1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/Analysis/ConstantFolding.h" 66 #include "llvm/Analysis/InstructionSimplify.h" 67 #include "llvm/Analysis/LoopInfo.h" 68 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/GetElementPtrTypeIterator.h" 76 #include "llvm/IR/GlobalAlias.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/InstIterator.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetLibraryInfo.h" 88 #include <algorithm> 89 using namespace llvm; 90 91 #define DEBUG_TYPE "scalar-evolution" 92 93 STATISTIC(NumArrayLenItCounts, 94 "Number of trip counts computed with array length"); 95 STATISTIC(NumTripCountsComputed, 96 "Number of loops with predictable loop counts"); 97 STATISTIC(NumTripCountsNotComputed, 98 "Number of loops without predictable loop counts"); 99 STATISTIC(NumBruteForceTripCountsComputed, 100 "Number of loops with trip counts computed by force"); 101 102 static cl::opt<unsigned> 103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 104 cl::desc("Maximum number of iterations SCEV will " 105 "symbolically execute a constant " 106 "derived loop"), 107 cl::init(100)); 108 109 // FIXME: Enable this with XDEBUG when the test suite is clean. 110 static cl::opt<bool> 111 VerifySCEV("verify-scev", 112 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 113 114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution", 115 "Scalar Evolution Analysis", false, true) 116 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 117 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution", 120 "Scalar Evolution Analysis", false, true) 121 char ScalarEvolution::ID = 0; 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 #endif 137 138 void SCEV::print(raw_ostream &OS) const { 139 switch (static_cast<SCEVTypes>(getSCEVType())) { 140 case scConstant: 141 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 142 return; 143 case scTruncate: { 144 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 145 const SCEV *Op = Trunc->getOperand(); 146 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 147 << *Trunc->getType() << ")"; 148 return; 149 } 150 case scZeroExtend: { 151 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 152 const SCEV *Op = ZExt->getOperand(); 153 OS << "(zext " << *Op->getType() << " " << *Op << " to " 154 << *ZExt->getType() << ")"; 155 return; 156 } 157 case scSignExtend: { 158 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 159 const SCEV *Op = SExt->getOperand(); 160 OS << "(sext " << *Op->getType() << " " << *Op << " to " 161 << *SExt->getType() << ")"; 162 return; 163 } 164 case scAddRecExpr: { 165 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 166 OS << "{" << *AR->getOperand(0); 167 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 168 OS << ",+," << *AR->getOperand(i); 169 OS << "}<"; 170 if (AR->getNoWrapFlags(FlagNUW)) 171 OS << "nuw><"; 172 if (AR->getNoWrapFlags(FlagNSW)) 173 OS << "nsw><"; 174 if (AR->getNoWrapFlags(FlagNW) && 175 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 176 OS << "nw><"; 177 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 178 OS << ">"; 179 return; 180 } 181 case scAddExpr: 182 case scMulExpr: 183 case scUMaxExpr: 184 case scSMaxExpr: { 185 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 186 const char *OpStr = nullptr; 187 switch (NAry->getSCEVType()) { 188 case scAddExpr: OpStr = " + "; break; 189 case scMulExpr: OpStr = " * "; break; 190 case scUMaxExpr: OpStr = " umax "; break; 191 case scSMaxExpr: OpStr = " smax "; break; 192 } 193 OS << "("; 194 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 195 I != E; ++I) { 196 OS << **I; 197 if (std::next(I) != E) 198 OS << OpStr; 199 } 200 OS << ")"; 201 switch (NAry->getSCEVType()) { 202 case scAddExpr: 203 case scMulExpr: 204 if (NAry->getNoWrapFlags(FlagNUW)) 205 OS << "<nuw>"; 206 if (NAry->getNoWrapFlags(FlagNSW)) 207 OS << "<nsw>"; 208 } 209 return; 210 } 211 case scUDivExpr: { 212 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 213 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 214 return; 215 } 216 case scUnknown: { 217 const SCEVUnknown *U = cast<SCEVUnknown>(this); 218 Type *AllocTy; 219 if (U->isSizeOf(AllocTy)) { 220 OS << "sizeof(" << *AllocTy << ")"; 221 return; 222 } 223 if (U->isAlignOf(AllocTy)) { 224 OS << "alignof(" << *AllocTy << ")"; 225 return; 226 } 227 228 Type *CTy; 229 Constant *FieldNo; 230 if (U->isOffsetOf(CTy, FieldNo)) { 231 OS << "offsetof(" << *CTy << ", "; 232 FieldNo->printAsOperand(OS, false); 233 OS << ")"; 234 return; 235 } 236 237 // Otherwise just print it normally. 238 U->getValue()->printAsOperand(OS, false); 239 return; 240 } 241 case scCouldNotCompute: 242 OS << "***COULDNOTCOMPUTE***"; 243 return; 244 } 245 llvm_unreachable("Unknown SCEV kind!"); 246 } 247 248 Type *SCEV::getType() const { 249 switch (static_cast<SCEVTypes>(getSCEVType())) { 250 case scConstant: 251 return cast<SCEVConstant>(this)->getType(); 252 case scTruncate: 253 case scZeroExtend: 254 case scSignExtend: 255 return cast<SCEVCastExpr>(this)->getType(); 256 case scAddRecExpr: 257 case scMulExpr: 258 case scUMaxExpr: 259 case scSMaxExpr: 260 return cast<SCEVNAryExpr>(this)->getType(); 261 case scAddExpr: 262 return cast<SCEVAddExpr>(this)->getType(); 263 case scUDivExpr: 264 return cast<SCEVUDivExpr>(this)->getType(); 265 case scUnknown: 266 return cast<SCEVUnknown>(this)->getType(); 267 case scCouldNotCompute: 268 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 269 } 270 llvm_unreachable("Unknown SCEV kind!"); 271 } 272 273 bool SCEV::isZero() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isZero(); 276 return false; 277 } 278 279 bool SCEV::isOne() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isOne(); 282 return false; 283 } 284 285 bool SCEV::isAllOnesValue() const { 286 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 287 return SC->getValue()->isAllOnesValue(); 288 return false; 289 } 290 291 /// isNonConstantNegative - Return true if the specified scev is negated, but 292 /// not a constant. 293 bool SCEV::isNonConstantNegative() const { 294 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 295 if (!Mul) return false; 296 297 // If there is a constant factor, it will be first. 298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 299 if (!SC) return false; 300 301 // Return true if the value is negative, this matches things like (-42 * V). 302 return SC->getValue()->getValue().isNegative(); 303 } 304 305 SCEVCouldNotCompute::SCEVCouldNotCompute() : 306 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 307 308 bool SCEVCouldNotCompute::classof(const SCEV *S) { 309 return S->getSCEVType() == scCouldNotCompute; 310 } 311 312 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 313 FoldingSetNodeID ID; 314 ID.AddInteger(scConstant); 315 ID.AddPointer(V); 316 void *IP = nullptr; 317 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 318 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 319 UniqueSCEVs.InsertNode(S, IP); 320 return S; 321 } 322 323 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 324 return getConstant(ConstantInt::get(getContext(), Val)); 325 } 326 327 const SCEV * 328 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 329 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 330 return getConstant(ConstantInt::get(ITy, V, isSigned)); 331 } 332 333 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 334 unsigned SCEVTy, const SCEV *op, Type *ty) 335 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 336 337 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 338 const SCEV *op, Type *ty) 339 : SCEVCastExpr(ID, scTruncate, op, ty) { 340 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 341 (Ty->isIntegerTy() || Ty->isPointerTy()) && 342 "Cannot truncate non-integer value!"); 343 } 344 345 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 346 const SCEV *op, Type *ty) 347 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 348 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 349 (Ty->isIntegerTy() || Ty->isPointerTy()) && 350 "Cannot zero extend non-integer value!"); 351 } 352 353 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 354 const SCEV *op, Type *ty) 355 : SCEVCastExpr(ID, scSignExtend, op, ty) { 356 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 357 (Ty->isIntegerTy() || Ty->isPointerTy()) && 358 "Cannot sign extend non-integer value!"); 359 } 360 361 void SCEVUnknown::deleted() { 362 // Clear this SCEVUnknown from various maps. 363 SE->forgetMemoizedResults(this); 364 365 // Remove this SCEVUnknown from the uniquing map. 366 SE->UniqueSCEVs.RemoveNode(this); 367 368 // Release the value. 369 setValPtr(nullptr); 370 } 371 372 void SCEVUnknown::allUsesReplacedWith(Value *New) { 373 // Clear this SCEVUnknown from various maps. 374 SE->forgetMemoizedResults(this); 375 376 // Remove this SCEVUnknown from the uniquing map. 377 SE->UniqueSCEVs.RemoveNode(this); 378 379 // Update this SCEVUnknown to point to the new value. This is needed 380 // because there may still be outstanding SCEVs which still point to 381 // this SCEVUnknown. 382 setValPtr(New); 383 } 384 385 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 386 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 387 if (VCE->getOpcode() == Instruction::PtrToInt) 388 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 389 if (CE->getOpcode() == Instruction::GetElementPtr && 390 CE->getOperand(0)->isNullValue() && 391 CE->getNumOperands() == 2) 392 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 393 if (CI->isOne()) { 394 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 395 ->getElementType(); 396 return true; 397 } 398 399 return false; 400 } 401 402 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 403 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 404 if (VCE->getOpcode() == Instruction::PtrToInt) 405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 406 if (CE->getOpcode() == Instruction::GetElementPtr && 407 CE->getOperand(0)->isNullValue()) { 408 Type *Ty = 409 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 410 if (StructType *STy = dyn_cast<StructType>(Ty)) 411 if (!STy->isPacked() && 412 CE->getNumOperands() == 3 && 413 CE->getOperand(1)->isNullValue()) { 414 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 415 if (CI->isOne() && 416 STy->getNumElements() == 2 && 417 STy->getElementType(0)->isIntegerTy(1)) { 418 AllocTy = STy->getElementType(1); 419 return true; 420 } 421 } 422 } 423 424 return false; 425 } 426 427 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 428 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 429 if (VCE->getOpcode() == Instruction::PtrToInt) 430 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 431 if (CE->getOpcode() == Instruction::GetElementPtr && 432 CE->getNumOperands() == 3 && 433 CE->getOperand(0)->isNullValue() && 434 CE->getOperand(1)->isNullValue()) { 435 Type *Ty = 436 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 437 // Ignore vector types here so that ScalarEvolutionExpander doesn't 438 // emit getelementptrs that index into vectors. 439 if (Ty->isStructTy() || Ty->isArrayTy()) { 440 CTy = Ty; 441 FieldNo = CE->getOperand(2); 442 return true; 443 } 444 } 445 446 return false; 447 } 448 449 //===----------------------------------------------------------------------===// 450 // SCEV Utilities 451 //===----------------------------------------------------------------------===// 452 453 namespace { 454 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 455 /// than the complexity of the RHS. This comparator is used to canonicalize 456 /// expressions. 457 class SCEVComplexityCompare { 458 const LoopInfo *const LI; 459 public: 460 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 461 462 // Return true or false if LHS is less than, or at least RHS, respectively. 463 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 464 return compare(LHS, RHS) < 0; 465 } 466 467 // Return negative, zero, or positive, if LHS is less than, equal to, or 468 // greater than RHS, respectively. A three-way result allows recursive 469 // comparisons to be more efficient. 470 int compare(const SCEV *LHS, const SCEV *RHS) const { 471 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 472 if (LHS == RHS) 473 return 0; 474 475 // Primarily, sort the SCEVs by their getSCEVType(). 476 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 477 if (LType != RType) 478 return (int)LType - (int)RType; 479 480 // Aside from the getSCEVType() ordering, the particular ordering 481 // isn't very important except that it's beneficial to be consistent, 482 // so that (a + b) and (b + a) don't end up as different expressions. 483 switch (static_cast<SCEVTypes>(LType)) { 484 case scUnknown: { 485 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 486 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 487 488 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 489 // not as complete as it could be. 490 const Value *LV = LU->getValue(), *RV = RU->getValue(); 491 492 // Order pointer values after integer values. This helps SCEVExpander 493 // form GEPs. 494 bool LIsPointer = LV->getType()->isPointerTy(), 495 RIsPointer = RV->getType()->isPointerTy(); 496 if (LIsPointer != RIsPointer) 497 return (int)LIsPointer - (int)RIsPointer; 498 499 // Compare getValueID values. 500 unsigned LID = LV->getValueID(), 501 RID = RV->getValueID(); 502 if (LID != RID) 503 return (int)LID - (int)RID; 504 505 // Sort arguments by their position. 506 if (const Argument *LA = dyn_cast<Argument>(LV)) { 507 const Argument *RA = cast<Argument>(RV); 508 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 509 return (int)LArgNo - (int)RArgNo; 510 } 511 512 // For instructions, compare their loop depth, and their operand 513 // count. This is pretty loose. 514 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 515 const Instruction *RInst = cast<Instruction>(RV); 516 517 // Compare loop depths. 518 const BasicBlock *LParent = LInst->getParent(), 519 *RParent = RInst->getParent(); 520 if (LParent != RParent) { 521 unsigned LDepth = LI->getLoopDepth(LParent), 522 RDepth = LI->getLoopDepth(RParent); 523 if (LDepth != RDepth) 524 return (int)LDepth - (int)RDepth; 525 } 526 527 // Compare the number of operands. 528 unsigned LNumOps = LInst->getNumOperands(), 529 RNumOps = RInst->getNumOperands(); 530 return (int)LNumOps - (int)RNumOps; 531 } 532 533 return 0; 534 } 535 536 case scConstant: { 537 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 538 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 539 540 // Compare constant values. 541 const APInt &LA = LC->getValue()->getValue(); 542 const APInt &RA = RC->getValue()->getValue(); 543 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 544 if (LBitWidth != RBitWidth) 545 return (int)LBitWidth - (int)RBitWidth; 546 return LA.ult(RA) ? -1 : 1; 547 } 548 549 case scAddRecExpr: { 550 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 551 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 552 553 // Compare addrec loop depths. 554 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 555 if (LLoop != RLoop) { 556 unsigned LDepth = LLoop->getLoopDepth(), 557 RDepth = RLoop->getLoopDepth(); 558 if (LDepth != RDepth) 559 return (int)LDepth - (int)RDepth; 560 } 561 562 // Addrec complexity grows with operand count. 563 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 564 if (LNumOps != RNumOps) 565 return (int)LNumOps - (int)RNumOps; 566 567 // Lexicographically compare. 568 for (unsigned i = 0; i != LNumOps; ++i) { 569 long X = compare(LA->getOperand(i), RA->getOperand(i)); 570 if (X != 0) 571 return X; 572 } 573 574 return 0; 575 } 576 577 case scAddExpr: 578 case scMulExpr: 579 case scSMaxExpr: 580 case scUMaxExpr: { 581 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 582 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 583 584 // Lexicographically compare n-ary expressions. 585 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 586 if (LNumOps != RNumOps) 587 return (int)LNumOps - (int)RNumOps; 588 589 for (unsigned i = 0; i != LNumOps; ++i) { 590 if (i >= RNumOps) 591 return 1; 592 long X = compare(LC->getOperand(i), RC->getOperand(i)); 593 if (X != 0) 594 return X; 595 } 596 return (int)LNumOps - (int)RNumOps; 597 } 598 599 case scUDivExpr: { 600 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 601 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 602 603 // Lexicographically compare udiv expressions. 604 long X = compare(LC->getLHS(), RC->getLHS()); 605 if (X != 0) 606 return X; 607 return compare(LC->getRHS(), RC->getRHS()); 608 } 609 610 case scTruncate: 611 case scZeroExtend: 612 case scSignExtend: { 613 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 614 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 615 616 // Compare cast expressions by operand. 617 return compare(LC->getOperand(), RC->getOperand()); 618 } 619 620 case scCouldNotCompute: 621 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 622 } 623 llvm_unreachable("Unknown SCEV kind!"); 624 } 625 }; 626 } 627 628 /// GroupByComplexity - Given a list of SCEV objects, order them by their 629 /// complexity, and group objects of the same complexity together by value. 630 /// When this routine is finished, we know that any duplicates in the vector are 631 /// consecutive and that complexity is monotonically increasing. 632 /// 633 /// Note that we go take special precautions to ensure that we get deterministic 634 /// results from this routine. In other words, we don't want the results of 635 /// this to depend on where the addresses of various SCEV objects happened to 636 /// land in memory. 637 /// 638 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 639 LoopInfo *LI) { 640 if (Ops.size() < 2) return; // Noop 641 if (Ops.size() == 2) { 642 // This is the common case, which also happens to be trivially simple. 643 // Special case it. 644 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 645 if (SCEVComplexityCompare(LI)(RHS, LHS)) 646 std::swap(LHS, RHS); 647 return; 648 } 649 650 // Do the rough sort by complexity. 651 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 652 653 // Now that we are sorted by complexity, group elements of the same 654 // complexity. Note that this is, at worst, N^2, but the vector is likely to 655 // be extremely short in practice. Note that we take this approach because we 656 // do not want to depend on the addresses of the objects we are grouping. 657 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 658 const SCEV *S = Ops[i]; 659 unsigned Complexity = S->getSCEVType(); 660 661 // If there are any objects of the same complexity and same value as this 662 // one, group them. 663 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 664 if (Ops[j] == S) { // Found a duplicate. 665 // Move it to immediately after i'th element. 666 std::swap(Ops[i+1], Ops[j]); 667 ++i; // no need to rescan it. 668 if (i == e-2) return; // Done! 669 } 670 } 671 } 672 } 673 674 675 676 //===----------------------------------------------------------------------===// 677 // Simple SCEV method implementations 678 //===----------------------------------------------------------------------===// 679 680 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 681 /// Assume, K > 0. 682 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 683 ScalarEvolution &SE, 684 Type *ResultTy) { 685 // Handle the simplest case efficiently. 686 if (K == 1) 687 return SE.getTruncateOrZeroExtend(It, ResultTy); 688 689 // We are using the following formula for BC(It, K): 690 // 691 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 692 // 693 // Suppose, W is the bitwidth of the return value. We must be prepared for 694 // overflow. Hence, we must assure that the result of our computation is 695 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 696 // safe in modular arithmetic. 697 // 698 // However, this code doesn't use exactly that formula; the formula it uses 699 // is something like the following, where T is the number of factors of 2 in 700 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 701 // exponentiation: 702 // 703 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 704 // 705 // This formula is trivially equivalent to the previous formula. However, 706 // this formula can be implemented much more efficiently. The trick is that 707 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 708 // arithmetic. To do exact division in modular arithmetic, all we have 709 // to do is multiply by the inverse. Therefore, this step can be done at 710 // width W. 711 // 712 // The next issue is how to safely do the division by 2^T. The way this 713 // is done is by doing the multiplication step at a width of at least W + T 714 // bits. This way, the bottom W+T bits of the product are accurate. Then, 715 // when we perform the division by 2^T (which is equivalent to a right shift 716 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 717 // truncated out after the division by 2^T. 718 // 719 // In comparison to just directly using the first formula, this technique 720 // is much more efficient; using the first formula requires W * K bits, 721 // but this formula less than W + K bits. Also, the first formula requires 722 // a division step, whereas this formula only requires multiplies and shifts. 723 // 724 // It doesn't matter whether the subtraction step is done in the calculation 725 // width or the input iteration count's width; if the subtraction overflows, 726 // the result must be zero anyway. We prefer here to do it in the width of 727 // the induction variable because it helps a lot for certain cases; CodeGen 728 // isn't smart enough to ignore the overflow, which leads to much less 729 // efficient code if the width of the subtraction is wider than the native 730 // register width. 731 // 732 // (It's possible to not widen at all by pulling out factors of 2 before 733 // the multiplication; for example, K=2 can be calculated as 734 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 735 // extra arithmetic, so it's not an obvious win, and it gets 736 // much more complicated for K > 3.) 737 738 // Protection from insane SCEVs; this bound is conservative, 739 // but it probably doesn't matter. 740 if (K > 1000) 741 return SE.getCouldNotCompute(); 742 743 unsigned W = SE.getTypeSizeInBits(ResultTy); 744 745 // Calculate K! / 2^T and T; we divide out the factors of two before 746 // multiplying for calculating K! / 2^T to avoid overflow. 747 // Other overflow doesn't matter because we only care about the bottom 748 // W bits of the result. 749 APInt OddFactorial(W, 1); 750 unsigned T = 1; 751 for (unsigned i = 3; i <= K; ++i) { 752 APInt Mult(W, i); 753 unsigned TwoFactors = Mult.countTrailingZeros(); 754 T += TwoFactors; 755 Mult = Mult.lshr(TwoFactors); 756 OddFactorial *= Mult; 757 } 758 759 // We need at least W + T bits for the multiplication step 760 unsigned CalculationBits = W + T; 761 762 // Calculate 2^T, at width T+W. 763 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 764 765 // Calculate the multiplicative inverse of K! / 2^T; 766 // this multiplication factor will perform the exact division by 767 // K! / 2^T. 768 APInt Mod = APInt::getSignedMinValue(W+1); 769 APInt MultiplyFactor = OddFactorial.zext(W+1); 770 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 771 MultiplyFactor = MultiplyFactor.trunc(W); 772 773 // Calculate the product, at width T+W 774 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 775 CalculationBits); 776 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 777 for (unsigned i = 1; i != K; ++i) { 778 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 779 Dividend = SE.getMulExpr(Dividend, 780 SE.getTruncateOrZeroExtend(S, CalculationTy)); 781 } 782 783 // Divide by 2^T 784 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 785 786 // Truncate the result, and divide by K! / 2^T. 787 788 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 789 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 790 } 791 792 /// evaluateAtIteration - Return the value of this chain of recurrences at 793 /// the specified iteration number. We can evaluate this recurrence by 794 /// multiplying each element in the chain by the binomial coefficient 795 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 796 /// 797 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 798 /// 799 /// where BC(It, k) stands for binomial coefficient. 800 /// 801 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 802 ScalarEvolution &SE) const { 803 const SCEV *Result = getStart(); 804 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 805 // The computation is correct in the face of overflow provided that the 806 // multiplication is performed _after_ the evaluation of the binomial 807 // coefficient. 808 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 809 if (isa<SCEVCouldNotCompute>(Coeff)) 810 return Coeff; 811 812 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 813 } 814 return Result; 815 } 816 817 //===----------------------------------------------------------------------===// 818 // SCEV Expression folder implementations 819 //===----------------------------------------------------------------------===// 820 821 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 822 Type *Ty) { 823 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 824 "This is not a truncating conversion!"); 825 assert(isSCEVable(Ty) && 826 "This is not a conversion to a SCEVable type!"); 827 Ty = getEffectiveSCEVType(Ty); 828 829 FoldingSetNodeID ID; 830 ID.AddInteger(scTruncate); 831 ID.AddPointer(Op); 832 ID.AddPointer(Ty); 833 void *IP = nullptr; 834 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 835 836 // Fold if the operand is constant. 837 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 838 return getConstant( 839 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 840 841 // trunc(trunc(x)) --> trunc(x) 842 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 843 return getTruncateExpr(ST->getOperand(), Ty); 844 845 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 846 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 847 return getTruncateOrSignExtend(SS->getOperand(), Ty); 848 849 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 850 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 851 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 852 853 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 854 // eliminate all the truncates. 855 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 856 SmallVector<const SCEV *, 4> Operands; 857 bool hasTrunc = false; 858 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 859 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 860 hasTrunc = isa<SCEVTruncateExpr>(S); 861 Operands.push_back(S); 862 } 863 if (!hasTrunc) 864 return getAddExpr(Operands); 865 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 866 } 867 868 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 869 // eliminate all the truncates. 870 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 871 SmallVector<const SCEV *, 4> Operands; 872 bool hasTrunc = false; 873 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 874 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 875 hasTrunc = isa<SCEVTruncateExpr>(S); 876 Operands.push_back(S); 877 } 878 if (!hasTrunc) 879 return getMulExpr(Operands); 880 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 881 } 882 883 // If the input value is a chrec scev, truncate the chrec's operands. 884 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 885 SmallVector<const SCEV *, 4> Operands; 886 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 887 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 888 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 889 } 890 891 // The cast wasn't folded; create an explicit cast node. We can reuse 892 // the existing insert position since if we get here, we won't have 893 // made any changes which would invalidate it. 894 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 895 Op, Ty); 896 UniqueSCEVs.InsertNode(S, IP); 897 return S; 898 } 899 900 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 901 Type *Ty) { 902 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 903 "This is not an extending conversion!"); 904 assert(isSCEVable(Ty) && 905 "This is not a conversion to a SCEVable type!"); 906 Ty = getEffectiveSCEVType(Ty); 907 908 // Fold if the operand is constant. 909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 910 return getConstant( 911 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 912 913 // zext(zext(x)) --> zext(x) 914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 915 return getZeroExtendExpr(SZ->getOperand(), Ty); 916 917 // Before doing any expensive analysis, check to see if we've already 918 // computed a SCEV for this Op and Ty. 919 FoldingSetNodeID ID; 920 ID.AddInteger(scZeroExtend); 921 ID.AddPointer(Op); 922 ID.AddPointer(Ty); 923 void *IP = nullptr; 924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 925 926 // zext(trunc(x)) --> zext(x) or x or trunc(x) 927 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 928 // It's possible the bits taken off by the truncate were all zero bits. If 929 // so, we should be able to simplify this further. 930 const SCEV *X = ST->getOperand(); 931 ConstantRange CR = getUnsignedRange(X); 932 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 933 unsigned NewBits = getTypeSizeInBits(Ty); 934 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 935 CR.zextOrTrunc(NewBits))) 936 return getTruncateOrZeroExtend(X, Ty); 937 } 938 939 // If the input value is a chrec scev, and we can prove that the value 940 // did not overflow the old, smaller, value, we can zero extend all of the 941 // operands (often constants). This allows analysis of something like 942 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 943 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 944 if (AR->isAffine()) { 945 const SCEV *Start = AR->getStart(); 946 const SCEV *Step = AR->getStepRecurrence(*this); 947 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 948 const Loop *L = AR->getLoop(); 949 950 // If we have special knowledge that this addrec won't overflow, 951 // we don't need to do any further analysis. 952 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 953 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 954 getZeroExtendExpr(Step, Ty), 955 L, AR->getNoWrapFlags()); 956 957 // Check whether the backedge-taken count is SCEVCouldNotCompute. 958 // Note that this serves two purposes: It filters out loops that are 959 // simply not analyzable, and it covers the case where this code is 960 // being called from within backedge-taken count analysis, such that 961 // attempting to ask for the backedge-taken count would likely result 962 // in infinite recursion. In the later case, the analysis code will 963 // cope with a conservative value, and it will take care to purge 964 // that value once it has finished. 965 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 966 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 967 // Manually compute the final value for AR, checking for 968 // overflow. 969 970 // Check whether the backedge-taken count can be losslessly casted to 971 // the addrec's type. The count is always unsigned. 972 const SCEV *CastedMaxBECount = 973 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 974 const SCEV *RecastedMaxBECount = 975 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 976 if (MaxBECount == RecastedMaxBECount) { 977 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 978 // Check whether Start+Step*MaxBECount has no unsigned overflow. 979 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 980 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 981 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 982 const SCEV *WideMaxBECount = 983 getZeroExtendExpr(CastedMaxBECount, WideTy); 984 const SCEV *OperandExtendedAdd = 985 getAddExpr(WideStart, 986 getMulExpr(WideMaxBECount, 987 getZeroExtendExpr(Step, WideTy))); 988 if (ZAdd == OperandExtendedAdd) { 989 // Cache knowledge of AR NUW, which is propagated to this AddRec. 990 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 991 // Return the expression with the addrec on the outside. 992 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 993 getZeroExtendExpr(Step, Ty), 994 L, AR->getNoWrapFlags()); 995 } 996 // Similar to above, only this time treat the step value as signed. 997 // This covers loops that count down. 998 OperandExtendedAdd = 999 getAddExpr(WideStart, 1000 getMulExpr(WideMaxBECount, 1001 getSignExtendExpr(Step, WideTy))); 1002 if (ZAdd == OperandExtendedAdd) { 1003 // Cache knowledge of AR NW, which is propagated to this AddRec. 1004 // Negative step causes unsigned wrap, but it still can't self-wrap. 1005 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1006 // Return the expression with the addrec on the outside. 1007 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1008 getSignExtendExpr(Step, Ty), 1009 L, AR->getNoWrapFlags()); 1010 } 1011 } 1012 1013 // If the backedge is guarded by a comparison with the pre-inc value 1014 // the addrec is safe. Also, if the entry is guarded by a comparison 1015 // with the start value and the backedge is guarded by a comparison 1016 // with the post-inc value, the addrec is safe. 1017 if (isKnownPositive(Step)) { 1018 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1019 getUnsignedRange(Step).getUnsignedMax()); 1020 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1021 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1022 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1023 AR->getPostIncExpr(*this), N))) { 1024 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1025 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1026 // Return the expression with the addrec on the outside. 1027 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1028 getZeroExtendExpr(Step, Ty), 1029 L, AR->getNoWrapFlags()); 1030 } 1031 } else if (isKnownNegative(Step)) { 1032 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1033 getSignedRange(Step).getSignedMin()); 1034 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1035 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1036 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1037 AR->getPostIncExpr(*this), N))) { 1038 // Cache knowledge of AR NW, which is propagated to this AddRec. 1039 // Negative step causes unsigned wrap, but it still can't self-wrap. 1040 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1041 // Return the expression with the addrec on the outside. 1042 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 1043 getSignExtendExpr(Step, Ty), 1044 L, AR->getNoWrapFlags()); 1045 } 1046 } 1047 } 1048 } 1049 1050 // The cast wasn't folded; create an explicit cast node. 1051 // Recompute the insert position, as it may have been invalidated. 1052 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1053 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1054 Op, Ty); 1055 UniqueSCEVs.InsertNode(S, IP); 1056 return S; 1057 } 1058 1059 // Get the limit of a recurrence such that incrementing by Step cannot cause 1060 // signed overflow as long as the value of the recurrence within the loop does 1061 // not exceed this limit before incrementing. 1062 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1063 ICmpInst::Predicate *Pred, 1064 ScalarEvolution *SE) { 1065 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1066 if (SE->isKnownPositive(Step)) { 1067 *Pred = ICmpInst::ICMP_SLT; 1068 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1069 SE->getSignedRange(Step).getSignedMax()); 1070 } 1071 if (SE->isKnownNegative(Step)) { 1072 *Pred = ICmpInst::ICMP_SGT; 1073 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1074 SE->getSignedRange(Step).getSignedMin()); 1075 } 1076 return nullptr; 1077 } 1078 1079 // The recurrence AR has been shown to have no signed wrap. Typically, if we can 1080 // prove NSW for AR, then we can just as easily prove NSW for its preincrement 1081 // or postincrement sibling. This allows normalizing a sign extended AddRec as 1082 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a 1083 // result, the expression "Step + sext(PreIncAR)" is congruent with 1084 // "sext(PostIncAR)" 1085 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR, 1086 Type *Ty, 1087 ScalarEvolution *SE) { 1088 const Loop *L = AR->getLoop(); 1089 const SCEV *Start = AR->getStart(); 1090 const SCEV *Step = AR->getStepRecurrence(*SE); 1091 1092 // Check for a simple looking step prior to loop entry. 