Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using // it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
     41 //       of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #include "llvm/Transforms/Scalar.h"
     57 #include "llvm/ADT/DenseSet.h"
     58 #include "llvm/ADT/Hashing.h"
     59 #include "llvm/ADT/STLExtras.h"
     60 #include "llvm/ADT/SetVector.h"
     61 #include "llvm/ADT/SmallBitVector.h"
     62 #include "llvm/Analysis/IVUsers.h"
     63 #include "llvm/Analysis/LoopPass.h"
     64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     65 #include "llvm/Analysis/TargetTransformInfo.h"
     66 #include "llvm/IR/Constants.h"
     67 #include "llvm/IR/DerivedTypes.h"
     68 #include "llvm/IR/Dominators.h"
     69 #include "llvm/IR/Instructions.h"
     70 #include "llvm/IR/IntrinsicInst.h"
     71 #include "llvm/IR/ValueHandle.h"
     72 #include "llvm/Support/CommandLine.h"
     73 #include "llvm/Support/Debug.h"
     74 #include "llvm/Support/raw_ostream.h"
     75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     76 #include "llvm/Transforms/Utils/Local.h"
     77 #include <algorithm>
     78 using namespace llvm;
     79 
     80 #define DEBUG_TYPE "loop-reduce"
     81 
     82 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     83 /// bail out. This threshold is far beyond the number of users that LSR can
     84 /// conceivably solve, so it should not affect generated code, but catches the
     85 /// worst cases before LSR burns too much compile time and stack space.
     86 static const unsigned MaxIVUsers = 200;
     87 
     88 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     89 // It's currently disabled until we can determine whether it's truly useful or
     90 // not. The flag should be removed after the v3.0 release.
     91 // This is now needed for ivchains.
     92 static cl::opt<bool> EnablePhiElim(
     93   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     94   cl::desc("Enable LSR phi elimination"));
     95 
     96 #ifndef NDEBUG
     97 // Stress test IV chain generation.
     98 static cl::opt<bool> StressIVChain(
     99   "stress-ivchain", cl::Hidden, cl::init(false),
    100   cl::desc("Stress test LSR IV chains"));
    101 #else
    102 static bool StressIVChain = false;
    103 #endif
    104 
    105 namespace {
    106 
    107 /// RegSortData - This class holds data which is used to order reuse candidates.
    108 class RegSortData {
    109 public:
    110   /// UsedByIndices - This represents the set of LSRUse indices which reference
    111   /// a particular register.
    112   SmallBitVector UsedByIndices;
    113 
    114   RegSortData() {}
    115 
    116   void print(raw_ostream &OS) const;
    117   void dump() const;
    118 };
    119 
    120 }
    121 
    122 void RegSortData::print(raw_ostream &OS) const {
    123   OS << "[NumUses=" << UsedByIndices.count() << ']';
    124 }
    125 
    126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    127 void RegSortData::dump() const {
    128   print(errs()); errs() << '\n';
    129 }
    130 #endif
    131 
    132 namespace {
    133 
    134 /// RegUseTracker - Map register candidates to information about how they are
    135 /// used.
    136 class RegUseTracker {
    137   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    138 
    139   RegUsesTy RegUsesMap;
    140   SmallVector<const SCEV *, 16> RegSequence;
    141 
    142 public:
    143   void CountRegister(const SCEV *Reg, size_t LUIdx);
    144   void DropRegister(const SCEV *Reg, size_t LUIdx);
    145   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    146 
    147   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    148 
    149   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    150 
    151   void clear();
    152 
    153   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    154   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    155   iterator begin() { return RegSequence.begin(); }
    156   iterator end()   { return RegSequence.end(); }
    157   const_iterator begin() const { return RegSequence.begin(); }
    158   const_iterator end() const   { return RegSequence.end(); }
    159 };
    160 
    161 }
    162 
    163 void
    164 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
    165   std::pair<RegUsesTy::iterator, bool> Pair =
    166     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    167   RegSortData &RSD = Pair.first->second;
    168   if (Pair.second)
    169     RegSequence.push_back(Reg);
    170   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    171   RSD.UsedByIndices.set(LUIdx);
    172 }
    173 
    174 void
    175 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
    176   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    177   assert(It != RegUsesMap.end());
    178   RegSortData &RSD = It->second;
    179   assert(RSD.UsedByIndices.size() > LUIdx);
    180   RSD.UsedByIndices.reset(LUIdx);
    181 }
    182 
    183 void
    184 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    185   assert(LUIdx <= LastLUIdx);
    186 
    187   // Update RegUses. The data structure is not optimized for this purpose;
    188   // we must iterate through it and update each of the bit vectors.
    189   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
    190        I != E; ++I) {
    191     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    192     if (LUIdx < UsedByIndices.size())
    193       UsedByIndices[LUIdx] =
    194         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    195     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    196   }
    197 }
    198 
    199 bool
    200 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    201   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    202   if (I == RegUsesMap.end())
    203     return false;
    204   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    205   int i = UsedByIndices.find_first();
    206   if (i == -1) return false;
    207   if ((size_t)i != LUIdx) return true;
    208   return UsedByIndices.find_next(i) != -1;
    209 }
    210 
    211 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    212   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    213   assert(I != RegUsesMap.end() && "Unknown register!");
    214   return I->second.UsedByIndices;
    215 }
    216 
    217 void RegUseTracker::clear() {
    218   RegUsesMap.clear();
    219   RegSequence.clear();
    220 }
    221 
    222 namespace {
    223 
    224 /// Formula - This class holds information that describes a formula for
    225 /// computing satisfying a use. It may include broken-out immediates and scaled
    226 /// registers.
    227 struct Formula {
    228   /// Global base address used for complex addressing.
    229   GlobalValue *BaseGV;
    230 
    231   /// Base offset for complex addressing.
    232   int64_t BaseOffset;
    233 
    234   /// Whether any complex addressing has a base register.
    235   bool HasBaseReg;
    236 
    237   /// The scale of any complex addressing.
    238   int64_t Scale;
    239 
    240   /// BaseRegs - The list of "base" registers for this use. When this is
    241   /// non-empty. The canonical representation of a formula is
    242   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
    243   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
    244   /// #1 enforces that the scaled register is always used when at least two
    245   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
    246   /// #2 enforces that 1 * reg is reg.
    247   /// This invariant can be temporarly broken while building a formula.
    248   /// However, every formula inserted into the LSRInstance must be in canonical
    249   /// form.
    250   SmallVector<const SCEV *, 4> BaseRegs;
    251 
    252   /// ScaledReg - The 'scaled' register for this use. This should be non-null
    253   /// when Scale is not zero.
    254   const SCEV *ScaledReg;
    255 
    256   /// UnfoldedOffset - An additional constant offset which added near the
    257   /// use. This requires a temporary register, but the offset itself can
    258   /// live in an add immediate field rather than a register.
    259   int64_t UnfoldedOffset;
    260 
    261   Formula()
    262       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
    263         ScaledReg(nullptr), UnfoldedOffset(0) {}
    264 
    265   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    266 
    267   bool isCanonical() const;
    268 
    269   void Canonicalize();
    270 
    271   bool Unscale();
    272 
    273   size_t getNumRegs() const;
    274   Type *getType() const;
    275 
    276   void DeleteBaseReg(const SCEV *&S);
    277 
    278   bool referencesReg(const SCEV *S) const;
    279   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    280                                   const RegUseTracker &RegUses) const;
    281 
    282   void print(raw_ostream &OS) const;
    283   void dump() const;
    284 };
    285 
    286 }
    287 
    288 /// DoInitialMatch - Recursion helper for InitialMatch.
    289 static void DoInitialMatch(const SCEV *S, Loop *L,
    290                            SmallVectorImpl<const SCEV *> &Good,
    291                            SmallVectorImpl<const SCEV *> &Bad,
    292                            ScalarEvolution &SE) {
    293   // Collect expressions which properly dominate the loop header.
    294   if (SE.properlyDominates(S, L->getHeader())) {
    295     Good.push_back(S);
    296     return;
    297   }
    298 
    299   // Look at add operands.
    300   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    301     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    302          I != E; ++I)
    303       DoInitialMatch(*I, L, Good, Bad, SE);
    304     return;
    305   }
    306 
    307   // Look at addrec operands.
    308   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    309     if (!AR->getStart()->isZero()) {
    310       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    311       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    312                                       AR->getStepRecurrence(SE),
    313                                       // FIXME: AR->getNoWrapFlags()
    314                                       AR->getLoop(), SCEV::FlagAnyWrap),
    315                      L, Good, Bad, SE);
    316       return;
    317     }
    318 
    319   // Handle a multiplication by -1 (negation) if it didn't fold.
    320   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    321     if (Mul->getOperand(0)->isAllOnesValue()) {
    322       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    323       const SCEV *NewMul = SE.getMulExpr(Ops);
    324 
    325       SmallVector<const SCEV *, 4> MyGood;
    326       SmallVector<const SCEV *, 4> MyBad;
    327       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    328       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    329         SE.getEffectiveSCEVType(NewMul->getType())));
    330       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
    331            E = MyGood.end(); I != E; ++I)
    332         Good.push_back(SE.getMulExpr(NegOne, *I));
    333       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
    334            E = MyBad.end(); I != E; ++I)
    335         Bad.push_back(SE.getMulExpr(NegOne, *I));
    336       return;
    337     }
    338 
    339   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    340   // register and hope for the best.
    341   Bad.push_back(S);
    342 }
    343 
    344 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
    345 /// attempting to keep all loop-invariant and loop-computable values in a
    346 /// single base register.
    347 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    348   SmallVector<const SCEV *, 4> Good;
    349   SmallVector<const SCEV *, 4> Bad;
    350   DoInitialMatch(S, L, Good, Bad, SE);
    351   if (!Good.empty()) {
    352     const SCEV *Sum = SE.getAddExpr(Good);
    353     if (!Sum->isZero())
    354       BaseRegs.push_back(Sum);
    355     HasBaseReg = true;
    356   }
    357   if (!Bad.empty()) {
    358     const SCEV *Sum = SE.getAddExpr(Bad);
    359     if (!Sum->isZero())
    360       BaseRegs.push_back(Sum);
    361     HasBaseReg = true;
    362   }
    363   Canonicalize();
    364 }
    365 
    366 /// \brief Check whether or not this formula statisfies the canonical
    367 /// representation.
    368 /// \see Formula::BaseRegs.
    369 bool Formula::isCanonical() const {
    370   if (ScaledReg)
    371     return Scale != 1 || !BaseRegs.empty();
    372   return BaseRegs.size() <= 1;
    373 }
    374 
    375 /// \brief Helper method to morph a formula into its canonical representation.
    376 /// \see Formula::BaseRegs.
    377 /// Every formula having more than one base register, must use the ScaledReg
    378 /// field. Otherwise, we would have to do special cases everywhere in LSR
    379 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
    380 /// On the other hand, 1*reg should be canonicalized into reg.
    381 void Formula::Canonicalize() {
    382   if (isCanonical())
    383     return;
    384   // So far we did not need this case. This is easy to implement but it is
    385   // useless to maintain dead code. Beside it could hurt compile time.
    386   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
    387   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
    388   ScaledReg = BaseRegs.back();
    389   BaseRegs.pop_back();
    390   Scale = 1;
    391   size_t BaseRegsSize = BaseRegs.size();
    392   size_t Try = 0;
    393   // If ScaledReg is an invariant, try to find a variant expression.
    394   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
    395     std::swap(ScaledReg, BaseRegs[Try++]);
    396 }
    397 
    398 /// \brief Get rid of the scale in the formula.
    399 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
    400 /// \return true if it was possible to get rid of the scale, false otherwise.
    401 /// \note After this operation the formula may not be in the canonical form.
    402 bool Formula::Unscale() {
    403   if (Scale != 1)
    404     return false;
    405   Scale = 0;
    406   BaseRegs.push_back(ScaledReg);
    407   ScaledReg = nullptr;
    408   return true;
    409 }
    410 
    411 /// getNumRegs - Return the total number of register operands used by this
    412 /// formula. This does not include register uses implied by non-constant
    413 /// addrec strides.
