Home | History | Annotate | Download | only in TableGen
      1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // It contains the tablegen backend that emits the decoder functions for
     11 // targets with fixed length instruction set.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenTarget.h"
     16 #include "llvm/ADT/APInt.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/ADT/StringRef.h"
     20 #include "llvm/ADT/Twine.h"
     21 #include "llvm/MC/MCFixedLenDisassembler.h"
     22 #include "llvm/Support/DataTypes.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/FormattedStream.h"
     25 #include "llvm/Support/LEB128.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/TableGen/Error.h"
     28 #include "llvm/TableGen/Record.h"
     29 #include <map>
     30 #include <string>
     31 #include <vector>
     32 
     33 using namespace llvm;
     34 
     35 #define DEBUG_TYPE "decoder-emitter"
     36 
     37 namespace {
     38 struct EncodingField {
     39   unsigned Base, Width, Offset;
     40   EncodingField(unsigned B, unsigned W, unsigned O)
     41     : Base(B), Width(W), Offset(O) { }
     42 };
     43 
     44 struct OperandInfo {
     45   std::vector<EncodingField> Fields;
     46   std::string Decoder;
     47 
     48   OperandInfo(std::string D)
     49     : Decoder(D) { }
     50 
     51   void addField(unsigned Base, unsigned Width, unsigned Offset) {
     52     Fields.push_back(EncodingField(Base, Width, Offset));
     53   }
     54 
     55   unsigned numFields() const { return Fields.size(); }
     56 
     57   typedef std::vector<EncodingField>::const_iterator const_iterator;
     58 
     59   const_iterator begin() const { return Fields.begin(); }
     60   const_iterator end() const   { return Fields.end();   }
     61 };
     62 
     63 typedef std::vector<uint8_t> DecoderTable;
     64 typedef uint32_t DecoderFixup;
     65 typedef std::vector<DecoderFixup> FixupList;
     66 typedef std::vector<FixupList> FixupScopeList;
     67 typedef SetVector<std::string> PredicateSet;
     68 typedef SetVector<std::string> DecoderSet;
     69 struct DecoderTableInfo {
     70   DecoderTable Table;
     71   FixupScopeList FixupStack;
     72   PredicateSet Predicates;
     73   DecoderSet Decoders;
     74 };
     75 
     76 } // End anonymous namespace
     77 
     78 namespace {
     79 class FixedLenDecoderEmitter {
     80   const std::vector<const CodeGenInstruction*> *NumberedInstructions;
     81 public:
     82 
     83   // Defaults preserved here for documentation, even though they aren't
     84   // strictly necessary given the way that this is currently being called.
     85   FixedLenDecoderEmitter(RecordKeeper &R,
     86                          std::string PredicateNamespace,
     87                          std::string GPrefix  = "if (",
     88                          std::string GPostfix = " == MCDisassembler::Fail)"
     89                          " return MCDisassembler::Fail;",
     90                          std::string ROK      = "MCDisassembler::Success",
     91                          std::string RFail    = "MCDisassembler::Fail",
     92                          std::string L        = "") :
     93     Target(R),
     94     PredicateNamespace(PredicateNamespace),
     95     GuardPrefix(GPrefix), GuardPostfix(GPostfix),
     96     ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
     97 
     98   // Emit the decoder state machine table.
     99   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
    100                  unsigned Indentation, unsigned BitWidth,
    101                  StringRef Namespace) const;
    102   void emitPredicateFunction(formatted_raw_ostream &OS,
    103                              PredicateSet &Predicates,
    104                              unsigned Indentation) const;
    105   void emitDecoderFunction(formatted_raw_ostream &OS,
    106                            DecoderSet &Decoders,
    107                            unsigned Indentation) const;
    108 
    109   // run - Output the code emitter
    110   void run(raw_ostream &o);
    111 
    112 private:
    113   CodeGenTarget Target;
    114 public:
    115   std::string PredicateNamespace;
    116   std::string GuardPrefix, GuardPostfix;
    117   std::string ReturnOK, ReturnFail;
    118   std::string Locals;
    119 };
    120 } // End anonymous namespace
    121 
    122 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
    123 // for a bit value.
    124 //
    125 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
    126 // only for filter processings.
    127 typedef enum {
    128   BIT_TRUE,      // '1'
    129   BIT_FALSE,     // '0'
    130   BIT_UNSET,     // '?'
    131   BIT_UNFILTERED // unfiltered
    132 } bit_value_t;
    133 
    134 static bool ValueSet(bit_value_t V) {
    135   return (V == BIT_TRUE || V == BIT_FALSE);
    136 }
    137 static bool ValueNotSet(bit_value_t V) {
    138   return (V == BIT_UNSET);
    139 }
    140 static int Value(bit_value_t V) {
    141   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
    142 }
    143 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
    144   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
    145     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
    146 
    147   // The bit is uninitialized.
    148   return BIT_UNSET;
    149 }
    150 // Prints the bit value for each position.
    151 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
    152   for (unsigned index = bits.getNumBits(); index > 0; --index) {
    153     switch (bitFromBits(bits, index - 1)) {
    154     case BIT_TRUE:
    155       o << "1";
    156       break;
    157     case BIT_FALSE:
    158       o << "0";
    159       break;
    160     case BIT_UNSET:
    161       o << "_";
    162       break;
    163     default:
    164       llvm_unreachable("unexpected return value from bitFromBits");
    165     }
    166   }
    167 }
    168 
    169 static BitsInit &getBitsField(const Record &def, const char *str) {
    170   BitsInit *bits = def.getValueAsBitsInit(str);
    171   return *bits;
    172 }
    173 
    174 // Forward declaration.
    175 namespace {
    176 class FilterChooser;
    177 } // End anonymous namespace
    178 
    179 // Representation of the instruction to work on.
    180 typedef std::vector<bit_value_t> insn_t;
    181 
    182 /// Filter - Filter works with FilterChooser to produce the decoding tree for
    183 /// the ISA.
    184 ///
    185 /// It is useful to think of a Filter as governing the switch stmts of the
    186 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
    187 /// FilterChooser to decide what further decoding logic to employ, or in another
    188 /// words, what other remaining bits to look at.  The FilterChooser eventually
    189 /// chooses a best Filter to do its job.
    190 ///
    191 /// This recursive scheme ends when the number of Opcodes assigned to the
    192 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
    193 /// the Filter/FilterChooser combo does not know how to distinguish among the
    194 /// Opcodes assigned.
    195 ///
    196 /// An example of a conflict is
    197 ///
    198 /// Conflict:
    199 ///                     111101000.00........00010000....
    200 ///                     111101000.00........0001........
    201 ///                     1111010...00........0001........
    202 ///                     1111010...00....................
    203 ///                     1111010.........................
    204 ///                     1111............................
    205 ///                     ................................
    206 ///     VST4q8a         111101000_00________00010000____
    207 ///     VST4q8b         111101000_00________00010000____
    208 ///
    209 /// The Debug output shows the path that the decoding tree follows to reach the
    210 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
    211 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
    212 ///
    213 /// The encoding info in the .td files does not specify this meta information,
    214 /// which could have been used by the decoder to resolve the conflict.  The
    215 /// decoder could try to decode the even/odd register numbering and assign to
    216 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
    217 /// version and return the Opcode since the two have the same Asm format string.
    218 namespace {
    219 class Filter {
    220 protected:
    221   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
    222   unsigned StartBit; // the starting bit position
    223   unsigned NumBits; // number of bits to filter
    224   bool Mixed; // a mixed region contains both set and unset bits
    225 
    226   // Map of well-known segment value to the set of uid's with that value.
    227   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
    228 
    229   // Set of uid's with non-constant segment values.
    230   std::vector<unsigned> VariableInstructions;
    231 
    232   // Map of well-known segment value to its delegate.
    233   std::map<unsigned, const FilterChooser*> FilterChooserMap;
    234 
    235   // Number of instructions which fall under FilteredInstructions category.
    236   unsigned NumFiltered;
    237 
    238   // Keeps track of the last opcode in the filtered bucket.
    239   unsigned LastOpcFiltered;
    240 
    241 public:
    242   unsigned getNumFiltered() const { return NumFiltered; }
    243   unsigned getSingletonOpc() const {
    244     assert(NumFiltered == 1);
    245     return LastOpcFiltered;
    246   }
    247   // Return the filter chooser for the group of instructions without constant
    248   // segment values.
    249   const FilterChooser &getVariableFC() const {
    250     assert(NumFiltered == 1);
    251     assert(FilterChooserMap.size() == 1);
    252     return *(FilterChooserMap.find((unsigned)-1)->second);
    253   }
    254 
    255   Filter(const Filter &f);
    256   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
    257 
    258   ~Filter();
    259 
    260   // Divides the decoding task into sub tasks and delegates them to the
    261   // inferior FilterChooser's.
    262   //
    263   // A special case arises when there's only one entry in the filtered
    264   // instructions.  In order to unambiguously decode the singleton, we need to
    265   // match the remaining undecoded encoding bits against the singleton.
    266   void recurse();
    267 
    268   // Emit table entries to decode instructions given a segment or segments of
    269   // bits.
    270   void emitTableEntry(DecoderTableInfo &TableInfo) const;
    271 
    272   // Returns the number of fanout produced by the filter.  More fanout implies
    273   // the filter distinguishes more categories of instructions.
    274   unsigned usefulness() const;
    275 }; // End of class Filter
    276 } // End anonymous namespace
    277 
    278 // These are states of our finite state machines used in FilterChooser's
    279 // filterProcessor() which produces the filter candidates to use.
    280 typedef enum {
    281   ATTR_NONE,
    282   ATTR_FILTERED,
    283   ATTR_ALL_SET,
    284   ATTR_ALL_UNSET,
    285   ATTR_MIXED
    286 } bitAttr_t;
    287 
    288 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
    289 /// in order to perform the decoding of instructions at the current level.
    290 ///
    291 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
    292 /// of instructions available, FilterChooser builds up the possible Filters that
    293 /// can further the task of decoding by distinguishing among the remaining
    294 /// candidate instructions.
    295 ///
    296 /// Once a filter has been chosen, it is called upon to divide the decoding task
    297 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
    298 /// processings.
    299 ///
    300 /// It is useful to think of a Filter as governing the switch stmts of the
    301 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
    302 /// decide what further remaining bits to look at.
    303 namespace {
    304 class FilterChooser {
    305 protected:
    306   friend class Filter;
    307 
    308   // Vector of codegen instructions to choose our filter.
