(data);
    517     SharedEntriesIterator offset_it;
    518     // Iterate through the offsets of a given key.
    519     for (offset_it = range.first; offset_it != range.second; offset_it++) {
    520       Instruction* instr = assm_->InstructionAt(offset_it->second);
    521 
    522       // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
    523       DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
    524       instr->SetImmPCOffsetTarget(assm_->pc());
    525     }
    526     assm_->dc64(data);
    527   }
    528   shared_entries_.clear();
    529   shared_entries_count = 0;
    530 
    531   // Emit unique entries.
    532   std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
    533   for (unique_it = unique_entries_.begin();
    534        unique_it != unique_entries_.end();
    535        unique_it++) {
    536     Instruction* instr = assm_->InstructionAt(unique_it->second);
    537 
    538     // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
    539     DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
    540     instr->SetImmPCOffsetTarget(assm_->pc());
    541     assm_->dc64(unique_it->first);
    542   }
    543   unique_entries_.clear();
    544   first_use_ = -1;
    545 }
    546 
    547 
    548 // Assembler
    549 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    550     : AssemblerBase(isolate, buffer, buffer_size),
    551       constpool_(this),
    552       recorded_ast_id_(TypeFeedbackId::None()),
    553       unresolved_branches_(),
    554       positions_recorder_(this) {
    555   const_pool_blocked_nesting_ = 0;
    556   veneer_pool_blocked_nesting_ = 0;
    557   Reset();
    558 }
    559 
    560 
    561 Assembler::~Assembler() {
    562   DCHECK(constpool_.IsEmpty());
    563   DCHECK(const_pool_blocked_nesting_ == 0);
    564   DCHECK(veneer_pool_blocked_nesting_ == 0);
    565 }
    566 
    567 
    568 void Assembler::Reset() {
    569 #ifdef DEBUG
    570   DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
    571   DCHECK(const_pool_blocked_nesting_ == 0);
    572   DCHECK(veneer_pool_blocked_nesting_ == 0);
    573   DCHECK(unresolved_branches_.empty());
    574   memset(buffer_, 0, pc_ - buffer_);
    575 #endif
    576   pc_ = buffer_;
    577   reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
    578                                reinterpret_cast<byte*>(pc_));
    579   constpool_.Clear();
    580   next_constant_pool_check_ = 0;
    581   next_veneer_pool_check_ = kMaxInt;
    582   no_const_pool_before_ = 0;
    583   ClearRecordedAstId();
    584 }
    585 
    586 
    587 void Assembler::GetCode(CodeDesc* desc) {
    588   // Emit constant pool if necessary.
    589   CheckConstPool(true, false);
    590   DCHECK(constpool_.IsEmpty());
    591 
    592   // Set up code descriptor.
    593   if (desc) {
    594     desc->buffer = reinterpret_cast<byte*>(buffer_);
    595     desc->buffer_size = buffer_size_;
    596     desc->instr_size = pc_offset();
    597     desc->reloc_size = (reinterpret_cast<byte*>(buffer_) + buffer_size_) -
    598                        reloc_info_writer.pos();
    599     desc->origin = this;
    600   }
    601 }
    602 
    603 
    604 void Assembler::Align(int m) {
    605   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
    606   while ((pc_offset() & (m - 1)) != 0) {
    607     nop();
    608   }
    609 }
    610 
    611 
    612 void Assembler::CheckLabelLinkChain(Label const * label) {
    613 #ifdef DEBUG
    614   if (label->is_linked()) {
    615     int linkoffset = label->pos();
    616     bool end_of_chain = false;
    617     while (!end_of_chain) {
    618       Instruction * link = InstructionAt(linkoffset);
    619       int linkpcoffset = link->ImmPCOffset();
    620       int prevlinkoffset = linkoffset + linkpcoffset;
    621 
    622       end_of_chain = (linkoffset == prevlinkoffset);
    623       linkoffset = linkoffset + linkpcoffset;
    624     }
    625   }
    626 #endif
    627 }
    628 
    629 
    630 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
    631                                                Label* label,
    632                                                Instruction* label_veneer) {
    633   DCHECK(label->is_linked());
    634 
    635   CheckLabelLinkChain(label);
    636 
    637   Instruction* link = InstructionAt(label->pos());
    638   Instruction* prev_link = link;
    639   Instruction* next_link;
    640   bool end_of_chain = false;
    641 
    642   while (link != branch && !end_of_chain) {
    643     next_link = link->ImmPCOffsetTarget();
    644     end_of_chain = (link == next_link);
    645     prev_link = link;
    646     link = next_link;
    647   }
    648 
    649   DCHECK(branch == link);
    650   next_link = branch->ImmPCOffsetTarget();
    651 
    652   if (branch == prev_link) {
    653     // The branch is the first instruction in the chain.
    654     if (branch == next_link) {
    655       // It is also the last instruction in the chain, so it is the only branch
    656       // currently referring to this label.
    657       label->Unuse();
    658     } else {
    659       label->link_to(reinterpret_cast<byte*>(next_link) - buffer_);
    660     }
    661 
    662   } else if (branch == next_link) {
    663     // The branch is the last (but not also the first) instruction in the chain.
    664     prev_link->SetImmPCOffsetTarget(prev_link);
    665 
    666   } else {
    667     // The branch is in the middle of the chain.
    668     if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
    669       prev_link->SetImmPCOffsetTarget(next_link);
    670     } else if (label_veneer != NULL) {
    671       // Use the veneer for all previous links in the chain.
    672       prev_link->SetImmPCOffsetTarget(prev_link);
    673 
    674       end_of_chain = false;
    675       link = next_link;
    676       while (!end_of_chain) {
    677         next_link = link->ImmPCOffsetTarget();
    678         end_of_chain = (link == next_link);
    679         link->SetImmPCOffsetTarget(label_veneer);
    680         link = next_link;
    681       }
    682     } else {
    683       // The assert below will fire.
    684       // Some other work could be attempted to fix up the chain, but it would be
    685       // rather complicated. If we crash here, we may want to consider using an
    686       // other mechanism than a chain of branches.
    687       //
    688       // Note that this situation currently should not happen, as we always call
    689       // this function with a veneer to the target label.
    690       // However this could happen with a MacroAssembler in the following state:
    691       //    [previous code]
    692       //    B(label);
    693       //    [20KB code]
    694       //    Tbz(label);   // First tbz. Pointing to unconditional branch.
    695       //    [20KB code]
    696       //    Tbz(label);   // Second tbz. Pointing to the first tbz.
    697       //    [more code]
    698       // and this function is called to remove the first tbz from the label link
    699       // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
    700       // the unconditional branch.
    701       CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
    702       UNREACHABLE();
    703     }
    704   }
    705 
    706   CheckLabelLinkChain(label);
    707 }
    708 
    709 
    710 void Assembler::bind(Label* label) {
    711   // Bind label to the address at pc_. All instructions (most likely branches)
    712   // that are linked to this label will be updated to point to the newly-bound
    713   // label.
    714 
    715   DCHECK(!label->is_near_linked());
    716   DCHECK(!label->is_bound());
    717 
    718   DeleteUnresolvedBranchInfoForLabel(label);
    719 
    720   // If the label is linked, the link chain looks something like this:
    721   //
    722   // |--I----I-------I-------L
    723   // |---------------------->| pc_offset
    724   // |-------------->|         linkoffset = label->pos()
    725   //         |<------|         link->ImmPCOffset()
    726   // |------>|                 prevlinkoffset = linkoffset + link->ImmPCOffset()
    727   //
    728   // On each iteration, the last link is updated and then removed from the
    729   // chain until only one remains. At that point, the label is bound.
    730   //
    731   // If the label is not linked, no preparation is required before binding.
    732   while (label->is_linked()) {
    733     int linkoffset = label->pos();
    734     Instruction* link = InstructionAt(linkoffset);
    735     int prevlinkoffset = linkoffset + link->ImmPCOffset();
    736 
    737     CheckLabelLinkChain(label);
    738 
    739     DCHECK(linkoffset >= 0);
    740     DCHECK(linkoffset < pc_offset());
    741     DCHECK((linkoffset > prevlinkoffset) ||
    742            (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
    743     DCHECK(prevlinkoffset >= 0);
    744 
    745     // Update the link to point to the label.
    746     link->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_));
    747 
    748     // Link the label to the previous link in the chain.
    749     if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
    750       // We hit kStartOfLabelLinkChain, so the chain is fully processed.
    751       label->Unuse();
    752     } else {
    753       // Update the label for the next iteration.
    754       label->link_to(prevlinkoffset);
    755     }
    756   }
    757   label->bind_to(pc_offset());
    758 
    759   DCHECK(label->is_bound());
    760   DCHECK(!label->is_linked());
    761 }
    762 
    763 
    764 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
    765   DCHECK(sizeof(*pc_) == 1);
    766   CheckLabelLinkChain(label);
    767 
    768   int offset;
    769   if (label->is_bound()) {
    770     // The label is bound, so it does not need to be updated. Referring
    771     // instructions must link directly to the label as they will not be
    772     // updated.
    773     //
    774     // In this case, label->pos() returns the offset of the label from the
    775     // start of the buffer.
    776     //
    777     // Note that offset can be zero for self-referential instructions. (This
    778     // could be useful for ADR, for example.)
    779     offset = label->pos() - pc_offset();
    780     DCHECK(offset <= 0);
    781   } else {
    782     if (label->is_linked()) {
    783       // The label is linked, so the referring instruction should be added onto
    784       // the end of the label's link chain.
    785       //
    786       // In this case, label->pos() returns the offset of the last linked
    787       // instruction from the start of the buffer.
    788       offset = label->pos() - pc_offset();
    789       DCHECK(offset != kStartOfLabelLinkChain);
    790       // Note that the offset here needs to be PC-relative only so that the
    791       // first instruction in a buffer can link to an unbound label. Otherwise,
    792       // the offset would be 0 for this case, and 0 is reserved for
    793       // kStartOfLabelLinkChain.
    794     } else {
    795       // The label is unused, so it now becomes linked and the referring
    796       // instruction is at the start of the new link chain.
    797       offset = kStartOfLabelLinkChain;
    798     }
    799     // The instruction at pc is now the last link in the label's chain.
    800     label->link_to(pc_offset());
    801   }
    802 
    803   return offset;
    804 }
    805 
    806 
    807 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
    808   DCHECK(label->is_linked());
    809   CheckLabelLinkChain(label);
    810 
    811   int link_offset = label->pos();
    812   int link_pcoffset;
    813   bool end_of_chain = false;
    814 
    815   while (!end_of_chain) {
    816     Instruction * link = InstructionAt(link_offset);
    817     link_pcoffset = link->ImmPCOffset();
    818 
    819     // ADR instructions are not handled by veneers.
    820     if (link->IsImmBranch()) {
    821       int max_reachable_pc = InstructionOffset(link) +
    822           Instruction::ImmBranchRange(link->BranchType());
    823       typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
    824       std::pair<unresolved_info_it, unresolved_info_it> range;
    825       range = unresolved_branches_.equal_range(max_reachable_pc);
    826       unresolved_info_it it;
    827       for (it = range.first; it != range.second; ++it) {
    828         if (it->second.pc_offset_ == link_offset) {
    829           unresolved_branches_.erase(it);
    830           break;
    831         }
    832       }
    833     }
    834 
    835     end_of_chain = (link_pcoffset == 0);
    836     link_offset = link_offset + link_pcoffset;
    837   }
    838 }
    839 
    840 
    841 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
    842   if (unresolved_branches_.empty()) {
    843     DCHECK(next_veneer_pool_check_ == kMaxInt);
    844     return;
    845   }
    846 
    847   if (label->is_linked()) {
    848     // Branches to this label will be resolved when the label is bound, normally
    849     // just after all the associated info has been deleted.
