Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_x86.h"
     18 #include "dex/quick/mir_to_lir-inl.h"
     19 #include "dex/dataflow_iterator-inl.h"
     20 #include "x86_lir.h"
     21 #include "dex/quick/dex_file_method_inliner.h"
     22 #include "dex/quick/dex_file_to_method_inliner_map.h"
     23 #include "dex/reg_storage_eq.h"
     24 
     25 namespace art {
     26 
     27 /* This file contains codegen for the X86 ISA */
     28 
     29 LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
     30   int opcode;
     31   /* must be both DOUBLE or both not DOUBLE */
     32   DCHECK(r_dest.IsFloat() || r_src.IsFloat());
     33   DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
     34   if (r_dest.IsDouble()) {
     35     opcode = kX86MovsdRR;
     36   } else {
     37     if (r_dest.IsSingle()) {
     38       if (r_src.IsSingle()) {
     39         opcode = kX86MovssRR;
     40       } else {  // Fpr <- Gpr
     41         opcode = kX86MovdxrRR;
     42       }
     43     } else {  // Gpr <- Fpr
     44       DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
     45       opcode = kX86MovdrxRR;
     46     }
     47   }
     48   DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
     49   LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
     50   if (r_dest == r_src) {
     51     res->flags.is_nop = true;
     52   }
     53   return res;
     54 }
     55 
     56 bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
     57   return true;
     58 }
     59 
     60 bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
     61   return false;
     62 }
     63 
     64 bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
     65   return true;
     66 }
     67 
     68 bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
     69   return value == 0;
     70 }
     71 
     72 /*
     73  * Load a immediate using a shortcut if possible; otherwise
     74  * grab from the per-translation literal pool.  If target is
     75  * a high register, build constant into a low register and copy.
     76  *
     77  * No additional register clobbering operation performed. Use this version when
     78  * 1) r_dest is freshly returned from AllocTemp or
     79  * 2) The codegen is under fixed register usage
     80  */
     81 LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
     82   RegStorage r_dest_save = r_dest;
     83   if (r_dest.IsFloat()) {
     84     if (value == 0) {
     85       return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
     86     }
     87     r_dest = AllocTemp();
     88   }
     89 
     90   LIR *res;
     91   if (value == 0) {
     92     res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
     93   } else {
     94     // Note, there is no byte immediate form of a 32 bit immediate move.
     95     // 64-bit immediate is not supported by LIR structure
     96     res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
     97   }
     98 
     99   if (r_dest_save.IsFloat()) {
    100     NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
    101     FreeTemp(r_dest);
    102   }
    103 
    104   return res;
    105 }
    106 
    107 LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
    108   LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
    109   res->target = target;
    110   return res;
    111 }
    112 
    113 LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
    114   LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
    115                         X86ConditionEncoding(cc));
    116   branch->target = target;
    117   return branch;
    118 }
    119 
    120 LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
    121   X86OpCode opcode = kX86Bkpt;
    122   switch (op) {
    123     case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
    124     case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
    125     case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break;
    126     case kOpBlx: opcode = kX86CallR; break;
    127     default:
    128       LOG(FATAL) << "Bad case in OpReg " << op;
    129   }
    130   return NewLIR1(opcode, r_dest_src.GetReg());
    131 }
    132 
    133 LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
    134   X86OpCode opcode = kX86Bkpt;
    135   bool byte_imm = IS_SIMM8(value);
    136   DCHECK(!r_dest_src1.IsFloat());
    137   if (r_dest_src1.Is64Bit()) {
    138     switch (op) {
    139       case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
    140       case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
    141       case kOpLsl: opcode = kX86Sal64RI; break;
    142       case kOpLsr: opcode = kX86Shr64RI; break;
    143       case kOpAsr: opcode = kX86Sar64RI; break;
    144       case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
    145       default:
    146         LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
    147     }
    148   } else {
    149     switch (op) {
    150       case kOpLsl: opcode = kX86Sal32RI; break;
    151       case kOpLsr: opcode = kX86Shr32RI; break;
    152       case kOpAsr: opcode = kX86Sar32RI; break;
    153       case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
    154       case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
    155       case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
    156       // case kOpSbb: opcode = kX86Sbb32RI; break;
    157       case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
    158       case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
    159       case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
    160       case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
    161       case kOpMov:
    162         /*
    163          * Moving the constant zero into register can be specialized as an xor of the register.
