1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass reassociates commutative expressions in an order that is designed 11 // to promote better constant propagation, GCSE, LICM, PRE, etc. 12 // 13 // For example: 4 + (x + 5) -> x + (4 + 5) 14 // 15 // In the implementation of this algorithm, constants are assigned rank = 0, 16 // function arguments are rank = 1, and other values are assigned ranks 17 // corresponding to the reverse post order traversal of current function 18 // (starting at 2), which effectively gives values in deep loops higher rank 19 // than values not in loops. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PostOrderIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "reassociate" 45 46 STATISTIC(NumChanged, "Number of insts reassociated"); 47 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 48 STATISTIC(NumFactor , "Number of multiplies factored"); 49 50 namespace { 51 struct ValueEntry { 52 unsigned Rank; 53 Value *Op; 54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 55 }; 56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 58 } 59 } 60 61 #ifndef NDEBUG 62 /// PrintOps - Print out the expression identified in the Ops list. 63 /// 64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 65 Module *M = I->getParent()->getParent()->getParent(); 66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 67 << *Ops[0].Op->getType() << '\t'; 68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 69 dbgs() << "[ "; 70 Ops[i].Op->printAsOperand(dbgs(), false, M); 71 dbgs() << ", #" << Ops[i].Rank << "] "; 72 } 73 } 74 #endif 75 76 namespace { 77 /// \brief Utility class representing a base and exponent pair which form one 78 /// factor of some product. 79 struct Factor { 80 Value *Base; 81 unsigned Power; 82 83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 84 85 /// \brief Sort factors by their Base. 86 struct BaseSorter { 87 bool operator()(const Factor &LHS, const Factor &RHS) { 88 return LHS.Base < RHS.Base; 89 } 90 }; 91 92 /// \brief Compare factors for equal bases. 93 struct BaseEqual { 94 bool operator()(const Factor &LHS, const Factor &RHS) { 95 return LHS.Base == RHS.Base; 96 } 97 }; 98 99 /// \brief Sort factors in descending order by their power. 100 struct PowerDescendingSorter { 101 bool operator()(const Factor &LHS, const Factor &RHS) { 102 return LHS.Power > RHS.Power; 103 } 104 }; 105 106 /// \brief Compare factors for equal powers. 107 struct PowerEqual { 108 bool operator()(const Factor &LHS, const Factor &RHS) { 109 return LHS.Power == RHS.Power; 110 } 111 }; 112 }; 113 114 /// Utility class representing a non-constant Xor-operand. We classify 115 /// non-constant Xor-Operands into two categories: 116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 117 /// C2) 118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 119 /// constant. 120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 121 /// operand as "E | 0" 122 class XorOpnd { 123 public: 124 XorOpnd(Value *V); 125 126 bool isInvalid() const { return SymbolicPart == nullptr; } 127 bool isOrExpr() const { return isOr; } 128 Value *getValue() const { return OrigVal; } 129 Value *getSymbolicPart() const { return SymbolicPart; } 130 unsigned getSymbolicRank() const { return SymbolicRank; } 131 const APInt &getConstPart() const { return ConstPart; } 132 133 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 135 136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 137 // The purpose is twofold: 138 // 1) Cluster together the operands sharing the same symbolic-value. 139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 140 // could potentially shorten crital path, and expose more loop-invariants. 141 // Note that values' rank are basically defined in RPO order (FIXME). 142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 144 // "z" in the order of X-Y-Z is better than any other orders. 145 struct PtrSortFunctor { 146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 148 } 149 }; 150 private: 151 Value *OrigVal; 152 Value *SymbolicPart; 153 APInt ConstPart; 154 unsigned SymbolicRank; 155 bool isOr; 156 }; 157 } 158 159 namespace { 160 class Reassociate : public FunctionPass { 161 DenseMap<BasicBlock*, unsigned> RankMap; 162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 163 SetVector<AssertingVH<Instruction> > RedoInsts; 164 bool MadeChange; 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 Reassociate() : FunctionPass(ID) { 168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override; 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 } 176 private: 177 void BuildRankMap(Function &F); 178 unsigned getRank(Value *V); 179 void ReassociateExpression(BinaryOperator *I); 180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 181 Value *OptimizeExpression(BinaryOperator *I, 182 SmallVectorImpl<ValueEntry> &Ops); 183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 186 Value *&Res); 187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 188 APInt &ConstOpnd, Value *&Res); 189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 190 SmallVectorImpl<Factor> &Factors); 191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 192 SmallVectorImpl<Factor> &Factors); 193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 194 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 195 void EraseInst(Instruction *I); 196 void OptimizeInst(Instruction *I); 197 }; 198 } 199 200 XorOpnd::XorOpnd(Value *V) { 201 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 202 OrigVal = V; 203 Instruction *I = dyn_cast<Instruction>(V); 204 SymbolicRank = 0; 205 206 if (I && (I->getOpcode() == Instruction::Or || 207 I->getOpcode() == Instruction::And)) { 208 Value *V0 = I->getOperand(0); 209 Value *V1 = I->getOperand(1); 210 if (isa<ConstantInt>(V0)) 211 std::swap(V0, V1); 212 213 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 214 ConstPart = C->getValue(); 215 SymbolicPart = V0; 216 isOr = (I->getOpcode() == Instruction::Or); 217 return; 218 } 219 } 220 221 // view the operand as "V | 0" 222 SymbolicPart = V; 223 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 224 isOr = true; 225 } 226 227 char Reassociate::ID = 0; 228 INITIALIZE_PASS(Reassociate, "reassociate", 229 "Reassociate expressions", false, false) 230 231 // Public interface to the Reassociate pass 232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 233 234 /// isReassociableOp - Return true if V is an instruction of the specified 235 /// opcode and if it only has one use. 236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 237 if (V->hasOneUse() && isa<Instruction>(V) && 238 cast<Instruction>(V)->getOpcode() == Opcode) 239 return cast<BinaryOperator>(V); 240 return nullptr; 241 } 242 243 static bool isUnmovableInstruction(Instruction *I) { 244 switch (I->getOpcode()) { 245 case Instruction::PHI: 246 case Instruction::LandingPad: 247 case Instruction::Alloca: 248 case Instruction::Load: 249 case Instruction::Invoke: 250 case Instruction::UDiv: 251 case Instruction::SDiv: 252 case Instruction::FDiv: 253 case Instruction::URem: 254 case Instruction::SRem: 255 case Instruction::FRem: 256 return true; 257 case Instruction::Call: 258 return !isa<DbgInfoIntrinsic>(I); 259 default: 260 return false; 261 } 262 } 263 264 void Reassociate::BuildRankMap(Function &F) { 265 unsigned i = 2; 266 267 // Assign distinct ranks to function arguments 268 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 269 ValueRankMap[&*I] = ++i; 270 271 ReversePostOrderTraversal<Function*> RPOT(&F); 272 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 273 E = RPOT.end(); I != E; ++I) { 274 BasicBlock *BB = *I; 275 unsigned BBRank = RankMap[BB] = ++i << 16; 276 277 // Walk the basic block, adding precomputed ranks for any instructions that 278 // we cannot move. This ensures that the ranks for these instructions are 279 // all different in the block. 280 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 281 if (isUnmovableInstruction(I)) 282 ValueRankMap[&*I] = ++BBRank; 283 } 284 } 285 286 unsigned Reassociate::getRank(Value *V) { 287 Instruction *I = dyn_cast<Instruction>(V); 288 if (!I) { 289 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 290 return 0; // Otherwise it's a global or constant, rank 0. 291 } 292 293 if (unsigned Rank = ValueRankMap[I]) 294 return Rank; // Rank already known? 295 296 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 297 // we can reassociate expressions for code motion! Since we do not recurse 298 // for PHI nodes, we cannot have infinite recursion here, because there 299 // cannot be loops in the value graph that do not go through PHI nodes. 300 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 301 for (unsigned i = 0, e = I->getNumOperands(); 302 i != e && Rank != MaxRank; ++i) 303 Rank = std::max(Rank, getRank(I->getOperand(i))); 304 305 // If this is a not or neg instruction, do not count it for rank. This 306 // assures us that X and ~X will have the same rank. 307 if (!I->getType()->isIntegerTy() || 308 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I))) 309 ++Rank; 310 311 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 312 // << Rank << "\n"); 313 314 return ValueRankMap[I] = Rank; 315 } 316 317 /// LowerNegateToMultiply - Replace 0-X with X*-1. 