    850     DeleteUnresolvedBranchInfoForLabelTraverse(label);
    851   }
    852   if (unresolved_branches_.empty()) {
    853     next_veneer_pool_check_ = kMaxInt;
    854   } else {
    855     next_veneer_pool_check_ =
    856       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
    857   }
    858 }
    859 
    860 
    861 void Assembler::StartBlockConstPool() {
    862   if (const_pool_blocked_nesting_++ == 0) {
    863     // Prevent constant pool checks happening by setting the next check to
    864     // the biggest possible offset.
    865     next_constant_pool_check_ = kMaxInt;
    866   }
    867 }
    868 
    869 
    870 void Assembler::EndBlockConstPool() {
    871   if (--const_pool_blocked_nesting_ == 0) {
    872     // Check the constant pool hasn't been blocked for too long.
    873     DCHECK(pc_offset() < constpool_.MaxPcOffset());
    874     // Two cases:
    875     //  * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
    876     //    still blocked
    877     //  * no_const_pool_before_ < next_constant_pool_check_ and the next emit
    878     //    will trigger a check.
    879     next_constant_pool_check_ = no_const_pool_before_;
    880   }
    881 }
    882 
    883 
    884 bool Assembler::is_const_pool_blocked() const {
    885   return (const_pool_blocked_nesting_ > 0) ||
    886          (pc_offset() < no_const_pool_before_);
    887 }
    888 
    889 
    890 bool Assembler::IsConstantPoolAt(Instruction* instr) {
    891   // The constant pool marker is made of two instructions. These instructions
    892   // will never be emitted by the JIT, so checking for the first one is enough:
    893   // 0: ldr xzr, #<size of pool>
    894   bool result = instr->IsLdrLiteralX() && (instr->Rt() == xzr.code());
    895 
    896   // It is still worth asserting the marker is complete.
    897   // 4: blr xzr
    898   DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
    899                      instr->following()->Rn() == xzr.code()));
    900 
    901   return result;
    902 }
    903 
    904 
    905 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
    906 #ifdef USE_SIMULATOR
    907   // Assembler::debug() embeds constants directly into the instruction stream.
    908   // Although this is not a genuine constant pool, treat it like one to avoid
    909   // disassembling the constants.
    910   if ((instr->Mask(ExceptionMask) == HLT) &&
    911       (instr->ImmException() == kImmExceptionIsDebug)) {
    912     const char* message =
    913         reinterpret_cast<const char*>(
    914             instr->InstructionAtOffset(kDebugMessageOffset));
    915     int size = kDebugMessageOffset + strlen(message) + 1;
    916     return RoundUp(size, kInstructionSize) / kInstructionSize;
    917   }
    918   // Same for printf support, see MacroAssembler::CallPrintf().
    919   if ((instr->Mask(ExceptionMask) == HLT) &&
    920       (instr->ImmException() == kImmExceptionIsPrintf)) {
    921     return kPrintfLength / kInstructionSize;
    922   }
    923 #endif
    924   if (IsConstantPoolAt(instr)) {
    925     return instr->ImmLLiteral();
    926   } else {
    927     return -1;
    928   }
    929 }
    930 
    931 
    932 void Assembler::EmitPoolGuard() {
    933   // We must generate only one instruction as this is used in scopes that
    934   // control the size of the code generated.
    935   Emit(BLR | Rn(xzr));
    936 }
    937 
    938 
    939 void Assembler::StartBlockVeneerPool() {
    940   ++veneer_pool_blocked_nesting_;
    941 }
    942 
    943 
    944 void Assembler::EndBlockVeneerPool() {
    945   if (--veneer_pool_blocked_nesting_ == 0) {
    946     // Check the veneer pool hasn't been blocked for too long.
    947     DCHECK(unresolved_branches_.empty() ||
    948            (pc_offset() < unresolved_branches_first_limit()));
    949   }
    950 }
    951 
    952 
    953 void Assembler::br(const Register& xn) {
    954   positions_recorder()->WriteRecordedPositions();
    955   DCHECK(xn.Is64Bits());
    956   Emit(BR | Rn(xn));
    957 }
    958 
    959 
    960 void Assembler::blr(const Register& xn) {
    961   positions_recorder()->WriteRecordedPositions();
    962   DCHECK(xn.Is64Bits());
    963   // The pattern 'blr xzr' is used as a guard to detect when execution falls
    964   // through the constant pool. It should not be emitted.
    965   DCHECK(!xn.Is(xzr));
    966   Emit(BLR | Rn(xn));
    967 }
    968 
    969 
    970 void Assembler::ret(const Register& xn) {
    971   positions_recorder()->WriteRecordedPositions();
    972   DCHECK(xn.Is64Bits());
    973   Emit(RET | Rn(xn));
    974 }
    975 
    976 
    977 void Assembler::b(int imm26) {
    978   Emit(B | ImmUncondBranch(imm26));
    979 }
    980 
    981 
    982 void Assembler::b(Label* label) {
    983   positions_recorder()->WriteRecordedPositions();
    984   b(LinkAndGetInstructionOffsetTo(label));
    985 }
    986 
    987 
    988 void Assembler::b(int imm19, Condition cond) {
    989   Emit(B_cond | ImmCondBranch(imm19) | cond);
    990 }
    991 
    992 
    993 void Assembler::b(Label* label, Condition cond) {
    994   positions_recorder()->WriteRecordedPositions();
    995   b(LinkAndGetInstructionOffsetTo(label), cond);
    996 }
    997 
    998 
    999 void Assembler::bl(int imm26) {
   1000   positions_recorder()->WriteRecordedPositions();
   1001   Emit(BL | ImmUncondBranch(imm26));
   1002 }
   1003 
   1004 
   1005 void Assembler::bl(Label* label) {
   1006   positions_recorder()->WriteRecordedPositions();
   1007   bl(LinkAndGetInstructionOffsetTo(label));
   1008 }
   1009 
   1010 
   1011 void Assembler::cbz(const Register& rt,
   1012                     int imm19) {
   1013   positions_recorder()->WriteRecordedPositions();
   1014   Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
   1015 }
   1016 
   1017 
   1018 void Assembler::cbz(const Register& rt,
   1019                     Label* label) {
   1020   positions_recorder()->WriteRecordedPositions();
   1021   cbz(rt, LinkAndGetInstructionOffsetTo(label));
   1022 }
   1023 
   1024 
   1025 void Assembler::cbnz(const Register& rt,
   1026                      int imm19) {
   1027   positions_recorder()->WriteRecordedPositions();
   1028   Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
   1029 }
   1030 
   1031 
   1032 void Assembler::cbnz(const Register& rt,
   1033                      Label* label) {
   1034   positions_recorder()->WriteRecordedPositions();
   1035   cbnz(rt, LinkAndGetInstructionOffsetTo(label));
   1036 }
   1037 
   1038 
   1039 void Assembler::tbz(const Register& rt,
   1040                     unsigned bit_pos,
   1041                     int imm14) {
   1042   positions_recorder()->WriteRecordedPositions();
   1043   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
   1044   Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
   1045 }
   1046 
   1047 
   1048 void Assembler::tbz(const Register& rt,
   1049                     unsigned bit_pos,
   1050                     Label* label) {
   1051   positions_recorder()->WriteRecordedPositions();
   1052   tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
   1053 }
   1054 
   1055 
   1056 void Assembler::tbnz(const Register& rt,
   1057                      unsigned bit_pos,
   1058                      int imm14) {
   1059   positions_recorder()->WriteRecordedPositions();
   1060   DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
   1061   Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
   1062 }
   1063 
   1064 
   1065 void Assembler::tbnz(const Register& rt,
   1066                      unsigned bit_pos,
   1067                      Label* label) {
   1068   positions_recorder()->WriteRecordedPositions();
   1069   tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
   1070 }
   1071 
   1072 
   1073 void Assembler::adr(const Register& rd, int imm21) {
   1074   DCHECK(rd.Is64Bits());
   1075   Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
   1076 }
   1077 
   1078 
   1079 void Assembler::adr(const Register& rd, Label* label) {
   1080   adr(rd, LinkAndGetByteOffsetTo(label));
   1081 }
   1082 
   1083 
   1084 void Assembler::add(const Register& rd,
   1085                     const Register& rn,
   1086                     const Operand& operand) {
   1087   AddSub(rd, rn, operand, LeaveFlags, ADD);
   1088 }
   1089 
   1090 
   1091 void Assembler::adds(const Register& rd,
   1092                      const Register& rn,
   1093                      const Operand& operand) {
   1094   AddSub(rd, rn, operand, SetFlags, ADD);
   1095 }
   1096 
   1097 
   1098 void Assembler::cmn(const Register& rn,
   1099                     const Operand& operand) {
   1100   Register zr = AppropriateZeroRegFor(rn);
   1101   adds(zr, rn, operand);
   1102 }
   1103 
   1104 
   1105 void Assembler::sub(const Register& rd,
   1106                     const Register& rn,
   1107                     const Operand& operand) {
   1108   AddSub(rd, rn, operand, LeaveFlags, SUB);
   1109 }
   1110 
   1111 
   1112 void Assembler::subs(const Register& rd,
   1113                      const Register& rn,
   1114                      const Operand& operand) {
   1115   AddSub(rd, rn, operand, SetFlags, SUB);
   1116 }
   1117 
   1118 
   1119 void Assembler::cmp(const Register& rn, const Operand& operand) {
   1120   Register zr = AppropriateZeroRegFor(rn);
   1121   subs(zr, rn, operand);
   1122 }
   1123 
   1124 
   1125 void Assembler::neg(const Register& rd, const Operand& operand) {
   1126   Register zr = AppropriateZeroRegFor(rd);
   1127   sub(rd, zr, operand);
   1128 }
   1129 
   1130 
   1131 void Assembler::negs(const Register& rd, const Operand& operand) {
   1132   Register zr = AppropriateZeroRegFor(rd);
   1133   subs(rd, zr, operand);
   1134 }
   1135 
   1136 
   1137 void Assembler::adc(const Register& rd,
   1138                     const Register& rn,
   1139                     const Operand& operand) {
   1140   AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
   1141 }
   1142 
   1143 
   1144 void Assembler::adcs(const Register& rd,
   1145                      const Register& rn,
   1146                      const Operand& operand) {
   1147   AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
   1148 }
   1149 
   1150 
   1151 void Assembler::sbc(const Register& rd,
   1152                     const Register& rn,
   1153                     const Operand& operand) {
   1154   AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
   1155 }
   1156 
   1157 
   1158 void Assembler::sbcs(const Register& rd,
   1159                      const Register& rn,
   1160                      const Operand& operand) {
   1161   AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
   1162 }
   1163 
   1164 
   1165 void Assembler::ngc(const Register& rd, const Operand& operand) {
   1166   Register zr = AppropriateZeroRegFor(rd);
   1167   sbc(rd, zr, operand);
   1168 }
   1169 
   1170 
   1171 void Assembler::ngcs(const Register& rd, const Operand& operand) {
   1172   Register zr = AppropriateZeroRegFor(rd);
   1173   sbcs(rd, zr, operand);
   1174 }
   1175 
   1176 
   1177 // Logical instructions.