    414 size_t Formula::getNumRegs() const {
    415   return !!ScaledReg + BaseRegs.size();
    416 }
    417 
    418 /// getType - Return the type of this formula, if it has one, or null
    419 /// otherwise. This type is meaningless except for the bit size.
    420 Type *Formula::getType() const {
    421   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    422          ScaledReg ? ScaledReg->getType() :
    423          BaseGV ? BaseGV->getType() :
    424          nullptr;
    425 }
    426 
    427 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
    428 void Formula::DeleteBaseReg(const SCEV *&S) {
    429   if (&S != &BaseRegs.back())
    430     std::swap(S, BaseRegs.back());
    431   BaseRegs.pop_back();
    432 }
    433 
    434 /// referencesReg - Test if this formula references the given register.
    435 bool Formula::referencesReg(const SCEV *S) const {
    436   return S == ScaledReg ||
    437          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    438 }
    439 
    440 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
    441 /// which are used by uses other than the use with the given index.
    442 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    443                                          const RegUseTracker &RegUses) const {
    444   if (ScaledReg)
    445     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    446       return true;
    447   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    448        E = BaseRegs.end(); I != E; ++I)
    449     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
    450       return true;
    451   return false;
    452 }
    453 
    454 void Formula::print(raw_ostream &OS) const {
    455   bool First = true;
    456   if (BaseGV) {
    457     if (!First) OS << " + "; else First = false;
    458     BaseGV->printAsOperand(OS, /*PrintType=*/false);
    459   }
    460   if (BaseOffset != 0) {
    461     if (!First) OS << " + "; else First = false;
    462     OS << BaseOffset;
    463   }
    464   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    465        E = BaseRegs.end(); I != E; ++I) {
    466     if (!First) OS << " + "; else First = false;
    467     OS << "reg(" << **I << ')';
    468   }
    469   if (HasBaseReg && BaseRegs.empty()) {
    470     if (!First) OS << " + "; else First = false;
    471     OS << "**error: HasBaseReg**";
    472   } else if (!HasBaseReg && !BaseRegs.empty()) {
    473     if (!First) OS << " + "; else First = false;
    474     OS << "**error: !HasBaseReg**";
    475   }
    476   if (Scale != 0) {
    477     if (!First) OS << " + "; else First = false;
    478     OS << Scale << "*reg(";
    479     if (ScaledReg)
    480       OS << *ScaledReg;
    481     else
    482       OS << "<unknown>";
    483     OS << ')';
    484   }
    485   if (UnfoldedOffset != 0) {
    486     if (!First) OS << " + ";
    487     OS << "imm(" << UnfoldedOffset << ')';
    488   }
    489 }
    490 
    491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    492 void Formula::dump() const {
    493   print(errs()); errs() << '\n';
    494 }
    495 #endif
    496 
    497 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
    498 /// without changing its value.
    499 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    500   Type *WideTy =
    501     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    502   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    503 }
    504 
    505 /// isAddSExtable - Return true if the given add can be sign-extended
    506 /// without changing its value.
    507 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    508   Type *WideTy =
    509     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    510   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    511 }
    512 
    513 /// isMulSExtable - Return true if the given mul can be sign-extended
    514 /// without changing its value.
    515 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    516   Type *WideTy =
    517     IntegerType::get(SE.getContext(),
    518                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    519   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    520 }
    521 
    522 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
    523 /// and if the remainder is known to be zero,  or null otherwise. If
    524 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
    525 /// to Y, ignoring that the multiplication may overflow, which is useful when
    526 /// the result will be used in a context where the most significant bits are
    527 /// ignored.
    528 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    529                                 ScalarEvolution &SE,
    530                                 bool IgnoreSignificantBits = false) {
    531   // Handle the trivial case, which works for any SCEV type.
    532   if (LHS == RHS)
    533     return SE.getConstant(LHS->getType(), 1);
    534 
    535   // Handle a few RHS special cases.
    536   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    537   if (RC) {
    538     const APInt &RA = RC->getValue()->getValue();
    539     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    540     // some folding.
    541     if (RA.isAllOnesValue())
    542       return SE.getMulExpr(LHS, RC);
    543     // Handle x /s 1 as x.
    544     if (RA == 1)
    545       return LHS;
    546   }
    547 
    548   // Check for a division of a constant by a constant.
    549   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    550     if (!RC)
    551       return nullptr;
    552     const APInt &LA = C->getValue()->getValue();
    553     const APInt &RA = RC->getValue()->getValue();
    554     if (LA.srem(RA) != 0)
    555       return nullptr;
    556     return SE.getConstant(LA.sdiv(RA));
    557   }
    558 
    559   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    560   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    561     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    562       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    563                                       IgnoreSignificantBits);
    564       if (!Step) return nullptr;
    565       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    566                                        IgnoreSignificantBits);
    567       if (!Start) return nullptr;
    568       // FlagNW is independent of the start value, step direction, and is
    569       // preserved with smaller magnitude steps.
    570       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    571       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    572     }
    573     return nullptr;
    574   }
    575 
    576   // Distribute the sdiv over add operands, if the add doesn't overflow.
    577   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    578     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    579       SmallVector<const SCEV *, 8> Ops;
    580       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    581            I != E; ++I) {
    582         const SCEV *Op = getExactSDiv(*I, RHS, SE,
    583                                       IgnoreSignificantBits);
    584         if (!Op) return nullptr;
    585         Ops.push_back(Op);
    586       }
    587       return SE.getAddExpr(Ops);
    588     }
    589     return nullptr;
    590   }
    591 
    592   // Check for a multiply operand that we can pull RHS out of.
    593   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    594     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    595       SmallVector<const SCEV *, 4> Ops;
    596       bool Found = false;
    597       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
    598            I != E; ++I) {
    599         const SCEV *S = *I;
    600         if (!Found)
    601           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    602                                            IgnoreSignificantBits)) {
    603             S = Q;
    604             Found = true;
    605           }
    606         Ops.push_back(S);
    607       }
    608       return Found ? SE.getMulExpr(Ops) : nullptr;
    609     }
    610     return nullptr;
    611   }
    612 
    613   // Otherwise we don't know.
    614   return nullptr;
    615 }
    616 
    617 /// ExtractImmediate - If S involves the addition of a constant integer value,
    618 /// return that integer value, and mutate S to point to a new SCEV with that
    619 /// value excluded.
    620 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    621   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    622     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
    623       S = SE.getConstant(C->getType(), 0);
    624       return C->getValue()->getSExtValue();
    625     }
    626   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    627     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    628     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    629     if (Result != 0)
    630       S = SE.getAddExpr(NewOps);
    631     return Result;
    632   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    633     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    634     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    635     if (Result != 0)
    636       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    637                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    638                            SCEV::FlagAnyWrap);
    639     return Result;
    640   }
    641   return 0;
    642 }
    643 
    644 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
    645 /// return that symbol, and mutate S to point to a new SCEV with that
    646 /// value excluded.
    647 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    648   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    649     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    650       S = SE.getConstant(GV->getType(), 0);
    651       return GV;
    652     }
    653   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    654     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    655     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    656     if (Result)
    657       S = SE.getAddExpr(NewOps);
    658     return Result;
    659   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    660     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    661     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    662     if (Result)
    663       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    664                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    665                            SCEV::FlagAnyWrap);
    666     return Result;
    667   }
    668   return nullptr;
    669 }
    670 
    671 /// isAddressUse - Returns true if the specified instruction is using the
    672 /// specified value as an address.
    673 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    674   bool isAddress = isa<LoadInst>(Inst);
    675   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    676     if (SI->getOperand(1) == OperandVal)
    677       isAddress = true;
    678   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    679     // Addressing modes can also be folded into prefetches and a variety
    680     // of intrinsics.
    681     switch (II->getIntrinsicID()) {
    682       default: break;
    683       case Intrinsic::prefetch:
    684       case Intrinsic::x86_sse_storeu_ps:
    685       case Intrinsic::x86_sse2_storeu_pd:
    686       case Intrinsic::x86_sse2_storeu_dq:
    687       case Intrinsic::x86_sse2_storel_dq:
    688         if (II->getArgOperand(0) == OperandVal)
    689           isAddress = true;
    690         break;
    691     }
    692   }
    693   return isAddress;
    694 }
    695 
    696 /// getAccessType - Return the type of the memory being accessed.
    697 static Type *getAccessType(const Instruction *Inst) {
    698   Type *AccessTy = Inst->getType();
    699   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    700     AccessTy = SI->getOperand(0)->getType();
    701   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    702     // Addressing modes can also be folded into prefetches and a variety
    703     // of intrinsics.
    704     switch (II->getIntrinsicID()) {
    705     default: break;
    706     case Intrinsic::x86_sse_storeu_ps:
    707     case Intrinsic::x86_sse2_storeu_pd:
    708     case Intrinsic::x86_sse2_storeu_dq:
    709     case Intrinsic::x86_sse2_storel_dq:
    710       AccessTy = II->getArgOperand(0)->getType();
    711       break;
    712     }
    713   }
    714 
    715   // All pointers have the same requirements, so canonicalize them to an
    716   // arbitrary pointer type to minimize variation.
    717   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    718     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    719                                 PTy->getAddressSpace());
    720 
    721   return AccessTy;
    722 }
    723 
    724 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
    725 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    726   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    727        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    728     if (SE.isSCEVable(PN->getType()) &&
    729         (SE.getEffectiveSCEVType(PN->getType()) ==
    730          SE.getEffectiveSCEVType(AR->getType())) &&
    731         SE.getSCEV(PN) == AR)
    732       return true;
    733   }
    734   return false;
    735 }
    736 
    737 /// Check if expanding this expression is likely to incur significant cost. This
    738 /// is tricky because SCEV doesn't track which expressions are actually computed
    739 /// by the current IR.
    740 ///
    741 /// We currently allow expansion of IV increments that involve adds,
    742 /// multiplication by constants, and AddRecs from existing phis.
    743 ///
    744 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    745 /// obvious multiple of the UDivExpr.
    746 static bool isHighCostExpansion(const SCEV *S,
    747                                 SmallPtrSet<const SCEV*, 8> &Processed,
    748                                 ScalarEvolution &SE) {
    749   // Zero/One operand expressions
    750   switch (S->getSCEVType()) {
    751   case scUnknown:
    752   case scConstant:
    753     return false;
    754   case scTruncate:
    755     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    756                                Processed, SE);
    757   case scZeroExtend:
    758     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    759                                Processed, SE);
    760   case scSignExtend:
    761     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    762                                Processed, SE);
    763   }
    764 
    765   if (!Processed.insert(S))
    766     return false;
    767 
    768   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    769     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    770          I != E; ++I) {
    771       if (isHighCostExpansion(*I, Processed, SE))
    772         return true;
    773     }
    774     return false;
    775   }
    776 
    777   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    778     if (Mul->getNumOperands() == 2) {
    779       // Multiplication by a constant is ok
    780       if (isa<SCEVConstant>(Mul->getOperand(0)))
    781         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    782 
    783       // If we have the value of one operand, check if an existing
    784       // multiplication already generates this expression.
    785       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    786         Value *UVal = U->getValue();
    787         for (User *UR : UVal->users()) {
    788           // If U is a constant, it may be used by a ConstantExpr.
    789           Instruction *UI = dyn_cast<Instruction>(UR);
    790           if (UI && UI->getOpcode() == Instruction::Mul &&
    791               SE.isSCEVable(UI->getType())) {
    792             return SE.getSCEV(UI) == Mul;
    793           }
    794         }
    795       }
    796     }
    797   }
    798 
    799   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    800     if (isExistingPhi(AR, SE))
    801       return false;
    802   }
    803 
    804   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    805   return true;
    806 }
    807 
    808 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
    809 /// specified set are trivially dead, delete them and see if this makes any of
    810 /// their operands subsequently dead.
    811 static bool
    812 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    813   bool Changed = false;
    814 
    815   while (!DeadInsts.empty()) {
    816     Value *V = DeadInsts.pop_back_val();
    817     Instruction *I = dyn_cast_or_null<Instruction>(V);
    818 
    819     if (!I || !isInstructionTriviallyDead(I))
    820       continue;
    821 
    822     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
    823       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
    824         *OI = nullptr;
    825         if (U->use_empty())
    826           DeadInsts.push_back(U);
    827       }
    828 
    829     I->eraseFromParent();
    830     Changed = true;
    831   }
    832 
    833   return Changed;
    834 }
    835 
    836 namespace {
    837 class LSRUse;
    838 }
    839 
    840 /// \brief Check if the addressing mode defined by \p F is completely
    841 /// folded in \p LU at isel time.
