Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PostOrderIterator.h"
     26 #include "llvm/ADT/STLExtras.h"
     27 #include "llvm/ADT/SetVector.h"
     28 #include "llvm/ADT/Statistic.h"
     29 #include "llvm/IR/CFG.h"
     30 #include "llvm/IR/Constants.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/IR/ValueHandle.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "reassociate"
     45 
     46 STATISTIC(NumChanged, "Number of insts reassociated");
     47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     48 STATISTIC(NumFactor , "Number of multiplies factored");
     49 
     50 namespace {
     51   struct ValueEntry {
     52     unsigned Rank;
     53     Value *Op;
     54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     55   };
     56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     58   }
     59 }
     60 
     61 #ifndef NDEBUG
     62 /// PrintOps - Print out the expression identified in the Ops list.
     63 ///
     64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     65   Module *M = I->getParent()->getParent()->getParent();
     66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     67        << *Ops[0].Op->getType() << '\t';
     68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     69     dbgs() << "[ ";
     70     Ops[i].Op->printAsOperand(dbgs(), false, M);
     71     dbgs() << ", #" << Ops[i].Rank << "] ";
     72   }
     73 }
     74 #endif
     75 
     76 namespace {
     77   /// \brief Utility class representing a base and exponent pair which form one
     78   /// factor of some product.
     79   struct Factor {
     80     Value *Base;
     81     unsigned Power;
     82 
     83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
     84 
     85     /// \brief Sort factors by their Base.
     86     struct BaseSorter {
     87       bool operator()(const Factor &LHS, const Factor &RHS) {
     88         return LHS.Base < RHS.Base;
     89       }
     90     };
     91 
     92     /// \brief Compare factors for equal bases.
     93     struct BaseEqual {
     94       bool operator()(const Factor &LHS, const Factor &RHS) {
     95         return LHS.Base == RHS.Base;
     96       }
     97     };
     98 
     99     /// \brief Sort factors in descending order by their power.
    100     struct PowerDescendingSorter {
    101       bool operator()(const Factor &LHS, const Factor &RHS) {
    102         return LHS.Power > RHS.Power;
    103       }
    104     };
    105 
    106     /// \brief Compare factors for equal powers.
    107     struct PowerEqual {
    108       bool operator()(const Factor &LHS, const Factor &RHS) {
    109         return LHS.Power == RHS.Power;
    110       }
    111     };
    112   };
    113 
    114   /// Utility class representing a non-constant Xor-operand. We classify
    115   /// non-constant Xor-Operands into two categories:
    116   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
    117   ///  C2)
    118   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
    119   ///          constant.
    120   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
    121   ///          operand as "E | 0"
    122   class XorOpnd {
    123   public:
    124     XorOpnd(Value *V);
    125 
    126     bool isInvalid() const { return SymbolicPart == nullptr; }
    127     bool isOrExpr() const { return isOr; }
    128     Value *getValue() const { return OrigVal; }
    129     Value *getSymbolicPart() const { return SymbolicPart; }
    130     unsigned getSymbolicRank() const { return SymbolicRank; }
    131     const APInt &getConstPart() const { return ConstPart; }
    132 
    133     void Invalidate() { SymbolicPart = OrigVal = nullptr; }
    134     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
    135 
    136     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
    137     // The purpose is twofold:
    138     // 1) Cluster together the operands sharing the same symbolic-value.
    139     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
    140     //   could potentially shorten crital path, and expose more loop-invariants.
    141     //   Note that values' rank are basically defined in RPO order (FIXME).
    142     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
    143     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
    144     //   "z" in the order of X-Y-Z is better than any other orders.
    145     struct PtrSortFunctor {
    146       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
    147         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
    148       }
    149     };
    150   private:
    151     Value *OrigVal;
    152     Value *SymbolicPart;
    153     APInt ConstPart;
    154     unsigned SymbolicRank;
    155     bool isOr;
    156   };
    157 }
    158 
    159 namespace {
    160   class Reassociate : public FunctionPass {
    161     DenseMap<BasicBlock*, unsigned> RankMap;
    162     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    163     SetVector<AssertingVH<Instruction> > RedoInsts;
    164     bool MadeChange;
    165   public:
    166     static char ID; // Pass identification, replacement for typeid
    167     Reassociate() : FunctionPass(ID) {
    168       initializeReassociatePass(*PassRegistry::getPassRegistry());
    169     }
    170 
    171     bool runOnFunction(Function &F) override;
    172 
    173     void getAnalysisUsage(AnalysisUsage &AU) const override {
    174       AU.setPreservesCFG();
    175     }
    176   private:
    177     void BuildRankMap(Function &F);
    178     unsigned getRank(Value *V);
    179     void ReassociateExpression(BinaryOperator *I);
    180     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    181     Value *OptimizeExpression(BinaryOperator *I,
    182                               SmallVectorImpl<ValueEntry> &Ops);
    183     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    184     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    185     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
    186                         Value *&Res);
    187     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
    188                         APInt &ConstOpnd, Value *&Res);
    189     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
    190                                 SmallVectorImpl<Factor> &Factors);
    191     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
    192                                    SmallVectorImpl<Factor> &Factors);
    193     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    194     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    195     void EraseInst(Instruction *I);
    196     void OptimizeInst(Instruction *I);
    197   };
    198 }
    199 
    200 XorOpnd::XorOpnd(Value *V) {
    201   assert(!isa<ConstantInt>(V) && "No ConstantInt");
    202   OrigVal = V;
    203   Instruction *I = dyn_cast<Instruction>(V);
    204   SymbolicRank = 0;
    205 
    206   if (I && (I->getOpcode() == Instruction::Or ||
    207             I->getOpcode() == Instruction::And)) {
    208     Value *V0 = I->getOperand(0);
    209     Value *V1 = I->getOperand(1);
    210     if (isa<ConstantInt>(V0))
    211       std::swap(V0, V1);
    212 
    213     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
    214       ConstPart = C->getValue();
    215       SymbolicPart = V0;
    216       isOr = (I->getOpcode() == Instruction::Or);
    217       return;
    218     }
    219   }
    220 
    221   // view the operand as "V | 0"
    222   SymbolicPart = V;
    223   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
    224   isOr = true;
    225 }
    226 
    227 char Reassociate::ID = 0;
    228 INITIALIZE_PASS(Reassociate, "reassociate",
    229                 "Reassociate expressions", false, false)
    230 
    231 // Public interface to the Reassociate pass
    232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    233 
    234 /// isReassociableOp - Return true if V is an instruction of the specified
    235 /// opcode and if it only has one use.
    236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    237   if (V->hasOneUse() && isa<Instruction>(V) &&
    238       cast<Instruction>(V)->getOpcode() == Opcode)
    239     return cast<BinaryOperator>(V);
    240   return nullptr;
    241 }
    242 
    243 static bool isUnmovableInstruction(Instruction *I) {
    244   switch (I->getOpcode()) {
    245   case Instruction::PHI:
    246   case Instruction::LandingPad:
    247   case Instruction::Alloca:
    248   case Instruction::Load:
    249   case Instruction::Invoke:
    250   case Instruction::UDiv:
    251   case Instruction::SDiv:
    252   case Instruction::FDiv:
    253   case Instruction::URem:
    254   case Instruction::SRem:
    255   case Instruction::FRem:
    256     return true;
    257   case Instruction::Call:
    258     return !isa<DbgInfoIntrinsic>(I);
    259   default:
    260     return false;
    261   }
    262 }
    263 
    264 void Reassociate::BuildRankMap(Function &F) {
    265   unsigned i = 2;
    266 
    267   // Assign distinct ranks to function arguments
    268   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    269     ValueRankMap[&*I] = ++i;
    270 
    271   ReversePostOrderTraversal<Function*> RPOT(&F);
    272   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    273          E = RPOT.end(); I != E; ++I) {
    274     BasicBlock *BB = *I;
    275     unsigned BBRank = RankMap[BB] = ++i << 16;
    276 
    277     // Walk the basic block, adding precomputed ranks for any instructions that
    278     // we cannot move.  This ensures that the ranks for these instructions are
    279     // all different in the block.
    280     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    281       if (isUnmovableInstruction(I))
    282         ValueRankMap[&*I] = ++BBRank;
    283   }
    284 }
    285 
    286 unsigned Reassociate::getRank(Value *V) {
    287   Instruction *I = dyn_cast<Instruction>(V);
    288   if (!I) {
    289     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    290     return 0;  // Otherwise it's a global or constant, rank 0.
    291   }
    292 
    293   if (unsigned Rank = ValueRankMap[I])
    294     return Rank;    // Rank already known?
    295 
    296   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    297   // we can reassociate expressions for code motion!  Since we do not recurse
    298   // for PHI nodes, we cannot have infinite recursion here, because there
    299   // cannot be loops in the value graph that do not go through PHI nodes.