   1178 void Assembler::and_(const Register& rd,
   1179                      const Register& rn,
   1180                      const Operand& operand) {
   1181   Logical(rd, rn, operand, AND);
   1182 }
   1183 
   1184 
   1185 void Assembler::ands(const Register& rd,
   1186                      const Register& rn,
   1187                      const Operand& operand) {
   1188   Logical(rd, rn, operand, ANDS);
   1189 }
   1190 
   1191 
   1192 void Assembler::tst(const Register& rn,
   1193                     const Operand& operand) {
   1194   ands(AppropriateZeroRegFor(rn), rn, operand);
   1195 }
   1196 
   1197 
   1198 void Assembler::bic(const Register& rd,
   1199                     const Register& rn,
   1200                     const Operand& operand) {
   1201   Logical(rd, rn, operand, BIC);
   1202 }
   1203 
   1204 
   1205 void Assembler::bics(const Register& rd,
   1206                      const Register& rn,
   1207                      const Operand& operand) {
   1208   Logical(rd, rn, operand, BICS);
   1209 }
   1210 
   1211 
   1212 void Assembler::orr(const Register& rd,
   1213                     const Register& rn,
   1214                     const Operand& operand) {
   1215   Logical(rd, rn, operand, ORR);
   1216 }
   1217 
   1218 
   1219 void Assembler::orn(const Register& rd,
   1220                     const Register& rn,
   1221                     const Operand& operand) {
   1222   Logical(rd, rn, operand, ORN);
   1223 }
   1224 
   1225 
   1226 void Assembler::eor(const Register& rd,
   1227                     const Register& rn,
   1228                     const Operand& operand) {
   1229   Logical(rd, rn, operand, EOR);
   1230 }
   1231 
   1232 
   1233 void Assembler::eon(const Register& rd,
   1234                     const Register& rn,
   1235                     const Operand& operand) {
   1236   Logical(rd, rn, operand, EON);
   1237 }
   1238 
   1239 
   1240 void Assembler::lslv(const Register& rd,
   1241                      const Register& rn,
   1242                      const Register& rm) {
   1243   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1244   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1245   Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
   1246 }
   1247 
   1248 
   1249 void Assembler::lsrv(const Register& rd,
   1250                      const Register& rn,
   1251                      const Register& rm) {
   1252   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1253   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1254   Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
   1255 }
   1256 
   1257 
   1258 void Assembler::asrv(const Register& rd,
   1259                      const Register& rn,
   1260                      const Register& rm) {
   1261   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1262   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1263   Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
   1264 }
   1265 
   1266 
   1267 void Assembler::rorv(const Register& rd,
   1268                      const Register& rn,
   1269                      const Register& rm) {
   1270   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1271   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1272   Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
   1273 }
   1274 
   1275 
   1276 // Bitfield operations.
   1277 void Assembler::bfm(const Register& rd,
   1278                      const Register& rn,
   1279                      unsigned immr,
   1280                      unsigned imms) {
   1281   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1282   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1283   Emit(SF(rd) | BFM | N |
   1284        ImmR(immr, rd.SizeInBits()) |
   1285        ImmS(imms, rn.SizeInBits()) |
   1286        Rn(rn) | Rd(rd));
   1287 }
   1288 
   1289 
   1290 void Assembler::sbfm(const Register& rd,
   1291                      const Register& rn,
   1292                      unsigned immr,
   1293                      unsigned imms) {
   1294   DCHECK(rd.Is64Bits() || rn.Is32Bits());
   1295   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1296   Emit(SF(rd) | SBFM | N |
   1297        ImmR(immr, rd.SizeInBits()) |
   1298        ImmS(imms, rn.SizeInBits()) |
   1299        Rn(rn) | Rd(rd));
   1300 }
   1301 
   1302 
   1303 void Assembler::ubfm(const Register& rd,
   1304                      const Register& rn,
   1305                      unsigned immr,
   1306                      unsigned imms) {
   1307   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1308   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1309   Emit(SF(rd) | UBFM | N |
   1310        ImmR(immr, rd.SizeInBits()) |
   1311        ImmS(imms, rn.SizeInBits()) |
   1312        Rn(rn) | Rd(rd));
   1313 }
   1314 
   1315 
   1316 void Assembler::extr(const Register& rd,
   1317                      const Register& rn,
   1318                      const Register& rm,
   1319                      unsigned lsb) {
   1320   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1321   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1322   Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
   1323   Emit(SF(rd) | EXTR | N | Rm(rm) |
   1324        ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
   1325 }
   1326 
   1327 
   1328 void Assembler::csel(const Register& rd,
   1329                      const Register& rn,
   1330                      const Register& rm,
   1331                      Condition cond) {
   1332   ConditionalSelect(rd, rn, rm, cond, CSEL);
   1333 }
   1334 
   1335 
   1336 void Assembler::csinc(const Register& rd,
   1337                       const Register& rn,
   1338                       const Register& rm,
   1339                       Condition cond) {
   1340   ConditionalSelect(rd, rn, rm, cond, CSINC);
   1341 }
   1342 
   1343 
   1344 void Assembler::csinv(const Register& rd,
   1345                       const Register& rn,
   1346                       const Register& rm,
   1347                       Condition cond) {
   1348   ConditionalSelect(rd, rn, rm, cond, CSINV);
   1349 }
   1350 
   1351 
   1352 void Assembler::csneg(const Register& rd,
   1353                       const Register& rn,
   1354                       const Register& rm,
   1355                       Condition cond) {
   1356   ConditionalSelect(rd, rn, rm, cond, CSNEG);
   1357 }
   1358 
   1359 
   1360 void Assembler::cset(const Register &rd, Condition cond) {
   1361   DCHECK((cond != al) && (cond != nv));
   1362   Register zr = AppropriateZeroRegFor(rd);
   1363   csinc(rd, zr, zr, NegateCondition(cond));
   1364 }
   1365 
   1366 
   1367 void Assembler::csetm(const Register &rd, Condition cond) {
   1368   DCHECK((cond != al) && (cond != nv));
   1369   Register zr = AppropriateZeroRegFor(rd);
   1370   csinv(rd, zr, zr, NegateCondition(cond));
   1371 }
   1372 
   1373 
   1374 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
   1375   DCHECK((cond != al) && (cond != nv));
   1376   csinc(rd, rn, rn, NegateCondition(cond));
   1377 }
   1378 
   1379 
   1380 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
   1381   DCHECK((cond != al) && (cond != nv));
   1382   csinv(rd, rn, rn, NegateCondition(cond));
   1383 }
   1384 
   1385 
   1386 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
   1387   DCHECK((cond != al) && (cond != nv));
   1388   csneg(rd, rn, rn, NegateCondition(cond));
   1389 }
   1390 
   1391 
   1392 void Assembler::ConditionalSelect(const Register& rd,
   1393                                   const Register& rn,
   1394                                   const Register& rm,
   1395                                   Condition cond,
   1396                                   ConditionalSelectOp op) {
   1397   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1398   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1399   Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
   1400 }
   1401 
   1402 
   1403 void Assembler::ccmn(const Register& rn,
   1404                      const Operand& operand,
   1405                      StatusFlags nzcv,
   1406                      Condition cond) {
   1407   ConditionalCompare(rn, operand, nzcv, cond, CCMN);
   1408 }
   1409 
   1410 
   1411 void Assembler::ccmp(const Register& rn,
   1412                      const Operand& operand,
   1413                      StatusFlags nzcv,
   1414                      Condition cond) {
   1415   ConditionalCompare(rn, operand, nzcv, cond, CCMP);
   1416 }
   1417 
   1418 
   1419 void Assembler::DataProcessing3Source(const Register& rd,
   1420                                       const Register& rn,
   1421                                       const Register& rm,
   1422                                       const Register& ra,
   1423                                       DataProcessing3SourceOp op) {
   1424   Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
   1425 }
   1426 
   1427 
   1428 void Assembler::mul(const Register& rd,
   1429                     const Register& rn,
   1430                     const Register& rm) {
   1431   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1432   Register zr = AppropriateZeroRegFor(rn);
   1433   DataProcessing3Source(rd, rn, rm, zr, MADD);
   1434 }
   1435 
   1436 
   1437 void Assembler::madd(const Register& rd,
   1438                      const Register& rn,
   1439                      const Register& rm,
   1440                      const Register& ra) {
   1441   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
   1442   DataProcessing3Source(rd, rn, rm, ra, MADD);
   1443 }
   1444 
   1445 
   1446 void Assembler::mneg(const Register& rd,
   1447                      const Register& rn,
   1448                      const Register& rm) {
   1449   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1450   Register zr = AppropriateZeroRegFor(rn);
   1451   DataProcessing3Source(rd, rn, rm, zr, MSUB);
   1452 }
   1453 
   1454 
   1455 void Assembler::msub(const Register& rd,
   1456                      const Register& rn,
   1457                      const Register& rm,
   1458                      const Register& ra) {
   1459   DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
   1460   DataProcessing3Source(rd, rn, rm, ra, MSUB);
   1461 }
   1462 
   1463 
   1464 void Assembler::smaddl(const Register& rd,
   1465                        const Register& rn,
   1466                        const Register& rm,
   1467                        const Register& ra) {
   1468   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1469   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1470   DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
   1471 }
   1472 
   1473 
   1474 void Assembler::smsubl(const Register& rd,
   1475                        const Register& rn,
   1476                        const Register& rm,
   1477                        const Register& ra) {
   1478   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1479   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1480   DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
   1481 }
   1482 
   1483 
   1484 void Assembler::umaddl(const Register& rd,
   1485                        const Register& rn,
   1486                        const Register& rm,
   1487                        const Register& ra) {
   1488   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1489   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1490   DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
   1491 }
   1492 
   1493 
   1494 void Assembler::umsubl(const Register& rd,
   1495                        const Register& rn,
   1496                        const Register& rm,
   1497                        const Register& ra) {
   1498   DCHECK(rd.Is64Bits() && ra.Is64Bits());
   1499   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1500   DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
   1501 }
   1502 
   1503 
   1504 void Assembler::smull(const Register& rd,
   1505                       const Register& rn,
   1506                       const Register& rm) {
   1507   DCHECK(rd.Is64Bits());
   1508   DCHECK(rn.Is32Bits() && rm.Is32Bits());
   1509   DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
   1510 }
   1511 
   1512 
   1513 void Assembler::smulh(const Register& rd,
   1514                       const Register& rn,
   1515                       const Register& rm) {
   1516   DCHECK(AreSameSizeAndType(rd, rn, rm));
   1517   DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
   1518 }
   1519 
   1520 
   1521 void Assembler::sdiv(const Register& rd,
   1522                      const Register& rn,
   1523                      const Register& rm) {
   1524   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1525   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1526   Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
   1527 }
   1528 
   1529 
   1530 void Assembler::udiv(const Register& rd,
   1531                      const Register& rn,
   1532                      const Register& rm) {
   1533   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   1534   DCHECK(rd.SizeInBits() == rm.SizeInBits());
   1535   Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
   1536 }
   1537 
   1538 
   1539 void Assembler::rbit(const Register& rd,
   1540                      const Register& rn) {
   1541   DataProcessing1Source(rd, rn, RBIT);
   1542 }
   1543 
   1544 
   1545 void Assembler::rev16(const Register& rd,
   1546                       const Register& rn) {
   1547   DataProcessing1Source(rd, rn, REV16);
   1548 }
   1549 
   1550 
   1551 void Assembler::rev32(const Register& rd,
   1552                       const Register& rn) {
   1553   DCHECK(rd.Is64Bits());
   1554   DataProcessing1Source(rd, rn, REV);
   1555 }
   1556 
   1557 
   1558 void Assembler::rev(const Register& rd,
   1559                     const Register& rn) {
   1560   DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
   1561 }
   1562 
   1563 
   1564 void Assembler::clz(const Register& rd,
   1565                     const Register& rn) {
   1566   DataProcessing1Source(rd, rn, CLZ);
   1567 }
   1568 
   1569 
   1570 void Assembler::cls(const Register& rd,
   1571                     const Register& rn) {
   1572   DataProcessing1Source(rd, rn, CLS);
   1573 }
   1574 
   1575 
   1576 void Assembler::ldp(const CPURegister& rt,
   1577                     const CPURegister& rt2,
   1578                     const MemOperand& src) {
   1579   LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
   1580 }
   1581 
   1582 
   1583 void Assembler::stp(const CPURegister& rt,
   1584                     const CPURegister& rt2,
   1585                     const MemOperand& dst) {
   1586   LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
   1587 }
   1588 
   1589 
   1590 void Assembler::ldpsw(const Register& rt,
   1591                       const Register& rt2,
   1592                       const MemOperand& src) {
   1593   DCHECK(rt.Is64Bits());
   1594   LoadStorePair(rt, rt2, src, LDPSW_x);
   1595 }
   1596 
   1597 
   1598 void Assembler::LoadStorePair(const CPURegister& rt,
   1599                               const CPURegister& rt2,
   1600                               const MemOperand& addr,
   1601                               LoadStorePairOp op) {
   1602   // 'rt' and 'rt2' can only be aliased for stores.
