Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Pass to verify generated machine code. The following is checked:
     11 //
     12 // Operand counts: All explicit operands must be present.
     13 //
     14 // Register classes: All physical and virtual register operands must be
     15 // compatible with the register class required by the instruction descriptor.
     16 //
     17 // Register live intervals: Registers must be defined only once, and must be
     18 // defined before use.
     19 //
     20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
     21 // command-line option -verify-machineinstrs, or by defining the environment
     22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
     23 // the verifier errors.
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "llvm/CodeGen/Passes.h"
     27 #include "llvm/ADT/DenseSet.h"
     28 #include "llvm/ADT/DepthFirstIterator.h"
     29 #include "llvm/ADT/SetOperations.h"
     30 #include "llvm/ADT/SmallVector.h"
     31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     32 #include "llvm/CodeGen/LiveStackAnalysis.h"
     33 #include "llvm/CodeGen/LiveVariables.h"
     34 #include "llvm/CodeGen/MachineFrameInfo.h"
     35 #include "llvm/CodeGen/MachineFunctionPass.h"
     36 #include "llvm/CodeGen/MachineMemOperand.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/IR/BasicBlock.h"
     39 #include "llvm/IR/InlineAsm.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/MC/MCAsmInfo.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Support/ErrorHandling.h"
     44 #include "llvm/Support/FileSystem.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Target/TargetInstrInfo.h"
     47 #include "llvm/Target/TargetMachine.h"
     48 #include "llvm/Target/TargetRegisterInfo.h"
     49 using namespace llvm;
     50 
     51 namespace {
     52   struct MachineVerifier {
     53 
     54     MachineVerifier(Pass *pass, const char *b) :
     55       PASS(pass),
     56       Banner(b),
     57       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
     58       {}
     59 
     60     bool runOnMachineFunction(MachineFunction &MF);
     61 
     62     Pass *const PASS;
     63     const char *Banner;
     64     const char *const OutFileName;
     65     raw_ostream *OS;
     66     const MachineFunction *MF;
     67     const TargetMachine *TM;
     68     const TargetInstrInfo *TII;
     69     const TargetRegisterInfo *TRI;
     70     const MachineRegisterInfo *MRI;
     71 
     72     unsigned foundErrors;
     73 
     74     typedef SmallVector<unsigned, 16> RegVector;
     75     typedef SmallVector<const uint32_t*, 4> RegMaskVector;
     76     typedef DenseSet<unsigned> RegSet;
     77     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
     78     typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
     79 
     80     const MachineInstr *FirstTerminator;
     81     BlockSet FunctionBlocks;
     82 
     83     BitVector regsReserved;
     84     RegSet regsLive;
     85     RegVector regsDefined, regsDead, regsKilled;
     86     RegMaskVector regMasks;
     87     RegSet regsLiveInButUnused;
     88 
     89     SlotIndex lastIndex;
     90 
     91     // Add Reg and any sub-registers to RV
     92     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
     93       RV.push_back(Reg);
     94       if (TargetRegisterInfo::isPhysicalRegister(Reg))
     95         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
     96           RV.push_back(*SubRegs);
     97     }
     98 
     99     struct BBInfo {
    100       // Is this MBB reachable from the MF entry point?
    101       bool reachable;
    102 
    103       // Vregs that must be live in because they are used without being
    104       // defined. Map value is the user.
    105       RegMap vregsLiveIn;
    106 
    107       // Regs killed in MBB. They may be defined again, and will then be in both
    108       // regsKilled and regsLiveOut.
    109       RegSet regsKilled;
    110 
    111       // Regs defined in MBB and live out. Note that vregs passing through may
    112       // be live out without being mentioned here.
    113       RegSet regsLiveOut;
    114 
    115       // Vregs that pass through MBB untouched. This set is disjoint from
    116       // regsKilled and regsLiveOut.
    117       RegSet vregsPassed;
    118 
    119       // Vregs that must pass through MBB because they are needed by a successor
    120       // block. This set is disjoint from regsLiveOut.
    121       RegSet vregsRequired;
    122 
    123       // Set versions of block's predecessor and successor lists.
    124       BlockSet Preds, Succs;
    125 
    126       BBInfo() : reachable(false) {}
    127 
    128       // Add register to vregsPassed if it belongs there. Return true if
    129       // anything changed.
    130       bool addPassed(unsigned Reg) {
    131         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    132           return false;
    133         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
    134           return false;
    135         return vregsPassed.insert(Reg).second;
    136       }
    137 
    138       // Same for a full set.
    139       bool addPassed(const RegSet &RS) {
    140         bool changed = false;
    141         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    142           if (addPassed(*I))
    143             changed = true;
    144         return changed;
    145       }
    146 
    147       // Add register to vregsRequired if it belongs there. Return true if
    148       // anything changed.
    149       bool addRequired(unsigned Reg) {
    150         if (!TargetRegisterInfo::isVirtualRegister(Reg))
    151           return false;
    152         if (regsLiveOut.count(Reg))
    153           return false;
    154         return vregsRequired.insert(Reg).second;
    155       }
    156 
    157       // Same for a full set.
    158       bool addRequired(const RegSet &RS) {
    159         bool changed = false;
    160         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
    161           if (addRequired(*I))
    162             changed = true;
    163         return changed;
    164       }
    165 
    166       // Same for a full map.
    167       bool addRequired(const RegMap &RM) {
    168         bool changed = false;
    169         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
    170           if (addRequired(I->first))
    171             changed = true;
    172         return changed;
    173       }
    174 
    175       // Live-out registers are either in regsLiveOut or vregsPassed.
    176       bool isLiveOut(unsigned Reg) const {
    177         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
    178       }
    179     };
    180 
    181     // Extra register info per MBB.
    182     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
    183 
    184     bool isReserved(unsigned Reg) {
    185       return Reg < regsReserved.size() && regsReserved.test(Reg);
    186     }
    187 
    188     bool isAllocatable(unsigned Reg) {
    189       return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
    190     }
    191 
    192     // Analysis information if available
    193     LiveVariables *LiveVars;
    194     LiveIntervals *LiveInts;
    195     LiveStacks *LiveStks;
    196     SlotIndexes *Indexes;
    197 
    198     void visitMachineFunctionBefore();
    199     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    200     void visitMachineBundleBefore(const MachineInstr *MI);
    201     void visitMachineInstrBefore(const MachineInstr *MI);
    202     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    203     void visitMachineInstrAfter(const MachineInstr *MI);
    204     void visitMachineBundleAfter(const MachineInstr *MI);
    205     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    206     void visitMachineFunctionAfter();
    207 
    208     void report(const char *msg, const MachineFunction *MF);
    209     void report(const char *msg, const MachineBasicBlock *MBB);
    210     void report(const char *msg, const MachineInstr *MI);
    211     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
    212     void report(const char *msg, const MachineFunction *MF,
    213                 const LiveInterval &LI);
    214     void report(const char *msg, const MachineBasicBlock *MBB,
    215                 const LiveInterval &LI);
    216     void report(const char *msg, const MachineFunction *MF,
    217                 const LiveRange &LR);
    218     void report(const char *msg, const MachineBasicBlock *MBB,
    219                 const LiveRange &LR);
    220 
    221     void verifyInlineAsm(const MachineInstr *MI);
    222 
    223     void checkLiveness(const MachineOperand *MO, unsigned MONum);
    224     void markReachable(const MachineBasicBlock *MBB);
    225     void calcRegsPassed();
    226     void checkPHIOps(const MachineBasicBlock *MBB);
    227 
    228     void calcRegsRequired();
    229     void verifyLiveVariables();
    230     void verifyLiveIntervals();
    231     void verifyLiveInterval(const LiveInterval&);
    232     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
    233     void verifyLiveRangeSegment(const LiveRange&,
    234                                 const LiveRange::const_iterator I, unsigned);
    235     void verifyLiveRange(const LiveRange&, unsigned);
    236 
    237     void verifyStackFrame();
    238   };
    239 
    240   struct MachineVerifierPass : public MachineFunctionPass {
    241     static char ID; // Pass ID, replacement for typeid
    242     const char *const Banner;
    243 
    244     MachineVerifierPass(const char *b = nullptr)
    245       : MachineFunctionPass(ID), Banner(b) {
    246         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
    247       }
    248 
    249     void getAnalysisUsage(AnalysisUsage &AU) const override {
    250       AU.setPreservesAll();
    251       MachineFunctionPass::getAnalysisUsage(AU);
    252     }
    253 
    254     bool runOnMachineFunction(MachineFunction &MF) override {
    255       MF.verify(this, Banner);
    256       return false;
    257     }
    258   };
    259 
    260 }
    261 
    262 char MachineVerifierPass::ID = 0;
    263 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
    264                 "Verify generated machine code", false, false)
    265 
    266 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
    267   return new MachineVerifierPass(Banner);
    268 }
    269 
    270 void MachineFunction::verify(Pass *p, const char *Banner) const {
    271   MachineVerifier(p, Banner)
    272     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
    273 }
    274 
    275 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
    276   raw_ostream *OutFile = nullptr;
    277   if (OutFileName) {
    278     std::string ErrorInfo;
    279     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
    280                                  sys::fs::F_Append | sys::fs::F_Text);
    281     if (!ErrorInfo.empty()) {
    282       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
    283       exit(1);
    284     }
    285 
    286     OS = OutFile;
    287   } else {
    288     OS = &errs();
    289   }
    290 
    291   foundErrors = 0;
    292 
    293   this->MF = &MF;
    294   TM = &MF.getTarget();
    295   TII = TM->getInstrInfo();
    296   TRI = TM->getRegisterInfo();
    297   MRI = &MF.getRegInfo();
    298 
    299   LiveVars = nullptr;
    300   LiveInts = nullptr;
    301   LiveStks = nullptr;
    302   Indexes = nullptr;
    303   if (PASS) {
    304     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    305     // We don't want to verify LiveVariables if LiveIntervals is available.