    842 /// This includes address-mode folding and special icmp tricks.
    843 /// This function returns true if \p LU can accommodate what \p F
    844 /// defines and up to 1 base + 1 scaled + offset.
    845 /// In other words, if \p F has several base registers, this function may
    846 /// still return true. Therefore, users still need to account for
    847 /// additional base registers and/or unfolded offsets to derive an
    848 /// accurate cost model.
    849 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
    850                                  const LSRUse &LU, const Formula &F);
    851 // Get the cost of the scaling factor used in F for LU.
    852 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
    853                                      const LSRUse &LU, const Formula &F);
    854 
    855 namespace {
    856 
    857 /// Cost - This class is used to measure and compare candidate formulae.
    858 class Cost {
    859   /// TODO: Some of these could be merged. Also, a lexical ordering
    860   /// isn't always optimal.
    861   unsigned NumRegs;
    862   unsigned AddRecCost;
    863   unsigned NumIVMuls;
    864   unsigned NumBaseAdds;
    865   unsigned ImmCost;
    866   unsigned SetupCost;
    867   unsigned ScaleCost;
    868 
    869 public:
    870   Cost()
    871     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    872       SetupCost(0), ScaleCost(0) {}
    873 
    874   bool operator<(const Cost &Other) const;
    875 
    876   void Lose();
    877 
    878 #ifndef NDEBUG
    879   // Once any of the metrics loses, they must all remain losers.
    880   bool isValid() {
    881     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    882              | ImmCost | SetupCost | ScaleCost) != ~0u)
    883       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    884            & ImmCost & SetupCost & ScaleCost) == ~0u);
    885   }
    886 #endif
    887 
    888   bool isLoser() {
    889     assert(isValid() && "invalid cost");
    890     return NumRegs == ~0u;
    891   }
    892 
    893   void RateFormula(const TargetTransformInfo &TTI,
    894                    const Formula &F,
    895                    SmallPtrSet<const SCEV *, 16> &Regs,
    896                    const DenseSet<const SCEV *> &VisitedRegs,
    897                    const Loop *L,
    898                    const SmallVectorImpl<int64_t> &Offsets,
    899                    ScalarEvolution &SE, DominatorTree &DT,
    900                    const LSRUse &LU,
    901                    SmallPtrSet<const SCEV *, 16> *LoserRegs = nullptr);
    902 
    903   void print(raw_ostream &OS) const;
    904   void dump() const;
    905 
    906 private:
    907   void RateRegister(const SCEV *Reg,
    908                     SmallPtrSet<const SCEV *, 16> &Regs,
    909                     const Loop *L,
    910                     ScalarEvolution &SE, DominatorTree &DT);
    911   void RatePrimaryRegister(const SCEV *Reg,
    912                            SmallPtrSet<const SCEV *, 16> &Regs,
    913                            const Loop *L,
    914                            ScalarEvolution &SE, DominatorTree &DT,
    915                            SmallPtrSet<const SCEV *, 16> *LoserRegs);
    916 };
    917 
    918 }
    919 
    920 /// RateRegister - Tally up interesting quantities from the given register.
    921 void Cost::RateRegister(const SCEV *Reg,
    922                         SmallPtrSet<const SCEV *, 16> &Regs,
    923                         const Loop *L,
    924                         ScalarEvolution &SE, DominatorTree &DT) {
    925   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    926     // If this is an addrec for another loop, don't second-guess its addrec phi
    927     // nodes. LSR isn't currently smart enough to reason about more than one
    928     // loop at a time. LSR has already run on inner loops, will not run on outer
    929     // loops, and cannot be expected to change sibling loops.
    930     if (AR->getLoop() != L) {
    931       // If the AddRec exists, consider it's register free and leave it alone.
    932       if (isExistingPhi(AR, SE))
    933         return;
    934 
    935       // Otherwise, do not consider this formula at all.
    936       Lose();
    937       return;
    938     }
    939     AddRecCost += 1; /// TODO: This should be a function of the stride.
    940 
    941     // Add the step value register, if it needs one.
    942     // TODO: The non-affine case isn't precisely modeled here.
    943     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    944       if (!Regs.count(AR->getOperand(1))) {
    945         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    946         if (isLoser())
    947           return;
    948       }
    949     }
    950   }
    951   ++NumRegs;
    952 
    953   // Rough heuristic; favor registers which don't require extra setup
    954   // instructions in the preheader.
    955   if (!isa<SCEVUnknown>(Reg) &&
    956       !isa<SCEVConstant>(Reg) &&
    957       !(isa<SCEVAddRecExpr>(Reg) &&
    958         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    959          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    960     ++SetupCost;
    961 
    962     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    963                  SE.hasComputableLoopEvolution(Reg, L);
    964 }
    965 
    966 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
    967 /// before, rate it. Optional LoserRegs provides a way to declare any formula
    968 /// that refers to one of those regs an instant loser.
    969 void Cost::RatePrimaryRegister(const SCEV *Reg,
    970                                SmallPtrSet<const SCEV *, 16> &Regs,
    971                                const Loop *L,
    972                                ScalarEvolution &SE, DominatorTree &DT,
    973                                SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    974   if (LoserRegs && LoserRegs->count(Reg)) {
    975     Lose();
    976     return;
    977   }
    978   if (Regs.insert(Reg)) {
    979     RateRegister(Reg, Regs, L, SE, DT);
    980     if (LoserRegs && isLoser())
    981       LoserRegs->insert(Reg);
    982   }
    983 }
    984 
    985 void Cost::RateFormula(const TargetTransformInfo &TTI,
    986                        const Formula &F,
    987                        SmallPtrSet<const SCEV *, 16> &Regs,
    988                        const DenseSet<const SCEV *> &VisitedRegs,
    989                        const Loop *L,
    990                        const SmallVectorImpl<int64_t> &Offsets,
    991                        ScalarEvolution &SE, DominatorTree &DT,
    992                        const LSRUse &LU,
    993                        SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    994   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
    995   // Tally up the registers.
    996   if (const SCEV *ScaledReg = F.ScaledReg) {
    997     if (VisitedRegs.count(ScaledReg)) {
    998       Lose();
    999       return;
   1000     }
   1001     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
   1002     if (isLoser())
   1003       return;
   1004   }
   1005   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   1006        E = F.BaseRegs.end(); I != E; ++I) {
   1007     const SCEV *BaseReg = *I;
   1008     if (VisitedRegs.count(BaseReg)) {
   1009       Lose();
   1010       return;
   1011     }
   1012     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
   1013     if (isLoser())
   1014       return;
   1015   }
   1016 
   1017   // Determine how many (unfolded) adds we'll need inside the loop.
   1018   size_t NumBaseParts = F.getNumRegs();
   1019   if (NumBaseParts > 1)
   1020     // Do not count the base and a possible second register if the target
   1021     // allows to fold 2 registers.
   1022     NumBaseAdds +=
   1023         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
   1024   NumBaseAdds += (F.UnfoldedOffset != 0);
   1025 
   1026   // Accumulate non-free scaling amounts.
   1027   ScaleCost += getScalingFactorCost(TTI, LU, F);
   1028 
   1029   // Tally up the non-zero immediates.
   1030   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1031        E = Offsets.end(); I != E; ++I) {
   1032     int64_t Offset = (uint64_t)*I + F.BaseOffset;
   1033     if (F.BaseGV)
   1034       ImmCost += 64; // Handle symbolic values conservatively.
   1035                      // TODO: This should probably be the pointer size.
   1036     else if (Offset != 0)
   1037       ImmCost += APInt(64, Offset, true).getMinSignedBits();
   1038   }
   1039   assert(isValid() && "invalid cost");
   1040 }
   1041 
   1042 /// Lose - Set this cost to a losing value.
   1043 void Cost::Lose() {
   1044   NumRegs = ~0u;
   1045   AddRecCost = ~0u;
   1046   NumIVMuls = ~0u;
   1047   NumBaseAdds = ~0u;
   1048   ImmCost = ~0u;
   1049   SetupCost = ~0u;
   1050   ScaleCost = ~0u;
   1051 }
   1052 
   1053 /// operator< - Choose the lower cost.
   1054 bool Cost::operator<(const Cost &Other) const {
   1055   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
   1056                   ImmCost, SetupCost) <
   1057          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
   1058                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
   1059                   Other.SetupCost);
   1060 }
   1061 
   1062 void Cost::print(raw_ostream &OS) const {
   1063   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
   1064   if (AddRecCost != 0)
   1065     OS << ", with addrec cost " << AddRecCost;
   1066   if (NumIVMuls != 0)
   1067     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
   1068   if (NumBaseAdds != 0)
   1069     OS << ", plus " << NumBaseAdds << " base add"
   1070        << (NumBaseAdds == 1 ? "" : "s");
   1071   if (ScaleCost != 0)
   1072     OS << ", plus " << ScaleCost << " scale cost";
   1073   if (ImmCost != 0)
   1074     OS << ", plus " << ImmCost << " imm cost";
   1075   if (SetupCost != 0)
   1076     OS << ", plus " << SetupCost << " setup cost";
   1077 }
   1078 
   1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1080 void Cost::dump() const {
   1081   print(errs()); errs() << '\n';
   1082 }
   1083 #endif
   1084 
   1085 namespace {
   1086 
   1087 /// LSRFixup - An operand value in an instruction which is to be replaced
   1088 /// with some equivalent, possibly strength-reduced, replacement.
   1089 struct LSRFixup {
   1090   /// UserInst - The instruction which will be updated.
   1091   Instruction *UserInst;
   1092 
   1093   /// OperandValToReplace - The operand of the instruction which will
   1094   /// be replaced. The operand may be used more than once; every instance
   1095   /// will be replaced.
   1096   Value *OperandValToReplace;
   1097 
   1098   /// PostIncLoops - If this user is to use the post-incremented value of an
   1099   /// induction variable, this variable is non-null and holds the loop
   1100   /// associated with the induction variable.
   1101   PostIncLoopSet PostIncLoops;
   1102 
   1103   /// LUIdx - The index of the LSRUse describing the expression which
   1104   /// this fixup needs, minus an offset (below).
   1105   size_t LUIdx;
   1106 
   1107   /// Offset - A constant offset to be added to the LSRUse expression.
   1108   /// This allows multiple fixups to share the same LSRUse with different
   1109   /// offsets, for example in an unrolled loop.
   1110   int64_t Offset;
   1111 
   1112   bool isUseFullyOutsideLoop(const Loop *L) const;
   1113 
   1114   LSRFixup();
   1115 
   1116   void print(raw_ostream &OS) const;
   1117   void dump() const;
   1118 };
   1119 
   1120 }
   1121 
   1122 LSRFixup::LSRFixup()
   1123   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
   1124     Offset(0) {}
   1125 
   1126 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
   1127 /// value outside of the given loop.
   1128 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1129   // PHI nodes use their value in their incoming blocks.
   1130   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1131     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1132       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1133           L->contains(PN->getIncomingBlock(i)))
   1134         return false;
   1135     return true;
   1136   }
   1137 
   1138   return !L->contains(UserInst);
   1139 }
   1140 
   1141 void LSRFixup::print(raw_ostream &OS) const {
   1142   OS << "UserInst=";
   1143   // Store is common and interesting enough to be worth special-casing.