    300   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    301   for (unsigned i = 0, e = I->getNumOperands();
    302        i != e && Rank != MaxRank; ++i)
    303     Rank = std::max(Rank, getRank(I->getOperand(i)));
    304 
    305   // If this is a not or neg instruction, do not count it for rank.  This
    306   // assures us that X and ~X will have the same rank.
    307   if (!I->getType()->isIntegerTy() ||
    308       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
    309     ++Rank;
    310 
    311   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
    312   //     << Rank << "\n");
    313 
    314   return ValueRankMap[I] = Rank;
    315 }
    316 
    317 /// LowerNegateToMultiply - Replace 0-X with X*-1.
    318 ///
    319 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    320   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
    321 
    322   BinaryOperator *Res =
    323     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
    324   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
    325   Res->takeName(Neg);
    326   Neg->replaceAllUsesWith(Res);
    327   Res->setDebugLoc(Neg->getDebugLoc());
    328   return Res;
    329 }
    330 
    331 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
    332 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    333 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    334 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    335 /// even x in Bitwidth-bit arithmetic.
    336 static unsigned CarmichaelShift(unsigned Bitwidth) {
    337   if (Bitwidth < 3)
    338     return Bitwidth - 1;
    339   return Bitwidth - 2;
    340 }
    341 
    342 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
    343 /// reducing the combined weight using any special properties of the operation.
    344 /// The existing weight LHS represents the computation X op X op ... op X where
    345 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    346 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    347 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    348 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    349 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    350   // If we were working with infinite precision arithmetic then the combined
    351   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    352   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    353   // for nilpotent operations and addition, but not for idempotent operations
    354   // and multiplication), so it is important to correctly reduce the combined
    355   // weight back into range if wrapping would be wrong.
    356 
    357   // If RHS is zero then the weight didn't change.
    358   if (RHS.isMinValue())
    359     return;
    360   // If LHS is zero then the combined weight is RHS.
    361   if (LHS.isMinValue()) {
    362     LHS = RHS;
    363     return;
    364   }
    365   // From this point on we know that neither LHS nor RHS is zero.
    366 
    367   if (Instruction::isIdempotent(Opcode)) {
    368     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    369     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    370     // not a problem.
    371     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    372     return; // Return a weight of 1.
    373   }
    374   if (Instruction::isNilpotent(Opcode)) {
    375     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    376     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    377     LHS = 0; // 1 + 1 === 0 modulo 2.
    378     return;
    379   }
    380   if (Opcode == Instruction::Add) {
    381     // TODO: Reduce the weight by exploiting nsw/nuw?
    382     LHS += RHS;
    383     return;
    384   }
    385 
    386   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
    387   unsigned Bitwidth = LHS.getBitWidth();
    388   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    389   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    390   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    391   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    392   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    393   // which by a happy accident means that they can always be represented using
    394   // Bitwidth bits.
    395   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    396   // the Carmichael number).
    397   if (Bitwidth > 3) {
    398     /// CM - The value of Carmichael's lambda function.
    399     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    400     // Any weight W >= Threshold can be replaced with W - CM.
    401     APInt Threshold = CM + Bitwidth;
    402     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    403     // For Bitwidth 4 or more the following sum does not overflow.
    404     LHS += RHS;
    405     while (LHS.uge(Threshold))
    406       LHS -= CM;
    407   } else {
    408     // To avoid problems with overflow do everything the same as above but using
    409     // a larger type.
    410     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    411     unsigned Threshold = CM + Bitwidth;
    412     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    413            "Weights not reduced!");
    414     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    415     while (Total >= Threshold)
    416       Total -= CM;
    417     LHS = Total;
    418   }
    419 }
    420 
    421 typedef std::pair<Value*, APInt> RepeatedValue;
    422 
    423 /// LinearizeExprTree - Given an associative binary expression, return the leaf
    424 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    425 /// original expression is the same as
    426 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    427 /// op
    428 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    429 /// op
    430 ///   ...
    431 /// op
    432 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    433 ///
    434 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
    435 ///
    436 /// This routine may modify the function, in which case it returns 'true'.  The
    437 /// changes it makes may well be destructive, changing the value computed by 'I'
    438 /// to something completely different.  Thus if the routine returns 'true' then
    439 /// you MUST either replace I with a new expression computed from the Ops array,
    440 /// or use RewriteExprTree to put the values back in.
    441 ///
    442 /// A leaf node is either not a binary operation of the same kind as the root
    443 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    444 /// opcode), or is the same kind of binary operator but has a use which either
    445 /// does not belong to the expression, or does belong to the expression but is
    446 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    447 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    448 /// use is a non-leaf node of the expression.
    449 ///
    450 /// For example:
    451 ///           expression graph        node names
    452 ///
    453 ///                     +        |        I
    454 ///                    / \       |
    455 ///                   +   +      |      A,  B
    456 ///                  / \ / \     |
    457 ///                 *   +   *    |    C,  D,  E
    458 ///                / \ / \ / \   |
    459 ///                   +   *      |      F,  G
    460 ///
    461 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    462 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    463 ///
    464 /// The expression is maximal: if some instruction is a binary operator of the
    465 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    466 /// then the instruction also belongs to the expression, is not a leaf node of
    467 /// it, and its operands also belong to the expression (but may be leaf nodes).
    468 ///
    469 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    470 /// order to ensure that every non-root node in the expression has *exactly one*
    471 /// use by a non-leaf node of the expression.  This destruction means that the
    472 /// caller MUST either replace 'I' with a new expression or use something like
    473 /// RewriteExprTree to put the values back in if the routine indicates that it
    474 /// made a change by returning 'true'.
    475 ///
    476 /// In the above example either the right operand of A or the left operand of B
    477 /// will be replaced by undef.  If it is B's operand then this gives:
    478 ///
    479 ///                     +        |        I
    480 ///                    / \       |
    481 ///                   +   +      |      A,  B - operand of B replaced with undef
    482 ///                  / \   \     |
    483 ///                 *   +   *    |    C,  D,  E
    484 ///                / \ / \ / \   |
    485 ///                   +   *      |      F,  G
    486 ///
    487 /// Note that such undef operands can only be reached by passing through 'I'.
    488 /// For example, if you visit operands recursively starting from a leaf node
    489 /// then you will never see such an undef operand unless you get back to 'I',
    490 /// which requires passing through a phi node.
    491 ///
    492 /// Note that this routine may also mutate binary operators of the wrong type
    493 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    494 /// of the expression) if it can turn them into binary operators of the right
    495 /// type and thus make the expression bigger.
    496 
    497 static bool LinearizeExprTree(BinaryOperator *I,
    498                               SmallVectorImpl<RepeatedValue> &Ops) {
    499   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    500   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    501   unsigned Opcode = I->getOpcode();
    502   assert(Instruction::isAssociative(Opcode) &&
    503          Instruction::isCommutative(Opcode) &&
    504          "Expected an associative and commutative operation!");
    505 
    506   // Visit all operands of the expression, keeping track of their weight (the
    507   // number of paths from the expression root to the operand, or if you like
    508   // the number of times that operand occurs in the linearized expression).
    509   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    510   // while A has weight two.
    511 
    512   // Worklist of non-leaf nodes (their operands are in the expression too) along
    513   // with their weights, representing a certain number of paths to the operator.
    514   // If an operator occurs in the worklist multiple times then we found multiple
    515   // ways to get to it.
    516   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    517   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    518   bool MadeChange = false;
    519 
    520   // Leaves of the expression are values that either aren't the right kind of
    521   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    522   // some uses that are not inside the expression.  For example, in I = X + X,
    523   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    524   // X has any other uses, for example in a return instruction, then we consider
    525   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    526   // if it has more than one use then at first we conservatively consider it to
    527   // be a leaf.  Later, as the expression is explored, we may discover some more
    528   // uses of the value from inside the expression.  If all uses turn out to be
    529   // from within the expression (and the value is a binary operator of the right
    530   // kind) then the value is no longer considered to be a leaf, and its operands
    531   // are explored.
    532 
    533   // Leaves - Keeps track of the set of putative leaves as well as the number of
    534   // paths to each leaf seen so far.
    535   typedef DenseMap<Value*, APInt> LeafMap;
    536   LeafMap Leaves; // Leaf -> Total weight so far.
    537   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    538 
    539 #ifndef NDEBUG
    540   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    541 #endif
    542   while (!Worklist.empty()) {
    543     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    544     I = P.first; // We examine the operands of this binary operator.
    545 
    546     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    547       Value *Op = I->getOperand(OpIdx);
    548       APInt Weight = P.second; // Number of paths to this operand.
    549       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    550       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    551 
    552       // If this is a binary operation of the right kind with only one use then
    553       // add its operands to the expression.