    306     if (!LiveInts)
    307       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    308     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    309     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
    310   }
    311 
    312   visitMachineFunctionBefore();
    313   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
    314        MFI!=MFE; ++MFI) {
    315     visitMachineBasicBlockBefore(MFI);
    316     // Keep track of the current bundle header.
    317     const MachineInstr *CurBundle = nullptr;
    318     // Do we expect the next instruction to be part of the same bundle?
    319     bool InBundle = false;
    320 
    321     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
    322            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
    323       if (MBBI->getParent() != MFI) {
    324         report("Bad instruction parent pointer", MFI);
    325         *OS << "Instruction: " << *MBBI;
    326         continue;
    327       }
    328 
    329       // Check for consistent bundle flags.
    330       if (InBundle && !MBBI->isBundledWithPred())
    331         report("Missing BundledPred flag, "
    332                "BundledSucc was set on predecessor", MBBI);
    333       if (!InBundle && MBBI->isBundledWithPred())
    334         report("BundledPred flag is set, "
    335                "but BundledSucc not set on predecessor", MBBI);
    336 
    337       // Is this a bundle header?
    338       if (!MBBI->isInsideBundle()) {
    339         if (CurBundle)
    340           visitMachineBundleAfter(CurBundle);
    341         CurBundle = MBBI;
    342         visitMachineBundleBefore(CurBundle);
    343       } else if (!CurBundle)
    344         report("No bundle header", MBBI);
    345       visitMachineInstrBefore(MBBI);
    346       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
    347         visitMachineOperand(&MBBI->getOperand(I), I);
    348       visitMachineInstrAfter(MBBI);
    349 
    350       // Was this the last bundled instruction?
    351       InBundle = MBBI->isBundledWithSucc();
    352     }
    353     if (CurBundle)
    354       visitMachineBundleAfter(CurBundle);
    355     if (InBundle)
    356       report("BundledSucc flag set on last instruction in block", &MFI->back());
    357     visitMachineBasicBlockAfter(MFI);
    358   }
    359   visitMachineFunctionAfter();
    360 
    361   if (OutFile)
    362     delete OutFile;
    363   else if (foundErrors)
    364     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
    365 
    366   // Clean up.
    367   regsLive.clear();
    368   regsDefined.clear();
    369   regsDead.clear();
    370   regsKilled.clear();
    371   regMasks.clear();
    372   regsLiveInButUnused.clear();
    373   MBBInfoMap.clear();
    374 
    375   return false;                 // no changes
    376 }
    377 
    378 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
    379   assert(MF);
    380   *OS << '\n';
    381   if (!foundErrors++) {
    382     if (Banner)
    383       *OS << "# " << Banner << '\n';
    384     MF->print(*OS, Indexes);
    385   }
    386   *OS << "*** Bad machine code: " << msg << " ***\n"
    387       << "- function:    " << MF->getName() << "\n";
    388 }
    389 
    390 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
    391   assert(MBB);
    392   report(msg, MBB->getParent());
    393   *OS << "- basic block: BB#" << MBB->getNumber()
    394       << ' ' << MBB->getName()
    395       << " (" << (const void*)MBB << ')';
    396   if (Indexes)
    397     *OS << " [" << Indexes->getMBBStartIdx(MBB)
    398         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
    399   *OS << '\n';
    400 }
    401 
    402 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
    403   assert(MI);
    404   report(msg, MI->getParent());
    405   *OS << "- instruction: ";
    406   if (Indexes && Indexes->hasIndex(MI))
    407     *OS << Indexes->getInstructionIndex(MI) << '\t';
    408   MI->print(*OS, TM);
    409 }
    410 
    411 void MachineVerifier::report(const char *msg,
    412                              const MachineOperand *MO, unsigned MONum) {
    413   assert(MO);
    414   report(msg, MO->getParent());
    415   *OS << "- operand " << MONum << ":   ";
    416   MO->print(*OS, TM);
    417   *OS << "\n";
    418 }
    419 
    420 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
    421                              const LiveInterval &LI) {
    422   report(msg, MF);
    423   *OS << "- interval:    " << LI << '\n';
    424 }
    425 
    426 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
    427                              const LiveInterval &LI) {
    428   report(msg, MBB);
    429   *OS << "- interval:    " << LI << '\n';
    430 }
    431 
    432 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
    433                              const LiveRange &LR) {
    434   report(msg, MBB);
    435   *OS << "- liverange:    " << LR << "\n";
    436 }
    437 
    438 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
    439                              const LiveRange &LR) {
    440   report(msg, MF);
    441   *OS << "- liverange:    " << LR << "\n";
    442 }
    443 
    444 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
    445   BBInfo &MInfo = MBBInfoMap[MBB];
    446   if (!MInfo.reachable) {
    447     MInfo.reachable = true;
    448     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
    449            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
    450       markReachable(*SuI);
    451   }
    452 }
    453 
    454 void MachineVerifier::visitMachineFunctionBefore() {
    455   lastIndex = SlotIndex();
    456   regsReserved = MRI->getReservedRegs();
    457 
    458   // A sub-register of a reserved register is also reserved
    459   for (int Reg = regsReserved.find_first(); Reg>=0;
    460        Reg = regsReserved.find_next(Reg)) {
    461     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    462       // FIXME: This should probably be:
    463       // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
    464       regsReserved.set(*SubRegs);
    465     }
    466   }
    467 
    468   markReachable(&MF->front());
    469 
    470   // Build a set of the basic blocks in the function.
    471   FunctionBlocks.clear();
    472   for (const auto &MBB : *MF) {
    473     FunctionBlocks.insert(&MBB);
    474     BBInfo &MInfo = MBBInfoMap[&MBB];
    475 
    476     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
    477     if (MInfo.Preds.size() != MBB.pred_size())
    478       report("MBB has duplicate entries in its predecessor list.", &MBB);
    479 
    480     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
    481     if (MInfo.Succs.size() != MBB.succ_size())
    482       report("MBB has duplicate entries in its successor list.", &MBB);
    483   }
    484 
    485   // Check that the register use lists are sane.