318 /// 319 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 320 Constant *Cst = Constant::getAllOnesValue(Neg->getType()); 321 322 BinaryOperator *Res = 323 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); 324 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op. 325 Res->takeName(Neg); 326 Neg->replaceAllUsesWith(Res); 327 Res->setDebugLoc(Neg->getDebugLoc()); 328 return Res; 329 } 330 331 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 332 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 333 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 334 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 335 /// even x in Bitwidth-bit arithmetic. 336 static unsigned CarmichaelShift(unsigned Bitwidth) { 337 if (Bitwidth < 3) 338 return Bitwidth - 1; 339 return Bitwidth - 2; 340 } 341 342 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 343 /// reducing the combined weight using any special properties of the operation. 344 /// The existing weight LHS represents the computation X op X op ... op X where 345 /// X occurs LHS times. The combined weight represents X op X op ... op X with 346 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 347 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 348 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 349 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 350 // If we were working with infinite precision arithmetic then the combined 351 // weight would be LHS + RHS. But we are using finite precision arithmetic, 352 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 353 // for nilpotent operations and addition, but not for idempotent operations 354 // and multiplication), so it is important to correctly reduce the combined 355 // weight back into range if wrapping would be wrong. 356 357 // If RHS is zero then the weight didn't change. 358 if (RHS.isMinValue()) 359 return; 360 // If LHS is zero then the combined weight is RHS. 361 if (LHS.isMinValue()) { 362 LHS = RHS; 363 return; 364 } 365 // From this point on we know that neither LHS nor RHS is zero. 366 367 if (Instruction::isIdempotent(Opcode)) { 368 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 369 // weight of 1. Keeping weights at zero or one also means that wrapping is 370 // not a problem. 371 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 372 return; // Return a weight of 1. 373 } 374 if (Instruction::isNilpotent(Opcode)) { 375 // Nilpotent means X op X === 0, so reduce weights modulo 2. 376 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 377 LHS = 0; // 1 + 1 === 0 modulo 2. 378 return; 379 } 380 if (Opcode == Instruction::Add) { 381 // TODO: Reduce the weight by exploiting nsw/nuw? 382 LHS += RHS; 383 return; 384 } 385 386 assert(Opcode == Instruction::Mul && "Unknown associative operation!"); 387 unsigned Bitwidth = LHS.getBitWidth(); 388 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 389 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 390 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 391 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 392 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 393 // which by a happy accident means that they can always be represented using 394 // Bitwidth bits. 395 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 396 // the Carmichael number). 397 if (Bitwidth > 3) { 398 /// CM - The value of Carmichael's lambda function. 399 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 400 // Any weight W >= Threshold can be replaced with W - CM. 401 APInt Threshold = CM + Bitwidth; 402 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 403 // For Bitwidth 4 or more the following sum does not overflow. 404 LHS += RHS; 405 while (LHS.uge(Threshold)) 406 LHS -= CM; 407 } else { 408 // To avoid problems with overflow do everything the same as above but using 409 // a larger type. 410 unsigned CM = 1U << CarmichaelShift(Bitwidth); 411 unsigned Threshold = CM + Bitwidth; 412 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 413 "Weights not reduced!"); 414 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 415 while (Total >= Threshold) 416 Total -= CM; 417 LHS = Total; 418 } 419 } 420 421 typedef std::pair<Value*, APInt> RepeatedValue; 422 423 /// LinearizeExprTree - Given an associative binary expression, return the leaf 424 /// nodes in Ops along with their weights (how many times the leaf occurs). The 425 /// original expression is the same as 426 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 427 /// op 428 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 429 /// op 430 /// ... 431 /// op 432 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 433 /// 434 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 435 /// 436 /// This routine may modify the function, in which case it returns 'true'. The 437 /// changes it makes may well be destructive, changing the value computed by 'I' 438 /// to something completely different. Thus if the routine returns 'true' then 439 /// you MUST either replace I with a new expression computed from the Ops array, 440 /// or use RewriteExprTree to put the values back in. 441 /// 442 /// A leaf node is either not a binary operation of the same kind as the root 443 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 444 /// opcode), or is the same kind of binary operator but has a use which either 445 /// does not belong to the expression, or does belong to the expression but is 446 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 447 /// of the expression, while for non-leaf nodes (except for the root 'I') every 448 /// use is a non-leaf node of the expression. 449 /// 450 /// For example: 451 /// expression graph node names 452 /// 453 /// + | I 454 /// / \ | 455 /// + + | A, B 456 /// / \ / \ | 457 /// * + * | C, D, E 458 /// / \ / \ / \ | 459 /// + * | F, G 460 /// 461 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 462 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 463 /// 464 /// The expression is maximal: if some instruction is a binary operator of the 465 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 466 /// then the instruction also belongs to the expression, is not a leaf node of 467 /// it, and its operands also belong to the expression (but may be leaf nodes). 468 /// 469 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 470 /// order to ensure that every non-root node in the expression has *exactly one* 471 /// use by a non-leaf node of the expression. This destruction means that the 472 /// caller MUST either replace 'I' with a new expression or use something like 473 /// RewriteExprTree to put the values back in if the routine indicates that it 474 /// made a change by returning 'true'. 475 /// 476 /// In the above example either the right operand of A or the left operand of B 477 /// will be replaced by undef. If it is B's operand then this gives: 478 /// 479 /// + | I 480 /// / \ | 481 /// + + | A, B - operand of B replaced with undef 482 /// / \ \ | 483 /// * + * | C, D, E 484 /// / \ / \ / \ | 485 /// + * | F, G 486 /// 487 /// Note that such undef operands can only be reached by passing through 'I'. 488 /// For example, if you visit operands recursively starting from a leaf node 489 /// then you will never see such an undef operand unless you get back to 'I', 490 /// which requires passing through a phi node. 491 /// 492 /// Note that this routine may also mutate binary operators of the wrong type 493 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 494 /// of the expression) if it can turn them into binary operators of the right 495 /// type and thus make the expression bigger. 496 497 static bool LinearizeExprTree(BinaryOperator *I, 498 SmallVectorImpl<RepeatedValue> &Ops) { 499 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 500 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 501 unsigned Opcode = I->getOpcode(); 502 assert(Instruction::isAssociative(Opcode) && 503 Instruction::isCommutative(Opcode) && 504 "Expected an associative and commutative operation!"); 505 506 // Visit all operands of the expression, keeping track of their weight (the 507 // number of paths from the expression root to the operand, or if you like 508 // the number of times that operand occurs in the linearized expression). 509 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 510 // while A has weight two. 511 512 // Worklist of non-leaf nodes (their operands are in the expression too) along 513 // with their weights, representing a certain number of paths to the operator. 