1093 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1094 if (!SA) 1095 return nullptr; 1096 1097 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1098 // subtraction is expensive. For this purpose, perform a quick and dirty 1099 // difference, by checking for Step in the operand list. 1100 SmallVector<const SCEV *, 4> DiffOps; 1101 for (const SCEV *Op : SA->operands()) 1102 if (Op != Step) 1103 DiffOps.push_back(Op); 1104 1105 if (DiffOps.size() == SA->getNumOperands()) 1106 return nullptr; 1107 1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the 1109 // same three conditions that getSignExtendedExpr checks. 1110 1111 // 1. NSW flags on the step increment. 1112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1115 1116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW)) 1117 return PreStart; 1118 1119 // 2. Direct overflow check on the step operation's expression. 1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1122 const SCEV *OperandExtendedStart = 1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy), 1124 SE->getSignExtendExpr(Step, WideTy)); 1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) { 1126 // Cache knowledge of PreAR NSW. 1127 if (PreAR) 1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW); 1129 // FIXME: this optimization needs a unit test 1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n"); 1131 return PreStart; 1132 } 1133 1134 // 3. Loop precondition. 1135 ICmpInst::Predicate Pred; 1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE); 1137 1138 if (OverflowLimit && 1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1140 return PreStart; 1141 } 1142 return nullptr; 1143 } 1144 1145 // Get the normalized sign-extended expression for this AddRec's Start. 1146 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR, 1147 Type *Ty, 1148 ScalarEvolution *SE) { 1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE); 1150 if (!PreStart) 1151 return SE->getSignExtendExpr(AR->getStart(), Ty); 1152 1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty), 1154 SE->getSignExtendExpr(PreStart, Ty)); 1155 } 1156 1157 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1158 Type *Ty) { 1159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1160 "This is not an extending conversion!"); 1161 assert(isSCEVable(Ty) && 1162 "This is not a conversion to a SCEVable type!"); 1163 Ty = getEffectiveSCEVType(Ty); 1164 1165 // Fold if the operand is constant. 1166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1167 return getConstant( 1168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1169 1170 // sext(sext(x)) --> sext(x) 1171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1172 return getSignExtendExpr(SS->getOperand(), Ty); 1173 1174 // sext(zext(x)) --> zext(x) 1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1176 return getZeroExtendExpr(SZ->getOperand(), Ty); 1177 1178 // Before doing any expensive analysis, check to see if we've already 1179 // computed a SCEV for this Op and Ty. 1180 FoldingSetNodeID ID; 1181 ID.AddInteger(scSignExtend); 1182 ID.AddPointer(Op); 1183 ID.AddPointer(Ty); 1184 void *IP = nullptr; 1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1186 1187 // If the input value is provably positive, build a zext instead. 1188 if (isKnownNonNegative(Op)) 1189 return getZeroExtendExpr(Op, Ty); 1190 1191 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1193 // It's possible the bits taken off by the truncate were all sign bits. If 1194 // so, we should be able to simplify this further. 1195 const SCEV *X = ST->getOperand(); 1196 ConstantRange CR = getSignedRange(X); 1197 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1198 unsigned NewBits = getTypeSizeInBits(Ty); 1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1200 CR.sextOrTrunc(NewBits))) 1201 return getTruncateOrSignExtend(X, Ty); 1202 } 1203 1204 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1205 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1206 if (SA->getNumOperands() == 2) { 1207 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1208 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1209 if (SMul && SC1) { 1210 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1211 const APInt &C1 = SC1->getValue()->getValue(); 1212 const APInt &C2 = SC2->getValue()->getValue(); 1213 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1214 C2.ugt(C1) && C2.isPowerOf2()) 1215 return getAddExpr(getSignExtendExpr(SC1, Ty), 1216 getSignExtendExpr(SMul, Ty)); 1217 } 1218 } 1219 } 1220 } 1221 // If the input value is a chrec scev, and we can prove that the value 1222 // did not overflow the old, smaller, value, we can sign extend all of the 1223 // operands (often constants). This allows analysis of something like 1224 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1225 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1226 if (AR->isAffine()) { 1227 const SCEV *Start = AR->getStart(); 1228 const SCEV *Step = AR->getStepRecurrence(*this); 1229 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1230 const Loop *L = AR->getLoop(); 1231 1232 // If we have special knowledge that this addrec won't overflow, 1233 // we don't need to do any further analysis. 1234 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1235 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1236 getSignExtendExpr(Step, Ty), 1237 L, SCEV::FlagNSW); 1238 1239 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1240 // Note that this serves two purposes: It filters out loops that are 1241 // simply not analyzable, and it covers the case where this code is 1242 // being called from within backedge-taken count analysis, such that 1243 // attempting to ask for the backedge-taken count would likely result 1244 // in infinite recursion. In the later case, the analysis code will 1245 // cope with a conservative value, and it will take care to purge 1246 // that value once it has finished. 1247 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1248 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1249 // Manually compute the final value for AR, checking for 1250 // overflow. 1251 1252 // Check whether the backedge-taken count can be losslessly casted to 1253 // the addrec's type. The count is always unsigned. 1254 const SCEV *CastedMaxBECount = 1255 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1256 const SCEV *RecastedMaxBECount = 1257 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1258 if (MaxBECount == RecastedMaxBECount) { 1259 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1260 // Check whether Start+Step*MaxBECount has no signed overflow. 1261 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1262 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1263 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1264 const SCEV *WideMaxBECount = 1265 getZeroExtendExpr(CastedMaxBECount, WideTy); 1266 const SCEV *OperandExtendedAdd = 1267 getAddExpr(WideStart, 1268 getMulExpr(WideMaxBECount, 1269 getSignExtendExpr(Step, WideTy))); 1270 if (SAdd == OperandExtendedAdd) { 1271 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1272 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1273 // Return the expression with the addrec on the outside. 1274 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1275 getSignExtendExpr(Step, Ty), 1276 L, AR->getNoWrapFlags()); 1277 } 1278 // Similar to above, only this time treat the step value as unsigned. 1279 // This covers loops that count up with an unsigned step. 1280 OperandExtendedAdd = 1281 getAddExpr(WideStart, 1282 getMulExpr(WideMaxBECount, 1283 getZeroExtendExpr(Step, WideTy))); 1284 if (SAdd == OperandExtendedAdd) { 1285 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1286 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1287 // Return the expression with the addrec on the outside. 1288 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1289 getZeroExtendExpr(Step, Ty), 1290 L, AR->getNoWrapFlags()); 1291 } 1292 } 1293 1294 // If the backedge is guarded by a comparison with the pre-inc value 1295 // the addrec is safe. Also, if the entry is guarded by a comparison 1296 // with the start value and the backedge is guarded by a comparison 1297 // with the post-inc value, the addrec is safe. 1298 ICmpInst::Predicate Pred; 1299 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this); 1300 if (OverflowLimit && 1301 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1302 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1303 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1304 OverflowLimit)))) { 1305 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1306 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1307 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this), 1308 getSignExtendExpr(Step, Ty), 1309 L, AR->getNoWrapFlags()); 1310 } 1311 } 1312 // If Start and Step are constants, check if we can apply this 1313 // transformation: 1314 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1315 auto SC1 = dyn_cast<SCEVConstant>(Start); 1316 auto SC2 = dyn_cast<SCEVConstant>(Step); 1317 if (SC1 && SC2) { 1318 const APInt &C1 = SC1->getValue()->getValue(); 1319 const APInt &C2 = SC2->getValue()->getValue(); 1320 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1321 C2.isPowerOf2()) { 1322 Start = getSignExtendExpr(Start, Ty); 1323 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step, 1324 L, AR->getNoWrapFlags()); 1325 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1326 } 1327 } 1328 } 1329 1330 // The cast wasn't folded; create an explicit cast node. 1331 // Recompute the insert position, as it may have been invalidated. 1332 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1333 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1334 Op, Ty); 1335 UniqueSCEVs.InsertNode(S, IP); 1336 return S; 1337 } 1338 1339 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1340 /// unspecified bits out to the given type. 1341 /// 1342 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1343 Type *Ty) { 1344 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1345 "This is not an extending conversion!"); 1346 assert(isSCEVable(Ty) && 1347 "This is not a conversion to a SCEVable type!"); 1348 Ty = getEffectiveSCEVType(Ty); 1349 1350 // Sign-extend negative constants. 1351 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1352 if (SC->getValue()->getValue().isNegative()) 1353 return getSignExtendExpr(Op, Ty); 1354 1355 // Peel off a truncate cast. 1356 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1357 const SCEV *NewOp = T->getOperand(); 1358 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1359 return getAnyExtendExpr(NewOp, Ty); 1360 return getTruncateOrNoop(NewOp, Ty); 1361 } 1362 1363 // Next try a zext cast. If the cast is folded, use it. 1364 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1365 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1366 return ZExt; 1367 1368 // Next try a sext cast. If the cast is folded, use it. 1369 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1370 if (!isa<SCEVSignExtendExpr>(SExt)) 1371 return SExt; 1372 1373 // Force the cast to be folded into the operands of an addrec. 1374 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1375 SmallVector<const SCEV *, 4> Ops; 1376 for (const SCEV *Op : AR->operands()) 1377 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1378 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1379 } 1380 1381 // If the expression is obviously signed, use the sext cast value. 1382 if (isa<SCEVSMaxExpr>(Op)) 1383 return SExt; 1384 1385 // Absent any other information, use the zext cast value. 1386 return ZExt; 1387 } 1388 1389 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1390 /// a list of operands to be added under the given scale, update the given 1391 /// map. This is a helper function for getAddRecExpr. As an example of 1392 /// what it does, given a sequence of operands that would form an add 1393 /// expression like this: 1394 /// 1395 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1396 /// 1397 /// where A and B are constants, update the map with these values: 1398 /// 1399 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1400 /// 1401 /// and add 13 + A*B*29 to AccumulatedConstant. 1402 /// This will allow getAddRecExpr to produce this: 1403 /// 1404 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1405 /// 1406 /// This form often exposes folding opportunities that are hidden in 1407 /// the original operand list. 1408 /// 1409 /// Return true iff it appears that any interesting folding opportunities 1410 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1411 /// the common case where no interesting opportunities are present, and 1412 /// is also used as a check to avoid infinite recursion. 1413 /// 1414 static bool 1415 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1416 SmallVectorImpl<const SCEV *> &NewOps, 1417 APInt &AccumulatedConstant, 1418 const SCEV *const *Ops, size_t NumOperands, 1419 const APInt &Scale, 1420 ScalarEvolution &SE) { 1421 bool Interesting = false; 1422 1423 // Iterate over the add operands. They are sorted, with constants first. 1424 unsigned i = 0; 1425 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1426 ++i; 1427 // Pull a buried constant out to the outside. 1428 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1429 Interesting = true; 1430 AccumulatedConstant += Scale * C->getValue()->getValue(); 1431 } 1432 1433 // Next comes everything else. We're especially interested in multiplies 1434 // here, but they're in the middle, so just visit the rest with one loop. 1435 for (; i != NumOperands; ++i) { 1436 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1437 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1438 APInt NewScale = 1439 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1440 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1441 // A multiplication of a constant with another add; recurse. 1442 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1443 Interesting |= 1444 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1445 Add->op_begin(), Add->getNumOperands(), 1446 NewScale, SE); 1447 } else { 1448 // A multiplication of a constant with some other value. Update 1449 // the map. 1450 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1451 const SCEV *Key = SE.getMulExpr(MulOps); 1452 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1453 M.insert(std::make_pair(Key, NewScale)); 1454 if (Pair.second) { 1455 NewOps.push_back(Pair.first->first); 1456 } else { 1457 Pair.first->second += NewScale; 1458 // The map already had an entry for this value, which may indicate 1459 // a folding opportunity. 1460 Interesting = true; 1461 } 1462 } 1463 } else { 1464 // An ordinary operand. Update the map. 1465 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1466 M.insert(std::make_pair(Ops[i], Scale)); 1467 if (Pair.second) { 1468 NewOps.push_back(Pair.first->first); 1469 } else { 1470 Pair.first->second += Scale; 1471 // The map already had an entry for this value, which may indicate 1472 // a folding opportunity. 1473 Interesting = true; 1474 } 1475 } 1476 } 1477 1478 return Interesting; 1479 } 1480 1481 namespace { 1482 struct APIntCompare { 1483 bool operator()(const APInt &LHS, const APInt &RHS) const { 1484 return LHS.ult(RHS); 1485 } 1486 }; 1487 } 1488 1489 /// getAddExpr - Get a canonical add expression, or something simpler if 1490 /// possible. 1491 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1492 SCEV::NoWrapFlags Flags) { 1493 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1494 "only nuw or nsw allowed"); 1495 assert(!Ops.empty() && "Cannot get empty add!"); 1496 if (Ops.size() == 1) return Ops[0]; 1497 #ifndef NDEBUG 1498 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1499 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1500 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1501 "SCEVAddExpr operand types don't match!"); 1502 #endif 1503 1504 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1505 // And vice-versa. 1506 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1507 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1508 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1509 bool All = true; 1510 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1511 E = Ops.end(); I != E; ++I) 1512 if (!isKnownNonNegative(*I)) { 1513 All = false; 1514 break; 1515 } 1516 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1517 } 1518 1519 // Sort by complexity, this groups all similar expression types together. 1520 GroupByComplexity(Ops, LI); 1521 1522 // If there are any constants, fold them together. 1523 unsigned Idx = 0; 1524 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1525 ++Idx; 1526 assert(Idx < Ops.size()); 1527 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1528 // We found two constants, fold them together! 1529 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1530 RHSC->getValue()->getValue()); 1531 if (Ops.size() == 2) return Ops[0]; 1532 Ops.erase(Ops.begin()+1); // Erase the folded element 1533 LHSC = cast<SCEVConstant>(Ops[0]); 1534 } 1535 1536 // If we are left with a constant zero being added, strip it off. 1537 if (LHSC->getValue()->isZero()) { 1538 Ops.erase(Ops.begin()); 1539 --Idx; 1540 } 1541 1542 if (Ops.size() == 1) return Ops[0]; 1543 } 1544 1545 // Okay, check to see if the same value occurs in the operand list more than 1546 // once. If so, merge them together into an multiply expression. Since we 1547 // sorted the list, these values are required to be adjacent. 1548 Type *Ty = Ops[0]->getType(); 1549 bool FoundMatch = false; 1550 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1551 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1552 // Scan ahead to count how many equal operands there are. 1553 unsigned Count = 2; 1554 while (i+Count != e && Ops[i+Count] == Ops[i]) 1555 ++Count; 1556 // Merge the values into a multiply. 1557 const SCEV *Scale = getConstant(Ty, Count); 1558 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 1559 if (Ops.size() == Count) 1560 return Mul; 1561 Ops[i] = Mul; 1562 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 1563 --i; e -= Count - 1; 1564 FoundMatch = true; 1565 } 1566 if (FoundMatch) 1567 return getAddExpr(Ops, Flags); 1568 1569 // Check for truncates. If all the operands are truncated from the same 1570 // type, see if factoring out the truncate would permit the result to be 1571 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1572 // if the contents of the resulting outer trunc fold to something simple. 1573 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1574 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1575 Type *DstType = Trunc->getType(); 1576 Type *SrcType = Trunc->getOperand()->getType(); 1577 SmallVector<const SCEV *, 8> LargeOps; 1578 bool Ok = true; 1579 // Check all the operands to see if they can be represented in the 1580 // source type of the truncate. 1581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1582 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1583 if (T->getOperand()->getType() != SrcType) { 1584 Ok = false; 1585 break; 1586 } 1587 LargeOps.push_back(T->getOperand()); 1588 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1589 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 1590 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1591 SmallVector<const SCEV *, 8> LargeMulOps; 1592 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1593 if (const SCEVTruncateExpr *T = 1594 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1595 if (T->getOperand()->getType() != SrcType) { 1596 Ok = false; 1597 break; 1598 } 1599 LargeMulOps.push_back(T->getOperand()); 1600 } else if (const SCEVConstant *C = 1601 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1602 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 1603 } else { 1604 Ok = false; 1605 break; 1606 } 1607 } 1608 if (Ok) 1609 LargeOps.push_back(getMulExpr(LargeMulOps)); 1610 } else { 1611 Ok = false; 1612 break; 1613 } 1614 } 1615 if (Ok) { 1616 // Evaluate the expression in the larger type. 1617 const SCEV *Fold = getAddExpr(LargeOps, Flags); 1618 // If it folds to something simple, use it. Otherwise, don't. 1619 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1620 return getTruncateExpr(Fold, DstType); 1621 } 1622 } 1623 1624 // Skip past any other cast SCEVs. 1625 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1626 ++Idx; 1627 1628 // If there are add operands they would be next. 1629 if (Idx < Ops.size()) { 1630 bool DeletedAdd = false; 1631 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1632 // If we have an add, expand the add operands onto the end of the operands 1633 // list. 1634 Ops.erase(Ops.begin()+Idx); 1635 Ops.append(Add->op_begin(), Add->op_end()); 1636 DeletedAdd = true; 1637 } 1638 1639 // If we deleted at least one add, we added operands to the end of the list, 1640 // and they are not necessarily sorted. Recurse to resort and resimplify 1641 // any operands we just acquired. 1642 if (DeletedAdd) 1643 return getAddExpr(Ops); 1644 } 1645 1646 // Skip over the add expression until we get to a multiply. 1647 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1648 ++Idx; 1649 1650 // Check to see if there are any folding opportunities present with 1651 // operands multiplied by constant values. 1652 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1653 uint64_t BitWidth = getTypeSizeInBits(Ty); 1654 DenseMap<const SCEV *, APInt> M; 1655 SmallVector<const SCEV *, 8> NewOps; 1656 APInt AccumulatedConstant(BitWidth, 0); 1657 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1658 Ops.data(), Ops.size(), 1659 APInt(BitWidth, 1), *this)) { 1660 // Some interesting folding opportunity is present, so its worthwhile to 1661 // re-generate the operands list. Group the operands by constant scale, 1662 // to avoid multiplying by the same constant scale multiple times. 1663 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1664 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 1665 E = NewOps.end(); I != E; ++I) 1666 MulOpLists[M.find(*I)->second].push_back(*I); 1667 // Re-generate the operands list. 1668 Ops.clear(); 1669 if (AccumulatedConstant != 0) 1670 Ops.push_back(getConstant(AccumulatedConstant)); 1671 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1672 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1673 if (I->first != 0) 1674 Ops.push_back(getMulExpr(getConstant(I->first), 1675 getAddExpr(I->second))); 1676 if (Ops.empty()) 1677 return getConstant(Ty, 0); 1678 if (Ops.size() == 1) 1679 return Ops[0]; 1680 return getAddExpr(Ops); 1681 } 1682 } 1683 1684 // If we are adding something to a multiply expression, make sure the 1685 // something is not already an operand of the multiply. If so, merge it into 1686 // the multiply. 1687 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1688 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1689 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1690 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1691 if (isa<SCEVConstant>(MulOpSCEV)) 1692 continue; 1693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1694 if (MulOpSCEV == Ops[AddOp]) { 1695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1696 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1697 if (Mul->getNumOperands() != 2) { 1698 // If the multiply has more than two operands, we must get the 1699 // Y*Z term. 1700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1701 Mul->op_begin()+MulOp); 1702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1703 InnerMul = getMulExpr(MulOps); 1704 } 1705 const SCEV *One = getConstant(Ty, 1); 1706 const SCEV *AddOne = getAddExpr(One, InnerMul); 1707 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 1708 if (Ops.size() == 2) return OuterMul; 1709 if (AddOp < Idx) { 1710 Ops.erase(Ops.begin()+AddOp); 1711 Ops.erase(Ops.begin()+Idx-1); 1712 } else { 1713 Ops.erase(Ops.begin()+Idx); 1714 Ops.erase(Ops.begin()+AddOp-1); 1715 } 1716 Ops.push_back(OuterMul); 1717 return getAddExpr(Ops); 1718 } 1719 1720 // Check this multiply against other multiplies being added together. 1721 for (unsigned OtherMulIdx = Idx+1; 1722 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1723 ++OtherMulIdx) { 1724 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1725 // If MulOp occurs in OtherMul, we can fold the two multiplies 1726 // together. 1727 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1728 OMulOp != e; ++OMulOp) 1729 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1730 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1731 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1732 if (Mul->getNumOperands() != 2) { 1733 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1734 Mul->op_begin()+MulOp); 1735 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 1736 InnerMul1 = getMulExpr(MulOps); 1737 } 1738 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1739 if (OtherMul->getNumOperands() != 2) { 1740 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1741 OtherMul->op_begin()+OMulOp); 1742 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 1743 InnerMul2 = getMulExpr(MulOps); 1744 } 1745 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1746 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1747 if (Ops.size() == 2) return OuterMul; 1748 Ops.erase(Ops.begin()+Idx); 1749 Ops.erase(Ops.begin()+OtherMulIdx-1); 1750 Ops.push_back(OuterMul); 1751 return getAddExpr(Ops); 1752 } 1753 } 1754 } 1755 } 1756 1757 // If there are any add recurrences in the operands list, see if any other 1758 // added values are loop invariant. If so, we can fold them into the 1759 // recurrence. 1760 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1761 ++Idx; 1762 1763 // Scan over all recurrences, trying to fold loop invariants into them. 1764 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1765 // Scan all of the other operands to this add and add them to the vector if 1766 // they are loop invariant w.r.t. the recurrence. 1767 SmallVector<const SCEV *, 8> LIOps; 1768 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1769 const Loop *AddRecLoop = AddRec->getLoop(); 1770 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1771 if (isLoopInvariant(Ops[i], AddRecLoop)) { 1772 LIOps.push_back(Ops[i]); 1773 Ops.erase(Ops.begin()+i); 1774 --i; --e; 1775 } 1776 1777 // If we found some loop invariants, fold them into the recurrence. 1778 if (!LIOps.empty()) { 1779 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1780 LIOps.push_back(AddRec->getStart()); 1781 1782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1783 AddRec->op_end()); 1784 AddRecOps[0] = getAddExpr(LIOps); 1785 1786 // Build the new addrec. Propagate the NUW and NSW flags if both the 1787 // outer add and the inner addrec are guaranteed to have no overflow. 1788 // Always propagate NW. 1789 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 1790 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 1791 1792 // If all of the other operands were loop invariant, we are done. 1793 if (Ops.size() == 1) return NewRec; 1794 1795 // Otherwise, add the folded AddRec by the non-invariant parts. 1796 for (unsigned i = 0;; ++i) 1797 if (Ops[i] == AddRec) { 1798 Ops[i] = NewRec; 1799 break; 1800 } 1801 return getAddExpr(Ops); 1802 } 1803 1804 // Okay, if there weren't any loop invariants to be folded, check to see if 1805 // there are multiple AddRec's with the same loop induction variable being 1806 // added together. If so, we can fold them. 1807 for (unsigned OtherIdx = Idx+1; 1808 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1809 ++OtherIdx) 1810 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 1811 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 1812 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1813 AddRec->op_end()); 1814 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 1815 ++OtherIdx) 1816 if (const SCEVAddRecExpr *OtherAddRec = 1817 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 1818 if (OtherAddRec->getLoop() == AddRecLoop) { 1819 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 1820 i != e; ++i) { 1821 if (i >= AddRecOps.size()) { 1822 AddRecOps.append(OtherAddRec->op_begin()+i, 1823 OtherAddRec->op_end()); 1824 break; 1825 } 1826 AddRecOps[i] = getAddExpr(AddRecOps[i], 1827 OtherAddRec->getOperand(i)); 1828 } 1829 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 1830 } 1831 // Step size has changed, so we cannot guarantee no self-wraparound. 1832 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 1833 return getAddExpr(Ops); 1834 } 1835 1836 // Otherwise couldn't fold anything into this recurrence. Move onto the 1837 // next one. 1838 } 1839 1840 // Okay, it looks like we really DO need an add expr. Check to see if we 1841 // already have one, otherwise create a new one. 1842 FoldingSetNodeID ID; 1843 ID.AddInteger(scAddExpr); 1844 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1845 ID.AddPointer(Ops[i]); 1846 void *IP = nullptr; 1847 SCEVAddExpr *S = 1848 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1849 if (!S) { 1850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 1851 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 1852 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 1853 O, Ops.size()); 1854 UniqueSCEVs.InsertNode(S, IP); 1855 } 1856 S->setNoWrapFlags(Flags); 1857 return S; 1858 } 1859 1860 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 1861 uint64_t k = i*j; 1862 if (j > 1 && k / j != i) Overflow = true; 1863 return k; 1864 } 1865 1866 /// Compute the result of "n choose k", the binomial coefficient. If an 1867 /// intermediate computation overflows, Overflow will be set and the return will 1868 /// be garbage. Overflow is not cleared on absence of overflow. 1869 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 1870 // We use the multiplicative formula: 1871 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 1872 // At each iteration, we take the n-th term of the numeral and divide by the 1873 // (k-n)th term of the denominator. This division will always produce an 1874 // integral result, and helps reduce the chance of overflow in the 1875 // intermediate computations. However, we can still overflow even when the 1876 // final result would fit. 1877 1878 if (n == 0 || n == k) return 1; 1879 if (k > n) return 0; 1880 1881 if (k > n/2) 1882 k = n-k; 1883 1884 uint64_t r = 1; 1885 for (uint64_t i = 1; i <= k; ++i) { 1886 r = umul_ov(r, n-(i-1), Overflow); 1887 r /= i; 1888 } 1889 return r; 1890 } 1891 1892 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1893 /// possible. 1894 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1895 SCEV::NoWrapFlags Flags) { 1896 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 1897 "only nuw or nsw allowed"); 1898 assert(!Ops.empty() && "Cannot get empty mul!"); 1899 if (Ops.size() == 1) return Ops[0]; 1900 #ifndef NDEBUG 1901 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1902 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1903 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1904 "SCEVMulExpr operand types don't match!"); 1905 #endif 1906 1907 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1908 // And vice-versa. 1909 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1910 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 1911 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 1912 bool All = true; 1913 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(), 1914 E = Ops.end(); I != E; ++I) 1915 if (!isKnownNonNegative(*I)) { 1916 All = false; 1917 break; 1918 } 1919 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1920 } 1921 1922 // Sort by complexity, this groups all similar expression types together. 1923 GroupByComplexity(Ops, LI); 1924 1925 // If there are any constants, fold them together. 1926 unsigned Idx = 0; 1927 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1928 1929 // C1*(C2+V) -> C1*C2 + C1*V 1930 if (Ops.size() == 2) 1931 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1932 if (Add->getNumOperands() == 2 && 1933 isa<SCEVConstant>(Add->getOperand(0))) 1934 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1935 getMulExpr(LHSC, Add->getOperand(1))); 1936 1937 ++Idx; 1938 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1939 // We found two constants, fold them together! 1940 ConstantInt *Fold = ConstantInt::get(getContext(), 1941 LHSC->getValue()->getValue() * 1942 RHSC->getValue()->getValue()); 1943 Ops[0] = getConstant(Fold); 1944 Ops.erase(Ops.begin()+1); // Erase the folded element 1945 if (Ops.size() == 1) return Ops[0]; 1946 LHSC = cast<SCEVConstant>(Ops[0]); 1947 } 1948 1949 // If we are left with a constant one being multiplied, strip it off. 1950 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1951 Ops.erase(Ops.begin()); 1952 --Idx; 1953 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1954 // If we have a multiply of zero, it will always be zero. 1955 return Ops[0]; 1956 } else if (Ops[0]->isAllOnesValue()) { 1957 // If we have a mul by -1 of an add, try distributing the -1 among the 1958 // add operands. 1959 if (Ops.size() == 2) { 1960 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1961 SmallVector<const SCEV *, 4> NewOps; 1962 bool AnyFolded = false; 1963 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 1964 E = Add->op_end(); I != E; ++I) { 1965 const SCEV *Mul = getMulExpr(Ops[0], *I); 1966 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1967 NewOps.push_back(Mul); 1968 } 1969 if (AnyFolded) 1970 return getAddExpr(NewOps); 1971 } 1972 else if (const SCEVAddRecExpr * 1973 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 1974 // Negation preserves a recurrence's no self-wrap property. 1975 SmallVector<const SCEV *, 4> Operands; 1976 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 1977 E = AddRec->op_end(); I != E; ++I) { 1978 Operands.push_back(getMulExpr(Ops[0], *I)); 1979 } 1980 return getAddRecExpr(Operands, AddRec->getLoop(), 1981 AddRec->getNoWrapFlags(SCEV::FlagNW)); 1982 } 1983 } 1984 } 1985 1986 if (Ops.size() == 1) 1987 return Ops[0]; 1988 } 1989 1990 // Skip over the add expression until we get to a multiply. 1991 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1992 ++Idx; 1993 1994 // If there are mul operands inline them all into this expression. 1995 if (Idx < Ops.size()) { 1996 bool DeletedMul = false; 1997 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1998 // If we have an mul, expand the mul operands onto the end of the operands 1999 // list. 2000 Ops.erase(Ops.begin()+Idx); 2001 Ops.append(Mul->op_begin(), Mul->op_end()); 2002 DeletedMul = true; 2003 } 2004 2005 // If we deleted at least one mul, we added operands to the end of the list, 2006 // and they are not necessarily sorted. Recurse to resort and resimplify 2007 // any operands we just acquired. 2008 if (DeletedMul) 2009 return getMulExpr(Ops); 2010 } 2011 2012 // If there are any add recurrences in the operands list, see if any other 2013 // added values are loop invariant. If so, we can fold them into the 2014 // recurrence. 2015 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2016 ++Idx; 2017 2018 // Scan over all recurrences, trying to fold loop invariants into them. 2019 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2020 // Scan all of the other operands to this mul and add them to the vector if 2021 // they are loop invariant w.r.t. the recurrence. 2022 SmallVector<const SCEV *, 8> LIOps; 2023 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2024 const Loop *AddRecLoop = AddRec->getLoop(); 2025 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2026 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2027 LIOps.push_back(Ops[i]); 2028 Ops.erase(Ops.begin()+i); 2029 --i; --e; 2030 } 2031 2032 // If we found some loop invariants, fold them into the recurrence. 2033 if (!LIOps.empty()) { 2034 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2035 SmallVector<const SCEV *, 4> NewOps; 2036 NewOps.reserve(AddRec->getNumOperands()); 2037 const SCEV *Scale = getMulExpr(LIOps); 2038 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2039 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2040 2041 // Build the new addrec. Propagate the NUW and NSW flags if both the 2042 // outer mul and the inner addrec are guaranteed to have no overflow. 2043 // 2044 // No self-wrap cannot be guaranteed after changing the step size, but 2045 // will be inferred if either NUW or NSW is true. 2046 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2047 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2048 2049 // If all of the other operands were loop invariant, we are done. 2050 if (Ops.size() == 1) return NewRec; 2051 2052 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2053 for (unsigned i = 0;; ++i) 2054 if (Ops[i] == AddRec) { 2055 Ops[i] = NewRec; 2056 break; 2057 } 2058 return getMulExpr(Ops); 2059 } 2060 2061 // Okay, if there weren't any loop invariants to be folded, check to see if 2062 // there are multiple AddRec's with the same loop induction variable being 2063 // multiplied together. If so, we can fold them. 2064 for (unsigned OtherIdx = Idx+1; 2065 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2066 ++OtherIdx) { 2067 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) 2068 continue; 2069 2070 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2071 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2072 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2073 // ]]],+,...up to x=2n}. 