    486   MRI->verifyUseLists();
    487 
    488   verifyStackFrame();
    489 }
    490 
    491 // Does iterator point to a and b as the first two elements?
    492 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
    493                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
    494   if (*i == a)
    495     return *++i == b;
    496   if (*i == b)
    497     return *++i == a;
    498   return false;
    499 }
    500 
    501 void
    502 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
    503   FirstTerminator = nullptr;
    504 
    505   if (MRI->isSSA()) {
    506     // If this block has allocatable physical registers live-in, check that
    507     // it is an entry block or landing pad.
    508     for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
    509            LE = MBB->livein_end();
    510          LI != LE; ++LI) {
    511       unsigned reg = *LI;
    512       if (isAllocatable(reg) && !MBB->isLandingPad() &&
    513           MBB != MBB->getParent()->begin()) {
    514         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
    515       }
    516     }
    517   }
    518 
    519   // Count the number of landing pad successors.
    520   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
    521   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
    522        E = MBB->succ_end(); I != E; ++I) {
    523     if ((*I)->isLandingPad())
    524       LandingPadSuccs.insert(*I);
    525     if (!FunctionBlocks.count(*I))
    526       report("MBB has successor that isn't part of the function.", MBB);
    527     if (!MBBInfoMap[*I].Preds.count(MBB)) {
    528       report("Inconsistent CFG", MBB);
    529       *OS << "MBB is not in the predecessor list of the successor BB#"
    530           << (*I)->getNumber() << ".\n";
    531     }
    532   }
    533 
    534   // Check the predecessor list.
    535   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
    536        E = MBB->pred_end(); I != E; ++I) {
    537     if (!FunctionBlocks.count(*I))
    538       report("MBB has predecessor that isn't part of the function.", MBB);
    539     if (!MBBInfoMap[*I].Succs.count(MBB)) {
    540       report("Inconsistent CFG", MBB);
    541       *OS << "MBB is not in the successor list of the predecessor BB#"
    542           << (*I)->getNumber() << ".\n";
    543     }
    544   }
    545 
    546   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
    547   const BasicBlock *BB = MBB->getBasicBlock();
    548   if (LandingPadSuccs.size() > 1 &&
    549       !(AsmInfo &&
    550         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
    551         BB && isa<SwitchInst>(BB->getTerminator())))
    552     report("MBB has more than one landing pad successor", MBB);
    553 
    554   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
    555   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    556   SmallVector<MachineOperand, 4> Cond;
    557   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
    558                           TBB, FBB, Cond)) {
    559     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    560     // check whether its answers match up with reality.
    561     if (!TBB && !FBB) {
    562       // Block falls through to its successor.
    563       MachineFunction::const_iterator MBBI = MBB;
    564       ++MBBI;
    565       if (MBBI == MF->end()) {
    566         // It's possible that the block legitimately ends with a noreturn
    567         // call or an unreachable, in which case it won't actually fall
    568         // out the bottom of the function.
    569       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
    570         // It's possible that the block legitimately ends with a noreturn
    571         // call or an unreachable, in which case it won't actuall fall
    572         // out of the block.
    573       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    574         report("MBB exits via unconditional fall-through but doesn't have "
    575                "exactly one CFG successor!", MBB);
    576       } else if (!MBB->isSuccessor(MBBI)) {
    577         report("MBB exits via unconditional fall-through but its successor "
    578                "differs from its CFG successor!", MBB);
    579       }
    580       if (!MBB->empty() && MBB->back().isBarrier() &&
    581           !TII->isPredicated(&MBB->back())) {
    582         report("MBB exits via unconditional fall-through but ends with a "
    583                "barrier instruction!", MBB);
    584       }
    585       if (!Cond.empty()) {
    586         report("MBB exits via unconditional fall-through but has a condition!",
    587                MBB);
    588       }
    589     } else if (TBB && !FBB && Cond.empty()) {
    590       // Block unconditionally branches somewhere.
    591       if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
    592         report("MBB exits via unconditional branch but doesn't have "
    593                "exactly one CFG successor!", MBB);
    594       } else if (!MBB->isSuccessor(TBB)) {
    595         report("MBB exits via unconditional branch but the CFG "
    596                "successor doesn't match the actual successor!", MBB);
    597       }
    598       if (MBB->empty()) {
    599         report("MBB exits via unconditional branch but doesn't contain "
    600                "any instructions!", MBB);
    601       } else if (!MBB->back().isBarrier()) {
    602         report("MBB exits via unconditional branch but doesn't end with a "
    603                "barrier instruction!", MBB);
    604       } else if (!MBB->back().isTerminator()) {
    605         report("MBB exits via unconditional branch but the branch isn't a "
    606                "terminator instruction!", MBB);
    607       }
    608     } else if (TBB && !FBB && !Cond.empty()) {
    609       // Block conditionally branches somewhere, otherwise falls through.
    610       MachineFunction::const_iterator MBBI = MBB;
    611       ++MBBI;
    612       if (MBBI == MF->end()) {
    613         report("MBB conditionally falls through out of function!", MBB);
    614       } else if (MBB->succ_size() == 1) {
    615         // A conditional branch with only one successor is weird, but allowed.
    616         if (&*MBBI != TBB)
    617           report("MBB exits via conditional branch/fall-through but only has "
    618                  "one CFG successor!", MBB);
    619         else if (TBB != *MBB->succ_begin())
    620           report("MBB exits via conditional branch/fall-through but the CFG "
    621                  "successor don't match the actual successor!", MBB);
    622       } else if (MBB->succ_size() != 2) {
    623         report("MBB exits via conditional branch/fall-through but doesn't have "
    624                "exactly two CFG successors!", MBB);
    625       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
    626         report("MBB exits via conditional branch/fall-through but the CFG "
    627                "successors don't match the actual successors!", MBB);
    628       }
    629       if (MBB->empty()) {
    630         report("MBB exits via conditional branch/fall-through but doesn't "
    631                "contain any instructions!", MBB);
    632       } else if (MBB->back().isBarrier()) {
    633         report("MBB exits via conditional branch/fall-through but ends with a "
    634                "barrier instruction!", MBB);
    635       } else if (!MBB->back().isTerminator()) {
    636         report("MBB exits via conditional branch/fall-through but the branch "
    637                "isn't a terminator instruction!", MBB);
    638       }
    639     } else if (TBB && FBB) {
    640       // Block conditionally branches somewhere, otherwise branches
    641       // somewhere else.
    642       if (MBB->succ_size() == 1) {
    643         // A conditional branch with only one successor is weird, but allowed.