   1603   DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
   1604   DCHECK(AreSameSizeAndType(rt, rt2));
   1605 
   1606   Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
   1607                 ImmLSPair(addr.offset(), CalcLSPairDataSize(op));
   1608 
   1609   Instr addrmodeop;
   1610   if (addr.IsImmediateOffset()) {
   1611     addrmodeop = LoadStorePairOffsetFixed;
   1612   } else {
   1613     // Pre-index and post-index modes.
   1614     DCHECK(!rt.Is(addr.base()));
   1615     DCHECK(!rt2.Is(addr.base()));
   1616     DCHECK(addr.offset() != 0);
   1617     if (addr.IsPreIndex()) {
   1618       addrmodeop = LoadStorePairPreIndexFixed;
   1619     } else {
   1620       DCHECK(addr.IsPostIndex());
   1621       addrmodeop = LoadStorePairPostIndexFixed;
   1622     }
   1623   }
   1624   Emit(addrmodeop | memop);
   1625 }
   1626 
   1627 
   1628 void Assembler::ldnp(const CPURegister& rt,
   1629                      const CPURegister& rt2,
   1630                      const MemOperand& src) {
   1631   LoadStorePairNonTemporal(rt, rt2, src,
   1632                            LoadPairNonTemporalOpFor(rt, rt2));
   1633 }
   1634 
   1635 
   1636 void Assembler::stnp(const CPURegister& rt,
   1637                      const CPURegister& rt2,
   1638                      const MemOperand& dst) {
   1639   LoadStorePairNonTemporal(rt, rt2, dst,
   1640                            StorePairNonTemporalOpFor(rt, rt2));
   1641 }
   1642 
   1643 
   1644 void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
   1645                                          const CPURegister& rt2,
   1646                                          const MemOperand& addr,
   1647                                          LoadStorePairNonTemporalOp op) {
   1648   DCHECK(!rt.Is(rt2));
   1649   DCHECK(AreSameSizeAndType(rt, rt2));
   1650   DCHECK(addr.IsImmediateOffset());
   1651 
   1652   LSDataSize size = CalcLSPairDataSize(
   1653     static_cast<LoadStorePairOp>(op & LoadStorePairMask));
   1654   Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
   1655        ImmLSPair(addr.offset(), size));
   1656 }
   1657 
   1658 
   1659 // Memory instructions.
   1660 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
   1661   LoadStore(rt, src, LDRB_w);
   1662 }
   1663 
   1664 
   1665 void Assembler::strb(const Register& rt, const MemOperand& dst) {
   1666   LoadStore(rt, dst, STRB_w);
   1667 }
   1668 
   1669 
   1670 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
   1671   LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
   1672 }
   1673 
   1674 
   1675 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
   1676   LoadStore(rt, src, LDRH_w);
   1677 }
   1678 
   1679 
   1680 void Assembler::strh(const Register& rt, const MemOperand& dst) {
   1681   LoadStore(rt, dst, STRH_w);
   1682 }
   1683 
   1684 
   1685 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
   1686   LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
   1687 }
   1688 
   1689 
   1690 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
   1691   LoadStore(rt, src, LoadOpFor(rt));
   1692 }
   1693 
   1694 
   1695 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
   1696   LoadStore(rt, src, StoreOpFor(rt));
   1697 }
   1698 
   1699 
   1700 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
   1701   DCHECK(rt.Is64Bits());
   1702   LoadStore(rt, src, LDRSW_x);
   1703 }
   1704 
   1705 
   1706 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
   1707   // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
   1708   // constant pool. It should not be emitted.
   1709   DCHECK(!rt.IsZero());
   1710   Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
   1711 }
   1712 
   1713 
   1714 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
   1715   // Currently we only support 64-bit literals.
   1716   DCHECK(rt.Is64Bits());
   1717 
   1718   RecordRelocInfo(imm.rmode(), imm.value());
   1719   BlockConstPoolFor(1);
   1720   // The load will be patched when the constpool is emitted, patching code
   1721   // expect a load literal with offset 0.
   1722   ldr_pcrel(rt, 0);
   1723 }
   1724 
   1725 
   1726 void Assembler::mov(const Register& rd, const Register& rm) {
   1727   // Moves involving the stack pointer are encoded as add immediate with
   1728   // second operand of zero. Otherwise, orr with first operand zr is
   1729   // used.
   1730   if (rd.IsSP() || rm.IsSP()) {
   1731     add(rd, rm, 0);
   1732   } else {
   1733     orr(rd, AppropriateZeroRegFor(rd), rm);
   1734   }
   1735 }
   1736 
   1737 
   1738 void Assembler::mvn(const Register& rd, const Operand& operand) {
   1739   orn(rd, AppropriateZeroRegFor(rd), operand);
   1740 }
   1741 
   1742 
   1743 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
   1744   DCHECK(rt.Is64Bits());
   1745   Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
   1746 }
   1747 
   1748 
   1749 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
   1750   DCHECK(rt.Is64Bits());
   1751   Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
   1752 }
   1753 
   1754 
   1755 void Assembler::hint(SystemHint code) {
   1756   Emit(HINT | ImmHint(code) | Rt(xzr));
   1757 }
   1758 
   1759 
   1760 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
   1761   Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
   1762 }
   1763 
   1764 
   1765 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
   1766   Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
   1767 }
   1768 
   1769 
   1770 void Assembler::isb() {
   1771   Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
   1772 }
   1773 
   1774 
   1775 void Assembler::fmov(FPRegister fd, double imm) {
   1776   DCHECK(fd.Is64Bits());
   1777   DCHECK(IsImmFP64(imm));
   1778   Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
   1779 }
   1780 
   1781 
   1782 void Assembler::fmov(FPRegister fd, float imm) {
   1783   DCHECK(fd.Is32Bits());
   1784   DCHECK(IsImmFP32(imm));
   1785   Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
   1786 }
   1787 
   1788 
   1789 void Assembler::fmov(Register rd, FPRegister fn) {
   1790   DCHECK(rd.SizeInBits() == fn.SizeInBits());
   1791   FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
   1792   Emit(op | Rd(rd) | Rn(fn));
   1793 }
   1794 
   1795 
   1796 void Assembler::fmov(FPRegister fd, Register rn) {
   1797   DCHECK(fd.SizeInBits() == rn.SizeInBits());
   1798   FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
   1799   Emit(op | Rd(fd) | Rn(rn));
   1800 }
   1801 
   1802 
   1803 void Assembler::fmov(FPRegister fd, FPRegister fn) {
   1804   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1805   Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
   1806 }
   1807 
   1808 
   1809 void Assembler::fadd(const FPRegister& fd,
   1810                      const FPRegister& fn,
   1811                      const FPRegister& fm) {
   1812   FPDataProcessing2Source(fd, fn, fm, FADD);
   1813 }
   1814 
   1815 
   1816 void Assembler::fsub(const FPRegister& fd,
   1817                      const FPRegister& fn,
   1818                      const FPRegister& fm) {
   1819   FPDataProcessing2Source(fd, fn, fm, FSUB);
   1820 }
   1821 
   1822 
   1823 void Assembler::fmul(const FPRegister& fd,
   1824                      const FPRegister& fn,
   1825                      const FPRegister& fm) {
   1826   FPDataProcessing2Source(fd, fn, fm, FMUL);
   1827 }
   1828 
   1829 
   1830 void Assembler::fmadd(const FPRegister& fd,
   1831                       const FPRegister& fn,
   1832                       const FPRegister& fm,
   1833                       const FPRegister& fa) {
   1834   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
   1835 }
   1836 
   1837 
   1838 void Assembler::fmsub(const FPRegister& fd,
   1839                       const FPRegister& fn,
   1840                       const FPRegister& fm,
   1841                       const FPRegister& fa) {
   1842   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
   1843 }
   1844 
   1845 
   1846 void Assembler::fnmadd(const FPRegister& fd,
   1847                        const FPRegister& fn,
   1848                        const FPRegister& fm,
   1849                        const FPRegister& fa) {
   1850   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
   1851 }
   1852 
   1853 
   1854 void Assembler::fnmsub(const FPRegister& fd,
   1855                        const FPRegister& fn,
   1856                        const FPRegister& fm,
   1857                        const FPRegister& fa) {
   1858   FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
   1859 }
   1860 
   1861 
   1862 void Assembler::fdiv(const FPRegister& fd,
   1863                      const FPRegister& fn,
   1864                      const FPRegister& fm) {
   1865   FPDataProcessing2Source(fd, fn, fm, FDIV);
   1866 }
   1867 
   1868 
   1869 void Assembler::fmax(const FPRegister& fd,
   1870                      const FPRegister& fn,
   1871                      const FPRegister& fm) {
   1872   FPDataProcessing2Source(fd, fn, fm, FMAX);
   1873 }
   1874 
   1875 
   1876 void Assembler::fmaxnm(const FPRegister& fd,
   1877                        const FPRegister& fn,
   1878                        const FPRegister& fm) {
   1879   FPDataProcessing2Source(fd, fn, fm, FMAXNM);
   1880 }
   1881 
   1882 
   1883 void Assembler::fmin(const FPRegister& fd,
   1884                      const FPRegister& fn,
   1885                      const FPRegister& fm) {
   1886   FPDataProcessing2Source(fd, fn, fm, FMIN);
   1887 }
   1888 
   1889 
   1890 void Assembler::fminnm(const FPRegister& fd,
   1891                        const FPRegister& fn,
   1892                        const FPRegister& fm) {
   1893   FPDataProcessing2Source(fd, fn, fm, FMINNM);
   1894 }
   1895 
   1896 
   1897 void Assembler::fabs(const FPRegister& fd,
   1898                      const FPRegister& fn) {
   1899   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1900   FPDataProcessing1Source(fd, fn, FABS);
   1901 }
   1902 
   1903 
   1904 void Assembler::fneg(const FPRegister& fd,
   1905                      const FPRegister& fn) {
   1906   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1907   FPDataProcessing1Source(fd, fn, FNEG);
   1908 }
   1909 
   1910 
   1911 void Assembler::fsqrt(const FPRegister& fd,
   1912                       const FPRegister& fn) {
   1913   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1914   FPDataProcessing1Source(fd, fn, FSQRT);
   1915 }
   1916 
   1917 
   1918 void Assembler::frinta(const FPRegister& fd,
   1919                        const FPRegister& fn) {
   1920   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1921   FPDataProcessing1Source(fd, fn, FRINTA);
   1922 }
   1923 
   1924 
   1925 void Assembler::frintm(const FPRegister& fd,
   1926                        const FPRegister& fn) {
   1927   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1928   FPDataProcessing1Source(fd, fn, FRINTM);
   1929 }
   1930 
   1931 
   1932 void Assembler::frintn(const FPRegister& fd,
   1933                        const FPRegister& fn) {
   1934   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1935   FPDataProcessing1Source(fd, fn, FRINTN);
   1936 }
   1937 
   1938 
   1939 void Assembler::frintz(const FPRegister& fd,
   1940                        const FPRegister& fn) {
   1941   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1942   FPDataProcessing1Source(fd, fn, FRINTZ);
   1943 }
   1944 
   1945 
   1946 void Assembler::fcmp(const FPRegister& fn,
   1947                      const FPRegister& fm) {
   1948   DCHECK(fn.SizeInBits() == fm.SizeInBits());
   1949   Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
   1950 }
   1951 
   1952 
   1953 void Assembler::fcmp(const FPRegister& fn,
   1954                      double value) {
   1955   USE(value);
   1956   // Although the fcmp instruction can strictly only take an immediate value of
   1957   // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
   1958   // affect the result of the comparison.