    309   const std::vector<const CodeGenInstruction*> &AllInstructions;
    310 
    311   // Vector of uid's for this filter chooser to work on.
    312   const std::vector<unsigned> &Opcodes;
    313 
    314   // Lookup table for the operand decoding of instructions.
    315   const std::map<unsigned, std::vector<OperandInfo> > &Operands;
    316 
    317   // Vector of candidate filters.
    318   std::vector<Filter> Filters;
    319 
    320   // Array of bit values passed down from our parent.
    321   // Set to all BIT_UNFILTERED's for Parent == NULL.
    322   std::vector<bit_value_t> FilterBitValues;
    323 
    324   // Links to the FilterChooser above us in the decoding tree.
    325   const FilterChooser *Parent;
    326 
    327   // Index of the best filter from Filters.
    328   int BestIndex;
    329 
    330   // Width of instructions
    331   unsigned BitWidth;
    332 
    333   // Parent emitter
    334   const FixedLenDecoderEmitter *Emitter;
    335 
    336 public:
    337   FilterChooser(const FilterChooser &FC)
    338     : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
    339       Operands(FC.Operands), Filters(FC.Filters),
    340       FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
    341       BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
    342       Emitter(FC.Emitter) { }
    343 
    344   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
    345                 const std::vector<unsigned> &IDs,
    346                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
    347                 unsigned BW,
    348                 const FixedLenDecoderEmitter *E)
    349     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
    350       Parent(nullptr), BestIndex(-1), BitWidth(BW), Emitter(E) {
    351     for (unsigned i = 0; i < BitWidth; ++i)
    352       FilterBitValues.push_back(BIT_UNFILTERED);
    353 
    354     doFilter();
    355   }
    356 
    357   FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
    358                 const std::vector<unsigned> &IDs,
    359                 const std::map<unsigned, std::vector<OperandInfo> > &Ops,
    360                 const std::vector<bit_value_t> &ParentFilterBitValues,
    361                 const FilterChooser &parent)
    362     : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
    363       Filters(), FilterBitValues(ParentFilterBitValues),
    364       Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
    365       Emitter(parent.Emitter) {
    366     doFilter();
    367   }
    368 
    369   unsigned getBitWidth() const { return BitWidth; }
    370 
    371 protected:
    372   // Populates the insn given the uid.
    373   void insnWithID(insn_t &Insn, unsigned Opcode) const {
    374     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
    375 
    376     // We may have a SoftFail bitmask, which specifies a mask where an encoding
    377     // may differ from the value in "Inst" and yet still be valid, but the
    378     // disassembler should return SoftFail instead of Success.
    379     //
    380     // This is used for marking UNPREDICTABLE instructions in the ARM world.
    381     BitsInit *SFBits =
    382       AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
    383 
    384     for (unsigned i = 0; i < BitWidth; ++i) {
    385       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
    386         Insn.push_back(BIT_UNSET);
    387       else
    388         Insn.push_back(bitFromBits(Bits, i));
    389     }
    390   }
    391 
    392   // Returns the record name.
    393   const std::string &nameWithID(unsigned Opcode) const {
    394     return AllInstructions[Opcode]->TheDef->getName();
    395   }
    396 
    397   // Populates the field of the insn given the start position and the number of
    398   // consecutive bits to scan for.
    399   //
    400   // Returns false if there exists any uninitialized bit value in the range.
    401   // Returns true, otherwise.
    402   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
    403                      unsigned NumBits) const;
    404 
    405   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
    406   /// filter array as a series of chars.
    407   void dumpFilterArray(raw_ostream &o,
    408                        const std::vector<bit_value_t> & filter) const;
    409 
    410   /// dumpStack - dumpStack traverses the filter chooser chain and calls
    411   /// dumpFilterArray on each filter chooser up to the top level one.
    412   void dumpStack(raw_ostream &o, const char *prefix) const;
    413 
    414   Filter &bestFilter() {
    415     assert(BestIndex != -1 && "BestIndex not set");
    416     return Filters[BestIndex];
    417   }
    418 
    419   // Called from Filter::recurse() when singleton exists.  For debug purpose.
    420   void SingletonExists(unsigned Opc) const;
    421 
    422   bool PositionFiltered(unsigned i) const {
    423     return ValueSet(FilterBitValues[i]);
    424   }
    425 
    426   // Calculates the island(s) needed to decode the instruction.
    427   // This returns a lit of undecoded bits of an instructions, for example,
    428   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
    429   // decoded bits in order to verify that the instruction matches the Opcode.
    430   unsigned getIslands(std::vector<unsigned> &StartBits,
    431                       std::vector<unsigned> &EndBits,
    432                       std::vector<uint64_t> &FieldVals,
    433                       const insn_t &Insn) const;
    434 
    435   // Emits code to check the Predicates member of an instruction are true.
    436   // Returns true if predicate matches were emitted, false otherwise.
    437   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
    438                           unsigned Opc) const;
    439 
    440   bool doesOpcodeNeedPredicate(unsigned Opc) const;
    441   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
    442   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
    443                                unsigned Opc) const;
    444 
    445   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
    446                               unsigned Opc) const;
    447 
    448   // Emits table entries to decode the singleton.
    449   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
    450                                unsigned Opc) const;
    451 
    452   // Emits code to decode the singleton, and then to decode the rest.
    453   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
    454                                const Filter &Best) const;
    455 
    456   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
    457                         const OperandInfo &OpInfo) const;
    458 
    459   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
    460   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
    461 
    462   // Assign a single filter and run with it.
    463   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
    464 
    465   // reportRegion is a helper function for filterProcessor to mark a region as
    466   // eligible for use as a filter region.
    467   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
    468                     bool AllowMixed);
    469 
    470   // FilterProcessor scans the well-known encoding bits of the instructions and
    471   // builds up a list of candidate filters.  It chooses the best filter and
    472   // recursively descends down the decoding tree.
    473   bool filterProcessor(bool AllowMixed, bool Greedy = true);
    474 
    475   // Decides on the best configuration of filter(s) to use in order to decode
    476   // the instructions.  A conflict of instructions may occur, in which case we
    477   // dump the conflict set to the standard error.
    478   void doFilter();
    479 
    480 public:
    481   // emitTableEntries - Emit state machine entries to decode our share of
    482   // instructions.
    483   void emitTableEntries(DecoderTableInfo &TableInfo) const;
    484 };
    485 } // End anonymous namespace
    486 
    487 ///////////////////////////
    488 //                       //
    489 // Filter Implementation //
    490 //                       //
    491 ///////////////////////////
    492 
    493 Filter::Filter(const Filter &f)
    494   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
    495     FilteredInstructions(f.FilteredInstructions),
    496     VariableInstructions(f.VariableInstructions),
    497     FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
    498     LastOpcFiltered(f.LastOpcFiltered) {
    499 }
    500 
    501 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
    502                bool mixed)
    503   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
    504   assert(StartBit + NumBits - 1 < Owner->BitWidth);
    505 
    506   NumFiltered = 0;
    507   LastOpcFiltered = 0;
    508 
    509   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
    510     insn_t Insn;
    511 
    512     // Populates the insn given the uid.
    513     Owner->insnWithID(Insn, Owner->Opcodes[i]);
    514 
    515     uint64_t Field;
    516     // Scans the segment for possibly well-specified encoding bits.
    517     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
    518 
    519     if (ok) {
    520       // The encoding bits are well-known.  Lets add the uid of the
    521       // instruction into the bucket keyed off the constant field value.
    522       LastOpcFiltered = Owner->Opcodes[i];
    523       FilteredInstructions[Field].push_back(LastOpcFiltered);
    524       ++NumFiltered;
    525     } else {
    526       // Some of the encoding bit(s) are unspecified.  This contributes to
    527       // one additional member of "Variable" instructions.
    528       VariableInstructions.push_back(Owner->Opcodes[i]);
    529     }
    530   }
    531 
    532   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
    533          && "Filter returns no instruction categories");
    534 }
    535 
    536 Filter::~Filter() {
    537   std::map<unsigned, const FilterChooser*>::iterator filterIterator;
    538   for (filterIterator = FilterChooserMap.begin();
    539        filterIterator != FilterChooserMap.end();
    540        filterIterator++) {
    541     delete filterIterator->second;
    542   }
    543 }
    544 
    545 // Divides the decoding task into sub tasks and delegates them to the
    546 // inferior FilterChooser's.
    547 //
    548 // A special case arises when there's only one entry in the filtered
    549 // instructions.  In order to unambiguously decode the singleton, we need to
    550 // match the remaining undecoded encoding bits against the singleton.
    551 void Filter::recurse() {
    552   std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
    553 
    554   // Starts by inheriting our parent filter chooser's filter bit values.
    555   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
    556 
    557   if (VariableInstructions.size()) {
    558     // Conservatively marks each segment position as BIT_UNSET.
    559     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
    560       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
    561 
    562     // Delegates to an inferior filter chooser for further processing on this
    563     // group of instructions whose segment values are variable.
    564     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
    565                               (unsigned)-1,
    566                               new FilterChooser(Owner->AllInstructions,
    567                                                 VariableInstructions,
    568                                                 Owner->Operands,
    569                                                 BitValueArray,
    570                                                 *Owner)
    571                               ));
    572   }
    573 
    574   // No need to recurse for a singleton filtered instruction.
    575   // See also Filter::emit*().
    576   if (getNumFiltered() == 1) {
    577     //Owner->SingletonExists(LastOpcFiltered);
    578     assert(FilterChooserMap.size() == 1);
    579     return;
    580   }
    581 
    582   // Otherwise, create sub choosers.
    583   for (mapIterator = FilteredInstructions.begin();
    584        mapIterator != FilteredInstructions.end();
    585        mapIterator++) {
    586 
    587     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
    588     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
    589       if (mapIterator->first & (1ULL << bitIndex))
    590         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
    591       else
    592         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
    593     }
    594 
    595     // Delegates to an inferior filter chooser for further processing on this
    596     // category of instructions.
    597     FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
    598                               mapIterator->first,
    599                               new FilterChooser(Owner->AllInstructions,
    600                                                 mapIterator->second,
    601                                                 Owner->Operands,
    602                                                 BitValueArray,
    603                                                 *Owner)
    604                               ));
    605   }
    606 }
    607 
    608 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
    609                                uint32_t DestIdx) {
    610   // Any NumToSkip fixups in the current scope can resolve to the
    611   // current location.