    554       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    555         assert(Visited.insert(Op) && "Not first visit!");
    556         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    557         Worklist.push_back(std::make_pair(BO, Weight));
    558         continue;
    559       }
    560 
    561       // Appears to be a leaf.  Is the operand already in the set of leaves?
    562       LeafMap::iterator It = Leaves.find(Op);
    563       if (It == Leaves.end()) {
    564         // Not in the leaf map.  Must be the first time we saw this operand.
    565         assert(Visited.insert(Op) && "Not first visit!");
    566         if (!Op->hasOneUse()) {
    567           // This value has uses not accounted for by the expression, so it is
    568           // not safe to modify.  Mark it as being a leaf.
    569           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    570           LeafOrder.push_back(Op);
    571           Leaves[Op] = Weight;
    572           continue;
    573         }
    574         // No uses outside the expression, try morphing it.
    575       } else if (It != Leaves.end()) {
    576         // Already in the leaf map.
    577         assert(Visited.count(Op) && "In leaf map but not visited!");
    578 
    579         // Update the number of paths to the leaf.
    580         IncorporateWeight(It->second, Weight, Opcode);
    581 
    582 #if 0   // TODO: Re-enable once PR13021 is fixed.
    583         // The leaf already has one use from inside the expression.  As we want
    584         // exactly one such use, drop this new use of the leaf.
    585         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    586         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    587         MadeChange = true;
    588 
    589         // If the leaf is a binary operation of the right kind and we now see
    590         // that its multiple original uses were in fact all by nodes belonging
    591         // to the expression, then no longer consider it to be a leaf and add
    592         // its operands to the expression.
    593         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    594           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    595           Worklist.push_back(std::make_pair(BO, It->second));
    596           Leaves.erase(It);
    597           continue;
    598         }
    599 #endif
    600 
    601         // If we still have uses that are not accounted for by the expression
    602         // then it is not safe to modify the value.
    603         if (!Op->hasOneUse())
    604           continue;
    605 
    606         // No uses outside the expression, try morphing it.
    607         Weight = It->second;
    608         Leaves.erase(It); // Since the value may be morphed below.
    609       }
    610 
    611       // At this point we have a value which, first of all, is not a binary
    612       // expression of the right kind, and secondly, is only used inside the
    613       // expression.  This means that it can safely be modified.  See if we
    614       // can usefully morph it into an expression of the right kind.
    615       assert((!isa<Instruction>(Op) ||
    616               cast<Instruction>(Op)->getOpcode() != Opcode) &&
    617              "Should have been handled above!");
    618       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    619 
    620       // If this is a multiply expression, turn any internal negations into
    621       // multiplies by -1 so they can be reassociated.
    622       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
    623       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
    624         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    625         BO = LowerNegateToMultiply(BO);
    626         DEBUG(dbgs() << *BO << 'n');
    627         Worklist.push_back(std::make_pair(BO, Weight));
    628         MadeChange = true;
    629         continue;
    630       }
    631 
    632       // Failed to morph into an expression of the right type.  This really is
    633       // a leaf.
    634       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    635       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    636       LeafOrder.push_back(Op);
    637       Leaves[Op] = Weight;
    638     }
    639   }
    640 
    641   // The leaves, repeated according to their weights, represent the linearized
    642   // form of the expression.
    643   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    644     Value *V = LeafOrder[i];
    645     LeafMap::iterator It = Leaves.find(V);
    646     if (It == Leaves.end())
    647       // Node initially thought to be a leaf wasn't.
    648       continue;
    649     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    650     APInt Weight = It->second;
    651     if (Weight.isMinValue())
    652       // Leaf already output or weight reduction eliminated it.
    653       continue;
    654     // Ensure the leaf is only output once.
    655     It->second = 0;
    656     Ops.push_back(std::make_pair(V, Weight));
    657   }
    658 
    659   // For nilpotent operations or addition there may be no operands, for example
    660   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    661   // in both cases the weight reduces to 0 causing the value to be skipped.
    662   if (Ops.empty()) {
    663     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    664     assert(Identity && "Associative operation without identity!");
    665     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
    666   }
    667 
    668   return MadeChange;
    669 }
    670 
    671 // RewriteExprTree - Now that the operands for this expression tree are
    672 // linearized and optimized, emit them in-order.
    673 void Reassociate::RewriteExprTree(BinaryOperator *I,
    674                                   SmallVectorImpl<ValueEntry> &Ops) {
    675   assert(Ops.size() > 1 && "Single values should be used directly!");
    676 
    677   // Since our optimizations should never increase the number of operations, the
    678   // new expression can usually be written reusing the existing binary operators
    679   // from the original expression tree, without creating any new instructions,
    680   // though the rewritten expression may have a completely different topology.
    681   // We take care to not change anything if the new expression will be the same
    682   // as the original.  If more than trivial changes (like commuting operands)
    683   // were made then we are obliged to clear out any optional subclass data like
    684   // nsw flags.
    685 
    686   /// NodesToRewrite - Nodes from the original expression available for writing
    687   /// the new expression into.
    688   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    689   unsigned Opcode = I->getOpcode();
    690   BinaryOperator *Op = I;
    691 
    692   /// NotRewritable - The operands being written will be the leaves of the new
    693   /// expression and must not be used as inner nodes (via NodesToRewrite) by
    694   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
    695   /// (if they were they would have been incorporated into the expression and so
    696   /// would not be leaves), so most of the time there is no danger of this.  But
    697   /// in rare cases a leaf may become reassociable if an optimization kills uses
    698   /// of it, or it may momentarily become reassociable during rewriting (below)
    699   /// due it being removed as an operand of one of its uses.  Ensure that misuse
    700   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
    701   /// leaves and refusing to reuse any of them as inner nodes.
    702   SmallPtrSet<Value*, 8> NotRewritable;
    703   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    704     NotRewritable.insert(Ops[i].Op);
    705 
    706   // ExpressionChanged - Non-null if the rewritten expression differs from the
    707   // original in some non-trivial way, requiring the clearing of optional flags.
    708   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    709   BinaryOperator *ExpressionChanged = nullptr;
    710   for (unsigned i = 0; ; ++i) {
    711     // The last operation (which comes earliest in the IR) is special as both
    712     // operands will come from Ops, rather than just one with the other being
    713     // a subexpression.
    714     if (i+2 == Ops.size()) {
    715       Value *NewLHS = Ops[i].Op;
    716       Value *NewRHS = Ops[i+1].Op;
    717       Value *OldLHS = Op->getOperand(0);
    718       Value *OldRHS = Op->getOperand(1);
    719 
    720       if (NewLHS == OldLHS && NewRHS == OldRHS)
    721         // Nothing changed, leave it alone.
    722         break;
    723 
    724       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    725         // The order of the operands was reversed.  Swap them.
    726         DEBUG(dbgs() << "RA: " << *Op << '\n');
    727         Op->swapOperands();
    728         DEBUG(dbgs() << "TO: " << *Op << '\n');
    729         MadeChange = true;
    730         ++NumChanged;
    731         break;
    732       }
    733 
    734       // The new operation differs non-trivially from the original. Overwrite
    735       // the old operands with the new ones.
    736       DEBUG(dbgs() << "RA: " << *Op << '\n');
    737       if (NewLHS != OldLHS) {
    738         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
    739         if (BO && !NotRewritable.count(BO))
    740           NodesToRewrite.push_back(BO);
    741         Op->setOperand(0, NewLHS);
    742       }
    743       if (NewRHS != OldRHS) {
    744         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
    745         if (BO && !NotRewritable.count(BO))
    746           NodesToRewrite.push_back(BO);
    747         Op->setOperand(1, NewRHS);
    748       }
    749       DEBUG(dbgs() << "TO: " << *Op << '\n');
    750 
    751       ExpressionChanged = Op;
    752       MadeChange = true;
    753       ++NumChanged;
    754 
    755       break;
    756     }
    757 
    758     // Not the last operation.  The left-hand side will be a sub-expression
    759     // while the right-hand side will be the current element of Ops.
    760     Value *NewRHS = Ops[i].Op;
    761     if (NewRHS != Op->getOperand(1)) {
    762       DEBUG(dbgs() << "RA: " << *Op << '\n');
    763       if (NewRHS == Op->getOperand(0)) {
    764         // The new right-hand side was already present as the left operand.  If
    765         // we are lucky then swapping the operands will sort out both of them.
    766         Op->swapOperands();
    767       } else {
    768         // Overwrite with the new right-hand side.