514 // If an operator occurs in the worklist multiple times then we found multiple 515 // ways to get to it. 516 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 517 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 518 bool MadeChange = false; 519 520 // Leaves of the expression are values that either aren't the right kind of 521 // operation (eg: a constant, or a multiply in an add tree), or are, but have 522 // some uses that are not inside the expression. For example, in I = X + X, 523 // X = A + B, the value X has two uses (by I) that are in the expression. If 524 // X has any other uses, for example in a return instruction, then we consider 525 // X to be a leaf, and won't analyze it further. When we first visit a value, 526 // if it has more than one use then at first we conservatively consider it to 527 // be a leaf. Later, as the expression is explored, we may discover some more 528 // uses of the value from inside the expression. If all uses turn out to be 529 // from within the expression (and the value is a binary operator of the right 530 // kind) then the value is no longer considered to be a leaf, and its operands 531 // are explored. 532 533 // Leaves - Keeps track of the set of putative leaves as well as the number of 534 // paths to each leaf seen so far. 535 typedef DenseMap<Value*, APInt> LeafMap; 536 LeafMap Leaves; // Leaf -> Total weight so far. 537 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 538 539 #ifndef NDEBUG 540 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 541 #endif 542 while (!Worklist.empty()) { 543 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 544 I = P.first; // We examine the operands of this binary operator. 545 546 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 547 Value *Op = I->getOperand(OpIdx); 548 APInt Weight = P.second; // Number of paths to this operand. 549 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 550 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 551 552 // If this is a binary operation of the right kind with only one use then 553 // add its operands to the expression. 554 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 555 assert(Visited.insert(Op) && "Not first visit!"); 556 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 557 Worklist.push_back(std::make_pair(BO, Weight)); 558 continue; 559 } 560 561 // Appears to be a leaf. Is the operand already in the set of leaves? 562 LeafMap::iterator It = Leaves.find(Op); 563 if (It == Leaves.end()) { 564 // Not in the leaf map. Must be the first time we saw this operand. 565 assert(Visited.insert(Op) && "Not first visit!"); 566 if (!Op->hasOneUse()) { 567 // This value has uses not accounted for by the expression, so it is 568 // not safe to modify. Mark it as being a leaf. 569 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 570 LeafOrder.push_back(Op); 571 Leaves[Op] = Weight; 572 continue; 573 } 574 // No uses outside the expression, try morphing it. 575 } else if (It != Leaves.end()) { 576 // Already in the leaf map. 577 assert(Visited.count(Op) && "In leaf map but not visited!"); 578 579 // Update the number of paths to the leaf. 580 IncorporateWeight(It->second, Weight, Opcode); 581 582 #if 0 // TODO: Re-enable once PR13021 is fixed. 583 // The leaf already has one use from inside the expression. As we want 584 // exactly one such use, drop this new use of the leaf. 585 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 586 I->setOperand(OpIdx, UndefValue::get(I->getType())); 587 MadeChange = true; 588 589 // If the leaf is a binary operation of the right kind and we now see 590 // that its multiple original uses were in fact all by nodes belonging 591 // to the expression, then no longer consider it to be a leaf and add 592 // its operands to the expression. 593 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 594 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 595 Worklist.push_back(std::make_pair(BO, It->second)); 596 Leaves.erase(It); 597 continue; 598 } 599 #endif 600 601 // If we still have uses that are not accounted for by the expression 602 // then it is not safe to modify the value. 603 if (!Op->hasOneUse()) 604 continue; 605 606 // No uses outside the expression, try morphing it. 607 Weight = It->second; 608 Leaves.erase(It); // Since the value may be morphed below. 609 } 610 611 // At this point we have a value which, first of all, is not a binary 612 // expression of the right kind, and secondly, is only used inside the 613 // expression. This means that it can safely be modified. See if we 614 // can usefully morph it into an expression of the right kind. 615 assert((!isa<Instruction>(Op) || 616 cast<Instruction>(Op)->getOpcode() != Opcode) && 617 "Should have been handled above!"); 618 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 619 620 // If this is a multiply expression, turn any internal negations into 621 // multiplies by -1 so they can be reassociated. 622 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op); 623 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { 624 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 625 BO = LowerNegateToMultiply(BO); 626 DEBUG(dbgs() << *BO << 'n'); 627 Worklist.push_back(std::make_pair(BO, Weight)); 628 MadeChange = true; 629 continue; 630 } 631 632 // Failed to morph into an expression of the right type. This really is 633 // a leaf. 634 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 635 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 636 LeafOrder.push_back(Op); 637 Leaves[Op] = Weight; 638 } 639 } 640 641 // The leaves, repeated according to their weights, represent the linearized 642 // form of the expression. 643 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 644 Value *V = LeafOrder[i]; 645 LeafMap::iterator It = Leaves.find(V); 646 if (It == Leaves.end()) 647 // Node initially thought to be a leaf wasn't. 648 continue; 649 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 650 APInt Weight = It->second; 651 if (Weight.isMinValue()) 652 // Leaf already output or weight reduction eliminated it. 653 continue; 654 // Ensure the leaf is only output once. 655 It->second = 0; 656 Ops.push_back(std::make_pair(V, Weight)); 657 } 658 659 // For nilpotent operations or addition there may be no operands, for example 660 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 661 // in both cases the weight reduces to 0 causing the value to be skipped. 662 if (Ops.empty()) { 663 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 664 assert(Identity && "Associative operation without identity!"); 665 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 666 } 667 668 return MadeChange; 669 } 670 671 // RewriteExprTree - Now that the operands for this expression tree are 672 // linearized and optimized, emit them in-order. 673 void Reassociate::RewriteExprTree(BinaryOperator *I, 674 SmallVectorImpl<ValueEntry> &Ops) { 675 assert(Ops.size() > 1 && "Single values should be used directly!"); 676 677 // Since our optimizations should never increase the number of operations, the 678 // new expression can usually be written reusing the existing binary operators 679 // from the original expression tree, without creating any new instructions, 680 // though the rewritten expression may have a completely different topology. 681 // We take care to not change anything if the new expression will be the same 682 // as the original. If more than trivial changes (like commuting operands) 683 // were made then we are obliged to clear out any optional subclass data like 684 // nsw flags. 685 686 /// NodesToRewrite - Nodes from the original expression available for writing 687 /// the new expression into. 688 SmallVector<BinaryOperator*, 8> NodesToRewrite; 689 unsigned Opcode = I->getOpcode(); 690 BinaryOperator *Op = I; 691 692 /// NotRewritable - The operands being written will be the leaves of the new 693 /// expression and must not be used as inner nodes (via NodesToRewrite) by 694 /// mistake. Inner nodes are always reassociable, and usually leaves are not 695 /// (if they were they would have been incorporated into the expression and so 696 /// would not be leaves), so most of the time there is no danger of this. But 697 /// in rare cases a leaf may become reassociable if an optimization kills uses 698 /// of it, or it may momentarily become reassociable during rewriting (below) 699 /// due it being removed as an operand of one of its uses. Ensure that misuse 700 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 701 /// leaves and refusing to reuse any of them as inner nodes. 702 SmallPtrSet<Value*, 8> NotRewritable; 703 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 704 NotRewritable.insert(Ops[i].Op); 705 706 // ExpressionChanged - Non-null if the rewritten expression differs from the 707 // original in some non-trivial way, requiring the clearing of optional flags. 708 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 709 BinaryOperator *ExpressionChanged = nullptr; 710 for (unsigned i = 0; ; ++i) { 711 // The last operation (which comes earliest in the IR) is special as both 712 // operands will come from Ops, rather than just one with the other being 713 // a subexpression. 714 if (i+2 == Ops.size()) { 715 Value *NewLHS = Ops[i].Op; 716 Value *NewRHS = Ops[i+1].Op; 717 Value *OldLHS = Op->getOperand(0); 718 Value *OldRHS = Op->getOperand(1); 719 720 if (NewLHS == OldLHS && NewRHS == OldRHS) 721 // Nothing changed, leave it alone. 