Home | History | Annotate | Download | only in AArch64
      1 //==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that expands pseudo instructions into target
     11 // instructions to allow proper scheduling and other late optimizations.  This
     12 // pass should be run after register allocation but before the post-regalloc
     13 // scheduling pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "MCTargetDesc/AArch64AddressingModes.h"
     18 #include "AArch64InstrInfo.h"
     19 #include "llvm/CodeGen/MachineFunctionPass.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/Support/MathExtras.h"
     22 using namespace llvm;
     23 
     24 namespace {
     25 class AArch64ExpandPseudo : public MachineFunctionPass {
     26 public:
     27   static char ID;
     28   AArch64ExpandPseudo() : MachineFunctionPass(ID) {}
     29 
     30   const AArch64InstrInfo *TII;
     31 
     32   bool runOnMachineFunction(MachineFunction &Fn) override;
     33 
     34   const char *getPassName() const override {
     35     return "AArch64 pseudo instruction expansion pass";
     36   }
     37 
     38 private:
     39   bool expandMBB(MachineBasicBlock &MBB);
     40   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
     41   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
     42                     unsigned BitSize);
     43 };
     44 char AArch64ExpandPseudo::ID = 0;
     45 }
     46 
     47 /// \brief Transfer implicit operands on the pseudo instruction to the
     48 /// instructions created from the expansion.
     49 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
     50                            MachineInstrBuilder &DefMI) {
     51   const MCInstrDesc &Desc = OldMI.getDesc();
     52   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
     53        ++i) {
     54     const MachineOperand &MO = OldMI.getOperand(i);
     55     assert(MO.isReg() && MO.getReg());
     56     if (MO.isUse())
     57       UseMI.addOperand(MO);
     58     else
     59       DefMI.addOperand(MO);
     60   }
     61 }
     62 
     63 /// \brief Helper function which extracts the specified 16-bit chunk from a
     64 /// 64-bit value.
     65 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
     66   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
     67 
     68   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
     69 }
     70 
     71 /// \brief Helper function which replicates a 16-bit chunk within a 64-bit
     72 /// value. Indices correspond to element numbers in a v4i16.
     73 static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
     74   assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
     75   const unsigned ShiftAmt = ToIdx * 16;
     76 
     77   // Replicate the source chunk to the destination position.
     78   const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
     79   // Clear the destination chunk.
     80   Imm &= ~(0xFFFFLL << ShiftAmt);
     81   // Insert the replicated chunk.
     82   return Imm | Chunk;
     83 }
     84 
     85 /// \brief Helper function which tries to materialize a 64-bit value with an
     86 /// ORR + MOVK instruction sequence.
     87 static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
     88                        MachineBasicBlock &MBB,
     89                        MachineBasicBlock::iterator &MBBI,
     90                        const AArch64InstrInfo *TII, unsigned ChunkIdx) {
     91   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
     92   const unsigned ShiftAmt = ChunkIdx * 16;
     93 
     94   uint64_t Encoding;
     95   if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
     96     // Create the ORR-immediate instruction.
     97     MachineInstrBuilder MIB =
     98         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
     99             .addOperand(MI.getOperand(0))
    100             .addReg(AArch64::XZR)
    101             .addImm(Encoding);
    102 
    103     // Create the MOVK instruction.
    104     const unsigned Imm16 = getChunk(UImm, ChunkIdx);
    105     const unsigned DstReg = MI.getOperand(0).getReg();
    106     const bool DstIsDead = MI.getOperand(0).isDead();
    107     MachineInstrBuilder MIB1 =
    108         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    109             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
    110             .addReg(DstReg)
    111             .addImm(Imm16)
    112             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
    113 
    114     transferImpOps(MI, MIB, MIB1);
    115     MI.eraseFromParent();
    116     return true;
    117   }
    118 
    119   return false;
    120 }
    121 
    122 /// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
    123 /// can be materialized with an ORR instruction.