    612   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
    613                                          E = Fixups.rend();
    614        I != E; ++I) {
    615     // Calculate the distance from the byte following the fixup entry byte
    616     // to the destination. The Target is calculated from after the 16-bit
    617     // NumToSkip entry itself, so subtract two  from the displacement here
    618     // to account for that.
    619     uint32_t FixupIdx = *I;
    620     uint32_t Delta = DestIdx - FixupIdx - 2;
    621     // Our NumToSkip entries are 16-bits. Make sure our table isn't too
    622     // big.
    623     assert(Delta < 65536U && "disassembler decoding table too large!");
    624     Table[FixupIdx] = (uint8_t)Delta;
    625     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
    626   }
    627 }
    628 
    629 // Emit table entries to decode instructions given a segment or segments
    630 // of bits.
    631 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
    632   TableInfo.Table.push_back(MCD::OPC_ExtractField);
    633   TableInfo.Table.push_back(StartBit);
    634   TableInfo.Table.push_back(NumBits);
    635 
    636   // A new filter entry begins a new scope for fixup resolution.
    637   TableInfo.FixupStack.push_back(FixupList());
    638 
    639   std::map<unsigned, const FilterChooser*>::const_iterator filterIterator;
    640 
    641   DecoderTable &Table = TableInfo.Table;
    642 
    643   size_t PrevFilter = 0;
    644   bool HasFallthrough = false;
    645   for (filterIterator = FilterChooserMap.begin();
    646        filterIterator != FilterChooserMap.end();
    647        filterIterator++) {
    648     // Field value -1 implies a non-empty set of variable instructions.
    649     // See also recurse().
    650     if (filterIterator->first == (unsigned)-1) {
    651       HasFallthrough = true;
    652 
    653       // Each scope should always have at least one filter value to check
    654       // for.
    655       assert(PrevFilter != 0 && "empty filter set!");
    656       FixupList &CurScope = TableInfo.FixupStack.back();
    657       // Resolve any NumToSkip fixups in the current scope.
    658       resolveTableFixups(Table, CurScope, Table.size());
    659       CurScope.clear();
    660       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
    661     } else {
    662       Table.push_back(MCD::OPC_FilterValue);
    663       // Encode and emit the value to filter against.
    664       uint8_t Buffer[8];
    665       unsigned Len = encodeULEB128(filterIterator->first, Buffer);
    666       Table.insert(Table.end(), Buffer, Buffer + Len);
    667       // Reserve space for the NumToSkip entry. We'll backpatch the value
    668       // later.
    669       PrevFilter = Table.size();
    670       Table.push_back(0);
    671       Table.push_back(0);
    672     }
    673 
    674     // We arrive at a category of instructions with the same segment value.
    675     // Now delegate to the sub filter chooser for further decodings.
    676     // The case may fallthrough, which happens if the remaining well-known
    677     // encoding bits do not match exactly.
    678     filterIterator->second->emitTableEntries(TableInfo);
    679 
    680     // Now that we've emitted the body of the handler, update the NumToSkip
    681     // of the filter itself to be able to skip forward when false. Subtract
    682     // two as to account for the width of the NumToSkip field itself.
    683     if (PrevFilter) {
    684       uint32_t NumToSkip = Table.size() - PrevFilter - 2;
    685       assert(NumToSkip < 65536U && "disassembler decoding table too large!");
    686       Table[PrevFilter] = (uint8_t)NumToSkip;
    687       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
    688     }
    689   }
    690 
    691   // Any remaining unresolved fixups bubble up to the parent fixup scope.
    692   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
    693   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
    694   FixupScopeList::iterator Dest = Source - 1;
    695   Dest->insert(Dest->end(), Source->begin(), Source->end());
    696   TableInfo.FixupStack.pop_back();
    697 
    698   // If there is no fallthrough, then the final filter should get fixed
    699   // up according to the enclosing scope rather than the current position.
    700   if (!HasFallthrough)
    701     TableInfo.FixupStack.back().push_back(PrevFilter);
    702 }
    703 
    704 // Returns the number of fanout produced by the filter.  More fanout implies
    705 // the filter distinguishes more categories of instructions.
    706 unsigned Filter::usefulness() const {
    707   if (VariableInstructions.size())
    708     return FilteredInstructions.size();
    709   else
    710     return FilteredInstructions.size() + 1;
    711 }
    712 
    713 //////////////////////////////////
    714 //                              //
    715 // Filterchooser Implementation //
    716 //                              //
    717 //////////////////////////////////
    718 
    719 // Emit the decoder state machine table.
    720 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
    721                                        DecoderTable &Table,
    722                                        unsigned Indentation,
    723                                        unsigned BitWidth,
    724                                        StringRef Namespace) const {
    725   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
    726     << BitWidth << "[] = {\n";
    727 
    728   Indentation += 2;
    729 
    730   // FIXME: We may be able to use the NumToSkip values to recover
    731   // appropriate indentation levels.
    732   DecoderTable::const_iterator I = Table.begin();
    733   DecoderTable::const_iterator E = Table.end();
    734   while (I != E) {
    735     assert (I < E && "incomplete decode table entry!");
    736 
    737     uint64_t Pos = I - Table.begin();
    738     OS << "/* " << Pos << " */";
    739     OS.PadToColumn(12);
    740 
    741     switch (*I) {
    742     default:
    743       PrintFatalError("invalid decode table opcode");
    744     case MCD::OPC_ExtractField: {
    745       ++I;
    746       unsigned Start = *I++;
    747       unsigned Len = *I++;
    748       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
    749         << Len << ",  // Inst{";
    750       if (Len > 1)
    751         OS << (Start + Len - 1) << "-";
    752       OS << Start << "} ...\n";
    753       break;
    754     }
    755     case MCD::OPC_FilterValue: {
    756       ++I;
    757       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
    758       // The filter value is ULEB128 encoded.
    759       while (*I >= 128)
    760         OS << utostr(*I++) << ", ";
    761       OS << utostr(*I++) << ", ";
    762 
    763       // 16-bit numtoskip value.
    764       uint8_t Byte = *I++;
    765       uint32_t NumToSkip = Byte;
    766       OS << utostr(Byte) << ", ";
    767       Byte = *I++;
    768       OS << utostr(Byte) << ", ";
    769       NumToSkip |= Byte << 8;
    770       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
    771       break;
    772     }
    773     case MCD::OPC_CheckField: {
    774       ++I;
    775       unsigned Start = *I++;
    776       unsigned Len = *I++;
    777       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
    778         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
    779       // ULEB128 encoded field value.
    780       for (; *I >= 128; ++I)
    781         OS << utostr(*I) << ", ";
    782       OS << utostr(*I++) << ", ";
    783       // 16-bit numtoskip value.
    784       uint8_t Byte = *I++;
    785       uint32_t NumToSkip = Byte;
    786       OS << utostr(Byte) << ", ";
    787       Byte = *I++;
    788       OS << utostr(Byte) << ", ";
    789       NumToSkip |= Byte << 8;
    790       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
    791       break;
    792     }
    793     case MCD::OPC_CheckPredicate: {
    794       ++I;
    795       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
    796       for (; *I >= 128; ++I)
    797         OS << utostr(*I) << ", ";
    798       OS << utostr(*I++) << ", ";
    799 
    800       // 16-bit numtoskip value.
    801       uint8_t Byte = *I++;
    802       uint32_t NumToSkip = Byte;
    803       OS << utostr(Byte) << ", ";
    804       Byte = *I++;
    805       OS << utostr(Byte) << ", ";
    806       NumToSkip |= Byte << 8;
    807       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
    808       break;
    809     }
    810     case MCD::OPC_Decode: {
    811       ++I;
    812       // Extract the ULEB128 encoded Opcode to a buffer.
    813       uint8_t Buffer[8], *p = Buffer;
    814       while ((*p++ = *I++) >= 128)
    815         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
    816                && "ULEB128 value too large!");
    817       // Decode the Opcode value.
    818       unsigned Opc = decodeULEB128(Buffer);
    819       OS.indent(Indentation) << "MCD::OPC_Decode, ";
    820       for (p = Buffer; *p >= 128; ++p)
    821         OS << utostr(*p) << ", ";
    822       OS << utostr(*p) << ", ";
    823 
    824       // Decoder index.
    825       for (; *I >= 128; ++I)
    826         OS << utostr(*I) << ", ";
    827       OS << utostr(*I++) << ", ";
    828 
    829       OS << "// Opcode: "
    830          << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
    831       break;
    832     }
    833     case MCD::OPC_SoftFail: {
    834       ++I;
    835       OS.indent(Indentation) << "MCD::OPC_SoftFail";
    836       // Positive mask
    837       uint64_t Value = 0;
    838       unsigned Shift = 0;
    839       do {
    840         OS << ", " << utostr(*I);
    841         Value += (*I & 0x7f) << Shift;
    842         Shift += 7;
    843       } while (*I++ >= 128);
    844       if (Value > 127)
    845         OS << " /* 0x" << utohexstr(Value) << " */";
    846       // Negative mask
    847       Value = 0;
    848       Shift = 0;
    849       do {
    850         OS << ", " << utostr(*I);
    851         Value += (*I & 0x7f) << Shift;
    852         Shift += 7;
    853       } while (*I++ >= 128);
    854       if (Value > 127)
    855         OS << " /* 0x" << utohexstr(Value) << " */";
    856       OS << ",\n";
    857       break;
    858     }
    859     case MCD::OPC_Fail: {
    860       ++I;
    861       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
    862       break;
    863     }
    864     }
    865   }
    866   OS.indent(Indentation) << "0\n";
    867 
    868   Indentation -= 2;
    869 
    870   OS.indent(Indentation) << "};\n\n";
    871 }
    872 
    873 void FixedLenDecoderEmitter::
    874 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
    875                       unsigned Indentation) const {
    876   // The predicate function is just a big switch statement based on the
    877   // input predicate index.
    878   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
    879     << "uint64_t Bits) {\n";
    880   Indentation += 2;
    881   if (!Predicates.empty()) {
    882     OS.indent(Indentation) << "switch (Idx) {\n";
    883     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
    884     unsigned Index = 0;
    885     for (PredicateSet::const_iterator I = Predicates.begin(), E = Predicates.end();
    886          I != E; ++I, ++Index) {
    887       OS.indent(Indentation) << "case " << Index << ":\n";
    888       OS.indent(Indentation+2) << "return (" << *I << ");\n";
    889     }
    890     OS.indent(Indentation) << "}\n";
    891   } else {
    892     // No case statement to emit
    893     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
    894   }
    895   Indentation -= 2;
    896   OS.indent(Indentation) << "}\n\n";
    897 }
    898 
    899 void FixedLenDecoderEmitter::
    900 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
    901                     unsigned Indentation) const {
    902   // The decoder function is just a big switch statement based on the
    903   // input decoder index.