722 break; 723 724 if (NewLHS == OldRHS && NewRHS == OldLHS) { 725 // The order of the operands was reversed. Swap them. 726 DEBUG(dbgs() << "RA: " << *Op << '\n'); 727 Op->swapOperands(); 728 DEBUG(dbgs() << "TO: " << *Op << '\n'); 729 MadeChange = true; 730 ++NumChanged; 731 break; 732 } 733 734 // The new operation differs non-trivially from the original. Overwrite 735 // the old operands with the new ones. 736 DEBUG(dbgs() << "RA: " << *Op << '\n'); 737 if (NewLHS != OldLHS) { 738 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 739 if (BO && !NotRewritable.count(BO)) 740 NodesToRewrite.push_back(BO); 741 Op->setOperand(0, NewLHS); 742 } 743 if (NewRHS != OldRHS) { 744 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 745 if (BO && !NotRewritable.count(BO)) 746 NodesToRewrite.push_back(BO); 747 Op->setOperand(1, NewRHS); 748 } 749 DEBUG(dbgs() << "TO: " << *Op << '\n'); 750 751 ExpressionChanged = Op; 752 MadeChange = true; 753 ++NumChanged; 754 755 break; 756 } 757 758 // Not the last operation. The left-hand side will be a sub-expression 759 // while the right-hand side will be the current element of Ops. 760 Value *NewRHS = Ops[i].Op; 761 if (NewRHS != Op->getOperand(1)) { 762 DEBUG(dbgs() << "RA: " << *Op << '\n'); 763 if (NewRHS == Op->getOperand(0)) { 764 // The new right-hand side was already present as the left operand. If 765 // we are lucky then swapping the operands will sort out both of them. 766 Op->swapOperands(); 767 } else { 768 // Overwrite with the new right-hand side. 769 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 770 if (BO && !NotRewritable.count(BO)) 771 NodesToRewrite.push_back(BO); 772 Op->setOperand(1, NewRHS); 773 ExpressionChanged = Op; 774 } 775 DEBUG(dbgs() << "TO: " << *Op << '\n'); 776 MadeChange = true; 777 ++NumChanged; 778 } 779 780 // Now deal with the left-hand side. If this is already an operation node 781 // from the original expression then just rewrite the rest of the expression 782 // into it. 783 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 784 if (BO && !NotRewritable.count(BO)) { 785 Op = BO; 786 continue; 787 } 788 789 // Otherwise, grab a spare node from the original expression and use that as 790 // the left-hand side. If there are no nodes left then the optimizers made 791 // an expression with more nodes than the original! This usually means that 792 // they did something stupid but it might mean that the problem was just too 793 // hard (finding the mimimal number of multiplications needed to realize a 794 // multiplication expression is NP-complete). Whatever the reason, smart or 795 // stupid, create a new node if there are none left. 796 BinaryOperator *NewOp; 797 if (NodesToRewrite.empty()) { 798 Constant *Undef = UndefValue::get(I->getType()); 799 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 800 Undef, Undef, "", I); 801 } else { 802 NewOp = NodesToRewrite.pop_back_val(); 803 } 804 805 DEBUG(dbgs() << "RA: " << *Op << '\n'); 806 Op->setOperand(0, NewOp); 807 DEBUG(dbgs() << "TO: " << *Op << '\n'); 808 ExpressionChanged = Op; 809 MadeChange = true; 810 ++NumChanged; 811 Op = NewOp; 812 } 813 814 // If the expression changed non-trivially then clear out all subclass data 815 // starting from the operator specified in ExpressionChanged, and compactify 816 // the operators to just before the expression root to guarantee that the 817 // expression tree is dominated by all of Ops. 818 if (ExpressionChanged) 819 do { 820 ExpressionChanged->clearSubclassOptionalData(); 821 if (ExpressionChanged == I) 822 break; 823 ExpressionChanged->moveBefore(I); 824 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 825 } while (1); 826 827 // Throw away any left over nodes from the original expression. 828 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 829 RedoInsts.insert(NodesToRewrite[i]); 830 } 831 832 /// NegateValue - Insert instructions before the instruction pointed to by BI, 833 /// that computes the negative version of the value specified. The negative 834 /// version of the value is returned, and BI is left pointing at the instruction 835 /// that should be processed next by the reassociation pass. 836 static Value *NegateValue(Value *V, Instruction *BI) { 837 if (Constant *C = dyn_cast<Constant>(V)) 838 return ConstantExpr::getNeg(C); 839 840 // We are trying to expose opportunity for reassociation. One of the things 841 // that we want to do to achieve this is to push a negation as deep into an 842 // expression chain as possible, to expose the add instructions. In practice, 843 // this means that we turn this: 844 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 845 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 846 // the constants. We assume that instcombine will clean up the mess later if 847 // we introduce tons of unnecessary negation instructions. 848 // 849 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) { 850 // Push the negates through the add. 851 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 852 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 853 854 // We must move the add instruction here, because the neg instructions do 855 // not dominate the old add instruction in general. By moving it, we are 856 // assured that the neg instructions we just inserted dominate the 857 // instruction we are about to insert after them. 858 // 859 I->moveBefore(BI); 860 I->setName(I->getName()+".neg"); 861 return I; 862 } 863 864 // Okay, we need to materialize a negated version of V with an instruction. 865 // Scan the use lists of V to see if we have one already. 866 for (User *U : V->users()) { 867 if (!BinaryOperator::isNeg(U)) continue; 868 869 // We found one! Now we have to make sure that the definition dominates 870 // this use. We do this by moving it to the entry block (if it is a 871 // non-instruction value) or right after the definition. These negates will 872 // be zapped by reassociate later, so we don't need much finesse here. 873 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 874 875 // Verify that the negate is in this function, V might be a constant expr. 876 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 877 continue; 878 879 BasicBlock::iterator InsertPt; 880 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 881 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 882 InsertPt = II->getNormalDest()->begin(); 883 } else { 884 InsertPt = InstInput; 885 ++InsertPt; 886 } 887 while (isa<PHINode>(InsertPt)) ++InsertPt; 888 } else { 889 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 890 } 891 TheNeg->moveBefore(InsertPt); 892 return TheNeg; 893 } 894 895 // Insert a 'neg' instruction that subtracts the value from zero to get the 896 // negation. 897 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI); 898 } 899 900 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 901 /// X-Y into (X + -Y). 902 static bool ShouldBreakUpSubtract(Instruction *Sub) { 903 // If this is a negation, we can't split it up! 904 if (BinaryOperator::isNeg(Sub)) 905 return false; 906 907 // Don't bother to break this up unless either the LHS is an associable add or 908 // subtract or if this is only used by one. 909 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) || 910 isReassociableOp(Sub->getOperand(0), Instruction::Sub)) 911 return true; 912 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) || 913 isReassociableOp(Sub->getOperand(1), Instruction::Sub)) 914 return true; 915 if (Sub->hasOneUse() && 916 (isReassociableOp(Sub->user_back(), Instruction::Add) || 917 isReassociableOp(Sub->user_back(), Instruction::Sub))) 918 return true; 919 920 return false; 921 } 922 923 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 924 /// only used by an add, transform this into (X+(0-Y)) to promote better 925 /// reassociation. 926 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 927 // Convert a subtract into an add and a neg instruction. This allows sub 928 // instructions to be commuted with other add instructions. 929 // 930 // Calculate the negative value of Operand 1 of the sub instruction, 931 // and set it as the RHS of the add instruction we just made. 932 // 933 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 934 BinaryOperator *New = 935 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); 936 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 937 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 938 New->takeName(Sub); 939 940 // Everyone now refers to the add instruction. 941 Sub->replaceAllUsesWith(New); 942 New->setDebugLoc(Sub->getDebugLoc()); 943 944 DEBUG(dbgs() << "Negated: " << *New << '\n'); 945 return New; 946 } 947 948 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 949 /// by one, change this into a multiply by a constant to assist with further 950 /// reassociation. 951 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 952 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 953 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 954 955 BinaryOperator *Mul = 956 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 957 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 958 Mul->takeName(Shl); 959 Shl->replaceAllUsesWith(Mul); 960 Mul->setDebugLoc(Shl->getDebugLoc()); 961 return Mul; 962 } 963 964 /// FindInOperandList - Scan backwards and forwards among values with the same 965 /// rank as element i to see if X exists. If X does not exist, return i. This 966 /// is useful when scanning for 'x' when we see '-x' because they both get the 967 /// same rank. 968 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 969 Value *X) { 970 unsigned XRank = Ops[i].Rank; 971 unsigned e = Ops.size(); 972 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) 973 if (Ops[j].Op == X) 974 return j; 975 // Scan backwards. 