    124 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
    125   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
    126 
    127   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
    128 }
    129 
    130 /// \brief Check for identical 16-bit chunks within the constant and if so
    131 /// materialize them with a single ORR instruction. The remaining one or two
    132 /// 16-bit chunks will be materialized with MOVK instructions.
    133 ///
    134 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
    135 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
    136 /// an ORR instruction.
    137 ///
    138 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
    139                                  MachineBasicBlock &MBB,
    140                                  MachineBasicBlock::iterator &MBBI,
    141                                  const AArch64InstrInfo *TII) {
    142   typedef DenseMap<uint64_t, unsigned> CountMap;
    143   CountMap Counts;
    144 
    145   // Scan the constant and count how often every chunk occurs.
    146   for (unsigned Idx = 0; Idx < 4; ++Idx)
    147     ++Counts[getChunk(UImm, Idx)];
    148 
    149   // Traverse the chunks to find one which occurs more than once.
    150   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
    151        Chunk != End; ++Chunk) {
    152     const uint64_t ChunkVal = Chunk->first;
    153     const unsigned Count = Chunk->second;
    154 
    155     uint64_t Encoding = 0;
    156 
    157     // We are looking for chunks which have two or three instances and can be
    158     // materialized with an ORR instruction.
    159     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
    160       continue;
    161 
    162     const bool CountThree = Count == 3;
    163     // Create the ORR-immediate instruction.
    164     MachineInstrBuilder MIB =
    165         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
    166             .addOperand(MI.getOperand(0))
    167             .addReg(AArch64::XZR)
    168             .addImm(Encoding);
    169 
    170     const unsigned DstReg = MI.getOperand(0).getReg();
    171     const bool DstIsDead = MI.getOperand(0).isDead();
    172 
    173     unsigned ShiftAmt = 0;
    174     uint64_t Imm16 = 0;
    175     // Find the first chunk not materialized with the ORR instruction.
    176     for (; ShiftAmt < 64; ShiftAmt += 16) {
    177       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
    178 
    179       if (Imm16 != ChunkVal)
    180         break;
    181     }
    182 
    183     // Create the first MOVK instruction.
    184     MachineInstrBuilder MIB1 =
    185         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    186             .addReg(DstReg,
    187                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
    188             .addReg(DstReg)
    189             .addImm(Imm16)
    190             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
    191 
    192     // In case we have three instances the whole constant is now materialized
    193     // and we can exit.
    194     if (CountThree) {
    195       transferImpOps(MI, MIB, MIB1);
    196       MI.eraseFromParent();
    197       return true;
    198     }
    199 
    200     // Find the remaining chunk which needs to be materialized.
    201     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
    202       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
    203 
    204       if (Imm16 != ChunkVal)
    205         break;
    206     }
    207 
    208     // Create the second MOVK instruction.
    209     MachineInstrBuilder MIB2 =
    210         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    211             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
    212             .addReg(DstReg)
    213             .addImm(Imm16)
    214             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
    215 
    216     transferImpOps(MI, MIB, MIB2);
    217     MI.eraseFromParent();
    218     return true;
    219   }
    220 
    221   return false;
    222 }
    223 
    224 /// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
    225 /// starts a contiguous sequence of ones if we look at the bits from the LSB
    226 /// towards the MSB.
    227 static bool isStartChunk(uint64_t Chunk) {
    228   if (Chunk == 0 || Chunk == UINT64_MAX)
    229     return false;
    230 
    231   return (CountLeadingOnes_64(Chunk) + countTrailingZeros(Chunk)) == 64;
    232 }
    233 
    234 /// \brief Check whether this chunk matches the pattern '0...1...' This pattern
    235 /// ends a contiguous sequence of ones if we look at the bits from the LSB
    236 /// towards the MSB.
    237 static bool isEndChunk(uint64_t Chunk) {
    238   if (Chunk == 0 || Chunk == UINT64_MAX)
    239     return false;
    240 
    241   return (countLeadingZeros(Chunk) + CountTrailingOnes_64(Chunk)) == 64;
    242 }
    243 
    244 /// \brief Clear or set all bits in the chunk at the given index.