2074 // Note that the arguments to choose() are always integers with values 2075 // known at compile time, never SCEV objects. 2076 // 2077 // The implementation avoids pointless extra computations when the two 2078 // addrec's are of different length (mathematically, it's equivalent to 2079 // an infinite stream of zeros on the right). 2080 bool OpsModified = false; 2081 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2082 ++OtherIdx) { 2083 const SCEVAddRecExpr *OtherAddRec = 2084 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2085 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2086 continue; 2087 2088 bool Overflow = false; 2089 Type *Ty = AddRec->getType(); 2090 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2091 SmallVector<const SCEV*, 7> AddRecOps; 2092 for (int x = 0, xe = AddRec->getNumOperands() + 2093 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2094 const SCEV *Term = getConstant(Ty, 0); 2095 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2096 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2097 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2098 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2099 z < ze && !Overflow; ++z) { 2100 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2101 uint64_t Coeff; 2102 if (LargerThan64Bits) 2103 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2104 else 2105 Coeff = Coeff1*Coeff2; 2106 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2107 const SCEV *Term1 = AddRec->getOperand(y-z); 2108 const SCEV *Term2 = OtherAddRec->getOperand(z); 2109 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2110 } 2111 } 2112 AddRecOps.push_back(Term); 2113 } 2114 if (!Overflow) { 2115 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2116 SCEV::FlagAnyWrap); 2117 if (Ops.size() == 2) return NewAddRec; 2118 Ops[Idx] = NewAddRec; 2119 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2120 OpsModified = true; 2121 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2122 if (!AddRec) 2123 break; 2124 } 2125 } 2126 if (OpsModified) 2127 return getMulExpr(Ops); 2128 } 2129 2130 // Otherwise couldn't fold anything into this recurrence. Move onto the 2131 // next one. 2132 } 2133 2134 // Okay, it looks like we really DO need an mul expr. Check to see if we 2135 // already have one, otherwise create a new one. 2136 FoldingSetNodeID ID; 2137 ID.AddInteger(scMulExpr); 2138 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2139 ID.AddPointer(Ops[i]); 2140 void *IP = nullptr; 2141 SCEVMulExpr *S = 2142 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2143 if (!S) { 2144 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2145 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2146 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2147 O, Ops.size()); 2148 UniqueSCEVs.InsertNode(S, IP); 2149 } 2150 S->setNoWrapFlags(Flags); 2151 return S; 2152 } 2153 2154 /// getUDivExpr - Get a canonical unsigned division expression, or something 2155 /// simpler if possible. 2156 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2157 const SCEV *RHS) { 2158 assert(getEffectiveSCEVType(LHS->getType()) == 2159 getEffectiveSCEVType(RHS->getType()) && 2160 "SCEVUDivExpr operand types don't match!"); 2161 2162 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2163 if (RHSC->getValue()->equalsInt(1)) 2164 return LHS; // X udiv 1 --> x 2165 // If the denominator is zero, the result of the udiv is undefined. Don't 2166 // try to analyze it, because the resolution chosen here may differ from 2167 // the resolution chosen in other parts of the compiler. 2168 if (!RHSC->getValue()->isZero()) { 2169 // Determine if the division can be folded into the operands of 2170 // its operands. 2171 // TODO: Generalize this to non-constants by using known-bits information. 2172 Type *Ty = LHS->getType(); 2173 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2174 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2175 // For non-power-of-two values, effectively round the value up to the 2176 // nearest power of two. 2177 if (!RHSC->getValue()->getValue().isPowerOf2()) 2178 ++MaxShiftAmt; 2179 IntegerType *ExtTy = 2180 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2181 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2182 if (const SCEVConstant *Step = 2183 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2184 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2185 const APInt &StepInt = Step->getValue()->getValue(); 2186 const APInt &DivInt = RHSC->getValue()->getValue(); 2187 if (!StepInt.urem(DivInt) && 2188 getZeroExtendExpr(AR, ExtTy) == 2189 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2190 getZeroExtendExpr(Step, ExtTy), 2191 AR->getLoop(), SCEV::FlagAnyWrap)) { 2192 SmallVector<const SCEV *, 4> Operands; 2193 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2194 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2195 return getAddRecExpr(Operands, AR->getLoop(), 2196 SCEV::FlagNW); 2197 } 2198 /// Get a canonical UDivExpr for a recurrence. 2199 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2200 // We can currently only fold X%N if X is constant. 2201 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2202 if (StartC && !DivInt.urem(StepInt) && 2203 getZeroExtendExpr(AR, ExtTy) == 2204 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2205 getZeroExtendExpr(Step, ExtTy), 2206 AR->getLoop(), SCEV::FlagAnyWrap)) { 2207 const APInt &StartInt = StartC->getValue()->getValue(); 2208 const APInt &StartRem = StartInt.urem(StepInt); 2209 if (StartRem != 0) 2210 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2211 AR->getLoop(), SCEV::FlagNW); 2212 } 2213 } 2214 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2216 SmallVector<const SCEV *, 4> Operands; 2217 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2218 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2219 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2220 // Find an operand that's safely divisible. 2221 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2222 const SCEV *Op = M->getOperand(i); 2223 const SCEV *Div = getUDivExpr(Op, RHSC); 2224 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2225 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2226 M->op_end()); 2227 Operands[i] = Div; 2228 return getMulExpr(Operands); 2229 } 2230 } 2231 } 2232 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2233 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2234 SmallVector<const SCEV *, 4> Operands; 2235 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2236 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2237 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2238 Operands.clear(); 2239 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2240 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2241 if (isa<SCEVUDivExpr>(Op) || 2242 getMulExpr(Op, RHS) != A->getOperand(i)) 2243 break; 2244 Operands.push_back(Op); 2245 } 2246 if (Operands.size() == A->getNumOperands()) 2247 return getAddExpr(Operands); 2248 } 2249 } 2250 2251 // Fold if both operands are constant. 2252 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2253 Constant *LHSCV = LHSC->getValue(); 2254 Constant *RHSCV = RHSC->getValue(); 2255 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2256 RHSCV))); 2257 } 2258 } 2259 } 2260 2261 FoldingSetNodeID ID; 2262 ID.AddInteger(scUDivExpr); 2263 ID.AddPointer(LHS); 2264 ID.AddPointer(RHS); 2265 void *IP = nullptr; 2266 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2267 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2268 LHS, RHS); 2269 UniqueSCEVs.InsertNode(S, IP); 2270 return S; 2271 } 2272 2273 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2274 APInt A = C1->getValue()->getValue().abs(); 2275 APInt B = C2->getValue()->getValue().abs(); 2276 uint32_t ABW = A.getBitWidth(); 2277 uint32_t BBW = B.getBitWidth(); 2278 2279 if (ABW > BBW) 2280 B = B.zext(ABW); 2281 else if (ABW < BBW) 2282 A = A.zext(BBW); 2283 2284 return APIntOps::GreatestCommonDivisor(A, B); 2285 } 2286 2287 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2288 /// something simpler if possible. There is no representation for an exact udiv 2289 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2290 /// We can't do this when it's not exact because the udiv may be clearing bits. 2291 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2292 const SCEV *RHS) { 2293 // TODO: we could try to find factors in all sorts of things, but for now we 2294 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2295 // end of this file for inspiration. 2296 2297 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2298 if (!Mul) 2299 return getUDivExpr(LHS, RHS); 2300 2301 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2302 // If the mulexpr multiplies by a constant, then that constant must be the 2303 // first element of the mulexpr. 2304 if (const SCEVConstant *LHSCst = 2305 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2306 if (LHSCst == RHSCst) { 2307 SmallVector<const SCEV *, 2> Operands; 2308 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2309 return getMulExpr(Operands); 2310 } 2311 2312 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2313 // that there's a factor provided by one of the other terms. We need to 2314 // check. 2315 APInt Factor = gcd(LHSCst, RHSCst); 2316 if (!Factor.isIntN(1)) { 2317 LHSCst = cast<SCEVConstant>( 2318 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2319 RHSCst = cast<SCEVConstant>( 2320 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2321 SmallVector<const SCEV *, 2> Operands; 2322 Operands.push_back(LHSCst); 2323 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2324 LHS = getMulExpr(Operands); 2325 RHS = RHSCst; 2326 Mul = dyn_cast<SCEVMulExpr>(LHS); 2327 if (!Mul) 2328 return getUDivExactExpr(LHS, RHS); 2329 } 2330 } 2331 } 2332 2333 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2334 if (Mul->getOperand(i) == RHS) { 2335 SmallVector<const SCEV *, 2> Operands; 2336 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2337 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2338 return getMulExpr(Operands); 2339 } 2340 } 2341 2342 return getUDivExpr(LHS, RHS); 2343 } 2344 2345 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2346 /// Simplify the expression as much as possible. 2347 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2348 const Loop *L, 2349 SCEV::NoWrapFlags Flags) { 2350 SmallVector<const SCEV *, 4> Operands; 2351 Operands.push_back(Start); 2352 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2353 if (StepChrec->getLoop() == L) { 2354 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2355 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2356 } 2357 2358 Operands.push_back(Step); 2359 return getAddRecExpr(Operands, L, Flags); 2360 } 2361 2362 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2363 /// Simplify the expression as much as possible. 2364 const SCEV * 2365 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2366 const Loop *L, SCEV::NoWrapFlags Flags) { 2367 if (Operands.size() == 1) return Operands[0]; 2368 #ifndef NDEBUG 2369 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2370 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2371 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2372 "SCEVAddRecExpr operand types don't match!"); 2373 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2374 assert(isLoopInvariant(Operands[i], L) && 2375 "SCEVAddRecExpr operand is not loop-invariant!"); 2376 #endif 2377 2378 if (Operands.back()->isZero()) { 2379 Operands.pop_back(); 2380 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2381 } 2382 2383 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2384 // use that information to infer NUW and NSW flags. However, computing a 2385 // BE count requires calling getAddRecExpr, so we may not yet have a 2386 // meaningful BE count at this point (and if we don't, we'd be stuck 2387 // with a SCEVCouldNotCompute as the cached BE count). 2388 2389 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2390 // And vice-versa. 2391 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2392 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask); 2393 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) { 2394 bool All = true; 2395 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(), 2396 E = Operands.end(); I != E; ++I) 2397 if (!isKnownNonNegative(*I)) { 2398 All = false; 2399 break; 2400 } 2401 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2402 } 2403 2404 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2405 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2406 const Loop *NestedLoop = NestedAR->getLoop(); 2407 if (L->contains(NestedLoop) ? 2408 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 2409 (!NestedLoop->contains(L) && 2410 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 2411 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2412 NestedAR->op_end()); 2413 Operands[0] = NestedAR->getStart(); 2414 // AddRecs require their operands be loop-invariant with respect to their 2415 // loops. Don't perform this transformation if it would break this 2416 // requirement. 2417 bool AllInvariant = true; 2418 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2419 if (!isLoopInvariant(Operands[i], L)) { 2420 AllInvariant = false; 2421 break; 2422 } 2423 if (AllInvariant) { 2424 // Create a recurrence for the outer loop with the same step size. 2425 // 2426 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2427 // inner recurrence has the same property. 2428 SCEV::NoWrapFlags OuterFlags = 2429 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2430 2431 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2432 AllInvariant = true; 2433 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2434 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2435 AllInvariant = false; 2436 break; 2437 } 2438 if (AllInvariant) { 2439 // Ok, both add recurrences are valid after the transformation. 2440 // 2441 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2442 // the outer recurrence has the same property. 2443 SCEV::NoWrapFlags InnerFlags = 2444 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2445 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2446 } 2447 } 2448 // Reset Operands to its original state. 2449 Operands[0] = NestedAR; 2450 } 2451 } 2452 2453 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2454 // already have one, otherwise create a new one. 2455 FoldingSetNodeID ID; 2456 ID.AddInteger(scAddRecExpr); 2457 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2458 ID.AddPointer(Operands[i]); 2459 ID.AddPointer(L); 2460 void *IP = nullptr; 2461 SCEVAddRecExpr *S = 2462 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2463 if (!S) { 2464 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2465 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2466 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2467 O, Operands.size(), L); 2468 UniqueSCEVs.InsertNode(S, IP); 2469 } 2470 S->setNoWrapFlags(Flags); 2471 return S; 2472 } 2473 2474 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2475 const SCEV *RHS) { 2476 SmallVector<const SCEV *, 2> Ops; 2477 Ops.push_back(LHS); 2478 Ops.push_back(RHS); 2479 return getSMaxExpr(Ops); 2480 } 2481 2482 const SCEV * 2483 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2484 assert(!Ops.empty() && "Cannot get empty smax!"); 2485 if (Ops.size() == 1) return Ops[0]; 2486 #ifndef NDEBUG 2487 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2488 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2489 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2490 "SCEVSMaxExpr operand types don't match!"); 2491 #endif 2492 2493 // Sort by complexity, this groups all similar expression types together. 2494 GroupByComplexity(Ops, LI); 2495 2496 // If there are any constants, fold them together. 2497 unsigned Idx = 0; 2498 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2499 ++Idx; 2500 assert(Idx < Ops.size()); 2501 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2502 // We found two constants, fold them together! 2503 ConstantInt *Fold = ConstantInt::get(getContext(), 2504 APIntOps::smax(LHSC->getValue()->getValue(), 2505 RHSC->getValue()->getValue())); 2506 Ops[0] = getConstant(Fold); 2507 Ops.erase(Ops.begin()+1); // Erase the folded element 2508 if (Ops.size() == 1) return Ops[0]; 2509 LHSC = cast<SCEVConstant>(Ops[0]); 2510 } 2511 2512 // If we are left with a constant minimum-int, strip it off. 2513 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2514 Ops.erase(Ops.begin()); 2515 --Idx; 2516 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2517 // If we have an smax with a constant maximum-int, it will always be 2518 // maximum-int. 2519 return Ops[0]; 2520 } 2521 2522 if (Ops.size() == 1) return Ops[0]; 2523 } 2524 2525 // Find the first SMax 2526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2527 ++Idx; 2528 2529 // Check to see if one of the operands is an SMax. If so, expand its operands 2530 // onto our operand list, and recurse to simplify. 2531 if (Idx < Ops.size()) { 2532 bool DeletedSMax = false; 2533 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2534 Ops.erase(Ops.begin()+Idx); 2535 Ops.append(SMax->op_begin(), SMax->op_end()); 2536 DeletedSMax = true; 2537 } 2538 2539 if (DeletedSMax) 2540 return getSMaxExpr(Ops); 2541 } 2542 2543 // Okay, check to see if the same value occurs in the operand list twice. If 2544 // so, delete one. Since we sorted the list, these values are required to 2545 // be adjacent. 2546 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2547 // X smax Y smax Y --> X smax Y 2548 // X smax Y --> X, if X is always greater than Y 2549 if (Ops[i] == Ops[i+1] || 2550 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 2551 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2552 --i; --e; 2553 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 2554 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2555 --i; --e; 2556 } 2557 2558 if (Ops.size() == 1) return Ops[0]; 2559 2560 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2561 2562 // Okay, it looks like we really DO need an smax expr. Check to see if we 2563 // already have one, otherwise create a new one. 2564 FoldingSetNodeID ID; 2565 ID.AddInteger(scSMaxExpr); 2566 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2567 ID.AddPointer(Ops[i]); 2568 void *IP = nullptr; 2569 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2570 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2571 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2572 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 2573 O, Ops.size()); 2574 UniqueSCEVs.InsertNode(S, IP); 2575 return S; 2576 } 2577 2578 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2579 const SCEV *RHS) { 2580 SmallVector<const SCEV *, 2> Ops; 2581 Ops.push_back(LHS); 2582 Ops.push_back(RHS); 2583 return getUMaxExpr(Ops); 2584 } 2585 2586 const SCEV * 2587 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2588 assert(!Ops.empty() && "Cannot get empty umax!"); 2589 if (Ops.size() == 1) return Ops[0]; 2590 #ifndef NDEBUG 2591 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2592 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2593 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2594 "SCEVUMaxExpr operand types don't match!"); 2595 #endif 2596 2597 // Sort by complexity, this groups all similar expression types together. 2598 GroupByComplexity(Ops, LI); 2599 2600 // If there are any constants, fold them together. 2601 unsigned Idx = 0; 2602 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2603 ++Idx; 2604 assert(Idx < Ops.size()); 2605 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2606 // We found two constants, fold them together! 2607 ConstantInt *Fold = ConstantInt::get(getContext(), 2608 APIntOps::umax(LHSC->getValue()->getValue(), 2609 RHSC->getValue()->getValue())); 2610 Ops[0] = getConstant(Fold); 2611 Ops.erase(Ops.begin()+1); // Erase the folded element 2612 if (Ops.size() == 1) return Ops[0]; 2613 LHSC = cast<SCEVConstant>(Ops[0]); 2614 } 2615 2616 // If we are left with a constant minimum-int, strip it off. 2617 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2618 Ops.erase(Ops.begin()); 2619 --Idx; 2620 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2621 // If we have an umax with a constant maximum-int, it will always be 2622 // maximum-int. 2623 return Ops[0]; 2624 } 2625 2626 if (Ops.size() == 1) return Ops[0]; 2627 } 2628 2629 // Find the first UMax 2630 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2631 ++Idx; 2632 2633 // Check to see if one of the operands is a UMax. If so, expand its operands 2634 // onto our operand list, and recurse to simplify. 2635 if (Idx < Ops.size()) { 2636 bool DeletedUMax = false; 2637 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2638 Ops.erase(Ops.begin()+Idx); 2639 Ops.append(UMax->op_begin(), UMax->op_end()); 2640 DeletedUMax = true; 2641 } 2642 2643 if (DeletedUMax) 2644 return getUMaxExpr(Ops); 2645 } 2646 2647 // Okay, check to see if the same value occurs in the operand list twice. If 2648 // so, delete one. Since we sorted the list, these values are required to 2649 // be adjacent. 2650 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2651 // X umax Y umax Y --> X umax Y 2652 // X umax Y --> X, if X is always greater than Y 2653 if (Ops[i] == Ops[i+1] || 2654 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 2655 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 2656 --i; --e; 2657 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 2658 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2659 --i; --e; 2660 } 2661 2662 if (Ops.size() == 1) return Ops[0]; 2663 2664 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2665 2666 // Okay, it looks like we really DO need a umax expr. Check to see if we 2667 // already have one, otherwise create a new one. 2668 FoldingSetNodeID ID; 2669 ID.AddInteger(scUMaxExpr); 2670 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2671 ID.AddPointer(Ops[i]); 2672 void *IP = nullptr; 2673 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2674 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2675 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2676 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 2677 O, Ops.size()); 2678 UniqueSCEVs.InsertNode(S, IP); 2679 return S; 2680 } 2681 2682 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2683 const SCEV *RHS) { 2684 // ~smax(~x, ~y) == smin(x, y). 2685 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2686 } 2687 2688 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2689 const SCEV *RHS) { 2690 // ~umax(~x, ~y) == umin(x, y) 2691 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2692 } 2693 2694 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 2695 // If we have DataLayout, we can bypass creating a target-independent 2696 // constant expression and then folding it back into a ConstantInt. 2697 // This is just a compile-time optimization. 2698 if (DL) 2699 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy)); 2700 2701 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2702 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2703 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2704 C = Folded; 2705 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2706 assert(Ty == IntTy && "Effective SCEV type doesn't match"); 2707 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2708 } 2709 2710 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 2711 StructType *STy, 2712 unsigned FieldNo) { 2713 // If we have DataLayout, we can bypass creating a target-independent 2714 // constant expression and then folding it back into a ConstantInt. 2715 // This is just a compile-time optimization. 2716 if (DL) { 2717 return getConstant(IntTy, 2718 DL->getStructLayout(STy)->getElementOffset(FieldNo)); 2719 } 2720 2721 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2722 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2723 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI)) 2724 C = Folded; 2725 2726 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2727 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2728 } 2729 2730 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2731 // Don't attempt to do anything other than create a SCEVUnknown object 2732 // here. createSCEV only calls getUnknown after checking for all other 2733 // interesting possibilities, and any other code that calls getUnknown 2734 // is doing so in order to hide a value from SCEV canonicalization. 2735 2736 FoldingSetNodeID ID; 2737 ID.AddInteger(scUnknown); 2738 ID.AddPointer(V); 2739 void *IP = nullptr; 2740 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 2741 assert(cast<SCEVUnknown>(S)->getValue() == V && 2742 "Stale SCEVUnknown in uniquing map!"); 2743 return S; 2744 } 2745 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 2746 FirstUnknown); 2747 FirstUnknown = cast<SCEVUnknown>(S); 2748 UniqueSCEVs.InsertNode(S, IP); 2749 return S; 2750 } 2751 2752 //===----------------------------------------------------------------------===// 2753 // Basic SCEV Analysis and PHI Idiom Recognition Code 2754 // 2755 2756 /// isSCEVable - Test if values of the given type are analyzable within 2757 /// the SCEV framework. This primarily includes integer types, and it 2758 /// can optionally include pointer types if the ScalarEvolution class 2759 /// has access to target-specific information. 2760 bool ScalarEvolution::isSCEVable(Type *Ty) const { 2761 // Integers and pointers are always SCEVable. 2762 return Ty->isIntegerTy() || Ty->isPointerTy(); 2763 } 2764 2765 /// getTypeSizeInBits - Return the size in bits of the specified type, 2766 /// for which isSCEVable must return true. 2767 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 2768 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2769 2770 // If we have a DataLayout, use it! 2771 if (DL) 2772 return DL->getTypeSizeInBits(Ty); 2773 2774 // Integer types have fixed sizes. 2775 if (Ty->isIntegerTy()) 2776 return Ty->getPrimitiveSizeInBits(); 2777 2778 // The only other support type is pointer. Without DataLayout, conservatively 2779 // assume pointers are 64-bit. 2780 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2781 return 64; 2782 } 2783 2784 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2785 /// the given type and which represents how SCEV will treat the given 2786 /// type, for which isSCEVable must return true. For pointer types, 2787 /// this is the pointer-sized integer type. 2788 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 2789 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2790 2791 if (Ty->isIntegerTy()) { 2792 return Ty; 2793 } 2794 2795 // The only other support type is pointer. 2796 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2797 2798 if (DL) 2799 return DL->getIntPtrType(Ty); 2800 2801 // Without DataLayout, conservatively assume pointers are 64-bit. 2802 return Type::getInt64Ty(getContext()); 2803 } 2804 2805 const SCEV *ScalarEvolution::getCouldNotCompute() { 2806 return &CouldNotCompute; 2807 } 2808 2809 namespace { 2810 // Helper class working with SCEVTraversal to figure out if a SCEV contains 2811 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 2812 // is set iff if find such SCEVUnknown. 2813 // 2814 struct FindInvalidSCEVUnknown { 2815 bool FindOne; 2816 FindInvalidSCEVUnknown() { FindOne = false; } 2817 bool follow(const SCEV *S) { 2818 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 2819 case scConstant: 2820 return false; 2821 case scUnknown: 2822 if (!cast<SCEVUnknown>(S)->getValue()) 2823 FindOne = true; 2824 return false; 2825 default: 2826 return true; 2827 } 2828 } 2829 bool isDone() const { return FindOne; } 2830 }; 2831 } 2832 2833 bool ScalarEvolution::checkValidity(const SCEV *S) const { 2834 FindInvalidSCEVUnknown F; 2835 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 2836 ST.visitAll(S); 2837 2838 return !F.FindOne; 2839 } 2840 2841 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2842 /// expression and create a new one. 2843 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2844 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2845 2846 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 2847 if (I != ValueExprMap.end()) { 2848 const SCEV *S = I->second; 2849 if (checkValidity(S)) 2850 return S; 2851 else 2852 ValueExprMap.erase(I); 2853 } 2854 const SCEV *S = createSCEV(V); 2855 2856 // The process of creating a SCEV for V may have caused other SCEVs 2857 // to have been created, so it's necessary to insert the new entry 2858 // from scratch, rather than trying to remember the insert position 2859 // above. 2860 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2861 return S; 2862 } 2863 2864 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2865 /// 2866 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2867 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2868 return getConstant( 2869 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2870 2871 Type *Ty = V->getType(); 2872 Ty = getEffectiveSCEVType(Ty); 2873 return getMulExpr(V, 2874 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2875 } 2876 2877 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2878 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2879 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2880 return getConstant( 2881 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2882 2883 Type *Ty = V->getType(); 2884 Ty = getEffectiveSCEVType(Ty); 2885 const SCEV *AllOnes = 2886 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2887 return getMinusSCEV(AllOnes, V); 2888 } 2889 2890 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 2891 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 2892 SCEV::NoWrapFlags Flags) { 2893 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW"); 2894 2895 // Fast path: X - X --> 0. 2896 if (LHS == RHS) 2897 return getConstant(LHS->getType(), 0); 2898 2899 // X - Y --> X + -Y 2900 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags); 2901 } 2902 2903 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2904 /// input value to the specified type. If the type must be extended, it is zero 2905 /// extended. 2906 const SCEV * 2907 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 2908 Type *SrcTy = V->getType(); 2909 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2910 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2911 "Cannot truncate or zero extend with non-integer arguments!"); 2912 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2913 return V; // No conversion 2914 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2915 return getTruncateExpr(V, Ty); 2916 return getZeroExtendExpr(V, Ty); 2917 } 2918 2919 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2920 /// input value to the specified type. If the type must be extended, it is sign 2921 /// extended. 2922 const SCEV * 2923 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2924 Type *Ty) { 2925 Type *SrcTy = V->getType(); 2926 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2927 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2928 "Cannot truncate or zero extend with non-integer arguments!"); 2929 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2930 return V; // No conversion 2931 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2932 return getTruncateExpr(V, Ty); 2933 return getSignExtendExpr(V, Ty); 2934 } 2935 2936 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2937 /// input value to the specified type. If the type must be extended, it is zero 2938 /// extended. The conversion must not be narrowing. 2939 const SCEV * 2940 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 2941 Type *SrcTy = V->getType(); 2942 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2943 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2944 "Cannot noop or zero extend with non-integer arguments!"); 2945 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2946 "getNoopOrZeroExtend cannot truncate!"); 2947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2948 return V; // No conversion 2949 return getZeroExtendExpr(V, Ty); 2950 } 2951 2952 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2953 /// input value to the specified type. If the type must be extended, it is sign 2954 /// extended. The conversion must not be narrowing. 2955 const SCEV * 2956 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 2957 Type *SrcTy = V->getType(); 2958 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2959 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2960 "Cannot noop or sign extend with non-integer arguments!"); 2961 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2962 "getNoopOrSignExtend cannot truncate!"); 2963 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2964 return V; // No conversion 2965 return getSignExtendExpr(V, Ty); 2966 } 2967 2968 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2969 /// the input value to the specified type. If the type must be extended, 2970 /// it is extended with unspecified bits. The conversion must not be 2971 /// narrowing. 2972 const SCEV * 2973 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 2974 Type *SrcTy = V->getType(); 2975 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2976 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2977 "Cannot noop or any extend with non-integer arguments!"); 2978 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2979 "getNoopOrAnyExtend cannot truncate!"); 2980 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2981 return V; // No conversion 2982 return getAnyExtendExpr(V, Ty); 2983 } 2984 2985 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2986 /// input value to the specified type. The conversion must not be widening. 2987 const SCEV * 2988 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 2989 Type *SrcTy = V->getType(); 2990 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2991 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2992 "Cannot truncate or noop with non-integer arguments!"); 2993 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2994 "getTruncateOrNoop cannot extend!"); 2995 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2996 return V; // No conversion 2997 return getTruncateExpr(V, Ty); 2998 } 2999 3000 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3001 /// the types using zero-extension, and then perform a umax operation 3002 /// with them. 3003 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3004 const SCEV *RHS) { 3005 const SCEV *PromotedLHS = LHS; 3006 const SCEV *PromotedRHS = RHS; 3007 3008 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3009 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3010 else 3011 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3012 3013 return getUMaxExpr(PromotedLHS, PromotedRHS); 3014 } 3015 3016 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3017 /// the types using zero-extension, and then perform a umin operation 3018 /// with them. 3019 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3020 const SCEV *RHS) { 3021 const SCEV *PromotedLHS = LHS; 3022 const SCEV *PromotedRHS = RHS; 3023 3024 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3025 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3026 else 3027 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3028 3029 return getUMinExpr(PromotedLHS, PromotedRHS); 3030 } 3031 3032 /// getPointerBase - Transitively follow the chain of pointer-type operands 3033 /// until reaching a SCEV that does not have a single pointer operand. This 3034 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3035 /// but corner cases do exist. 3036 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3037 // A pointer operand may evaluate to a nonpointer expression, such as null. 3038 if (!V->getType()->isPointerTy()) 3039 return V; 3040 3041 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3042 return getPointerBase(Cast->getOperand()); 3043 } 3044 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3045 const SCEV *PtrOp = nullptr; 3046 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3047 I != E; ++I) { 3048 if ((*I)->getType()->isPointerTy()) { 3049 // Cannot find the base of an expression with multiple pointer operands. 