   1144   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1145     OS << "store ";
   1146     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
   1147   } else if (UserInst->getType()->isVoidTy())
   1148     OS << UserInst->getOpcodeName();
   1149   else
   1150     UserInst->printAsOperand(OS, /*PrintType=*/false);
   1151 
   1152   OS << ", OperandValToReplace=";
   1153   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
   1154 
   1155   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
   1156        E = PostIncLoops.end(); I != E; ++I) {
   1157     OS << ", PostIncLoop=";
   1158     (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   1159   }
   1160 
   1161   if (LUIdx != ~size_t(0))
   1162     OS << ", LUIdx=" << LUIdx;
   1163 
   1164   if (Offset != 0)
   1165     OS << ", Offset=" << Offset;
   1166 }
   1167 
   1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1169 void LSRFixup::dump() const {
   1170   print(errs()); errs() << '\n';
   1171 }
   1172 #endif
   1173 
   1174 namespace {
   1175 
   1176 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
   1177 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
   1178 struct UniquifierDenseMapInfo {
   1179   static SmallVector<const SCEV *, 4> getEmptyKey() {
   1180     SmallVector<const SCEV *, 4>  V;
   1181     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1182     return V;
   1183   }
   1184 
   1185   static SmallVector<const SCEV *, 4> getTombstoneKey() {
   1186     SmallVector<const SCEV *, 4> V;
   1187     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1188     return V;
   1189   }
   1190 
   1191   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
   1192     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
   1193   }
   1194 
   1195   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
   1196                       const SmallVector<const SCEV *, 4> &RHS) {
   1197     return LHS == RHS;
   1198   }
   1199 };
   1200 
   1201 /// LSRUse - This class holds the state that LSR keeps for each use in
   1202 /// IVUsers, as well as uses invented by LSR itself. It includes information
   1203 /// about what kinds of things can be folded into the user, information about
   1204 /// the user itself, and information about how the use may be satisfied.
   1205 /// TODO: Represent multiple users of the same expression in common?
   1206 class LSRUse {
   1207   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
   1208 
   1209 public:
   1210   /// KindType - An enum for a kind of use, indicating what types of
   1211   /// scaled and immediate operands it might support.
   1212   enum KindType {
   1213     Basic,   ///< A normal use, with no folding.
   1214     Special, ///< A special case of basic, allowing -1 scales.
   1215     Address, ///< An address use; folding according to TargetLowering
   1216     ICmpZero ///< An equality icmp with both operands folded into one.
   1217     // TODO: Add a generic icmp too?
   1218   };
   1219 
   1220   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
   1221 
   1222   KindType Kind;
   1223   Type *AccessTy;
   1224 
   1225   SmallVector<int64_t, 8> Offsets;
   1226   int64_t MinOffset;
   1227   int64_t MaxOffset;
   1228 
   1229   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
   1230   /// LSRUse are outside of the loop, in which case some special-case heuristics
   1231   /// may be used.
   1232   bool AllFixupsOutsideLoop;
   1233 
   1234   /// RigidFormula is set to true to guarantee that this use will be associated
   1235   /// with a single formula--the one that initially matched. Some SCEV
   1236   /// expressions cannot be expanded. This allows LSR to consider the registers
   1237   /// used by those expressions without the need to expand them later after
   1238   /// changing the formula.
   1239   bool RigidFormula;
   1240 
   1241   /// WidestFixupType - This records the widest use type for any fixup using
   1242   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
   1243   /// max fixup widths to be equivalent, because the narrower one may be relying
   1244   /// on the implicit truncation to truncate away bogus bits.
   1245   Type *WidestFixupType;
   1246 
   1247   /// Formulae - A list of ways to build a value that can satisfy this user.
   1248   /// After the list is populated, one of these is selected heuristically and
   1249   /// used to formulate a replacement for OperandValToReplace in UserInst.
   1250   SmallVector<Formula, 12> Formulae;
   1251 
   1252   /// Regs - The set of register candidates used by all formulae in this LSRUse.
   1253   SmallPtrSet<const SCEV *, 4> Regs;
   1254 
   1255   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
   1256                                       MinOffset(INT64_MAX),
   1257                                       MaxOffset(INT64_MIN),
   1258                                       AllFixupsOutsideLoop(true),
   1259                                       RigidFormula(false),
   1260                                       WidestFixupType(nullptr) {}
   1261 
   1262   bool HasFormulaWithSameRegs(const Formula &F) const;
   1263   bool InsertFormula(const Formula &F);
   1264   void DeleteFormula(Formula &F);
   1265   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1266 
   1267   void print(raw_ostream &OS) const;
   1268   void dump() const;
   1269 };
   1270 
   1271 }
   1272 
   1273 /// HasFormula - Test whether this use as a formula which has the same
   1274 /// registers as the given formula.
   1275 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1276   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1277   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1278   // Unstable sort by host order ok, because this is only used for uniquifying.
   1279   std::sort(Key.begin(), Key.end());
   1280   return Uniquifier.count(Key);
   1281 }
   1282 
   1283 /// InsertFormula - If the given formula has not yet been inserted, add it to
   1284 /// the list, and return true. Return false otherwise.
   1285 /// The formula must be in canonical form.
   1286 bool LSRUse::InsertFormula(const Formula &F) {
   1287   assert(F.isCanonical() && "Invalid canonical representation");
   1288 
   1289   if (!Formulae.empty() && RigidFormula)
   1290     return false;
   1291 
   1292   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1293   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1294   // Unstable sort by host order ok, because this is only used for uniquifying.
   1295   std::sort(Key.begin(), Key.end());
   1296 
   1297   if (!Uniquifier.insert(Key).second)
   1298     return false;
   1299 
   1300   // Using a register to hold the value of 0 is not profitable.
   1301   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1302          "Zero allocated in a scaled register!");
   1303 #ifndef NDEBUG
   1304   for (SmallVectorImpl<const SCEV *>::const_iterator I =
   1305        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
   1306     assert(!(*I)->isZero() && "Zero allocated in a base register!");
   1307 #endif
   1308 
   1309   // Add the formula to the list.
   1310   Formulae.push_back(F);
   1311 
   1312   // Record registers now being used by this use.
   1313   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1314   if (F.ScaledReg)
   1315     Regs.insert(F.ScaledReg);
   1316 
   1317   return true;
   1318 }
   1319 
   1320 /// DeleteFormula - Remove the given formula from this use's list.
   1321 void LSRUse::DeleteFormula(Formula &F) {
   1322   if (&F != &Formulae.back())
   1323     std::swap(F, Formulae.back());
   1324   Formulae.pop_back();
   1325 }
   1326 
   1327 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
   1328 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1329   // Now that we've filtered out some formulae, recompute the Regs set.
   1330   SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
   1331   Regs.clear();
   1332   for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
   1333        E = Formulae.end(); I != E; ++I) {
   1334     const Formula &F = *I;
   1335     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1336     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1337   }
   1338 
   1339   // Update the RegTracker.
   1340   for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
   1341        E = OldRegs.end(); I != E; ++I)
   1342     if (!Regs.count(*I))
   1343       RegUses.DropRegister(*I, LUIdx);
   1344 }
   1345 
   1346 void LSRUse::print(raw_ostream &OS) const {
   1347   OS << "LSR Use: Kind=";
   1348   switch (Kind) {
   1349   case Basic:    OS << "Basic"; break;
   1350   case Special:  OS << "Special"; break;
   1351   case ICmpZero: OS << "ICmpZero"; break;
   1352   case Address:
   1353     OS << "Address of ";
   1354     if (AccessTy->isPointerTy())
   1355       OS << "pointer"; // the full pointer type could be really verbose
   1356     else
   1357       OS << *AccessTy;
   1358   }
   1359 
   1360   OS << ", Offsets={";
   1361   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1362        E = Offsets.end(); I != E; ++I) {
   1363     OS << *I;
   1364     if (std::next(I) != E)
   1365       OS << ',';
   1366   }
   1367   OS << '}';
   1368 
   1369   if (AllFixupsOutsideLoop)
   1370     OS << ", all-fixups-outside-loop";
   1371 
   1372   if (WidestFixupType)
   1373     OS << ", widest fixup type: " << *WidestFixupType;
   1374 }
   1375 
   1376 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1377 void LSRUse::dump() const {
   1378   print(errs()); errs() << '\n';
   1379 }
   1380 #endif
   1381 
   1382 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1383                                  LSRUse::KindType Kind, Type *AccessTy,
   1384                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1385                                  bool HasBaseReg, int64_t Scale) {
   1386   switch (Kind) {
   1387   case LSRUse::Address:
   1388     return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
   1389 
   1390     // Otherwise, just guess that reg+reg addressing is legal.
   1391     //return ;
   1392 
   1393   case LSRUse::ICmpZero:
   1394     // There's not even a target hook for querying whether it would be legal to
   1395     // fold a GV into an ICmp.
   1396     if (BaseGV)
   1397       return false;
   1398 
   1399     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1400     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
   1401       return false;
   1402 
   1403     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1404     // putting the scaled register in the other operand of the icmp.
   1405     if (Scale != 0 && Scale != -1)
   1406       return false;
   1407 
   1408     // If we have low-level target information, ask the target if it can fold an
   1409     // integer immediate on an icmp.
   1410     if (BaseOffset != 0) {
   1411       // We have one of:
   1412       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
   1413       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
   1414       // Offs is the ICmp immediate.
   1415       if (Scale == 0)
   1416         // The cast does the right thing with INT64_MIN.
   1417         BaseOffset = -(uint64_t)BaseOffset;
   1418       return TTI.isLegalICmpImmediate(BaseOffset);
   1419     }
   1420 
   1421     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1422     return true;
   1423 
   1424   case LSRUse::Basic:
   1425     // Only handle single-register values.
   1426     return !BaseGV && Scale == 0 && BaseOffset == 0;
   1427 
   1428   case LSRUse::Special:
   1429     // Special case Basic to handle -1 scales.
   1430     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
   1431   }
   1432 
   1433   llvm_unreachable("Invalid LSRUse Kind!");
   1434 }
   1435 
   1436 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1437                                  int64_t MinOffset, int64_t MaxOffset,
   1438                                  LSRUse::KindType Kind, Type *AccessTy,
   1439                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1440                                  bool HasBaseReg, int64_t Scale) {
   1441   // Check for overflow.
   1442   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
   1443       (MinOffset > 0))
   1444     return false;
   1445   MinOffset = (uint64_t)BaseOffset + MinOffset;
   1446   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
   1447       (MaxOffset > 0))
   1448     return false;
   1449   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
   1450 
   1451   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
   1452                               HasBaseReg, Scale) &&
   1453          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
   1454                               HasBaseReg, Scale);
   1455 }
   1456 
   1457 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1458                                  int64_t MinOffset, int64_t MaxOffset,
   1459                                  LSRUse::KindType Kind, Type *AccessTy,
   1460                                  const Formula &F) {
   1461   // For the purpose of isAMCompletelyFolded either having a canonical formula
   1462   // or a scale not equal to zero is correct.
   1463   // Problems may arise from non canonical formulae having a scale == 0.
   1464   // Strictly speaking it would best to just rely on canonical formulae.
   1465   // However, when we generate the scaled formulae, we first check that the
   1466   // scaling factor is profitable before computing the actual ScaledReg for
   1467   // compile time sake.
   1468   assert((F.isCanonical() || F.Scale != 0));
   1469   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1470                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
   1471 }
   1472 
   1473 /// isLegalUse - Test whether we know how to expand the current formula.
   1474 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1475                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1476                        GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
   1477                        int64_t Scale) {
   1478   // We know how to expand completely foldable formulae.
   1479   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1480                               BaseOffset, HasBaseReg, Scale) ||
   1481          // Or formulae that use a base register produced by a sum of base
   1482          // registers.
   1483          (Scale == 1 &&
   1484           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1485                                BaseGV, BaseOffset, true, 0));
   1486 }
   1487 
   1488 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1489                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1490                        const Formula &F) {
   1491   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
   1492                     F.BaseOffset, F.HasBaseReg, F.Scale);
   1493 }
   1494 
   1495 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1496                                  const LSRUse &LU, const Formula &F) {
   1497   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1498                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
   1499                               F.Scale);
   1500 }
   1501 
   1502 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
   1503                                      const LSRUse &LU, const Formula &F) {
   1504   if (!F.Scale)
   1505     return 0;
   1506 
   1507   // If the use is not completely folded in that instruction, we will have to
   1508   // pay an extra cost only for scale != 1.
   1509   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1510                             LU.AccessTy, F))
   1511     return F.Scale != 1;
   1512 
   1513   switch (LU.Kind) {
   1514   case LSRUse::Address: {
   1515     // Check the scaling factor cost with both the min and max offsets.