    245 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
    246   const uint64_t Mask = 0xFFFF;
    247 
    248   if (Clear)
    249     // Clear chunk in the immediate.
    250     Imm &= ~(Mask << (Idx * 16));
    251   else
    252     // Set all bits in the immediate for the particular chunk.
    253     Imm |= Mask << (Idx * 16);
    254 
    255   return Imm;
    256 }
    257 
    258 /// \brief Check whether the constant contains a sequence of contiguous ones,
    259 /// which might be interrupted by one or two chunks. If so, materialize the
    260 /// sequence of contiguous ones with an ORR instruction.
    261 /// Materialize the chunks which are either interrupting the sequence or outside
    262 /// of the sequence with a MOVK instruction.
    263 ///
    264 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
    265 /// which ends the sequence (0...1...). Then we are looking for constants which
    266 /// contain at least one S and E chunk.
    267 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
    268 ///
    269 /// We are also looking for constants like |S|A|B|E| where the contiguous
    270 /// sequence of ones wraps around the MSB into the LSB.
    271 ///
    272 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
    273                               MachineBasicBlock &MBB,
    274                               MachineBasicBlock::iterator &MBBI,
    275                               const AArch64InstrInfo *TII) {
    276   const int NotSet = -1;
    277   const uint64_t Mask = 0xFFFF;
    278 
    279   int StartIdx = NotSet;
    280   int EndIdx = NotSet;
    281   // Try to find the chunks which start/end a contiguous sequence of ones.
    282   for (int Idx = 0; Idx < 4; ++Idx) {
    283     int64_t Chunk = getChunk(UImm, Idx);
    284     // Sign extend the 16-bit chunk to 64-bit.
    285     Chunk = (Chunk << 48) >> 48;
    286 
    287     if (isStartChunk(Chunk))
    288       StartIdx = Idx;
    289     else if (isEndChunk(Chunk))
    290       EndIdx = Idx;
    291   }
    292 
    293   // Early exit in case we can't find a start/end chunk.
    294   if (StartIdx == NotSet || EndIdx == NotSet)
    295     return false;
    296 
    297   // Outside of the contiguous sequence of ones everything needs to be zero.
    298   uint64_t Outside = 0;
    299   // Chunks between the start and end chunk need to have all their bits set.
    300   uint64_t Inside = Mask;
    301 
    302   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
    303   // just swap indices and pretend we are materializing a contiguous sequence
    304   // of zeros surrounded by a contiguous sequence of ones.
    305   if (StartIdx > EndIdx) {
    306     std::swap(StartIdx, EndIdx);
    307     std::swap(Outside, Inside);
    308   }
    309 
    310   uint64_t OrrImm = UImm;
    311   int FirstMovkIdx = NotSet;
    312   int SecondMovkIdx = NotSet;
    313 
    314   // Find out which chunks we need to patch up to obtain a contiguous sequence
    315   // of ones.
    316   for (int Idx = 0; Idx < 4; ++Idx) {
    317     const uint64_t Chunk = getChunk(UImm, Idx);
    318 
    319     // Check whether we are looking at a chunk which is not part of the
    320     // contiguous sequence of ones.
    321     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
    322       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
    323 
    324       // Remember the index we need to patch.
    325       if (FirstMovkIdx == NotSet)
    326         FirstMovkIdx = Idx;
    327       else
    328         SecondMovkIdx = Idx;
    329 
    330       // Check whether we are looking a chunk which is part of the contiguous
    331       // sequence of ones.
    332     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
    333       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
    334 
    335       // Remember the index we need to patch.
    336       if (FirstMovkIdx == NotSet)
    337         FirstMovkIdx = Idx;
    338       else
    339         SecondMovkIdx = Idx;
    340     }
    341   }
    342   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
    343 
    344   // Create the ORR-immediate instruction.