    164          * However, that sets eflags while the move does not. For that reason here, always do
    165          * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
    166          */
    167         opcode = kX86Mov32RI;
    168         break;
    169       case kOpMul:
    170         opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
    171         return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
    172       case kOp2Byte:
    173         opcode = kX86Mov32RI;
    174         value = static_cast<int8_t>(value);
    175         break;
    176       case kOp2Short:
    177         opcode = kX86Mov32RI;
    178         value = static_cast<int16_t>(value);
    179         break;
    180       case kOp2Char:
    181         opcode = kX86Mov32RI;
    182         value = static_cast<uint16_t>(value);
    183         break;
    184       case kOpNeg:
    185         opcode = kX86Mov32RI;
    186         value = -value;
    187         break;
    188       default:
    189         LOG(FATAL) << "Bad case in OpRegImm " << op;
    190     }
    191   }
    192   return NewLIR2(opcode, r_dest_src1.GetReg(), value);
    193 }
    194 
    195 LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
    196     bool is64Bit = r_dest_src1.Is64Bit();
    197     X86OpCode opcode = kX86Nop;
    198     bool src2_must_be_cx = false;
    199     switch (op) {
    200         // X86 unary opcodes
    201       case kOpMvn:
    202         OpRegCopy(r_dest_src1, r_src2);
    203         return OpReg(kOpNot, r_dest_src1);
    204       case kOpNeg:
    205         OpRegCopy(r_dest_src1, r_src2);
    206         return OpReg(kOpNeg, r_dest_src1);
    207       case kOpRev:
    208         OpRegCopy(r_dest_src1, r_src2);
    209         return OpReg(kOpRev, r_dest_src1);
    210       case kOpRevsh:
    211         OpRegCopy(r_dest_src1, r_src2);
    212         OpReg(kOpRev, r_dest_src1);
    213         return OpRegImm(kOpAsr, r_dest_src1, 16);
    214         // X86 binary opcodes
    215       case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
    216       case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
    217       case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
    218       case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
    219       case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
    220       case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
    221       case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
    222       case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
    223       case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
    224       case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
    225       case kOpOr:  opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
    226       case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
    227       case kOp2Byte:
    228         // TODO: there are several instances of this check.  A utility function perhaps?
    229         // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
    230         // Use shifts instead of a byte operand if the source can't be byte accessed.
    231         if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
    232           NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
    233           NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
    234           return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
    235                          is64Bit ? 56 : 24);
    236         } else {
    237           opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
    238         }
    239         break;
    240       case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
    241       case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
    242       case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
    243       default:
    244         LOG(FATAL) << "Bad case in OpRegReg " << op;
    245         break;
    246     }
    247     CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
    248     return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
    249 }
    250 
    251 LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
    252   DCHECK(!r_base.IsFloat());
    253   X86OpCode opcode = kX86Nop;
    254   int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
    255   switch (move_type) {
    256     case kMov8GP:
    257       CHECK(!r_dest.IsFloat());
    258       opcode = kX86Mov8RM;
    259       break;
    260     case kMov16GP:
    261       CHECK(!r_dest.IsFloat());
    262       opcode = kX86Mov16RM;
    263       break;
    264     case kMov32GP:
    265       CHECK(!r_dest.IsFloat());
    266       opcode = kX86Mov32RM;
    267       break;
    268     case kMov32FP:
    269       CHECK(r_dest.IsFloat());
    270       opcode = kX86MovssRM;
    271       break;
    272     case kMov64FP:
    273       CHECK(r_dest.IsFloat());
    274       opcode = kX86MovsdRM;
    275       break;
    276     case kMovU128FP:
    277       CHECK(r_dest.IsFloat());
    278       opcode = kX86MovupsRM;
    279       break;
    280     case kMovA128FP:
    281       CHECK(r_dest.IsFloat());
    282       opcode = kX86MovapsRM;
    283       break;
    284     case kMovLo128FP:
    285       CHECK(r_dest.IsFloat());
    286       opcode = kX86MovlpsRM;
    287       break;
    288     case kMovHi128FP:
    289       CHECK(r_dest.IsFloat());
    290       opcode = kX86MovhpsRM;
    291       break;
    292     case kMov64GP:
    293     case kMovLo64FP:
    294     case kMovHi64FP:
    295     default:
    296       LOG(FATAL) << "Bad case in OpMovRegMem";
    297       break;
    298   }
    299 
    300   return NewLIR3(opcode, dest, r_base.GetReg(), offset);
    301 }
    302 
    303 LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
    304   DCHECK(!r_base.IsFloat());
    305   int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
    306 
    307   X86OpCode opcode = kX86Nop;
    308   switch (move_type) {
    309     case kMov8GP:
    310       CHECK(!r_src.IsFloat());
    311       opcode = kX86Mov8MR;
    312       break;
    313     case kMov16GP:
    314       CHECK(!r_src.IsFloat());
    315       opcode = kX86Mov16MR;
    316       break;
    317     case kMov32GP:
    318       CHECK(!r_src.IsFloat());
    319       opcode = kX86Mov32MR;
    320       break;
    321     case kMov32FP:
    322       CHECK(r_src.IsFloat());
    323       opcode = kX86MovssMR;
    324       break;
    325     case kMov64FP:
    326       CHECK(r_src.IsFloat());
    327       opcode = kX86MovsdMR;
    328       break;
    329     case kMovU128FP:
    330       CHECK(r_src.IsFloat());
    331       opcode = kX86MovupsMR;
    332       break;
    333     case kMovA128FP:
    334       CHECK(r_src.IsFloat());
    335       opcode = kX86MovapsMR;
    336       break;
    337     case kMovLo128FP:
    338       CHECK(r_src.IsFloat());
    339       opcode = kX86MovlpsMR;
    340       break;
    341     case kMovHi128FP:
    342       CHECK(r_src.IsFloat());
    343       opcode = kX86MovhpsMR;
    344       break;
    345     case kMov64GP:
    346     case kMovLo64FP:
    347     case kMovHi64FP:
    348     default:
    349       LOG(FATAL) << "Bad case in OpMovMemReg";
    350       break;
    351   }
    352 
    353   return NewLIR3(opcode, r_base.GetReg(), offset, src);
    354 }
    355 
    356 LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
    357   // The only conditional reg to reg operation supported is Cmov
    358   DCHECK_EQ(op, kOpCmov);
    359   DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
    360   return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(),
    361                  r_src.GetReg(), X86ConditionEncoding(cc));
    362 }
    363 
    364 LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
    365   bool is64Bit = r_dest.Is64Bit();
    366   X86OpCode opcode = kX86Nop;
    367   switch (op) {
    368       // X86 binary opcodes
    369     case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
    370     case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
    371     case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
    372     case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
    373     case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
    374     case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
    375     case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
    376     case kOp2Byte: opcode = kX86Movsx8RM; break;
    377     case kOp2Short: opcode = kX86Movsx16RM; break;
    378     case kOp2Char: opcode = kX86Movzx16RM; break;
    379     case kOpMul:
    380     default:
    381       LOG(FATAL) << "Bad case in OpRegMem " << op;
    382       break;
    383   }
    384   LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
    385   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
    386     DCHECK(r_base == rs_rX86_SP);
    387     AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
    388   }
    389   return l;
    390 }
    391 
    392 LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
    393   DCHECK_NE(rl_dest.location, kLocPhysReg);
    394   int displacement = SRegOffset(rl_dest.s_reg_low);
    395   bool is64Bit = rl_dest.wide != 0;
    396   X86OpCode opcode = kX86Nop;
    397   switch (op) {
    398     case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
    399     case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
    400     case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
    401     case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
    402     case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
    403     case kOpOr:  opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
    404     case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
    405     case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
    406     case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
    407     case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
    408     default:
    409       LOG(FATAL) << "Bad case in OpMemReg " << op;
    410       break;
    411   }
    412   LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
    413   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
    414     AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
    415     AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
    416   }
    417   return l;
    418 }
    419 
    420 LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
    421   DCHECK_NE(rl_value.location, kLocPhysReg);
    422   bool is64Bit = r_dest.Is64Bit();
    423   int displacement = SRegOffset(rl_value.s_reg_low);
    424   X86OpCode opcode = kX86Nop;
    425   switch (op) {
    426     case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
    427     case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
    428     case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
    429     case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
    430     case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
    431     case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