   1959   DCHECK(value == 0.0);
   1960   Emit(FPType(fn) | FCMP_zero | Rn(fn));
   1961 }
   1962 
   1963 
   1964 void Assembler::fccmp(const FPRegister& fn,
   1965                       const FPRegister& fm,
   1966                       StatusFlags nzcv,
   1967                       Condition cond) {
   1968   DCHECK(fn.SizeInBits() == fm.SizeInBits());
   1969   Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
   1970 }
   1971 
   1972 
   1973 void Assembler::fcsel(const FPRegister& fd,
   1974                       const FPRegister& fn,
   1975                       const FPRegister& fm,
   1976                       Condition cond) {
   1977   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   1978   DCHECK(fd.SizeInBits() == fm.SizeInBits());
   1979   Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
   1980 }
   1981 
   1982 
   1983 void Assembler::FPConvertToInt(const Register& rd,
   1984                                const FPRegister& fn,
   1985                                FPIntegerConvertOp op) {
   1986   Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
   1987 }
   1988 
   1989 
   1990 void Assembler::fcvt(const FPRegister& fd,
   1991                      const FPRegister& fn) {
   1992   if (fd.Is64Bits()) {
   1993     // Convert float to double.
   1994     DCHECK(fn.Is32Bits());
   1995     FPDataProcessing1Source(fd, fn, FCVT_ds);
   1996   } else {
   1997     // Convert double to float.
   1998     DCHECK(fn.Is64Bits());
   1999     FPDataProcessing1Source(fd, fn, FCVT_sd);
   2000   }
   2001 }
   2002 
   2003 
   2004 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
   2005   FPConvertToInt(rd, fn, FCVTAU);
   2006 }
   2007 
   2008 
   2009 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
   2010   FPConvertToInt(rd, fn, FCVTAS);
   2011 }
   2012 
   2013 
   2014 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
   2015   FPConvertToInt(rd, fn, FCVTMU);
   2016 }
   2017 
   2018 
   2019 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
   2020   FPConvertToInt(rd, fn, FCVTMS);
   2021 }
   2022 
   2023 
   2024 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
   2025   FPConvertToInt(rd, fn, FCVTNU);
   2026 }
   2027 
   2028 
   2029 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
   2030   FPConvertToInt(rd, fn, FCVTNS);
   2031 }
   2032 
   2033 
   2034 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
   2035   FPConvertToInt(rd, fn, FCVTZU);
   2036 }
   2037 
   2038 
   2039 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
   2040   FPConvertToInt(rd, fn, FCVTZS);
   2041 }
   2042 
   2043 
   2044 void Assembler::scvtf(const FPRegister& fd,
   2045                       const Register& rn,
   2046                       unsigned fbits) {
   2047   if (fbits == 0) {
   2048     Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
   2049   } else {
   2050     Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
   2051          Rd(fd));
   2052   }
   2053 }
   2054 
   2055 
   2056 void Assembler::ucvtf(const FPRegister& fd,
   2057                       const Register& rn,
   2058                       unsigned fbits) {
   2059   if (fbits == 0) {
   2060     Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
   2061   } else {
   2062     Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
   2063          Rd(fd));
   2064   }
   2065 }
   2066 
   2067 
   2068 // Note:
   2069 // Below, a difference in case for the same letter indicates a
   2070 // negated bit.
   2071 // If b is 1, then B is 0.
   2072 Instr Assembler::ImmFP32(float imm) {
   2073   DCHECK(IsImmFP32(imm));
   2074   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
   2075   uint32_t bits = float_to_rawbits(imm);
   2076   // bit7: a000.0000
   2077   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
   2078   // bit6: 0b00.0000
   2079   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
   2080   // bit5_to_0: 00cd.efgh
   2081   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
   2082 
   2083   return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
   2084 }
   2085 
   2086 
   2087 Instr Assembler::ImmFP64(double imm) {
   2088   DCHECK(IsImmFP64(imm));
   2089   // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
   2090   //       0000.0000.0000.0000.0000.0000.0000.0000
   2091   uint64_t bits = double_to_rawbits(imm);
   2092   // bit7: a000.0000
   2093   uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
   2094   // bit6: 0b00.0000
   2095   uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
   2096   // bit5_to_0: 00cd.efgh
   2097   uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
   2098 
   2099   return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
   2100 }
   2101 
   2102 
   2103 // Code generation helpers.
   2104 void Assembler::MoveWide(const Register& rd,
   2105                          uint64_t imm,
   2106                          int shift,
   2107                          MoveWideImmediateOp mov_op) {
   2108   // Ignore the top 32 bits of an immediate if we're moving to a W register.
   2109   if (rd.Is32Bits()) {
   2110     // Check that the top 32 bits are zero (a positive 32-bit number) or top
   2111     // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
   2112     DCHECK(((imm >> kWRegSizeInBits) == 0) ||
   2113            ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
   2114     imm &= kWRegMask;
   2115   }
   2116 
   2117   if (shift >= 0) {
   2118     // Explicit shift specified.
   2119     DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
   2120     DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
   2121     shift /= 16;
   2122   } else {
   2123     // Calculate a new immediate and shift combination to encode the immediate
   2124     // argument.
   2125     shift = 0;
   2126     if ((imm & ~0xffffUL) == 0) {
   2127       // Nothing to do.
   2128     } else if ((imm & ~(0xffffUL << 16)) == 0) {
   2129       imm >>= 16;
   2130       shift = 1;
   2131     } else if ((imm & ~(0xffffUL << 32)) == 0) {
   2132       DCHECK(rd.Is64Bits());
   2133       imm >>= 32;
   2134       shift = 2;
   2135     } else if ((imm & ~(0xffffUL << 48)) == 0) {
   2136       DCHECK(rd.Is64Bits());
   2137       imm >>= 48;
   2138       shift = 3;
   2139     }
   2140   }
   2141 
   2142   DCHECK(is_uint16(imm));
   2143 
   2144   Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
   2145        Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
   2146 }
   2147 
   2148 
   2149 void Assembler::AddSub(const Register& rd,
   2150                        const Register& rn,
   2151                        const Operand& operand,
   2152                        FlagsUpdate S,
   2153                        AddSubOp op) {
   2154   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2155   DCHECK(!operand.NeedsRelocation(this));
   2156   if (operand.IsImmediate()) {
   2157     int64_t immediate = operand.ImmediateValue();
   2158     DCHECK(IsImmAddSub(immediate));
   2159     Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
   2160     Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
   2161          ImmAddSub(immediate) | dest_reg | RnSP(rn));
   2162   } else if (operand.IsShiftedRegister()) {
   2163     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
   2164     DCHECK(operand.shift() != ROR);
   2165 
   2166     // For instructions of the form:
   2167     //   add/sub   wsp, <Wn>, <Wm> [, LSL #0-3 ]
   2168     //   add/sub   <Wd>, wsp, <Wm> [, LSL #0-3 ]
   2169     //   add/sub   wsp, wsp, <Wm> [, LSL #0-3 ]
   2170     //   adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
   2171     // or their 64-bit register equivalents, convert the operand from shifted to
   2172     // extended register mode, and emit an add/sub extended instruction.
   2173     if (rn.IsSP() || rd.IsSP()) {
   2174       DCHECK(!(rd.IsSP() && (S == SetFlags)));
   2175       DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
   2176                                AddSubExtendedFixed | op);
   2177     } else {
   2178       DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
   2179     }
   2180   } else {
   2181     DCHECK(operand.IsExtendedRegister());
   2182     DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
   2183   }
   2184 }
   2185 
   2186 
   2187 void Assembler::AddSubWithCarry(const Register& rd,
   2188                                 const Register& rn,
   2189                                 const Operand& operand,
   2190                                 FlagsUpdate S,
   2191                                 AddSubWithCarryOp op) {
   2192   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2193   DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
   2194   DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
   2195   DCHECK(!operand.NeedsRelocation(this));
   2196   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
   2197 }
   2198 
   2199 
   2200 void Assembler::hlt(int code) {
   2201   DCHECK(is_uint16(code));
   2202   Emit(HLT | ImmException(code));
   2203 }
   2204 
   2205 
   2206 void Assembler::brk(int code) {
   2207   DCHECK(is_uint16(code));
   2208   Emit(BRK | ImmException(code));
   2209 }
   2210 
   2211 
   2212 void Assembler::EmitStringData(const char* string) {
   2213   size_t len = strlen(string) + 1;
   2214   DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
   2215   EmitData(string, len);
   2216   // Pad with NULL characters until pc_ is aligned.
   2217   const char pad[] = {'\0', '\0', '\0', '\0'};
   2218   STATIC_ASSERT(sizeof(pad) == kInstructionSize);
   2219   EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
   2220 }
   2221 
   2222 
   2223 void Assembler::debug(const char* message, uint32_t code, Instr params) {
   2224 #ifdef USE_SIMULATOR
   2225   // Don't generate simulator specific code if we are building a snapshot, which
   2226   // might be run on real hardware.
   2227   if (!serializer_enabled()) {
   2228     // The arguments to the debug marker need to be contiguous in memory, so
   2229     // make sure we don't try to emit pools.