    345   uint64_t Encoding = 0;
    346   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
    347   MachineInstrBuilder MIB =
    348       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
    349           .addOperand(MI.getOperand(0))
    350           .addReg(AArch64::XZR)
    351           .addImm(Encoding);
    352 
    353   const unsigned DstReg = MI.getOperand(0).getReg();
    354   const bool DstIsDead = MI.getOperand(0).isDead();
    355 
    356   const bool SingleMovk = SecondMovkIdx == NotSet;
    357   // Create the first MOVK instruction.
    358   MachineInstrBuilder MIB1 =
    359       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    360           .addReg(DstReg,
    361                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
    362           .addReg(DstReg)
    363           .addImm(getChunk(UImm, FirstMovkIdx))
    364           .addImm(
    365               AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
    366 
    367   // Early exit in case we only need to emit a single MOVK instruction.
    368   if (SingleMovk) {
    369     transferImpOps(MI, MIB, MIB1);
    370     MI.eraseFromParent();
    371     return true;
    372   }
    373 
    374   // Create the second MOVK instruction.
    375   MachineInstrBuilder MIB2 =
    376       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
    377           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
    378           .addReg(DstReg)
    379           .addImm(getChunk(UImm, SecondMovkIdx))
    380           .addImm(
    381               AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
    382 
    383   transferImpOps(MI, MIB, MIB2);
    384   MI.eraseFromParent();
    385   return true;
    386 }
    387 
    388 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
    389 /// real move-immediate instructions to synthesize the immediate.
    390 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
    391                                        MachineBasicBlock::iterator MBBI,
    392                                        unsigned BitSize) {
    393   MachineInstr &MI = *MBBI;
    394   uint64_t Imm = MI.getOperand(1).getImm();
    395   const unsigned Mask = 0xFFFF;
    396 
    397   // Try a MOVI instruction (aka ORR-immediate with the zero register).
    398   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
    399   uint64_t Encoding;
    400   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
    401     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
    402     MachineInstrBuilder MIB =
    403         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
    404             .addOperand(MI.getOperand(0))
    405             .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
    406             .addImm(Encoding);
    407     transferImpOps(MI, MIB, MIB);
    408     MI.eraseFromParent();
    409     return true;
    410   }
    411 
    412   // Scan the immediate and count the number of 16-bit chunks which are either
    413   // all ones or all zeros.
    414   unsigned OneChunks = 0;
    415   unsigned ZeroChunks = 0;
    416   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    417     const unsigned Chunk = (Imm >> Shift) & Mask;
    418     if (Chunk == Mask)
    419       OneChunks++;
    420     else if (Chunk == 0)
    421       ZeroChunks++;
    422   }
    423 
    424   // Since we can't materialize the constant with a single ORR instruction,
    425   // let's see whether we can materialize 3/4 of the constant with an ORR
    426   // instruction and use an additional MOVK instruction to materialize the
    427   // remaining 1/4.
    428   //
    429   // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
    430   //
    431   // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
    432   // we would create the following instruction sequence:
    433   //
    434   // ORR x0, xzr, |A|X|A|X|
    435   // MOVK x0, |B|, LSL #16
    436   //
    437   // Only look at 64-bit constants which can't be materialized with a single
    438   // instruction e.g. which have less than either three all zero or all one
    439   // chunks.
    440   //
    441   // Ignore 32-bit constants here, they always can be materialized with a
    442   // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
    443   // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
    444   // Thus we fall back to the default code below which in the best case creates
    445   // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
    446   //
    447   if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
    448     // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
    449     // identical?
    450     if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
    451       // See if we can come up with a constant which can be materialized with
    452       // ORR-immediate by replicating element 3 into element 1.
    453       uint64_t OrrImm = replicateChunk(UImm, 3, 1);
    454       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
    455         return true;
    456 
    457       // See if we can come up with a constant which can be materialized with
    458       // ORR-immediate by replicating element 1 into element 3.