    432     case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
    433     case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
    434     default:
    435       LOG(FATAL) << "Bad case in OpRegMem " << op;
    436       break;
    437   }
    438   LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
    439   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
    440     AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
    441   }
    442   return l;
    443 }
    444 
    445 LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
    446                              RegStorage r_src2) {
    447   bool is64Bit = r_dest.Is64Bit();
    448   if (r_dest != r_src1 && r_dest != r_src2) {
    449     if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
    450       if (r_src1 == r_src2) {
    451         OpRegCopy(r_dest, r_src1);
    452         return OpRegImm(kOpLsl, r_dest, 1);
    453       } else if (r_src1 != rs_rBP) {
    454         return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
    455                        r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
    456                        0 /* scale */, 0 /* disp */);
    457       } else {
    458         return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
    459                        r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
    460                        0 /* scale */, 0 /* disp */);
    461       }
    462     } else {
    463       OpRegCopy(r_dest, r_src1);
    464       return OpRegReg(op, r_dest, r_src2);
    465     }
    466   } else if (r_dest == r_src1) {
    467     return OpRegReg(op, r_dest, r_src2);
    468   } else {  // r_dest == r_src2
    469     switch (op) {
    470       case kOpSub:  // non-commutative
    471         OpReg(kOpNeg, r_dest);
    472         op = kOpAdd;
    473         break;
    474       case kOpSbc:
    475       case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
    476         RegStorage t_reg = AllocTemp();
    477         OpRegCopy(t_reg, r_src1);
    478         OpRegReg(op, t_reg, r_src2);
    479         LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
    480         AppendLIR(res);
    481         FreeTemp(t_reg);
    482         return res;
    483       }
    484       case kOpAdd:  // commutative
    485       case kOpOr:
    486       case kOpAdc:
    487       case kOpAnd:
    488       case kOpXor:
    489         break;
    490       default:
    491         LOG(FATAL) << "Bad case in OpRegRegReg " << op;
    492     }
    493     return OpRegReg(op, r_dest, r_src1);
    494   }
    495 }
    496 
    497 LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
    498   if (op == kOpMul && !cu_->target64) {
    499     X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
    500     return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
    501   } else if (op == kOpAnd && !cu_->target64) {
    502     if (value == 0xFF && r_src.Low4()) {
    503       return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
    504     } else if (value == 0xFFFF) {
    505       return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
    506     }
    507   }
    508   if (r_dest != r_src) {
    509     if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
    510       // TODO: fix bug in LEA encoding when disp == 0
    511       return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
    512                      r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
    513     } else if (op == kOpAdd) {  // lea add special case
    514       return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
    515                      r_src.GetReg() /* base */, rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */,
    516                      0 /* scale */, value /* disp */);
    517     }
    518     OpRegCopy(r_dest, r_src);
    519   }
    520   return OpRegImm(op, r_dest, value);
    521 }
    522 
    523 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
    524   DCHECK_EQ(kX86, cu_->instruction_set);
    525   X86OpCode opcode = kX86Bkpt;
    526   switch (op) {
    527     case kOpBlx: opcode = kX86CallT;  break;
    528     case kOpBx: opcode = kX86JmpT;  break;
    529     default:
    530       LOG(FATAL) << "Bad opcode: " << op;
    531       break;
    532   }
    533   return NewLIR1(opcode, thread_offset.Int32Value());
    534 }
    535 
    536 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
    537   DCHECK_EQ(kX86_64, cu_->instruction_set);
    538   X86OpCode opcode = kX86Bkpt;
    539   switch (op) {
    540     case kOpBlx: opcode = kX86CallT;  break;
    541     case kOpBx: opcode = kX86JmpT;  break;
    542     default:
    543       LOG(FATAL) << "Bad opcode: " << op;
    544       break;
    545   }
    546   return NewLIR1(opcode, thread_offset.Int32Value());
    547 }
    548 
    549 LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
    550   X86OpCode opcode = kX86Bkpt;
    551   switch (op) {
    552     case kOpBlx: opcode = kX86CallM;  break;
    553     default:
    554       LOG(FATAL) << "Bad opcode: " << op;
    555       break;
    556   }
    557   return NewLIR2(opcode, r_base.GetReg(), disp);
    558 }
    559 
    560 LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
    561     int32_t val_lo = Low32Bits(value);
    562     int32_t val_hi = High32Bits(value);
    563     int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
    564     LIR *res;
    565     bool is_fp = r_dest.IsFloat();
    566     // TODO: clean this up once we fully recognize 64-bit storage containers.