    769         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
    770         if (BO && !NotRewritable.count(BO))
    771           NodesToRewrite.push_back(BO);
    772         Op->setOperand(1, NewRHS);
    773         ExpressionChanged = Op;
    774       }
    775       DEBUG(dbgs() << "TO: " << *Op << '\n');
    776       MadeChange = true;
    777       ++NumChanged;
    778     }
    779 
    780     // Now deal with the left-hand side.  If this is already an operation node
    781     // from the original expression then just rewrite the rest of the expression
    782     // into it.
    783     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    784     if (BO && !NotRewritable.count(BO)) {
    785       Op = BO;
    786       continue;
    787     }
    788 
    789     // Otherwise, grab a spare node from the original expression and use that as
    790     // the left-hand side.  If there are no nodes left then the optimizers made
    791     // an expression with more nodes than the original!  This usually means that
    792     // they did something stupid but it might mean that the problem was just too
    793     // hard (finding the mimimal number of multiplications needed to realize a
    794     // multiplication expression is NP-complete).  Whatever the reason, smart or
    795     // stupid, create a new node if there are none left.
    796     BinaryOperator *NewOp;
    797     if (NodesToRewrite.empty()) {
    798       Constant *Undef = UndefValue::get(I->getType());
    799       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    800                                      Undef, Undef, "", I);
    801     } else {
    802       NewOp = NodesToRewrite.pop_back_val();
    803     }
    804 
    805     DEBUG(dbgs() << "RA: " << *Op << '\n');
    806     Op->setOperand(0, NewOp);
    807     DEBUG(dbgs() << "TO: " << *Op << '\n');
    808     ExpressionChanged = Op;
    809     MadeChange = true;
    810     ++NumChanged;
    811     Op = NewOp;
    812   }
    813 
    814   // If the expression changed non-trivially then clear out all subclass data
    815   // starting from the operator specified in ExpressionChanged, and compactify
    816   // the operators to just before the expression root to guarantee that the
    817   // expression tree is dominated by all of Ops.
    818   if (ExpressionChanged)
    819     do {
    820       ExpressionChanged->clearSubclassOptionalData();
    821       if (ExpressionChanged == I)
    822         break;
    823       ExpressionChanged->moveBefore(I);
    824       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
    825     } while (1);
    826 
    827   // Throw away any left over nodes from the original expression.
    828   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    829     RedoInsts.insert(NodesToRewrite[i]);
    830 }
    831 
    832 /// NegateValue - Insert instructions before the instruction pointed to by BI,
    833 /// that computes the negative version of the value specified.  The negative
    834 /// version of the value is returned, and BI is left pointing at the instruction
    835 /// that should be processed next by the reassociation pass.
    836 static Value *NegateValue(Value *V, Instruction *BI) {
    837   if (Constant *C = dyn_cast<Constant>(V))
    838     return ConstantExpr::getNeg(C);
    839 
    840   // We are trying to expose opportunity for reassociation.  One of the things
    841   // that we want to do to achieve this is to push a negation as deep into an
    842   // expression chain as possible, to expose the add instructions.  In practice,
    843   // this means that we turn this:
    844   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    845   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    846   // the constants.  We assume that instcombine will clean up the mess later if
    847   // we introduce tons of unnecessary negation instructions.
    848   //
    849   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
    850     // Push the negates through the add.
    851     I->setOperand(0, NegateValue(I->getOperand(0), BI));
    852     I->setOperand(1, NegateValue(I->getOperand(1), BI));
    853 
    854     // We must move the add instruction here, because the neg instructions do
    855     // not dominate the old add instruction in general.  By moving it, we are
    856     // assured that the neg instructions we just inserted dominate the
    857     // instruction we are about to insert after them.
    858     //
    859     I->moveBefore(BI);
    860     I->setName(I->getName()+".neg");
    861     return I;
    862   }
    863 
    864   // Okay, we need to materialize a negated version of V with an instruction.
    865   // Scan the use lists of V to see if we have one already.
    866   for (User *U : V->users()) {
    867     if (!BinaryOperator::isNeg(U)) continue;
    868 
    869     // We found one!  Now we have to make sure that the definition dominates
    870     // this use.  We do this by moving it to the entry block (if it is a
    871     // non-instruction value) or right after the definition.  These negates will
    872     // be zapped by reassociate later, so we don't need much finesse here.
    873     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    874 
    875     // Verify that the negate is in this function, V might be a constant expr.
    876     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    877       continue;
    878 
    879     BasicBlock::iterator InsertPt;
    880     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    881       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    882         InsertPt = II->getNormalDest()->begin();
    883       } else {
    884         InsertPt = InstInput;
    885         ++InsertPt;
    886       }
    887       while (isa<PHINode>(InsertPt)) ++InsertPt;
    888     } else {
    889       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    890     }
    891     TheNeg->moveBefore(InsertPt);
    892     return TheNeg;
    893   }
    894 
    895   // Insert a 'neg' instruction that subtracts the value from zero to get the
    896   // negation.
    897   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
    898 }
    899 
    900 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
    901 /// X-Y into (X + -Y).
    902 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    903   // If this is a negation, we can't split it up!
    904   if (BinaryOperator::isNeg(Sub))
    905     return false;
    906 
    907   // Don't bother to break this up unless either the LHS is an associable add or
    908   // subtract or if this is only used by one.
    909   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
    910       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
    911     return true;
    912   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
    913       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
    914     return true;
    915   if (Sub->hasOneUse() &&
    916       (isReassociableOp(Sub->user_back(), Instruction::Add) ||
    917        isReassociableOp(Sub->user_back(), Instruction::Sub)))
    918     return true;
    919 
    920   return false;
    921 }
    922 
    923 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
    924 /// only used by an add, transform this into (X+(0-Y)) to promote better
    925 /// reassociation.
    926 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
    927   // Convert a subtract into an add and a neg instruction. This allows sub
    928   // instructions to be commuted with other add instructions.
    929   //
    930   // Calculate the negative value of Operand 1 of the sub instruction,
    931   // and set it as the RHS of the add instruction we just made.
    932   //
    933   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
    934   BinaryOperator *New =
    935     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
    936   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
    937   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
    938   New->takeName(Sub);
    939 
    940   // Everyone now refers to the add instruction.
    941   Sub->replaceAllUsesWith(New);
    942   New->setDebugLoc(Sub->getDebugLoc());
    943 
    944   DEBUG(dbgs() << "Negated: " << *New << '\n');
    945   return New;
    946 }
    947 
    948 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
    949 /// by one, change this into a multiply by a constant to assist with further
    950 /// reassociation.
    951 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
    952   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
    953   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
    954 
    955   BinaryOperator *Mul =
    956     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
    957   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
    958   Mul->takeName(Shl);
    959   Shl->replaceAllUsesWith(Mul);
    960   Mul->setDebugLoc(Shl->getDebugLoc());
    961   return Mul;
    962 }
    963 
    964 /// FindInOperandList - Scan backwards and forwards among values with the same
    965 /// rank as element i to see if X exists.  If X does not exist, return i.  This
    966 /// is useful when scanning for 'x' when we see '-x' because they both get the
    967 /// same rank.
    968 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
    969                                   Value *X) {
    970   unsigned XRank = Ops[i].Rank;
    971   unsigned e = Ops.size();
    972   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
    973     if (Ops[j].Op == X)
    974       return j;
    975   // Scan backwards.
    976   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
    977     if (Ops[j].Op == X)
    978       return j;
    979   return i;
    980 }
    981 
    982 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
    983 /// and returning the result.  Insert the tree before I.
    984 static Value *EmitAddTreeOfValues(Instruction *I,
    985                                   SmallVectorImpl<WeakVH> &Ops){
    986   if (Ops.size() == 1) return Ops.back();
    987 
    988   Value *V1 = Ops.back();
    989   Ops.pop_back();
    990   Value *V2 = EmitAddTreeOfValues(I, Ops);
    991   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
    992 }
    993 
    994 /// RemoveFactorFromExpression - If V is an expression tree that is a
    995 /// multiplication sequence, and if this sequence contains a multiply by Factor,
    996 /// remove Factor from the tree and return the new tree.
    997 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
    998   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
    999   if (!BO) return nullptr;
   1000 
   1001   SmallVector<RepeatedValue, 8> Tree;
   1002   MadeChange |= LinearizeExprTree(BO, Tree);
   1003   SmallVector<ValueEntry, 8> Factors;
   1004   Factors.reserve(Tree.size());
   1005   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1006     RepeatedValue E = Tree[i];
   1007     Factors.append(E.second.getZExtValue(),
   1008                    ValueEntry(getRank(E.first), E.first));
   1009   }
   1010 
   1011   bool FoundFactor = false;
   1012   bool NeedsNegate = false;
   1013   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1014     if (Factors[i].Op == Factor) {
   1015       FoundFactor = true;
   1016       Factors.erase(Factors.begin()+i);
   1017       break;
   1018     }
   1019 
   1020     // If this is a negative version of this factor, remove it.