   2230     BlockPoolsScope scope(this);
   2231 
   2232     Label start;
   2233     bind(&start);
   2234 
   2235     // Refer to instructions-arm64.h for a description of the marker and its
   2236     // arguments.
   2237     hlt(kImmExceptionIsDebug);
   2238     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
   2239     dc32(code);
   2240     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
   2241     dc32(params);
   2242     DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
   2243     EmitStringData(message);
   2244     hlt(kImmExceptionIsUnreachable);
   2245 
   2246     return;
   2247   }
   2248   // Fall through if Serializer is enabled.
   2249 #endif
   2250 
   2251   if (params & BREAK) {
   2252     hlt(kImmExceptionIsDebug);
   2253   }
   2254 }
   2255 
   2256 
   2257 void Assembler::Logical(const Register& rd,
   2258                         const Register& rn,
   2259                         const Operand& operand,
   2260                         LogicalOp op) {
   2261   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2262   DCHECK(!operand.NeedsRelocation(this));
   2263   if (operand.IsImmediate()) {
   2264     int64_t immediate = operand.ImmediateValue();
   2265     unsigned reg_size = rd.SizeInBits();
   2266 
   2267     DCHECK(immediate != 0);
   2268     DCHECK(immediate != -1);
   2269     DCHECK(rd.Is64Bits() || is_uint32(immediate));
   2270 
   2271     // If the operation is NOT, invert the operation and immediate.
   2272     if ((op & NOT) == NOT) {
   2273       op = static_cast<LogicalOp>(op & ~NOT);
   2274       immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
   2275     }
   2276 
   2277     unsigned n, imm_s, imm_r;
   2278     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
   2279       // Immediate can be encoded in the instruction.
   2280       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
   2281     } else {
   2282       // This case is handled in the macro assembler.
   2283       UNREACHABLE();
   2284     }
   2285   } else {
   2286     DCHECK(operand.IsShiftedRegister());
   2287     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
   2288     Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
   2289     DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
   2290   }
   2291 }
   2292 
   2293 
   2294 void Assembler::LogicalImmediate(const Register& rd,
   2295                                  const Register& rn,
   2296                                  unsigned n,
   2297                                  unsigned imm_s,
   2298                                  unsigned imm_r,
   2299                                  LogicalOp op) {
   2300   unsigned reg_size = rd.SizeInBits();
   2301   Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
   2302   Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
   2303        ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
   2304        Rn(rn));
   2305 }
   2306 
   2307 
   2308 void Assembler::ConditionalCompare(const Register& rn,
   2309                                    const Operand& operand,
   2310                                    StatusFlags nzcv,
   2311                                    Condition cond,
   2312                                    ConditionalCompareOp op) {
   2313   Instr ccmpop;
   2314   DCHECK(!operand.NeedsRelocation(this));
   2315   if (operand.IsImmediate()) {
   2316     int64_t immediate = operand.ImmediateValue();
   2317     DCHECK(IsImmConditionalCompare(immediate));
   2318     ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate);
   2319   } else {
   2320     DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
   2321     ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
   2322   }
   2323   Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
   2324 }
   2325 
   2326 
   2327 void Assembler::DataProcessing1Source(const Register& rd,
   2328                                       const Register& rn,
   2329                                       DataProcessing1SourceOp op) {
   2330   DCHECK(rd.SizeInBits() == rn.SizeInBits());
   2331   Emit(SF(rn) | op | Rn(rn) | Rd(rd));
   2332 }
   2333 
   2334 
   2335 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
   2336                                         const FPRegister& fn,
   2337                                         FPDataProcessing1SourceOp op) {
   2338   Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
   2339 }
   2340 
   2341 
   2342 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
   2343                                         const FPRegister& fn,
   2344                                         const FPRegister& fm,
   2345                                         FPDataProcessing2SourceOp op) {
   2346   DCHECK(fd.SizeInBits() == fn.SizeInBits());
   2347   DCHECK(fd.SizeInBits() == fm.SizeInBits());
   2348   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
   2349 }
   2350 
   2351 
   2352 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
   2353                                         const FPRegister& fn,
   2354                                         const FPRegister& fm,
   2355                                         const FPRegister& fa,
   2356                                         FPDataProcessing3SourceOp op) {
   2357   DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
   2358   Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
   2359 }
   2360 
   2361 
   2362 void Assembler::EmitShift(const Register& rd,
   2363                           const Register& rn,
   2364                           Shift shift,
   2365                           unsigned shift_amount) {
   2366   switch (shift) {
   2367     case LSL:
   2368       lsl(rd, rn, shift_amount);
   2369       break;
   2370     case LSR:
   2371       lsr(rd, rn, shift_amount);
   2372       break;
   2373     case ASR:
   2374       asr(rd, rn, shift_amount);
   2375       break;
   2376     case ROR:
   2377       ror(rd, rn, shift_amount);
   2378       break;
   2379     default:
   2380       UNREACHABLE();
   2381   }
   2382 }
   2383 
   2384 
   2385 void Assembler::EmitExtendShift(const Register& rd,
   2386                                 const Register& rn,
   2387                                 Extend extend,
   2388                                 unsigned left_shift) {
   2389   DCHECK(rd.SizeInBits() >= rn.SizeInBits());
   2390   unsigned reg_size = rd.SizeInBits();
   2391   // Use the correct size of register.
   2392   Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
   2393   // Bits extracted are high_bit:0.
   2394   unsigned high_bit = (8 << (extend & 0x3)) - 1;
   2395   // Number of bits left in the result that are not introduced by the shift.
   2396   unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
   2397 
   2398   if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
   2399     switch (extend) {
   2400       case UXTB:
   2401       case UXTH:
   2402       case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
   2403       case SXTB:
   2404       case SXTH:
   2405       case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
   2406       case UXTX:
   2407       case SXTX: {
   2408         DCHECK(rn.SizeInBits() == kXRegSizeInBits);
   2409         // Nothing to extend. Just shift.
   2410         lsl(rd, rn_, left_shift);
   2411         break;
   2412       }
   2413       default: UNREACHABLE();
   2414     }
   2415   } else {
   2416     // No need to extend as the extended bits would be shifted away.
   2417     lsl(rd, rn_, left_shift);
   2418   }
   2419 }
   2420 
   2421 
   2422 void Assembler::DataProcShiftedRegister(const Register& rd,
   2423                                         const Register& rn,
   2424                                         const Operand& operand,
   2425                                         FlagsUpdate S,
   2426                                         Instr op) {
   2427   DCHECK(operand.IsShiftedRegister());
   2428   DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
   2429   DCHECK(!operand.NeedsRelocation(this));
   2430   Emit(SF(rd) | op | Flags(S) |
   2431        ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
   2432        Rm(operand.reg()) | Rn(rn) | Rd(rd));
   2433 }
   2434 
   2435 
   2436 void Assembler::DataProcExtendedRegister(const Register& rd,
   2437                                          const Register& rn,
   2438                                          const Operand& operand,
   2439                                          FlagsUpdate S,
   2440                                          Instr op) {
   2441   DCHECK(!operand.NeedsRelocation(this));
   2442   Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
   2443   Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
   2444        ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
   2445        dest_reg | RnSP(rn));
   2446 }
   2447 
   2448 
   2449 bool Assembler::IsImmAddSub(int64_t immediate) {
   2450   return is_uint12(immediate) ||
   2451          (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
   2452 }
   2453 
   2454 void Assembler::LoadStore(const CPURegister& rt,
   2455                           const MemOperand& addr,
   2456                           LoadStoreOp op) {
   2457   Instr memop = op | Rt(rt) | RnSP(addr.base());
   2458   int64_t offset = addr.offset();
   2459 
   2460   if (addr.IsImmediateOffset()) {
   2461     LSDataSize size = CalcLSDataSize(op);
   2462     if (IsImmLSScaled(offset, size)) {
   2463       // Use the scaled addressing mode.
   2464       Emit(LoadStoreUnsignedOffsetFixed | memop |
   2465            ImmLSUnsigned(offset >> size));
   2466     } else if (IsImmLSUnscaled(offset)) {
   2467       // Use the unscaled addressing mode.
   2468       Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
   2469     } else {
   2470       // This case is handled in the macro assembler.
   2471       UNREACHABLE();
   2472     }
   2473   } else if (addr.IsRegisterOffset()) {
   2474     Extend ext = addr.extend();
   2475     Shift shift = addr.shift();
   2476     unsigned shift_amount = addr.shift_amount();
   2477 
   2478     // LSL is encoded in the option field as UXTX.
   2479     if (shift == LSL) {
   2480       ext = UXTX;
   2481     }
   2482 
   2483     // Shifts are encoded in one bit, indicating a left shift by the memory
   2484     // access size.
   2485     DCHECK((shift_amount == 0) ||
   2486            (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
   2487     Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
   2488          ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
   2489   } else {
   2490     // Pre-index and post-index modes.
   2491     DCHECK(!rt.Is(addr.base()));
   2492     if (IsImmLSUnscaled(offset)) {
   2493       if (addr.IsPreIndex()) {
   2494         Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
   2495       } else {
   2496         DCHECK(addr.IsPostIndex());
   2497         Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
   2498       }
   2499     } else {
   2500       // This case is handled in the macro assembler.
   2501       UNREACHABLE();
   2502     }
   2503   }
   2504 }
   2505 
   2506 
   2507 bool Assembler::IsImmLSUnscaled(int64_t offset) {
   2508   return is_int9(offset);
   2509 }
   2510 
   2511 
   2512 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
   2513   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
   2514   return offset_is_size_multiple && is_uint12(offset >> size);
   2515 }
   2516 
   2517 
   2518 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
   2519   bool offset_is_size_multiple = (((offset >> size) << size) == offset);
   2520   return offset_is_size_multiple && is_int7(offset >> size);
   2521 }
   2522 
   2523 
   2524 // Test if a given value can be encoded in the immediate field of a logical
   2525 // instruction.
   2526 // If it can be encoded, the function returns true, and values pointed to by n,
   2527 // imm_s and imm_r are updated with immediates encoded in the format required
   2528 // by the corresponding fields in the logical instruction.
   2529 // If it can not be encoded, the function returns false, and the values pointed
   2530 // to by n, imm_s and imm_r are undefined.
   2531 bool Assembler::IsImmLogical(uint64_t value,
   2532                              unsigned width,
   2533                              unsigned* n,
   2534                              unsigned* imm_s,
   2535                              unsigned* imm_r) {
   2536   DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
   2537   DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
   2538 
   2539   bool negate = false;
   2540 
   2541   // Logical immediates are encoded using parameters n, imm_s and imm_r using
   2542   // the following table:
   2543   //
   2544   //    N   imms    immr    size        S             R
   2545   //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
   2546   //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
   2547   //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
   2548   //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
   2549   //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
   2550   //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
   2551   // (s bits must not be all set)
   2552   //
   2553   // A pattern is constructed of size bits, where the least significant S+1 bits
   2554   // are set. The pattern is rotated right by R, and repeated across a 32 or
   2555   // 64-bit value, depending on destination register width.
   2556   //
   2557   // Put another way: the basic format of a logical immediate is a single
   2558   // contiguous stretch of 1 bits, repeated across the whole word at intervals
   2559   // given by a power of 2. To identify them quickly, we first locate the
   2560   // lowest stretch of 1 bits, then the next 1 bit above that; that combination
   2561   // is different for every logical immediate, so it gives us all the
   2562   // information we need to identify the only logical immediate that our input
   2563   // could be, and then we simply check if that's the value we actually have.