    567     if (is_fp) {
    568       DCHECK(r_dest.IsDouble());
    569       if (value == 0) {
    570         return NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
    571       } else if (base_of_code_ != nullptr) {
    572         // We will load the value from the literal area.
    573         LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
    574         if (data_target == NULL) {
    575           data_target = AddWideData(&literal_list_, val_lo, val_hi);
    576         }
    577 
    578         // Address the start of the method
    579         RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
    580         if (rl_method.wide) {
    581           rl_method = LoadValueWide(rl_method, kCoreReg);
    582         } else {
    583           rl_method = LoadValue(rl_method, kCoreReg);
    584         }
    585 
    586         // Load the proper value from the literal area.
    587         // We don't know the proper offset for the value, so pick one that will force
    588         // 4 byte offset.  We will fix this up in the assembler later to have the right
    589         // value.
    590         ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
    591         res = LoadBaseDisp(rl_method.reg, 256 /* bogus */, RegStorage::FloatSolo64(low_reg_val),
    592                            kDouble, kNotVolatile);
    593         res->target = data_target;
    594         res->flags.fixup = kFixupLoad;
    595         Clobber(rl_method.reg);
    596         store_method_addr_used_ = true;
    597       } else {
    598         if (r_dest.IsPair()) {
    599           if (val_lo == 0) {
    600             res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
    601           } else {
    602             res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
    603           }
    604           if (val_hi != 0) {
    605             RegStorage r_dest_hi = AllocTempDouble();
    606             LoadConstantNoClobber(r_dest_hi, val_hi);
    607             NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
    608             FreeTemp(r_dest_hi);
    609           }
    610         } else {
    611           RegStorage r_temp = AllocTypedTempWide(false, kCoreReg);
    612           res = LoadConstantWide(r_temp, value);
    613           OpRegCopyWide(r_dest, r_temp);
    614           FreeTemp(r_temp);
    615         }
    616       }
    617     } else {
    618       if (r_dest.IsPair()) {
    619         res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
    620         LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
    621       } else {
    622         if (value == 0) {
    623           res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
    624         } else if (value >= INT_MIN && value <= INT_MAX) {
    625           res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo);
    626         } else {
    627           res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo);
    628         }
    629       }
    630     }
    631     return res;
    632 }
    633 
    634 LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
    635                                      int displacement, RegStorage r_dest, OpSize size) {
    636   LIR *load = NULL;
    637   LIR *load2 = NULL;
    638   bool is_array = r_index.Valid();
    639   bool pair = r_dest.IsPair();
    640   bool is64bit = ((size == k64) || (size == kDouble));
    641   X86OpCode opcode = kX86Nop;
    642   switch (size) {
    643     case k64:
    644     case kDouble:
    645       if (r_dest.IsFloat()) {
    646         opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
    647       } else if (!pair) {
    648         opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
    649       } else {
    650         opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
    651       }
    652       // TODO: double store is to unaligned address
    653       DCHECK_EQ((displacement & 0x3), 0);
    654       break;
    655     case kWord:
    656       if (cu_->target64) {
    657         opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
    658         CHECK_EQ(is_array, false);
    659         CHECK_EQ(r_dest.IsFloat(), false);
    660         break;
    661       }  // else fall-through to k32 case
    662     case k32:
    663     case kSingle:
    664     case kReference:  // TODO: update for reference decompression on 64-bit targets.