   1021     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
   1022       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
   1023         if (FC1->getValue() == -FC2->getValue()) {
   1024           FoundFactor = NeedsNegate = true;
   1025           Factors.erase(Factors.begin()+i);
   1026           break;
   1027         }
   1028   }
   1029 
   1030   if (!FoundFactor) {
   1031     // Make sure to restore the operands to the expression tree.
   1032     RewriteExprTree(BO, Factors);
   1033     return nullptr;
   1034   }
   1035 
   1036   BasicBlock::iterator InsertPt = BO; ++InsertPt;
   1037 
   1038   // If this was just a single multiply, remove the multiply and return the only
   1039   // remaining operand.
   1040   if (Factors.size() == 1) {
   1041     RedoInsts.insert(BO);
   1042     V = Factors[0].Op;
   1043   } else {
   1044     RewriteExprTree(BO, Factors);
   1045     V = BO;
   1046   }
   1047 
   1048   if (NeedsNegate)
   1049     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
   1050 
   1051   return V;
   1052 }
   1053 
   1054 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
   1055 /// add its operands as factors, otherwise add V to the list of factors.
   1056 ///
   1057 /// Ops is the top-level list of add operands we're trying to factor.
   1058 static void FindSingleUseMultiplyFactors(Value *V,
   1059                                          SmallVectorImpl<Value*> &Factors,
   1060                                        const SmallVectorImpl<ValueEntry> &Ops) {
   1061   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
   1062   if (!BO) {
   1063     Factors.push_back(V);
   1064     return;
   1065   }
   1066 
   1067   // Otherwise, add the LHS and RHS to the list of factors.
   1068   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
   1069   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
   1070 }
   1071 
   1072 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
   1073 /// instruction.  This optimizes based on identities.  If it can be reduced to
   1074 /// a single Value, it is returned, otherwise the Ops list is mutated as
   1075 /// necessary.
   1076 static Value *OptimizeAndOrXor(unsigned Opcode,
   1077                                SmallVectorImpl<ValueEntry> &Ops) {
   1078   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1079   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1080   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1081     // First, check for X and ~X in the operand list.
   1082     assert(i < Ops.size());
   1083     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1084       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1085       unsigned FoundX = FindInOperandList(Ops, i, X);
   1086       if (FoundX != i) {
   1087         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1088           return Constant::getNullValue(X->getType());
   1089 
   1090         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1091           return Constant::getAllOnesValue(X->getType());
   1092       }
   1093     }
   1094 
   1095     // Next, check for duplicate pairs of values, which we assume are next to
   1096     // each other, due to our sorting criteria.
   1097     assert(i < Ops.size());
   1098     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1099       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1100         // Drop duplicate values for And and Or.
   1101         Ops.erase(Ops.begin()+i);
   1102         --i; --e;
   1103         ++NumAnnihil;
   1104         continue;
   1105       }
   1106 
   1107       // Drop pairs of values for Xor.
   1108       assert(Opcode == Instruction::Xor);
   1109       if (e == 2)
   1110         return Constant::getNullValue(Ops[0].Op->getType());
   1111 
   1112       // Y ^ X^X -> Y
   1113       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1114       i -= 1; e -= 2;
   1115       ++NumAnnihil;
   1116     }
   1117   }
   1118   return nullptr;
   1119 }
   1120 
   1121 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
   1122 /// instruction with the given two operands, and return the resulting
   1123 /// instruction. There are two special cases: 1) if the constant operand is 0,
   1124 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
   1125 /// be returned.
   1126 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
   1127                              const APInt &ConstOpnd) {
   1128   if (ConstOpnd != 0) {
   1129     if (!ConstOpnd.isAllOnesValue()) {
   1130       LLVMContext &Ctx = Opnd->getType()->getContext();
   1131       Instruction *I;
   1132       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
   1133                                     "and.ra", InsertBefore);
   1134       I->setDebugLoc(InsertBefore->getDebugLoc());
   1135       return I;
   1136     }
   1137     return Opnd;
   1138   }
   1139   return nullptr;
   1140 }
   1141 
   1142 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
   1143 // into "R ^ C", where C would be 0, and R is a symbolic value.
   1144 //
   1145 // If it was successful, true is returned, and the "R" and "C" is returned
   1146 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
   1147 // and both "Res" and "ConstOpnd" remain unchanged.
   1148 //
   1149 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
   1150                                  APInt &ConstOpnd, Value *&Res) {
   1151   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
   1152   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
   1153   //                       = (x & ~c1) ^ (c1 ^ c2)
   1154   // It is useful only when c1 == c2.
   1155   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
   1156     if (!Opnd1->getValue()->hasOneUse())
   1157       return false;
   1158 
   1159     const APInt &C1 = Opnd1->getConstPart();
   1160     if (C1 != ConstOpnd)
   1161       return false;
   1162 
   1163     Value *X = Opnd1->getSymbolicPart();
   1164     Res = createAndInstr(I, X, ~C1);
   1165     // ConstOpnd was C2, now C1 ^ C2.
   1166     ConstOpnd ^= C1;
   1167 
   1168     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1169       RedoInsts.insert(T);
   1170     return true;
   1171   }
   1172   return false;
   1173 }
   1174 
   1175 
   1176 // Helper function of OptimizeXor(). It tries to simplify
   1177 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
   1178 // symbolic value.
   1179 //
   1180 // If it was successful, true is returned, and the "R" and "C" is returned
   1181 // via "Res" and "ConstOpnd", respectively (If the entire expression is
   1182 // evaluated to a constant, the Res is set to NULL); otherwise, false is
   1183 // returned, and both "Res" and "ConstOpnd" remain unchanged.
   1184 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
   1185                                  APInt &ConstOpnd, Value *&Res) {
   1186   Value *X = Opnd1->getSymbolicPart();
   1187   if (X != Opnd2->getSymbolicPart())
   1188     return false;
   1189 
   1190   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
   1191   int DeadInstNum = 1;
   1192   if (Opnd1->getValue()->hasOneUse())
   1193     DeadInstNum++;
   1194   if (Opnd2->getValue()->hasOneUse())
   1195     DeadInstNum++;
   1196 
   1197   // Xor-Rule 2:
   1198   //  (x | c1) ^ (x & c2)
   1199   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
   1200   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
   1201   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
   1202   //
   1203   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
   1204     if (Opnd2->isOrExpr())
   1205       std::swap(Opnd1, Opnd2);
   1206 
   1207     const APInt &C1 = Opnd1->getConstPart();
   1208     const APInt &C2 = Opnd2->getConstPart();
   1209     APInt C3((~C1) ^ C2);
   1210 
   1211     // Do not increase code size!
   1212     if (C3 != 0 && !C3.isAllOnesValue()) {
   1213       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1214       if (NewInstNum > DeadInstNum)
   1215         return false;
   1216     }
   1217 
   1218     Res = createAndInstr(I, X, C3);
   1219     ConstOpnd ^= C1;
   1220 
   1221   } else if (Opnd1->isOrExpr()) {
   1222     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
   1223     //
   1224     const APInt &C1 = Opnd1->getConstPart();
   1225     const APInt &C2 = Opnd2->getConstPart();
   1226     APInt C3 = C1 ^ C2;
   1227 
   1228     // Do not increase code size
   1229     if (C3 != 0 && !C3.isAllOnesValue()) {
   1230       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1231       if (NewInstNum > DeadInstNum)
   1232         return false;
   1233     }
   1234 
   1235     Res = createAndInstr(I, X, C3);
   1236     ConstOpnd ^= C3;
   1237   } else {
   1238     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
   1239     //
   1240     const APInt &C1 = Opnd1->getConstPart();
   1241     const APInt &C2 = Opnd2->getConstPart();
   1242     APInt C3 = C1 ^ C2;
   1243     Res = createAndInstr(I, X, C3);
   1244   }
   1245 
   1246   // Put the original operands in the Redo list; hope they will be deleted
   1247   // as dead code.
   1248   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1249     RedoInsts.insert(T);
   1250   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
   1251     RedoInsts.insert(T);
   1252 
   1253   return true;
   1254 }
   1255 
   1256 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
   1257 /// to a single Value, it is returned, otherwise the Ops list is mutated as
   1258 /// necessary.