   2564   //
   2565   // (The rotation parameter does give the possibility of the stretch of 1 bits
   2566   // going 'round the end' of the word. To deal with that, we observe that in
   2567   // any situation where that happens the bitwise NOT of the value is also a
   2568   // valid logical immediate. So we simply invert the input whenever its low bit
   2569   // is set, and then we know that the rotated case can't arise.)
   2570 
   2571   if (value & 1) {
   2572     // If the low bit is 1, negate the value, and set a flag to remember that we
   2573     // did (so that we can adjust the return values appropriately).
   2574     negate = true;
   2575     value = ~value;
   2576   }
   2577 
   2578   if (width == kWRegSizeInBits) {
   2579     // To handle 32-bit logical immediates, the very easiest thing is to repeat
   2580     // the input value twice to make a 64-bit word. The correct encoding of that
   2581     // as a logical immediate will also be the correct encoding of the 32-bit
   2582     // value.
   2583 
   2584     // The most-significant 32 bits may not be zero (ie. negate is true) so
   2585     // shift the value left before duplicating it.
   2586     value <<= kWRegSizeInBits;
   2587     value |= value >> kWRegSizeInBits;
   2588   }
   2589 
   2590   // The basic analysis idea: imagine our input word looks like this.
   2591   //
   2592   //    0011111000111110001111100011111000111110001111100011111000111110
   2593   //                                                          c  b    a
   2594   //                                                          |<--d-->|
   2595   //
   2596   // We find the lowest set bit (as an actual power-of-2 value, not its index)
   2597   // and call it a. Then we add a to our original number, which wipes out the
   2598   // bottommost stretch of set bits and replaces it with a 1 carried into the
   2599   // next zero bit. Then we look for the new lowest set bit, which is in
   2600   // position b, and subtract it, so now our number is just like the original
   2601   // but with the lowest stretch of set bits completely gone. Now we find the
   2602   // lowest set bit again, which is position c in the diagram above. Then we'll
   2603   // measure the distance d between bit positions a and c (using CLZ), and that
   2604   // tells us that the only valid logical immediate that could possibly be equal
   2605   // to this number is the one in which a stretch of bits running from a to just
   2606   // below b is replicated every d bits.
   2607   uint64_t a = LargestPowerOf2Divisor(value);
   2608   uint64_t value_plus_a = value + a;
   2609   uint64_t b = LargestPowerOf2Divisor(value_plus_a);
   2610   uint64_t value_plus_a_minus_b = value_plus_a - b;
   2611   uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
   2612 
   2613   int d, clz_a, out_n;
   2614   uint64_t mask;
   2615 
   2616   if (c != 0) {
   2617     // The general case, in which there is more than one stretch of set bits.
   2618     // Compute the repeat distance d, and set up a bitmask covering the basic
   2619     // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
   2620     // of these cases the N bit of the output will be zero.
   2621     clz_a = CountLeadingZeros(a, kXRegSizeInBits);
   2622     int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
   2623     d = clz_a - clz_c;
   2624     mask = ((V8_UINT64_C(1) << d) - 1);
   2625     out_n = 0;
   2626   } else {
   2627     // Handle degenerate cases.
   2628     //
   2629     // If any of those 'find lowest set bit' operations didn't find a set bit at
   2630     // all, then the word will have been zero thereafter, so in particular the
   2631     // last lowest_set_bit operation will have returned zero. So we can test for
   2632     // all the special case conditions in one go by seeing if c is zero.
   2633     if (a == 0) {
   2634       // The input was zero (or all 1 bits, which will come to here too after we
   2635       // inverted it at the start of the function), for which we just return
   2636       // false.
   2637       return false;
   2638     } else {
   2639       // Otherwise, if c was zero but a was not, then there's just one stretch
   2640       // of set bits in our word, meaning that we have the trivial case of
   2641       // d == 64 and only one 'repetition'. Set up all the same variables as in
   2642       // the general case above, and set the N bit in the output.
   2643       clz_a = CountLeadingZeros(a, kXRegSizeInBits);
   2644       d = 64;
   2645       mask = ~V8_UINT64_C(0);
   2646       out_n = 1;
   2647     }
   2648   }
   2649 
   2650   // If the repeat period d is not a power of two, it can't be encoded.
   2651   if (!IS_POWER_OF_TWO(d)) {
   2652     return false;
   2653   }
   2654 
   2655   if (((b - a) & ~mask) != 0) {
   2656     // If the bit stretch (b - a) does not fit within the mask derived from the
   2657     // repeat period, then fail.
   2658     return false;
   2659   }
   2660 
   2661   // The only possible option is b - a repeated every d bits. Now we're going to
   2662   // actually construct the valid logical immediate derived from that
   2663   // specification, and see if it equals our original input.
   2664   //
   2665   // To repeat a value every d bits, we multiply it by a number of the form
   2666   // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
   2667   // be derived using a table lookup on CLZ(d).
   2668   static const uint64_t multipliers[] = {
   2669     0x0000000000000001UL,
   2670     0x0000000100000001UL,
   2671     0x0001000100010001UL,
   2672     0x0101010101010101UL,
   2673     0x1111111111111111UL,
   2674     0x5555555555555555UL,
   2675   };
   2676   int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
   2677   // Ensure that the index to the multipliers array is within bounds.
   2678   DCHECK((multiplier_idx >= 0) &&
   2679          (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
   2680   uint64_t multiplier = multipliers[multiplier_idx];
   2681   uint64_t candidate = (b - a) * multiplier;
   2682 
   2683   if (value != candidate) {
   2684     // The candidate pattern doesn't match our input value, so fail.
   2685     return false;
   2686   }
   2687 
   2688   // We have a match! This is a valid logical immediate, so now we have to
   2689   // construct the bits and pieces of the instruction encoding that generates
   2690   // it.
   2691 
   2692   // Count the set bits in our basic stretch. The special case of clz(0) == -1
   2693   // makes the answer come out right for stretches that reach the very top of
   2694   // the word (e.g. numbers like 0xffffc00000000000).
   2695   int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
   2696   int s = clz_a - clz_b;
   2697 
   2698   // Decide how many bits to rotate right by, to put the low bit of that basic
   2699   // stretch in position a.
   2700   int r;
   2701   if (negate) {
   2702     // If we inverted the input right at the start of this function, here's
   2703     // where we compensate: the number of set bits becomes the number of clear
   2704     // bits, and the rotation count is based on position b rather than position
   2705     // a (since b is the location of the 'lowest' 1 bit after inversion).
   2706     s = d - s;
   2707     r = (clz_b + 1) & (d - 1);
   2708   } else {
   2709     r = (clz_a + 1) & (d - 1);
   2710   }
   2711 
   2712   // Now we're done, except for having to encode the S output in such a way that
   2713   // it gives both the number of set bits and the length of the repeated
   2714   // segment. The s field is encoded like this:
   2715   //
   2716   //     imms    size        S
   2717   //    ssssss    64    UInt(ssssss)
   2718   //    0sssss    32    UInt(sssss)
   2719   //    10ssss    16    UInt(ssss)
   2720   //    110sss     8    UInt(sss)
   2721   //    1110ss     4    UInt(ss)
   2722   //    11110s     2    UInt(s)
   2723   //
   2724   // So we 'or' (-d << 1) with our computed s to form imms.
   2725   *n = out_n;
   2726   *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
   2727   *imm_r = r;
   2728 
   2729   return true;
   2730 }
   2731 
   2732 
   2733 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
   2734   return is_uint5(immediate);
   2735 }
   2736 
   2737 
   2738 bool Assembler::IsImmFP32(float imm) {
   2739   // Valid values will have the form:
   2740   // aBbb.bbbc.defg.h000.0000.0000.0000.0000
   2741   uint32_t bits = float_to_rawbits(imm);
   2742   // bits[19..0] are cleared.
   2743   if ((bits & 0x7ffff) != 0) {
   2744     return false;
   2745   }
   2746 
   2747   // bits[29..25] are all set or all cleared.
   2748   uint32_t b_pattern = (bits >> 16) & 0x3e00;
   2749   if (b_pattern != 0 && b_pattern != 0x3e00) {
   2750     return false;
   2751   }
   2752 
   2753   // bit[30] and bit[29] are opposite.
   2754   if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
   2755     return false;
   2756   }
   2757 
   2758   return true;
   2759 }
   2760 
   2761 
   2762 bool Assembler::IsImmFP64(double imm) {
   2763   // Valid values will have the form:
   2764   // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
   2765   // 0000.0000.0000.0000.0000.0000.0000.0000
   2766   uint64_t bits = double_to_rawbits(imm);
   2767   // bits[47..0] are cleared.
   2768   if ((bits & 0xffffffffffffL) != 0) {
   2769     return false;
   2770   }
   2771 
   2772   // bits[61..54] are all set or all cleared.
   2773   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
   2774   if (b_pattern != 0 && b_pattern != 0x3fc0) {
   2775     return false;
   2776   }
   2777 
   2778   // bit[62] and bit[61] are opposite.
   2779   if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
   2780     return false;
   2781   }
   2782 
   2783   return true;
   2784 }
   2785 
   2786 
   2787 void Assembler::GrowBuffer() {
   2788   if (!own_buffer_) FATAL("external code buffer is too small");
   2789 
   2790   // Compute new buffer size.
   2791   CodeDesc desc;  // the new buffer
   2792   if (buffer_size_ < 1 * MB) {
   2793     desc.buffer_size = 2 * buffer_size_;
   2794   } else {
   2795     desc.buffer_size = buffer_size_ + 1 * MB;
   2796   }
   2797   CHECK_GT(desc.buffer_size, 0);  // No overflow.
   2798 
   2799   byte* buffer = reinterpret_cast<byte*>(buffer_);
   2800 
   2801   // Set up new buffer.
   2802   desc.buffer = NewArray<byte>(desc.buffer_size);
   2803 
   2804   desc.instr_size = pc_offset();
   2805   desc.reloc_size = (buffer + buffer_size_) - reloc_info_writer.pos();
   2806 
   2807   // Copy the data.
   2808   intptr_t pc_delta = desc.buffer - buffer;
   2809   intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
   2810                       (buffer + buffer_size_);
   2811   memmove(desc.buffer, buffer, desc.instr_size);
   2812   memmove(reloc_info_writer.pos() + rc_delta,
   2813           reloc_info_writer.pos(), desc.reloc_size);
   2814 
   2815   // Switch buffers.
   2816   DeleteArray(buffer_);
   2817   buffer_ = desc.buffer;
   2818   buffer_size_ = desc.buffer_size;
   2819   pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
   2820   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2821                                reloc_info_writer.last_pc() + pc_delta);
   2822 
   2823   // None of our relocation types are pc relative pointing outside the code
   2824   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   2825   // to relocate any emitted relocation entries.
   2826 
   2827   // Pending relocation entries are also relative, no need to relocate.
   2828 }
   2829 
   2830 
   2831 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2832   // We do not try to reuse pool constants.