976 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) 977 if (Ops[j].Op == X) 978 return j; 979 return i; 980 } 981 982 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 983 /// and returning the result. Insert the tree before I. 984 static Value *EmitAddTreeOfValues(Instruction *I, 985 SmallVectorImpl<WeakVH> &Ops){ 986 if (Ops.size() == 1) return Ops.back(); 987 988 Value *V1 = Ops.back(); 989 Ops.pop_back(); 990 Value *V2 = EmitAddTreeOfValues(I, Ops); 991 return BinaryOperator::CreateAdd(V2, V1, "tmp", I); 992 } 993 994 /// RemoveFactorFromExpression - If V is an expression tree that is a 995 /// multiplication sequence, and if this sequence contains a multiply by Factor, 996 /// remove Factor from the tree and return the new tree. 997 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 998 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 999 if (!BO) return nullptr; 1000 1001 SmallVector<RepeatedValue, 8> Tree; 1002 MadeChange |= LinearizeExprTree(BO, Tree); 1003 SmallVector<ValueEntry, 8> Factors; 1004 Factors.reserve(Tree.size()); 1005 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1006 RepeatedValue E = Tree[i]; 1007 Factors.append(E.second.getZExtValue(), 1008 ValueEntry(getRank(E.first), E.first)); 1009 } 1010 1011 bool FoundFactor = false; 1012 bool NeedsNegate = false; 1013 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1014 if (Factors[i].Op == Factor) { 1015 FoundFactor = true; 1016 Factors.erase(Factors.begin()+i); 1017 break; 1018 } 1019 1020 // If this is a negative version of this factor, remove it. 1021 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) 1022 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1023 if (FC1->getValue() == -FC2->getValue()) { 1024 FoundFactor = NeedsNegate = true; 1025 Factors.erase(Factors.begin()+i); 1026 break; 1027 } 1028 } 1029 1030 if (!FoundFactor) { 1031 // Make sure to restore the operands to the expression tree. 1032 RewriteExprTree(BO, Factors); 1033 return nullptr; 1034 } 1035 1036 BasicBlock::iterator InsertPt = BO; ++InsertPt; 1037 1038 // If this was just a single multiply, remove the multiply and return the only 1039 // remaining operand. 1040 if (Factors.size() == 1) { 1041 RedoInsts.insert(BO); 1042 V = Factors[0].Op; 1043 } else { 1044 RewriteExprTree(BO, Factors); 1045 V = BO; 1046 } 1047 1048 if (NeedsNegate) 1049 V = BinaryOperator::CreateNeg(V, "neg", InsertPt); 1050 1051 return V; 1052 } 1053 1054 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 1055 /// add its operands as factors, otherwise add V to the list of factors. 1056 /// 1057 /// Ops is the top-level list of add operands we're trying to factor. 1058 static void FindSingleUseMultiplyFactors(Value *V, 1059 SmallVectorImpl<Value*> &Factors, 1060 const SmallVectorImpl<ValueEntry> &Ops) { 1061 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul); 1062 if (!BO) { 1063 Factors.push_back(V); 1064 return; 1065 } 1066 1067 // Otherwise, add the LHS and RHS to the list of factors. 1068 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 1069 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 1070 } 1071 1072 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 1073 /// instruction. This optimizes based on identities. If it can be reduced to 1074 /// a single Value, it is returned, otherwise the Ops list is mutated as 1075 /// necessary. 1076 static Value *OptimizeAndOrXor(unsigned Opcode, 1077 SmallVectorImpl<ValueEntry> &Ops) { 1078 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1079 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1080 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1081 // First, check for X and ~X in the operand list. 1082 assert(i < Ops.size()); 1083 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 1084 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 1085 unsigned FoundX = FindInOperandList(Ops, i, X); 1086 if (FoundX != i) { 1087 if (Opcode == Instruction::And) // ...&X&~X = 0 1088 return Constant::getNullValue(X->getType()); 1089 1090 if (Opcode == Instruction::Or) // ...|X|~X = -1 1091 return Constant::getAllOnesValue(X->getType()); 1092 } 1093 } 1094 1095 // Next, check for duplicate pairs of values, which we assume are next to 1096 // each other, due to our sorting criteria. 1097 assert(i < Ops.size()); 1098 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1099 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1100 // Drop duplicate values for And and Or. 1101 Ops.erase(Ops.begin()+i); 1102 --i; --e; 1103 ++NumAnnihil; 1104 continue; 1105 } 1106 1107 // Drop pairs of values for Xor. 1108 assert(Opcode == Instruction::Xor); 1109 if (e == 2) 1110 return Constant::getNullValue(Ops[0].Op->getType()); 1111 1112 // Y ^ X^X -> Y 1113 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1114 i -= 1; e -= 2; 1115 ++NumAnnihil; 1116 } 1117 } 1118 return nullptr; 1119 } 1120 1121 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 1122 /// instruction with the given two operands, and return the resulting 1123 /// instruction. There are two special cases: 1) if the constant operand is 0, 1124 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1125 /// be returned. 1126 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1127 const APInt &ConstOpnd) { 1128 if (ConstOpnd != 0) { 1129 if (!ConstOpnd.isAllOnesValue()) { 1130 LLVMContext &Ctx = Opnd->getType()->getContext(); 1131 Instruction *I; 1132 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 1133 "and.ra", InsertBefore); 1134 I->setDebugLoc(InsertBefore->getDebugLoc()); 1135 return I; 1136 } 1137 return Opnd; 1138 } 1139 return nullptr; 1140 } 1141 1142 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1143 // into "R ^ C", where C would be 0, and R is a symbolic value. 1144 // 1145 // If it was successful, true is returned, and the "R" and "C" is returned 1146 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1147 // and both "Res" and "ConstOpnd" remain unchanged. 1148 // 1149 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1150 APInt &ConstOpnd, Value *&Res) { 1151 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1152 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1153 // = (x & ~c1) ^ (c1 ^ c2) 1154 // It is useful only when c1 == c2. 1155 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 1156 if (!Opnd1->getValue()->hasOneUse()) 1157 return false; 1158 1159 const APInt &C1 = Opnd1->getConstPart(); 1160 if (C1 != ConstOpnd) 1161 return false; 1162 1163 Value *X = Opnd1->getSymbolicPart(); 1164 Res = createAndInstr(I, X, ~C1); 1165 // ConstOpnd was C2, now C1 ^ C2. 1166 ConstOpnd ^= C1; 1167 1168 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1169 RedoInsts.insert(T); 1170 return true; 1171 } 1172 return false; 1173 } 1174 1175 1176 // Helper function of OptimizeXor(). It tries to simplify 1177 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1178 // symbolic value. 1179 // 1180 // If it was successful, true is returned, and the "R" and "C" is returned 1181 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1182 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1183 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1184 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 1185 APInt &ConstOpnd, Value *&Res) { 1186 Value *X = Opnd1->getSymbolicPart(); 1187 if (X != Opnd2->getSymbolicPart()) 1188 return false; 1189 1190 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1191 int DeadInstNum = 1; 1192 if (Opnd1->getValue()->hasOneUse()) 1193 DeadInstNum++; 1194 if (Opnd2->getValue()->hasOneUse()) 1195 DeadInstNum++; 1196 1197 // Xor-Rule 2: 1198 // (x | c1) ^ (x & c2) 1199 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1200 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1201 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1202 // 1203 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1204 if (Opnd2->isOrExpr()) 1205 std::swap(Opnd1, Opnd2); 1206 1207 const APInt &C1 = Opnd1->getConstPart(); 1208 const APInt &C2 = Opnd2->getConstPart(); 1209 APInt C3((~C1) ^ C2); 1210 1211 // Do not increase code size! 1212 if (C3 != 0 && !C3.isAllOnesValue()) { 1213 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1214 if (NewInstNum > DeadInstNum) 1215 return false; 1216 } 1217 1218 Res = createAndInstr(I, X, C3); 1219 ConstOpnd ^= C1; 1220 1221 } else if (Opnd1->isOrExpr()) { 1222 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1223 // 1224 const APInt &C1 = Opnd1->getConstPart(); 1225 const APInt &C2 = Opnd2->getConstPart(); 1226 APInt C3 = C1 ^ C2; 1227 1228 // Do not increase code size 1229 if (C3 != 0 && !C3.isAllOnesValue()) { 1230 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 1231 if (NewInstNum > DeadInstNum) 1232 return false; 1233 } 1234 1235 Res = createAndInstr(I, X, C3); 1236 ConstOpnd ^= C3; 1237 } else { 1238 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1239 // 1240 const APInt &C1 = Opnd1->getConstPart(); 1241 const APInt &C2 = Opnd2->getConstPart(); 1242 APInt C3 = C1 ^ C2; 1243 Res = createAndInstr(I, X, C3); 1244 } 1245 1246 // Put the original operands in the Redo list; hope they will be deleted 1247 // as dead code. 1248 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1249 RedoInsts.insert(T); 1250 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1251 RedoInsts.insert(T); 1252 1253 return true; 1254 } 1255 1256 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1257 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1258 /// necessary. 