   1259 Value *Reassociate::OptimizeXor(Instruction *I,
   1260                                 SmallVectorImpl<ValueEntry> &Ops) {
   1261   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
   1262     return V;
   1263 
   1264   if (Ops.size() == 1)
   1265     return nullptr;
   1266 
   1267   SmallVector<XorOpnd, 8> Opnds;
   1268   SmallVector<XorOpnd*, 8> OpndPtrs;
   1269   Type *Ty = Ops[0].Op->getType();
   1270   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
   1271 
   1272   // Step 1: Convert ValueEntry to XorOpnd
   1273   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1274     Value *V = Ops[i].Op;
   1275     if (!isa<ConstantInt>(V)) {
   1276       XorOpnd O(V);
   1277       O.setSymbolicRank(getRank(O.getSymbolicPart()));
   1278       Opnds.push_back(O);
   1279     } else
   1280       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
   1281   }
   1282 
   1283   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
   1284   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
   1285   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
   1286   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
   1287   //  when new elements are added to the vector.
   1288   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
   1289     OpndPtrs.push_back(&Opnds[i]);
   1290 
   1291   // Step 2: Sort the Xor-Operands in a way such that the operands containing
   1292   //  the same symbolic value cluster together. For instance, the input operand
   1293   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
   1294   //  ("x | 123", "x & 789", "y & 456").
   1295   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
   1296 
   1297   // Step 3: Combine adjacent operands
   1298   XorOpnd *PrevOpnd = nullptr;
   1299   bool Changed = false;
   1300   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
   1301     XorOpnd *CurrOpnd = OpndPtrs[i];
   1302     // The combined value
   1303     Value *CV;
   1304 
   1305     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
   1306     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
   1307       Changed = true;
   1308       if (CV)
   1309         *CurrOpnd = XorOpnd(CV);
   1310       else {
   1311         CurrOpnd->Invalidate();
   1312         continue;
   1313       }
   1314     }
   1315 
   1316     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
   1317       PrevOpnd = CurrOpnd;
   1318       continue;
   1319     }
   1320 
   1321     // step 3.2: When previous and current operands share the same symbolic
   1322     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
   1323     //
   1324     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
   1325       // Remove previous operand
   1326       PrevOpnd->Invalidate();
   1327       if (CV) {
   1328         *CurrOpnd = XorOpnd(CV);
   1329         PrevOpnd = CurrOpnd;
   1330       } else {
   1331         CurrOpnd->Invalidate();
   1332         PrevOpnd = nullptr;
   1333       }
   1334       Changed = true;
   1335     }
   1336   }
   1337 
   1338   // Step 4: Reassemble the Ops
   1339   if (Changed) {
   1340     Ops.clear();
   1341     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
   1342       XorOpnd &O = Opnds[i];
   1343       if (O.isInvalid())
   1344         continue;
   1345       ValueEntry VE(getRank(O.getValue()), O.getValue());
   1346       Ops.push_back(VE);
   1347     }
   1348     if (ConstOpnd != 0) {
   1349       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
   1350       ValueEntry VE(getRank(C), C);
   1351       Ops.push_back(VE);
   1352     }
   1353     int Sz = Ops.size();
   1354     if (Sz == 1)
   1355       return Ops.back().Op;
   1356     else if (Sz == 0) {
   1357       assert(ConstOpnd == 0);
   1358       return ConstantInt::get(Ty->getContext(), ConstOpnd);
   1359     }
   1360   }
   1361 
   1362   return nullptr;
   1363 }
   1364 
   1365 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
   1366 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1367 /// is returned, otherwise the Ops list is mutated as necessary.
   1368 Value *Reassociate::OptimizeAdd(Instruction *I,
   1369                                 SmallVectorImpl<ValueEntry> &Ops) {
   1370   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1371   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
   1372   // scan for any
   1373   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1374 
   1375   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1376     Value *TheOp = Ops[i].Op;
   1377     // Check to see if we've seen this operand before.  If so, we factor all
   1378     // instances of the operand together.  Due to our sorting criteria, we know
   1379     // that these need to be next to each other in the vector.
   1380     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1381       // Rescan the list, remove all instances of this operand from the expr.
   1382       unsigned NumFound = 0;
   1383       do {
   1384         Ops.erase(Ops.begin()+i);
   1385         ++NumFound;
   1386       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1387 
   1388       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1389       ++NumFactor;
   1390 
   1391       // Insert a new multiply.
   1392       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
   1393       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
   1394 
   1395       // Now that we have inserted a multiply, optimize it. This allows us to
   1396       // handle cases that require multiple factoring steps, such as this:
   1397       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1398       RedoInsts.insert(cast<Instruction>(Mul));
   1399 
   1400       // If every add operand was a duplicate, return the multiply.
   1401       if (Ops.empty())
   1402         return Mul;
   1403 
   1404       // Otherwise, we had some input that didn't have the dupe, such as
   1405       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1406       // things being added by this operation.
   1407       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1408 
   1409       --i;
   1410       e = Ops.size();
   1411       continue;
   1412     }
   1413 
   1414     // Check for X and -X or X and ~X in the operand list.
   1415     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isNot(TheOp))
   1416       continue;
   1417 
   1418     Value *X = nullptr;
   1419     if (BinaryOperator::isNeg(TheOp))
   1420       X = BinaryOperator::getNegArgument(TheOp);
   1421     else if (BinaryOperator::isNot(TheOp))
   1422       X = BinaryOperator::getNotArgument(TheOp);
   1423 
   1424     unsigned FoundX = FindInOperandList(Ops, i, X);
   1425     if (FoundX == i)
   1426       continue;
   1427 
   1428     // Remove X and -X from the operand list.
   1429     if (Ops.size() == 2 && BinaryOperator::isNeg(TheOp))
   1430       return Constant::getNullValue(X->getType());
   1431 
   1432     // Remove X and ~X from the operand list.
   1433     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
   1434       return Constant::getAllOnesValue(X->getType());
   1435 
   1436     Ops.erase(Ops.begin()+i);
   1437     if (i < FoundX)
   1438       --FoundX;
   1439     else
   1440       --i;   // Need to back up an extra one.
   1441     Ops.erase(Ops.begin()+FoundX);
   1442     ++NumAnnihil;
   1443     --i;     // Revisit element.
   1444     e -= 2;  // Removed two elements.
   1445 
   1446     // if X and ~X we append -1 to the operand list.
   1447     if (BinaryOperator::isNot(TheOp)) {
   1448       Value *V = Constant::getAllOnesValue(X->getType());
   1449       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
   1450       e += 1;
   1451     }
   1452   }
   1453 
   1454   // Scan the operand list, checking to see if there are any common factors
   1455   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1456   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1457   // To efficiently find this, we count the number of times a factor occurs
   1458   // for any ADD operands that are MULs.
   1459   DenseMap<Value*, unsigned> FactorOccurrences;
   1460 
   1461   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1462   // where they are actually the same multiply.
   1463   unsigned MaxOcc = 0;
   1464   Value *MaxOccVal = nullptr;
   1465   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1466     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1467     if (!BOp)
   1468       continue;
   1469 
   1470     // Compute all of the factors of this added value.
   1471     SmallVector<Value*, 8> Factors;
   1472     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1473     assert(Factors.size() > 1 && "Bad linearize!");
   1474 
   1475     // Add one to FactorOccurrences for each unique factor in this op.
   1476     SmallPtrSet<Value*, 8> Duplicates;
   1477     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1478       Value *Factor = Factors[i];
   1479       if (!Duplicates.insert(Factor)) continue;
   1480 
   1481       unsigned Occ = ++FactorOccurrences[Factor];
   1482       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1483 
   1484       // If Factor is a negative constant, add the negated value as a factor
   1485       // because we can percolate the negate out.  Watch for minint, which
   1486       // cannot be positivified.
   1487       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
   1488         if (CI->isNegative() && !CI->isMinValue(true)) {
   1489           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1490           assert(!Duplicates.count(Factor) &&
   1491                  "Shouldn't have two constant factors, missed a canonicalize");
   1492 
   1493           unsigned Occ = ++FactorOccurrences[Factor];
   1494           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
   1495         }
   1496     }
   1497   }
   1498 
   1499   // If any factor occurred more than one time, we can pull it out.
   1500   if (MaxOcc > 1) {
   1501     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1502     ++NumFactor;
   1503 
   1504     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1505     // this, we could otherwise run into situations where removing a factor
   1506     // from an expression will drop a use of maxocc, and this can cause
   1507     // RemoveFactorFromExpression on successive values to behave differently.
   1508     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
   1509     SmallVector<WeakVH, 4> NewMulOps;
   1510     for (unsigned i = 0; i != Ops.size(); ++i) {
   1511       // Only try to remove factors from expressions we're allowed to.
   1512       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
   1513       if (!BOp)
   1514         continue;
   1515 
   1516       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1517         // The factorized operand may occur several times.  Convert them all in
   1518         // one fell swoop.
   1519         for (unsigned j = Ops.size(); j != i;) {
   1520           --j;
   1521           if (Ops[j].Op == Ops[i].Op) {
   1522             NewMulOps.push_back(V);
   1523             Ops.erase(Ops.begin()+j);
   1524           }
   1525         }
   1526         --i;
   1527       }
   1528     }
   1529 
   1530     // No need for extra uses anymore.