   1516     int ScaleCostMinOffset =
   1517       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
   1518                                F.BaseOffset + LU.MinOffset,
   1519                                F.HasBaseReg, F.Scale);
   1520     int ScaleCostMaxOffset =
   1521       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
   1522                                F.BaseOffset + LU.MaxOffset,
   1523                                F.HasBaseReg, F.Scale);
   1524 
   1525     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
   1526            "Legal addressing mode has an illegal cost!");
   1527     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
   1528   }
   1529   case LSRUse::ICmpZero:
   1530   case LSRUse::Basic:
   1531   case LSRUse::Special:
   1532     // The use is completely folded, i.e., everything is folded into the
   1533     // instruction.
   1534     return 0;
   1535   }
   1536 
   1537   llvm_unreachable("Invalid LSRUse Kind!");
   1538 }
   1539 
   1540 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1541                              LSRUse::KindType Kind, Type *AccessTy,
   1542                              GlobalValue *BaseGV, int64_t BaseOffset,
   1543                              bool HasBaseReg) {
   1544   // Fast-path: zero is always foldable.
   1545   if (BaseOffset == 0 && !BaseGV) return true;
   1546 
   1547   // Conservatively, create an address with an immediate and a
   1548   // base and a scale.
   1549   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1550 
   1551   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1552   // already have a base register.
   1553   if (!HasBaseReg && Scale == 1) {
   1554     Scale = 0;
   1555     HasBaseReg = true;
   1556   }
   1557 
   1558   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
   1559                               HasBaseReg, Scale);
   1560 }
   1561 
   1562 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1563                              ScalarEvolution &SE, int64_t MinOffset,
   1564                              int64_t MaxOffset, LSRUse::KindType Kind,
   1565                              Type *AccessTy, const SCEV *S, bool HasBaseReg) {
   1566   // Fast-path: zero is always foldable.
   1567   if (S->isZero()) return true;
   1568 
   1569   // Conservatively, create an address with an immediate and a
   1570   // base and a scale.
   1571   int64_t BaseOffset = ExtractImmediate(S, SE);
   1572   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1573 
   1574   // If there's anything else involved, it's not foldable.
   1575   if (!S->isZero()) return false;
   1576 
   1577   // Fast-path: zero is always foldable.
   1578   if (BaseOffset == 0 && !BaseGV) return true;
   1579 
   1580   // Conservatively, create an address with an immediate and a
   1581   // base and a scale.
   1582   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1583 
   1584   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1585                               BaseOffset, HasBaseReg, Scale);
   1586 }
   1587 
   1588 namespace {
   1589 
   1590 /// IVInc - An individual increment in a Chain of IV increments.
   1591 /// Relate an IV user to an expression that computes the IV it uses from the IV
   1592 /// used by the previous link in the Chain.
   1593 ///
   1594 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1595 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1596 /// chain collection, before LSR replaces IV users. During chain generation,
   1597 /// IncExpr can be used to find the new IVOperand that computes the same
   1598 /// expression.
   1599 struct IVInc {
   1600   Instruction *UserInst;
   1601   Value* IVOperand;
   1602   const SCEV *IncExpr;
   1603 
   1604   IVInc(Instruction *U, Value *O, const SCEV *E):
   1605     UserInst(U), IVOperand(O), IncExpr(E) {}
   1606 };
   1607 
   1608 // IVChain - The list of IV increments in program order.
   1609 // We typically add the head of a chain without finding subsequent links.
   1610 struct IVChain {
   1611   SmallVector<IVInc,1> Incs;
   1612   const SCEV *ExprBase;
   1613 
   1614   IVChain() : ExprBase(nullptr) {}
   1615 
   1616   IVChain(const IVInc &Head, const SCEV *Base)
   1617     : Incs(1, Head), ExprBase(Base) {}
   1618 
   1619   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1620 
   1621   // begin - return the first increment in the chain.
   1622   const_iterator begin() const {
   1623     assert(!Incs.empty());
   1624     return std::next(Incs.begin());
   1625   }
   1626   const_iterator end() const {
   1627     return Incs.end();
   1628   }
   1629 
   1630   // hasIncs - Returns true if this chain contains any increments.
   1631   bool hasIncs() const { return Incs.size() >= 2; }
   1632 
   1633   // add - Add an IVInc to the end of this chain.
   1634   void add(const IVInc &X) { Incs.push_back(X); }
   1635 
   1636   // tailUserInst - Returns the last UserInst in the chain.
   1637   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1638 
   1639   // isProfitableIncrement - Returns true if IncExpr can be profitably added to
   1640   // this chain.
   1641   bool isProfitableIncrement(const SCEV *OperExpr,
   1642                              const SCEV *IncExpr,
   1643                              ScalarEvolution&);
   1644 };
   1645 
   1646 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
   1647 /// Distinguish between FarUsers that definitely cross IV increments and
   1648 /// NearUsers that may be used between IV increments.
   1649 struct ChainUsers {
   1650   SmallPtrSet<Instruction*, 4> FarUsers;
   1651   SmallPtrSet<Instruction*, 4> NearUsers;
   1652 };
   1653 
   1654 /// LSRInstance - This class holds state for the main loop strength reduction
   1655 /// logic.
   1656 class LSRInstance {
   1657   IVUsers &IU;
   1658   ScalarEvolution &SE;
   1659   DominatorTree &DT;
   1660   LoopInfo &LI;
   1661   const TargetTransformInfo &TTI;
   1662   Loop *const L;
   1663   bool Changed;
   1664 
   1665   /// IVIncInsertPos - This is the insert position that the current loop's
   1666   /// induction variable increment should be placed. In simple loops, this is
   1667   /// the latch block's terminator. But in more complicated cases, this is a
   1668   /// position which will dominate all the in-loop post-increment users.
   1669   Instruction *IVIncInsertPos;
   1670 
   1671   /// Factors - Interesting factors between use strides.
   1672   SmallSetVector<int64_t, 8> Factors;
   1673 
   1674   /// Types - Interesting use types, to facilitate truncation reuse.
   1675   SmallSetVector<Type *, 4> Types;
   1676 
   1677   /// Fixups - The list of operands which are to be replaced.
   1678   SmallVector<LSRFixup, 16> Fixups;
   1679 
   1680   /// Uses - The list of interesting uses.
   1681   SmallVector<LSRUse, 16> Uses;
   1682 
   1683   /// RegUses - Track which uses use which register candidates.
   1684   RegUseTracker RegUses;
   1685 
   1686   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1687   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1688   // back to normal LSR behavior for those uses.
   1689   static const unsigned MaxChains = 8;
   1690 
   1691   /// IVChainVec - IV users can form a chain of IV increments.
   1692   SmallVector<IVChain, MaxChains> IVChainVec;
   1693 
   1694   /// IVIncSet - IV users that belong to profitable IVChains.
   1695   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1696 
   1697   void OptimizeShadowIV();
   1698   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1699   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1700   void OptimizeLoopTermCond();
   1701 
   1702   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1703                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1704   void FinalizeChain(IVChain &Chain);
   1705   void CollectChains();
   1706   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1707                        SmallVectorImpl<WeakVH> &DeadInsts);
   1708 
   1709   void CollectInterestingTypesAndFactors();
   1710   void CollectFixupsAndInitialFormulae();
   1711 
   1712   LSRFixup &getNewFixup() {
   1713     Fixups.push_back(LSRFixup());
   1714     return Fixups.back();
   1715   }
   1716 
   1717   // Support for sharing of LSRUses between LSRFixups.
   1718   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
   1719   UseMapTy UseMap;
   1720 
   1721   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1722                           LSRUse::KindType Kind, Type *AccessTy);
   1723 
   1724   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
   1725                                     LSRUse::KindType Kind,
   1726                                     Type *AccessTy);
   1727 
   1728   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1729 
   1730   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1731 
   1732   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1733   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1734   void CountRegisters(const Formula &F, size_t LUIdx);
   1735   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1736 
   1737   void CollectLoopInvariantFixupsAndFormulae();
   1738 
   1739   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1740                               unsigned Depth = 0);
   1741 
   1742   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   1743                                   const Formula &Base, unsigned Depth,
   1744                                   size_t Idx, bool IsScaledReg = false);
   1745   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1746   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1747                                    const Formula &Base, size_t Idx,
   1748                                    bool IsScaledReg = false);
   1749   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1750   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1751                                    const Formula &Base,
   1752                                    const SmallVectorImpl<int64_t> &Worklist,
   1753                                    size_t Idx, bool IsScaledReg = false);
   1754   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1755   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1756   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1757   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1758   void GenerateCrossUseConstantOffsets();
   1759   void GenerateAllReuseFormulae();
   1760 
   1761   void FilterOutUndesirableDedicatedRegisters();
   1762 
   1763   size_t EstimateSearchSpaceComplexity() const;
   1764   void NarrowSearchSpaceByDetectingSupersets();
   1765   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1766   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1767   void NarrowSearchSpaceByPickingWinnerRegs();
   1768   void NarrowSearchSpaceUsingHeuristics();
   1769 
   1770   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1771                     Cost &SolutionCost,
   1772                     SmallVectorImpl<const Formula *> &Workspace,
   1773                     const Cost &CurCost,
   1774                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1775                     DenseSet<const SCEV *> &VisitedRegs) const;
   1776   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1777 
   1778   BasicBlock::iterator
   1779     HoistInsertPosition(BasicBlock::iterator IP,
   1780                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1781   BasicBlock::iterator
   1782     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1783                                   const LSRFixup &LF,
   1784                                   const LSRUse &LU,
   1785                                   SCEVExpander &Rewriter) const;
   1786 
   1787   Value *Expand(const LSRFixup &LF,
   1788                 const Formula &F,
   1789                 BasicBlock::iterator IP,
   1790                 SCEVExpander &Rewriter,
   1791                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1792   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1793                      const Formula &F,
   1794                      SCEVExpander &Rewriter,
   1795                      SmallVectorImpl<WeakVH> &DeadInsts,
   1796                      Pass *P) const;
   1797   void Rewrite(const LSRFixup &LF,
   1798                const Formula &F,
   1799                SCEVExpander &Rewriter,
   1800                SmallVectorImpl<WeakVH> &DeadInsts,
   1801                Pass *P) const;
   1802   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   1803                          Pass *P);
   1804 
   1805 public:
   1806   LSRInstance(Loop *L, Pass *P);
   1807 
   1808   bool getChanged() const { return Changed; }
   1809 
   1810   void print_factors_and_types(raw_ostream &OS) const;
   1811   void print_fixups(raw_ostream &OS) const;
   1812   void print_uses(raw_ostream &OS) const;
   1813   void print(raw_ostream &OS) const;
   1814   void dump() const;
   1815 };
   1816 
   1817 }
   1818 
   1819 /// OptimizeShadowIV - If IV is used in a int-to-float cast
   1820 /// inside the loop then try to eliminate the cast operation.
   1821 void LSRInstance::OptimizeShadowIV() {
   1822   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1823   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1824     return;
   1825 
   1826   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1827        UI != E; /* empty */) {
   1828     IVUsers::const_iterator CandidateUI = UI;
   1829     ++UI;
   1830     Instruction *ShadowUse = CandidateUI->getUser();
   1831     Type *DestTy = nullptr;
   1832     bool IsSigned = false;
   1833 
   1834     /* If shadow use is a int->float cast then insert a second IV
   1835        to eliminate this cast.
   1836 
   1837          for (unsigned i = 0; i < n; ++i)
   1838            foo((double)i);
   1839 
   1840        is transformed into
   1841 
   1842          double d = 0.0;
   1843          for (unsigned i = 0; i < n; ++i, ++d)
   1844            foo(d);
   1845     */
   1846     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1847       IsSigned = false;
   1848       DestTy = UCast->getDestTy();
   1849     }
   1850     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1851       IsSigned = true;
   1852       DestTy = SCast->getDestTy();
   1853     }
   1854     if (!DestTy) continue;
   1855 
   1856     // If target does not support DestTy natively then do not apply
   1857     // this transformation.
