Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_ANGLEAXIS_H
     11 #define EIGEN_ANGLEAXIS_H
     12 
     13 namespace Eigen {
     14 
     15 /** \geometry_module \ingroup Geometry_Module
     16   *
     17   * \class AngleAxis
     18   *
     19   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
     20   *
     21   * \param _Scalar the scalar type, i.e., the type of the coefficients.
     22   *
     23   * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
     24   *
     25   * The following two typedefs are provided for convenience:
     26   * \li \c AngleAxisf for \c float
     27   * \li \c AngleAxisd for \c double
     28   *
     29   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
     30   * mimic Euler-angles. Here is an example:
     31   * \include AngleAxis_mimic_euler.cpp
     32   * Output: \verbinclude AngleAxis_mimic_euler.out
     33   *
     34   * \note This class is not aimed to be used to store a rotation transformation,
     35   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
     36   * and transformation objects.
     37   *
     38   * \sa class Quaternion, class Transform, MatrixBase::UnitX()
     39   */
     40 
     41 namespace internal {
     42 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
     43 {
     44   typedef _Scalar Scalar;
     45 };
     46 }
     47 
     48 template<typename _Scalar>
     49 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
     50 {
     51   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
     52 
     53 public:
     54 
     55   using Base::operator*;
     56 
     57   enum { Dim = 3 };
     58   /** the scalar type of the coefficients */
     59   typedef _Scalar Scalar;
     60   typedef Matrix<Scalar,3,3> Matrix3;
     61   typedef Matrix<Scalar,3,1> Vector3;
     62   typedef Quaternion<Scalar> QuaternionType;
     63 
     64 protected:
     65 
     66   Vector3 m_axis;
     67   Scalar m_angle;
     68 
     69 public:
     70 
     71   /** Default constructor without initialization. */
     72   AngleAxis() {}
     73   /** Constructs and initialize the angle-axis rotation from an \a angle in radian
     74     * and an \a axis which \b must \b be \b normalized.
     75     *
     76     * \warning If the \a axis vector is not normalized, then the angle-axis object
     77     *          represents an invalid rotation. */
     78   template<typename Derived>
     79   inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
     80   /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
     81   template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
     82   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
     83   template<typename Derived>
     84   inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
     85 
     86   Scalar angle() const { return m_angle; }
     87   Scalar& angle() { return m_angle; }
     88 
     89   const Vector3& axis() const { return m_axis; }
     90   Vector3& axis() { return m_axis; }
     91 
     92   /** Concatenates two rotations */
     93   inline QuaternionType operator* (const AngleAxis& other) const
     94   { return QuaternionType(*this) * QuaternionType(other); }
     95 
     96   /** Concatenates two rotations */
     97   inline QuaternionType operator* (const QuaternionType& other) const
     98   { return QuaternionType(*this) * other; }
     99 
    100   /** Concatenates two rotations */
    101   friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
    102   { return a * QuaternionType(b); }
    103 
    104   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
    105   AngleAxis inverse() const
    106   { return AngleAxis(-m_angle, m_axis); }
    107 
    108   template<class QuatDerived>
    109   AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
    110   template<typename Derived>
    111   AngleAxis& operator=(const MatrixBase<Derived>& m);
    112 
    113   template<typename Derived>
    114   AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
    115   Matrix3 toRotationMatrix(void) const;
    116 
    117   /** \returns \c *this with scalar type casted to \a NewScalarType
    118     *
    119     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    120     * then this function smartly returns a const reference to \c *this.
    121     */
    122   template<typename NewScalarType>
    123   inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
    124   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
    125 
    126   /** Copy constructor with scalar type conversion */
    127   template<typename OtherScalarType>
    128   inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
    129   {
    130     m_axis = other.axis().template cast<Scalar>();
    131     m_angle = Scalar(other.angle());
    132   }
    133 
    134   static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
    135 
    136   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    137     * determined by \a prec.
    138     *
    139     * \sa MatrixBase::isApprox() */
    140   bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
    141   { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
    142 };
    143 
    144 /** \ingroup Geometry_Module
    145   * single precision angle-axis type */
    146 typedef AngleAxis<float> AngleAxisf;
    147 /** \ingroup Geometry_Module
    148   * double precision angle-axis type */
    149 typedef AngleAxis<double> AngleAxisd;
    150 
    151 /** Set \c *this from a \b unit quaternion.
    152   * The axis is normalized.
    153   *
    154   * \warning As any other method dealing with quaternion, if the input quaternion
    155   *          is not normalized then the result is undefined.
    156   */
    157 template<typename Scalar>
    158 template<typename QuatDerived>
    159 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
    160 {
    161   using std::acos;
    162   using std::min;
    163   using std::max;
    164   using std::sqrt;
    165   Scalar n2 = q.vec().squaredNorm();
    166   if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
    167   {
    168     m_angle = 0;
    169     m_axis << 1, 0, 0;
    170   }
    171   else
    172   {
    173     m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
    174     m_axis = q.vec() / sqrt(n2);
    175   }
    176   return *this;
    177 }
    178 
    179 /** Set \c *this from a 3x3 rotation matrix \a mat.
    180   */
    181 template<typename Scalar>
    182 template<typename Derived>
    183 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
    184 {
    185   // Since a direct conversion would not be really faster,
    186   // let's use the robust Quaternion implementation:
    187   return *this = QuaternionType(mat);
    188 }
    189 
    190 /**
    191 * \brief Sets \c *this from a 3x3 rotation matrix.
    192 **/
    193 template<typename Scalar>
    194 template<typename Derived>
    195 AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
    196 {
    197   return *this = QuaternionType(mat);
    198 }
    199 
    200 /** Constructs and \returns an equivalent 3x3 rotation matrix.
    201   */
    202 template<typename Scalar>
    203 typename AngleAxis<Scalar>::Matrix3
    204 AngleAxis<Scalar>::toRotationMatrix(void) const
    205 {
    206   using std::sin;
    207   using std::cos;
    208   Matrix3 res;
    209   Vector3 sin_axis  = sin(m_angle) * m_axis;
    210   Scalar c = cos(m_angle);
    211   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
    212 
    213   Scalar tmp;
    214   tmp = cos1_axis.x() * m_axis.y();
    215   res.coeffRef(0,1) = tmp - sin_axis.z();
    216   res.coeffRef(1,0) = tmp + sin_axis.z();
    217 
    218   tmp = cos1_axis.x() * m_axis.z();
    219   res.coeffRef(0,2) = tmp + sin_axis.y();
    220   res.coeffRef(2,0) = tmp - sin_axis.y();
    221 
    222   tmp = cos1_axis.y() * m_axis.z();
    223   res.coeffRef(1,2) = tmp - sin_axis.x();
    224   res.coeffRef(2,1) = tmp + sin_axis.x();
    225 
    226   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
    227 
    228   return res;
    229 }
    230 
    231 } // end namespace Eigen
    232 
    233 #endif // EIGEN_ANGLEAXIS_H
    234