3050 if (PtrOp) 3051 return V; 3052 PtrOp = *I; 3053 } 3054 } 3055 if (!PtrOp) 3056 return V; 3057 return getPointerBase(PtrOp); 3058 } 3059 return V; 3060 } 3061 3062 /// PushDefUseChildren - Push users of the given Instruction 3063 /// onto the given Worklist. 3064 static void 3065 PushDefUseChildren(Instruction *I, 3066 SmallVectorImpl<Instruction *> &Worklist) { 3067 // Push the def-use children onto the Worklist stack. 3068 for (User *U : I->users()) 3069 Worklist.push_back(cast<Instruction>(U)); 3070 } 3071 3072 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3073 /// instructions that depend on the given instruction and removes them from 3074 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3075 /// resolution. 3076 void 3077 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3078 SmallVector<Instruction *, 16> Worklist; 3079 PushDefUseChildren(PN, Worklist); 3080 3081 SmallPtrSet<Instruction *, 8> Visited; 3082 Visited.insert(PN); 3083 while (!Worklist.empty()) { 3084 Instruction *I = Worklist.pop_back_val(); 3085 if (!Visited.insert(I)) continue; 3086 3087 ValueExprMapType::iterator It = 3088 ValueExprMap.find_as(static_cast<Value *>(I)); 3089 if (It != ValueExprMap.end()) { 3090 const SCEV *Old = It->second; 3091 3092 // Short-circuit the def-use traversal if the symbolic name 3093 // ceases to appear in expressions. 3094 if (Old != SymName && !hasOperand(Old, SymName)) 3095 continue; 3096 3097 // SCEVUnknown for a PHI either means that it has an unrecognized 3098 // structure, it's a PHI that's in the progress of being computed 3099 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3100 // additional loop trip count information isn't going to change anything. 3101 // In the second case, createNodeForPHI will perform the necessary 3102 // updates on its own when it gets to that point. In the third, we do 3103 // want to forget the SCEVUnknown. 3104 if (!isa<PHINode>(I) || 3105 !isa<SCEVUnknown>(Old) || 3106 (I != PN && Old == SymName)) { 3107 forgetMemoizedResults(Old); 3108 ValueExprMap.erase(It); 3109 } 3110 } 3111 3112 PushDefUseChildren(I, Worklist); 3113 } 3114 } 3115 3116 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3117 /// a loop header, making it a potential recurrence, or it doesn't. 3118 /// 3119 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3120 if (const Loop *L = LI->getLoopFor(PN->getParent())) 3121 if (L->getHeader() == PN->getParent()) { 3122 // The loop may have multiple entrances or multiple exits; we can analyze 3123 // this phi as an addrec if it has a unique entry value and a unique 3124 // backedge value. 3125 Value *BEValueV = nullptr, *StartValueV = nullptr; 3126 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3127 Value *V = PN->getIncomingValue(i); 3128 if (L->contains(PN->getIncomingBlock(i))) { 3129 if (!BEValueV) { 3130 BEValueV = V; 3131 } else if (BEValueV != V) { 3132 BEValueV = nullptr; 3133 break; 3134 } 3135 } else if (!StartValueV) { 3136 StartValueV = V; 3137 } else if (StartValueV != V) { 3138 StartValueV = nullptr; 3139 break; 3140 } 3141 } 3142 if (BEValueV && StartValueV) { 3143 // While we are analyzing this PHI node, handle its value symbolically. 3144 const SCEV *SymbolicName = getUnknown(PN); 3145 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3146 "PHI node already processed?"); 3147 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3148 3149 // Using this symbolic name for the PHI, analyze the value coming around 3150 // the back-edge. 3151 const SCEV *BEValue = getSCEV(BEValueV); 3152 3153 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3154 // has a special value for the first iteration of the loop. 3155 3156 // If the value coming around the backedge is an add with the symbolic 3157 // value we just inserted, then we found a simple induction variable! 3158 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3159 // If there is a single occurrence of the symbolic value, replace it 3160 // with a recurrence. 3161 unsigned FoundIndex = Add->getNumOperands(); 3162 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3163 if (Add->getOperand(i) == SymbolicName) 3164 if (FoundIndex == e) { 3165 FoundIndex = i; 3166 break; 3167 } 3168 3169 if (FoundIndex != Add->getNumOperands()) { 3170 // Create an add with everything but the specified operand. 3171 SmallVector<const SCEV *, 8> Ops; 3172 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3173 if (i != FoundIndex) 3174 Ops.push_back(Add->getOperand(i)); 3175 const SCEV *Accum = getAddExpr(Ops); 3176 3177 // This is not a valid addrec if the step amount is varying each 3178 // loop iteration, but is not itself an addrec in this loop. 3179 if (isLoopInvariant(Accum, L) || 3180 (isa<SCEVAddRecExpr>(Accum) && 3181 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3182 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3183 3184 // If the increment doesn't overflow, then neither the addrec nor 3185 // the post-increment will overflow. 3186 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3187 if (OBO->hasNoUnsignedWrap()) 3188 Flags = setFlags(Flags, SCEV::FlagNUW); 3189 if (OBO->hasNoSignedWrap()) 3190 Flags = setFlags(Flags, SCEV::FlagNSW); 3191 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3192 // If the increment is an inbounds GEP, then we know the address 3193 // space cannot be wrapped around. We cannot make any guarantee 3194 // about signed or unsigned overflow because pointers are 3195 // unsigned but we may have a negative index from the base 3196 // pointer. We can guarantee that no unsigned wrap occurs if the 3197 // indices form a positive value. 3198 if (GEP->isInBounds()) { 3199 Flags = setFlags(Flags, SCEV::FlagNW); 3200 3201 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3202 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3203 Flags = setFlags(Flags, SCEV::FlagNUW); 3204 } 3205 } else if (const SubOperator *OBO = 3206 dyn_cast<SubOperator>(BEValueV)) { 3207 if (OBO->hasNoUnsignedWrap()) 3208 Flags = setFlags(Flags, SCEV::FlagNUW); 3209 if (OBO->hasNoSignedWrap()) 3210 Flags = setFlags(Flags, SCEV::FlagNSW); 3211 } 3212 3213 const SCEV *StartVal = getSCEV(StartValueV); 3214 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3215 3216 // Since the no-wrap flags are on the increment, they apply to the 3217 // post-incremented value as well. 3218 if (isLoopInvariant(Accum, L)) 3219 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3220 Accum, L, Flags); 3221 3222 // Okay, for the entire analysis of this edge we assumed the PHI 3223 // to be symbolic. We now need to go back and purge all of the 3224 // entries for the scalars that use the symbolic expression. 3225 ForgetSymbolicName(PN, SymbolicName); 3226 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3227 return PHISCEV; 3228 } 3229 } 3230 } else if (const SCEVAddRecExpr *AddRec = 3231 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3232 // Otherwise, this could be a loop like this: 3233 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3234 // In this case, j = {1,+,1} and BEValue is j. 3235 // Because the other in-value of i (0) fits the evolution of BEValue 3236 // i really is an addrec evolution. 3237 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3238 const SCEV *StartVal = getSCEV(StartValueV); 3239 3240 // If StartVal = j.start - j.stride, we can use StartVal as the 3241 // initial step of the addrec evolution. 3242 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3243 AddRec->getOperand(1))) { 3244 // FIXME: For constant StartVal, we should be able to infer 3245 // no-wrap flags. 3246 const SCEV *PHISCEV = 3247 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3248 SCEV::FlagAnyWrap); 3249 3250 // Okay, for the entire analysis of this edge we assumed the PHI 3251 // to be symbolic. We now need to go back and purge all of the 3252 // entries for the scalars that use the symbolic expression. 3253 ForgetSymbolicName(PN, SymbolicName); 3254 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3255 return PHISCEV; 3256 } 3257 } 3258 } 3259 } 3260 } 3261 3262 // If the PHI has a single incoming value, follow that value, unless the 3263 // PHI's incoming blocks are in a different loop, in which case doing so 3264 // risks breaking LCSSA form. Instcombine would normally zap these, but 3265 // it doesn't have DominatorTree information, so it may miss cases. 3266 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT)) 3267 if (LI->replacementPreservesLCSSAForm(PN, V)) 3268 return getSCEV(V); 3269 3270 // If it's not a loop phi, we can't handle it yet. 3271 return getUnknown(PN); 3272 } 3273 3274 /// createNodeForGEP - Expand GEP instructions into add and multiply 3275 /// operations. This allows them to be analyzed by regular SCEV code. 3276 /// 3277 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3278 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 3279 Value *Base = GEP->getOperand(0); 3280 // Don't attempt to analyze GEPs over unsized objects. 3281 if (!Base->getType()->getPointerElementType()->isSized()) 3282 return getUnknown(GEP); 3283 3284 // Don't blindly transfer the inbounds flag from the GEP instruction to the 3285 // Add expression, because the Instruction may be guarded by control flow 3286 // and the no-overflow bits may not be valid for the expression in any 3287 // context. 3288 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3289 3290 const SCEV *TotalOffset = getConstant(IntPtrTy, 0); 3291 gep_type_iterator GTI = gep_type_begin(GEP); 3292 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()), 3293 E = GEP->op_end(); 3294 I != E; ++I) { 3295 Value *Index = *I; 3296 // Compute the (potentially symbolic) offset in bytes for this index. 3297 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 3298 // For a struct, add the member offset. 3299 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 3300 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3301 3302 // Add the field offset to the running total offset. 3303 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3304 } else { 3305 // For an array, add the element offset, explicitly scaled. 3306 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI); 3307 const SCEV *IndexS = getSCEV(Index); 3308 // Getelementptr indices are signed. 3309 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy); 3310 3311 // Multiply the index by the element size to compute the element offset. 3312 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap); 3313 3314 // Add the element offset to the running total offset. 3315 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3316 } 3317 } 3318 3319 // Get the SCEV for the GEP base. 3320 const SCEV *BaseS = getSCEV(Base); 3321 3322 // Add the total offset from all the GEP indices to the base. 3323 return getAddExpr(BaseS, TotalOffset, Wrap); 3324 } 3325 3326 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3327 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3328 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3329 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3330 uint32_t 3331 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3332 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3333 return C->getValue()->getValue().countTrailingZeros(); 3334 3335 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3336 return std::min(GetMinTrailingZeros(T->getOperand()), 3337 (uint32_t)getTypeSizeInBits(T->getType())); 3338 3339 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3340 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3341 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3342 getTypeSizeInBits(E->getType()) : OpRes; 3343 } 3344 3345 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3346 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3347 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3348 getTypeSizeInBits(E->getType()) : OpRes; 3349 } 3350 3351 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3352 // The result is the min of all operands results. 3353 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3354 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3355 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3356 return MinOpRes; 3357 } 3358 3359 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3360 // The result is the sum of all operands results. 3361 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3362 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3363 for (unsigned i = 1, e = M->getNumOperands(); 3364 SumOpRes != BitWidth && i != e; ++i) 3365 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3366 BitWidth); 3367 return SumOpRes; 3368 } 3369 3370 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3371 // The result is the min of all operands results. 3372 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3373 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3374 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3375 return MinOpRes; 3376 } 3377 3378 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3379 // The result is the min of all operands results. 3380 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3381 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3382 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3383 return MinOpRes; 3384 } 3385 3386 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3387 // The result is the min of all operands results. 3388 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3389 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3390 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3391 return MinOpRes; 3392 } 3393 3394 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3395 // For a SCEVUnknown, ask ValueTracking. 3396 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3397 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3398 computeKnownBits(U->getValue(), Zeros, Ones); 3399 return Zeros.countTrailingOnes(); 3400 } 3401 3402 // SCEVUDivExpr 3403 return 0; 3404 } 3405 3406 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 3407 /// 3408 ConstantRange 3409 ScalarEvolution::getUnsignedRange(const SCEV *S) { 3410 // See if we've computed this range already. 3411 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S); 3412 if (I != UnsignedRanges.end()) 3413 return I->second; 3414 3415 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3416 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue())); 3417 3418 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3419 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3420 3421 // If the value has known zeros, the maximum unsigned value will have those 3422 // known zeros as well. 3423 uint32_t TZ = GetMinTrailingZeros(S); 3424 if (TZ != 0) 3425 ConservativeResult = 3426 ConstantRange(APInt::getMinValue(BitWidth), 3427 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3428 3429 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3430 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 3431 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3432 X = X.add(getUnsignedRange(Add->getOperand(i))); 3433 return setUnsignedRange(Add, ConservativeResult.intersectWith(X)); 3434 } 3435 3436 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3437 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 3438 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3439 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 3440 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X)); 3441 } 3442 3443 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3444 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 3445 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3446 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 3447 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X)); 3448 } 3449 3450 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3451 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 3452 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3453 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 3454 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X)); 3455 } 3456 3457 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3458 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 3459 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 3460 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3461 } 3462 3463 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3464 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 3465 return setUnsignedRange(ZExt, 3466 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3467 } 3468 3469 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3470 ConstantRange X = getUnsignedRange(SExt->getOperand()); 3471 return setUnsignedRange(SExt, 3472 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3473 } 3474 3475 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3476 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 3477 return setUnsignedRange(Trunc, 3478 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3479 } 3480 3481 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3482 // If there's no unsigned wrap, the value will never be less than its 3483 // initial value. 3484 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3485 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3486 if (!C->getValue()->isZero()) 3487 ConservativeResult = 3488 ConservativeResult.intersectWith( 3489 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3490 3491 // TODO: non-affine addrec 3492 if (AddRec->isAffine()) { 3493 Type *Ty = AddRec->getType(); 3494 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3495 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3496 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3497 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3498 3499 const SCEV *Start = AddRec->getStart(); 3500 const SCEV *Step = AddRec->getStepRecurrence(*this); 3501 3502 ConstantRange StartRange = getUnsignedRange(Start); 3503 ConstantRange StepRange = getSignedRange(Step); 3504 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3505 ConstantRange EndRange = 3506 StartRange.add(MaxBECountRange.multiply(StepRange)); 3507 3508 // Check for overflow. This must be done with ConstantRange arithmetic 3509 // because we could be called from within the ScalarEvolution overflow 3510 // checking code. 3511 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1); 3512 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3513 ConstantRange ExtMaxBECountRange = 3514 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3515 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1); 3516 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3517 ExtEndRange) 3518 return setUnsignedRange(AddRec, ConservativeResult); 3519 3520 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 3521 EndRange.getUnsignedMin()); 3522 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 3523 EndRange.getUnsignedMax()); 3524 if (Min.isMinValue() && Max.isMaxValue()) 3525 return setUnsignedRange(AddRec, ConservativeResult); 3526 return setUnsignedRange(AddRec, 3527 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3528 } 3529 } 3530 3531 return setUnsignedRange(AddRec, ConservativeResult); 3532 } 3533 3534 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3535 // For a SCEVUnknown, ask ValueTracking. 3536 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3537 computeKnownBits(U->getValue(), Zeros, Ones, DL); 3538 if (Ones == ~Zeros + 1) 3539 return setUnsignedRange(U, ConservativeResult); 3540 return setUnsignedRange(U, 3541 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1))); 3542 } 3543 3544 return setUnsignedRange(S, ConservativeResult); 3545 } 3546 3547 /// getSignedRange - Determine the signed range for a particular SCEV. 3548 /// 3549 ConstantRange 3550 ScalarEvolution::getSignedRange(const SCEV *S) { 3551 // See if we've computed this range already. 3552 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S); 3553 if (I != SignedRanges.end()) 3554 return I->second; 3555 3556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3557 return setSignedRange(C, ConstantRange(C->getValue()->getValue())); 3558 3559 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3560 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3561 3562 // If the value has known zeros, the maximum signed value will have those 3563 // known zeros as well. 3564 uint32_t TZ = GetMinTrailingZeros(S); 3565 if (TZ != 0) 3566 ConservativeResult = 3567 ConstantRange(APInt::getSignedMinValue(BitWidth), 3568 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3569 3570 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3571 ConstantRange X = getSignedRange(Add->getOperand(0)); 3572 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3573 X = X.add(getSignedRange(Add->getOperand(i))); 3574 return setSignedRange(Add, ConservativeResult.intersectWith(X)); 3575 } 3576 3577 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3578 ConstantRange X = getSignedRange(Mul->getOperand(0)); 3579 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3580 X = X.multiply(getSignedRange(Mul->getOperand(i))); 3581 return setSignedRange(Mul, ConservativeResult.intersectWith(X)); 3582 } 3583 3584 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3585 ConstantRange X = getSignedRange(SMax->getOperand(0)); 3586 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3587 X = X.smax(getSignedRange(SMax->getOperand(i))); 3588 return setSignedRange(SMax, ConservativeResult.intersectWith(X)); 3589 } 3590 3591 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3592 ConstantRange X = getSignedRange(UMax->getOperand(0)); 3593 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3594 X = X.umax(getSignedRange(UMax->getOperand(i))); 3595 return setSignedRange(UMax, ConservativeResult.intersectWith(X)); 3596 } 3597 3598 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3599 ConstantRange X = getSignedRange(UDiv->getLHS()); 3600 ConstantRange Y = getSignedRange(UDiv->getRHS()); 3601 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y))); 3602 } 3603 3604 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3605 ConstantRange X = getSignedRange(ZExt->getOperand()); 3606 return setSignedRange(ZExt, 3607 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3608 } 3609 3610 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3611 ConstantRange X = getSignedRange(SExt->getOperand()); 3612 return setSignedRange(SExt, 3613 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3614 } 3615 3616 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3617 ConstantRange X = getSignedRange(Trunc->getOperand()); 3618 return setSignedRange(Trunc, 3619 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3620 } 3621 3622 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3623 // If there's no signed wrap, and all the operands have the same sign or 3624 // zero, the value won't ever change sign. 3625 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3626 bool AllNonNeg = true; 3627 bool AllNonPos = true; 3628 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3629 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3630 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3631 } 3632 if (AllNonNeg) 3633 ConservativeResult = ConservativeResult.intersectWith( 3634 ConstantRange(APInt(BitWidth, 0), 3635 APInt::getSignedMinValue(BitWidth))); 3636 else if (AllNonPos) 3637 ConservativeResult = ConservativeResult.intersectWith( 3638 ConstantRange(APInt::getSignedMinValue(BitWidth), 3639 APInt(BitWidth, 1))); 3640 } 3641 3642 // TODO: non-affine addrec 3643 if (AddRec->isAffine()) { 3644 Type *Ty = AddRec->getType(); 3645 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3646 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3647 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3648 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3649 3650 const SCEV *Start = AddRec->getStart(); 3651 const SCEV *Step = AddRec->getStepRecurrence(*this); 3652 3653 ConstantRange StartRange = getSignedRange(Start); 3654 ConstantRange StepRange = getSignedRange(Step); 3655 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 3656 ConstantRange EndRange = 3657 StartRange.add(MaxBECountRange.multiply(StepRange)); 3658 3659 // Check for overflow. This must be done with ConstantRange arithmetic 3660 // because we could be called from within the ScalarEvolution overflow 3661 // checking code. 3662 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1); 3663 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1); 3664 ConstantRange ExtMaxBECountRange = 3665 MaxBECountRange.zextOrTrunc(BitWidth*2+1); 3666 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1); 3667 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) != 3668 ExtEndRange) 3669 return setSignedRange(AddRec, ConservativeResult); 3670 3671 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3672 EndRange.getSignedMin()); 3673 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3674 EndRange.getSignedMax()); 3675 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3676 return setSignedRange(AddRec, ConservativeResult); 3677 return setSignedRange(AddRec, 3678 ConservativeResult.intersectWith(ConstantRange(Min, Max+1))); 3679 } 3680 } 3681 3682 return setSignedRange(AddRec, ConservativeResult); 3683 } 3684 3685 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3686 // For a SCEVUnknown, ask ValueTracking. 3687 if (!U->getValue()->getType()->isIntegerTy() && !DL) 3688 return setSignedRange(U, ConservativeResult); 3689 unsigned NS = ComputeNumSignBits(U->getValue(), DL); 3690 if (NS <= 1) 3691 return setSignedRange(U, ConservativeResult); 3692 return setSignedRange(U, ConservativeResult.intersectWith( 3693 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3694 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1))); 3695 } 3696 3697 return setSignedRange(S, ConservativeResult); 3698 } 3699 3700 /// createSCEV - We know that there is no SCEV for the specified value. 3701 /// Analyze the expression. 3702 /// 3703 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3704 if (!isSCEVable(V->getType())) 3705 return getUnknown(V); 3706 3707 unsigned Opcode = Instruction::UserOp1; 3708 if (Instruction *I = dyn_cast<Instruction>(V)) { 3709 Opcode = I->getOpcode(); 3710 3711 // Don't attempt to analyze instructions in blocks that aren't 3712 // reachable. Such instructions don't matter, and they aren't required 3713 // to obey basic rules for definitions dominating uses which this 3714 // analysis depends on. 3715 if (!DT->isReachableFromEntry(I->getParent())) 3716 return getUnknown(V); 3717 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3718 Opcode = CE->getOpcode(); 3719 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3720 return getConstant(CI); 3721 else if (isa<ConstantPointerNull>(V)) 3722 return getConstant(V->getType(), 0); 3723 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3724 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3725 else 3726 return getUnknown(V); 3727 3728 Operator *U = cast<Operator>(V); 3729 switch (Opcode) { 3730 case Instruction::Add: { 3731 // The simple thing to do would be to just call getSCEV on both operands 3732 // and call getAddExpr with the result. However if we're looking at a 3733 // bunch of things all added together, this can be quite inefficient, 3734 // because it leads to N-1 getAddExpr calls for N ultimate operands. 3735 // Instead, gather up all the operands and make a single getAddExpr call. 3736 // LLVM IR canonical form means we need only traverse the left operands. 3737 // 3738 // Don't apply this instruction's NSW or NUW flags to the new 3739 // expression. The instruction may be guarded by control flow that the 3740 // no-wrap behavior depends on. Non-control-equivalent instructions can be 3741 // mapped to the same SCEV expression, and it would be incorrect to transfer 3742 // NSW/NUW semantics to those operations. 3743 SmallVector<const SCEV *, 4> AddOps; 3744 AddOps.push_back(getSCEV(U->getOperand(1))); 3745 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) { 3746 unsigned Opcode = Op->getValueID() - Value::InstructionVal; 3747 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 3748 break; 3749 U = cast<Operator>(Op); 3750 const SCEV *Op1 = getSCEV(U->getOperand(1)); 3751 if (Opcode == Instruction::Sub) 3752 AddOps.push_back(getNegativeSCEV(Op1)); 3753 else 3754 AddOps.push_back(Op1); 3755 } 3756 AddOps.push_back(getSCEV(U->getOperand(0))); 3757 return getAddExpr(AddOps); 3758 } 3759 case Instruction::Mul: { 3760 // Don't transfer NSW/NUW for the same reason as AddExpr. 3761 SmallVector<const SCEV *, 4> MulOps; 3762 MulOps.push_back(getSCEV(U->getOperand(1))); 3763 for (Value *Op = U->getOperand(0); 3764 Op->getValueID() == Instruction::Mul + Value::InstructionVal; 3765 Op = U->getOperand(0)) { 3766 U = cast<Operator>(Op); 3767 MulOps.push_back(getSCEV(U->getOperand(1))); 3768 } 3769 MulOps.push_back(getSCEV(U->getOperand(0))); 3770 return getMulExpr(MulOps); 3771 } 3772 case Instruction::UDiv: 3773 return getUDivExpr(getSCEV(U->getOperand(0)), 3774 getSCEV(U->getOperand(1))); 3775 case Instruction::Sub: 3776 return getMinusSCEV(getSCEV(U->getOperand(0)), 3777 getSCEV(U->getOperand(1))); 3778 case Instruction::And: 3779 // For an expression like x&255 that merely masks off the high bits, 3780 // use zext(trunc(x)) as the SCEV expression. 3781 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3782 if (CI->isNullValue()) 3783 return getSCEV(U->getOperand(1)); 3784 if (CI->isAllOnesValue()) 3785 return getSCEV(U->getOperand(0)); 3786 const APInt &A = CI->getValue(); 3787 3788 // Instcombine's ShrinkDemandedConstant may strip bits out of 3789 // constants, obscuring what would otherwise be a low-bits mask. 3790 // Use computeKnownBits to compute what ShrinkDemandedConstant 3791 // knew about to reconstruct a low-bits mask value. 3792 unsigned LZ = A.countLeadingZeros(); 3793 unsigned TZ = A.countTrailingZeros(); 3794 unsigned BitWidth = A.getBitWidth(); 3795 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3796 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL); 3797 3798 APInt EffectiveMask = 3799 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 3800 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 3801 const SCEV *MulCount = getConstant( 3802 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 3803 return getMulExpr( 3804 getZeroExtendExpr( 3805 getTruncateExpr( 3806 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 3807 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 3808 U->getType()), 3809 MulCount); 3810 } 3811 } 3812 break; 3813 3814 case Instruction::Or: 3815 // If the RHS of the Or is a constant, we may have something like: 3816 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3817 // optimizations will transparently handle this case. 3818 // 3819 // In order for this transformation to be safe, the LHS must be of the 3820 // form X*(2^n) and the Or constant must be less than 2^n. 3821 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3822 const SCEV *LHS = getSCEV(U->getOperand(0)); 3823 const APInt &CIVal = CI->getValue(); 3824 if (GetMinTrailingZeros(LHS) >= 3825 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3826 // Build a plain add SCEV. 3827 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3828 // If the LHS of the add was an addrec and it has no-wrap flags, 3829 // transfer the no-wrap flags, since an or won't introduce a wrap. 3830 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3831 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3832 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 3833 OldAR->getNoWrapFlags()); 3834 } 3835 return S; 3836 } 3837 } 3838 break; 3839 case Instruction::Xor: 3840 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3841 // If the RHS of the xor is a signbit, then this is just an add. 3842 // Instcombine turns add of signbit into xor as a strength reduction step. 3843 if (CI->getValue().isSignBit()) 3844 return getAddExpr(getSCEV(U->getOperand(0)), 3845 getSCEV(U->getOperand(1))); 3846 3847 // If the RHS of xor is -1, then this is a not operation. 3848 if (CI->isAllOnesValue()) 3849 return getNotSCEV(getSCEV(U->getOperand(0))); 3850 3851 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3852 // This is a variant of the check for xor with -1, and it handles 3853 // the case where instcombine has trimmed non-demanded bits out 3854 // of an xor with -1. 3855 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3856 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3857 if (BO->getOpcode() == Instruction::And && 3858 LCI->getValue() == CI->getValue()) 3859 if (const SCEVZeroExtendExpr *Z = 3860 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3861 Type *UTy = U->getType(); 3862 const SCEV *Z0 = Z->getOperand(); 3863 Type *Z0Ty = Z0->getType(); 3864 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3865 3866 // If C is a low-bits mask, the zero extend is serving to 3867 // mask off the high bits. Complement the operand and 3868 // re-apply the zext. 3869 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3870 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3871 3872 // If C is a single bit, it may be in the sign-bit position 3873 // before the zero-extend. In this case, represent the xor 3874 // using an add, which is equivalent, and re-apply the zext. 3875 APInt Trunc = CI->getValue().trunc(Z0TySize); 3876 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3877 Trunc.isSignBit()) 3878 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3879 UTy); 3880 } 3881 } 3882 break; 3883 3884 case Instruction::Shl: 3885 // Turn shift left of a constant amount into a multiply. 3886 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3887 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3888 3889 // If the shift count is not less than the bitwidth, the result of 3890 // the shift is undefined. Don't try to analyze it, because the 3891 // resolution chosen here may differ from the resolution chosen in 3892 // other parts of the compiler. 3893 if (SA->getValue().uge(BitWidth)) 3894 break; 3895 3896 Constant *X = ConstantInt::get(getContext(), 3897 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3898 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3899 } 3900 break; 3901 3902 case Instruction::LShr: 3903 // Turn logical shift right of a constant into a unsigned divide. 3904 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3905 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3906 3907 // If the shift count is not less than the bitwidth, the result of 3908 // the shift is undefined. Don't try to analyze it, because the 3909 // resolution chosen here may differ from the resolution chosen in 3910 // other parts of the compiler. 3911 if (SA->getValue().uge(BitWidth)) 3912 break; 3913 3914 Constant *X = ConstantInt::get(getContext(), 3915 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 3916 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3917 } 3918 break; 3919 3920 case Instruction::AShr: 3921 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3922 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3923 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 3924 if (L->getOpcode() == Instruction::Shl && 3925 L->getOperand(1) == U->getOperand(1)) { 3926 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 3927 3928 // If the shift count is not less than the bitwidth, the result of 3929 // the shift is undefined. Don't try to analyze it, because the 3930 // resolution chosen here may differ from the resolution chosen in 3931 // other parts of the compiler. 3932 if (CI->getValue().uge(BitWidth)) 3933 break; 3934 3935 uint64_t Amt = BitWidth - CI->getZExtValue(); 3936 if (Amt == BitWidth) 3937 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3938 return 3939 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3940 IntegerType::get(getContext(), 3941 Amt)), 3942 U->getType()); 3943 } 3944 break; 3945 3946 case Instruction::Trunc: 3947 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3948 3949 case Instruction::ZExt: 3950 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3951 3952 case Instruction::SExt: 3953 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3954 3955 case Instruction::BitCast: 3956 // BitCasts are no-op casts so we just eliminate the cast. 3957 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3958 return getSCEV(U->getOperand(0)); 3959 break; 3960 3961 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3962 // lead to pointer expressions which cannot safely be expanded to GEPs, 3963 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3964 // simplifying integer expressions. 3965 3966 case Instruction::GetElementPtr: 3967 return createNodeForGEP(cast<GEPOperator>(U)); 3968 3969 case Instruction::PHI: 3970 return createNodeForPHI(cast<PHINode>(U)); 3971 3972 case Instruction::Select: 3973 // This could be a smax or umax that was lowered earlier. 