    904   OS.indent(Indentation) << "template<typename InsnType>\n";
    905   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
    906     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
    907   OS.indent(Indentation) << "                                   uint64_t "
    908     << "Address, const void *Decoder) {\n";
    909   Indentation += 2;
    910   OS.indent(Indentation) << "InsnType tmp;\n";
    911   OS.indent(Indentation) << "switch (Idx) {\n";
    912   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
    913   unsigned Index = 0;
    914   for (DecoderSet::const_iterator I = Decoders.begin(), E = Decoders.end();
    915        I != E; ++I, ++Index) {
    916     OS.indent(Indentation) << "case " << Index << ":\n";
    917     OS << *I;
    918     OS.indent(Indentation+2) << "return S;\n";
    919   }
    920   OS.indent(Indentation) << "}\n";
    921   Indentation -= 2;
    922   OS.indent(Indentation) << "}\n\n";
    923 }
    924 
    925 // Populates the field of the insn given the start position and the number of
    926 // consecutive bits to scan for.
    927 //
    928 // Returns false if and on the first uninitialized bit value encountered.
    929 // Returns true, otherwise.
    930 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
    931                                   unsigned StartBit, unsigned NumBits) const {
    932   Field = 0;
    933 
    934   for (unsigned i = 0; i < NumBits; ++i) {
    935     if (Insn[StartBit + i] == BIT_UNSET)
    936       return false;
    937 
    938     if (Insn[StartBit + i] == BIT_TRUE)
    939       Field = Field | (1ULL << i);
    940   }
    941 
    942   return true;
    943 }
    944 
    945 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
    946 /// filter array as a series of chars.
    947 void FilterChooser::dumpFilterArray(raw_ostream &o,
    948                                  const std::vector<bit_value_t> &filter) const {
    949   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
    950     switch (filter[bitIndex - 1]) {
    951     case BIT_UNFILTERED:
    952       o << ".";
    953       break;
    954     case BIT_UNSET:
    955       o << "_";
    956       break;
    957     case BIT_TRUE:
    958       o << "1";
    959       break;
    960     case BIT_FALSE:
    961       o << "0";
    962       break;
    963     }
    964   }
    965 }
    966 
    967 /// dumpStack - dumpStack traverses the filter chooser chain and calls
    968 /// dumpFilterArray on each filter chooser up to the top level one.
    969 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
    970   const FilterChooser *current = this;
    971 
    972   while (current) {
    973     o << prefix;
    974     dumpFilterArray(o, current->FilterBitValues);
    975     o << '\n';
    976     current = current->Parent;
    977   }
    978 }
    979 
    980 // Called from Filter::recurse() when singleton exists.  For debug purpose.
    981 void FilterChooser::SingletonExists(unsigned Opc) const {
    982   insn_t Insn0;
    983   insnWithID(Insn0, Opc);
    984 
    985   errs() << "Singleton exists: " << nameWithID(Opc)
    986          << " with its decoding dominating ";
    987   for (unsigned i = 0; i < Opcodes.size(); ++i) {
    988     if (Opcodes[i] == Opc) continue;
    989     errs() << nameWithID(Opcodes[i]) << ' ';
    990   }
    991   errs() << '\n';
    992 
    993   dumpStack(errs(), "\t\t");
    994   for (unsigned i = 0; i < Opcodes.size(); ++i) {
    995     const std::string &Name = nameWithID(Opcodes[i]);
    996 
    997     errs() << '\t' << Name << " ";
    998     dumpBits(errs(),
    999              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
   1000     errs() << '\n';
   1001   }
   1002 }
   1003 
   1004 // Calculates the island(s) needed to decode the instruction.
   1005 // This returns a list of undecoded bits of an instructions, for example,
   1006 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
   1007 // decoded bits in order to verify that the instruction matches the Opcode.
   1008 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
   1009                                    std::vector<unsigned> &EndBits,
   1010                                    std::vector<uint64_t> &FieldVals,
   1011                                    const insn_t &Insn) const {
   1012   unsigned Num, BitNo;
   1013   Num = BitNo = 0;
   1014 
   1015   uint64_t FieldVal = 0;
   1016 
   1017   // 0: Init
   1018   // 1: Water (the bit value does not affect decoding)
   1019   // 2: Island (well-known bit value needed for decoding)
   1020   int State = 0;
   1021   int Val = -1;
   1022 
   1023   for (unsigned i = 0; i < BitWidth; ++i) {
   1024     Val = Value(Insn[i]);
   1025     bool Filtered = PositionFiltered(i);
   1026     switch (State) {
   1027     default: llvm_unreachable("Unreachable code!");
   1028     case 0:
   1029     case 1:
   1030       if (Filtered || Val == -1)
   1031         State = 1; // Still in Water
   1032       else {
   1033         State = 2; // Into the Island
   1034         BitNo = 0;
   1035         StartBits.push_back(i);
   1036         FieldVal = Val;
   1037       }
   1038       break;
   1039     case 2:
   1040       if (Filtered || Val == -1) {
   1041         State = 1; // Into the Water
   1042         EndBits.push_back(i - 1);
   1043         FieldVals.push_back(FieldVal);
   1044         ++Num;
   1045       } else {
   1046         State = 2; // Still in Island
   1047         ++BitNo;
   1048         FieldVal = FieldVal | Val << BitNo;
   1049       }
   1050       break;
   1051     }
   1052   }
   1053   // If we are still in Island after the loop, do some housekeeping.
   1054   if (State == 2) {
   1055     EndBits.push_back(BitWidth - 1);
   1056     FieldVals.push_back(FieldVal);
   1057     ++Num;
   1058   }
   1059 
   1060   assert(StartBits.size() == Num && EndBits.size() == Num &&
   1061          FieldVals.size() == Num);
   1062   return Num;
   1063 }
   1064 
   1065 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
   1066                                      const OperandInfo &OpInfo) const {
   1067   const std::string &Decoder = OpInfo.Decoder;
   1068 
   1069   if (OpInfo.numFields() == 1) {
   1070     OperandInfo::const_iterator OI = OpInfo.begin();
   1071     o.indent(Indentation) << "tmp = fieldFromInstruction"
   1072                           << "(insn, " << OI->Base << ", " << OI->Width
   1073                           << ");\n";
   1074   } else {
   1075     o.indent(Indentation) << "tmp = 0;\n";
   1076     for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end();
   1077          OI != OE; ++OI) {
   1078       o.indent(Indentation) << "tmp |= (fieldFromInstruction"
   1079                             << "(insn, " << OI->Base << ", " << OI->Width
   1080                             << ") << " << OI->Offset << ");\n";
   1081     }
   1082   }
   1083 
   1084   if (Decoder != "")
   1085     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
   1086                           << "(MI, tmp, Address, Decoder)"
   1087                           << Emitter->GuardPostfix << "\n";
   1088   else
   1089     o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
   1090 
   1091 }
   1092 
   1093 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
   1094                                 unsigned Opc) const {
   1095   std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
   1096     Operands.find(Opc);
   1097   const std::vector<OperandInfo>& InsnOperands = OpIter->second;
   1098   for (std::vector<OperandInfo>::const_iterator
   1099        I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
   1100     // If a custom instruction decoder was specified, use that.
   1101     if (I->numFields() == 0 && I->Decoder.size()) {
   1102       OS.indent(Indentation) << Emitter->GuardPrefix << I->Decoder
   1103         << "(MI, insn, Address, Decoder)"
   1104         << Emitter->GuardPostfix << "\n";
   1105       break;
   1106     }
   1107 
   1108     emitBinaryParser(OS, Indentation, *I);
   1109   }
   1110 }
   1111 
   1112 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
   1113                                         unsigned Opc) const {
   1114   // Build up the predicate string.
   1115   SmallString<256> Decoder;
   1116   // FIXME: emitDecoder() function can take a buffer directly rather than
   1117   // a stream.
   1118   raw_svector_ostream S(Decoder);
   1119   unsigned I = 4;
   1120   emitDecoder(S, I, Opc);
   1121   S.flush();
   1122 
   1123   // Using the full decoder string as the key value here is a bit
   1124   // heavyweight, but is effective. If the string comparisons become a
   1125   // performance concern, we can implement a mangling of the predicate
   1126   // data easilly enough with a map back to the actual string. That's
   1127   // overkill for now, though.
   1128 
   1129   // Make sure the predicate is in the table.
   1130   Decoders.insert(Decoder.str());
   1131   // Now figure out the index for when we write out the table.
   1132   DecoderSet::const_iterator P = std::find(Decoders.begin(),
   1133                                            Decoders.end(),
   1134                                            Decoder.str());
   1135   return (unsigned)(P - Decoders.begin());
   1136 }
   1137 
   1138 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
   1139                                      const std::string &PredicateNamespace) {
   1140   if (str[0] == '!')
   1141     o << "!(Bits & " << PredicateNamespace << "::"
   1142       << str.slice(1,str.size()) << ")";
   1143   else
   1144     o << "(Bits & " << PredicateNamespace << "::" << str << ")";
   1145 }
   1146 
   1147 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
   1148                                        unsigned Opc) const {
   1149   ListInit *Predicates =
   1150     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
   1151   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
   1152     Record *Pred = Predicates->getElementAsRecord(i);
   1153     if (!Pred->getValue("AssemblerMatcherPredicate"))
   1154       continue;
   1155 
   1156     std::string P = Pred->getValueAsString("AssemblerCondString");
   1157 
   1158     if (!P.length())
   1159       continue;
   1160 
   1161     if (i != 0)
   1162       o << " && ";
   1163 
   1164     StringRef SR(P);
   1165     std::pair<StringRef, StringRef> pairs = SR.split(',');
   1166     while (pairs.second.size()) {
   1167       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
   1168       o << " && ";
   1169       pairs = pairs.second.split(',');
   1170     }
   1171     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
   1172   }
   1173   return Predicates->getSize() > 0;
   1174 }
   1175 
   1176 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
   1177   ListInit *Predicates =
   1178     AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
   1179   for (unsigned i = 0; i < Predicates->getSize(); ++i) {
   1180     Record *Pred = Predicates->getElementAsRecord(i);
   1181     if (!Pred->getValue("AssemblerMatcherPredicate"))
   1182       continue;
   1183 
   1184     std::string P = Pred->getValueAsString("AssemblerCondString");
   1185 
   1186     if (!P.length())
   1187       continue;
   1188 
   1189     return true;
   1190   }
   1191   return false;
   1192 }
   1193 
   1194 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
   1195                                           StringRef Predicate) const {
   1196   // Using the full predicate string as the key value here is a bit
   1197   // heavyweight, but is effective. If the string comparisons become a
   1198   // performance concern, we can implement a mangling of the predicate
   1199   // data easilly enough with a map back to the actual string. That's
   1200   // overkill for now, though.