    665       opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
    666       if (r_dest.IsFloat()) {
    667         opcode = is_array ? kX86MovssRA : kX86MovssRM;
    668         DCHECK(r_dest.IsFloat());
    669       }
    670       DCHECK_EQ((displacement & 0x3), 0);
    671       break;
    672     case kUnsignedHalf:
    673       opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
    674       DCHECK_EQ((displacement & 0x1), 0);
    675       break;
    676     case kSignedHalf:
    677       opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
    678       DCHECK_EQ((displacement & 0x1), 0);
    679       break;
    680     case kUnsignedByte:
    681       opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
    682       break;
    683     case kSignedByte:
    684       opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
    685       break;
    686     default:
    687       LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
    688   }
    689 
    690   if (!is_array) {
    691     if (!pair) {
    692       load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
    693     } else {
    694       DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
    695       if (r_base == r_dest.GetLow()) {
    696         load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
    697                         displacement + HIWORD_OFFSET);
    698         load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
    699       } else {
    700         load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
    701         load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
    702                         displacement + HIWORD_OFFSET);
    703       }
    704     }
    705     if (mem_ref_type_ == ResourceMask::kDalvikReg) {
    706       DCHECK(r_base == rs_rX86_SP);
    707       AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
    708                               true /* is_load */, is64bit);
    709       if (pair) {
    710         AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
    711                                 true /* is_load */, is64bit);
    712       }
    713     }
    714   } else {
    715     if (!pair) {
    716       load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
    717                      displacement + LOWORD_OFFSET);
    718     } else {
    719       DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
    720       if (r_base == r_dest.GetLow()) {
    721         if (r_dest.GetHigh() == r_index) {
    722           // We can't use either register for the first load.
    723           RegStorage temp = AllocTemp();
    724           load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
    725                           displacement + HIWORD_OFFSET);
    726           load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
    727                          displacement + LOWORD_OFFSET);
    728           OpRegCopy(r_dest.GetHigh(), temp);
    729           FreeTemp(temp);
    730         } else {
    731           load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
    732                           displacement + HIWORD_OFFSET);
    733           load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
    734                          displacement + LOWORD_OFFSET);
    735         }
    736       } else {
    737         if (r_dest.GetLow() == r_index) {
    738           // We can't use either register for the first load.
    739           RegStorage temp = AllocTemp();
    740           load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
    741                          displacement + LOWORD_OFFSET);
    742           load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
    743                           displacement + HIWORD_OFFSET);
    744           OpRegCopy(r_dest.GetLow(), temp);
    745           FreeTemp(temp);
    746         } else {
    747           load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
    748                          displacement + LOWORD_OFFSET);
    749           load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
    750                           displacement + HIWORD_OFFSET);
    751         }
    752       }
    753     }
    754   }
    755 
    756   // Always return first load generated as this might cause a fault if base is nullptr.
    757   return load;
    758 }
    759 
    760 /* Load value from base + scaled index. */
    761 LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
    762                                  int scale, OpSize size) {
    763   return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
    764 }
    765 
    766 LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
    767                               OpSize size, VolatileKind is_volatile) {
    768   // LoadBaseDisp() will emit correct insn for atomic load on x86
    769   // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
    770 
    771   LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
    772                                   size);
    773 
    774   if (UNLIKELY(is_volatile == kVolatile)) {
    775     GenMemBarrier(kLoadAny);  // Only a scheduling barrier.
    776   }
    777 
    778   return load;
    779 }
    780 
    781 LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
    782                                       int displacement, RegStorage r_src, OpSize size) {
    783   LIR *store = NULL;
    784   LIR *store2 = NULL;
    785   bool is_array = r_index.Valid();
    786   bool pair = r_src.IsPair();
    787   bool is64bit = (size == k64) || (size == kDouble);
    788   X86OpCode opcode = kX86Nop;
    789   switch (size) {
    790     case k64:
    791     case kDouble:
    792       if (r_src.IsFloat()) {
    793         opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
    794       } else if (!pair) {
    795         opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
    796       } else {
    797         opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
    798       }
    799       // TODO: double store is to unaligned address
    800       DCHECK_EQ((displacement & 0x3), 0);
    801       break;