    459       OrrImm = replicateChunk(UImm, 1, 3);
    460       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
    461         return true;
    462 
    463       // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
    464       // identical?
    465     } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
    466       // See if we can come up with a constant which can be materialized with
    467       // ORR-immediate by replicating element 2 into element 0.
    468       uint64_t OrrImm = replicateChunk(UImm, 2, 0);
    469       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
    470         return true;
    471 
    472       // See if we can come up with a constant which can be materialized with
    473       // ORR-immediate by replicating element 1 into element 3.
    474       OrrImm = replicateChunk(UImm, 0, 2);
    475       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
    476         return true;
    477     }
    478   }
    479 
    480   // Check for identical 16-bit chunks within the constant and if so materialize
    481   // them with a single ORR instruction. The remaining one or two 16-bit chunks
    482   // will be materialized with MOVK instructions.
    483   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
    484     return true;
    485 
    486   // Check whether the constant contains a sequence of contiguous ones, which
    487   // might be interrupted by one or two chunks. If so, materialize the sequence
    488   // of contiguous ones with an ORR instruction. Materialize the chunks which
    489   // are either interrupting the sequence or outside of the sequence with a
    490   // MOVK instruction.
    491   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
    492     return true;
    493 
    494   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
    495   // more MOVK instructions to insert additional 16-bit portions into the
    496   // lower bits.
    497   bool isNeg = false;
    498 
    499   // Use MOVN to materialize the high bits if we have more all one chunks
    500   // than all zero chunks.
    501   if (OneChunks > ZeroChunks) {
    502     isNeg = true;
    503     Imm = ~Imm;
    504   }
    505 
    506   unsigned FirstOpc;
    507   if (BitSize == 32) {
    508     Imm &= (1LL << 32) - 1;
    509     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
    510   } else {
    511     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
    512   }
    513   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
    514   unsigned LastShift = 0; // LSL amount for last MOVK
    515   if (Imm != 0) {
    516     unsigned LZ = countLeadingZeros(Imm);
    517     unsigned TZ = countTrailingZeros(Imm);
    518     Shift = ((63 - LZ) / 16) * 16;
    519     LastShift = (TZ / 16) * 16;
    520   }
    521   unsigned Imm16 = (Imm >> Shift) & Mask;
    522   unsigned DstReg = MI.getOperand(0).getReg();
    523   bool DstIsDead = MI.getOperand(0).isDead();
    524   MachineInstrBuilder MIB1 =
    525       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
    526           .addReg(DstReg, RegState::Define |
    527                               getDeadRegState(DstIsDead && Shift == LastShift))
    528           .addImm(Imm16)
    529           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
    530 
    531   // If a MOVN was used for the high bits of a negative value, flip the rest
    532   // of the bits back for use with MOVK.
    533   if (isNeg)
    534     Imm = ~Imm;
    535 
    536   if (Shift == LastShift) {
    537     transferImpOps(MI, MIB1, MIB1);
    538     MI.eraseFromParent();
    539     return true;
    540   }
    541 
    542   MachineInstrBuilder MIB2;
    543   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
    544   while (Shift != LastShift) {
    545     Shift -= 16;
    546     Imm16 = (Imm >> Shift) & Mask;
    547     if (Imm16 == (isNeg ? Mask : 0))
    548       continue; // This 16-bit portion is already set correctly.
    549     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
    550                .addReg(DstReg,
    551                        RegState::Define |
    552                            getDeadRegState(DstIsDead && Shift == LastShift))
    553                .addReg(DstReg)
    554                .addImm(Imm16)
    555                .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
    556   }
    557 
    558   transferImpOps(MI, MIB1, MIB2);
    559   MI.eraseFromParent();
    560   return true;
    561 }
    562 
    563 /// \brief If MBBI references a pseudo instruction that should be expanded here,
    564 /// do the expansion and return true.  Otherwise return false.