3974 // Try to recover it. 3975 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3976 Value *LHS = ICI->getOperand(0); 3977 Value *RHS = ICI->getOperand(1); 3978 switch (ICI->getPredicate()) { 3979 case ICmpInst::ICMP_SLT: 3980 case ICmpInst::ICMP_SLE: 3981 std::swap(LHS, RHS); 3982 // fall through 3983 case ICmpInst::ICMP_SGT: 3984 case ICmpInst::ICMP_SGE: 3985 // a >s b ? a+x : b+x -> smax(a, b)+x 3986 // a >s b ? b+x : a+x -> smin(a, b)+x 3987 if (LHS->getType() == U->getType()) { 3988 const SCEV *LS = getSCEV(LHS); 3989 const SCEV *RS = getSCEV(RHS); 3990 const SCEV *LA = getSCEV(U->getOperand(1)); 3991 const SCEV *RA = getSCEV(U->getOperand(2)); 3992 const SCEV *LDiff = getMinusSCEV(LA, LS); 3993 const SCEV *RDiff = getMinusSCEV(RA, RS); 3994 if (LDiff == RDiff) 3995 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3996 LDiff = getMinusSCEV(LA, RS); 3997 RDiff = getMinusSCEV(RA, LS); 3998 if (LDiff == RDiff) 3999 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4000 } 4001 break; 4002 case ICmpInst::ICMP_ULT: 4003 case ICmpInst::ICMP_ULE: 4004 std::swap(LHS, RHS); 4005 // fall through 4006 case ICmpInst::ICMP_UGT: 4007 case ICmpInst::ICMP_UGE: 4008 // a >u b ? a+x : b+x -> umax(a, b)+x 4009 // a >u b ? b+x : a+x -> umin(a, b)+x 4010 if (LHS->getType() == U->getType()) { 4011 const SCEV *LS = getSCEV(LHS); 4012 const SCEV *RS = getSCEV(RHS); 4013 const SCEV *LA = getSCEV(U->getOperand(1)); 4014 const SCEV *RA = getSCEV(U->getOperand(2)); 4015 const SCEV *LDiff = getMinusSCEV(LA, LS); 4016 const SCEV *RDiff = getMinusSCEV(RA, RS); 4017 if (LDiff == RDiff) 4018 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4019 LDiff = getMinusSCEV(LA, RS); 4020 RDiff = getMinusSCEV(RA, LS); 4021 if (LDiff == RDiff) 4022 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4023 } 4024 break; 4025 case ICmpInst::ICMP_NE: 4026 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4027 if (LHS->getType() == U->getType() && 4028 isa<ConstantInt>(RHS) && 4029 cast<ConstantInt>(RHS)->isZero()) { 4030 const SCEV *One = getConstant(LHS->getType(), 1); 4031 const SCEV *LS = getSCEV(LHS); 4032 const SCEV *LA = getSCEV(U->getOperand(1)); 4033 const SCEV *RA = getSCEV(U->getOperand(2)); 4034 const SCEV *LDiff = getMinusSCEV(LA, LS); 4035 const SCEV *RDiff = getMinusSCEV(RA, One); 4036 if (LDiff == RDiff) 4037 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4038 } 4039 break; 4040 case ICmpInst::ICMP_EQ: 4041 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4042 if (LHS->getType() == U->getType() && 4043 isa<ConstantInt>(RHS) && 4044 cast<ConstantInt>(RHS)->isZero()) { 4045 const SCEV *One = getConstant(LHS->getType(), 1); 4046 const SCEV *LS = getSCEV(LHS); 4047 const SCEV *LA = getSCEV(U->getOperand(1)); 4048 const SCEV *RA = getSCEV(U->getOperand(2)); 4049 const SCEV *LDiff = getMinusSCEV(LA, One); 4050 const SCEV *RDiff = getMinusSCEV(RA, LS); 4051 if (LDiff == RDiff) 4052 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4053 } 4054 break; 4055 default: 4056 break; 4057 } 4058 } 4059 4060 default: // We cannot analyze this expression. 4061 break; 4062 } 4063 4064 return getUnknown(V); 4065 } 4066 4067 4068 4069 //===----------------------------------------------------------------------===// 4070 // Iteration Count Computation Code 4071 // 4072 4073 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4074 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4075 /// constant. Will also return 0 if the maximum trip count is very large (>= 4076 /// 2^32). 4077 /// 4078 /// This "trip count" assumes that control exits via ExitingBlock. More 4079 /// precisely, it is the number of times that control may reach ExitingBlock 4080 /// before taking the branch. For loops with multiple exits, it may not be the 4081 /// number times that the loop header executes because the loop may exit 4082 /// prematurely via another branch. 4083 /// 4084 /// FIXME: We conservatively call getBackedgeTakenCount(L) instead of 4085 /// getExitCount(L, ExitingBlock) to compute a safe trip count considering all 4086 /// loop exits. getExitCount() may return an exact count for this branch 4087 /// assuming no-signed-wrap. The number of well-defined iterations may actually 4088 /// be higher than this trip count if this exit test is skipped and the loop 4089 /// exits via a different branch. Ideally, getExitCount() would know whether it 4090 /// depends on a NSW assumption, and we would only fall back to a conservative 4091 /// trip count in that case. 4092 unsigned ScalarEvolution:: 4093 getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) { 4094 const SCEVConstant *ExitCount = 4095 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L)); 4096 if (!ExitCount) 4097 return 0; 4098 4099 ConstantInt *ExitConst = ExitCount->getValue(); 4100 4101 // Guard against huge trip counts. 4102 if (ExitConst->getValue().getActiveBits() > 32) 4103 return 0; 4104 4105 // In case of integer overflow, this returns 0, which is correct. 4106 return ((unsigned)ExitConst->getZExtValue()) + 1; 4107 } 4108 4109 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4110 /// trip count of this loop as a normal unsigned value, if possible. This 4111 /// means that the actual trip count is always a multiple of the returned 4112 /// value (don't forget the trip count could very well be zero as well!). 4113 /// 4114 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4115 /// multiple of a constant (which is also the case if the trip count is simply 4116 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4117 /// if the trip count is very large (>= 2^32). 4118 /// 4119 /// As explained in the comments for getSmallConstantTripCount, this assumes 4120 /// that control exits the loop via ExitingBlock. 4121 unsigned ScalarEvolution:: 4122 getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) { 4123 const SCEV *ExitCount = getBackedgeTakenCount(L); 4124 if (ExitCount == getCouldNotCompute()) 4125 return 1; 4126 4127 // Get the trip count from the BE count by adding 1. 4128 const SCEV *TCMul = getAddExpr(ExitCount, 4129 getConstant(ExitCount->getType(), 1)); 4130 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4131 // to factor simple cases. 4132 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4133 TCMul = Mul->getOperand(0); 4134 4135 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4136 if (!MulC) 4137 return 1; 4138 4139 ConstantInt *Result = MulC->getValue(); 4140 4141 // Guard against huge trip counts (this requires checking 4142 // for zero to handle the case where the trip count == -1 and the 4143 // addition wraps). 4144 if (!Result || Result->getValue().getActiveBits() > 32 || 4145 Result->getValue().getActiveBits() == 0) 4146 return 1; 4147 4148 return (unsigned)Result->getZExtValue(); 4149 } 4150 4151 // getExitCount - Get the expression for the number of loop iterations for which 4152 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4153 // SCEVCouldNotCompute. 4154 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4155 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4156 } 4157 4158 /// getBackedgeTakenCount - If the specified loop has a predictable 4159 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4160 /// object. The backedge-taken count is the number of times the loop header 4161 /// will be branched to from within the loop. This is one less than the 4162 /// trip count of the loop, since it doesn't count the first iteration, 4163 /// when the header is branched to from outside the loop. 4164 /// 4165 /// Note that it is not valid to call this method on a loop without a 4166 /// loop-invariant backedge-taken count (see 4167 /// hasLoopInvariantBackedgeTakenCount). 4168 /// 4169 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4170 return getBackedgeTakenInfo(L).getExact(this); 4171 } 4172 4173 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4174 /// return the least SCEV value that is known never to be less than the 4175 /// actual backedge taken count. 4176 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4177 return getBackedgeTakenInfo(L).getMax(this); 4178 } 4179 4180 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4181 /// onto the given Worklist. 4182 static void 4183 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4184 BasicBlock *Header = L->getHeader(); 4185 4186 // Push all Loop-header PHIs onto the Worklist stack. 4187 for (BasicBlock::iterator I = Header->begin(); 4188 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4189 Worklist.push_back(PN); 4190 } 4191 4192 const ScalarEvolution::BackedgeTakenInfo & 4193 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4194 // Initially insert an invalid entry for this loop. If the insertion 4195 // succeeds, proceed to actually compute a backedge-taken count and 4196 // update the value. The temporary CouldNotCompute value tells SCEV 4197 // code elsewhere that it shouldn't attempt to request a new 4198 // backedge-taken count, which could result in infinite recursion. 4199 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4200 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4201 if (!Pair.second) 4202 return Pair.first->second; 4203 4204 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4205 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4206 // must be cleared in this scope. 4207 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4208 4209 if (Result.getExact(this) != getCouldNotCompute()) { 4210 assert(isLoopInvariant(Result.getExact(this), L) && 4211 isLoopInvariant(Result.getMax(this), L) && 4212 "Computed backedge-taken count isn't loop invariant for loop!"); 4213 ++NumTripCountsComputed; 4214 } 4215 else if (Result.getMax(this) == getCouldNotCompute() && 4216 isa<PHINode>(L->getHeader()->begin())) { 4217 // Only count loops that have phi nodes as not being computable. 4218 ++NumTripCountsNotComputed; 4219 } 4220 4221 // Now that we know more about the trip count for this loop, forget any 4222 // existing SCEV values for PHI nodes in this loop since they are only 4223 // conservative estimates made without the benefit of trip count 4224 // information. This is similar to the code in forgetLoop, except that 4225 // it handles SCEVUnknown PHI nodes specially. 4226 if (Result.hasAnyInfo()) { 4227 SmallVector<Instruction *, 16> Worklist; 4228 PushLoopPHIs(L, Worklist); 4229 4230 SmallPtrSet<Instruction *, 8> Visited; 4231 while (!Worklist.empty()) { 4232 Instruction *I = Worklist.pop_back_val(); 4233 if (!Visited.insert(I)) continue; 4234 4235 ValueExprMapType::iterator It = 4236 ValueExprMap.find_as(static_cast<Value *>(I)); 4237 if (It != ValueExprMap.end()) { 4238 const SCEV *Old = It->second; 4239 4240 // SCEVUnknown for a PHI either means that it has an unrecognized 4241 // structure, or it's a PHI that's in the progress of being computed 4242 // by createNodeForPHI. In the former case, additional loop trip 4243 // count information isn't going to change anything. In the later 4244 // case, createNodeForPHI will perform the necessary updates on its 4245 // own when it gets to that point. 4246 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4247 forgetMemoizedResults(Old); 4248 ValueExprMap.erase(It); 4249 } 4250 if (PHINode *PN = dyn_cast<PHINode>(I)) 4251 ConstantEvolutionLoopExitValue.erase(PN); 4252 } 4253 4254 PushDefUseChildren(I, Worklist); 4255 } 4256 } 4257 4258 // Re-lookup the insert position, since the call to 4259 // ComputeBackedgeTakenCount above could result in a 4260 // recusive call to getBackedgeTakenInfo (on a different 4261 // loop), which would invalidate the iterator computed 4262 // earlier. 4263 return BackedgeTakenCounts.find(L)->second = Result; 4264 } 4265 4266 /// forgetLoop - This method should be called by the client when it has 4267 /// changed a loop in a way that may effect ScalarEvolution's ability to 4268 /// compute a trip count, or if the loop is deleted. 4269 void ScalarEvolution::forgetLoop(const Loop *L) { 4270 // Drop any stored trip count value. 4271 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4272 BackedgeTakenCounts.find(L); 4273 if (BTCPos != BackedgeTakenCounts.end()) { 4274 BTCPos->second.clear(); 4275 BackedgeTakenCounts.erase(BTCPos); 4276 } 4277 4278 // Drop information about expressions based on loop-header PHIs. 4279 SmallVector<Instruction *, 16> Worklist; 4280 PushLoopPHIs(L, Worklist); 4281 4282 SmallPtrSet<Instruction *, 8> Visited; 4283 while (!Worklist.empty()) { 4284 Instruction *I = Worklist.pop_back_val(); 4285 if (!Visited.insert(I)) continue; 4286 4287 ValueExprMapType::iterator It = 4288 ValueExprMap.find_as(static_cast<Value *>(I)); 4289 if (It != ValueExprMap.end()) { 4290 forgetMemoizedResults(It->second); 4291 ValueExprMap.erase(It); 4292 if (PHINode *PN = dyn_cast<PHINode>(I)) 4293 ConstantEvolutionLoopExitValue.erase(PN); 4294 } 4295 4296 PushDefUseChildren(I, Worklist); 4297 } 4298 4299 // Forget all contained loops too, to avoid dangling entries in the 4300 // ValuesAtScopes map. 4301 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4302 forgetLoop(*I); 4303 } 4304 4305 /// forgetValue - This method should be called by the client when it has 4306 /// changed a value in a way that may effect its value, or which may 4307 /// disconnect it from a def-use chain linking it to a loop. 4308 void ScalarEvolution::forgetValue(Value *V) { 4309 Instruction *I = dyn_cast<Instruction>(V); 4310 if (!I) return; 4311 4312 // Drop information about expressions based on loop-header PHIs. 4313 SmallVector<Instruction *, 16> Worklist; 4314 Worklist.push_back(I); 4315 4316 SmallPtrSet<Instruction *, 8> Visited; 4317 while (!Worklist.empty()) { 4318 I = Worklist.pop_back_val(); 4319 if (!Visited.insert(I)) continue; 4320 4321 ValueExprMapType::iterator It = 4322 ValueExprMap.find_as(static_cast<Value *>(I)); 4323 if (It != ValueExprMap.end()) { 4324 forgetMemoizedResults(It->second); 4325 ValueExprMap.erase(It); 4326 if (PHINode *PN = dyn_cast<PHINode>(I)) 4327 ConstantEvolutionLoopExitValue.erase(PN); 4328 } 4329 4330 PushDefUseChildren(I, Worklist); 4331 } 4332 } 4333 4334 /// getExact - Get the exact loop backedge taken count considering all loop 4335 /// exits. A computable result can only be return for loops with a single exit. 4336 /// Returning the minimum taken count among all exits is incorrect because one 4337 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that 4338 /// the limit of each loop test is never skipped. This is a valid assumption as 4339 /// long as the loop exits via that test. For precise results, it is the 4340 /// caller's responsibility to specify the relevant loop exit using 4341 /// getExact(ExitingBlock, SE). 4342 const SCEV * 4343 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4344 // If any exits were not computable, the loop is not computable. 4345 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4346 4347 // We need exactly one computable exit. 4348 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4349 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4350 4351 const SCEV *BECount = nullptr; 4352 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4353 ENT != nullptr; ENT = ENT->getNextExit()) { 4354 4355 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4356 4357 if (!BECount) 4358 BECount = ENT->ExactNotTaken; 4359 else if (BECount != ENT->ExactNotTaken) 4360 return SE->getCouldNotCompute(); 4361 } 4362 assert(BECount && "Invalid not taken count for loop exit"); 4363 return BECount; 4364 } 4365 4366 /// getExact - Get the exact not taken count for this loop exit. 4367 const SCEV * 4368 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4369 ScalarEvolution *SE) const { 4370 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4371 ENT != nullptr; ENT = ENT->getNextExit()) { 4372 4373 if (ENT->ExitingBlock == ExitingBlock) 4374 return ENT->ExactNotTaken; 4375 } 4376 return SE->getCouldNotCompute(); 4377 } 4378 4379 /// getMax - Get the max backedge taken count for the loop. 4380 const SCEV * 4381 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4382 return Max ? Max : SE->getCouldNotCompute(); 4383 } 4384 4385 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4386 ScalarEvolution *SE) const { 4387 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4388 return true; 4389 4390 if (!ExitNotTaken.ExitingBlock) 4391 return false; 4392 4393 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4394 ENT != nullptr; ENT = ENT->getNextExit()) { 4395 4396 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4397 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4398 return true; 4399 } 4400 } 4401 return false; 4402 } 4403 4404 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4405 /// computable exit into a persistent ExitNotTakenInfo array. 4406 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4407 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4408 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4409 4410 if (!Complete) 4411 ExitNotTaken.setIncomplete(); 4412 4413 unsigned NumExits = ExitCounts.size(); 4414 if (NumExits == 0) return; 4415 4416 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4417 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4418 if (NumExits == 1) return; 4419 4420 // Handle the rare case of multiple computable exits. 4421 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4422 4423 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4424 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4425 PrevENT->setNextExit(ENT); 4426 ENT->ExitingBlock = ExitCounts[i].first; 4427 ENT->ExactNotTaken = ExitCounts[i].second; 4428 } 4429 } 4430 4431 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4432 void ScalarEvolution::BackedgeTakenInfo::clear() { 4433 ExitNotTaken.ExitingBlock = nullptr; 4434 ExitNotTaken.ExactNotTaken = nullptr; 4435 delete[] ExitNotTaken.getNextExit(); 4436 } 4437 4438 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4439 /// of the specified loop will execute. 4440 ScalarEvolution::BackedgeTakenInfo 4441 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4442 SmallVector<BasicBlock *, 8> ExitingBlocks; 4443 L->getExitingBlocks(ExitingBlocks); 4444 4445 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4446 bool CouldComputeBECount = true; 4447 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4448 const SCEV *MustExitMaxBECount = nullptr; 4449 const SCEV *MayExitMaxBECount = nullptr; 4450 4451 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4452 // and compute maxBECount. 4453 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4454 BasicBlock *ExitBB = ExitingBlocks[i]; 4455 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4456 4457 // 1. For each exit that can be computed, add an entry to ExitCounts. 4458 // CouldComputeBECount is true only if all exits can be computed. 4459 if (EL.Exact == getCouldNotCompute()) 4460 // We couldn't compute an exact value for this exit, so 4461 // we won't be able to compute an exact value for the loop. 4462 CouldComputeBECount = false; 4463 else 4464 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4465 4466 // 2. Derive the loop's MaxBECount from each exit's max number of 4467 // non-exiting iterations. Partition the loop exits into two kinds: 4468 // LoopMustExits and LoopMayExits. 4469 // 4470 // A LoopMustExit meets two requirements: 4471 // 4472 // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit 4473 // test condition cannot be skipped (the tested variable has unit stride or 4474 // the test is less-than or greater-than, rather than a strict inequality). 4475 // 4476 // (b) It must dominate the loop latch, hence must be tested on every loop 4477 // iteration. 4478 // 4479 // If any computable LoopMustExit is found, then MaxBECount is the minimum 4480 // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is 4481 // conservatively the maximum EL.Max, where CouldNotCompute is considered 4482 // greater than any computable EL.Max. 4483 if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch && 4484 DT->dominates(ExitBB, Latch)) { 4485 if (!MustExitMaxBECount) 4486 MustExitMaxBECount = EL.Max; 4487 else { 4488 MustExitMaxBECount = 4489 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 4490 } 4491 } else if (MayExitMaxBECount != getCouldNotCompute()) { 4492 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 4493 MayExitMaxBECount = EL.Max; 4494 else { 4495 MayExitMaxBECount = 4496 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 4497 } 4498 } 4499 } 4500 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 4501 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 4502 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 4503 } 4504 4505 /// ComputeExitLimit - Compute the number of times the backedge of the specified 4506 /// loop will execute if it exits via the specified block. 4507 ScalarEvolution::ExitLimit 4508 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 4509 4510 // Okay, we've chosen an exiting block. See what condition causes us to 4511 // exit at this block and remember the exit block and whether all other targets 4512 // lead to the loop header. 4513 bool MustExecuteLoopHeader = true; 4514 BasicBlock *Exit = nullptr; 4515 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 4516 SI != SE; ++SI) 4517 if (!L->contains(*SI)) { 4518 if (Exit) // Multiple exit successors. 4519 return getCouldNotCompute(); 4520 Exit = *SI; 4521 } else if (*SI != L->getHeader()) { 4522 MustExecuteLoopHeader = false; 4523 } 4524 4525 // At this point, we know we have a conditional branch that determines whether 4526 // the loop is exited. However, we don't know if the branch is executed each 4527 // time through the loop. If not, then the execution count of the branch will 4528 // not be equal to the trip count of the loop. 4529 // 4530 // Currently we check for this by checking to see if the Exit branch goes to 4531 // the loop header. If so, we know it will always execute the same number of 4532 // times as the loop. We also handle the case where the exit block *is* the 4533 // loop header. This is common for un-rotated loops. 4534 // 4535 // If both of those tests fail, walk up the unique predecessor chain to the 4536 // header, stopping if there is an edge that doesn't exit the loop. If the 4537 // header is reached, the execution count of the branch will be equal to the 4538 // trip count of the loop. 4539 // 4540 // More extensive analysis could be done to handle more cases here. 4541 // 4542 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 4543 // The simple checks failed, try climbing the unique predecessor chain 4544 // up to the header. 4545 bool Ok = false; 4546 for (BasicBlock *BB = ExitingBlock; BB; ) { 4547 BasicBlock *Pred = BB->getUniquePredecessor(); 4548 if (!Pred) 4549 return getCouldNotCompute(); 4550 TerminatorInst *PredTerm = Pred->getTerminator(); 4551 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 4552 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 4553 if (PredSucc == BB) 4554 continue; 4555 // If the predecessor has a successor that isn't BB and isn't 4556 // outside the loop, assume the worst. 4557 if (L->contains(PredSucc)) 4558 return getCouldNotCompute(); 4559 } 4560 if (Pred == L->getHeader()) { 4561 Ok = true; 4562 break; 4563 } 4564 BB = Pred; 4565 } 4566 if (!Ok) 4567 return getCouldNotCompute(); 4568 } 4569 4570 TerminatorInst *Term = ExitingBlock->getTerminator(); 4571 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 4572 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 4573 // Proceed to the next level to examine the exit condition expression. 4574 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 4575 BI->getSuccessor(1), 4576 /*IsSubExpr=*/false); 4577 } 4578 4579 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 4580 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 4581 /*IsSubExpr=*/false); 4582 4583 return getCouldNotCompute(); 4584 } 4585 4586 /// ComputeExitLimitFromCond - Compute the number of times the 4587 /// backedge of the specified loop will execute if its exit condition 4588 /// were a conditional branch of ExitCond, TBB, and FBB. 4589 /// 4590 /// @param IsSubExpr is true if ExitCond does not directly control the exit 4591 /// branch. In this case, we cannot assume that the loop only exits when the 4592 /// condition is true and cannot infer that failing to meet the condition prior 4593 /// to integer wraparound results in undefined behavior. 4594 ScalarEvolution::ExitLimit 4595 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 4596 Value *ExitCond, 4597 BasicBlock *TBB, 4598 BasicBlock *FBB, 4599 bool IsSubExpr) { 4600 // Check if the controlling expression for this loop is an And or Or. 4601 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 4602 if (BO->getOpcode() == Instruction::And) { 4603 // Recurse on the operands of the and. 4604 bool EitherMayExit = L->contains(TBB); 4605 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4606 IsSubExpr || EitherMayExit); 4607 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4608 IsSubExpr || EitherMayExit); 4609 const SCEV *BECount = getCouldNotCompute(); 4610 const SCEV *MaxBECount = getCouldNotCompute(); 4611 bool MustExit = false; 4612 if (EitherMayExit) { 4613 // Both conditions must be true for the loop to continue executing. 4614 // Choose the less conservative count. 4615 if (EL0.Exact == getCouldNotCompute() || 4616 EL1.Exact == getCouldNotCompute()) 4617 BECount = getCouldNotCompute(); 4618 else 4619 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4620 if (EL0.Max == getCouldNotCompute()) 4621 MaxBECount = EL1.Max; 4622 else if (EL1.Max == getCouldNotCompute()) 4623 MaxBECount = EL0.Max; 4624 else 4625 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4626 MustExit = EL0.MustExit || EL1.MustExit; 4627 } else { 4628 // Both conditions must be true at the same time for the loop to exit. 4629 // For now, be conservative. 4630 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 4631 if (EL0.Max == EL1.Max) 4632 MaxBECount = EL0.Max; 4633 if (EL0.Exact == EL1.Exact) 4634 BECount = EL0.Exact; 4635 MustExit = EL0.MustExit && EL1.MustExit; 4636 } 4637 4638 return ExitLimit(BECount, MaxBECount, MustExit); 4639 } 4640 if (BO->getOpcode() == Instruction::Or) { 4641 // Recurse on the operands of the or. 4642 bool EitherMayExit = L->contains(FBB); 4643 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 4644 IsSubExpr || EitherMayExit); 4645 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 4646 IsSubExpr || EitherMayExit); 4647 const SCEV *BECount = getCouldNotCompute(); 4648 const SCEV *MaxBECount = getCouldNotCompute(); 4649 bool MustExit = false; 4650 if (EitherMayExit) { 4651 // Both conditions must be false for the loop to continue executing. 4652 // Choose the less conservative count. 4653 if (EL0.Exact == getCouldNotCompute() || 4654 EL1.Exact == getCouldNotCompute()) 4655 BECount = getCouldNotCompute(); 4656 else 4657 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 4658 if (EL0.Max == getCouldNotCompute()) 4659 MaxBECount = EL1.Max; 4660 else if (EL1.Max == getCouldNotCompute()) 4661 MaxBECount = EL0.Max; 4662 else 4663 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 4664 MustExit = EL0.MustExit || EL1.MustExit; 4665 } else { 4666 // Both conditions must be false at the same time for the loop to exit. 4667 // For now, be conservative. 4668 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 4669 if (EL0.Max == EL1.Max) 4670 MaxBECount = EL0.Max; 4671 if (EL0.Exact == EL1.Exact) 4672 BECount = EL0.Exact; 4673 MustExit = EL0.MustExit && EL1.MustExit; 4674 } 4675 4676 return ExitLimit(BECount, MaxBECount, MustExit); 4677 } 4678 } 4679 4680 // With an icmp, it may be feasible to compute an exact backedge-taken count. 4681 // Proceed to the next level to examine the icmp. 4682 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 4683 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr); 4684 4685 // Check for a constant condition. These are normally stripped out by 4686 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 4687 // preserve the CFG and is temporarily leaving constant conditions 4688 // in place. 4689 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 4690 if (L->contains(FBB) == !CI->getZExtValue()) 4691 // The backedge is always taken. 4692 return getCouldNotCompute(); 4693 else 4694 // The backedge is never taken. 4695 return getConstant(CI->getType(), 0); 4696 } 4697 4698 // If it's not an integer or pointer comparison then compute it the hard way. 4699 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4700 } 4701 4702 /// ComputeExitLimitFromICmp - Compute the number of times the 4703 /// backedge of the specified loop will execute if its exit condition 4704 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 4705 ScalarEvolution::ExitLimit 4706 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 4707 ICmpInst *ExitCond, 4708 BasicBlock *TBB, 4709 BasicBlock *FBB, 4710 bool IsSubExpr) { 4711 4712 // If the condition was exit on true, convert the condition to exit on false 4713 ICmpInst::Predicate Cond; 4714 if (!L->contains(FBB)) 4715 Cond = ExitCond->getPredicate(); 4716 else 4717 Cond = ExitCond->getInversePredicate(); 4718 4719 // Handle common loops like: for (X = "string"; *X; ++X) 4720 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 4721 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 4722 ExitLimit ItCnt = 4723 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 4724 if (ItCnt.hasAnyInfo()) 4725 return ItCnt; 4726 } 4727 4728 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 4729 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 4730 4731 // Try to evaluate any dependencies out of the loop. 4732 LHS = getSCEVAtScope(LHS, L); 4733 RHS = getSCEVAtScope(RHS, L); 4734 4735 // At this point, we would like to compute how many iterations of the 4736 // loop the predicate will return true for these inputs. 4737 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 4738 // If there is a loop-invariant, force it into the RHS. 4739 std::swap(LHS, RHS); 4740 Cond = ICmpInst::getSwappedPredicate(Cond); 4741 } 4742 4743 // Simplify the operands before analyzing them. 4744 (void)SimplifyICmpOperands(Cond, LHS, RHS); 4745 4746 // If we have a comparison of a chrec against a constant, try to use value 4747 // ranges to answer this query. 4748 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 4749 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 4750 if (AddRec->getLoop() == L) { 4751 // Form the constant range. 4752 ConstantRange CompRange( 4753 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 4754 4755 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 4756 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 4757 } 4758 4759 switch (Cond) { 4760 case ICmpInst::ICMP_NE: { // while (X != Y) 4761 // Convert to: while (X-Y != 0) 4762 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4763 if (EL.hasAnyInfo()) return EL; 4764 break; 4765 } 4766 case ICmpInst::ICMP_EQ: { // while (X == Y) 4767 // Convert to: while (X-Y == 0) 4768 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 4769 if (EL.hasAnyInfo()) return EL; 4770 break; 4771 } 4772 case ICmpInst::ICMP_SLT: 4773 case ICmpInst::ICMP_ULT: { // while (X < Y) 4774 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 4775 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr); 4776 if (EL.hasAnyInfo()) return EL; 4777 break; 4778 } 4779 case ICmpInst::ICMP_SGT: 4780 case ICmpInst::ICMP_UGT: { // while (X > Y) 4781 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 4782 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr); 4783 if (EL.hasAnyInfo()) return EL; 4784 break; 4785 } 4786 default: 4787 #if 0 4788 dbgs() << "ComputeBackedgeTakenCount "; 4789 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 4790 dbgs() << "[unsigned] "; 4791 dbgs() << *LHS << " " 4792 << Instruction::getOpcodeName(Instruction::ICmp) 4793 << " " << *RHS << "\n"; 4794 #endif 4795 break; 4796 } 4797 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 4798 } 4799 4800 ScalarEvolution::ExitLimit 4801 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 4802 SwitchInst *Switch, 4803 BasicBlock *ExitingBlock, 4804 bool IsSubExpr) { 4805 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 4806 4807 // Give up if the exit is the default dest of a switch. 4808 if (Switch->getDefaultDest() == ExitingBlock) 4809 return getCouldNotCompute(); 4810 4811 assert(L->contains(Switch->getDefaultDest()) && 4812 "Default case must not exit the loop!"); 4813 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 4814 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 4815 4816 // while (X != Y) --> while (X-Y != 0) 4817 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr); 4818 if (EL.hasAnyInfo()) 4819 return EL; 4820 4821 return getCouldNotCompute(); 4822 } 4823 4824 static ConstantInt * 4825 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 4826 ScalarEvolution &SE) { 4827 const SCEV *InVal = SE.getConstant(C); 4828 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 4829 assert(isa<SCEVConstant>(Val) && 4830 "Evaluation of SCEV at constant didn't fold correctly?"); 4831 return cast<SCEVConstant>(Val)->getValue(); 4832 } 4833 4834 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 4835 /// 'icmp op load X, cst', try to see if we can compute the backedge 4836 /// execution count. 4837 ScalarEvolution::ExitLimit 4838 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 4839 LoadInst *LI, 4840 Constant *RHS, 4841 const Loop *L, 4842 ICmpInst::Predicate predicate) { 4843 4844 if (LI->isVolatile()) return getCouldNotCompute(); 4845 4846 // Check to see if the loaded pointer is a getelementptr of a global. 4847 // TODO: Use SCEV instead of manually grubbing with GEPs. 4848 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 4849 if (!GEP) return getCouldNotCompute(); 4850 4851 // Make sure that it is really a constant global we are gepping, with an 4852 // initializer, and make sure the first IDX is really 0. 4853 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 4854 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 4855 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 4856 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 4857 return getCouldNotCompute(); 4858 4859 // Okay, we allow one non-constant index into the GEP instruction. 4860 Value *VarIdx = nullptr; 4861 std::vector<Constant*> Indexes; 4862 unsigned VarIdxNum = 0; 4863 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 4864 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 4865 Indexes.push_back(CI); 4866 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 4867 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 4868 VarIdx = GEP->getOperand(i); 4869 VarIdxNum = i-2; 4870 Indexes.push_back(nullptr); 4871 } 4872 4873 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 4874 if (!VarIdx) 4875 return getCouldNotCompute(); 4876 4877 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 4878 // Check to see if X is a loop variant variable value now. 4879 const SCEV *Idx = getSCEV(VarIdx); 4880 Idx = getSCEVAtScope(Idx, L); 4881 4882 // We can only recognize very limited forms of loop index expressions, in 4883 // particular, only affine AddRec's like {C1,+,C2}. 4884 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 4885 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 4886 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 4887 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 4888 return getCouldNotCompute(); 4889 4890 unsigned MaxSteps = MaxBruteForceIterations; 4891 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 4892 ConstantInt *ItCst = ConstantInt::get( 4893 cast<IntegerType>(IdxExpr->getType()), IterationNum); 4894 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 4895 4896 // Form the GEP offset. 4897 Indexes[VarIdxNum] = Val; 4898 4899 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 4900 Indexes); 4901 if (!Result) break; // Cannot compute! 4902 4903 // Evaluate the condition for this iteration. 4904 Result = ConstantExpr::getICmp(predicate, Result, RHS); 4905 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 4906 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 4907 #if 0 4908 dbgs() << "\n***\n*** Computed loop count " << *ItCst 4909 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 4910 << "***\n"; 4911 #endif 4912 ++NumArrayLenItCounts; 4913 return getConstant(ItCst); // Found terminating iteration! 4914 } 4915 } 4916 return getCouldNotCompute(); 4917 } 4918 4919 4920 /// CanConstantFold - Return true if we can constant fold an instruction of the 4921 /// specified type, assuming that all operands were constants. 