    802     case kWord:
    803       if (cu_->target64) {
    804         opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
    805         CHECK_EQ(is_array, false);
    806         CHECK_EQ(r_src.IsFloat(), false);
    807         break;
    808       }  // else fall-through to k32 case
    809     case k32:
    810     case kSingle:
    811     case kReference:
    812       opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
    813       if (r_src.IsFloat()) {
    814         opcode = is_array ? kX86MovssAR : kX86MovssMR;
    815         DCHECK(r_src.IsSingle());
    816       }
    817       DCHECK_EQ((displacement & 0x3), 0);
    818       break;
    819     case kUnsignedHalf:
    820     case kSignedHalf:
    821       opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
    822       DCHECK_EQ((displacement & 0x1), 0);
    823       break;
    824     case kUnsignedByte:
    825     case kSignedByte:
    826       opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
    827       break;
    828     default:
    829       LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
    830   }
    831 
    832   if (!is_array) {
    833     if (!pair) {
    834       store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
    835     } else {
    836       DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
    837       store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
    838       store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
    839     }
    840     if (mem_ref_type_ == ResourceMask::kDalvikReg) {
    841       DCHECK(r_base == rs_rX86_SP);
    842       AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
    843                               false /* is_load */, is64bit);
    844       if (pair) {
    845         AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
    846                                 false /* is_load */, is64bit);
    847       }
    848     }
    849   } else {
    850     if (!pair) {
    851       store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
    852                       displacement + LOWORD_OFFSET, r_src.GetReg());
    853     } else {
    854       DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
    855       store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
    856                       displacement + LOWORD_OFFSET, r_src.GetLowReg());
    857       store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
    858                        displacement + HIWORD_OFFSET, r_src.GetHighReg());
    859     }
    860   }
    861   return store;
    862 }
    863 
    864 /* store value base base + scaled index. */
    865 LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
    866                                   int scale, OpSize size) {
    867   return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
    868 }
    869 
    870 LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
    871                                VolatileKind is_volatile) {
    872   if (UNLIKELY(is_volatile == kVolatile)) {
    873     GenMemBarrier(kAnyStore);  // Only a scheduling barrier.
    874   }
    875 
    876   // StoreBaseDisp() will emit correct insn for atomic store on x86
    877   // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
    878 
    879   LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
    880 
    881   if (UNLIKELY(is_volatile == kVolatile)) {
    882     // A volatile load might follow the volatile store so insert a StoreLoad barrier.
    883     // This does require a fence, even on x86.
    884     GenMemBarrier(kAnyAny);
    885   }
    886 
    887   return store;
    888 }
    889 
    890 LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
    891                                    int offset, int check_value, LIR* target, LIR** compare) {
    892     LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(),
    893             offset, check_value);
    894     if (compare != nullptr) {
    895         *compare = inst;
    896     }
    897     LIR* branch = OpCondBranch(cond, target);
    898     return branch;
    899 }
    900 
    901 void X86Mir2Lir::AnalyzeMIR() {
    902   // Assume we don't need a pointer to the base of the code.
    903   cu_->NewTimingSplit("X86 MIR Analysis");
    904   store_method_addr_ = false;
    905 
    906   // Walk the MIR looking for interesting items.
    907   PreOrderDfsIterator iter(mir_graph_);
    908   BasicBlock* curr_bb = iter.Next();
    909   while (curr_bb != NULL) {
    910     AnalyzeBB(curr_bb);
    911     curr_bb = iter.Next();
    912   }
    913 
    914   // Did we need a pointer to the method code?
    915   if (store_method_addr_) {
    916     base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, cu_->target64 == true);
    917   } else {
    918     base_of_code_ = nullptr;
    919   }
    920 }
    921 
    922 void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
    923   if (bb->block_type == kDead) {
    924     // Ignore dead blocks
    925     return;
    926   }
    927 
    928   for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    929     int opcode = mir->dalvikInsn.opcode;
    930     if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
    931       AnalyzeExtendedMIR(opcode, bb, mir);
    932     } else {
    933       AnalyzeMIR(opcode, bb, mir);
    934     }
    935   }
    936 }
    937 
    938 
    939 void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
    940   switch (opcode) {
    941     // Instructions referencing doubles.
    942     case kMirOpFusedCmplDouble:
    943     case kMirOpFusedCmpgDouble:
    944       AnalyzeFPInstruction(opcode, bb, mir);
    945       break;
    946     case kMirOpConstVector:
    947       store_method_addr_ = true;
    948       break;
    949     default:
    950       // Ignore the rest.
    951       break;
    952   }
    953 }
    954 
    955 void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
    956   // Looking for
    957   // - Do we need a pointer to the code (used for packed switches and double lits)?
    958 
    959   switch (opcode) {
    960     // Instructions referencing doubles.