    644         if (FBB != TBB)
    645           report("MBB exits via conditional branch/branch through but only has "
    646                  "one CFG successor!", MBB);
    647         else if (TBB != *MBB->succ_begin())
    648           report("MBB exits via conditional branch/branch through but the CFG "
    649                  "successor don't match the actual successor!", MBB);
    650       } else if (MBB->succ_size() != 2) {
    651         report("MBB exits via conditional branch/branch but doesn't have "
    652                "exactly two CFG successors!", MBB);
    653       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
    654         report("MBB exits via conditional branch/branch but the CFG "
    655                "successors don't match the actual successors!", MBB);
    656       }
    657       if (MBB->empty()) {
    658         report("MBB exits via conditional branch/branch but doesn't "
    659                "contain any instructions!", MBB);
    660       } else if (!MBB->back().isBarrier()) {
    661         report("MBB exits via conditional branch/branch but doesn't end with a "
    662                "barrier instruction!", MBB);
    663       } else if (!MBB->back().isTerminator()) {
    664         report("MBB exits via conditional branch/branch but the branch "
    665                "isn't a terminator instruction!", MBB);
    666       }
    667       if (Cond.empty()) {
    668         report("MBB exits via conditinal branch/branch but there's no "
    669                "condition!", MBB);
    670       }
    671     } else {
    672       report("AnalyzeBranch returned invalid data!", MBB);
    673     }
    674   }
    675 
    676   regsLive.clear();
    677   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    678          E = MBB->livein_end(); I != E; ++I) {
    679     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
    680       report("MBB live-in list contains non-physical register", MBB);
    681       continue;
    682     }
    683     for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
    684          SubRegs.isValid(); ++SubRegs)
    685       regsLive.insert(*SubRegs);
    686   }
    687   regsLiveInButUnused = regsLive;
    688 
    689   const MachineFrameInfo *MFI = MF->getFrameInfo();
    690   assert(MFI && "Function has no frame info");
    691   BitVector PR = MFI->getPristineRegs(MBB);
    692   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
    693     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
    694          SubRegs.isValid(); ++SubRegs)
    695       regsLive.insert(*SubRegs);
    696   }
    697 
    698   regsKilled.clear();
    699   regsDefined.clear();
    700 
    701   if (Indexes)
    702     lastIndex = Indexes->getMBBStartIdx(MBB);
    703 }
    704 
    705 // This function gets called for all bundle headers, including normal
    706 // stand-alone unbundled instructions.
    707 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
    708   if (Indexes && Indexes->hasIndex(MI)) {
    709     SlotIndex idx = Indexes->getInstructionIndex(MI);
    710     if (!(idx > lastIndex)) {
    711       report("Instruction index out of order", MI);
    712       *OS << "Last instruction was at " << lastIndex << '\n';
    713     }
    714     lastIndex = idx;
    715   }
    716 
    717   // Ensure non-terminators don't follow terminators.
    718   // Ignore predicated terminators formed by if conversion.
    719   // FIXME: If conversion shouldn't need to violate this rule.
    720   if (MI->isTerminator() && !TII->isPredicated(MI)) {
    721     if (!FirstTerminator)
    722       FirstTerminator = MI;
    723   } else if (FirstTerminator) {
    724     report("Non-terminator instruction after the first terminator", MI);
    725     *OS << "First terminator was:\t" << *FirstTerminator;
    726   }
    727 }
    728 
    729 // The operands on an INLINEASM instruction must follow a template.
    730 // Verify that the flag operands make sense.
    731 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
    732   // The first two operands on INLINEASM are the asm string and global flags.
    733   if (MI->getNumOperands() < 2) {
    734     report("Too few operands on inline asm", MI);
    735     return;
    736   }
    737   if (!MI->getOperand(0).isSymbol())
    738     report("Asm string must be an external symbol", MI);
    739   if (!MI->getOperand(1).isImm())
    740     report("Asm flags must be an immediate", MI);
    741   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
    742   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
    743   if (!isUInt<5>(MI->getOperand(1).getImm()))
    744     report("Unknown asm flags", &MI->getOperand(1), 1);
    745 
    746   assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
    747 
    748   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
    749   unsigned NumOps;
    750   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
    751     const MachineOperand &MO = MI->getOperand(OpNo);
    752     // There may be implicit ops after the fixed operands.
    753     if (!MO.isImm())
    754       break;
    755     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
    756   }
    757 
    758   if (OpNo > MI->getNumOperands())
    759     report("Missing operands in last group", MI);
    760 
    761   // An optional MDNode follows the groups.
    762   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
    763     ++OpNo;
    764 
    765   // All trailing operands must be implicit registers.
    766   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
    767     const MachineOperand &MO = MI->getOperand(OpNo);
    768     if (!MO.isReg() || !MO.isImplicit())
    769       report("Expected implicit register after groups", &MO, OpNo);
    770   }
    771 }
    772 
    773 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
    774   const MCInstrDesc &MCID = MI->getDesc();
    775   if (MI->getNumOperands() < MCID.getNumOperands()) {
    776     report("Too few operands", MI);
    777     *OS << MCID.getNumOperands() << " operands expected, but "
    778         << MI->getNumOperands() << " given.\n";
    779   }
    780 
    781   // Check the tied operands.
    782   if (MI->isInlineAsm())
    783     verifyInlineAsm(MI);
    784 
    785   // Check the MachineMemOperands for basic consistency.
    786   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
    787        E = MI->memoperands_end(); I != E; ++I) {
    788     if ((*I)->isLoad() && !MI->mayLoad())
    789       report("Missing mayLoad flag", MI);
    790     if ((*I)->isStore() && !MI->mayStore())
    791       report("Missing mayStore flag", MI);
    792   }
    793 
    794   // Debug values must not have a slot index.
    795   // Other instructions must have one, unless they are inside a bundle.
    796   if (LiveInts) {
    797     bool mapped = !LiveInts->isNotInMIMap(MI);
    798     if (MI->isDebugValue()) {
    799       if (mapped)
    800         report("Debug instruction has a slot index", MI);
    801     } else if (MI->isInsideBundle()) {
    802       if (mapped)
    803         report("Instruction inside bundle has a slot index", MI);
    804     } else {
    805       if (!mapped)
    806         report("Missing slot index", MI);
    807     }
    808   }
    809 
    810   StringRef ErrorInfo;
    811   if (!TII->verifyInstruction(MI, ErrorInfo))
    812     report(ErrorInfo.data(), MI);
    813 }
    814 
    815 void
    816 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
    817   const MachineInstr *MI = MO->getParent();
    818   const MCInstrDesc &MCID = MI->getDesc();
    819 
    820   // The first MCID.NumDefs operands must be explicit register defines
    821   if (MONum < MCID.getNumDefs()) {
    822     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    823     if (!MO->isReg())
    824       report("Explicit definition must be a register", MO, MONum);
    825     else if (!MO->isDef() && !MCOI.isOptionalDef())
    826       report("Explicit definition marked as use", MO, MONum);
    827     else if (MO->isImplicit())
    828       report("Explicit definition marked as implicit", MO, MONum);
    829   } else if (MONum < MCID.getNumOperands()) {
    830     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    831     // Don't check if it's the last operand in a variadic instruction. See,
    832     // e.g., LDM_RET in the arm back end.
    833     if (MO->isReg() &&
    834         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
    835       if (MO->isDef() && !MCOI.isOptionalDef())
    836         report("Explicit operand marked as def", MO, MONum);
    837       if (MO->isImplicit())
    838         report("Explicit operand marked as implicit", MO, MONum);
    839     }
    840 
    841     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
    842     if (TiedTo != -1) {
    843       if (!MO->isReg())
    844         report("Tied use must be a register", MO, MONum);
    845       else if (!MO->isTied())
    846         report("Operand should be tied", MO, MONum);
    847       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
    848         report("Tied def doesn't match MCInstrDesc", MO, MONum);
    849     } else if (MO->isReg() && MO->isTied())
    850       report("Explicit operand should not be tied", MO, MONum);
    851   } else {
    852     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    853     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
    854       report("Extra explicit operand on non-variadic instruction", MO, MONum);
    855   }
    856 
    857   switch (MO->getType()) {
    858   case MachineOperand::MO_Register: {
    859     const unsigned Reg = MO->getReg();
    860     if (!Reg)
    861       return;
    862     if (MRI->tracksLiveness() && !MI->isDebugValue())
    863       checkLiveness(MO, MONum);
    864 
    865     // Verify the consistency of tied operands.
    866     if (MO->isTied()) {
    867       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
    868       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
    869       if (!OtherMO.isReg())
    870         report("Must be tied to a register", MO, MONum);
    871       if (!OtherMO.isTied())
    872         report("Missing tie flags on tied operand", MO, MONum);
    873       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
    874         report("Inconsistent tie links", MO, MONum);
    875       if (MONum < MCID.getNumDefs()) {
    876         if (OtherIdx < MCID.getNumOperands()) {
    877           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
    878             report("Explicit def tied to explicit use without tie constraint",
    879                    MO, MONum);
    880         } else {
    881           if (!OtherMO.isImplicit())
    882             report("Explicit def should be tied to implicit use", MO, MONum);
    883         }
    884       }
    885     }
    886 
    887     // Verify two-address constraints after leaving SSA form.