   1531     delete DummyInst;
   1532 
   1533     unsigned NumAddedValues = NewMulOps.size();
   1534     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1535 
   1536     // Now that we have inserted the add tree, optimize it. This allows us to
   1537     // handle cases that require multiple factoring steps, such as this:
   1538     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1539     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1540     (void)NumAddedValues;
   1541     if (Instruction *VI = dyn_cast<Instruction>(V))
   1542       RedoInsts.insert(VI);
   1543 
   1544     // Create the multiply.
   1545     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
   1546 
   1547     // Rerun associate on the multiply in case the inner expression turned into
   1548     // a multiply.  We want to make sure that we keep things in canonical form.
   1549     RedoInsts.insert(V2);
   1550 
   1551     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1552     // entire result expression is just the multiply "A*(B+C)".
   1553     if (Ops.empty())
   1554       return V2;
   1555 
   1556     // Otherwise, we had some input that didn't have the factor, such as
   1557     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1558     // things being added by this operation.
   1559     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1560   }
   1561 
   1562   return nullptr;
   1563 }
   1564 
   1565 /// \brief Build up a vector of value/power pairs factoring a product.
   1566 ///
   1567 /// Given a series of multiplication operands, build a vector of factors and
   1568 /// the powers each is raised to when forming the final product. Sort them in
   1569 /// the order of descending power.
   1570 ///
   1571 ///      (x*x)          -> [(x, 2)]
   1572 ///     ((x*x)*x)       -> [(x, 3)]
   1573 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1574 ///
   1575 /// \returns Whether any factors have a power greater than one.
   1576 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1577                                          SmallVectorImpl<Factor> &Factors) {
   1578   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1579   // Compute the sum of powers of simplifiable factors.
   1580   unsigned FactorPowerSum = 0;
   1581   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1582     Value *Op = Ops[Idx-1].Op;
   1583 
   1584     // Count the number of occurrences of this value.
   1585     unsigned Count = 1;
   1586     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1587       ++Count;
   1588     // Track for simplification all factors which occur 2 or more times.
   1589     if (Count > 1)
   1590       FactorPowerSum += Count;
   1591   }
   1592 
   1593   // We can only simplify factors if the sum of the powers of our simplifiable
   1594   // factors is 4 or higher. When that is the case, we will *always* have
   1595   // a simplification. This is an important invariant to prevent cyclicly
   1596   // trying to simplify already minimal formations.
   1597   if (FactorPowerSum < 4)
   1598     return false;
   1599 
   1600   // Now gather the simplifiable factors, removing them from Ops.
   1601   FactorPowerSum = 0;
   1602   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1603     Value *Op = Ops[Idx-1].Op;
   1604 
   1605     // Count the number of occurrences of this value.
   1606     unsigned Count = 1;
   1607     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1608       ++Count;
   1609     if (Count == 1)
   1610       continue;
   1611     // Move an even number of occurrences to Factors.
   1612     Count &= ~1U;
   1613     Idx -= Count;
   1614     FactorPowerSum += Count;
   1615     Factors.push_back(Factor(Op, Count));
   1616     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1617   }
   1618 
   1619   // None of the adjustments above should have reduced the sum of factor powers
   1620   // below our mininum of '4'.
   1621   assert(FactorPowerSum >= 4);
   1622 
   1623   std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   1624   return true;
   1625 }
   1626 
   1627 /// \brief Build a tree of multiplies, computing the product of Ops.
   1628 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1629                                 SmallVectorImpl<Value*> &Ops) {
   1630   if (Ops.size() == 1)
   1631     return Ops.back();
   1632 
   1633   Value *LHS = Ops.pop_back_val();
   1634   do {
   1635     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1636   } while (!Ops.empty());
   1637 
   1638   return LHS;
   1639 }
   1640 
   1641 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1642 ///
   1643 /// Given a vector of values raised to various powers, where no two values are
   1644 /// equal and the powers are sorted in decreasing order, compute the minimal
   1645 /// DAG of multiplies to compute the final product, and return that product
   1646 /// value.
   1647 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1648                                             SmallVectorImpl<Factor> &Factors) {
   1649   assert(Factors[0].Power);
   1650   SmallVector<Value *, 4> OuterProduct;
   1651   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1652        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1653     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1654       LastIdx = Idx;
   1655       continue;
   1656     }
   1657 
   1658     // We want to multiply across all the factors with the same power so that
   1659     // we can raise them to that power as a single entity. Build a mini tree
   1660     // for that.
   1661     SmallVector<Value *, 4> InnerProduct;
   1662     InnerProduct.push_back(Factors[LastIdx].Base);
   1663     do {
   1664       InnerProduct.push_back(Factors[Idx].Base);
   1665       ++Idx;
   1666     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1667 
   1668     // Reset the base value of the first factor to the new expression tree.
   1669     // We'll remove all the factors with the same power in a second pass.
   1670     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1671     if (Instruction *MI = dyn_cast<Instruction>(M))
   1672       RedoInsts.insert(MI);
   1673 
   1674     LastIdx = Idx;
   1675   }
   1676   // Unique factors with equal powers -- we've folded them into the first one's
   1677   // base.
   1678   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1679                             Factor::PowerEqual()),
   1680                 Factors.end());
   1681 
   1682   // Iteratively collect the base of each factor with an add power into the
   1683   // outer product, and halve each power in preparation for squaring the
   1684   // expression.
   1685   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1686     if (Factors[Idx].Power & 1)
   1687       OuterProduct.push_back(Factors[Idx].Base);
   1688     Factors[Idx].Power >>= 1;
   1689   }
   1690   if (Factors[0].Power) {
   1691     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1692     OuterProduct.push_back(SquareRoot);
   1693     OuterProduct.push_back(SquareRoot);
   1694   }
   1695   if (OuterProduct.size() == 1)
   1696     return OuterProduct.front();
   1697 
   1698   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1699   return V;
   1700 }
   1701 
   1702 Value *Reassociate::OptimizeMul(BinaryOperator *I,
   1703                                 SmallVectorImpl<ValueEntry> &Ops) {
   1704   // We can only optimize the multiplies when there is a chain of more than
   1705   // three, such that a balanced tree might require fewer total multiplies.
   1706   if (Ops.size() < 4)
   1707     return nullptr;
   1708 
   1709   // Try to turn linear trees of multiplies without other uses of the
   1710   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1711   // re-use.
   1712   SmallVector<Factor, 4> Factors;
   1713   if (!collectMultiplyFactors(Ops, Factors))
   1714     return nullptr; // All distinct factors, so nothing left for us to do.
   1715 
   1716   IRBuilder<> Builder(I);
   1717   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1718   if (Ops.empty())
   1719     return V;
   1720 
   1721   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1722   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1723   return nullptr;
   1724 }
   1725 
   1726 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   1727                                        SmallVectorImpl<ValueEntry> &Ops) {
   1728   // Now that we have the linearized expression tree, try to optimize it.
   1729   // Start by folding any constants that we found.
   1730   Constant *Cst = nullptr;
   1731   unsigned Opcode = I->getOpcode();
   1732   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
   1733     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
   1734     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
   1735   }
   1736   // If there was nothing but constants then we are done.
   1737   if (Ops.empty())
   1738     return Cst;
   1739 
   1740   // Put the combined constant back at the end of the operand list, except if
   1741   // there is no point.  For example, an add of 0 gets dropped here, while a
   1742   // multiplication by zero turns the whole expression into zero.
   1743   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
   1744     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
   1745       return Cst;
   1746     Ops.push_back(ValueEntry(0, Cst));
   1747   }
   1748 
   1749   if (Ops.size() == 1) return Ops[0].Op;
   1750 
   1751   // Handle destructive annihilation due to identities between elements in the
   1752   // argument list here.
   1753   unsigned NumOps = Ops.size();
   1754   switch (Opcode) {
   1755   default: break;
   1756   case Instruction::And:
   1757   case Instruction::Or:
   1758     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1759       return Result;
   1760     break;
   1761 
   1762   case Instruction::Xor:
   1763     if (Value *Result = OptimizeXor(I, Ops))
   1764       return Result;
   1765     break;
   1766 
   1767   case Instruction::Add:
   1768     if (Value *Result = OptimizeAdd(I, Ops))
   1769       return Result;
   1770     break;
   1771 
   1772   case Instruction::Mul:
   1773     if (Value *Result = OptimizeMul(I, Ops))
   1774       return Result;
   1775     break;
   1776   }
   1777 
   1778   if (Ops.size() != NumOps)
   1779     return OptimizeExpression(I, Ops);
   1780   return nullptr;
   1781 }
   1782 
   1783 /// EraseInst - Zap the given instruction, adding interesting operands to the
   1784 /// work list.