   1858     if (!TTI.isTypeLegal(DestTy)) continue;
   1859 
   1860     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1861     if (!PH) continue;
   1862     if (PH->getNumIncomingValues() != 2) continue;
   1863 
   1864     Type *SrcTy = PH->getType();
   1865     int Mantissa = DestTy->getFPMantissaWidth();
   1866     if (Mantissa == -1) continue;
   1867     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1868       continue;
   1869 
   1870     unsigned Entry, Latch;
   1871     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1872       Entry = 0;
   1873       Latch = 1;
   1874     } else {
   1875       Entry = 1;
   1876       Latch = 0;
   1877     }
   1878 
   1879     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1880     if (!Init) continue;
   1881     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1882                                         (double)Init->getSExtValue() :
   1883                                         (double)Init->getZExtValue());
   1884 
   1885     BinaryOperator *Incr =
   1886       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1887     if (!Incr) continue;
   1888     if (Incr->getOpcode() != Instruction::Add
   1889         && Incr->getOpcode() != Instruction::Sub)
   1890       continue;
   1891 
   1892     /* Initialize new IV, double d = 0.0 in above example. */
   1893     ConstantInt *C = nullptr;
   1894     if (Incr->getOperand(0) == PH)
   1895       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1896     else if (Incr->getOperand(1) == PH)
   1897       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1898     else
   1899       continue;
   1900 
   1901     if (!C) continue;
   1902 
   1903     // Ignore negative constants, as the code below doesn't handle them
   1904     // correctly. TODO: Remove this restriction.
   1905     if (!C->getValue().isStrictlyPositive()) continue;
   1906 
   1907     /* Add new PHINode. */
   1908     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1909 
   1910     /* create new increment. '++d' in above example. */
   1911     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1912     BinaryOperator *NewIncr =
   1913       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1914                                Instruction::FAdd : Instruction::FSub,
   1915                              NewPH, CFP, "IV.S.next.", Incr);
   1916 
   1917     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1918     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1919 
   1920     /* Remove cast operation */
   1921     ShadowUse->replaceAllUsesWith(NewPH);
   1922     ShadowUse->eraseFromParent();
   1923     Changed = true;
   1924     break;
   1925   }
   1926 }
   1927 
   1928 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
   1929 /// set the IV user and stride information and return true, otherwise return
   1930 /// false.
   1931 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1932   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1933     if (UI->getUser() == Cond) {
   1934       // NOTE: we could handle setcc instructions with multiple uses here, but
   1935       // InstCombine does it as well for simple uses, it's not clear that it
   1936       // occurs enough in real life to handle.
   1937       CondUse = UI;
   1938       return true;
   1939     }
   1940   return false;
   1941 }
   1942 
   1943 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
   1944 /// a max computation.
   1945 ///
   1946 /// This is a narrow solution to a specific, but acute, problem. For loops
   1947 /// like this:
   1948 ///
   1949 ///   i = 0;
   1950 ///   do {
   1951 ///     p[i] = 0.0;
   1952 ///   } while (++i < n);
   1953 ///
   1954 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1955 /// unfortunately this can come up even for loops where the user didn't use
   1956 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1957 /// will commonly be lowered like this:
   1958 //
   1959 ///   if (n > 0) {
   1960 ///     i = 0;
   1961 ///     do {
   1962 ///       p[i] = 0.0;
   1963 ///     } while (++i < n);
   1964 ///   }
   1965 ///
   1966 /// and then it's possible for subsequent optimization to obscure the if
   1967 /// test in such a way that indvars can't find it.
   1968 ///
   1969 /// When indvars can't find the if test in loops like this, it creates a
   1970 /// max expression, which allows it to give the loop a canonical
   1971 /// induction variable:
   1972 ///
   1973 ///   i = 0;
   1974 ///   max = n < 1 ? 1 : n;
   1975 ///   do {
   1976 ///     p[i] = 0.0;
   1977 ///   } while (++i != max);
   1978 ///
   1979 /// Canonical induction variables are necessary because the loop passes
   1980 /// are designed around them. The most obvious example of this is the
   1981 /// LoopInfo analysis, which doesn't remember trip count values. It
   1982 /// expects to be able to rediscover the trip count each time it is
   1983 /// needed, and it does this using a simple analysis that only succeeds if
   1984 /// the loop has a canonical induction variable.
   1985 ///
   1986 /// However, when it comes time to generate code, the maximum operation
   1987 /// can be quite costly, especially if it's inside of an outer loop.
   1988 ///
   1989 /// This function solves this problem by detecting this type of loop and
   1990 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1991 /// the instructions for the maximum computation.
   1992 ///
   1993 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1994   // Check that the loop matches the pattern we're looking for.
   1995   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1996       Cond->getPredicate() != CmpInst::ICMP_NE)
   1997     return Cond;
   1998 
   1999   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   2000   if (!Sel || !Sel->hasOneUse()) return Cond;
   2001 
   2002   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   2003   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   2004     return Cond;
   2005   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   2006 
   2007   // Add one to the backedge-taken count to get the trip count.
   2008   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   2009   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   2010 
   2011   // Check for a max calculation that matches the pattern. There's no check
   2012   // for ICMP_ULE here because the comparison would be with zero, which
   2013   // isn't interesting.
   2014   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   2015   const SCEVNAryExpr *Max = nullptr;
   2016   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   2017     Pred = ICmpInst::ICMP_SLE;
   2018     Max = S;
   2019   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   2020     Pred = ICmpInst::ICMP_SLT;
   2021     Max = S;
   2022   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   2023     Pred = ICmpInst::ICMP_ULT;
   2024     Max = U;
   2025   } else {
   2026     // No match; bail.
   2027     return Cond;
   2028   }
   2029 
   2030   // To handle a max with more than two operands, this optimization would
   2031   // require additional checking and setup.
   2032   if (Max->getNumOperands() != 2)
   2033     return Cond;
   2034 
   2035   const SCEV *MaxLHS = Max->getOperand(0);
   2036   const SCEV *MaxRHS = Max->getOperand(1);
   2037 
   2038   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   2039   // for a comparison with 1. For <= and >=, a comparison with zero.
   2040   if (!MaxLHS ||
   2041       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   2042     return Cond;
   2043 
   2044   // Check the relevant induction variable for conformance to
   2045   // the pattern.
   2046   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   2047   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   2048   if (!AR || !AR->isAffine() ||
   2049       AR->getStart() != One ||
   2050       AR->getStepRecurrence(SE) != One)
   2051     return Cond;
   2052 
   2053   assert(AR->getLoop() == L &&
   2054          "Loop condition operand is an addrec in a different loop!");
   2055 
   2056   // Check the right operand of the select, and remember it, as it will
   2057   // be used in the new comparison instruction.
   2058   Value *NewRHS = nullptr;
   2059   if (ICmpInst::isTrueWhenEqual(Pred)) {
   2060     // Look for n+1, and grab n.
   2061     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   2062       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2063          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2064            NewRHS = BO->getOperand(0);
   2065     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   2066       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2067         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2068           NewRHS = BO->getOperand(0);
   2069     if (!NewRHS)
   2070       return Cond;
   2071   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   2072     NewRHS = Sel->getOperand(1);
   2073   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   2074     NewRHS = Sel->getOperand(2);
   2075   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   2076     NewRHS = SU->getValue();
   2077   else
   2078     // Max doesn't match expected pattern.
   2079     return Cond;
   2080 
   2081   // Determine the new comparison opcode. It may be signed or unsigned,
   2082   // and the original comparison may be either equality or inequality.
   2083   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   2084     Pred = CmpInst::getInversePredicate(Pred);
   2085 
   2086   // Ok, everything looks ok to change the condition into an SLT or SGE and
   2087   // delete the max calculation.
   2088   ICmpInst *NewCond =
   2089     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   2090 
   2091   // Delete the max calculation instructions.
   2092   Cond->replaceAllUsesWith(NewCond);
   2093   CondUse->setUser(NewCond);
   2094   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   2095   Cond->eraseFromParent();
   2096   Sel->eraseFromParent();
   2097   if (Cmp->use_empty())
   2098     Cmp->eraseFromParent();
   2099   return NewCond;
   2100 }
   2101 
   2102 /// OptimizeLoopTermCond - Change loop terminating condition to use the
   2103 /// postinc iv when possible.
   2104 void
   2105 LSRInstance::OptimizeLoopTermCond() {
   2106   SmallPtrSet<Instruction *, 4> PostIncs;
   2107 
   2108   BasicBlock *LatchBlock = L->getLoopLatch();
   2109   SmallVector<BasicBlock*, 8> ExitingBlocks;
   2110   L->getExitingBlocks(ExitingBlocks);
   2111 
   2112   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   2113     BasicBlock *ExitingBlock = ExitingBlocks[i];
   2114 
   2115     // Get the terminating condition for the loop if possible.  If we
   2116     // can, we want to change it to use a post-incremented version of its
   2117     // induction variable, to allow coalescing the live ranges for the IV into
   2118     // one register value.
   2119 
   2120     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   2121     if (!TermBr)
   2122       continue;
   2123     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   2124     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   2125       continue;
   2126 
   2127     // Search IVUsesByStride to find Cond's IVUse if there is one.
   2128     IVStrideUse *CondUse = nullptr;
   2129     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   2130     if (!FindIVUserForCond(Cond, CondUse))
   2131       continue;
   2132 
   2133     // If the trip count is computed in terms of a max (due to ScalarEvolution
   2134     // being unable to find a sufficient guard, for example), change the loop
   2135     // comparison to use SLT or ULT instead of NE.
   2136     // One consequence of doing this now is that it disrupts the count-down
   2137     // optimization. That's not always a bad thing though, because in such
   2138     // cases it may still be worthwhile to avoid a max.
   2139     Cond = OptimizeMax(Cond, CondUse);
   2140 
   2141     // If this exiting block dominates the latch block, it may also use
   2142     // the post-inc value if it won't be shared with other uses.
   2143     // Check for dominance.
   2144     if (!DT.dominates(ExitingBlock, LatchBlock))
   2145       continue;
   2146 
   2147     // Conservatively avoid trying to use the post-inc value in non-latch
   2148     // exits if there may be pre-inc users in intervening blocks.
   2149     if (LatchBlock != ExitingBlock)
   2150       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   2151         // Test if the use is reachable from the exiting block. This dominator
   2152         // query is a conservative approximation of reachability.
   2153         if (&*UI != CondUse &&
   2154             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   2155           // Conservatively assume there may be reuse if the quotient of their
   2156           // strides could be a legal scale.
   2157           const SCEV *A = IU.getStride(*CondUse, L);
   2158           const SCEV *B = IU.getStride(*UI, L);
   2159           if (!A || !B) continue;
   2160           if (SE.getTypeSizeInBits(A->getType()) !=
   2161               SE.getTypeSizeInBits(B->getType())) {
   2162             if (SE.getTypeSizeInBits(A->getType()) >
   2163                 SE.getTypeSizeInBits(B->getType()))
   2164               B = SE.getSignExtendExpr(B, A->getType());
   2165             else
   2166               A = SE.getSignExtendExpr(A, B->getType());
   2167           }
   2168           if (const SCEVConstant *D =
   2169                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2170             const ConstantInt *C = D->getValue();
   2171             // Stride of one or negative one can have reuse with non-addresses.
   2172             if (C->isOne() || C->isAllOnesValue())
   2173               goto decline_post_inc;
   2174             // Avoid weird situations.
   2175             if (C->getValue().getMinSignedBits() >= 64 ||
   2176                 C->getValue().isMinSignedValue())
   2177               goto decline_post_inc;
   2178             // Check for possible scaled-address reuse.
   2179             Type *AccessTy = getAccessType(UI->getUser());
   2180             int64_t Scale = C->getSExtValue();
   2181             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
   2182                                           /*BaseOffset=*/ 0,
   2183                                           /*HasBaseReg=*/ false, Scale))
   2184               goto decline_post_inc;
   2185             Scale = -Scale;
   2186             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
   2187                                           /*BaseOffset=*/ 0,
   2188                                           /*HasBaseReg=*/ false, Scale))
   2189               goto decline_post_inc;
   2190           }
   2191         }
   2192 
   2193     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2194                  << *Cond << '\n');
   2195 
   2196     // It's possible for the setcc instruction to be anywhere in the loop, and
   2197     // possible for it to have multiple users.  If it is not immediately before
   2198     // the exiting block branch, move it.
   2199     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2200       if (Cond->hasOneUse()) {
   2201         Cond->moveBefore(TermBr);
   2202       } else {
   2203         // Clone the terminating condition and insert into the loopend.