    888     unsigned DefIdx;
    889     if (!MRI->isSSA() && MO->isUse() &&
    890         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
    891         Reg != MI->getOperand(DefIdx).getReg())
    892       report("Two-address instruction operands must be identical", MO, MONum);
    893 
    894     // Check register classes.
    895     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
    896       unsigned SubIdx = MO->getSubReg();
    897 
    898       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    899         if (SubIdx) {
    900           report("Illegal subregister index for physical register", MO, MONum);
    901           return;
    902         }
    903         if (const TargetRegisterClass *DRC =
    904               TII->getRegClass(MCID, MONum, TRI, *MF)) {
    905           if (!DRC->contains(Reg)) {
    906             report("Illegal physical register for instruction", MO, MONum);
    907             *OS << TRI->getName(Reg) << " is not a "
    908                 << DRC->getName() << " register.\n";
    909           }
    910         }
    911       } else {
    912         // Virtual register.
    913         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
    914         if (SubIdx) {
    915           const TargetRegisterClass *SRC =
    916             TRI->getSubClassWithSubReg(RC, SubIdx);
    917           if (!SRC) {
    918             report("Invalid subregister index for virtual register", MO, MONum);
    919             *OS << "Register class " << RC->getName()
    920                 << " does not support subreg index " << SubIdx << "\n";
    921             return;
    922           }
    923           if (RC != SRC) {
    924             report("Invalid register class for subregister index", MO, MONum);
    925             *OS << "Register class " << RC->getName()
    926                 << " does not fully support subreg index " << SubIdx << "\n";
    927             return;
    928           }
    929         }
    930         if (const TargetRegisterClass *DRC =
    931               TII->getRegClass(MCID, MONum, TRI, *MF)) {
    932           if (SubIdx) {
    933             const TargetRegisterClass *SuperRC =
    934               TRI->getLargestLegalSuperClass(RC);
    935             if (!SuperRC) {
    936               report("No largest legal super class exists.", MO, MONum);
    937               return;
    938             }
    939             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
    940             if (!DRC) {
    941               report("No matching super-reg register class.", MO, MONum);
    942               return;
    943             }
    944           }
    945           if (!RC->hasSuperClassEq(DRC)) {
    946             report("Illegal virtual register for instruction", MO, MONum);
    947             *OS << "Expected a " << DRC->getName() << " register, but got a "
    948                 << RC->getName() << " register\n";
    949           }
    950         }
    951       }
    952     }
    953     break;
    954   }
    955 
    956   case MachineOperand::MO_RegisterMask:
    957     regMasks.push_back(MO->getRegMask());
    958     break;
    959 
    960   case MachineOperand::MO_MachineBasicBlock:
    961     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
    962       report("PHI operand is not in the CFG", MO, MONum);
    963     break;
    964 
    965   case MachineOperand::MO_FrameIndex:
    966     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
    967         LiveInts && !LiveInts->isNotInMIMap(MI)) {
    968       LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
    969       SlotIndex Idx = LiveInts->getInstructionIndex(MI);
    970       if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
    971         report("Instruction loads from dead spill slot", MO, MONum);
    972         *OS << "Live stack: " << LI << '\n';
    973       }
    974       if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
    975         report("Instruction stores to dead spill slot", MO, MONum);
    976         *OS << "Live stack: " << LI << '\n';
    977       }
    978     }
    979     break;
    980 
    981   default:
    982     break;
    983   }
    984 }
    985 
    986 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
    987   const MachineInstr *MI = MO->getParent();
    988   const unsigned Reg = MO->getReg();
    989 
    990   // Both use and def operands can read a register.
    991   if (MO->readsReg()) {
    992     regsLiveInButUnused.erase(Reg);
    993 
    994     if (MO->isKill())
    995       addRegWithSubRegs(regsKilled, Reg);
    996 
    997     // Check that LiveVars knows this kill.
    998     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
    999         MO->isKill()) {
   1000       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
   1001       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
   1002         report("Kill missing from LiveVariables", MO, MONum);
   1003     }
   1004 
   1005     // Check LiveInts liveness and kill.
   1006     if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
   1007       SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
   1008       // Check the cached regunit intervals.
   1009       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
   1010         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
   1011           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
   1012             LiveQueryResult LRQ = LR->Query(UseIdx);
   1013             if (!LRQ.valueIn()) {
   1014               report("No live segment at use", MO, MONum);
   1015               *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
   1016                   << ' ' << *LR << '\n';
   1017             }
   1018             if (MO->isKill() && !LRQ.isKill()) {
   1019               report("Live range continues after kill flag", MO, MONum);
   1020               *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
   1021             }
   1022           }
   1023         }
   1024       }
   1025 
   1026       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1027         if (LiveInts->hasInterval(Reg)) {
   1028           // This is a virtual register interval.
   1029           const LiveInterval &LI = LiveInts->getInterval(Reg);
   1030           LiveQueryResult LRQ = LI.Query(UseIdx);
   1031           if (!LRQ.valueIn()) {
   1032             report("No live segment at use", MO, MONum);
   1033             *OS << UseIdx << " is not live in " << LI << '\n';
   1034           }
   1035           // Check for extra kill flags.
   1036           // Note that we allow missing kill flags for now.
   1037           if (MO->isKill() && !LRQ.isKill()) {
   1038             report("Live range continues after kill flag", MO, MONum);
   1039             *OS << "Live range: " << LI << '\n';
   1040           }
   1041         } else {
   1042           report("Virtual register has no live interval", MO, MONum);
   1043         }
   1044       }
   1045     }
   1046 
   1047     // Use of a dead register.
   1048     if (!regsLive.count(Reg)) {
   1049       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1050         // Reserved registers may be used even when 'dead'.
   1051         if (!isReserved(Reg))
   1052           report("Using an undefined physical register", MO, MONum);
   1053       } else if (MRI->def_empty(Reg)) {
   1054         report("Reading virtual register without a def", MO, MONum);
   1055       } else {
   1056         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
   1057         // We don't know which virtual registers are live in, so only complain
   1058         // if vreg was killed in this MBB. Otherwise keep track of vregs that
   1059         // must be live in. PHI instructions are handled separately.
   1060         if (MInfo.regsKilled.count(Reg))
   1061           report("Using a killed virtual register", MO, MONum);
   1062         else if (!MI->isPHI())
   1063           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
   1064       }
   1065     }
   1066   }
   1067 
   1068   if (MO->isDef()) {
   1069     // Register defined.
   1070     // TODO: verify that earlyclobber ops are not used.
   1071     if (MO->isDead())
   1072       addRegWithSubRegs(regsDead, Reg);
   1073     else
   1074       addRegWithSubRegs(regsDefined, Reg);
   1075 
   1076     // Verify SSA form.
   1077     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
   1078         std::next(MRI->def_begin(Reg)) != MRI->def_end())
   1079       report("Multiple virtual register defs in SSA form", MO, MONum);
   1080 
   1081     // Check LiveInts for a live segment, but only for virtual registers.
   1082     if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
   1083         !LiveInts->isNotInMIMap(MI)) {
   1084       SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
   1085       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
   1086       if (LiveInts->hasInterval(Reg)) {
   1087         const LiveInterval &LI = LiveInts->getInterval(Reg);
   1088         if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
   1089           assert(VNI && "NULL valno is not allowed");
   1090           if (VNI->def != DefIdx) {
   1091             report("Inconsistent valno->def", MO, MONum);
   1092             *OS << "Valno " << VNI->id << " is not defined at "
   1093               << DefIdx << " in " << LI << '\n';
   1094           }
   1095         } else {
   1096           report("No live segment at def", MO, MONum);
   1097           *OS << DefIdx << " is not live in " << LI << '\n';
   1098         }
   1099         // Check that, if the dead def flag is present, LiveInts agree.