4922 static bool CanConstantFold(const Instruction *I) { 4923 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 4924 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4925 isa<LoadInst>(I)) 4926 return true; 4927 4928 if (const CallInst *CI = dyn_cast<CallInst>(I)) 4929 if (const Function *F = CI->getCalledFunction()) 4930 return canConstantFoldCallTo(F); 4931 return false; 4932 } 4933 4934 /// Determine whether this instruction can constant evolve within this loop 4935 /// assuming its operands can all constant evolve. 4936 static bool canConstantEvolve(Instruction *I, const Loop *L) { 4937 // An instruction outside of the loop can't be derived from a loop PHI. 4938 if (!L->contains(I)) return false; 4939 4940 if (isa<PHINode>(I)) { 4941 if (L->getHeader() == I->getParent()) 4942 return true; 4943 else 4944 // We don't currently keep track of the control flow needed to evaluate 4945 // PHIs, so we cannot handle PHIs inside of loops. 4946 return false; 4947 } 4948 4949 // If we won't be able to constant fold this expression even if the operands 4950 // are constants, bail early. 4951 return CanConstantFold(I); 4952 } 4953 4954 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 4955 /// recursing through each instruction operand until reaching a loop header phi. 4956 static PHINode * 4957 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 4958 DenseMap<Instruction *, PHINode *> &PHIMap) { 4959 4960 // Otherwise, we can evaluate this instruction if all of its operands are 4961 // constant or derived from a PHI node themselves. 4962 PHINode *PHI = nullptr; 4963 for (Instruction::op_iterator OpI = UseInst->op_begin(), 4964 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 4965 4966 if (isa<Constant>(*OpI)) continue; 4967 4968 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 4969 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 4970 4971 PHINode *P = dyn_cast<PHINode>(OpInst); 4972 if (!P) 4973 // If this operand is already visited, reuse the prior result. 4974 // We may have P != PHI if this is the deepest point at which the 4975 // inconsistent paths meet. 4976 P = PHIMap.lookup(OpInst); 4977 if (!P) { 4978 // Recurse and memoize the results, whether a phi is found or not. 4979 // This recursive call invalidates pointers into PHIMap. 4980 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 4981 PHIMap[OpInst] = P; 4982 } 4983 if (!P) 4984 return nullptr; // Not evolving from PHI 4985 if (PHI && PHI != P) 4986 return nullptr; // Evolving from multiple different PHIs. 4987 PHI = P; 4988 } 4989 // This is a expression evolving from a constant PHI! 4990 return PHI; 4991 } 4992 4993 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 4994 /// in the loop that V is derived from. We allow arbitrary operations along the 4995 /// way, but the operands of an operation must either be constants or a value 4996 /// derived from a constant PHI. If this expression does not fit with these 4997 /// constraints, return null. 4998 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 4999 Instruction *I = dyn_cast<Instruction>(V); 5000 if (!I || !canConstantEvolve(I, L)) return nullptr; 5001 5002 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5003 return PN; 5004 } 5005 5006 // Record non-constant instructions contained by the loop. 5007 DenseMap<Instruction *, PHINode *> PHIMap; 5008 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5009 } 5010 5011 /// EvaluateExpression - Given an expression that passes the 5012 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5013 /// in the loop has the value PHIVal. If we can't fold this expression for some 5014 /// reason, return null. 5015 static Constant *EvaluateExpression(Value *V, const Loop *L, 5016 DenseMap<Instruction *, Constant *> &Vals, 5017 const DataLayout *DL, 5018 const TargetLibraryInfo *TLI) { 5019 // Convenient constant check, but redundant for recursive calls. 5020 if (Constant *C = dyn_cast<Constant>(V)) return C; 5021 Instruction *I = dyn_cast<Instruction>(V); 5022 if (!I) return nullptr; 5023 5024 if (Constant *C = Vals.lookup(I)) return C; 5025 5026 // An instruction inside the loop depends on a value outside the loop that we 5027 // weren't given a mapping for, or a value such as a call inside the loop. 5028 if (!canConstantEvolve(I, L)) return nullptr; 5029 5030 // An unmapped PHI can be due to a branch or another loop inside this loop, 5031 // or due to this not being the initial iteration through a loop where we 5032 // couldn't compute the evolution of this particular PHI last time. 5033 if (isa<PHINode>(I)) return nullptr; 5034 5035 std::vector<Constant*> Operands(I->getNumOperands()); 5036 5037 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5038 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5039 if (!Operand) { 5040 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5041 if (!Operands[i]) return nullptr; 5042 continue; 5043 } 5044 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5045 Vals[Operand] = C; 5046 if (!C) return nullptr; 5047 Operands[i] = C; 5048 } 5049 5050 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5051 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5052 Operands[1], DL, TLI); 5053 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5054 if (!LI->isVolatile()) 5055 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5056 } 5057 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5058 TLI); 5059 } 5060 5061 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5062 /// in the header of its containing loop, we know the loop executes a 5063 /// constant number of times, and the PHI node is just a recurrence 5064 /// involving constants, fold it. 5065 Constant * 5066 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5067 const APInt &BEs, 5068 const Loop *L) { 5069 DenseMap<PHINode*, Constant*>::const_iterator I = 5070 ConstantEvolutionLoopExitValue.find(PN); 5071 if (I != ConstantEvolutionLoopExitValue.end()) 5072 return I->second; 5073 5074 if (BEs.ugt(MaxBruteForceIterations)) 5075 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5076 5077 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5078 5079 DenseMap<Instruction *, Constant *> CurrentIterVals; 5080 BasicBlock *Header = L->getHeader(); 5081 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5082 5083 // Since the loop is canonicalized, the PHI node must have two entries. One 5084 // entry must be a constant (coming in from outside of the loop), and the 5085 // second must be derived from the same PHI. 5086 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5087 PHINode *PHI = nullptr; 5088 for (BasicBlock::iterator I = Header->begin(); 5089 (PHI = dyn_cast<PHINode>(I)); ++I) { 5090 Constant *StartCST = 5091 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5092 if (!StartCST) continue; 5093 CurrentIterVals[PHI] = StartCST; 5094 } 5095 if (!CurrentIterVals.count(PN)) 5096 return RetVal = nullptr; 5097 5098 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5099 5100 // Execute the loop symbolically to determine the exit value. 5101 if (BEs.getActiveBits() >= 32) 5102 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5103 5104 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5105 unsigned IterationNum = 0; 5106 for (; ; ++IterationNum) { 5107 if (IterationNum == NumIterations) 5108 return RetVal = CurrentIterVals[PN]; // Got exit value! 5109 5110 // Compute the value of the PHIs for the next iteration. 5111 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5112 DenseMap<Instruction *, Constant *> NextIterVals; 5113 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, 5114 TLI); 5115 if (!NextPHI) 5116 return nullptr; // Couldn't evaluate! 5117 NextIterVals[PN] = NextPHI; 5118 5119 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5120 5121 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5122 // cease to be able to evaluate one of them or if they stop evolving, 5123 // because that doesn't necessarily prevent us from computing PN. 5124 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5125 for (DenseMap<Instruction *, Constant *>::const_iterator 5126 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5127 PHINode *PHI = dyn_cast<PHINode>(I->first); 5128 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5129 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5130 } 5131 // We use two distinct loops because EvaluateExpression may invalidate any 5132 // iterators into CurrentIterVals. 5133 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5134 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5135 PHINode *PHI = I->first; 5136 Constant *&NextPHI = NextIterVals[PHI]; 5137 if (!NextPHI) { // Not already computed. 5138 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5139 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5140 } 5141 if (NextPHI != I->second) 5142 StoppedEvolving = false; 5143 } 5144 5145 // If all entries in CurrentIterVals == NextIterVals then we can stop 5146 // iterating, the loop can't continue to change. 5147 if (StoppedEvolving) 5148 return RetVal = CurrentIterVals[PN]; 5149 5150 CurrentIterVals.swap(NextIterVals); 5151 } 5152 } 5153 5154 /// ComputeExitCountExhaustively - If the loop is known to execute a 5155 /// constant number of times (the condition evolves only from constants), 5156 /// try to evaluate a few iterations of the loop until we get the exit 5157 /// condition gets a value of ExitWhen (true or false). If we cannot 5158 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5159 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5160 Value *Cond, 5161 bool ExitWhen) { 5162 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5163 if (!PN) return getCouldNotCompute(); 5164 5165 // If the loop is canonicalized, the PHI will have exactly two entries. 5166 // That's the only form we support here. 5167 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5168 5169 DenseMap<Instruction *, Constant *> CurrentIterVals; 5170 BasicBlock *Header = L->getHeader(); 5171 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5172 5173 // One entry must be a constant (coming in from outside of the loop), and the 5174 // second must be derived from the same PHI. 5175 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5176 PHINode *PHI = nullptr; 5177 for (BasicBlock::iterator I = Header->begin(); 5178 (PHI = dyn_cast<PHINode>(I)); ++I) { 5179 Constant *StartCST = 5180 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5181 if (!StartCST) continue; 5182 CurrentIterVals[PHI] = StartCST; 5183 } 5184 if (!CurrentIterVals.count(PN)) 5185 return getCouldNotCompute(); 5186 5187 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5188 // the loop symbolically to determine when the condition gets a value of 5189 // "ExitWhen". 5190 5191 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5192 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5193 ConstantInt *CondVal = 5194 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals, 5195 DL, TLI)); 5196 5197 // Couldn't symbolically evaluate. 5198 if (!CondVal) return getCouldNotCompute(); 5199 5200 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5201 ++NumBruteForceTripCountsComputed; 5202 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5203 } 5204 5205 // Update all the PHI nodes for the next iteration. 5206 DenseMap<Instruction *, Constant *> NextIterVals; 5207 5208 // Create a list of which PHIs we need to compute. We want to do this before 5209 // calling EvaluateExpression on them because that may invalidate iterators 5210 // into CurrentIterVals. 5211 SmallVector<PHINode *, 8> PHIsToCompute; 5212 for (DenseMap<Instruction *, Constant *>::const_iterator 5213 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5214 PHINode *PHI = dyn_cast<PHINode>(I->first); 5215 if (!PHI || PHI->getParent() != Header) continue; 5216 PHIsToCompute.push_back(PHI); 5217 } 5218 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5219 E = PHIsToCompute.end(); I != E; ++I) { 5220 PHINode *PHI = *I; 5221 Constant *&NextPHI = NextIterVals[PHI]; 5222 if (NextPHI) continue; // Already computed! 5223 5224 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5225 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI); 5226 } 5227 CurrentIterVals.swap(NextIterVals); 5228 } 5229 5230 // Too many iterations were needed to evaluate. 5231 return getCouldNotCompute(); 5232 } 5233 5234 /// getSCEVAtScope - Return a SCEV expression for the specified value 5235 /// at the specified scope in the program. The L value specifies a loop 5236 /// nest to evaluate the expression at, where null is the top-level or a 5237 /// specified loop is immediately inside of the loop. 5238 /// 5239 /// This method can be used to compute the exit value for a variable defined 5240 /// in a loop by querying what the value will hold in the parent loop. 5241 /// 5242 /// In the case that a relevant loop exit value cannot be computed, the 5243 /// original value V is returned. 5244 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5245 // Check to see if we've folded this expression at this loop before. 5246 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5247 for (unsigned u = 0; u < Values.size(); u++) { 5248 if (Values[u].first == L) 5249 return Values[u].second ? Values[u].second : V; 5250 } 5251 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5252 // Otherwise compute it. 5253 const SCEV *C = computeSCEVAtScope(V, L); 5254 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5255 for (unsigned u = Values2.size(); u > 0; u--) { 5256 if (Values2[u - 1].first == L) { 5257 Values2[u - 1].second = C; 5258 break; 5259 } 5260 } 5261 return C; 5262 } 5263 5264 /// This builds up a Constant using the ConstantExpr interface. That way, we 5265 /// will return Constants for objects which aren't represented by a 5266 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5267 /// Returns NULL if the SCEV isn't representable as a Constant. 5268 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5269 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5270 case scCouldNotCompute: 5271 case scAddRecExpr: 5272 break; 5273 case scConstant: 5274 return cast<SCEVConstant>(V)->getValue(); 5275 case scUnknown: 5276 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5277 case scSignExtend: { 5278 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5279 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5280 return ConstantExpr::getSExt(CastOp, SS->getType()); 5281 break; 5282 } 5283 case scZeroExtend: { 5284 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5285 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5286 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5287 break; 5288 } 5289 case scTruncate: { 5290 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5291 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5292 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5293 break; 5294 } 5295 case scAddExpr: { 5296 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5297 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5298 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5299 unsigned AS = PTy->getAddressSpace(); 5300 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5301 C = ConstantExpr::getBitCast(C, DestPtrTy); 5302 } 5303 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5304 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5305 if (!C2) return nullptr; 5306 5307 // First pointer! 5308 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5309 unsigned AS = C2->getType()->getPointerAddressSpace(); 5310 std::swap(C, C2); 5311 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5312 // The offsets have been converted to bytes. We can add bytes to an 5313 // i8* by GEP with the byte count in the first index. 5314 C = ConstantExpr::getBitCast(C, DestPtrTy); 5315 } 5316 5317 // Don't bother trying to sum two pointers. We probably can't 5318 // statically compute a load that results from it anyway. 5319 if (C2->getType()->isPointerTy()) 5320 return nullptr; 5321 5322 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5323 if (PTy->getElementType()->isStructTy()) 5324 C2 = ConstantExpr::getIntegerCast( 5325 C2, Type::getInt32Ty(C->getContext()), true); 5326 C = ConstantExpr::getGetElementPtr(C, C2); 5327 } else 5328 C = ConstantExpr::getAdd(C, C2); 5329 } 5330 return C; 5331 } 5332 break; 5333 } 5334 case scMulExpr: { 5335 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5336 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5337 // Don't bother with pointers at all. 5338 if (C->getType()->isPointerTy()) return nullptr; 5339 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5340 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5341 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5342 C = ConstantExpr::getMul(C, C2); 5343 } 5344 return C; 5345 } 5346 break; 5347 } 5348 case scUDivExpr: { 5349 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5350 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5351 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5352 if (LHS->getType() == RHS->getType()) 5353 return ConstantExpr::getUDiv(LHS, RHS); 5354 break; 5355 } 5356 case scSMaxExpr: 5357 case scUMaxExpr: 5358 break; // TODO: smax, umax. 5359 } 5360 return nullptr; 5361 } 5362 5363 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5364 if (isa<SCEVConstant>(V)) return V; 5365 5366 // If this instruction is evolved from a constant-evolving PHI, compute the 5367 // exit value from the loop without using SCEVs. 5368 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5369 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5370 const Loop *LI = (*this->LI)[I->getParent()]; 5371 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5372 if (PHINode *PN = dyn_cast<PHINode>(I)) 5373 if (PN->getParent() == LI->getHeader()) { 5374 // Okay, there is no closed form solution for the PHI node. Check 5375 // to see if the loop that contains it has a known backedge-taken 5376 // count. If so, we may be able to force computation of the exit 5377 // value. 5378 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5379 if (const SCEVConstant *BTCC = 5380 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5381 // Okay, we know how many times the containing loop executes. If 5382 // this is a constant evolving PHI node, get the final value at 5383 // the specified iteration number. 5384 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5385 BTCC->getValue()->getValue(), 5386 LI); 5387 if (RV) return getSCEV(RV); 5388 } 5389 } 5390 5391 // Okay, this is an expression that we cannot symbolically evaluate 5392 // into a SCEV. Check to see if it's possible to symbolically evaluate 5393 // the arguments into constants, and if so, try to constant propagate the 5394 // result. This is particularly useful for computing loop exit values. 5395 if (CanConstantFold(I)) { 5396 SmallVector<Constant *, 4> Operands; 5397 bool MadeImprovement = false; 5398 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5399 Value *Op = I->getOperand(i); 5400 if (Constant *C = dyn_cast<Constant>(Op)) { 5401 Operands.push_back(C); 5402 continue; 5403 } 5404 5405 // If any of the operands is non-constant and if they are 5406 // non-integer and non-pointer, don't even try to analyze them 5407 // with scev techniques. 5408 if (!isSCEVable(Op->getType())) 5409 return V; 5410 5411 const SCEV *OrigV = getSCEV(Op); 5412 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5413 MadeImprovement |= OrigV != OpV; 5414 5415 Constant *C = BuildConstantFromSCEV(OpV); 5416 if (!C) return V; 5417 if (C->getType() != Op->getType()) 5418 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5419 Op->getType(), 5420 false), 5421 C, Op->getType()); 5422 Operands.push_back(C); 5423 } 5424 5425 // Check to see if getSCEVAtScope actually made an improvement. 5426 if (MadeImprovement) { 5427 Constant *C = nullptr; 5428 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5429 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 5430 Operands[0], Operands[1], DL, 5431 TLI); 5432 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5433 if (!LI->isVolatile()) 5434 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5435 } else 5436 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 5437 Operands, DL, TLI); 5438 if (!C) return V; 5439 return getSCEV(C); 5440 } 5441 } 5442 } 5443 5444 // This is some other type of SCEVUnknown, just return it. 5445 return V; 5446 } 5447 5448 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5449 // Avoid performing the look-up in the common case where the specified 5450 // expression has no loop-variant portions. 5451 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5452 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5453 if (OpAtScope != Comm->getOperand(i)) { 5454 // Okay, at least one of these operands is loop variant but might be 5455 // foldable. Build a new instance of the folded commutative expression. 5456 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5457 Comm->op_begin()+i); 5458 NewOps.push_back(OpAtScope); 5459 5460 for (++i; i != e; ++i) { 5461 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5462 NewOps.push_back(OpAtScope); 5463 } 5464 if (isa<SCEVAddExpr>(Comm)) 5465 return getAddExpr(NewOps); 5466 if (isa<SCEVMulExpr>(Comm)) 5467 return getMulExpr(NewOps); 5468 if (isa<SCEVSMaxExpr>(Comm)) 5469 return getSMaxExpr(NewOps); 5470 if (isa<SCEVUMaxExpr>(Comm)) 5471 return getUMaxExpr(NewOps); 5472 llvm_unreachable("Unknown commutative SCEV type!"); 5473 } 5474 } 5475 // If we got here, all operands are loop invariant. 5476 return Comm; 5477 } 5478 5479 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5480 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5481 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5482 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5483 return Div; // must be loop invariant 5484 return getUDivExpr(LHS, RHS); 5485 } 5486 5487 // If this is a loop recurrence for a loop that does not contain L, then we 5488 // are dealing with the final value computed by the loop. 5489 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5490 // First, attempt to evaluate each operand. 5491 // Avoid performing the look-up in the common case where the specified 5492 // expression has no loop-variant portions. 5493 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5494 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5495 if (OpAtScope == AddRec->getOperand(i)) 5496 continue; 5497 5498 // Okay, at least one of these operands is loop variant but might be 5499 // foldable. Build a new instance of the folded commutative expression. 5500 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 5501 AddRec->op_begin()+i); 5502 NewOps.push_back(OpAtScope); 5503 for (++i; i != e; ++i) 5504 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 5505 5506 const SCEV *FoldedRec = 5507 getAddRecExpr(NewOps, AddRec->getLoop(), 5508 AddRec->getNoWrapFlags(SCEV::FlagNW)); 5509 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 5510 // The addrec may be folded to a nonrecurrence, for example, if the 5511 // induction variable is multiplied by zero after constant folding. Go 5512 // ahead and return the folded value. 5513 if (!AddRec) 5514 return FoldedRec; 5515 break; 5516 } 5517 5518 // If the scope is outside the addrec's loop, evaluate it by using the 5519 // loop exit value of the addrec. 5520 if (!AddRec->getLoop()->contains(L)) { 5521 // To evaluate this recurrence, we need to know how many times the AddRec 5522 // loop iterates. Compute this now. 5523 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 5524 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 5525 5526 // Then, evaluate the AddRec. 5527 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 5528 } 5529 5530 return AddRec; 5531 } 5532 5533 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 5534 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5535 if (Op == Cast->getOperand()) 5536 return Cast; // must be loop invariant 5537 return getZeroExtendExpr(Op, Cast->getType()); 5538 } 5539 5540 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 5541 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5542 if (Op == Cast->getOperand()) 5543 return Cast; // must be loop invariant 5544 return getSignExtendExpr(Op, Cast->getType()); 5545 } 5546 5547 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 5548 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 5549 if (Op == Cast->getOperand()) 5550 return Cast; // must be loop invariant 5551 return getTruncateExpr(Op, Cast->getType()); 5552 } 5553 5554 llvm_unreachable("Unknown SCEV type!"); 5555 } 5556 5557 /// getSCEVAtScope - This is a convenience function which does 5558 /// getSCEVAtScope(getSCEV(V), L). 5559 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 5560 return getSCEVAtScope(getSCEV(V), L); 5561 } 5562 5563 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 5564 /// following equation: 5565 /// 5566 /// A * X = B (mod N) 5567 /// 5568 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 5569 /// A and B isn't important. 5570 /// 5571 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 5572 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 5573 ScalarEvolution &SE) { 5574 uint32_t BW = A.getBitWidth(); 5575 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 5576 assert(A != 0 && "A must be non-zero."); 5577 5578 // 1. D = gcd(A, N) 5579 // 5580 // The gcd of A and N may have only one prime factor: 2. The number of 5581 // trailing zeros in A is its multiplicity 5582 uint32_t Mult2 = A.countTrailingZeros(); 5583 // D = 2^Mult2 5584 5585 // 2. Check if B is divisible by D. 5586 // 5587 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 5588 // is not less than multiplicity of this prime factor for D. 5589 if (B.countTrailingZeros() < Mult2) 5590 return SE.getCouldNotCompute(); 5591 5592 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 5593 // modulo (N / D). 5594 // 5595 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 5596 // bit width during computations. 5597 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 5598 APInt Mod(BW + 1, 0); 5599 Mod.setBit(BW - Mult2); // Mod = N / D 5600 APInt I = AD.multiplicativeInverse(Mod); 5601 5602 // 4. Compute the minimum unsigned root of the equation: 5603 // I * (B / D) mod (N / D) 5604 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 5605 5606 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 5607 // bits. 5608 return SE.getConstant(Result.trunc(BW)); 5609 } 5610 5611 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 5612 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 5613 /// might be the same) or two SCEVCouldNotCompute objects. 5614 /// 5615 static std::pair<const SCEV *,const SCEV *> 5616 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 5617 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 5618 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 5619 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 5620 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 5621 5622 // We currently can only solve this if the coefficients are constants. 5623 if (!LC || !MC || !NC) { 5624 const SCEV *CNC = SE.getCouldNotCompute(); 5625 return std::make_pair(CNC, CNC); 5626 } 5627 5628 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 5629 const APInt &L = LC->getValue()->getValue(); 5630 const APInt &M = MC->getValue()->getValue(); 5631 const APInt &N = NC->getValue()->getValue(); 5632 APInt Two(BitWidth, 2); 5633 APInt Four(BitWidth, 4); 5634 5635 { 5636 using namespace APIntOps; 5637 const APInt& C = L; 5638 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 5639 // The B coefficient is M-N/2 5640 APInt B(M); 5641 B -= sdiv(N,Two); 5642 5643 // The A coefficient is N/2 5644 APInt A(N.sdiv(Two)); 5645 5646 // Compute the B^2-4ac term. 5647 APInt SqrtTerm(B); 5648 SqrtTerm *= B; 5649 SqrtTerm -= Four * (A * C); 5650 5651 if (SqrtTerm.isNegative()) { 5652 // The loop is provably infinite. 5653 const SCEV *CNC = SE.getCouldNotCompute(); 5654 return std::make_pair(CNC, CNC); 5655 } 5656 5657 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 5658 // integer value or else APInt::sqrt() will assert. 5659 APInt SqrtVal(SqrtTerm.sqrt()); 5660 5661 // Compute the two solutions for the quadratic formula. 5662 // The divisions must be performed as signed divisions. 5663 APInt NegB(-B); 5664 APInt TwoA(A << 1); 5665 if (TwoA.isMinValue()) { 5666 const SCEV *CNC = SE.getCouldNotCompute(); 5667 return std::make_pair(CNC, CNC); 5668 } 5669 5670 LLVMContext &Context = SE.getContext(); 5671 5672 ConstantInt *Solution1 = 5673 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 5674 ConstantInt *Solution2 = 5675 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 5676 5677 return std::make_pair(SE.getConstant(Solution1), 5678 SE.getConstant(Solution2)); 5679 } // end APIntOps namespace 5680 } 5681 5682 /// HowFarToZero - Return the number of times a backedge comparing the specified 5683 /// value to zero will execute. If not computable, return CouldNotCompute. 5684 /// 5685 /// This is only used for loops with a "x != y" exit test. The exit condition is 5686 /// now expressed as a single expression, V = x-y. So the exit test is 5687 /// effectively V != 0. We know and take advantage of the fact that this 5688 /// expression only being used in a comparison by zero context. 5689 ScalarEvolution::ExitLimit 5690 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) { 5691 // If the value is a constant 5692 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5693 // If the value is already zero, the branch will execute zero times. 5694 if (C->getValue()->isZero()) return C; 5695 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5696 } 5697 5698 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 5699 if (!AddRec || AddRec->getLoop() != L) 5700 return getCouldNotCompute(); 5701 5702 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 5703 // the quadratic equation to solve it. 5704 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 5705 std::pair<const SCEV *,const SCEV *> Roots = 5706 SolveQuadraticEquation(AddRec, *this); 5707 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5708 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5709 if (R1 && R2) { 5710 #if 0 5711 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 5712 << " sol#2: " << *R2 << "\n"; 5713 #endif 5714 // Pick the smallest positive root value. 5715 if (ConstantInt *CB = 5716 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 5717 R1->getValue(), 5718 R2->getValue()))) { 5719 if (CB->getZExtValue() == false) 5720 std::swap(R1, R2); // R1 is the minimum root now. 5721 5722 // We can only use this value if the chrec ends up with an exact zero 5723 // value at this index. When solving for "X*X != 5", for example, we 5724 // should not accept a root of 2. 5725 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 5726 if (Val->isZero()) 5727 return R1; // We found a quadratic root! 5728 } 5729 } 5730 return getCouldNotCompute(); 5731 } 5732 5733 // Otherwise we can only handle this if it is affine. 5734 if (!AddRec->isAffine()) 5735 return getCouldNotCompute(); 5736 5737 // If this is an affine expression, the execution count of this branch is 5738 // the minimum unsigned root of the following equation: 5739 // 5740 // Start + Step*N = 0 (mod 2^BW) 5741 // 5742 // equivalent to: 5743 // 5744 // Step*N = -Start (mod 2^BW) 5745 // 5746 // where BW is the common bit width of Start and Step. 5747 5748 // Get the initial value for the loop. 5749 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 5750 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 5751 5752 // For now we handle only constant steps. 5753 // 5754 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 5755 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 5756 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 5757 // We have not yet seen any such cases. 5758 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 5759 if (!StepC || StepC->getValue()->equalsInt(0)) 5760 return getCouldNotCompute(); 5761 5762 // For positive steps (counting up until unsigned overflow): 5763 // N = -Start/Step (as unsigned) 5764 // For negative steps (counting down to zero): 5765 // N = Start/-Step 5766 // First compute the unsigned distance from zero in the direction of Step. 5767 bool CountDown = StepC->getValue()->getValue().isNegative(); 5768 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 5769 5770 // Handle unitary steps, which cannot wraparound. 5771 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 5772 // N = Distance (as unsigned) 5773 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 5774 ConstantRange CR = getUnsignedRange(Start); 5775 const SCEV *MaxBECount; 5776 if (!CountDown && CR.getUnsignedMin().isMinValue()) 5777 // When counting up, the worst starting value is 1, not 0. 5778 MaxBECount = CR.getUnsignedMax().isMinValue() 5779 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 5780 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 5781 else 5782 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 5783 : -CR.getUnsignedMin()); 5784 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true); 5785 } 5786 5787 // If the recurrence is known not to wraparound, unsigned divide computes the 5788 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know 5789 // that the value will either become zero (and thus the loop terminates), that 5790 // the loop will terminate through some other exit condition first, or that 5791 // the loop has undefined behavior. This means we can't "miss" the exit 5792 // value, even with nonunit stride, and exit later via the same branch. Note 5793 // that we can skip this exit if loop later exits via a different 5794 // branch. Hence MustExit=false. 5795 // 5796 // This is only valid for expressions that directly compute the loop exit. It 5797 // is invalid for subexpressions in which the loop may exit through this 5798 // branch even if this subexpression is false. In that case, the trip count 5799 // computed by this udiv could be smaller than the number of well-defined 5800 // iterations. 5801 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 5802 const SCEV *Exact = 5803 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5804 return ExitLimit(Exact, Exact, /*MustExit=*/false); 5805 } 5806 5807 // If Step is a power of two that evenly divides Start we know that the loop 5808 // will always terminate. Start may not be a constant so we just have the 5809 // number of trailing zeros available. This is safe even in presence of 5810 // overflow as the recurrence will overflow to exactly 0. 5811 const APInt &StepV = StepC->getValue()->getValue(); 5812 if (StepV.isPowerOf2() && 5813 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros()) 5814 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 5815 5816 // Then, try to solve the above equation provided that Start is constant. 5817 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 5818 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 5819 -StartC->getValue()->getValue(), 5820 *this); 5821 return getCouldNotCompute(); 5822 } 5823 5824 /// HowFarToNonZero - Return the number of times a backedge checking the 5825 /// specified value for nonzero will execute. If not computable, return 5826 /// CouldNotCompute 5827 ScalarEvolution::ExitLimit 5828 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 5829 // Loops that look like: while (X == 0) are very strange indeed. We don't 5830 // handle them yet except for the trivial case. This could be expanded in the 5831 // future as needed. 5832 5833 // If the value is a constant, check to see if it is known to be non-zero 5834 // already. If so, the backedge will execute zero times. 5835 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 5836 if (!C->getValue()->isNullValue()) 5837 return getConstant(C->getType(), 0); 5838 return getCouldNotCompute(); // Otherwise it will loop infinitely. 5839 } 5840 5841 // We could implement others, but I really doubt anyone writes loops like 5842 // this, and if they did, they would already be constant folded. 5843 return getCouldNotCompute(); 5844 } 5845 5846 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 5847 /// (which may not be an immediate predecessor) which has exactly one 5848 /// successor from which BB is reachable, or null if no such block is 5849 /// found. 5850 /// 5851 std::pair<BasicBlock *, BasicBlock *> 5852 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 5853 // If the block has a unique predecessor, then there is no path from the 5854 // predecessor to the block that does not go through the direct edge 5855 // from the predecessor to the block. 5856 if (BasicBlock *Pred = BB->getSinglePredecessor()) 5857 return std::make_pair(Pred, BB); 5858 5859 // A loop's header is defined to be a block that dominates the loop. 5860 // If the header has a unique predecessor outside the loop, it must be 5861 // a block that has exactly one successor that can reach the loop. 5862 if (Loop *L = LI->getLoopFor(BB)) 5863 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 5864 5865 return std::pair<BasicBlock *, BasicBlock *>(); 5866 } 5867 5868 /// HasSameValue - SCEV structural equivalence is usually sufficient for 5869 /// testing whether two expressions are equal, however for the purposes of 5870 /// looking for a condition guarding a loop, it can be useful to be a little 5871 /// more general, since a front-end may have replicated the controlling 5872 /// expression. 