    565 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
    566                                  MachineBasicBlock::iterator MBBI) {
    567   MachineInstr &MI = *MBBI;
    568   unsigned Opcode = MI.getOpcode();
    569   switch (Opcode) {
    570   default:
    571     break;
    572 
    573   case AArch64::ADDWrr:
    574   case AArch64::SUBWrr:
    575   case AArch64::ADDXrr:
    576   case AArch64::SUBXrr:
    577   case AArch64::ADDSWrr:
    578   case AArch64::SUBSWrr:
    579   case AArch64::ADDSXrr:
    580   case AArch64::SUBSXrr:
    581   case AArch64::ANDWrr:
    582   case AArch64::ANDXrr:
    583   case AArch64::BICWrr:
    584   case AArch64::BICXrr:
    585   case AArch64::ANDSWrr:
    586   case AArch64::ANDSXrr:
    587   case AArch64::BICSWrr:
    588   case AArch64::BICSXrr:
    589   case AArch64::EONWrr:
    590   case AArch64::EONXrr:
    591   case AArch64::EORWrr:
    592   case AArch64::EORXrr:
    593   case AArch64::ORNWrr:
    594   case AArch64::ORNXrr:
    595   case AArch64::ORRWrr:
    596   case AArch64::ORRXrr: {
    597     unsigned Opcode;
    598     switch (MI.getOpcode()) {
    599     default:
    600       return false;
    601     case AArch64::ADDWrr:      Opcode = AArch64::ADDWrs; break;
    602     case AArch64::SUBWrr:      Opcode = AArch64::SUBWrs; break;
    603     case AArch64::ADDXrr:      Opcode = AArch64::ADDXrs; break;
    604     case AArch64::SUBXrr:      Opcode = AArch64::SUBXrs; break;
    605     case AArch64::ADDSWrr:     Opcode = AArch64::ADDSWrs; break;
    606     case AArch64::SUBSWrr:     Opcode = AArch64::SUBSWrs; break;
    607     case AArch64::ADDSXrr:     Opcode = AArch64::ADDSXrs; break;
    608     case AArch64::SUBSXrr:     Opcode = AArch64::SUBSXrs; break;
    609     case AArch64::ANDWrr:      Opcode = AArch64::ANDWrs; break;
    610     case AArch64::ANDXrr:      Opcode = AArch64::ANDXrs; break;
    611     case AArch64::BICWrr:      Opcode = AArch64::BICWrs; break;
    612     case AArch64::BICXrr:      Opcode = AArch64::BICXrs; break;
    613     case AArch64::ANDSWrr:     Opcode = AArch64::ANDSWrs; break;
    614     case AArch64::ANDSXrr:     Opcode = AArch64::ANDSXrs; break;
    615     case AArch64::BICSWrr:     Opcode = AArch64::BICSWrs; break;
    616     case AArch64::BICSXrr:     Opcode = AArch64::BICSXrs; break;
    617     case AArch64::EONWrr:      Opcode = AArch64::EONWrs; break;
    618     case AArch64::EONXrr:      Opcode = AArch64::EONXrs; break;
    619     case AArch64::EORWrr:      Opcode = AArch64::EORWrs; break;
    620     case AArch64::EORXrr:      Opcode = AArch64::EORXrs; break;
    621     case AArch64::ORNWrr:      Opcode = AArch64::ORNWrs; break;
    622     case AArch64::ORNXrr:      Opcode = AArch64::ORNXrs; break;
    623     case AArch64::ORRWrr:      Opcode = AArch64::ORRWrs; break;
    624     case AArch64::ORRXrr:      Opcode = AArch64::ORRXrs; break;
    625     }
    626     MachineInstrBuilder MIB1 =
    627         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
    628                 MI.getOperand(0).getReg())
    629             .addOperand(MI.getOperand(1))
    630             .addOperand(MI.getOperand(2))
    631             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
    632     transferImpOps(MI, MIB1, MIB1);
    633     MI.eraseFromParent();
    634     return true;
    635   }
    636 
    637   case AArch64::FCVTSHpseudo: {
    638     MachineOperand Src = MI.getOperand(1);
    639     Src.setImplicit();
    640     unsigned SrcH =
    641         TII->getRegisterInfo().getSubReg(Src.getReg(), AArch64::hsub);
    642     auto MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::FCVTSHr))
    643                    .addOperand(MI.getOperand(0))
    644                    .addReg(SrcH, RegState::Undef)
    645                    .addOperand(Src);
    646     transferImpOps(MI, MIB, MIB);
    647     MI.eraseFromParent();
    648     return true;
    649   }
    650   case AArch64::LOADgot: {
    651     // Expand into ADRP + LDR.