   2833   RelocInfo rinfo(reinterpret_cast<byte*>(pc_), rmode, data, NULL);
   2834   if (((rmode >= RelocInfo::JS_RETURN) &&
   2835        (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
   2836       (rmode == RelocInfo::CONST_POOL) ||
   2837       (rmode == RelocInfo::VENEER_POOL)) {
   2838     // Adjust code for new modes.
   2839     DCHECK(RelocInfo::IsDebugBreakSlot(rmode)
   2840            || RelocInfo::IsJSReturn(rmode)
   2841            || RelocInfo::IsComment(rmode)
   2842            || RelocInfo::IsPosition(rmode)
   2843            || RelocInfo::IsConstPool(rmode)
   2844            || RelocInfo::IsVeneerPool(rmode));
   2845     // These modes do not need an entry in the constant pool.
   2846   } else {
   2847     constpool_.RecordEntry(data, rmode);
   2848     // Make sure the constant pool is not emitted in place of the next
   2849     // instruction for which we just recorded relocation info.
   2850     BlockConstPoolFor(1);
   2851   }
   2852 
   2853   if (!RelocInfo::IsNone(rmode)) {
   2854     // Don't record external references unless the heap will be serialized.
   2855     if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
   2856         !serializer_enabled() && !emit_debug_code()) {
   2857       return;
   2858     }
   2859     DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   2860     if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
   2861       RelocInfo reloc_info_with_ast_id(
   2862           reinterpret_cast<byte*>(pc_), rmode, RecordedAstId().ToInt(), NULL);
   2863       ClearRecordedAstId();
   2864       reloc_info_writer.Write(&reloc_info_with_ast_id);
   2865     } else {
   2866       reloc_info_writer.Write(&rinfo);
   2867     }
   2868   }
   2869 }
   2870 
   2871 
   2872 void Assembler::BlockConstPoolFor(int instructions) {
   2873   int pc_limit = pc_offset() + instructions * kInstructionSize;
   2874   if (no_const_pool_before_ < pc_limit) {
   2875     no_const_pool_before_ = pc_limit;
   2876     // Make sure the pool won't be blocked for too long.
   2877     DCHECK(pc_limit < constpool_.MaxPcOffset());
   2878   }
   2879 
   2880   if (next_constant_pool_check_ < no_const_pool_before_) {
   2881     next_constant_pool_check_ = no_const_pool_before_;
   2882   }
   2883 }
   2884 
   2885 
   2886 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   2887   // Some short sequence of instruction mustn't be broken up by constant pool
   2888   // emission, such sequences are protected by calls to BlockConstPoolFor and
   2889   // BlockConstPoolScope.
   2890   if (is_const_pool_blocked()) {
   2891     // Something is wrong if emission is forced and blocked at the same time.
   2892     DCHECK(!force_emit);
   2893     return;
   2894   }
   2895 
   2896   // There is nothing to do if there are no pending constant pool entries.
   2897   if (constpool_.IsEmpty())  {
   2898     // Calculate the offset of the next check.
   2899     SetNextConstPoolCheckIn(kCheckConstPoolInterval);
   2900     return;
   2901   }
   2902 
   2903   // We emit a constant pool when:
   2904   //  * requested to do so by parameter force_emit (e.g. after each function).
   2905   //  * the distance to the first instruction accessing the constant pool is
   2906   //    kApproxMaxDistToConstPool or more.
   2907   //  * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
   2908   int dist = constpool_.DistanceToFirstUse();
   2909   int count = constpool_.EntryCount();
   2910   if (!force_emit &&
   2911       (dist < kApproxMaxDistToConstPool) &&
   2912       (count < kApproxMaxPoolEntryCount)) {
   2913     return;
   2914   }
   2915 
   2916 
   2917   // Emit veneers for branches that would go out of range during emission of the
   2918   // constant pool.
   2919   int worst_case_size = constpool_.WorstCaseSize();
   2920   CheckVeneerPool(false, require_jump,
   2921                   kVeneerDistanceMargin + worst_case_size);
   2922 
   2923   // Check that the code buffer is large enough before emitting the constant
   2924   // pool (this includes the gap to the relocation information).
   2925   int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
   2926   while (buffer_space() <= needed_space) {
   2927     GrowBuffer();
   2928   }
   2929 
   2930   Label size_check;
   2931   bind(&size_check);
   2932   constpool_.Emit(require_jump);
   2933   DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
   2934          static_cast<unsigned>(worst_case_size));
   2935 
   2936   // Since a constant pool was just emitted, move the check offset forward by
   2937   // the standard interval.
   2938   SetNextConstPoolCheckIn(kCheckConstPoolInterval);
   2939 }
   2940 
   2941 
   2942 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
   2943   // Account for the branch around the veneers and the guard.
   2944   int protection_offset = 2 * kInstructionSize;
   2945   return pc_offset() > max_reachable_pc - margin - protection_offset -
   2946     static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
   2947 }
   2948 
   2949 
   2950 void Assembler::RecordVeneerPool(int location_offset, int size) {
   2951   RelocInfo rinfo(buffer_ + location_offset,
   2952                   RelocInfo::VENEER_POOL, static_cast<intptr_t>(size),
   2953                   NULL);
   2954   reloc_info_writer.Write(&rinfo);
   2955 }
   2956 
   2957 
   2958 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
   2959   BlockPoolsScope scope(this);
   2960   RecordComment("[ Veneers");
   2961 
   2962   // The exact size of the veneer pool must be recorded (see the comment at the
   2963   // declaration site of RecordConstPool()), but computing the number of
   2964   // veneers that will be generated is not obvious. So instead we remember the
   2965   // current position and will record the size after the pool has been
   2966   // generated.
   2967   Label size_check;
   2968   bind(&size_check);
   2969   int veneer_pool_relocinfo_loc = pc_offset();
   2970 
   2971   Label end;
   2972   if (need_protection) {
   2973     b(&end);
   2974   }
   2975 
   2976   EmitVeneersGuard();
   2977 
   2978   Label veneer_size_check;
   2979 
   2980   std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
   2981 
   2982   it = unresolved_branches_.begin();
   2983   while (it != unresolved_branches_.end()) {
   2984     if (force_emit || ShouldEmitVeneer(it->first, margin)) {
   2985       Instruction* branch = InstructionAt(it->second.pc_offset_);
   2986       Label* label = it->second.label_;
   2987 
   2988 #ifdef DEBUG
   2989       bind(&veneer_size_check);
   2990 #endif
   2991       // Patch the branch to point to the current position, and emit a branch
   2992       // to the label.
   2993       Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
   2994       RemoveBranchFromLabelLinkChain(branch, label, veneer);
   2995       branch->SetImmPCOffsetTarget(veneer);
   2996       b(label);
   2997 #ifdef DEBUG
   2998       DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
   2999              static_cast<uint64_t>(kMaxVeneerCodeSize));
   3000       veneer_size_check.Unuse();
   3001 #endif
   3002 
   3003       it_to_delete = it++;
   3004       unresolved_branches_.erase(it_to_delete);
   3005     } else {
   3006       ++it;
   3007     }
   3008   }
   3009 
   3010   // Record the veneer pool size.
   3011   int pool_size = SizeOfCodeGeneratedSince(&size_check);
   3012   RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
   3013 
   3014   if (unresolved_branches_.empty()) {
   3015     next_veneer_pool_check_ = kMaxInt;
   3016   } else {
   3017     next_veneer_pool_check_ =
   3018       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
   3019   }
   3020 
   3021   bind(&end);
   3022 
   3023   RecordComment("]");
   3024 }
   3025 
   3026 
   3027 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
   3028                                 int margin) {
   3029   // There is nothing to do if there are no pending veneer pool entries.
   3030   if (unresolved_branches_.empty())  {
   3031     DCHECK(next_veneer_pool_check_ == kMaxInt);
   3032     return;
   3033   }
   3034 
   3035   DCHECK(pc_offset() < unresolved_branches_first_limit());
   3036 
   3037   // Some short sequence of instruction mustn't be broken up by veneer pool
   3038   // emission, such sequences are protected by calls to BlockVeneerPoolFor and
   3039   // BlockVeneerPoolScope.
   3040   if (is_veneer_pool_blocked()) {
   3041     DCHECK(!force_emit);
   3042     return;
   3043   }
   3044 
   3045   if (!require_jump) {
   3046     // Prefer emitting veneers protected by an existing instruction.
   3047     margin *= kVeneerNoProtectionFactor;
   3048   }
   3049   if (force_emit || ShouldEmitVeneers(margin)) {
   3050     EmitVeneers(force_emit, require_jump, margin);
   3051   } else {
   3052     next_veneer_pool_check_ =
   3053       unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
   3054   }
   3055 }
   3056 
   3057 
   3058 void Assembler::RecordComment(const char* msg) {
   3059   if (FLAG_code_comments) {
   3060     CheckBuffer();
   3061     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
   3062   }
   3063 }
   3064 
   3065 
   3066 int Assembler::buffer_space() const {
   3067   return reloc_info_writer.pos() - reinterpret_cast<byte*>(pc_);
   3068 }
   3069 
   3070 
   3071 void Assembler::RecordJSReturn() {
   3072   positions_recorder()->WriteRecordedPositions();
   3073   CheckBuffer();
   3074   RecordRelocInfo(RelocInfo::JS_RETURN);
   3075 }
   3076 
   3077 
   3078 void Assembler::RecordDebugBreakSlot() {
   3079   positions_recorder()->WriteRecordedPositions();
   3080   CheckBuffer();
   3081   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
   3082 }
   3083 
   3084 
   3085 void Assembler::RecordConstPool(int size) {
   3086   // We only need this for debugger support, to correctly compute offsets in the
   3087   // code.
   3088   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
   3089 }
   3090 
   3091 
   3092 Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
   3093   // No out-of-line constant pool support.
   3094   DCHECK(!FLAG_enable_ool_constant_pool);
   3095   return isolate->factory()->empty_constant_pool_array();
   3096 }
   3097 
   3098 
   3099 void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
   3100   // No out-of-line constant pool support.
   3101   DCHECK(!FLAG_enable_ool_constant_pool);
   3102   return;
   3103 }
   3104 
   3105 
   3106 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
   3107   // The code at the current instruction should be:
   3108   //   adr  rd, 0
   3109   //   nop  (adr_far)
   3110   //   nop  (adr_far)
   3111   //   movz scratch, 0
   3112 
   3113   // Verify the expected code.
   3114   Instruction* expected_adr = InstructionAt(0);
   3115   CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
   3116   int rd_code = expected_adr->Rd();
   3117   for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
   3118     CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
   3119   }
   3120   Instruction* expected_movz =
   3121       InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
   3122   CHECK(expected_movz->IsMovz() &&
   3123         (expected_movz->ImmMoveWide() == 0) &&
   3124         (expected_movz->ShiftMoveWide() == 0));
   3125   int scratch_code = expected_movz->Rd();
   3126 
   3127   // Patch to load the correct address.
   3128   Register rd = Register::XRegFromCode(rd_code);
   3129   Register scratch = Register::XRegFromCode(scratch_code);
   3130   // Addresses are only 48 bits.
   3131   adr(rd, target_offset & 0xFFFF);
   3132   movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
   3133   movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
   3134   DCHECK((target_offset >> 48) == 0);
   3135   add(rd, rd, scratch);
   3136 }
   3137 
   3138 
   3139 } }  // namespace v8::internal
   3140 
   3141 #endif  // V8_TARGET_ARCH_ARM64
   3142