   1201 
   1202   // Make sure the predicate is in the table.
   1203   TableInfo.Predicates.insert(Predicate.str());
   1204   // Now figure out the index for when we write out the table.
   1205   PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
   1206                                              TableInfo.Predicates.end(),
   1207                                              Predicate.str());
   1208   return (unsigned)(P - TableInfo.Predicates.begin());
   1209 }
   1210 
   1211 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
   1212                                             unsigned Opc) const {
   1213   if (!doesOpcodeNeedPredicate(Opc))
   1214     return;
   1215 
   1216   // Build up the predicate string.
   1217   SmallString<256> Predicate;
   1218   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
   1219   // than a stream.
   1220   raw_svector_ostream PS(Predicate);
   1221   unsigned I = 0;
   1222   emitPredicateMatch(PS, I, Opc);
   1223 
   1224   // Figure out the index into the predicate table for the predicate just
   1225   // computed.
   1226   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
   1227   SmallString<16> PBytes;
   1228   raw_svector_ostream S(PBytes);
   1229   encodeULEB128(PIdx, S);
   1230   S.flush();
   1231 
   1232   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
   1233   // Predicate index
   1234   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
   1235     TableInfo.Table.push_back(PBytes[i]);
   1236   // Push location for NumToSkip backpatching.
   1237   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
   1238   TableInfo.Table.push_back(0);
   1239   TableInfo.Table.push_back(0);
   1240 }
   1241 
   1242 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
   1243                                            unsigned Opc) const {
   1244   BitsInit *SFBits =
   1245     AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
   1246   if (!SFBits) return;
   1247   BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
   1248 
   1249   APInt PositiveMask(BitWidth, 0ULL);
   1250   APInt NegativeMask(BitWidth, 0ULL);
   1251   for (unsigned i = 0; i < BitWidth; ++i) {
   1252     bit_value_t B = bitFromBits(*SFBits, i);
   1253     bit_value_t IB = bitFromBits(*InstBits, i);
   1254 
   1255     if (B != BIT_TRUE) continue;
   1256 
   1257     switch (IB) {
   1258     case BIT_FALSE:
   1259       // The bit is meant to be false, so emit a check to see if it is true.
   1260       PositiveMask.setBit(i);
   1261       break;
   1262     case BIT_TRUE:
   1263       // The bit is meant to be true, so emit a check to see if it is false.
   1264       NegativeMask.setBit(i);
   1265       break;
   1266     default:
   1267       // The bit is not set; this must be an error!
   1268       StringRef Name = AllInstructions[Opc]->TheDef->getName();
   1269       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
   1270              << " is set but Inst{" << i << "} is unset!\n"
   1271              << "  - You can only mark a bit as SoftFail if it is fully defined"
   1272              << " (1/0 - not '?') in Inst\n";
   1273       return;
   1274     }
   1275   }
   1276 
   1277   bool NeedPositiveMask = PositiveMask.getBoolValue();
   1278   bool NeedNegativeMask = NegativeMask.getBoolValue();
   1279 
   1280   if (!NeedPositiveMask && !NeedNegativeMask)
   1281     return;
   1282 
   1283   TableInfo.Table.push_back(MCD::OPC_SoftFail);
   1284 
   1285   SmallString<16> MaskBytes;
   1286   raw_svector_ostream S(MaskBytes);
   1287   if (NeedPositiveMask) {
   1288     encodeULEB128(PositiveMask.getZExtValue(), S);
   1289     S.flush();
   1290     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
   1291       TableInfo.Table.push_back(MaskBytes[i]);
   1292   } else
   1293     TableInfo.Table.push_back(0);
   1294   if (NeedNegativeMask) {
   1295     MaskBytes.clear();
   1296     S.resync();
   1297     encodeULEB128(NegativeMask.getZExtValue(), S);
   1298     S.flush();
   1299     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
   1300       TableInfo.Table.push_back(MaskBytes[i]);
   1301   } else
   1302     TableInfo.Table.push_back(0);
   1303 }
   1304 
   1305 // Emits table entries to decode the singleton.
   1306 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
   1307                                             unsigned Opc) const {
   1308   std::vector<unsigned> StartBits;
   1309   std::vector<unsigned> EndBits;
   1310   std::vector<uint64_t> FieldVals;
   1311   insn_t Insn;
   1312   insnWithID(Insn, Opc);
   1313 
   1314   // Look for islands of undecoded bits of the singleton.
   1315   getIslands(StartBits, EndBits, FieldVals, Insn);
   1316 
   1317   unsigned Size = StartBits.size();
   1318 
   1319   // Emit the predicate table entry if one is needed.
   1320   emitPredicateTableEntry(TableInfo, Opc);
   1321 
   1322   // Check any additional encoding fields needed.
   1323   for (unsigned I = Size; I != 0; --I) {
   1324     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
   1325     TableInfo.Table.push_back(MCD::OPC_CheckField);
   1326     TableInfo.Table.push_back(StartBits[I-1]);
   1327     TableInfo.Table.push_back(NumBits);
   1328     uint8_t Buffer[8], *p;
   1329     encodeULEB128(FieldVals[I-1], Buffer);
   1330     for (p = Buffer; *p >= 128 ; ++p)
   1331       TableInfo.Table.push_back(*p);
   1332     TableInfo.Table.push_back(*p);
   1333     // Push location for NumToSkip backpatching.
   1334     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
   1335     // The fixup is always 16-bits, so go ahead and allocate the space
   1336     // in the table so all our relative position calculations work OK even
   1337     // before we fully resolve the real value here.
   1338     TableInfo.Table.push_back(0);
   1339     TableInfo.Table.push_back(0);
   1340   }
   1341 
   1342   // Check for soft failure of the match.
   1343   emitSoftFailTableEntry(TableInfo, Opc);
   1344 
   1345   TableInfo.Table.push_back(MCD::OPC_Decode);
   1346   uint8_t Buffer[8], *p;
   1347   encodeULEB128(Opc, Buffer);
   1348   for (p = Buffer; *p >= 128 ; ++p)
   1349     TableInfo.Table.push_back(*p);
   1350   TableInfo.Table.push_back(*p);
   1351 
   1352   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
   1353   SmallString<16> Bytes;
   1354   raw_svector_ostream S(Bytes);
   1355   encodeULEB128(DIdx, S);
   1356   S.flush();
   1357 
   1358   // Decoder index
   1359   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
   1360     TableInfo.Table.push_back(Bytes[i]);
   1361 }
   1362 
   1363 // Emits table entries to decode the singleton, and then to decode the rest.
   1364 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
   1365                                             const Filter &Best) const {
   1366   unsigned Opc = Best.getSingletonOpc();
   1367 
   1368   // complex singletons need predicate checks from the first singleton
   1369   // to refer forward to the variable filterchooser that follows.
   1370   TableInfo.FixupStack.push_back(FixupList());
   1371 
   1372   emitSingletonTableEntry(TableInfo, Opc);
   1373 
   1374   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
   1375                      TableInfo.Table.size());
   1376   TableInfo.FixupStack.pop_back();
   1377 
   1378   Best.getVariableFC().emitTableEntries(TableInfo);
   1379 }
   1380 
   1381 
   1382 // Assign a single filter and run with it.  Top level API client can initialize
   1383 // with a single filter to start the filtering process.
   1384 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
   1385                                     bool mixed) {
   1386   Filters.clear();
   1387   Filter F(*this, startBit, numBit, true);
   1388   Filters.push_back(F);
   1389   BestIndex = 0; // Sole Filter instance to choose from.
   1390   bestFilter().recurse();
   1391 }
   1392 
   1393 // reportRegion is a helper function for filterProcessor to mark a region as
   1394 // eligible for use as a filter region.
   1395 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
   1396                                  unsigned BitIndex, bool AllowMixed) {
   1397   if (RA == ATTR_MIXED && AllowMixed)
   1398     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
   1399   else if (RA == ATTR_ALL_SET && !AllowMixed)
   1400     Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
   1401 }
   1402 
   1403 // FilterProcessor scans the well-known encoding bits of the instructions and
   1404 // builds up a list of candidate filters.  It chooses the best filter and
   1405 // recursively descends down the decoding tree.
   1406 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
   1407   Filters.clear();
   1408   BestIndex = -1;
   1409   unsigned numInstructions = Opcodes.size();
   1410 
   1411   assert(numInstructions && "Filter created with no instructions");
   1412 
   1413   // No further filtering is necessary.
   1414   if (numInstructions == 1)
   1415     return true;
   1416 
   1417   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
   1418   // instructions is 3.
   1419   if (AllowMixed && !Greedy) {
   1420     assert(numInstructions == 3);
   1421 
   1422     for (unsigned i = 0; i < Opcodes.size(); ++i) {
   1423       std::vector<unsigned> StartBits;
   1424       std::vector<unsigned> EndBits;
   1425       std::vector<uint64_t> FieldVals;
   1426       insn_t Insn;
   1427 
   1428       insnWithID(Insn, Opcodes[i]);
   1429 
   1430       // Look for islands of undecoded bits of any instruction.
   1431       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
   1432         // Found an instruction with island(s).  Now just assign a filter.
   1433         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
   1434         return true;
   1435       }
   1436     }
   1437   }
   1438 
   1439   unsigned BitIndex;
   1440 
   1441   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
   1442   // The automaton consumes the corresponding bit from each
   1443   // instruction.
   1444   //
   1445   //   Input symbols: 0, 1, and _ (unset).
   1446   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
   1447   //   Initial state: NONE.