    652     unsigned DstReg = MI.getOperand(0).getReg();
    653     const MachineOperand &MO1 = MI.getOperand(1);
    654     unsigned Flags = MO1.getTargetFlags();
    655     MachineInstrBuilder MIB1 =
    656         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
    657     MachineInstrBuilder MIB2 =
    658         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
    659             .addOperand(MI.getOperand(0))
    660             .addReg(DstReg);
    661 
    662     if (MO1.isGlobal()) {
    663       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
    664       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
    665                             Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    666     } else if (MO1.isSymbol()) {
    667       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
    668       MIB2.addExternalSymbol(MO1.getSymbolName(),
    669                              Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    670     } else {
    671       assert(MO1.isCPI() &&
    672              "Only expect globals, externalsymbols, or constant pools");
    673       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
    674                                 Flags | AArch64II::MO_PAGE);
    675       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
    676                                 Flags | AArch64II::MO_PAGEOFF |
    677                                     AArch64II::MO_NC);
    678     }
    679 
    680     transferImpOps(MI, MIB1, MIB2);
    681     MI.eraseFromParent();
    682     return true;
    683   }
    684 
    685   case AArch64::MOVaddr:
    686   case AArch64::MOVaddrJT:
    687   case AArch64::MOVaddrCP:
    688   case AArch64::MOVaddrBA:
    689   case AArch64::MOVaddrTLS:
    690   case AArch64::MOVaddrEXT: {
    691     // Expand into ADRP + ADD.
    692     unsigned DstReg = MI.getOperand(0).getReg();
    693     MachineInstrBuilder MIB1 =
    694         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
    695             .addOperand(MI.getOperand(1));
    696 
    697     MachineInstrBuilder MIB2 =
    698         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
    699             .addOperand(MI.getOperand(0))
    700             .addReg(DstReg)
    701             .addOperand(MI.getOperand(2))
    702             .addImm(0);
    703 
    704     transferImpOps(MI, MIB1, MIB2);
    705     MI.eraseFromParent();
    706     return true;
    707   }
    708 
    709   case AArch64::MOVi32imm:
    710     return expandMOVImm(MBB, MBBI, 32);
    711   case AArch64::MOVi64imm:
    712     return expandMOVImm(MBB, MBBI, 64);
    713   case AArch64::RET_ReallyLR:
    714     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
    715         .addReg(AArch64::LR);
    716     MI.eraseFromParent();
    717     return true;
    718   }
    719   return false;
    720 }
    721 
    722 /// \brief Iterate over the instructions in basic block MBB and expand any
    723 /// pseudo instructions.  Return true if anything was modified.
    724 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
    725   bool Modified = false;
    726 
    727   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
    728   while (MBBI != E) {
    729     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
    730     Modified |= expandMI(MBB, MBBI);
    731     MBBI = NMBBI;
    732   }
    733 
    734   return Modified;
    735 }
    736 
    737 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
    738   TII = static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
    739 
    740   bool Modified = false;
    741   for (auto &MBB : MF)
    742     Modified |= expandMBB(MBB);
    743   return Modified;
    744 }
    745 
    746 /// \brief Returns an instance of the pseudo instruction expansion pass.
    747 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
    748   return new AArch64ExpandPseudo();
    749 }
    750