   1100         if (MO->isDead()) {
   1101           LiveQueryResult LRQ = LI.Query(DefIdx);
   1102           if (!LRQ.isDeadDef()) {
   1103             report("Live range continues after dead def flag", MO, MONum);
   1104             *OS << "Live range: " << LI << '\n';
   1105           }
   1106         }
   1107       } else {
   1108         report("Virtual register has no Live interval", MO, MONum);
   1109       }
   1110     }
   1111   }
   1112 }
   1113 
   1114 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
   1115 }
   1116 
   1117 // This function gets called after visiting all instructions in a bundle. The
   1118 // argument points to the bundle header.
   1119 // Normal stand-alone instructions are also considered 'bundles', and this
   1120 // function is called for all of them.
   1121 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
   1122   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
   1123   set_union(MInfo.regsKilled, regsKilled);
   1124   set_subtract(regsLive, regsKilled); regsKilled.clear();
   1125   // Kill any masked registers.
   1126   while (!regMasks.empty()) {
   1127     const uint32_t *Mask = regMasks.pop_back_val();
   1128     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
   1129       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
   1130           MachineOperand::clobbersPhysReg(Mask, *I))
   1131         regsDead.push_back(*I);
   1132   }
   1133   set_subtract(regsLive, regsDead);   regsDead.clear();
   1134   set_union(regsLive, regsDefined);   regsDefined.clear();
   1135 }
   1136 
   1137 void
   1138 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
   1139   MBBInfoMap[MBB].regsLiveOut = regsLive;
   1140   regsLive.clear();
   1141 
   1142   if (Indexes) {
   1143     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
   1144     if (!(stop > lastIndex)) {
   1145       report("Block ends before last instruction index", MBB);
   1146       *OS << "Block ends at " << stop
   1147           << " last instruction was at " << lastIndex << '\n';
   1148     }
   1149     lastIndex = stop;
   1150   }
   1151 }
   1152 
   1153 // Calculate the largest possible vregsPassed sets. These are the registers that
   1154 // can pass through an MBB live, but may not be live every time. It is assumed
   1155 // that all vregsPassed sets are empty before the call.
   1156 void MachineVerifier::calcRegsPassed() {
   1157   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
   1158   // have any vregsPassed.
   1159   SmallPtrSet<const MachineBasicBlock*, 8> todo;
   1160   for (const auto &MBB : *MF) {
   1161     BBInfo &MInfo = MBBInfoMap[&MBB];
   1162     if (!MInfo.reachable)
   1163       continue;
   1164     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
   1165            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
   1166       BBInfo &SInfo = MBBInfoMap[*SuI];
   1167       if (SInfo.addPassed(MInfo.regsLiveOut))
   1168         todo.insert(*SuI);
   1169     }
   1170   }
   1171 
   1172   // Iteratively push vregsPassed to successors. This will converge to the same
   1173   // final state regardless of DenseSet iteration order.
   1174   while (!todo.empty()) {
   1175     const MachineBasicBlock *MBB = *todo.begin();
   1176     todo.erase(MBB);
   1177     BBInfo &MInfo = MBBInfoMap[MBB];
   1178     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
   1179            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
   1180       if (*SuI == MBB)
   1181         continue;
   1182       BBInfo &SInfo = MBBInfoMap[*SuI];
   1183       if (SInfo.addPassed(MInfo.vregsPassed))
   1184         todo.insert(*SuI);
   1185     }
   1186   }
   1187 }
   1188 
   1189 // Calculate the set of virtual registers that must be passed through each basic
   1190 // block in order to satisfy the requirements of successor blocks. This is very
   1191 // similar to calcRegsPassed, only backwards.
   1192 void MachineVerifier::calcRegsRequired() {
   1193   // First push live-in regs to predecessors' vregsRequired.
   1194   SmallPtrSet<const MachineBasicBlock*, 8> todo;
   1195   for (const auto &MBB : *MF) {
   1196     BBInfo &MInfo = MBBInfoMap[&MBB];
   1197     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
   1198            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
   1199       BBInfo &PInfo = MBBInfoMap[*PrI];
   1200       if (PInfo.addRequired(MInfo.vregsLiveIn))
   1201         todo.insert(*PrI);
   1202     }
   1203   }
   1204 
   1205   // Iteratively push vregsRequired to predecessors. This will converge to the
   1206   // same final state regardless of DenseSet iteration order.
   1207   while (!todo.empty()) {
   1208     const MachineBasicBlock *MBB = *todo.begin();
   1209     todo.erase(MBB);
   1210     BBInfo &MInfo = MBBInfoMap[MBB];
   1211     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
   1212            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
   1213       if (*PrI == MBB)
   1214         continue;
   1215       BBInfo &SInfo = MBBInfoMap[*PrI];
   1216       if (SInfo.addRequired(MInfo.vregsRequired))
   1217         todo.insert(*PrI);
   1218     }
   1219   }
   1220 }
   1221 
   1222 // Check PHI instructions at the beginning of MBB. It is assumed that
   1223 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
   1224 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
   1225   SmallPtrSet<const MachineBasicBlock*, 8> seen;
   1226   for (const auto &BBI : *MBB) {
   1227     if (!BBI.isPHI())
   1228       break;
   1229     seen.clear();
   1230 
   1231     for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
   1232       unsigned Reg = BBI.getOperand(i).getReg();
   1233       const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
   1234       if (!Pre->isSuccessor(MBB))
   1235         continue;
   1236       seen.insert(Pre);
   1237       BBInfo &PrInfo = MBBInfoMap[Pre];
   1238       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
   1239         report("PHI operand is not live-out from predecessor",
   1240                &BBI.getOperand(i), i);
   1241     }
   1242 
   1243     // Did we see all predecessors?
   1244     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
   1245            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
   1246       if (!seen.count(*PrI)) {
   1247         report("Missing PHI operand", &BBI);
   1248         *OS << "BB#" << (*PrI)->getNumber()
   1249             << " is a predecessor according to the CFG.\n";
   1250       }
   1251     }
   1252   }
   1253 }
   1254 
   1255 void MachineVerifier::visitMachineFunctionAfter() {
   1256   calcRegsPassed();
   1257 
   1258   for (const auto &MBB : *MF) {
   1259     BBInfo &MInfo = MBBInfoMap[&MBB];
   1260 
   1261     // Skip unreachable MBBs.
   1262     if (!MInfo.reachable)
   1263       continue;
   1264 
   1265     checkPHIOps(&MBB);
   1266   }
   1267 
   1268   // Now check liveness info if available
   1269   calcRegsRequired();
   1270 
   1271   // Check for killed virtual registers that should be live out.
   1272   for (const auto &MBB : *MF) {
   1273     BBInfo &MInfo = MBBInfoMap[&MBB];
   1274     for (RegSet::iterator
   1275          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
   1276          ++I)
   1277       if (MInfo.regsKilled.count(*I)) {
   1278         report("Virtual register killed in block, but needed live out.", &MBB);
   1279         *OS << "Virtual register " << PrintReg(*I)
   1280             << " is used after the block.\n";
   1281       }
   1282   }
   1283 
   1284   if (!MF->empty()) {
   1285     BBInfo &MInfo = MBBInfoMap[&MF->front()];
   1286     for (RegSet::iterator
   1287          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
   1288          ++I)
   1289       report("Virtual register def doesn't dominate all uses.",
   1290              MRI->getVRegDef(*I));
   1291   }
   1292 
   1293   if (LiveVars)
   1294     verifyLiveVariables();
   1295   if (LiveInts)
   1296     verifyLiveIntervals();
   1297 }
   1298 
   1299 void MachineVerifier::verifyLiveVariables() {
   1300   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
   1301   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1302     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
   1303     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
   1304     for (const auto &MBB : *MF) {
   1305       BBInfo &MInfo = MBBInfoMap[&MBB];
   1306 
   1307       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
   1308       if (MInfo.vregsRequired.count(Reg)) {
   1309         if (!VI.AliveBlocks.test(MBB.getNumber())) {
   1310           report("LiveVariables: Block missing from AliveBlocks", &MBB);
   1311           *OS << "Virtual register " << PrintReg(Reg)
   1312               << " must be live through the block.\n";
   1313         }
   1314       } else {
   1315         if (VI.AliveBlocks.test(MBB.getNumber())) {
   1316           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
   1317           *OS << "Virtual register " << PrintReg(Reg)
   1318               << " is not needed live through the block.\n";
   1319         }
   1320       }
   1321     }
   1322   }
   1323 }
   1324 
   1325 void MachineVerifier::verifyLiveIntervals() {
   1326   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
   1327   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1328     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
   1329 
   1330     // Spilling and splitting may leave unused registers around. Skip them.