1259 Value *Reassociate::OptimizeXor(Instruction *I, 1260 SmallVectorImpl<ValueEntry> &Ops) { 1261 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1262 return V; 1263 1264 if (Ops.size() == 1) 1265 return nullptr; 1266 1267 SmallVector<XorOpnd, 8> Opnds; 1268 SmallVector<XorOpnd*, 8> OpndPtrs; 1269 Type *Ty = Ops[0].Op->getType(); 1270 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 1271 1272 // Step 1: Convert ValueEntry to XorOpnd 1273 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1274 Value *V = Ops[i].Op; 1275 if (!isa<ConstantInt>(V)) { 1276 XorOpnd O(V); 1277 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1278 Opnds.push_back(O); 1279 } else 1280 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 1281 } 1282 1283 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1284 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1285 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1286 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1287 // when new elements are added to the vector. 1288 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1289 OpndPtrs.push_back(&Opnds[i]); 1290 1291 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1292 // the same symbolic value cluster together. For instance, the input operand 1293 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1294 // ("x | 123", "x & 789", "y & 456"). 1295 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 1296 1297 // Step 3: Combine adjacent operands 1298 XorOpnd *PrevOpnd = nullptr; 1299 bool Changed = false; 1300 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1301 XorOpnd *CurrOpnd = OpndPtrs[i]; 1302 // The combined value 1303 Value *CV; 1304 1305 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1306 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1307 Changed = true; 1308 if (CV) 1309 *CurrOpnd = XorOpnd(CV); 1310 else { 1311 CurrOpnd->Invalidate(); 1312 continue; 1313 } 1314 } 1315 1316 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1317 PrevOpnd = CurrOpnd; 1318 continue; 1319 } 1320 1321 // step 3.2: When previous and current operands share the same symbolic 1322 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1323 // 1324 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1325 // Remove previous operand 1326 PrevOpnd->Invalidate(); 1327 if (CV) { 1328 *CurrOpnd = XorOpnd(CV); 1329 PrevOpnd = CurrOpnd; 1330 } else { 1331 CurrOpnd->Invalidate(); 1332 PrevOpnd = nullptr; 1333 } 1334 Changed = true; 1335 } 1336 } 1337 1338 // Step 4: Reassemble the Ops 1339 if (Changed) { 1340 Ops.clear(); 1341 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1342 XorOpnd &O = Opnds[i]; 1343 if (O.isInvalid()) 1344 continue; 1345 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1346 Ops.push_back(VE); 1347 } 1348 if (ConstOpnd != 0) { 1349 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 1350 ValueEntry VE(getRank(C), C); 1351 Ops.push_back(VE); 1352 } 1353 int Sz = Ops.size(); 1354 if (Sz == 1) 1355 return Ops.back().Op; 1356 else if (Sz == 0) { 1357 assert(ConstOpnd == 0); 1358 return ConstantInt::get(Ty->getContext(), ConstOpnd); 1359 } 1360 } 1361 1362 return nullptr; 1363 } 1364 1365 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 1366 /// optimizes based on identities. If it can be reduced to a single Value, it 1367 /// is returned, otherwise the Ops list is mutated as necessary. 1368 Value *Reassociate::OptimizeAdd(Instruction *I, 1369 SmallVectorImpl<ValueEntry> &Ops) { 1370 // Scan the operand lists looking for X and -X pairs. If we find any, we 1371 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1372 // scan for any 1373 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1374 1375 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1376 Value *TheOp = Ops[i].Op; 1377 // Check to see if we've seen this operand before. If so, we factor all 1378 // instances of the operand together. Due to our sorting criteria, we know 1379 // that these need to be next to each other in the vector. 1380 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1381 // Rescan the list, remove all instances of this operand from the expr. 1382 unsigned NumFound = 0; 1383 do { 1384 Ops.erase(Ops.begin()+i); 1385 ++NumFound; 1386 } while (i != Ops.size() && Ops[i].Op == TheOp); 1387 1388 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 1389 ++NumFactor; 1390 1391 // Insert a new multiply. 1392 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound); 1393 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I); 1394 1395 // Now that we have inserted a multiply, optimize it. This allows us to 1396 // handle cases that require multiple factoring steps, such as this: 1397 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1398 RedoInsts.insert(cast<Instruction>(Mul)); 1399 1400 // If every add operand was a duplicate, return the multiply. 1401 if (Ops.empty()) 1402 return Mul; 1403 1404 // Otherwise, we had some input that didn't have the dupe, such as 1405 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1406 // things being added by this operation. 1407 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1408 1409 --i; 1410 e = Ops.size(); 1411 continue; 1412 } 1413 1414 // Check for X and -X or X and ~X in the operand list. 1415 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isNot(TheOp)) 1416 continue; 1417 1418 Value *X = nullptr; 1419 if (BinaryOperator::isNeg(TheOp)) 1420 X = BinaryOperator::getNegArgument(TheOp); 1421 else if (BinaryOperator::isNot(TheOp)) 1422 X = BinaryOperator::getNotArgument(TheOp); 1423 1424 unsigned FoundX = FindInOperandList(Ops, i, X); 1425 if (FoundX == i) 1426 continue; 1427 1428 // Remove X and -X from the operand list. 1429 if (Ops.size() == 2 && BinaryOperator::isNeg(TheOp)) 1430 return Constant::getNullValue(X->getType()); 1431 1432 // Remove X and ~X from the operand list. 1433 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 1434 return Constant::getAllOnesValue(X->getType()); 1435 1436 Ops.erase(Ops.begin()+i); 1437 if (i < FoundX) 1438 --FoundX; 1439 else 1440 --i; // Need to back up an extra one. 1441 Ops.erase(Ops.begin()+FoundX); 1442 ++NumAnnihil; 1443 --i; // Revisit element. 1444 e -= 2; // Removed two elements. 1445 1446 // if X and ~X we append -1 to the operand list. 1447 if (BinaryOperator::isNot(TheOp)) { 1448 Value *V = Constant::getAllOnesValue(X->getType()); 1449 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1450 e += 1; 1451 } 1452 } 1453 1454 // Scan the operand list, checking to see if there are any common factors 1455 // between operands. Consider something like A*A+A*B*C+D. We would like to 1456 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1457 // To efficiently find this, we count the number of times a factor occurs 1458 // for any ADD operands that are MULs. 1459 DenseMap<Value*, unsigned> FactorOccurrences; 1460 1461 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1462 // where they are actually the same multiply. 1463 unsigned MaxOcc = 0; 1464 Value *MaxOccVal = nullptr; 1465 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1466 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1467 if (!BOp) 1468 continue; 1469 1470 // Compute all of the factors of this added value. 1471 SmallVector<Value*, 8> Factors; 1472 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 1473 assert(Factors.size() > 1 && "Bad linearize!"); 1474 1475 // Add one to FactorOccurrences for each unique factor in this op. 1476 SmallPtrSet<Value*, 8> Duplicates; 1477 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1478 Value *Factor = Factors[i]; 1479 if (!Duplicates.insert(Factor)) continue; 1480 1481 unsigned Occ = ++FactorOccurrences[Factor]; 1482 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1483 1484 // If Factor is a negative constant, add the negated value as a factor 1485 // because we can percolate the negate out. Watch for minint, which 1486 // cannot be positivified. 1487 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) 1488 if (CI->isNegative() && !CI->isMinValue(true)) { 1489 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1490 assert(!Duplicates.count(Factor) && 1491 "Shouldn't have two constant factors, missed a canonicalize"); 1492 1493 unsigned Occ = ++FactorOccurrences[Factor]; 1494 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; } 1495 } 1496 } 1497 } 1498 1499 // If any factor occurred more than one time, we can pull it out. 1500 if (MaxOcc > 1) { 1501 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 1502 ++NumFactor; 1503 1504 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1505 // this, we could otherwise run into situations where removing a factor 1506 // from an expression will drop a use of maxocc, and this can cause 1507 // RemoveFactorFromExpression on successive values to behave differently. 