5873 /// 5874 static bool HasSameValue(const SCEV *A, const SCEV *B) { 5875 // Quick check to see if they are the same SCEV. 5876 if (A == B) return true; 5877 5878 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 5879 // two different instructions with the same value. Check for this case. 5880 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 5881 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 5882 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 5883 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 5884 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 5885 return true; 5886 5887 // Otherwise assume they may have a different value. 5888 return false; 5889 } 5890 5891 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 5892 /// predicate Pred. Return true iff any changes were made. 5893 /// 5894 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 5895 const SCEV *&LHS, const SCEV *&RHS, 5896 unsigned Depth) { 5897 bool Changed = false; 5898 5899 // If we hit the max recursion limit bail out. 5900 if (Depth >= 3) 5901 return false; 5902 5903 // Canonicalize a constant to the right side. 5904 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 5905 // Check for both operands constant. 5906 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 5907 if (ConstantExpr::getICmp(Pred, 5908 LHSC->getValue(), 5909 RHSC->getValue())->isNullValue()) 5910 goto trivially_false; 5911 else 5912 goto trivially_true; 5913 } 5914 // Otherwise swap the operands to put the constant on the right. 5915 std::swap(LHS, RHS); 5916 Pred = ICmpInst::getSwappedPredicate(Pred); 5917 Changed = true; 5918 } 5919 5920 // If we're comparing an addrec with a value which is loop-invariant in the 5921 // addrec's loop, put the addrec on the left. Also make a dominance check, 5922 // as both operands could be addrecs loop-invariant in each other's loop. 5923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 5924 const Loop *L = AR->getLoop(); 5925 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 5926 std::swap(LHS, RHS); 5927 Pred = ICmpInst::getSwappedPredicate(Pred); 5928 Changed = true; 5929 } 5930 } 5931 5932 // If there's a constant operand, canonicalize comparisons with boundary 5933 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 5934 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 5935 const APInt &RA = RC->getValue()->getValue(); 5936 switch (Pred) { 5937 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 5938 case ICmpInst::ICMP_EQ: 5939 case ICmpInst::ICMP_NE: 5940 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 5941 if (!RA) 5942 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 5943 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 5944 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 5945 ME->getOperand(0)->isAllOnesValue()) { 5946 RHS = AE->getOperand(1); 5947 LHS = ME->getOperand(1); 5948 Changed = true; 5949 } 5950 break; 5951 case ICmpInst::ICMP_UGE: 5952 if ((RA - 1).isMinValue()) { 5953 Pred = ICmpInst::ICMP_NE; 5954 RHS = getConstant(RA - 1); 5955 Changed = true; 5956 break; 5957 } 5958 if (RA.isMaxValue()) { 5959 Pred = ICmpInst::ICMP_EQ; 5960 Changed = true; 5961 break; 5962 } 5963 if (RA.isMinValue()) goto trivially_true; 5964 5965 Pred = ICmpInst::ICMP_UGT; 5966 RHS = getConstant(RA - 1); 5967 Changed = true; 5968 break; 5969 case ICmpInst::ICMP_ULE: 5970 if ((RA + 1).isMaxValue()) { 5971 Pred = ICmpInst::ICMP_NE; 5972 RHS = getConstant(RA + 1); 5973 Changed = true; 5974 break; 5975 } 5976 if (RA.isMinValue()) { 5977 Pred = ICmpInst::ICMP_EQ; 5978 Changed = true; 5979 break; 5980 } 5981 if (RA.isMaxValue()) goto trivially_true; 5982 5983 Pred = ICmpInst::ICMP_ULT; 5984 RHS = getConstant(RA + 1); 5985 Changed = true; 5986 break; 5987 case ICmpInst::ICMP_SGE: 5988 if ((RA - 1).isMinSignedValue()) { 5989 Pred = ICmpInst::ICMP_NE; 5990 RHS = getConstant(RA - 1); 5991 Changed = true; 5992 break; 5993 } 5994 if (RA.isMaxSignedValue()) { 5995 Pred = ICmpInst::ICMP_EQ; 5996 Changed = true; 5997 break; 5998 } 5999 if (RA.isMinSignedValue()) goto trivially_true; 6000 6001 Pred = ICmpInst::ICMP_SGT; 6002 RHS = getConstant(RA - 1); 6003 Changed = true; 6004 break; 6005 case ICmpInst::ICMP_SLE: 6006 if ((RA + 1).isMaxSignedValue()) { 6007 Pred = ICmpInst::ICMP_NE; 6008 RHS = getConstant(RA + 1); 6009 Changed = true; 6010 break; 6011 } 6012 if (RA.isMinSignedValue()) { 6013 Pred = ICmpInst::ICMP_EQ; 6014 Changed = true; 6015 break; 6016 } 6017 if (RA.isMaxSignedValue()) goto trivially_true; 6018 6019 Pred = ICmpInst::ICMP_SLT; 6020 RHS = getConstant(RA + 1); 6021 Changed = true; 6022 break; 6023 case ICmpInst::ICMP_UGT: 6024 if (RA.isMinValue()) { 6025 Pred = ICmpInst::ICMP_NE; 6026 Changed = true; 6027 break; 6028 } 6029 if ((RA + 1).isMaxValue()) { 6030 Pred = ICmpInst::ICMP_EQ; 6031 RHS = getConstant(RA + 1); 6032 Changed = true; 6033 break; 6034 } 6035 if (RA.isMaxValue()) goto trivially_false; 6036 break; 6037 case ICmpInst::ICMP_ULT: 6038 if (RA.isMaxValue()) { 6039 Pred = ICmpInst::ICMP_NE; 6040 Changed = true; 6041 break; 6042 } 6043 if ((RA - 1).isMinValue()) { 6044 Pred = ICmpInst::ICMP_EQ; 6045 RHS = getConstant(RA - 1); 6046 Changed = true; 6047 break; 6048 } 6049 if (RA.isMinValue()) goto trivially_false; 6050 break; 6051 case ICmpInst::ICMP_SGT: 6052 if (RA.isMinSignedValue()) { 6053 Pred = ICmpInst::ICMP_NE; 6054 Changed = true; 6055 break; 6056 } 6057 if ((RA + 1).isMaxSignedValue()) { 6058 Pred = ICmpInst::ICMP_EQ; 6059 RHS = getConstant(RA + 1); 6060 Changed = true; 6061 break; 6062 } 6063 if (RA.isMaxSignedValue()) goto trivially_false; 6064 break; 6065 case ICmpInst::ICMP_SLT: 6066 if (RA.isMaxSignedValue()) { 6067 Pred = ICmpInst::ICMP_NE; 6068 Changed = true; 6069 break; 6070 } 6071 if ((RA - 1).isMinSignedValue()) { 6072 Pred = ICmpInst::ICMP_EQ; 6073 RHS = getConstant(RA - 1); 6074 Changed = true; 6075 break; 6076 } 6077 if (RA.isMinSignedValue()) goto trivially_false; 6078 break; 6079 } 6080 } 6081 6082 // Check for obvious equality. 6083 if (HasSameValue(LHS, RHS)) { 6084 if (ICmpInst::isTrueWhenEqual(Pred)) 6085 goto trivially_true; 6086 if (ICmpInst::isFalseWhenEqual(Pred)) 6087 goto trivially_false; 6088 } 6089 6090 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6091 // adding or subtracting 1 from one of the operands. 6092 switch (Pred) { 6093 case ICmpInst::ICMP_SLE: 6094 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6095 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6096 SCEV::FlagNSW); 6097 Pred = ICmpInst::ICMP_SLT; 6098 Changed = true; 6099 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6100 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6101 SCEV::FlagNSW); 6102 Pred = ICmpInst::ICMP_SLT; 6103 Changed = true; 6104 } 6105 break; 6106 case ICmpInst::ICMP_SGE: 6107 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6108 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6109 SCEV::FlagNSW); 6110 Pred = ICmpInst::ICMP_SGT; 6111 Changed = true; 6112 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6113 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6114 SCEV::FlagNSW); 6115 Pred = ICmpInst::ICMP_SGT; 6116 Changed = true; 6117 } 6118 break; 6119 case ICmpInst::ICMP_ULE: 6120 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6121 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6122 SCEV::FlagNUW); 6123 Pred = ICmpInst::ICMP_ULT; 6124 Changed = true; 6125 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6126 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6127 SCEV::FlagNUW); 6128 Pred = ICmpInst::ICMP_ULT; 6129 Changed = true; 6130 } 6131 break; 6132 case ICmpInst::ICMP_UGE: 6133 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6134 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6135 SCEV::FlagNUW); 6136 Pred = ICmpInst::ICMP_UGT; 6137 Changed = true; 6138 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6139 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6140 SCEV::FlagNUW); 6141 Pred = ICmpInst::ICMP_UGT; 6142 Changed = true; 6143 } 6144 break; 6145 default: 6146 break; 6147 } 6148 6149 // TODO: More simplifications are possible here. 6150 6151 // Recursively simplify until we either hit a recursion limit or nothing 6152 // changes. 6153 if (Changed) 6154 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6155 6156 return Changed; 6157 6158 trivially_true: 6159 // Return 0 == 0. 6160 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6161 Pred = ICmpInst::ICMP_EQ; 6162 return true; 6163 6164 trivially_false: 6165 // Return 0 != 0. 6166 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6167 Pred = ICmpInst::ICMP_NE; 6168 return true; 6169 } 6170 6171 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6172 return getSignedRange(S).getSignedMax().isNegative(); 6173 } 6174 6175 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6176 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6177 } 6178 6179 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6180 return !getSignedRange(S).getSignedMin().isNegative(); 6181 } 6182 6183 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6184 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6185 } 6186 6187 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6188 return isKnownNegative(S) || isKnownPositive(S); 6189 } 6190 6191 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6192 const SCEV *LHS, const SCEV *RHS) { 6193 // Canonicalize the inputs first. 6194 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6195 6196 // If LHS or RHS is an addrec, check to see if the condition is true in 6197 // every iteration of the loop. 6198 // If LHS and RHS are both addrec, both conditions must be true in 6199 // every iteration of the loop. 6200 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6201 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6202 bool LeftGuarded = false; 6203 bool RightGuarded = false; 6204 if (LAR) { 6205 const Loop *L = LAR->getLoop(); 6206 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6207 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6208 if (!RAR) return true; 6209 LeftGuarded = true; 6210 } 6211 } 6212 if (RAR) { 6213 const Loop *L = RAR->getLoop(); 6214 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6215 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6216 if (!LAR) return true; 6217 RightGuarded = true; 6218 } 6219 } 6220 if (LeftGuarded && RightGuarded) 6221 return true; 6222 6223 // Otherwise see what can be done with known constant ranges. 6224 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6225 } 6226 6227 bool 6228 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6229 const SCEV *LHS, const SCEV *RHS) { 6230 if (HasSameValue(LHS, RHS)) 6231 return ICmpInst::isTrueWhenEqual(Pred); 6232 6233 // This code is split out from isKnownPredicate because it is called from 6234 // within isLoopEntryGuardedByCond. 6235 switch (Pred) { 6236 default: 6237 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6238 case ICmpInst::ICMP_SGT: 6239 std::swap(LHS, RHS); 6240 case ICmpInst::ICMP_SLT: { 6241 ConstantRange LHSRange = getSignedRange(LHS); 6242 ConstantRange RHSRange = getSignedRange(RHS); 6243 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6244 return true; 6245 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6246 return false; 6247 break; 6248 } 6249 case ICmpInst::ICMP_SGE: 6250 std::swap(LHS, RHS); 6251 case ICmpInst::ICMP_SLE: { 6252 ConstantRange LHSRange = getSignedRange(LHS); 6253 ConstantRange RHSRange = getSignedRange(RHS); 6254 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6255 return true; 6256 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6257 return false; 6258 break; 6259 } 6260 case ICmpInst::ICMP_UGT: 6261 std::swap(LHS, RHS); 6262 case ICmpInst::ICMP_ULT: { 6263 ConstantRange LHSRange = getUnsignedRange(LHS); 6264 ConstantRange RHSRange = getUnsignedRange(RHS); 6265 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6266 return true; 6267 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6268 return false; 6269 break; 6270 } 6271 case ICmpInst::ICMP_UGE: 6272 std::swap(LHS, RHS); 6273 case ICmpInst::ICMP_ULE: { 6274 ConstantRange LHSRange = getUnsignedRange(LHS); 6275 ConstantRange RHSRange = getUnsignedRange(RHS); 6276 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6277 return true; 6278 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6279 return false; 6280 break; 6281 } 6282 case ICmpInst::ICMP_NE: { 6283 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6284 return true; 6285 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6286 return true; 6287 6288 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6289 if (isKnownNonZero(Diff)) 6290 return true; 6291 break; 6292 } 6293 case ICmpInst::ICMP_EQ: 6294 // The check at the top of the function catches the case where 6295 // the values are known to be equal. 6296 break; 6297 } 6298 return false; 6299 } 6300 6301 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6302 /// protected by a conditional between LHS and RHS. This is used to 6303 /// to eliminate casts. 6304 bool 6305 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6306 ICmpInst::Predicate Pred, 6307 const SCEV *LHS, const SCEV *RHS) { 6308 // Interpret a null as meaning no loop, where there is obviously no guard 6309 // (interprocedural conditions notwithstanding). 6310 if (!L) return true; 6311 6312 BasicBlock *Latch = L->getLoopLatch(); 6313 if (!Latch) 6314 return false; 6315 6316 BranchInst *LoopContinuePredicate = 6317 dyn_cast<BranchInst>(Latch->getTerminator()); 6318 if (!LoopContinuePredicate || 6319 LoopContinuePredicate->isUnconditional()) 6320 return false; 6321 6322 return isImpliedCond(Pred, LHS, RHS, 6323 LoopContinuePredicate->getCondition(), 6324 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 6325 } 6326 6327 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 6328 /// by a conditional between LHS and RHS. This is used to help avoid max 6329 /// expressions in loop trip counts, and to eliminate casts. 6330 bool 6331 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 6332 ICmpInst::Predicate Pred, 6333 const SCEV *LHS, const SCEV *RHS) { 6334 // Interpret a null as meaning no loop, where there is obviously no guard 6335 // (interprocedural conditions notwithstanding). 6336 if (!L) return false; 6337 6338 // Starting at the loop predecessor, climb up the predecessor chain, as long 6339 // as there are predecessors that can be found that have unique successors 6340 // leading to the original header. 6341 for (std::pair<BasicBlock *, BasicBlock *> 6342 Pair(L->getLoopPredecessor(), L->getHeader()); 6343 Pair.first; 6344 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 6345 6346 BranchInst *LoopEntryPredicate = 6347 dyn_cast<BranchInst>(Pair.first->getTerminator()); 6348 if (!LoopEntryPredicate || 6349 LoopEntryPredicate->isUnconditional()) 6350 continue; 6351 6352 if (isImpliedCond(Pred, LHS, RHS, 6353 LoopEntryPredicate->getCondition(), 6354 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 6355 return true; 6356 } 6357 6358 return false; 6359 } 6360 6361 /// RAII wrapper to prevent recursive application of isImpliedCond. 6362 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 6363 /// currently evaluating isImpliedCond. 6364 struct MarkPendingLoopPredicate { 6365 Value *Cond; 6366 DenseSet<Value*> &LoopPreds; 6367 bool Pending; 6368 6369 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 6370 : Cond(C), LoopPreds(LP) { 6371 Pending = !LoopPreds.insert(Cond).second; 6372 } 6373 ~MarkPendingLoopPredicate() { 6374 if (!Pending) 6375 LoopPreds.erase(Cond); 6376 } 6377 }; 6378 6379 /// isImpliedCond - Test whether the condition described by Pred, LHS, 6380 /// and RHS is true whenever the given Cond value evaluates to true. 6381 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 6382 const SCEV *LHS, const SCEV *RHS, 6383 Value *FoundCondValue, 6384 bool Inverse) { 6385 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 6386 if (Mark.Pending) 6387 return false; 6388 6389 // Recursively handle And and Or conditions. 6390 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 6391 if (BO->getOpcode() == Instruction::And) { 6392 if (!Inverse) 6393 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6394 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6395 } else if (BO->getOpcode() == Instruction::Or) { 6396 if (Inverse) 6397 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 6398 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 6399 } 6400 } 6401 6402 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 6403 if (!ICI) return false; 6404 6405 // Bail if the ICmp's operands' types are wider than the needed type 6406 // before attempting to call getSCEV on them. This avoids infinite 6407 // recursion, since the analysis of widening casts can require loop 6408 // exit condition information for overflow checking, which would 6409 // lead back here. 6410 if (getTypeSizeInBits(LHS->getType()) < 6411 getTypeSizeInBits(ICI->getOperand(0)->getType())) 6412 return false; 6413 6414 // Now that we found a conditional branch that dominates the loop or controls 6415 // the loop latch. Check to see if it is the comparison we are looking for. 6416 ICmpInst::Predicate FoundPred; 6417 if (Inverse) 6418 FoundPred = ICI->getInversePredicate(); 6419 else 6420 FoundPred = ICI->getPredicate(); 6421 6422 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 6423 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 6424 6425 // Balance the types. The case where FoundLHS' type is wider than 6426 // LHS' type is checked for above. 6427 if (getTypeSizeInBits(LHS->getType()) > 6428 getTypeSizeInBits(FoundLHS->getType())) { 6429 if (CmpInst::isSigned(FoundPred)) { 6430 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 6431 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 6432 } else { 6433 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 6434 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 6435 } 6436 } 6437 6438 // Canonicalize the query to match the way instcombine will have 6439 // canonicalized the comparison. 6440 if (SimplifyICmpOperands(Pred, LHS, RHS)) 6441 if (LHS == RHS) 6442 return CmpInst::isTrueWhenEqual(Pred); 6443 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 6444 if (FoundLHS == FoundRHS) 6445 return CmpInst::isFalseWhenEqual(FoundPred); 6446 6447 // Check to see if we can make the LHS or RHS match. 6448 if (LHS == FoundRHS || RHS == FoundLHS) { 6449 if (isa<SCEVConstant>(RHS)) { 6450 std::swap(FoundLHS, FoundRHS); 6451 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 6452 } else { 6453 std::swap(LHS, RHS); 6454 Pred = ICmpInst::getSwappedPredicate(Pred); 6455 } 6456 } 6457 6458 // Check whether the found predicate is the same as the desired predicate. 6459 if (FoundPred == Pred) 6460 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 6461 6462 // Check whether swapping the found predicate makes it the same as the 6463 // desired predicate. 6464 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 6465 if (isa<SCEVConstant>(RHS)) 6466 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 6467 else 6468 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 6469 RHS, LHS, FoundLHS, FoundRHS); 6470 } 6471 6472 // Check whether the actual condition is beyond sufficient. 6473 if (FoundPred == ICmpInst::ICMP_EQ) 6474 if (ICmpInst::isTrueWhenEqual(Pred)) 6475 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 6476 return true; 6477 if (Pred == ICmpInst::ICMP_NE) 6478 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 6479 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 6480 return true; 6481 6482 // Otherwise assume the worst. 6483 return false; 6484 } 6485 6486 /// isImpliedCondOperands - Test whether the condition described by Pred, 6487 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 6488 /// and FoundRHS is true. 6489 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 6490 const SCEV *LHS, const SCEV *RHS, 6491 const SCEV *FoundLHS, 6492 const SCEV *FoundRHS) { 6493 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 6494 FoundLHS, FoundRHS) || 6495 // ~x < ~y --> x > y 6496 isImpliedCondOperandsHelper(Pred, LHS, RHS, 6497 getNotSCEV(FoundRHS), 6498 getNotSCEV(FoundLHS)); 6499 } 6500 6501 /// isImpliedCondOperandsHelper - Test whether the condition described by 6502 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 6503 /// FoundLHS, and FoundRHS is true. 6504 bool 6505 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 6506 const SCEV *LHS, const SCEV *RHS, 6507 const SCEV *FoundLHS, 6508 const SCEV *FoundRHS) { 6509 switch (Pred) { 6510 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6511 case ICmpInst::ICMP_EQ: 6512 case ICmpInst::ICMP_NE: 6513 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 6514 return true; 6515 break; 6516 case ICmpInst::ICMP_SLT: 6517 case ICmpInst::ICMP_SLE: 6518 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 6519 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 6520 return true; 6521 break; 6522 case ICmpInst::ICMP_SGT: 6523 case ICmpInst::ICMP_SGE: 6524 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 6525 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 6526 return true; 6527 break; 6528 case ICmpInst::ICMP_ULT: 6529 case ICmpInst::ICMP_ULE: 6530 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 6531 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 6532 return true; 6533 break; 6534 case ICmpInst::ICMP_UGT: 6535 case ICmpInst::ICMP_UGE: 6536 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 6537 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 6538 return true; 6539 break; 6540 } 6541 6542 return false; 6543 } 6544 6545 // Verify if an linear IV with positive stride can overflow when in a 6546 // less-than comparison, knowing the invariant term of the comparison, the 6547 // stride and the knowledge of NSW/NUW flags on the recurrence. 6548 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 6549 bool IsSigned, bool NoWrap) { 6550 if (NoWrap) return false; 6551 6552 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6553 const SCEV *One = getConstant(Stride->getType(), 1); 6554 6555 if (IsSigned) { 6556 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 6557 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 6558 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6559 .getSignedMax(); 6560 6561 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 6562 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 6563 } 6564 6565 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 6566 APInt MaxValue = APInt::getMaxValue(BitWidth); 6567 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6568 .getUnsignedMax(); 6569 6570 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 6571 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 6572 } 6573 6574 // Verify if an linear IV with negative stride can overflow when in a 6575 // greater-than comparison, knowing the invariant term of the comparison, 6576 // the stride and the knowledge of NSW/NUW flags on the recurrence. 6577 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 6578 bool IsSigned, bool NoWrap) { 6579 if (NoWrap) return false; 6580 6581 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6582 const SCEV *One = getConstant(Stride->getType(), 1); 6583 6584 if (IsSigned) { 6585 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 6586 APInt MinValue = APInt::getSignedMinValue(BitWidth); 6587 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 6588 .getSignedMax(); 6589 6590 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 6591 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 6592 } 6593 6594 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 6595 APInt MinValue = APInt::getMinValue(BitWidth); 6596 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 6597 .getUnsignedMax(); 6598 6599 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 6600 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 6601 } 6602 6603 // Compute the backedge taken count knowing the interval difference, the 6604 // stride and presence of the equality in the comparison. 6605 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 6606 bool Equality) { 6607 const SCEV *One = getConstant(Step->getType(), 1); 6608 Delta = Equality ? getAddExpr(Delta, Step) 6609 : getAddExpr(Delta, getMinusSCEV(Step, One)); 6610 return getUDivExpr(Delta, Step); 6611 } 6612 6613 /// HowManyLessThans - Return the number of times a backedge containing the 6614 /// specified less-than comparison will execute. If not computable, return 6615 /// CouldNotCompute. 6616 /// 6617 /// @param IsSubExpr is true when the LHS < RHS condition does not directly 6618 /// control the branch. In this case, we can only compute an iteration count for 6619 /// a subexpression that cannot overflow before evaluating true. 6620 ScalarEvolution::ExitLimit 6621 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 6622 const Loop *L, bool IsSigned, 6623 bool IsSubExpr) { 6624 // We handle only IV < Invariant 6625 if (!isLoopInvariant(RHS, L)) 6626 return getCouldNotCompute(); 6627 6628 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6629 6630 // Avoid weird loops 6631 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6632 return getCouldNotCompute(); 6633 6634 bool NoWrap = !IsSubExpr && 6635 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6636 6637 const SCEV *Stride = IV->getStepRecurrence(*this); 6638 6639 // Avoid negative or zero stride values 6640 if (!isKnownPositive(Stride)) 6641 return getCouldNotCompute(); 6642 6643 // Avoid proven overflow cases: this will ensure that the backedge taken count 6644 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6645 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6646 // behaviors like the case of C language. 6647 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 6648 return getCouldNotCompute(); 6649 6650 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 6651 : ICmpInst::ICMP_ULT; 6652 const SCEV *Start = IV->getStart(); 6653 const SCEV *End = RHS; 6654 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 6655 End = IsSigned ? getSMaxExpr(RHS, Start) 6656 : getUMaxExpr(RHS, Start); 6657 6658 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 6659 6660 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 6661 : getUnsignedRange(Start).getUnsignedMin(); 6662 6663 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6664 : getUnsignedRange(Stride).getUnsignedMin(); 6665 6666 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6667 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 6668 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 6669 6670 // Although End can be a MAX expression we estimate MaxEnd considering only 6671 // the case End = RHS. This is safe because in the other case (End - Start) 6672 // is zero, leading to a zero maximum backedge taken count. 6673 APInt MaxEnd = 6674 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 6675 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 6676 6677 const SCEV *MaxBECount; 6678 if (isa<SCEVConstant>(BECount)) 6679 MaxBECount = BECount; 6680 else 6681 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 6682 getConstant(MinStride), false); 6683 6684 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6685 MaxBECount = BECount; 6686 6687 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6688 } 6689 6690 ScalarEvolution::ExitLimit 6691 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 6692 const Loop *L, bool IsSigned, 6693 bool IsSubExpr) { 6694 // We handle only IV > Invariant 6695 if (!isLoopInvariant(RHS, L)) 6696 return getCouldNotCompute(); 6697 6698 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 6699 6700 // Avoid weird loops 6701 if (!IV || IV->getLoop() != L || !IV->isAffine()) 6702 return getCouldNotCompute(); 6703 6704 bool NoWrap = !IsSubExpr && 6705 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 6706 6707 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 6708 6709 // Avoid negative or zero stride values 6710 if (!isKnownPositive(Stride)) 6711 return getCouldNotCompute(); 6712 6713 // Avoid proven overflow cases: this will ensure that the backedge taken count 6714 // will not generate any unsigned overflow. Relaxed no-overflow conditions 6715 // exploit NoWrapFlags, allowing to optimize in presence of undefined 6716 // behaviors like the case of C language. 6717 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 6718 return getCouldNotCompute(); 6719 6720 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 6721 : ICmpInst::ICMP_UGT; 6722 6723 const SCEV *Start = IV->getStart(); 6724 const SCEV *End = RHS; 6725 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 6726 End = IsSigned ? getSMinExpr(RHS, Start) 6727 : getUMinExpr(RHS, Start); 6728 6729 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 6730 6731 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 6732 : getUnsignedRange(Start).getUnsignedMax(); 6733 6734 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 6735 : getUnsignedRange(Stride).getUnsignedMin(); 6736 6737 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 6738 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 6739 : APInt::getMinValue(BitWidth) + (MinStride - 1); 6740 6741 // Although End can be a MIN expression we estimate MinEnd considering only 6742 // the case End = RHS. This is safe because in the other case (Start - End) 6743 // is zero, leading to a zero maximum backedge taken count. 6744 APInt MinEnd = 6745 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 6746 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 6747 6748 6749 const SCEV *MaxBECount = getCouldNotCompute(); 6750 if (isa<SCEVConstant>(BECount)) 6751 MaxBECount = BECount; 6752 else 6753 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 6754 getConstant(MinStride), false); 6755 6756 if (isa<SCEVCouldNotCompute>(MaxBECount)) 6757 MaxBECount = BECount; 6758 6759 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true); 6760 } 6761 6762 /// getNumIterationsInRange - Return the number of iterations of this loop that 6763 /// produce values in the specified constant range. Another way of looking at 6764 /// this is that it returns the first iteration number where the value is not in 6765 /// the condition, thus computing the exit count. If the iteration count can't 6766 /// be computed, an instance of SCEVCouldNotCompute is returned. 6767 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 6768 ScalarEvolution &SE) const { 6769 if (Range.isFullSet()) // Infinite loop. 6770 return SE.getCouldNotCompute(); 6771 6772 // If the start is a non-zero constant, shift the range to simplify things. 6773 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 6774 if (!SC->getValue()->isZero()) { 6775 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 6776 Operands[0] = SE.getConstant(SC->getType(), 0); 6777 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 6778 getNoWrapFlags(FlagNW)); 6779 if (const SCEVAddRecExpr *ShiftedAddRec = 6780 dyn_cast<SCEVAddRecExpr>(Shifted)) 6781 return ShiftedAddRec->getNumIterationsInRange( 6782 Range.subtract(SC->getValue()->getValue()), SE); 6783 // This is strange and shouldn't happen. 6784 return SE.getCouldNotCompute(); 6785 } 6786 6787 // The only time we can solve this is when we have all constant indices. 6788 // Otherwise, we cannot determine the overflow conditions. 6789 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 6790 if (!isa<SCEVConstant>(getOperand(i))) 6791 return SE.getCouldNotCompute(); 6792 6793 6794 // Okay at this point we know that all elements of the chrec are constants and 6795 // that the start element is zero. 6796 6797 // First check to see if the range contains zero. If not, the first 6798 // iteration exits. 6799 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 6800 if (!Range.contains(APInt(BitWidth, 0))) 6801 return SE.getConstant(getType(), 0); 6802 6803 if (isAffine()) { 6804 // If this is an affine expression then we have this situation: 6805 // Solve {0,+,A} in Range === Ax in Range 6806 6807 // We know that zero is in the range. If A is positive then we know that 6808 // the upper value of the range must be the first possible exit value. 6809 // If A is negative then the lower of the range is the last possible loop 6810 // value. Also note that we already checked for a full range. 6811 APInt One(BitWidth,1); 6812 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 6813 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 6814 6815 // The exit value should be (End+A)/A. 6816 APInt ExitVal = (End + A).udiv(A); 6817 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 6818 6819 // Evaluate at the exit value. If we really did fall out of the valid 6820 // range, then we computed our trip count, otherwise wrap around or other 6821 // things must have happened. 6822 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 6823 if (Range.contains(Val->getValue())) 6824 return SE.getCouldNotCompute(); // Something strange happened 6825 6826 // Ensure that the previous value is in the range. This is a sanity check. 6827 assert(Range.contains( 6828 EvaluateConstantChrecAtConstant(this, 6829 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 6830 "Linear scev computation is off in a bad way!"); 6831 return SE.getConstant(ExitValue); 6832 } else if (isQuadratic()) { 6833 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 6834 // quadratic equation to solve it. To do this, we must frame our problem in 6835 // terms of figuring out when zero is crossed, instead of when 6836 // Range.getUpper() is crossed. 6837 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 6838 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 6839 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 6840 // getNoWrapFlags(FlagNW) 6841 FlagAnyWrap); 6842 6843 // Next, solve the constructed addrec 6844 std::pair<const SCEV *,const SCEV *> Roots = 6845 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 6846 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6847 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6848 if (R1) { 6849 // Pick the smallest positive root value. 6850 if (ConstantInt *CB = 6851 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 6852 R1->getValue(), R2->getValue()))) { 6853 if (CB->getZExtValue() == false) 6854 std::swap(R1, R2); // R1 is the minimum root now. 6855 6856 // Make sure the root is not off by one. The returned iteration should 6857 // not be in the range, but the previous one should be. When solving 6858 // for "X*X < 5", for example, we should not return a root of 2. 6859 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 6860 R1->getValue(), 6861 SE); 6862 if (Range.contains(R1Val->getValue())) { 6863 // The next iteration must be out of the range... 6864 ConstantInt *NextVal = 6865 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 6866 6867 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6868 if (!Range.contains(R1Val->getValue())) 6869 return SE.getConstant(NextVal); 6870 return SE.getCouldNotCompute(); // Something strange happened 6871 } 6872 6873 // If R1 was not in the range, then it is a good return value. Make 6874 // sure that R1-1 WAS in the range though, just in case. 6875 ConstantInt *NextVal = 6876 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 6877 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 6878 if (Range.contains(R1Val->getValue())) 6879 return R1; 6880 return SE.getCouldNotCompute(); // Something strange happened 6881 } 6882 } 6883 } 6884 6885 return SE.getCouldNotCompute(); 6886 } 6887 6888 namespace { 6889 struct FindUndefs { 6890 bool Found; 6891 FindUndefs() : Found(false) {} 6892 6893 bool follow(const SCEV *S) { 6894 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 6895 if (isa<UndefValue>(C->getValue())) 6896 Found = true; 6897 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6898 if (isa<UndefValue>(C->getValue())) 6899 Found = true; 6900 } 6901 6902 // Keep looking if we haven't found it yet. 6903 return !Found; 6904 } 6905 bool isDone() const { 6906 // Stop recursion if we have found an undef. 6907 return Found; 6908 } 6909 }; 6910 } 6911 6912 // Return true when S contains at least an undef value. 6913 static inline bool 6914 containsUndefs(const SCEV *S) { 6915 FindUndefs F; 6916 SCEVTraversal<FindUndefs> ST(F); 6917 ST.visitAll(S); 6918 6919 return F.Found; 6920 } 6921 6922 namespace { 6923 // Collect all steps of SCEV expressions. 