   1448   //
   1449   // (NONE) ------- [01] -> (ALL_SET)
   1450   // (NONE) ------- _ ----> (ALL_UNSET)
   1451   // (ALL_SET) ---- [01] -> (ALL_SET)
   1452   // (ALL_SET) ---- _ ----> (MIXED)
   1453   // (ALL_UNSET) -- [01] -> (MIXED)
   1454   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
   1455   // (MIXED) ------ . ----> (MIXED)
   1456   // (FILTERED)---- . ----> (FILTERED)
   1457 
   1458   std::vector<bitAttr_t> bitAttrs;
   1459 
   1460   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
   1461   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
   1462   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
   1463     if (FilterBitValues[BitIndex] == BIT_TRUE ||
   1464         FilterBitValues[BitIndex] == BIT_FALSE)
   1465       bitAttrs.push_back(ATTR_FILTERED);
   1466     else
   1467       bitAttrs.push_back(ATTR_NONE);
   1468 
   1469   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
   1470     insn_t insn;
   1471 
   1472     insnWithID(insn, Opcodes[InsnIndex]);
   1473 
   1474     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
   1475       switch (bitAttrs[BitIndex]) {
   1476       case ATTR_NONE:
   1477         if (insn[BitIndex] == BIT_UNSET)
   1478           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
   1479         else
   1480           bitAttrs[BitIndex] = ATTR_ALL_SET;
   1481         break;
   1482       case ATTR_ALL_SET:
   1483         if (insn[BitIndex] == BIT_UNSET)
   1484           bitAttrs[BitIndex] = ATTR_MIXED;
   1485         break;
   1486       case ATTR_ALL_UNSET:
   1487         if (insn[BitIndex] != BIT_UNSET)
   1488           bitAttrs[BitIndex] = ATTR_MIXED;
   1489         break;
   1490       case ATTR_MIXED:
   1491       case ATTR_FILTERED:
   1492         break;
   1493       }
   1494     }
   1495   }
   1496 
   1497   // The regionAttr automaton consumes the bitAttrs automatons' state,
   1498   // lowest-to-highest.
   1499   //
   1500   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
   1501   //   States:        NONE, ALL_SET, MIXED
   1502   //   Initial state: NONE
   1503   //
   1504   // (NONE) ----- F --> (NONE)
   1505   // (NONE) ----- S --> (ALL_SET)     ; and set region start
   1506   // (NONE) ----- U --> (NONE)
   1507   // (NONE) ----- M --> (MIXED)       ; and set region start
   1508   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
   1509   // (ALL_SET) -- S --> (ALL_SET)
   1510   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
   1511   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
   1512   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
   1513   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
   1514   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
   1515   // (MIXED) ---- M --> (MIXED)
   1516 
   1517   bitAttr_t RA = ATTR_NONE;
   1518   unsigned StartBit = 0;
   1519 
   1520   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
   1521     bitAttr_t bitAttr = bitAttrs[BitIndex];
   1522 
   1523     assert(bitAttr != ATTR_NONE && "Bit without attributes");
   1524 
   1525     switch (RA) {
   1526     case ATTR_NONE:
   1527       switch (bitAttr) {
   1528       case ATTR_FILTERED:
   1529         break;
   1530       case ATTR_ALL_SET:
   1531         StartBit = BitIndex;
   1532         RA = ATTR_ALL_SET;
   1533         break;
   1534       case ATTR_ALL_UNSET:
   1535         break;
   1536       case ATTR_MIXED:
   1537         StartBit = BitIndex;
   1538         RA = ATTR_MIXED;
   1539         break;
   1540       default:
   1541         llvm_unreachable("Unexpected bitAttr!");
   1542       }
   1543       break;
   1544     case ATTR_ALL_SET:
   1545       switch (bitAttr) {
   1546       case ATTR_FILTERED:
   1547         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1548         RA = ATTR_NONE;
   1549         break;
   1550       case ATTR_ALL_SET:
   1551         break;
   1552       case ATTR_ALL_UNSET:
   1553         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1554         RA = ATTR_NONE;
   1555         break;
   1556       case ATTR_MIXED:
   1557         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1558         StartBit = BitIndex;
   1559         RA = ATTR_MIXED;
   1560         break;
   1561       default:
   1562         llvm_unreachable("Unexpected bitAttr!");
   1563       }
   1564       break;
   1565     case ATTR_MIXED:
   1566       switch (bitAttr) {
   1567       case ATTR_FILTERED:
   1568         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1569         StartBit = BitIndex;
   1570         RA = ATTR_NONE;
   1571         break;
   1572       case ATTR_ALL_SET:
   1573         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1574         StartBit = BitIndex;
   1575         RA = ATTR_ALL_SET;
   1576         break;
   1577       case ATTR_ALL_UNSET:
   1578         reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1579         RA = ATTR_NONE;
   1580         break;
   1581       case ATTR_MIXED:
   1582         break;
   1583       default:
   1584         llvm_unreachable("Unexpected bitAttr!");
   1585       }
   1586       break;
   1587     case ATTR_ALL_UNSET:
   1588       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
   1589     case ATTR_FILTERED:
   1590       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
   1591     }
   1592   }
   1593 
   1594   // At the end, if we're still in ALL_SET or MIXED states, report a region
   1595   switch (RA) {
   1596   case ATTR_NONE:
   1597     break;
   1598   case ATTR_FILTERED:
   1599     break;
   1600   case ATTR_ALL_SET:
   1601     reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1602     break;
   1603   case ATTR_ALL_UNSET:
   1604     break;
   1605   case ATTR_MIXED:
   1606     reportRegion(RA, StartBit, BitIndex, AllowMixed);
   1607     break;
   1608   }
   1609 
   1610   // We have finished with the filter processings.  Now it's time to choose
   1611   // the best performing filter.
   1612   BestIndex = 0;
   1613   bool AllUseless = true;
   1614   unsigned BestScore = 0;
   1615 
   1616   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
   1617     unsigned Usefulness = Filters[i].usefulness();
   1618 
   1619     if (Usefulness)
   1620       AllUseless = false;
   1621 
   1622     if (Usefulness > BestScore) {
   1623       BestIndex = i;
   1624       BestScore = Usefulness;
   1625     }
   1626   }
   1627 
   1628   if (!AllUseless)
   1629     bestFilter().recurse();
   1630 
   1631   return !AllUseless;
   1632 } // end of FilterChooser::filterProcessor(bool)
   1633 
   1634 // Decides on the best configuration of filter(s) to use in order to decode
   1635 // the instructions.  A conflict of instructions may occur, in which case we
   1636 // dump the conflict set to the standard error.
   1637 void FilterChooser::doFilter() {
   1638   unsigned Num = Opcodes.size();
   1639   assert(Num && "FilterChooser created with no instructions");
   1640 
   1641   // Try regions of consecutive known bit values first.
   1642   if (filterProcessor(false))
   1643     return;
   1644 
   1645   // Then regions of mixed bits (both known and unitialized bit values allowed).
   1646   if (filterProcessor(true))
   1647     return;
   1648 
   1649   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
   1650   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
   1651   // well-known encoding pattern.  In such case, we backtrack and scan for the
   1652   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
   1653   if (Num == 3 && filterProcessor(true, false))
   1654     return;
   1655 
   1656   // If we come to here, the instruction decoding has failed.
   1657   // Set the BestIndex to -1 to indicate so.
   1658   BestIndex = -1;
   1659 }
   1660 
   1661 // emitTableEntries - Emit state machine entries to decode our share of
   1662 // instructions.
   1663 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
   1664   if (Opcodes.size() == 1) {
   1665     // There is only one instruction in the set, which is great!
   1666     // Call emitSingletonDecoder() to see whether there are any remaining
   1667     // encodings bits.
   1668     emitSingletonTableEntry(TableInfo, Opcodes[0]);
   1669     return;
   1670   }
   1671 
   1672   // Choose the best filter to do the decodings!
   1673   if (BestIndex != -1) {
   1674     const Filter &Best = Filters[BestIndex];
   1675     if (Best.getNumFiltered() == 1)
   1676       emitSingletonTableEntry(TableInfo, Best);
   1677     else
   1678       Best.emitTableEntry(TableInfo);
   1679     return;
   1680   }
   1681 
   1682   // We don't know how to decode these instructions!  Dump the
   1683   // conflict set and bail.
   1684 
   1685   // Print out useful conflict information for postmortem analysis.
   1686   errs() << "Decoding Conflict:\n";
   1687 
   1688   dumpStack(errs(), "\t\t");
   1689 
   1690   for (unsigned i = 0; i < Opcodes.size(); ++i) {
   1691     const std::string &Name = nameWithID(Opcodes[i]);
   1692 
   1693     errs() << '\t' << Name << " ";
   1694     dumpBits(errs(),
   1695              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
   1696     errs() << '\n';
   1697   }
   1698 }
   1699 
   1700 static bool populateInstruction(CodeGenTarget &Target,
   1701                        const CodeGenInstruction &CGI, unsigned Opc,
   1702                        std::map<unsigned, std::vector<OperandInfo> > &Operands){
   1703   const Record &Def = *CGI.TheDef;
   1704   // If all the bit positions are not specified; do not decode this instruction.
   1705   // We are bound to fail!  For proper disassembly, the well-known encoding bits
   1706   // of the instruction must be fully specified.
   1707 
   1708   BitsInit &Bits = getBitsField(Def, "Inst");
   1709   if (Bits.allInComplete()) return false;
   1710 
   1711   std::vector<OperandInfo> InsnOperands;
   1712 
   1713   // If the instruction has specified a custom decoding hook, use that instead
   1714   // of trying to auto-generate the decoder.
   1715   std::string InstDecoder = Def.getValueAsString("DecoderMethod");
   1716   if (InstDecoder != "") {
   1717     InsnOperands.push_back(OperandInfo(InstDecoder));
   1718     Operands[Opc] = InsnOperands;
   1719     return true;
   1720   }
   1721 
   1722   // Generate a description of the operand of the instruction that we know
   1723   // how to decode automatically.
   1724   // FIXME: We'll need to have a way to manually override this as needed.
   1725 
   1726   // Gather the outputs/inputs of the instruction, so we can find their
   1727   // positions in the encoding.  This assumes for now that they appear in the
   1728   // MCInst in the order that they're listed.
   1729   std::vector<std::pair<Init*, std::string> > InOutOperands;
   1730   DagInit *Out  = Def.getValueAsDag("OutOperandList");
   1731   DagInit *In  = Def.getValueAsDag("InOperandList");
   1732   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
   1733     InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
   1734   for (unsigned i = 0; i < In->getNumArgs(); ++i)
   1735     InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
   1736 
   1737   // Search for tied operands, so that we can correctly instantiate
   1738   // operands that are not explicitly represented in the encoding.