   2204         ICmpInst *OldCond = Cond;
   2205         Cond = cast<ICmpInst>(Cond->clone());
   2206         Cond->setName(L->getHeader()->getName() + ".termcond");
   2207         ExitingBlock->getInstList().insert(TermBr, Cond);
   2208 
   2209         // Clone the IVUse, as the old use still exists!
   2210         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2211         TermBr->replaceUsesOfWith(OldCond, Cond);
   2212       }
   2213     }
   2214 
   2215     // If we get to here, we know that we can transform the setcc instruction to
   2216     // use the post-incremented version of the IV, allowing us to coalesce the
   2217     // live ranges for the IV correctly.
   2218     CondUse->transformToPostInc(L);
   2219     Changed = true;
   2220 
   2221     PostIncs.insert(Cond);
   2222   decline_post_inc:;
   2223   }
   2224 
   2225   // Determine an insertion point for the loop induction variable increment. It
   2226   // must dominate all the post-inc comparisons we just set up, and it must
   2227   // dominate the loop latch edge.
   2228   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2229   for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
   2230        E = PostIncs.end(); I != E; ++I) {
   2231     BasicBlock *BB =
   2232       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2233                                     (*I)->getParent());
   2234     if (BB == (*I)->getParent())
   2235       IVIncInsertPos = *I;
   2236     else if (BB != IVIncInsertPos->getParent())
   2237       IVIncInsertPos = BB->getTerminator();
   2238   }
   2239 }
   2240 
   2241 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
   2242 /// at the given offset and other details. If so, update the use and
   2243 /// return true.
   2244 bool
   2245 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   2246                                 LSRUse::KindType Kind, Type *AccessTy) {
   2247   int64_t NewMinOffset = LU.MinOffset;
   2248   int64_t NewMaxOffset = LU.MaxOffset;
   2249   Type *NewAccessTy = AccessTy;
   2250 
   2251   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2252   // something conservative, however this can pessimize in the case that one of
   2253   // the uses will have all its uses outside the loop, for example.
   2254   if (LU.Kind != Kind)
   2255     return false;
   2256 
   2257   // Check for a mismatched access type, and fall back conservatively as needed.
   2258   // TODO: Be less conservative when the type is similar and can use the same
   2259   // addressing modes.
   2260   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
   2261     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
   2262 
   2263   // Conservatively assume HasBaseReg is true for now.
   2264   if (NewOffset < LU.MinOffset) {
   2265     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2266                           LU.MaxOffset - NewOffset, HasBaseReg))
   2267       return false;
   2268     NewMinOffset = NewOffset;
   2269   } else if (NewOffset > LU.MaxOffset) {
   2270     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2271                           NewOffset - LU.MinOffset, HasBaseReg))
   2272       return false;
   2273     NewMaxOffset = NewOffset;
   2274   }
   2275 
   2276   // Update the use.
   2277   LU.MinOffset = NewMinOffset;
   2278   LU.MaxOffset = NewMaxOffset;
   2279   LU.AccessTy = NewAccessTy;
   2280   if (NewOffset != LU.Offsets.back())
   2281     LU.Offsets.push_back(NewOffset);
   2282   return true;
   2283 }
   2284 
   2285 /// getUse - Return an LSRUse index and an offset value for a fixup which
   2286 /// needs the given expression, with the given kind and optional access type.
   2287 /// Either reuse an existing use or create a new one, as needed.
   2288 std::pair<size_t, int64_t>
   2289 LSRInstance::getUse(const SCEV *&Expr,
   2290                     LSRUse::KindType Kind, Type *AccessTy) {
   2291   const SCEV *Copy = Expr;
   2292   int64_t Offset = ExtractImmediate(Expr, SE);
   2293 
   2294   // Basic uses can't accept any offset, for example.
   2295   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
   2296                         Offset, /*HasBaseReg=*/ true)) {
   2297     Expr = Copy;
   2298     Offset = 0;
   2299   }
   2300 
   2301   std::pair<UseMapTy::iterator, bool> P =
   2302     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
   2303   if (!P.second) {
   2304     // A use already existed with this base.
   2305     size_t LUIdx = P.first->second;
   2306     LSRUse &LU = Uses[LUIdx];
   2307     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2308       // Reuse this use.
   2309       return std::make_pair(LUIdx, Offset);
   2310   }
   2311 
   2312   // Create a new use.
   2313   size_t LUIdx = Uses.size();
   2314   P.first->second = LUIdx;
   2315   Uses.push_back(LSRUse(Kind, AccessTy));
   2316   LSRUse &LU = Uses[LUIdx];
   2317 
   2318   // We don't need to track redundant offsets, but we don't need to go out
   2319   // of our way here to avoid them.
   2320   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2321     LU.Offsets.push_back(Offset);
   2322 
   2323   LU.MinOffset = Offset;
   2324   LU.MaxOffset = Offset;
   2325   return std::make_pair(LUIdx, Offset);
   2326 }
   2327 
   2328 /// DeleteUse - Delete the given use from the Uses list.
   2329 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2330   if (&LU != &Uses.back())
   2331     std::swap(LU, Uses.back());
   2332   Uses.pop_back();
   2333 
   2334   // Update RegUses.
   2335   RegUses.SwapAndDropUse(LUIdx, Uses.size());
   2336 }
   2337 
   2338 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
   2339 /// a formula that has the same registers as the given formula.
   2340 LSRUse *
   2341 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2342                                        const LSRUse &OrigLU) {
   2343   // Search all uses for the formula. This could be more clever.
   2344   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2345     LSRUse &LU = Uses[LUIdx];
   2346     // Check whether this use is close enough to OrigLU, to see whether it's
   2347     // worthwhile looking through its formulae.
   2348     // Ignore ICmpZero uses because they may contain formulae generated by
   2349     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2350     // be invalid.
   2351     if (&LU != &OrigLU &&
   2352         LU.Kind != LSRUse::ICmpZero &&
   2353         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2354         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2355         LU.HasFormulaWithSameRegs(OrigF)) {
   2356       // Scan through this use's formulae.
   2357       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   2358            E = LU.Formulae.end(); I != E; ++I) {
   2359         const Formula &F = *I;
   2360         // Check to see if this formula has the same registers and symbols
   2361         // as OrigF.
   2362         if (F.BaseRegs == OrigF.BaseRegs &&
   2363             F.ScaledReg == OrigF.ScaledReg &&
   2364             F.BaseGV == OrigF.BaseGV &&
   2365             F.Scale == OrigF.Scale &&
   2366             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2367           if (F.BaseOffset == 0)
   2368             return &LU;
   2369           // This is the formula where all the registers and symbols matched;
   2370           // there aren't going to be any others. Since we declined it, we
   2371           // can skip the rest of the formulae and proceed to the next LSRUse.
   2372           break;
   2373         }
   2374       }
   2375     }
   2376   }
   2377 
   2378   // Nothing looked good.
   2379   return nullptr;
   2380 }
   2381 
   2382 void LSRInstance::CollectInterestingTypesAndFactors() {
   2383   SmallSetVector<const SCEV *, 4> Strides;
   2384 
   2385   // Collect interesting types and strides.
   2386   SmallVector<const SCEV *, 4> Worklist;
   2387   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2388     const SCEV *Expr = IU.getExpr(*UI);
   2389 
   2390     // Collect interesting types.
   2391     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2392 
   2393     // Add strides for mentioned loops.
   2394     Worklist.push_back(Expr);
   2395     do {
   2396       const SCEV *S = Worklist.pop_back_val();
   2397       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2398         if (AR->getLoop() == L)
   2399           Strides.insert(AR->getStepRecurrence(SE));
   2400         Worklist.push_back(AR->getStart());
   2401       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2402         Worklist.append(Add->op_begin(), Add->op_end());
   2403       }
   2404     } while (!Worklist.empty());
   2405   }
   2406 
   2407   // Compute interesting factors from the set of interesting strides.
   2408   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2409        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2410     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2411          std::next(I); NewStrideIter != E; ++NewStrideIter) {
   2412       const SCEV *OldStride = *I;
   2413       const SCEV *NewStride = *NewStrideIter;
   2414 
   2415       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2416           SE.getTypeSizeInBits(NewStride->getType())) {
   2417         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2418             SE.getTypeSizeInBits(NewStride->getType()))
   2419           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2420         else
   2421           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2422       }
   2423       if (const SCEVConstant *Factor =
   2424             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2425                                                         SE, true))) {
   2426         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2427           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2428       } else if (const SCEVConstant *Factor =
   2429                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2430                                                                NewStride,
   2431                                                                SE, true))) {
   2432         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2433           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2434       }
   2435     }
   2436 
   2437   // If all uses use the same type, don't bother looking for truncation-based
   2438   // reuse.
   2439   if (Types.size() == 1)
   2440     Types.clear();
   2441 
   2442   DEBUG(print_factors_and_types(dbgs()));
   2443 }
   2444 
   2445 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
   2446 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
   2447 /// Instructions to IVStrideUses, we could partially skip this.
   2448 static User::op_iterator
   2449 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2450               Loop *L, ScalarEvolution &SE) {
   2451   for(; OI != OE; ++OI) {
   2452     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2453       if (!SE.isSCEVable(Oper->getType()))
   2454         continue;
   2455 
   2456       if (const SCEVAddRecExpr *AR =
   2457           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2458         if (AR->getLoop() == L)
   2459           break;
   2460       }
   2461     }
   2462   }
   2463   return OI;
   2464 }
   2465 
   2466 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
   2467 /// operands, so wrap it in a convenient helper.
   2468 static Value *getWideOperand(Value *Oper) {
   2469   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2470     return Trunc->getOperand(0);
   2471   return Oper;
   2472 }
   2473 
   2474 /// isCompatibleIVType - Return true if we allow an IV chain to include both
   2475 /// types.
   2476 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2477   Type *LType = LVal->getType();
   2478   Type *RType = RVal->getType();
   2479   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2480 }
   2481 
   2482 /// getExprBase - Return an approximation of this SCEV expression's "base", or
   2483 /// NULL for any constant. Returning the expression itself is
   2484 /// conservative. Returning a deeper subexpression is more precise and valid as
   2485 /// long as it isn't less complex than another subexpression. For expressions
   2486 /// involving multiple unscaled values, we need to return the pointer-type
   2487 /// SCEVUnknown. This avoids forming chains across objects, such as:
   2488 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
   2489 ///
   2490 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2491 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2492 static const SCEV *getExprBase(const SCEV *S) {
   2493   switch (S->getSCEVType()) {
   2494   default: // uncluding scUnknown.
   2495     return S;
   2496   case scConstant:
   2497     return nullptr;
   2498   case scTruncate:
   2499     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2500   case scZeroExtend:
   2501     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2502   case scSignExtend:
   2503     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2504   case scAddExpr: {
   2505     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2506     // there's nothing more complex.
   2507     // FIXME: not sure if we want to recognize negation.
   2508     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2509     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2510            E(Add->op_begin()); I != E; ++I) {
   2511       const SCEV *SubExpr = *I;
   2512       if (SubExpr->getSCEVType() == scAddExpr)
   2513         return getExprBase(SubExpr);
   2514 
   2515       if (SubExpr->getSCEVType() != scMulExpr)
   2516         return SubExpr;
   2517     }
   2518     return S; // all operands are scaled, be conservative.
   2519   }
   2520   case scAddRecExpr:
   2521     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2522   }
   2523 }
   2524 
   2525 /// Return true if the chain increment is profitable to expand into a loop
   2526 /// invariant value, which may require its own register. A profitable chain
   2527 /// increment will be an offset relative to the same base. We allow such offsets
   2528 /// to potentially be used as chain increment as long as it's not obviously
   2529 /// expensive to expand using real instructions.
   2530 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2531                                     const SCEV *IncExpr,
   2532                                     ScalarEvolution &SE) {
   2533   // Aggressively form chains when -stress-ivchain.
   2534   if (StressIVChain)
   2535     return true;
   2536 
   2537   // Do not replace a constant offset from IV head with a nonconstant IV
   2538   // increment.