   1785 void Reassociate::EraseInst(Instruction *I) {
   1786   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1787   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1788   // Erase the dead instruction.
   1789   ValueRankMap.erase(I);
   1790   RedoInsts.remove(I);
   1791   I->eraseFromParent();
   1792   // Optimize its operands.
   1793   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1794   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1795     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1796       // If this is a node in an expression tree, climb to the expression root
   1797       // and add that since that's where optimization actually happens.
   1798       unsigned Opcode = Op->getOpcode();
   1799       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
   1800              Visited.insert(Op))
   1801         Op = Op->user_back();
   1802       RedoInsts.insert(Op);
   1803     }
   1804 }
   1805 
   1806 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
   1807 /// instructions is not allowed.
   1808 void Reassociate::OptimizeInst(Instruction *I) {
   1809   // Only consider operations that we understand.
   1810   if (!isa<BinaryOperator>(I))
   1811     return;
   1812 
   1813   if (I->getOpcode() == Instruction::Shl &&
   1814       isa<ConstantInt>(I->getOperand(1)))
   1815     // If an operand of this shift is a reassociable multiply, or if the shift
   1816     // is used by a reassociable multiply or add, turn into a multiply.
   1817     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   1818         (I->hasOneUse() &&
   1819          (isReassociableOp(I->user_back(), Instruction::Mul) ||
   1820           isReassociableOp(I->user_back(), Instruction::Add)))) {
   1821       Instruction *NI = ConvertShiftToMul(I);
   1822       RedoInsts.insert(I);
   1823       MadeChange = true;
   1824       I = NI;
   1825     }
   1826 
   1827   // Floating point binary operators are not associative, but we can still
   1828   // commute (some) of them, to canonicalize the order of their operands.
   1829   // This can potentially expose more CSE opportunities, and makes writing
   1830   // other transformations simpler.
   1831   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
   1832     // FAdd and FMul can be commuted.
   1833     if (I->getOpcode() != Instruction::FMul &&
   1834         I->getOpcode() != Instruction::FAdd)
   1835       return;
   1836 
   1837     Value *LHS = I->getOperand(0);
   1838     Value *RHS = I->getOperand(1);
   1839     unsigned LHSRank = getRank(LHS);
   1840     unsigned RHSRank = getRank(RHS);
   1841 
   1842     // Sort the operands by rank.
   1843     if (RHSRank < LHSRank) {
   1844       I->setOperand(0, RHS);
   1845       I->setOperand(1, LHS);
   1846     }
   1847 
   1848     return;
   1849   }
   1850 
   1851   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   1852   // original order of evaluation for short-circuited comparisons that
   1853   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   1854   // is not further optimized, it is likely to be transformed back to a
   1855   // short-circuited form for code gen, and the source order may have been
   1856   // optimized for the most likely conditions.
   1857   if (I->getType()->isIntegerTy(1))
   1858     return;
   1859 
   1860   // If this is a subtract instruction which is not already in negate form,
   1861   // see if we can convert it to X+-Y.
   1862   if (I->getOpcode() == Instruction::Sub) {
   1863     if (ShouldBreakUpSubtract(I)) {
   1864       Instruction *NI = BreakUpSubtract(I);
   1865       RedoInsts.insert(I);
   1866       MadeChange = true;
   1867       I = NI;
   1868     } else if (BinaryOperator::isNeg(I)) {
   1869       // Otherwise, this is a negation.  See if the operand is a multiply tree
   1870       // and if this is not an inner node of a multiply tree.
   1871       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   1872           (!I->hasOneUse() ||
   1873            !isReassociableOp(I->user_back(), Instruction::Mul))) {
   1874         Instruction *NI = LowerNegateToMultiply(I);
   1875         RedoInsts.insert(I);
   1876         MadeChange = true;
   1877         I = NI;
   1878       }
   1879     }
   1880   }
   1881 
   1882   // If this instruction is an associative binary operator, process it.
   1883   if (!I->isAssociative()) return;
   1884   BinaryOperator *BO = cast<BinaryOperator>(I);
   1885 
   1886   // If this is an interior node of a reassociable tree, ignore it until we
   1887   // get to the root of the tree, to avoid N^2 analysis.
   1888   unsigned Opcode = BO->getOpcode();
   1889   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
   1890     return;
   1891 
   1892   // If this is an add tree that is used by a sub instruction, ignore it
   1893   // until we process the subtract.
   1894   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   1895       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
   1896     return;
   1897 
   1898   ReassociateExpression(BO);
   1899 }
   1900 
   1901 void Reassociate::ReassociateExpression(BinaryOperator *I) {
   1902 
   1903   // First, walk the expression tree, linearizing the tree, collecting the
   1904   // operand information.
   1905   SmallVector<RepeatedValue, 8> Tree;
   1906   MadeChange |= LinearizeExprTree(I, Tree);
   1907   SmallVector<ValueEntry, 8> Ops;
   1908   Ops.reserve(Tree.size());
   1909   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1910     RepeatedValue E = Tree[i];
   1911     Ops.append(E.second.getZExtValue(),
   1912                ValueEntry(getRank(E.first), E.first));
   1913   }
   1914 
   1915   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1916 
   1917   // Now that we have linearized the tree to a list and have gathered all of
   1918   // the operands and their ranks, sort the operands by their rank.  Use a
   1919   // stable_sort so that values with equal ranks will have their relative
   1920   // positions maintained (and so the compiler is deterministic).  Note that
   1921   // this sorts so that the highest ranking values end up at the beginning of
   1922   // the vector.
   1923   std::stable_sort(Ops.begin(), Ops.end());
   1924 
   1925   // OptimizeExpression - Now that we have the expression tree in a convenient
   1926   // sorted form, optimize it globally if possible.
   1927   if (Value *V = OptimizeExpression(I, Ops)) {
   1928     if (V == I)
   1929       // Self-referential expression in unreachable code.
   1930       return;
   1931     // This expression tree simplified to something that isn't a tree,
   1932     // eliminate it.
   1933     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   1934     I->replaceAllUsesWith(V);
   1935     if (Instruction *VI = dyn_cast<Instruction>(V))
   1936       VI->setDebugLoc(I->getDebugLoc());
   1937     RedoInsts.insert(I);
   1938     ++NumAnnihil;
   1939     return;
   1940   }
   1941 
   1942   // We want to sink immediates as deeply as possible except in the case where
   1943   // this is a multiply tree used only by an add, and the immediate is a -1.
   1944   // In this case we reassociate to put the negation on the outside so that we
   1945   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   1946   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
   1947       cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
   1948       isa<ConstantInt>(Ops.back().Op) &&
   1949       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   1950     ValueEntry Tmp = Ops.pop_back_val();
   1951     Ops.insert(Ops.begin(), Tmp);
   1952   }
   1953 
   1954   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   1955 
   1956   if (Ops.size() == 1) {
   1957     if (Ops[0].Op == I)
   1958       // Self-referential expression in unreachable code.
   1959       return;
   1960 
   1961     // This expression tree simplified to something that isn't a tree,
   1962     // eliminate it.
   1963     I->replaceAllUsesWith(Ops[0].Op);
   1964     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   1965       OI->setDebugLoc(I->getDebugLoc());
   1966     RedoInsts.insert(I);
   1967     return;
   1968   }
   1969 
   1970   // Now that we ordered and optimized the expressions, splat them back into
   1971   // the expression tree, removing any unneeded nodes.
   1972   RewriteExprTree(I, Ops);
   1973 }
   1974 
   1975 bool Reassociate::runOnFunction(Function &F) {
   1976   if (skipOptnoneFunction(F))
   1977     return false;
   1978 
   1979   // Calculate the rank map for F
   1980   BuildRankMap(F);
   1981 
   1982   MadeChange = false;
   1983   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   1984     // Optimize every instruction in the basic block.
   1985     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
   1986       if (isInstructionTriviallyDead(II)) {
   1987         EraseInst(II++);
   1988       } else {
   1989         OptimizeInst(II);
   1990         assert(II->getParent() == BI && "Moved to a different block!");
   1991         ++II;
   1992       }
   1993 
   1994     // If this produced extra instructions to optimize, handle them now.
   1995     while (!RedoInsts.empty()) {
   1996       Instruction *I = RedoInsts.pop_back_val();
   1997       if (isInstructionTriviallyDead(I))
   1998         EraseInst(I);
   1999       else
   2000         OptimizeInst(I);
   2001     }
   2002   }
   2003 
   2004   // We are done with the rank map.
   2005   RankMap.clear();
   2006   ValueRankMap.clear();
   2007 
   2008   return MadeChange;
   2009 }
   2010