   1739   std::map<std::string, std::string> TiedNames;
   1740   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
   1741     int tiedTo = CGI.Operands[i].getTiedRegister();
   1742     if (tiedTo != -1) {
   1743       std::pair<unsigned, unsigned> SO =
   1744         CGI.Operands.getSubOperandNumber(tiedTo);
   1745       TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
   1746       TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
   1747     }
   1748   }
   1749 
   1750   std::map<std::string, std::vector<OperandInfo> > NumberedInsnOperands;
   1751   std::set<std::string> NumberedInsnOperandsNoTie;
   1752   if (Target.getInstructionSet()->
   1753         getValueAsBit("decodePositionallyEncodedOperands")) {
   1754     const std::vector<RecordVal> &Vals = Def.getValues();
   1755     unsigned NumberedOp = 0;
   1756 
   1757     std::set<unsigned> NamedOpIndices;
   1758     if (Target.getInstructionSet()->
   1759          getValueAsBit("noNamedPositionallyEncodedOperands"))
   1760       // Collect the set of operand indices that might correspond to named
   1761       // operand, and skip these when assigning operands based on position.
   1762       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1763         unsigned OpIdx;
   1764         if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
   1765           continue;
   1766 
   1767         NamedOpIndices.insert(OpIdx);
   1768       }
   1769 
   1770     for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1771       // Ignore fixed fields in the record, we're looking for values like:
   1772       //    bits<5> RST = { ?, ?, ?, ?, ? };
   1773       if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
   1774         continue;
   1775 
   1776       // Determine if Vals[i] actually contributes to the Inst encoding.
   1777       unsigned bi = 0;
   1778       for (; bi < Bits.getNumBits(); ++bi) {
   1779         VarInit *Var = nullptr;
   1780         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
   1781         if (BI)
   1782           Var = dyn_cast<VarInit>(BI->getBitVar());
   1783         else
   1784           Var = dyn_cast<VarInit>(Bits.getBit(bi));
   1785 
   1786         if (Var && Var->getName() == Vals[i].getName())
   1787           break;
   1788       }
   1789 
   1790       if (bi == Bits.getNumBits())
   1791         continue;
   1792 
   1793       // Skip variables that correspond to explicitly-named operands.
   1794       unsigned OpIdx;
   1795       if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
   1796         continue;
   1797 
   1798       // Get the bit range for this operand:
   1799       unsigned bitStart = bi++, bitWidth = 1;
   1800       for (; bi < Bits.getNumBits(); ++bi) {
   1801         VarInit *Var = nullptr;
   1802         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
   1803         if (BI)
   1804           Var = dyn_cast<VarInit>(BI->getBitVar());
   1805         else
   1806           Var = dyn_cast<VarInit>(Bits.getBit(bi));
   1807 
   1808         if (!Var)
   1809           break;
   1810 
   1811         if (Var->getName() != Vals[i].getName())
   1812           break;
   1813 
   1814         ++bitWidth;
   1815       }
   1816 
   1817       unsigned NumberOps = CGI.Operands.size();
   1818       while (NumberedOp < NumberOps &&
   1819              (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
   1820               (NamedOpIndices.size() && NamedOpIndices.count(
   1821                 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
   1822         ++NumberedOp;
   1823 
   1824       OpIdx = NumberedOp++;
   1825 
   1826       // OpIdx now holds the ordered operand number of Vals[i].
   1827       std::pair<unsigned, unsigned> SO =
   1828         CGI.Operands.getSubOperandNumber(OpIdx);
   1829       const std::string &Name = CGI.Operands[SO.first].Name;
   1830 
   1831       DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " <<
   1832                       Name << "(" << SO.first << ", " << SO.second << ") => " <<
   1833                       Vals[i].getName() << "\n");
   1834 
   1835       std::string Decoder = "";
   1836       Record *TypeRecord = CGI.Operands[SO.first].Rec;
   1837 
   1838       RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
   1839       StringInit *String = DecoderString ?
   1840         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
   1841       if (String && String->getValue() != "")
   1842         Decoder = String->getValue();
   1843 
   1844       if (Decoder == "" &&
   1845           CGI.Operands[SO.first].MIOperandInfo &&
   1846           CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
   1847         Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
   1848                       getArg(SO.second);
   1849         if (TypedInit *TI = cast<TypedInit>(Arg)) {
   1850           RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
   1851           TypeRecord = Type->getRecord();
   1852         }
   1853       }
   1854 
   1855       bool isReg = false;
   1856       if (TypeRecord->isSubClassOf("RegisterOperand"))
   1857         TypeRecord = TypeRecord->getValueAsDef("RegClass");
   1858       if (TypeRecord->isSubClassOf("RegisterClass")) {
   1859         Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
   1860         isReg = true;
   1861       } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
   1862         Decoder = "DecodePointerLikeRegClass" +
   1863                   utostr(TypeRecord->getValueAsInt("RegClassKind"));
   1864         isReg = true;
   1865       }
   1866 
   1867       DecoderString = TypeRecord->getValue("DecoderMethod");
   1868       String = DecoderString ?
   1869         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
   1870       if (!isReg && String && String->getValue() != "")
   1871         Decoder = String->getValue();
   1872 
   1873       OperandInfo OpInfo(Decoder);
   1874       OpInfo.addField(bitStart, bitWidth, 0);
   1875 
   1876       NumberedInsnOperands[Name].push_back(OpInfo);
   1877 
   1878       // FIXME: For complex operands with custom decoders we can't handle tied
   1879       // sub-operands automatically. Skip those here and assume that this is
   1880       // fixed up elsewhere.
   1881       if (CGI.Operands[SO.first].MIOperandInfo &&
   1882           CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
   1883           String && String->getValue() != "")
   1884         NumberedInsnOperandsNoTie.insert(Name);
   1885     }
   1886   }
   1887 
   1888   // For each operand, see if we can figure out where it is encoded.
   1889   for (std::vector<std::pair<Init*, std::string> >::const_iterator
   1890        NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
   1891     if (!NumberedInsnOperands[NI->second].empty()) {
   1892       InsnOperands.insert(InsnOperands.end(),
   1893                           NumberedInsnOperands[NI->second].begin(),
   1894                           NumberedInsnOperands[NI->second].end());
   1895       continue;
   1896     } else if (!NumberedInsnOperands[TiedNames[NI->second]].empty()) {
   1897       if (!NumberedInsnOperandsNoTie.count(TiedNames[NI->second])) {
   1898         // Figure out to which (sub)operand we're tied.
   1899         unsigned i = CGI.Operands.getOperandNamed(TiedNames[NI->second]);
   1900         int tiedTo = CGI.Operands[i].getTiedRegister();
   1901         if (tiedTo == -1) {
   1902           i = CGI.Operands.getOperandNamed(NI->second);
   1903           tiedTo = CGI.Operands[i].getTiedRegister();
   1904         }
   1905 
   1906         if (tiedTo != -1) {
   1907           std::pair<unsigned, unsigned> SO =
   1908             CGI.Operands.getSubOperandNumber(tiedTo);
   1909 
   1910           InsnOperands.push_back(NumberedInsnOperands[TiedNames[NI->second]]
   1911                                    [SO.second]);
   1912         }
   1913       }
   1914       continue;
   1915     }
   1916 
   1917     std::string Decoder = "";
   1918 
   1919     // At this point, we can locate the field, but we need to know how to
   1920     // interpret it.  As a first step, require the target to provide callbacks
   1921     // for decoding register classes.
   1922     // FIXME: This need to be extended to handle instructions with custom
   1923     // decoder methods, and operands with (simple) MIOperandInfo's.
   1924     TypedInit *TI = cast<TypedInit>(NI->first);
   1925     RecordRecTy *Type = cast<RecordRecTy>(TI->getType());
   1926     Record *TypeRecord = Type->getRecord();
   1927     bool isReg = false;
   1928     if (TypeRecord->isSubClassOf("RegisterOperand"))
   1929       TypeRecord = TypeRecord->getValueAsDef("RegClass");
   1930     if (TypeRecord->isSubClassOf("RegisterClass")) {
   1931       Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
   1932       isReg = true;
   1933     } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
   1934       Decoder = "DecodePointerLikeRegClass" +
   1935                 utostr(TypeRecord->getValueAsInt("RegClassKind"));
   1936       isReg = true;
   1937     }
   1938 
   1939     RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
   1940     StringInit *String = DecoderString ?
   1941       dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
   1942     if (!isReg && String && String->getValue() != "")
   1943       Decoder = String->getValue();
   1944 
   1945     OperandInfo OpInfo(Decoder);
   1946     unsigned Base = ~0U;
   1947     unsigned Width = 0;
   1948     unsigned Offset = 0;
   1949 
   1950     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
   1951       VarInit *Var = nullptr;
   1952       VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
   1953       if (BI)
   1954         Var = dyn_cast<VarInit>(BI->getBitVar());
   1955       else
   1956         Var = dyn_cast<VarInit>(Bits.getBit(bi));
   1957 
   1958       if (!Var) {
   1959         if (Base != ~0U) {
   1960           OpInfo.addField(Base, Width, Offset);
   1961           Base = ~0U;
   1962           Width = 0;
   1963           Offset = 0;
   1964         }
   1965         continue;
   1966       }
   1967 
   1968       if (Var->getName() != NI->second &&
   1969           Var->getName() != TiedNames[NI->second]) {
   1970         if (Base != ~0U) {
   1971           OpInfo.addField(Base, Width, Offset);
   1972           Base = ~0U;
   1973           Width = 0;
   1974           Offset = 0;
   1975         }
   1976         continue;
   1977       }
   1978 
   1979       if (Base == ~0U) {
   1980         Base = bi;
   1981         Width = 1;
   1982         Offset = BI ? BI->getBitNum() : 0;
   1983       } else if (BI && BI->getBitNum() != Offset + Width) {
   1984         OpInfo.addField(Base, Width, Offset);
   1985         Base = bi;
   1986         Width = 1;
   1987         Offset = BI->getBitNum();
   1988       } else {
   1989         ++Width;
   1990       }
   1991     }
   1992 
   1993     if (Base != ~0U)
   1994       OpInfo.addField(Base, Width, Offset);
   1995 
   1996     if (OpInfo.numFields() > 0)
   1997       InsnOperands.push_back(OpInfo);
   1998   }
   1999 
   2000   Operands[Opc] = InsnOperands;
   2001 
   2002 
   2003 #if 0
   2004   DEBUG({
   2005       // Dumps the instruction encoding bits.