   1331     if (MRI->reg_nodbg_empty(Reg))
   1332       continue;
   1333 
   1334     if (!LiveInts->hasInterval(Reg)) {
   1335       report("Missing live interval for virtual register", MF);
   1336       *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
   1337       continue;
   1338     }
   1339 
   1340     const LiveInterval &LI = LiveInts->getInterval(Reg);
   1341     assert(Reg == LI.reg && "Invalid reg to interval mapping");
   1342     verifyLiveInterval(LI);
   1343   }
   1344 
   1345   // Verify all the cached regunit intervals.
   1346   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
   1347     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
   1348       verifyLiveRange(*LR, i);
   1349 }
   1350 
   1351 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
   1352                                            const VNInfo *VNI,
   1353                                            unsigned Reg) {
   1354   if (VNI->isUnused())
   1355     return;
   1356 
   1357   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
   1358 
   1359   if (!DefVNI) {
   1360     report("Valno not live at def and not marked unused", MF, LR);
   1361     *OS << "Valno #" << VNI->id << '\n';
   1362     return;
   1363   }
   1364 
   1365   if (DefVNI != VNI) {
   1366     report("Live segment at def has different valno", MF, LR);
   1367     *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1368         << " where valno #" << DefVNI->id << " is live\n";
   1369     return;
   1370   }
   1371 
   1372   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
   1373   if (!MBB) {
   1374     report("Invalid definition index", MF, LR);
   1375     *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1376         << " in " << LR << '\n';
   1377     return;
   1378   }
   1379 
   1380   if (VNI->isPHIDef()) {
   1381     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
   1382       report("PHIDef value is not defined at MBB start", MBB, LR);
   1383       *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
   1384           << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
   1385     }
   1386     return;
   1387   }
   1388 
   1389   // Non-PHI def.
   1390   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
   1391   if (!MI) {
   1392     report("No instruction at def index", MBB, LR);
   1393     *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
   1394     return;
   1395   }
   1396 
   1397   if (Reg != 0) {
   1398     bool hasDef = false;
   1399     bool isEarlyClobber = false;
   1400     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
   1401       if (!MOI->isReg() || !MOI->isDef())
   1402         continue;
   1403       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1404         if (MOI->getReg() != Reg)
   1405           continue;
   1406       } else {
   1407         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
   1408             !TRI->hasRegUnit(MOI->getReg(), Reg))
   1409           continue;
   1410       }
   1411       hasDef = true;
   1412       if (MOI->isEarlyClobber())
   1413         isEarlyClobber = true;
   1414     }
   1415 
   1416     if (!hasDef) {
   1417       report("Defining instruction does not modify register", MI);
   1418       *OS << "Valno #" << VNI->id << " in " << LR << '\n';
   1419     }
   1420 
   1421     // Early clobber defs begin at USE slots, but other defs must begin at
   1422     // DEF slots.
   1423     if (isEarlyClobber) {
   1424       if (!VNI->def.isEarlyClobber()) {
   1425         report("Early clobber def must be at an early-clobber slot", MBB, LR);
   1426         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
   1427       }
   1428     } else if (!VNI->def.isRegister()) {
   1429       report("Non-PHI, non-early clobber def must be at a register slot",
   1430              MBB, LR);
   1431       *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
   1432     }
   1433   }
   1434 }
   1435 
   1436 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
   1437                                              const LiveRange::const_iterator I,
   1438                                              unsigned Reg) {
   1439   const LiveRange::Segment &S = *I;
   1440   const VNInfo *VNI = S.valno;
   1441   assert(VNI && "Live segment has no valno");
   1442 
   1443   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
   1444     report("Foreign valno in live segment", MF, LR);
   1445     *OS << S << " has a bad valno\n";
   1446   }
   1447 
   1448   if (VNI->isUnused()) {
   1449     report("Live segment valno is marked unused", MF, LR);
   1450     *OS << S << '\n';
   1451   }
   1452 
   1453   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
   1454   if (!MBB) {
   1455     report("Bad start of live segment, no basic block", MF, LR);
   1456     *OS << S << '\n';
   1457     return;
   1458   }
   1459   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
   1460   if (S.start != MBBStartIdx && S.start != VNI->def) {
   1461     report("Live segment must begin at MBB entry or valno def", MBB, LR);
   1462     *OS << S << '\n';
   1463   }
   1464 
   1465   const MachineBasicBlock *EndMBB =
   1466     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
   1467   if (!EndMBB) {
   1468     report("Bad end of live segment, no basic block", MF, LR);
   1469     *OS << S << '\n';
   1470     return;
   1471   }
   1472 
   1473   // No more checks for live-out segments.
   1474   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
   1475     return;
   1476 
   1477   // RegUnit intervals are allowed dead phis.
   1478   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
   1479       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
   1480     return;
   1481 
   1482   // The live segment is ending inside EndMBB
   1483   const MachineInstr *MI =
   1484     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
   1485   if (!MI) {
   1486     report("Live segment doesn't end at a valid instruction", EndMBB, LR);
   1487     *OS << S << '\n';
   1488     return;
   1489   }
   1490 
   1491   // The block slot must refer to a basic block boundary.
   1492   if (S.end.isBlock()) {
   1493     report("Live segment ends at B slot of an instruction", EndMBB, LR);
   1494     *OS << S << '\n';
   1495   }
   1496 
   1497   if (S.end.isDead()) {
   1498     // Segment ends on the dead slot.
   1499     // That means there must be a dead def.
   1500     if (!SlotIndex::isSameInstr(S.start, S.end)) {
   1501       report("Live segment ending at dead slot spans instructions", EndMBB, LR);
   1502       *OS << S << '\n';
   1503     }
   1504   }
   1505 
   1506   // A live segment can only end at an early-clobber slot if it is being
   1507   // redefined by an early-clobber def.
   1508   if (S.end.isEarlyClobber()) {
   1509     if (I+1 == LR.end() || (I+1)->start != S.end) {
   1510       report("Live segment ending at early clobber slot must be "
   1511              "redefined by an EC def in the same instruction", EndMBB, LR);
   1512       *OS << S << '\n';
   1513     }
   1514   }
   1515 
   1516   // The following checks only apply to virtual registers. Physreg liveness
   1517   // is too weird to check.
   1518   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1519     // A live segment can end with either a redefinition, a kill flag on a
   1520     // use, or a dead flag on a def.
   1521     bool hasRead = false;
   1522     for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
   1523       if (!MOI->isReg() || MOI->getReg() != Reg)
   1524         continue;
   1525       if (MOI->readsReg())
   1526         hasRead = true;
   1527     }
   1528     if (!S.end.isDead()) {
   1529       if (!hasRead) {
   1530         report("Instruction ending live segment doesn't read the register", MI);
   1531         *OS << S << " in " << LR << '\n';
   1532       }
   1533     }
   1534   }
   1535 
   1536   // Now check all the basic blocks in this live segment.