1508 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal); 1509 SmallVector<WeakVH, 4> NewMulOps; 1510 for (unsigned i = 0; i != Ops.size(); ++i) { 1511 // Only try to remove factors from expressions we're allowed to. 1512 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul); 1513 if (!BOp) 1514 continue; 1515 1516 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1517 // The factorized operand may occur several times. Convert them all in 1518 // one fell swoop. 1519 for (unsigned j = Ops.size(); j != i;) { 1520 --j; 1521 if (Ops[j].Op == Ops[i].Op) { 1522 NewMulOps.push_back(V); 1523 Ops.erase(Ops.begin()+j); 1524 } 1525 } 1526 --i; 1527 } 1528 } 1529 1530 // No need for extra uses anymore. 1531 delete DummyInst; 1532 1533 unsigned NumAddedValues = NewMulOps.size(); 1534 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1535 1536 // Now that we have inserted the add tree, optimize it. This allows us to 1537 // handle cases that require multiple factoring steps, such as this: 1538 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1539 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1540 (void)NumAddedValues; 1541 if (Instruction *VI = dyn_cast<Instruction>(V)) 1542 RedoInsts.insert(VI); 1543 1544 // Create the multiply. 1545 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); 1546 1547 // Rerun associate on the multiply in case the inner expression turned into 1548 // a multiply. We want to make sure that we keep things in canonical form. 1549 RedoInsts.insert(V2); 1550 1551 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1552 // entire result expression is just the multiply "A*(B+C)". 1553 if (Ops.empty()) 1554 return V2; 1555 1556 // Otherwise, we had some input that didn't have the factor, such as 1557 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1558 // things being added by this operation. 1559 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1560 } 1561 1562 return nullptr; 1563 } 1564 1565 /// \brief Build up a vector of value/power pairs factoring a product. 1566 /// 1567 /// Given a series of multiplication operands, build a vector of factors and 1568 /// the powers each is raised to when forming the final product. Sort them in 1569 /// the order of descending power. 1570 /// 1571 /// (x*x) -> [(x, 2)] 1572 /// ((x*x)*x) -> [(x, 3)] 1573 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1574 /// 1575 /// \returns Whether any factors have a power greater than one. 1576 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1577 SmallVectorImpl<Factor> &Factors) { 1578 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1579 // Compute the sum of powers of simplifiable factors. 1580 unsigned FactorPowerSum = 0; 1581 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1582 Value *Op = Ops[Idx-1].Op; 1583 1584 // Count the number of occurrences of this value. 1585 unsigned Count = 1; 1586 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1587 ++Count; 1588 // Track for simplification all factors which occur 2 or more times. 1589 if (Count > 1) 1590 FactorPowerSum += Count; 1591 } 1592 1593 // We can only simplify factors if the sum of the powers of our simplifiable 1594 // factors is 4 or higher. When that is the case, we will *always* have 1595 // a simplification. This is an important invariant to prevent cyclicly 1596 // trying to simplify already minimal formations. 1597 if (FactorPowerSum < 4) 1598 return false; 1599 1600 // Now gather the simplifiable factors, removing them from Ops. 1601 FactorPowerSum = 0; 1602 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1603 Value *Op = Ops[Idx-1].Op; 1604 1605 // Count the number of occurrences of this value. 1606 unsigned Count = 1; 1607 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1608 ++Count; 1609 if (Count == 1) 1610 continue; 1611 // Move an even number of occurrences to Factors. 1612 Count &= ~1U; 1613 Idx -= Count; 1614 FactorPowerSum += Count; 1615 Factors.push_back(Factor(Op, Count)); 1616 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1617 } 1618 1619 // None of the adjustments above should have reduced the sum of factor powers 1620 // below our mininum of '4'. 1621 assert(FactorPowerSum >= 4); 1622 1623 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 1624 return true; 1625 } 1626 1627 /// \brief Build a tree of multiplies, computing the product of Ops. 1628 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1629 SmallVectorImpl<Value*> &Ops) { 1630 if (Ops.size() == 1) 1631 return Ops.back(); 1632 1633 Value *LHS = Ops.pop_back_val(); 1634 do { 1635 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1636 } while (!Ops.empty()); 1637 1638 return LHS; 1639 } 1640 1641 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1642 /// 1643 /// Given a vector of values raised to various powers, where no two values are 1644 /// equal and the powers are sorted in decreasing order, compute the minimal 1645 /// DAG of multiplies to compute the final product, and return that product 1646 /// value. 1647 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1648 SmallVectorImpl<Factor> &Factors) { 1649 assert(Factors[0].Power); 1650 SmallVector<Value *, 4> OuterProduct; 1651 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1652 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1653 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1654 LastIdx = Idx; 1655 continue; 1656 } 1657 1658 // We want to multiply across all the factors with the same power so that 1659 // we can raise them to that power as a single entity. Build a mini tree 1660 // for that. 1661 SmallVector<Value *, 4> InnerProduct; 1662 InnerProduct.push_back(Factors[LastIdx].Base); 1663 do { 1664 InnerProduct.push_back(Factors[Idx].Base); 1665 ++Idx; 1666 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1667 1668 // Reset the base value of the first factor to the new expression tree. 1669 // We'll remove all the factors with the same power in a second pass. 1670 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1671 if (Instruction *MI = dyn_cast<Instruction>(M)) 1672 RedoInsts.insert(MI); 1673 1674 LastIdx = Idx; 1675 } 1676 // Unique factors with equal powers -- we've folded them into the first one's 1677 // base. 1678 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1679 Factor::PowerEqual()), 1680 Factors.end()); 1681 1682 // Iteratively collect the base of each factor with an add power into the 1683 // outer product, and halve each power in preparation for squaring the 1684 // expression. 1685 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1686 if (Factors[Idx].Power & 1) 1687 OuterProduct.push_back(Factors[Idx].Base); 1688 Factors[Idx].Power >>= 1; 1689 } 1690 if (Factors[0].Power) { 1691 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1692 OuterProduct.push_back(SquareRoot); 1693 OuterProduct.push_back(SquareRoot); 1694 } 1695 if (OuterProduct.size() == 1) 1696 return OuterProduct.front(); 1697 1698 Value *V = buildMultiplyTree(Builder, OuterProduct); 1699 return V; 1700 } 1701 1702 Value *Reassociate::OptimizeMul(BinaryOperator *I, 1703 SmallVectorImpl<ValueEntry> &Ops) { 1704 // We can only optimize the multiplies when there is a chain of more than 1705 // three, such that a balanced tree might require fewer total multiplies. 1706 if (Ops.size() < 4) 1707 return nullptr; 1708 1709 // Try to turn linear trees of multiplies without other uses of the 1710 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1711 // re-use. 1712 SmallVector<Factor, 4> Factors; 1713 if (!collectMultiplyFactors(Ops, Factors)) 1714 return nullptr; // All distinct factors, so nothing left for us to do. 1715 1716 IRBuilder<> Builder(I); 1717 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1718 if (Ops.empty()) 1719 return V; 1720 1721 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1722 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 1723 return nullptr; 1724 } 1725 1726 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 1727 SmallVectorImpl<ValueEntry> &Ops) { 1728 // Now that we have the linearized expression tree, try to optimize it. 1729 // Start by folding any constants that we found. 