6924 struct SCEVCollectStrides { 6925 ScalarEvolution &SE; 6926 SmallVectorImpl<const SCEV *> &Strides; 6927 6928 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 6929 : SE(SE), Strides(S) {} 6930 6931 bool follow(const SCEV *S) { 6932 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 6933 Strides.push_back(AR->getStepRecurrence(SE)); 6934 return true; 6935 } 6936 bool isDone() const { return false; } 6937 }; 6938 6939 // Collect all SCEVUnknown and SCEVMulExpr expressions. 6940 struct SCEVCollectTerms { 6941 SmallVectorImpl<const SCEV *> &Terms; 6942 6943 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 6944 : Terms(T) {} 6945 6946 bool follow(const SCEV *S) { 6947 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 6948 if (!containsUndefs(S)) 6949 Terms.push_back(S); 6950 6951 // Stop recursion: once we collected a term, do not walk its operands. 6952 return false; 6953 } 6954 6955 // Keep looking. 6956 return true; 6957 } 6958 bool isDone() const { return false; } 6959 }; 6960 } 6961 6962 /// Find parametric terms in this SCEVAddRecExpr. 6963 void SCEVAddRecExpr::collectParametricTerms( 6964 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const { 6965 SmallVector<const SCEV *, 4> Strides; 6966 SCEVCollectStrides StrideCollector(SE, Strides); 6967 visitAll(this, StrideCollector); 6968 6969 DEBUG({ 6970 dbgs() << "Strides:\n"; 6971 for (const SCEV *S : Strides) 6972 dbgs() << *S << "\n"; 6973 }); 6974 6975 for (const SCEV *S : Strides) { 6976 SCEVCollectTerms TermCollector(Terms); 6977 visitAll(S, TermCollector); 6978 } 6979 6980 DEBUG({ 6981 dbgs() << "Terms:\n"; 6982 for (const SCEV *T : Terms) 6983 dbgs() << *T << "\n"; 6984 }); 6985 } 6986 6987 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) { 6988 APInt A = C1->getValue()->getValue(); 6989 APInt B = C2->getValue()->getValue(); 6990 uint32_t ABW = A.getBitWidth(); 6991 uint32_t BBW = B.getBitWidth(); 6992 6993 if (ABW > BBW) 6994 B = B.sext(ABW); 6995 else if (ABW < BBW) 6996 A = A.sext(BBW); 6997 6998 return APIntOps::srem(A, B); 6999 } 7000 7001 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) { 7002 APInt A = C1->getValue()->getValue(); 7003 APInt B = C2->getValue()->getValue(); 7004 uint32_t ABW = A.getBitWidth(); 7005 uint32_t BBW = B.getBitWidth(); 7006 7007 if (ABW > BBW) 7008 B = B.sext(ABW); 7009 else if (ABW < BBW) 7010 A = A.sext(BBW); 7011 7012 return APIntOps::sdiv(A, B); 7013 } 7014 7015 namespace { 7016 struct FindSCEVSize { 7017 int Size; 7018 FindSCEVSize() : Size(0) {} 7019 7020 bool follow(const SCEV *S) { 7021 ++Size; 7022 // Keep looking at all operands of S. 7023 return true; 7024 } 7025 bool isDone() const { 7026 return false; 7027 } 7028 }; 7029 } 7030 7031 // Returns the size of the SCEV S. 7032 static inline int sizeOfSCEV(const SCEV *S) { 7033 FindSCEVSize F; 7034 SCEVTraversal<FindSCEVSize> ST(F); 7035 ST.visitAll(S); 7036 return F.Size; 7037 } 7038 7039 namespace { 7040 7041 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 7042 public: 7043 // Computes the Quotient and Remainder of the division of Numerator by 7044 // Denominator. 7045 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 7046 const SCEV *Denominator, const SCEV **Quotient, 7047 const SCEV **Remainder) { 7048 assert(Numerator && Denominator && "Uninitialized SCEV"); 7049 7050 SCEVDivision D(SE, Numerator, Denominator); 7051 7052 // Check for the trivial case here to avoid having to check for it in the 7053 // rest of the code. 7054 if (Numerator == Denominator) { 7055 *Quotient = D.One; 7056 *Remainder = D.Zero; 7057 return; 7058 } 7059 7060 if (Numerator->isZero()) { 7061 *Quotient = D.Zero; 7062 *Remainder = D.Zero; 7063 return; 7064 } 7065 7066 // Split the Denominator when it is a product. 7067 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 7068 const SCEV *Q, *R; 7069 *Quotient = Numerator; 7070 for (const SCEV *Op : T->operands()) { 7071 divide(SE, *Quotient, Op, &Q, &R); 7072 *Quotient = Q; 7073 7074 // Bail out when the Numerator is not divisible by one of the terms of 7075 // the Denominator. 7076 if (!R->isZero()) { 7077 *Quotient = D.Zero; 7078 *Remainder = Numerator; 7079 return; 7080 } 7081 } 7082 *Remainder = D.Zero; 7083 return; 7084 } 7085 7086 D.visit(Numerator); 7087 *Quotient = D.Quotient; 7088 *Remainder = D.Remainder; 7089 } 7090 7091 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator) 7092 : SE(S), Denominator(Denominator) { 7093 Zero = SE.getConstant(Denominator->getType(), 0); 7094 One = SE.getConstant(Denominator->getType(), 1); 7095 7096 // By default, we don't know how to divide Expr by Denominator. 7097 // Providing the default here simplifies the rest of the code. 7098 Quotient = Zero; 7099 Remainder = Numerator; 7100 } 7101 7102 // Except in the trivial case described above, we do not know how to divide 7103 // Expr by Denominator for the following functions with empty implementation. 7104 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 7105 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 7106 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 7107 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 7108 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 7109 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 7110 void visitUnknown(const SCEVUnknown *Numerator) {} 7111 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 7112 7113 void visitConstant(const SCEVConstant *Numerator) { 7114 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 7115 Quotient = SE.getConstant(sdiv(Numerator, D)); 7116 Remainder = SE.getConstant(srem(Numerator, D)); 7117 return; 7118 } 7119 } 7120 7121 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 7122 const SCEV *StartQ, *StartR, *StepQ, *StepR; 7123 assert(Numerator->isAffine() && "Numerator should be affine"); 7124 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 7125 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 7126 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 7127 Numerator->getNoWrapFlags()); 7128 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 7129 Numerator->getNoWrapFlags()); 7130 } 7131 7132 void visitAddExpr(const SCEVAddExpr *Numerator) { 7133 SmallVector<const SCEV *, 2> Qs, Rs; 7134 Type *Ty = Denominator->getType(); 7135 7136 for (const SCEV *Op : Numerator->operands()) { 7137 const SCEV *Q, *R; 7138 divide(SE, Op, Denominator, &Q, &R); 7139 7140 // Bail out if types do not match. 7141 if (Ty != Q->getType() || Ty != R->getType()) { 7142 Quotient = Zero; 7143 Remainder = Numerator; 7144 return; 7145 } 7146 7147 Qs.push_back(Q); 7148 Rs.push_back(R); 7149 } 7150 7151 if (Qs.size() == 1) { 7152 Quotient = Qs[0]; 7153 Remainder = Rs[0]; 7154 return; 7155 } 7156 7157 Quotient = SE.getAddExpr(Qs); 7158 Remainder = SE.getAddExpr(Rs); 7159 } 7160 7161 void visitMulExpr(const SCEVMulExpr *Numerator) { 7162 SmallVector<const SCEV *, 2> Qs; 7163 Type *Ty = Denominator->getType(); 7164 7165 bool FoundDenominatorTerm = false; 7166 for (const SCEV *Op : Numerator->operands()) { 7167 // Bail out if types do not match. 7168 if (Ty != Op->getType()) { 7169 Quotient = Zero; 7170 Remainder = Numerator; 7171 return; 7172 } 7173 7174 if (FoundDenominatorTerm) { 7175 Qs.push_back(Op); 7176 continue; 7177 } 7178 7179 // Check whether Denominator divides one of the product operands. 7180 const SCEV *Q, *R; 7181 divide(SE, Op, Denominator, &Q, &R); 7182 if (!R->isZero()) { 7183 Qs.push_back(Op); 7184 continue; 7185 } 7186 7187 // Bail out if types do not match. 7188 if (Ty != Q->getType()) { 7189 Quotient = Zero; 7190 Remainder = Numerator; 7191 return; 7192 } 7193 7194 FoundDenominatorTerm = true; 7195 Qs.push_back(Q); 7196 } 7197 7198 if (FoundDenominatorTerm) { 7199 Remainder = Zero; 7200 if (Qs.size() == 1) 7201 Quotient = Qs[0]; 7202 else 7203 Quotient = SE.getMulExpr(Qs); 7204 return; 7205 } 7206 7207 if (!isa<SCEVUnknown>(Denominator)) { 7208 Quotient = Zero; 7209 Remainder = Numerator; 7210 return; 7211 } 7212 7213 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 7214 ValueToValueMap RewriteMap; 7215 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 7216 cast<SCEVConstant>(Zero)->getValue(); 7217 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 7218 7219 if (Remainder->isZero()) { 7220 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 7221 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 7222 cast<SCEVConstant>(One)->getValue(); 7223 Quotient = 7224 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 7225 return; 7226 } 7227 7228 // Quotient is (Numerator - Remainder) divided by Denominator. 7229 const SCEV *Q, *R; 7230 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 7231 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) { 7232 // This SCEV does not seem to simplify: fail the division here. 7233 Quotient = Zero; 7234 Remainder = Numerator; 7235 return; 7236 } 7237 divide(SE, Diff, Denominator, &Q, &R); 7238 assert(R == Zero && 7239 "(Numerator - Remainder) should evenly divide Denominator"); 7240 Quotient = Q; 7241 } 7242 7243 private: 7244 ScalarEvolution &SE; 7245 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 7246 }; 7247 } 7248 7249 static bool findArrayDimensionsRec(ScalarEvolution &SE, 7250 SmallVectorImpl<const SCEV *> &Terms, 7251 SmallVectorImpl<const SCEV *> &Sizes) { 7252 int Last = Terms.size() - 1; 7253 const SCEV *Step = Terms[Last]; 7254 7255 // End of recursion. 7256 if (Last == 0) { 7257 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 7258 SmallVector<const SCEV *, 2> Qs; 7259 for (const SCEV *Op : M->operands()) 7260 if (!isa<SCEVConstant>(Op)) 7261 Qs.push_back(Op); 7262 7263 Step = SE.getMulExpr(Qs); 7264 } 7265 7266 Sizes.push_back(Step); 7267 return true; 7268 } 7269 7270 for (const SCEV *&Term : Terms) { 7271 // Normalize the terms before the next call to findArrayDimensionsRec. 7272 const SCEV *Q, *R; 7273 SCEVDivision::divide(SE, Term, Step, &Q, &R); 7274 7275 // Bail out when GCD does not evenly divide one of the terms. 7276 if (!R->isZero()) 7277 return false; 7278 7279 Term = Q; 7280 } 7281 7282 // Remove all SCEVConstants. 7283 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 7284 return isa<SCEVConstant>(E); 7285 }), 7286 Terms.end()); 7287 7288 if (Terms.size() > 0) 7289 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 7290 return false; 7291 7292 Sizes.push_back(Step); 7293 return true; 7294 } 7295 7296 namespace { 7297 struct FindParameter { 7298 bool FoundParameter; 7299 FindParameter() : FoundParameter(false) {} 7300 7301 bool follow(const SCEV *S) { 7302 if (isa<SCEVUnknown>(S)) { 7303 FoundParameter = true; 7304 // Stop recursion: we found a parameter. 7305 return false; 7306 } 7307 // Keep looking. 7308 return true; 7309 } 7310 bool isDone() const { 7311 // Stop recursion if we have found a parameter. 7312 return FoundParameter; 7313 } 7314 }; 7315 } 7316 7317 // Returns true when S contains at least a SCEVUnknown parameter. 7318 static inline bool 7319 containsParameters(const SCEV *S) { 7320 FindParameter F; 7321 SCEVTraversal<FindParameter> ST(F); 7322 ST.visitAll(S); 7323 7324 return F.FoundParameter; 7325 } 7326 7327 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 7328 static inline bool 7329 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 7330 for (const SCEV *T : Terms) 7331 if (containsParameters(T)) 7332 return true; 7333 return false; 7334 } 7335 7336 // Return the number of product terms in S. 7337 static inline int numberOfTerms(const SCEV *S) { 7338 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 7339 return Expr->getNumOperands(); 7340 return 1; 7341 } 7342 7343 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 7344 if (isa<SCEVConstant>(T)) 7345 return nullptr; 7346 7347 if (isa<SCEVUnknown>(T)) 7348 return T; 7349 7350 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 7351 SmallVector<const SCEV *, 2> Factors; 7352 for (const SCEV *Op : M->operands()) 7353 if (!isa<SCEVConstant>(Op)) 7354 Factors.push_back(Op); 7355 7356 return SE.getMulExpr(Factors); 7357 } 7358 7359 return T; 7360 } 7361 7362 /// Return the size of an element read or written by Inst. 7363 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 7364 Type *Ty; 7365 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 7366 Ty = Store->getValueOperand()->getType(); 7367 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 7368 Ty = Load->getType(); 7369 else 7370 return nullptr; 7371 7372 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 7373 return getSizeOfExpr(ETy, Ty); 7374 } 7375 7376 /// Second step of delinearization: compute the array dimensions Sizes from the 7377 /// set of Terms extracted from the memory access function of this SCEVAddRec. 7378 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 7379 SmallVectorImpl<const SCEV *> &Sizes, 7380 const SCEV *ElementSize) const { 7381 7382 if (Terms.size() < 1 || !ElementSize) 7383 return; 7384 7385 // Early return when Terms do not contain parameters: we do not delinearize 7386 // non parametric SCEVs. 7387 if (!containsParameters(Terms)) 7388 return; 7389 7390 DEBUG({ 7391 dbgs() << "Terms:\n"; 7392 for (const SCEV *T : Terms) 7393 dbgs() << *T << "\n"; 7394 }); 7395 7396 // Remove duplicates. 7397 std::sort(Terms.begin(), Terms.end()); 7398 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 7399 7400 // Put larger terms first. 7401 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 7402 return numberOfTerms(LHS) > numberOfTerms(RHS); 7403 }); 7404 7405 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7406 7407 // Divide all terms by the element size. 7408 for (const SCEV *&Term : Terms) { 7409 const SCEV *Q, *R; 7410 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 7411 Term = Q; 7412 } 7413 7414 SmallVector<const SCEV *, 4> NewTerms; 7415 7416 // Remove constant factors. 7417 for (const SCEV *T : Terms) 7418 if (const SCEV *NewT = removeConstantFactors(SE, T)) 7419 NewTerms.push_back(NewT); 7420 7421 DEBUG({ 7422 dbgs() << "Terms after sorting:\n"; 7423 for (const SCEV *T : NewTerms) 7424 dbgs() << *T << "\n"; 7425 }); 7426 7427 if (NewTerms.empty() || 7428 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 7429 Sizes.clear(); 7430 return; 7431 } 7432 7433 // The last element to be pushed into Sizes is the size of an element. 7434 Sizes.push_back(ElementSize); 7435 7436 DEBUG({ 7437 dbgs() << "Sizes:\n"; 7438 for (const SCEV *S : Sizes) 7439 dbgs() << *S << "\n"; 7440 }); 7441 } 7442 7443 /// Third step of delinearization: compute the access functions for the 7444 /// Subscripts based on the dimensions in Sizes. 7445 void SCEVAddRecExpr::computeAccessFunctions( 7446 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts, 7447 SmallVectorImpl<const SCEV *> &Sizes) const { 7448 7449 // Early exit in case this SCEV is not an affine multivariate function. 7450 if (Sizes.empty() || !this->isAffine()) 7451 return; 7452 7453 const SCEV *Res = this; 7454 int Last = Sizes.size() - 1; 7455 for (int i = Last; i >= 0; i--) { 7456 const SCEV *Q, *R; 7457 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R); 7458 7459 DEBUG({ 7460 dbgs() << "Res: " << *Res << "\n"; 7461 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 7462 dbgs() << "Res divided by Sizes[i]:\n"; 7463 dbgs() << "Quotient: " << *Q << "\n"; 7464 dbgs() << "Remainder: " << *R << "\n"; 7465 }); 7466 7467 Res = Q; 7468 7469 // Do not record the last subscript corresponding to the size of elements in 7470 // the array. 7471 if (i == Last) { 7472 7473 // Bail out if the remainder is too complex. 7474 if (isa<SCEVAddRecExpr>(R)) { 7475 Subscripts.clear(); 7476 Sizes.clear(); 7477 return; 7478 } 7479 7480 continue; 7481 } 7482 7483 // Record the access function for the current subscript. 7484 Subscripts.push_back(R); 7485 } 7486 7487 // Also push in last position the remainder of the last division: it will be 7488 // the access function of the innermost dimension. 7489 Subscripts.push_back(Res); 7490 7491 std::reverse(Subscripts.begin(), Subscripts.end()); 7492 7493 DEBUG({ 7494 dbgs() << "Subscripts:\n"; 7495 for (const SCEV *S : Subscripts) 7496 dbgs() << *S << "\n"; 7497 }); 7498 } 7499 7500 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 7501 /// sizes of an array access. Returns the remainder of the delinearization that 7502 /// is the offset start of the array. The SCEV->delinearize algorithm computes 7503 /// the multiples of SCEV coefficients: that is a pattern matching of sub 7504 /// expressions in the stride and base of a SCEV corresponding to the 7505 /// computation of a GCD (greatest common divisor) of base and stride. When 7506 /// SCEV->delinearize fails, it returns the SCEV unchanged. 7507 /// 7508 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 7509 /// 7510 /// void foo(long n, long m, long o, double A[n][m][o]) { 7511 /// 7512 /// for (long i = 0; i < n; i++) 7513 /// for (long j = 0; j < m; j++) 7514 /// for (long k = 0; k < o; k++) 7515 /// A[i][j][k] = 1.0; 7516 /// } 7517 /// 7518 /// the delinearization input is the following AddRec SCEV: 7519 /// 7520 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 7521 /// 7522 /// From this SCEV, we are able to say that the base offset of the access is %A 7523 /// because it appears as an offset that does not divide any of the strides in 7524 /// the loops: 7525 /// 7526 /// CHECK: Base offset: %A 7527 /// 7528 /// and then SCEV->delinearize determines the size of some of the dimensions of 7529 /// the array as these are the multiples by which the strides are happening: 7530 /// 7531 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 7532 /// 7533 /// Note that the outermost dimension remains of UnknownSize because there are 7534 /// no strides that would help identifying the size of the last dimension: when 7535 /// the array has been statically allocated, one could compute the size of that 7536 /// dimension by dividing the overall size of the array by the size of the known 7537 /// dimensions: %m * %o * 8. 7538 /// 7539 /// Finally delinearize provides the access functions for the array reference 7540 /// that does correspond to A[i][j][k] of the above C testcase: 7541 /// 7542 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 7543 /// 7544 /// The testcases are checking the output of a function pass: 7545 /// DelinearizationPass that walks through all loads and stores of a function 7546 /// asking for the SCEV of the memory access with respect to all enclosing 7547 /// loops, calling SCEV->delinearize on that and printing the results. 7548 7549 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE, 7550 SmallVectorImpl<const SCEV *> &Subscripts, 7551 SmallVectorImpl<const SCEV *> &Sizes, 7552 const SCEV *ElementSize) const { 7553 // First step: collect parametric terms. 7554 SmallVector<const SCEV *, 4> Terms; 7555 collectParametricTerms(SE, Terms); 7556 7557 if (Terms.empty()) 7558 return; 7559 7560 // Second step: find subscript sizes. 7561 SE.findArrayDimensions(Terms, Sizes, ElementSize); 7562 7563 if (Sizes.empty()) 7564 return; 7565 7566 // Third step: compute the access functions for each subscript. 7567 computeAccessFunctions(SE, Subscripts, Sizes); 7568 7569 if (Subscripts.empty()) 7570 return; 7571 7572 DEBUG({ 7573 dbgs() << "succeeded to delinearize " << *this << "\n"; 7574 dbgs() << "ArrayDecl[UnknownSize]"; 7575 for (const SCEV *S : Sizes) 7576 dbgs() << "[" << *S << "]"; 7577 7578 dbgs() << "\nArrayRef"; 7579 for (const SCEV *S : Subscripts) 7580 dbgs() << "[" << *S << "]"; 7581 dbgs() << "\n"; 7582 }); 7583 } 7584 7585 //===----------------------------------------------------------------------===// 7586 // SCEVCallbackVH Class Implementation 7587 //===----------------------------------------------------------------------===// 7588 7589 void ScalarEvolution::SCEVCallbackVH::deleted() { 7590 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7591 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 7592 SE->ConstantEvolutionLoopExitValue.erase(PN); 7593 SE->ValueExprMap.erase(getValPtr()); 7594 // this now dangles! 7595 } 7596 7597 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 7598 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 7599 7600 // Forget all the expressions associated with users of the old value, 7601 // so that future queries will recompute the expressions using the new 7602 // value. 7603 Value *Old = getValPtr(); 7604 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 7605 SmallPtrSet<User *, 8> Visited; 7606 while (!Worklist.empty()) { 7607 User *U = Worklist.pop_back_val(); 7608 // Deleting the Old value will cause this to dangle. Postpone 7609 // that until everything else is done. 7610 if (U == Old) 7611 continue; 7612 if (!Visited.insert(U)) 7613 continue; 7614 if (PHINode *PN = dyn_cast<PHINode>(U)) 7615 SE->ConstantEvolutionLoopExitValue.erase(PN); 7616 SE->ValueExprMap.erase(U); 7617 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 7618 } 7619 // Delete the Old value. 7620 if (PHINode *PN = dyn_cast<PHINode>(Old)) 7621 SE->ConstantEvolutionLoopExitValue.erase(PN); 7622 SE->ValueExprMap.erase(Old); 7623 // this now dangles! 7624 } 7625 7626 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 7627 : CallbackVH(V), SE(se) {} 7628 7629 //===----------------------------------------------------------------------===// 7630 // ScalarEvolution Class Implementation 7631 //===----------------------------------------------------------------------===// 7632 7633 ScalarEvolution::ScalarEvolution() 7634 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), 7635 BlockDispositions(64), FirstUnknown(nullptr) { 7636 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry()); 7637 } 7638 7639 bool ScalarEvolution::runOnFunction(Function &F) { 7640 this->F = &F; 7641 LI = &getAnalysis<LoopInfo>(); 7642 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 7643 DL = DLP ? &DLP->getDataLayout() : nullptr; 7644 TLI = &getAnalysis<TargetLibraryInfo>(); 7645 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7646 return false; 7647 } 7648 7649 void ScalarEvolution::releaseMemory() { 7650 // Iterate through all the SCEVUnknown instances and call their 7651 // destructors, so that they release their references to their values. 7652 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next) 7653 U->~SCEVUnknown(); 7654 FirstUnknown = nullptr; 7655 7656 ValueExprMap.clear(); 7657 7658 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 7659 // that a loop had multiple computable exits. 7660 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7661 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 7662 I != E; ++I) { 7663 I->second.clear(); 7664 } 7665 7666 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 7667 7668 BackedgeTakenCounts.clear(); 7669 ConstantEvolutionLoopExitValue.clear(); 7670 ValuesAtScopes.clear(); 7671 LoopDispositions.clear(); 7672 BlockDispositions.clear(); 7673 UnsignedRanges.clear(); 7674 SignedRanges.clear(); 7675 UniqueSCEVs.clear(); 7676 SCEVAllocator.Reset(); 7677 } 7678 7679 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 7680 AU.setPreservesAll(); 7681 AU.addRequiredTransitive<LoopInfo>(); 7682 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 7683 AU.addRequired<TargetLibraryInfo>(); 7684 } 7685 7686 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 7687 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 7688 } 7689 7690 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 7691 const Loop *L) { 7692 // Print all inner loops first 7693 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 7694 PrintLoopInfo(OS, SE, *I); 7695 7696 OS << "Loop "; 7697 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7698 OS << ": "; 7699 7700 SmallVector<BasicBlock *, 8> ExitBlocks; 7701 L->getExitBlocks(ExitBlocks); 7702 if (ExitBlocks.size() != 1) 7703 OS << "<multiple exits> "; 7704 7705 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 7706 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 7707 } else { 7708 OS << "Unpredictable backedge-taken count. "; 7709 } 7710 7711 OS << "\n" 7712 "Loop "; 7713 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 7714 OS << ": "; 7715 7716 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 7717 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 7718 } else { 7719 OS << "Unpredictable max backedge-taken count. "; 7720 } 7721 7722 OS << "\n"; 7723 } 7724 7725 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 7726 // ScalarEvolution's implementation of the print method is to print 7727 // out SCEV values of all instructions that are interesting. Doing 7728 // this potentially causes it to create new SCEV objects though, 7729 // which technically conflicts with the const qualifier. This isn't 7730 // observable from outside the class though, so casting away the 7731 // const isn't dangerous. 7732 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 7733 7734 OS << "Classifying expressions for: "; 7735 F->printAsOperand(OS, /*PrintType=*/false); 7736 OS << "\n"; 7737 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 7738 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 7739 OS << *I << '\n'; 7740 OS << " --> "; 7741 const SCEV *SV = SE.getSCEV(&*I); 7742 SV->print(OS); 7743 7744 const Loop *L = LI->getLoopFor((*I).getParent()); 7745 7746 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 7747 if (AtUse != SV) { 7748 OS << " --> "; 7749 AtUse->print(OS); 7750 } 7751 7752 if (L) { 7753 OS << "\t\t" "Exits: "; 7754 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 7755 if (!SE.isLoopInvariant(ExitValue, L)) { 7756 OS << "<<Unknown>>"; 7757 } else { 7758 OS << *ExitValue; 7759 } 7760 } 7761 7762 OS << "\n"; 7763 } 7764 7765 OS << "Determining loop execution counts for: "; 7766 F->printAsOperand(OS, /*PrintType=*/false); 7767 OS << "\n"; 7768 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 7769 PrintLoopInfo(OS, &SE, *I); 7770 } 7771 7772 ScalarEvolution::LoopDisposition 7773 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 7774 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S]; 7775 for (unsigned u = 0; u < Values.size(); u++) { 7776 if (Values[u].first == L) 7777 return Values[u].second; 7778 } 7779 Values.push_back(std::make_pair(L, LoopVariant)); 7780 LoopDisposition D = computeLoopDisposition(S, L); 7781 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S]; 7782 for (unsigned u = Values2.size(); u > 0; u--) { 7783 if (Values2[u - 1].first == L) { 7784 Values2[u - 1].second = D; 7785 break; 7786 } 7787 } 7788 return D; 7789 } 7790 7791 ScalarEvolution::LoopDisposition 7792 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 7793 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7794 case scConstant: 7795 return LoopInvariant; 7796 case scTruncate: 7797 case scZeroExtend: 7798 case scSignExtend: 7799 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 7800 case scAddRecExpr: { 7801 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7802 7803 // If L is the addrec's loop, it's computable. 7804 if (AR->getLoop() == L) 7805 return LoopComputable; 7806 7807 // Add recurrences are never invariant in the function-body (null loop). 7808 if (!L) 7809 return LoopVariant; 7810 7811 // This recurrence is variant w.r.t. L if L contains AR's loop. 7812 if (L->contains(AR->getLoop())) 7813 return LoopVariant; 7814 7815 // This recurrence is invariant w.r.t. L if AR's loop contains L. 7816 if (AR->getLoop()->contains(L)) 7817 return LoopInvariant; 7818 7819 // This recurrence is variant w.r.t. L if any of its operands 7820 // are variant. 7821 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 7822 I != E; ++I) 7823 if (!isLoopInvariant(*I, L)) 7824 return LoopVariant; 7825 7826 // Otherwise it's loop-invariant. 7827 return LoopInvariant; 7828 } 7829 case scAddExpr: 7830 case scMulExpr: 7831 case scUMaxExpr: 7832 case scSMaxExpr: { 7833 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7834 bool HasVarying = false; 7835 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7836 I != E; ++I) { 7837 LoopDisposition D = getLoopDisposition(*I, L); 7838 if (D == LoopVariant) 7839 return LoopVariant; 7840 if (D == LoopComputable) 7841 HasVarying = true; 7842 } 7843 return HasVarying ? LoopComputable : LoopInvariant; 7844 } 7845 case scUDivExpr: { 7846 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7847 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 7848 if (LD == LoopVariant) 7849 return LoopVariant; 7850 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 7851 if (RD == LoopVariant) 7852 return LoopVariant; 7853 return (LD == LoopInvariant && RD == LoopInvariant) ? 7854 LoopInvariant : LoopComputable; 7855 } 7856 case scUnknown: 7857 // All non-instruction values are loop invariant. All instructions are loop 7858 // invariant if they are not contained in the specified loop. 7859 // Instructions are never considered invariant in the function body 7860 // (null loop) because they are defined within the "loop". 7861 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 7862 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 7863 return LoopInvariant; 7864 case scCouldNotCompute: 7865 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7866 } 7867 llvm_unreachable("Unknown SCEV kind!"); 7868 } 7869 7870 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 7871 return getLoopDisposition(S, L) == LoopInvariant; 7872 } 7873 7874 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 7875 return getLoopDisposition(S, L) == LoopComputable; 7876 } 7877 7878 ScalarEvolution::BlockDisposition 7879 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7880 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S]; 7881 for (unsigned u = 0; u < Values.size(); u++) { 7882 if (Values[u].first == BB) 7883 return Values[u].second; 7884 } 7885 Values.push_back(std::make_pair(BB, DoesNotDominateBlock)); 7886 BlockDisposition D = computeBlockDisposition(S, BB); 7887 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S]; 7888 for (unsigned u = Values2.size(); u > 0; u--) { 7889 if (Values2[u - 1].first == BB) { 7890 Values2[u - 1].second = D; 7891 break; 7892 } 7893 } 7894 return D; 7895 } 7896 7897 ScalarEvolution::BlockDisposition 7898 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 7899 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 7900 case scConstant: 7901 return ProperlyDominatesBlock; 7902 case scTruncate: 7903 case scZeroExtend: 7904 case scSignExtend: 7905 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 7906 case scAddRecExpr: { 7907 // This uses a "dominates" query instead of "properly dominates" query 7908 // to test for proper dominance too, because the instruction which 7909 // produces the addrec's value is a PHI, and a PHI effectively properly 7910 // dominates its entire containing block. 7911 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 7912 if (!DT->dominates(AR->getLoop()->getHeader(), BB)) 7913 return DoesNotDominateBlock; 7914 } 7915 // FALL THROUGH into SCEVNAryExpr handling. 7916 case scAddExpr: 7917 case scMulExpr: 7918 case scUMaxExpr: 7919 case scSMaxExpr: { 7920 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 7921 bool Proper = true; 7922 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 7923 I != E; ++I) { 7924 BlockDisposition D = getBlockDisposition(*I, BB); 7925 if (D == DoesNotDominateBlock) 7926 return DoesNotDominateBlock; 7927 if (D == DominatesBlock) 7928 Proper = false; 7929 } 7930 return Proper ? ProperlyDominatesBlock : DominatesBlock; 7931 } 7932 case scUDivExpr: { 7933 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 7934 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 7935 BlockDisposition LD = getBlockDisposition(LHS, BB); 7936 if (LD == DoesNotDominateBlock) 7937 return DoesNotDominateBlock; 7938 BlockDisposition RD = getBlockDisposition(RHS, BB); 7939 if (RD == DoesNotDominateBlock) 7940 return DoesNotDominateBlock; 7941 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 7942 ProperlyDominatesBlock : DominatesBlock; 7943 } 7944 case scUnknown: 7945 if (Instruction *I = 7946 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 7947 if (I->getParent() == BB) 7948 return DominatesBlock; 7949 if (DT->properlyDominates(I->getParent(), BB)) 7950 return ProperlyDominatesBlock; 7951 return DoesNotDominateBlock; 7952 } 7953 return ProperlyDominatesBlock; 7954 case scCouldNotCompute: 7955 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 7956 } 7957 llvm_unreachable("Unknown SCEV kind!"); 7958 } 7959 7960 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 7961 return getBlockDisposition(S, BB) >= DominatesBlock; 7962 } 7963 7964 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 7965 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 7966 } 7967 7968 namespace { 7969 // Search for a SCEV expression node within an expression tree. 7970 // Implements SCEVTraversal::Visitor. 7971 struct SCEVSearch { 7972 const SCEV *Node; 7973 bool IsFound; 7974 7975 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 7976 7977 bool follow(const SCEV *S) { 7978 IsFound |= (S == Node); 7979 return !IsFound; 7980 } 7981 bool isDone() const { return IsFound; } 7982 }; 7983 } 7984 7985 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 7986 SCEVSearch Search(Op); 7987 visitAll(S, Search); 7988 return Search.IsFound; 7989 } 7990 7991 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 7992 ValuesAtScopes.erase(S); 7993 LoopDispositions.erase(S); 7994 BlockDispositions.erase(S); 7995 UnsignedRanges.erase(S); 7996 SignedRanges.erase(S); 7997 7998 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 7999 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8000 BackedgeTakenInfo &BEInfo = I->second; 8001 if (BEInfo.hasOperand(S, this)) { 8002 BEInfo.clear(); 8003 BackedgeTakenCounts.erase(I++); 8004 } 8005 else 8006 ++I; 8007 } 8008 } 8009 8010 typedef DenseMap<const Loop *, std::string> VerifyMap; 8011 8012 /// replaceSubString - Replaces all occurrences of From in Str with To. 8013 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8014 size_t Pos = 0; 8015 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8016 Str.replace(Pos, From.size(), To.data(), To.size()); 8017 Pos += To.size(); 8018 } 8019 } 8020 8021 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8022 static void 8023 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8024 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8025 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8026 8027 std::string &S = Map[L]; 8028 if (S.empty()) { 8029 raw_string_ostream OS(S); 8030 SE.getBackedgeTakenCount(L)->print(OS); 8031 8032 // false and 0 are semantically equivalent. This can happen in dead loops. 8033 replaceSubString(OS.str(), "false", "0"); 8034 // Remove wrap flags, their use in SCEV is highly fragile. 8035 // FIXME: Remove this when SCEV gets smarter about them. 8036 replaceSubString(OS.str(), "<nw>", ""); 8037 replaceSubString(OS.str(), "<nsw>", ""); 8038 replaceSubString(OS.str(), "<nuw>", ""); 8039 } 8040 } 8041 } 8042 8043 void ScalarEvolution::verifyAnalysis() const { 8044 if (!VerifySCEV) 8045 return; 8046 8047 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8048 8049 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8050 // FIXME: It would be much better to store actual values instead of strings, 8051 // but SCEV pointers will change if we drop the caches. 8052 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8053 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8054 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8055 8056 // Gather stringified backedge taken counts for all loops without using 8057 // SCEV's caches. 8058 SE.releaseMemory(); 8059 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I) 8060 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE); 8061 8062 // Now compare whether they're the same with and without caches. This allows 8063 // verifying that no pass changed the cache. 8064 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8065 "New loops suddenly appeared!"); 8066 8067 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8068 OldE = BackedgeDumpsOld.end(), 8069 NewI = BackedgeDumpsNew.begin(); 8070 OldI != OldE; ++OldI, ++NewI) { 8071 assert(OldI->first == NewI->first && "Loop order changed!"); 8072 8073 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8074 // changes. 8075 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8076 // means that a pass is buggy or SCEV has to learn a new pattern but is 8077 // usually not harmful. 8078 if (OldI->second != NewI->second && 8079 OldI->second.find("undef") == std::string::npos && 8080 NewI->second.find("undef") == std::string::npos && 8081 OldI->second != "***COULDNOTCOMPUTE***" && 8082 NewI->second != "***COULDNOTCOMPUTE***") { 8083 dbgs() << "SCEVValidator: SCEV for loop '" 8084 << OldI->first->getHeader()->getName() 8085 << "' changed from '" << OldI->second 8086 << "' to '" << NewI->second << "'!\n"; 8087 std::abort(); 8088 } 8089 } 8090 8091 // TODO: Verify more things. 8092 } 8093