   1537   MachineFunction::const_iterator MFI = MBB;
   1538   // Is this live segment the beginning of a non-PHIDef VN?
   1539   if (S.start == VNI->def && !VNI->isPHIDef()) {
   1540     // Not live-in to any blocks.
   1541     if (MBB == EndMBB)
   1542       return;
   1543     // Skip this block.
   1544     ++MFI;
   1545   }
   1546   for (;;) {
   1547     assert(LiveInts->isLiveInToMBB(LR, MFI));
   1548     // We don't know how to track physregs into a landing pad.
   1549     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
   1550         MFI->isLandingPad()) {
   1551       if (&*MFI == EndMBB)
   1552         break;
   1553       ++MFI;
   1554       continue;
   1555     }
   1556 
   1557     // Is VNI a PHI-def in the current block?
   1558     bool IsPHI = VNI->isPHIDef() &&
   1559       VNI->def == LiveInts->getMBBStartIdx(MFI);
   1560 
   1561     // Check that VNI is live-out of all predecessors.
   1562     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
   1563          PE = MFI->pred_end(); PI != PE; ++PI) {
   1564       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
   1565       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
   1566 
   1567       // All predecessors must have a live-out value.
   1568       if (!PVNI) {
   1569         report("Register not marked live out of predecessor", *PI, LR);
   1570         *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
   1571             << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
   1572             << PEnd << '\n';
   1573         continue;
   1574       }
   1575 
   1576       // Only PHI-defs can take different predecessor values.
   1577       if (!IsPHI && PVNI != VNI) {
   1578         report("Different value live out of predecessor", *PI, LR);
   1579         *OS << "Valno #" << PVNI->id << " live out of BB#"
   1580             << (*PI)->getNumber() << '@' << PEnd
   1581             << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
   1582             << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
   1583       }
   1584     }
   1585     if (&*MFI == EndMBB)
   1586       break;
   1587     ++MFI;
   1588   }
   1589 }
   1590 
   1591 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
   1592   for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
   1593        I != E; ++I)
   1594     verifyLiveRangeValue(LR, *I, Reg);
   1595 
   1596   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
   1597     verifyLiveRangeSegment(LR, I, Reg);
   1598 }
   1599 
   1600 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
   1601   verifyLiveRange(LI, LI.reg);
   1602 
   1603   // Check the LI only has one connected component.
   1604   if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
   1605     ConnectedVNInfoEqClasses ConEQ(*LiveInts);
   1606     unsigned NumComp = ConEQ.Classify(&LI);
   1607     if (NumComp > 1) {
   1608       report("Multiple connected components in live interval", MF, LI);
   1609       for (unsigned comp = 0; comp != NumComp; ++comp) {
   1610         *OS << comp << ": valnos";
   1611         for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
   1612              E = LI.vni_end(); I!=E; ++I)
   1613           if (comp == ConEQ.getEqClass(*I))
   1614             *OS << ' ' << (*I)->id;
   1615         *OS << '\n';
   1616       }
   1617     }
   1618   }
   1619 }
   1620 
   1621 namespace {
   1622   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
   1623   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
   1624   // value is zero.
   1625   // We use a bool plus an integer to capture the stack state.
   1626   struct StackStateOfBB {
   1627     StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
   1628       ExitIsSetup(false) { }
   1629     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
   1630       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
   1631       ExitIsSetup(ExitSetup) { }
   1632     // Can be negative, which means we are setting up a frame.
   1633     int EntryValue;
   1634     int ExitValue;
   1635     bool EntryIsSetup;
   1636     bool ExitIsSetup;
   1637   };
   1638 }
   1639 
   1640 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
   1641 /// by a FrameDestroy <n>, stack adjustments are identical on all
   1642 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
   1643 void MachineVerifier::verifyStackFrame() {
   1644   int FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
   1645   int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
   1646 
   1647   SmallVector<StackStateOfBB, 8> SPState;
   1648   SPState.resize(MF->getNumBlockIDs());
   1649   SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
   1650 
   1651   // Visit the MBBs in DFS order.
   1652   for (df_ext_iterator<const MachineFunction*,
   1653                        SmallPtrSet<const MachineBasicBlock*, 8> >
   1654        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
   1655        DFI != DFE; ++DFI) {
   1656     const MachineBasicBlock *MBB = *DFI;
   1657 
   1658     StackStateOfBB BBState;
   1659     // Check the exit state of the DFS stack predecessor.
   1660     if (DFI.getPathLength() >= 2) {
   1661       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
   1662       assert(Reachable.count(StackPred) &&
   1663              "DFS stack predecessor is already visited.\n");
   1664       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
   1665       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
   1666       BBState.ExitValue = BBState.EntryValue;
   1667       BBState.ExitIsSetup = BBState.EntryIsSetup;
   1668     }
   1669 
   1670     // Update stack state by checking contents of MBB.
   1671     for (const auto &I : *MBB) {
   1672       if (I.getOpcode() == FrameSetupOpcode) {
   1673         // The first operand of a FrameOpcode should be i32.
   1674         int Size = I.getOperand(0).getImm();
   1675         assert(Size >= 0 &&
   1676           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
   1677 
   1678         if (BBState.ExitIsSetup)
   1679           report("FrameSetup is after another FrameSetup", &I);
   1680         BBState.ExitValue -= Size;
   1681         BBState.ExitIsSetup = true;
   1682       }
   1683 
   1684       if (I.getOpcode() == FrameDestroyOpcode) {
   1685         // The first operand of a FrameOpcode should be i32.
   1686         int Size = I.getOperand(0).getImm();
   1687         assert(Size >= 0 &&
   1688           "Value should be non-negative in FrameSetup and FrameDestroy.\n");
   1689 
   1690         if (!BBState.ExitIsSetup)
   1691           report("FrameDestroy is not after a FrameSetup", &I);
   1692         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
   1693                                                BBState.ExitValue;
   1694         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
   1695           report("FrameDestroy <n> is after FrameSetup <m>", &I);
   1696           *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
   1697               << AbsSPAdj << ">.\n";
   1698         }
   1699         BBState.ExitValue += Size;
   1700         BBState.ExitIsSetup = false;
   1701       }
   1702     }
   1703     SPState[MBB->getNumber()] = BBState;
   1704 
   1705     // Make sure the exit state of any predecessor is consistent with the entry
   1706     // state.
   1707     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
   1708          E = MBB->pred_end(); I != E; ++I) {
   1709       if (Reachable.count(*I) &&
   1710           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
   1711            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
   1712         report("The exit stack state of a predecessor is inconsistent.", MBB);
   1713         *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
   1714             << SPState[(*I)->getNumber()].ExitValue << ", "
   1715             << SPState[(*I)->getNumber()].ExitIsSetup
   1716             << "), while BB#" << MBB->getNumber() << " has entry state ("
   1717             << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
   1718       }
   1719     }
   1720 
   1721     // Make sure the entry state of any successor is consistent with the exit
   1722     // state.
   1723     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
   1724          E = MBB->succ_end(); I != E; ++I) {
   1725       if (Reachable.count(*I) &&
   1726           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
   1727            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
   1728         report("The entry stack state of a successor is inconsistent.", MBB);
   1729         *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
   1730             << SPState[(*I)->getNumber()].EntryValue << ", "
   1731             << SPState[(*I)->getNumber()].EntryIsSetup
   1732             << "), while BB#" << MBB->getNumber() << " has exit state ("
   1733             << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
   1734       }
   1735     }
   1736 
   1737     // Make sure a basic block with return ends with zero stack adjustment.
   1738     if (!MBB->empty() && MBB->back().isReturn()) {
   1739       if (BBState.ExitIsSetup)
   1740         report("A return block ends with a FrameSetup.", MBB);
   1741       if (BBState.ExitValue)
   1742         report("A return block ends with a nonzero stack adjustment.", MBB);
   1743     }
   1744   }
   1745 }
   1746