1730 Constant *Cst = nullptr; 1731 unsigned Opcode = I->getOpcode(); 1732 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1733 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1734 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1735 } 1736 // If there was nothing but constants then we are done. 1737 if (Ops.empty()) 1738 return Cst; 1739 1740 // Put the combined constant back at the end of the operand list, except if 1741 // there is no point. For example, an add of 0 gets dropped here, while a 1742 // multiplication by zero turns the whole expression into zero. 1743 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1744 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1745 return Cst; 1746 Ops.push_back(ValueEntry(0, Cst)); 1747 } 1748 1749 if (Ops.size() == 1) return Ops[0].Op; 1750 1751 // Handle destructive annihilation due to identities between elements in the 1752 // argument list here. 1753 unsigned NumOps = Ops.size(); 1754 switch (Opcode) { 1755 default: break; 1756 case Instruction::And: 1757 case Instruction::Or: 1758 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1759 return Result; 1760 break; 1761 1762 case Instruction::Xor: 1763 if (Value *Result = OptimizeXor(I, Ops)) 1764 return Result; 1765 break; 1766 1767 case Instruction::Add: 1768 if (Value *Result = OptimizeAdd(I, Ops)) 1769 return Result; 1770 break; 1771 1772 case Instruction::Mul: 1773 if (Value *Result = OptimizeMul(I, Ops)) 1774 return Result; 1775 break; 1776 } 1777 1778 if (Ops.size() != NumOps) 1779 return OptimizeExpression(I, Ops); 1780 return nullptr; 1781 } 1782 1783 /// EraseInst - Zap the given instruction, adding interesting operands to the 1784 /// work list. 1785 void Reassociate::EraseInst(Instruction *I) { 1786 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1787 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1788 // Erase the dead instruction. 1789 ValueRankMap.erase(I); 1790 RedoInsts.remove(I); 1791 I->eraseFromParent(); 1792 // Optimize its operands. 1793 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1794 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1795 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1796 // If this is a node in an expression tree, climb to the expression root 1797 // and add that since that's where optimization actually happens. 1798 unsigned Opcode = Op->getOpcode(); 1799 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1800 Visited.insert(Op)) 1801 Op = Op->user_back(); 1802 RedoInsts.insert(Op); 1803 } 1804 } 1805 1806 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 1807 /// instructions is not allowed. 1808 void Reassociate::OptimizeInst(Instruction *I) { 1809 // Only consider operations that we understand. 1810 if (!isa<BinaryOperator>(I)) 1811 return; 1812 1813 if (I->getOpcode() == Instruction::Shl && 1814 isa<ConstantInt>(I->getOperand(1))) 1815 // If an operand of this shift is a reassociable multiply, or if the shift 1816 // is used by a reassociable multiply or add, turn into a multiply. 1817 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 1818 (I->hasOneUse() && 1819 (isReassociableOp(I->user_back(), Instruction::Mul) || 1820 isReassociableOp(I->user_back(), Instruction::Add)))) { 1821 Instruction *NI = ConvertShiftToMul(I); 1822 RedoInsts.insert(I); 1823 MadeChange = true; 1824 I = NI; 1825 } 1826 1827 // Floating point binary operators are not associative, but we can still 1828 // commute (some) of them, to canonicalize the order of their operands. 1829 // This can potentially expose more CSE opportunities, and makes writing 1830 // other transformations simpler. 1831 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { 1832 // FAdd and FMul can be commuted. 1833 if (I->getOpcode() != Instruction::FMul && 1834 I->getOpcode() != Instruction::FAdd) 1835 return; 1836 1837 Value *LHS = I->getOperand(0); 1838 Value *RHS = I->getOperand(1); 1839 unsigned LHSRank = getRank(LHS); 1840 unsigned RHSRank = getRank(RHS); 1841 1842 // Sort the operands by rank. 1843 if (RHSRank < LHSRank) { 1844 I->setOperand(0, RHS); 1845 I->setOperand(1, LHS); 1846 } 1847 1848 return; 1849 } 1850 1851 // Do not reassociate boolean (i1) expressions. We want to preserve the 1852 // original order of evaluation for short-circuited comparisons that 1853 // SimplifyCFG has folded to AND/OR expressions. If the expression 1854 // is not further optimized, it is likely to be transformed back to a 1855 // short-circuited form for code gen, and the source order may have been 1856 // optimized for the most likely conditions. 1857 if (I->getType()->isIntegerTy(1)) 1858 return; 1859 1860 // If this is a subtract instruction which is not already in negate form, 1861 // see if we can convert it to X+-Y. 1862 if (I->getOpcode() == Instruction::Sub) { 1863 if (ShouldBreakUpSubtract(I)) { 1864 Instruction *NI = BreakUpSubtract(I); 1865 RedoInsts.insert(I); 1866 MadeChange = true; 1867 I = NI; 1868 } else if (BinaryOperator::isNeg(I)) { 1869 // Otherwise, this is a negation. See if the operand is a multiply tree 1870 // and if this is not an inner node of a multiply tree. 1871 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 1872 (!I->hasOneUse() || 1873 !isReassociableOp(I->user_back(), Instruction::Mul))) { 1874 Instruction *NI = LowerNegateToMultiply(I); 1875 RedoInsts.insert(I); 1876 MadeChange = true; 1877 I = NI; 1878 } 1879 } 1880 } 1881 1882 // If this instruction is an associative binary operator, process it. 1883 if (!I->isAssociative()) return; 1884 BinaryOperator *BO = cast<BinaryOperator>(I); 1885 1886 // If this is an interior node of a reassociable tree, ignore it until we 1887 // get to the root of the tree, to avoid N^2 analysis. 1888 unsigned Opcode = BO->getOpcode(); 1889 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 1890 return; 1891 1892 // If this is an add tree that is used by a sub instruction, ignore it 1893 // until we process the subtract. 1894 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 1895 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 1896 return; 1897 1898 ReassociateExpression(BO); 1899 } 1900 1901 void Reassociate::ReassociateExpression(BinaryOperator *I) { 1902 1903 // First, walk the expression tree, linearizing the tree, collecting the 1904 // operand information. 1905 SmallVector<RepeatedValue, 8> Tree; 1906 MadeChange |= LinearizeExprTree(I, Tree); 1907 SmallVector<ValueEntry, 8> Ops; 1908 Ops.reserve(Tree.size()); 1909 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1910 RepeatedValue E = Tree[i]; 1911 Ops.append(E.second.getZExtValue(), 1912 ValueEntry(getRank(E.first), E.first)); 1913 } 1914 1915 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1916 1917 // Now that we have linearized the tree to a list and have gathered all of 1918 // the operands and their ranks, sort the operands by their rank. Use a 1919 // stable_sort so that values with equal ranks will have their relative 1920 // positions maintained (and so the compiler is deterministic). Note that 1921 // this sorts so that the highest ranking values end up at the beginning of 1922 // the vector. 1923 std::stable_sort(Ops.begin(), Ops.end()); 1924 1925 // OptimizeExpression - Now that we have the expression tree in a convenient 1926 // sorted form, optimize it globally if possible. 1927 if (Value *V = OptimizeExpression(I, Ops)) { 1928 if (V == I) 1929 // Self-referential expression in unreachable code. 1930 return; 1931 // This expression tree simplified to something that isn't a tree, 1932 // eliminate it. 1933 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 1934 I->replaceAllUsesWith(V); 1935 if (Instruction *VI = dyn_cast<Instruction>(V)) 1936 VI->setDebugLoc(I->getDebugLoc()); 1937 RedoInsts.insert(I); 1938 ++NumAnnihil; 1939 return; 1940 } 1941 1942 // We want to sink immediates as deeply as possible except in the case where 1943 // this is a multiply tree used only by an add, and the immediate is a -1. 1944 // In this case we reassociate to put the negation on the outside so that we 1945 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 1946 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && 1947 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 1948 isa<ConstantInt>(Ops.back().Op) && 1949 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 1950 ValueEntry Tmp = Ops.pop_back_val(); 1951 Ops.insert(Ops.begin(), Tmp); 1952 } 1953 1954 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 1955 1956 if (Ops.size() == 1) { 1957 if (Ops[0].Op == I) 1958 // Self-referential expression in unreachable code. 1959 return; 1960 1961 // This expression tree simplified to something that isn't a tree, 1962 // eliminate it. 1963 I->replaceAllUsesWith(Ops[0].Op); 1964 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 1965 OI->setDebugLoc(I->getDebugLoc()); 1966 RedoInsts.insert(I); 1967 return; 1968 } 1969 1970 // Now that we ordered and optimized the expressions, splat them back into 1971 // the expression tree, removing any unneeded nodes. 1972 RewriteExprTree(I, Ops); 1973 } 1974 1975 bool Reassociate::runOnFunction(Function &F) { 1976 if (skipOptnoneFunction(F)) 1977 return false; 1978 1979 // Calculate the rank map for F 1980 BuildRankMap(F); 1981 1982 MadeChange = false; 1983 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 1984 // Optimize every instruction in the basic block. 1985 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 1986 if (isInstructionTriviallyDead(II)) { 1987 EraseInst(II++); 1988 } else { 1989 OptimizeInst(II); 1990 assert(II->getParent() == BI && "Moved to a different block!"); 1991 ++II; 1992 } 1993 1994 // If this produced extra instructions to optimize, handle them now. 1995 while (!RedoInsts.empty()) { 1996 Instruction *I = RedoInsts.pop_back_val(); 1997 if (isInstructionTriviallyDead(I)) 1998 EraseInst(I); 1999 else 2000 OptimizeInst(I); 2001 } 2002 } 2003 2004 // We are done with the rank map. 2005 RankMap.clear(); 2006 ValueRankMap.clear(); 2007 2008 return MadeChange; 2009 } 2010