    961     case Instruction::CMPL_DOUBLE:
    962     case Instruction::CMPG_DOUBLE:
    963     case Instruction::NEG_DOUBLE:
    964     case Instruction::ADD_DOUBLE:
    965     case Instruction::SUB_DOUBLE:
    966     case Instruction::MUL_DOUBLE:
    967     case Instruction::DIV_DOUBLE:
    968     case Instruction::REM_DOUBLE:
    969     case Instruction::ADD_DOUBLE_2ADDR:
    970     case Instruction::SUB_DOUBLE_2ADDR:
    971     case Instruction::MUL_DOUBLE_2ADDR:
    972     case Instruction::DIV_DOUBLE_2ADDR:
    973     case Instruction::REM_DOUBLE_2ADDR:
    974       AnalyzeFPInstruction(opcode, bb, mir);
    975       break;
    976 
    977     // Packed switches and array fills need a pointer to the base of the method.
    978     case Instruction::FILL_ARRAY_DATA:
    979     case Instruction::PACKED_SWITCH:
    980       store_method_addr_ = true;
    981       break;
    982     case Instruction::INVOKE_STATIC:
    983       AnalyzeInvokeStatic(opcode, bb, mir);
    984       break;
    985     default:
    986       // Other instructions are not interesting yet.
    987       break;
    988   }
    989 }
    990 
    991 void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
    992   // Look at all the uses, and see if they are double constants.
    993   uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
    994   int next_sreg = 0;
    995   if (attrs & DF_UA) {
    996     if (attrs & DF_A_WIDE) {
    997       AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
    998       next_sreg += 2;
    999     } else {
   1000       next_sreg++;
   1001     }
   1002   }
   1003   if (attrs & DF_UB) {
   1004     if (attrs & DF_B_WIDE) {
   1005       AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
   1006       next_sreg += 2;
   1007     } else {
   1008       next_sreg++;
   1009     }
   1010   }
   1011   if (attrs & DF_UC) {
   1012     if (attrs & DF_C_WIDE) {
   1013       AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
   1014     }
   1015   }
   1016 }
   1017 
   1018 void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
   1019   // If this is a double literal, we will want it in the literal pool on 32b platforms.
   1020   if (use.is_const && !cu_->target64) {
   1021     store_method_addr_ = true;
   1022   }
   1023 }
   1024 
   1025 RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
   1026   loc = UpdateLoc(loc);
   1027   if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
   1028     if (GetRegInfo(loc.reg)->IsTemp()) {
   1029       Clobber(loc.reg);
   1030       FreeTemp(loc.reg);
   1031       loc.reg = RegStorage::InvalidReg();
   1032       loc.location = kLocDalvikFrame;
   1033     }
   1034   }
   1035   DCHECK(CheckCorePoolSanity());
   1036   return loc;
   1037 }
   1038 
   1039 RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
   1040   loc = UpdateLocWide(loc);
   1041   if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
   1042     if (GetRegInfo(loc.reg)->IsTemp()) {
   1043       Clobber(loc.reg);
   1044       FreeTemp(loc.reg);
   1045       loc.reg = RegStorage::InvalidReg();
   1046       loc.location = kLocDalvikFrame;
   1047     }
   1048   }
   1049   DCHECK(CheckCorePoolSanity());
   1050   return loc;
   1051 }
   1052 
   1053 void X86Mir2Lir::AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir) {
   1054   // For now this is only actual for x86-32.
   1055   if (cu_->target64) {
   1056     return;
   1057   }
   1058 
   1059   uint32_t index = mir->dalvikInsn.vB;
   1060   if (!(mir->optimization_flags & MIR_INLINED)) {
   1061     DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
   1062     DexFileMethodInliner* method_inliner =
   1063       cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file);
   1064     InlineMethod method;
   1065     if (method_inliner->IsIntrinsic(index, &method)) {
   1066       switch (method.opcode) {
   1067         case kIntrinsicAbsDouble:
   1068         case kIntrinsicMinMaxDouble:
   1069           store_method_addr_ = true;
   1070           break;
   1071         default:
   1072           break;
   1073       }
   1074     }
   1075   }
   1076 }
   1077 
   1078 LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
   1079   if (cu_->target64) {
   1080     return OpThreadMem(op, GetThreadOffset<8>(trampoline));
   1081   } else {
   1082     return OpThreadMem(op, GetThreadOffset<4>(trampoline));
   1083   }
   1084 }
   1085 
   1086 }  // namespace art
   1087