   2006       dumpBits(errs(), Bits);
   2007 
   2008       errs() << '\n';
   2009 
   2010       // Dumps the list of operand info.
   2011       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
   2012         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
   2013         const std::string &OperandName = Info.Name;
   2014         const Record &OperandDef = *Info.Rec;
   2015 
   2016         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
   2017       }
   2018     });
   2019 #endif
   2020 
   2021   return true;
   2022 }
   2023 
   2024 // emitFieldFromInstruction - Emit the templated helper function
   2025 // fieldFromInstruction().
   2026 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
   2027   OS << "// Helper function for extracting fields from encoded instructions.\n"
   2028      << "template<typename InsnType>\n"
   2029    << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
   2030      << "                                     unsigned numBits) {\n"
   2031      << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
   2032      << "           \"Instruction field out of bounds!\");\n"
   2033      << "    InsnType fieldMask;\n"
   2034      << "    if (numBits == sizeof(InsnType)*8)\n"
   2035      << "      fieldMask = (InsnType)(-1LL);\n"
   2036      << "    else\n"
   2037      << "      fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
   2038      << "    return (insn & fieldMask) >> startBit;\n"
   2039      << "}\n\n";
   2040 }
   2041 
   2042 // emitDecodeInstruction - Emit the templated helper function
   2043 // decodeInstruction().
   2044 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
   2045   OS << "template<typename InsnType>\n"
   2046      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
   2047      << "                                      InsnType insn, uint64_t Address,\n"
   2048      << "                                      const void *DisAsm,\n"
   2049      << "                                      const MCSubtargetInfo &STI) {\n"
   2050      << "  uint64_t Bits = STI.getFeatureBits();\n"
   2051      << "\n"
   2052      << "  const uint8_t *Ptr = DecodeTable;\n"
   2053      << "  uint32_t CurFieldValue = 0;\n"
   2054      << "  DecodeStatus S = MCDisassembler::Success;\n"
   2055      << "  for (;;) {\n"
   2056      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
   2057      << "    switch (*Ptr) {\n"
   2058      << "    default:\n"
   2059      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
   2060      << "      return MCDisassembler::Fail;\n"
   2061      << "    case MCD::OPC_ExtractField: {\n"
   2062      << "      unsigned Start = *++Ptr;\n"
   2063      << "      unsigned Len = *++Ptr;\n"
   2064      << "      ++Ptr;\n"
   2065      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
   2066      << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
   2067      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
   2068      << "      break;\n"
   2069      << "    }\n"
   2070      << "    case MCD::OPC_FilterValue: {\n"
   2071      << "      // Decode the field value.\n"
   2072      << "      unsigned Len;\n"
   2073      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
   2074      << "      Ptr += Len;\n"
   2075      << "      // NumToSkip is a plain 16-bit integer.\n"
   2076      << "      unsigned NumToSkip = *Ptr++;\n"
   2077      << "      NumToSkip |= (*Ptr++) << 8;\n"
   2078      << "\n"
   2079      << "      // Perform the filter operation.\n"
   2080      << "      if (Val != CurFieldValue)\n"
   2081      << "        Ptr += NumToSkip;\n"
   2082      << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
   2083      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
   2084      << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
   2085      << "\n"
   2086      << "      break;\n"
   2087      << "    }\n"
   2088      << "    case MCD::OPC_CheckField: {\n"
   2089      << "      unsigned Start = *++Ptr;\n"
   2090      << "      unsigned Len = *++Ptr;\n"
   2091      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
   2092      << "      // Decode the field value.\n"
   2093      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
   2094      << "      Ptr += Len;\n"
   2095      << "      // NumToSkip is a plain 16-bit integer.\n"
   2096      << "      unsigned NumToSkip = *Ptr++;\n"
   2097      << "      NumToSkip |= (*Ptr++) << 8;\n"
   2098      << "\n"
   2099      << "      // If the actual and expected values don't match, skip.\n"
   2100      << "      if (ExpectedValue != FieldValue)\n"
   2101      << "        Ptr += NumToSkip;\n"
   2102      << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
   2103      << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
   2104      << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
   2105      << "                   << ExpectedValue << \": \"\n"
   2106      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
   2107      << "      break;\n"
   2108      << "    }\n"
   2109      << "    case MCD::OPC_CheckPredicate: {\n"
   2110      << "      unsigned Len;\n"
   2111      << "      // Decode the Predicate Index value.\n"
   2112      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
   2113      << "      Ptr += Len;\n"
   2114      << "      // NumToSkip is a plain 16-bit integer.\n"
   2115      << "      unsigned NumToSkip = *Ptr++;\n"
   2116      << "      NumToSkip |= (*Ptr++) << 8;\n"
   2117      << "      // Check the predicate.\n"
   2118      << "      bool Pred;\n"
   2119      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
   2120      << "        Ptr += NumToSkip;\n"
   2121      << "      (void)Pred;\n"
   2122      << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
   2123      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
   2124      << "\n"
   2125      << "      break;\n"
   2126      << "    }\n"
   2127      << "    case MCD::OPC_Decode: {\n"
   2128      << "      unsigned Len;\n"
   2129      << "      // Decode the Opcode value.\n"
   2130      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
   2131      << "      Ptr += Len;\n"
   2132      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
   2133      << "      Ptr += Len;\n"
   2134      << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
   2135      << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
   2136      << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
   2137      << "\n"
   2138      << "      MI.setOpcode(Opc);\n"
   2139      << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
   2140      << "    }\n"
   2141      << "    case MCD::OPC_SoftFail: {\n"
   2142      << "      // Decode the mask values.\n"
   2143      << "      unsigned Len;\n"
   2144      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
   2145      << "      Ptr += Len;\n"
   2146      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
   2147      << "      Ptr += Len;\n"
   2148      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
   2149      << "      if (Fail)\n"
   2150      << "        S = MCDisassembler::SoftFail;\n"
   2151      << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
   2152      << "      break;\n"
   2153      << "    }\n"
   2154      << "    case MCD::OPC_Fail: {\n"
   2155      << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
   2156      << "      return MCDisassembler::Fail;\n"
   2157      << "    }\n"
   2158      << "    }\n"
   2159      << "  }\n"
   2160      << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
   2161      << "}\n\n";
   2162 }
   2163 
   2164 // Emits disassembler code for instruction decoding.
   2165 void FixedLenDecoderEmitter::run(raw_ostream &o) {
   2166   formatted_raw_ostream OS(o);
   2167   OS << "#include \"llvm/MC/MCInst.h\"\n";
   2168   OS << "#include \"llvm/Support/Debug.h\"\n";
   2169   OS << "#include \"llvm/Support/DataTypes.h\"\n";
   2170   OS << "#include \"llvm/Support/LEB128.h\"\n";
   2171   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
   2172   OS << "#include <assert.h>\n";
   2173   OS << '\n';
   2174   OS << "namespace llvm {\n\n";
   2175 
   2176   emitFieldFromInstruction(OS);
   2177 
   2178   Target.reverseBitsForLittleEndianEncoding();
   2179 
   2180   // Parameterize the decoders based on namespace and instruction width.
   2181   NumberedInstructions = &Target.getInstructionsByEnumValue();
   2182   std::map<std::pair<std::string, unsigned>,
   2183            std::vector<unsigned> > OpcMap;
   2184   std::map<unsigned, std::vector<OperandInfo> > Operands;
   2185 
   2186   for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
   2187     const CodeGenInstruction *Inst = NumberedInstructions->at(i);
   2188     const Record *Def = Inst->TheDef;
   2189     unsigned Size = Def->getValueAsInt("Size");
   2190     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
   2191         Def->getValueAsBit("isPseudo") ||
   2192         Def->getValueAsBit("isAsmParserOnly") ||
   2193         Def->getValueAsBit("isCodeGenOnly"))
   2194       continue;
   2195 
   2196     std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
   2197 
   2198     if (Size) {
   2199       if (populateInstruction(Target, *Inst, i, Operands)) {
   2200         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
   2201       }
   2202     }
   2203   }
   2204 
   2205   DecoderTableInfo TableInfo;
   2206   for (std::map<std::pair<std::string, unsigned>,
   2207                 std::vector<unsigned> >::const_iterator
   2208        I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
   2209     // Emit the decoder for this namespace+width combination.
   2210     FilterChooser FC(*NumberedInstructions, I->second, Operands,
   2211                      8*I->first.second, this);
   2212 
   2213     // The decode table is cleared for each top level decoder function. The
   2214     // predicates and decoders themselves, however, are shared across all
   2215     // decoders to give more opportunities for uniqueing.
   2216     TableInfo.Table.clear();
   2217     TableInfo.FixupStack.clear();
   2218     TableInfo.Table.reserve(16384);
   2219     TableInfo.FixupStack.push_back(FixupList());
   2220     FC.emitTableEntries(TableInfo);
   2221     // Any NumToSkip fixups in the top level scope can resolve to the
   2222     // OPC_Fail at the end of the table.
   2223     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
   2224     // Resolve any NumToSkip fixups in the current scope.
   2225     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
   2226                        TableInfo.Table.size());
   2227     TableInfo.FixupStack.clear();
   2228 
   2229     TableInfo.Table.push_back(MCD::OPC_Fail);
   2230 
   2231     // Print the table to the output stream.
   2232     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), I->first.first);
   2233     OS.flush();
   2234   }
   2235 
   2236   // Emit the predicate function.
   2237   emitPredicateFunction(OS, TableInfo.Predicates, 0);
   2238 
   2239   // Emit the decoder function.
   2240   emitDecoderFunction(OS, TableInfo.Decoders, 0);
   2241 
   2242   // Emit the main entry point for the decoder, decodeInstruction().
   2243   emitDecodeInstruction(OS);
   2244 
   2245   OS << "\n} // End llvm namespace\n";
   2246 }
   2247 
   2248 namespace llvm {
   2249 
   2250 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
   2251                          std::string PredicateNamespace,
   2252                          std::string GPrefix,
   2253                          std::string GPostfix,
   2254                          std::string ROK,
   2255                          std::string RFail,
   2256                          std::string L) {
   2257   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
   2258                          ROK, RFail, L).run(OS);
   2259 }
   2260 
   2261 } // End llvm namespace
   2262