   2539   if (!isa<SCEVConstant>(IncExpr)) {
   2540     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2541     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2542       return 0;
   2543   }
   2544 
   2545   SmallPtrSet<const SCEV*, 8> Processed;
   2546   return !isHighCostExpansion(IncExpr, Processed, SE);
   2547 }
   2548 
   2549 /// Return true if the number of registers needed for the chain is estimated to
   2550 /// be less than the number required for the individual IV users. First prohibit
   2551 /// any IV users that keep the IV live across increments (the Users set should
   2552 /// be empty). Next count the number and type of increments in the chain.
   2553 ///
   2554 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2555 /// effectively use postinc addressing modes. Only consider it profitable it the
   2556 /// increments can be computed in fewer registers when chained.
   2557 ///
   2558 /// TODO: Consider IVInc free if it's already used in another chains.
   2559 static bool
   2560 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
   2561                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
   2562   if (StressIVChain)
   2563     return true;
   2564 
   2565   if (!Chain.hasIncs())
   2566     return false;
   2567 
   2568   if (!Users.empty()) {
   2569     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2570           for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
   2571                  E = Users.end(); I != E; ++I) {
   2572             dbgs() << "  " << **I << "\n";
   2573           });
   2574     return false;
   2575   }
   2576   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2577 
   2578   // The chain itself may require a register, so intialize cost to 1.
   2579   int cost = 1;
   2580 
   2581   // A complete chain likely eliminates the need for keeping the original IV in
   2582   // a register. LSR does not currently know how to form a complete chain unless
   2583   // the header phi already exists.
   2584   if (isa<PHINode>(Chain.tailUserInst())
   2585       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2586     --cost;
   2587   }
   2588   const SCEV *LastIncExpr = nullptr;
   2589   unsigned NumConstIncrements = 0;
   2590   unsigned NumVarIncrements = 0;
   2591   unsigned NumReusedIncrements = 0;
   2592   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2593        I != E; ++I) {
   2594 
   2595     if (I->IncExpr->isZero())
   2596       continue;
   2597 
   2598     // Incrementing by zero or some constant is neutral. We assume constants can
   2599     // be folded into an addressing mode or an add's immediate operand.
   2600     if (isa<SCEVConstant>(I->IncExpr)) {
   2601       ++NumConstIncrements;
   2602       continue;
   2603     }
   2604 
   2605     if (I->IncExpr == LastIncExpr)
   2606       ++NumReusedIncrements;
   2607     else
   2608       ++NumVarIncrements;
   2609 
   2610     LastIncExpr = I->IncExpr;
   2611   }
   2612   // An IV chain with a single increment is handled by LSR's postinc
   2613   // uses. However, a chain with multiple increments requires keeping the IV's
   2614   // value live longer than it needs to be if chained.
   2615   if (NumConstIncrements > 1)
   2616     --cost;
   2617 
   2618   // Materializing increment expressions in the preheader that didn't exist in
   2619   // the original code may cost a register. For example, sign-extended array
   2620   // indices can produce ridiculous increments like this:
   2621   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2622   cost += NumVarIncrements;
   2623 
   2624   // Reusing variable increments likely saves a register to hold the multiple of
   2625   // the stride.
   2626   cost -= NumReusedIncrements;
   2627 
   2628   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2629                << "\n");
   2630 
   2631   return cost < 0;
   2632 }
   2633 
   2634 /// ChainInstruction - Add this IV user to an existing chain or make it the head
   2635 /// of a new chain.
   2636 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2637                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2638   // When IVs are used as types of varying widths, they are generally converted
   2639   // to a wider type with some uses remaining narrow under a (free) trunc.
   2640   Value *const NextIV = getWideOperand(IVOper);
   2641   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2642   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2643 
   2644   // Visit all existing chains. Check if its IVOper can be computed as a
   2645   // profitable loop invariant increment from the last link in the Chain.
   2646   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2647   const SCEV *LastIncExpr = nullptr;
   2648   for (; ChainIdx < NChains; ++ChainIdx) {
   2649     IVChain &Chain = IVChainVec[ChainIdx];
   2650 
   2651     // Prune the solution space aggressively by checking that both IV operands
   2652     // are expressions that operate on the same unscaled SCEVUnknown. This
   2653     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2654     // first avoids creating extra SCEV expressions.
   2655     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2656       continue;
   2657 
   2658     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2659     if (!isCompatibleIVType(PrevIV, NextIV))
   2660       continue;
   2661 
   2662     // A phi node terminates a chain.
   2663     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2664       continue;
   2665 
   2666     // The increment must be loop-invariant so it can be kept in a register.
   2667     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2668     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2669     if (!SE.isLoopInvariant(IncExpr, L))
   2670       continue;
   2671 
   2672     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2673       LastIncExpr = IncExpr;
   2674       break;
   2675     }
   2676   }
   2677   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2678   // bother for phi nodes, because they must be last in the chain.
   2679   if (ChainIdx == NChains) {
   2680     if (isa<PHINode>(UserInst))
   2681       return;
   2682     if (NChains >= MaxChains && !StressIVChain) {
   2683       DEBUG(dbgs() << "IV Chain Limit\n");
   2684       return;
   2685     }
   2686     LastIncExpr = OperExpr;
   2687     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2688     // attempt to form chains involving extensions unless they can be hoisted
   2689     // into this loop's AddRec.
   2690     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2691       return;
   2692     ++NChains;
   2693     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2694                                  OperExprBase));
   2695     ChainUsersVec.resize(NChains);
   2696     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2697                  << ") IV=" << *LastIncExpr << "\n");
   2698   } else {
   2699     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2700                  << ") IV+" << *LastIncExpr << "\n");
   2701     // Add this IV user to the end of the chain.
   2702     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2703   }
   2704   IVChain &Chain = IVChainVec[ChainIdx];
   2705 
   2706   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2707   // This chain's NearUsers become FarUsers.
   2708   if (!LastIncExpr->isZero()) {
   2709     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2710                                             NearUsers.end());
   2711     NearUsers.clear();
   2712   }
   2713 
   2714   // All other uses of IVOperand become near uses of the chain.
   2715   // We currently ignore intermediate values within SCEV expressions, assuming
   2716   // they will eventually be used be the current chain, or can be computed
   2717   // from one of the chain increments. To be more precise we could
   2718   // transitively follow its user and only add leaf IV users to the set.
   2719   for (User *U : IVOper->users()) {
   2720     Instruction *OtherUse = dyn_cast<Instruction>(U);
   2721     if (!OtherUse)
   2722       continue;
   2723     // Uses in the chain will no longer be uses if the chain is formed.
   2724     // Include the head of the chain in this iteration (not Chain.begin()).
   2725     IVChain::const_iterator IncIter = Chain.Incs.begin();
   2726     IVChain::const_iterator IncEnd = Chain.Incs.end();
   2727     for( ; IncIter != IncEnd; ++IncIter) {
   2728       if (IncIter->UserInst == OtherUse)
   2729         break;
   2730     }
   2731     if (IncIter != IncEnd)
   2732       continue;
   2733 
   2734     if (SE.isSCEVable(OtherUse->getType())
   2735         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2736         && IU.isIVUserOrOperand(OtherUse)) {
   2737       continue;
   2738     }
   2739     NearUsers.insert(OtherUse);
   2740   }
   2741 
   2742   // Since this user is part of the chain, it's no longer considered a use
   2743   // of the chain.
   2744   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2745 }
   2746 
   2747 /// CollectChains - Populate the vector of Chains.
   2748 ///
   2749 /// This decreases ILP at the architecture level. Targets with ample registers,
   2750 /// multiple memory ports, and no register renaming probably don't want
   2751 /// this. However, such targets should probably disable LSR altogether.
   2752 ///
   2753 /// The job of LSR is to make a reasonable choice of induction variables across
   2754 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2755 /// ILP *within the loop* if the target wants it.
   2756 ///
   2757 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2758 /// will not reorder memory operations, it will recognize this as a chain, but
   2759 /// will generate redundant IV increments. Ideally this would be corrected later
   2760 /// by a smart scheduler:
   2761 ///        = A[i]
   2762 ///        = A[i+x]
   2763 /// A[i]   =
   2764 /// A[i+x] =
   2765 ///
   2766 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2767 /// loop latch. This will discover chains on side paths, but requires
   2768 /// maintaining multiple copies of the Chains state.
   2769 void LSRInstance::CollectChains() {
   2770   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2771   SmallVector<ChainUsers, 8> ChainUsersVec;
   2772 
   2773   SmallVector<BasicBlock *,8> LatchPath;
   2774   BasicBlock *LoopHeader = L->getHeader();
   2775   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2776        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2777     LatchPath.push_back(Rung->getBlock());
   2778   }
   2779   LatchPath.push_back(LoopHeader);
   2780 
   2781   // Walk the instruction stream from the loop header to the loop latch.
   2782   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2783          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2784        BBIter != BBEnd; ++BBIter) {
   2785     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2786          I != E; ++I) {
   2787       // Skip instructions that weren't seen by IVUsers analysis.
   2788       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
   2789         continue;
   2790 
   2791       // Ignore users that are part of a SCEV expression. This way we only
   2792       // consider leaf IV Users. This effectively rediscovers a portion of
   2793       // IVUsers analysis but in program order this time.
   2794       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
   2795         continue;
   2796 
   2797       // Remove this instruction from any NearUsers set it may be in.
   2798       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2799            ChainIdx < NChains; ++ChainIdx) {
   2800         ChainUsersVec[ChainIdx].NearUsers.erase(I);
   2801       }
   2802       // Search for operands that can be chained.
   2803       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2804       User::op_iterator IVOpEnd = I->op_end();
   2805       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2806       while (IVOpIter != IVOpEnd) {
   2807         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2808         if (UniqueOperands.insert(IVOpInst))
   2809           ChainInstruction(I, IVOpInst, ChainUsersVec);
   2810         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2811       }
   2812     } // Continue walking down the instructions.
   2813   } // Continue walking down the domtree.
   2814   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2815   for (BasicBlock::iterator I = L->getHeader()->begin();
   2816        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2817     if (!SE.isSCEVable(PN->getType()))
   2818       continue;
   2819 
   2820     Instruction *IncV =
   2821       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2822     if (IncV)
   2823       ChainInstruction(PN, IncV, ChainUsersVec);
   2824   }
   2825   // Remove any unprofitable chains.
   2826   unsigned ChainIdx = 0;
   2827   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2828        UsersIdx < NChains; ++UsersIdx) {
   2829     if (!isProfitableChain(IVChainVec[UsersIdx],
   2830                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
   2831       continue;
   2832     // Preserve the chain at UsesIdx.
   2833     if (ChainIdx != UsersIdx)
   2834       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2835     FinalizeChain(IVChainVec[ChainIdx]);
   2836     ++ChainIdx;
   2837   }
   2838   IVChainVec.resize(ChainIdx);
   2839 }
   2840 
   2841 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2842   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2843   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2844 
   2845   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2846        I != E; ++I) {
   2847     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
   2848     User::op_iterator UseI =
   2849       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
   2850     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
   2851     IVIncSet.insert(UseI);
   2852   }
   2853 }
   2854 
   2855 /// Return true if the IVInc can be folded into an addressing mode.
   2856 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2857                              Value *Operand, const TargetTransformInfo &TTI) {
   2858   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2859   if (!IncConst || !isAddressUse(UserInst, Operand))
   2860     return false;
   2861 
   2862   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
   2863     return false;
   2864 
   2865   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2866   if (!isAlwaysFoldable(TTI, LSRUse::Address,
   2867                         getAccessType(UserInst), /*BaseGV=*/ nullptr,
   2868                         IncOffset, /*HaseBaseReg=*/ false))
   2869     return false;
   2870 
   2871   return true;
   2872 }
   2873 
   2874 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
   2875 /// materialize the IV user's operand from the previous IV user's operand.
   2876 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2877                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2878   // Find the new IVOperand for the head of the chain. It may have been replaced
   2879   // by LSR.
   2880   const IVInc &Head = Chain.Incs[0];
   2881   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2882   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
   2883   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2884                                              IVOpEnd, L, SE);
   2885   Value *IVSrc = nullptr;
   2886   while (IVOpIter != IVOpEnd) {
   2887     IVSrc = getWideOperand(*IVOpIter);
   2888 
   2889     // If this operand computes the expression that the chain needs, we may use
   2890     // it. (Check this after setting IVSrc which is used below.)
   2891     //
   2892     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2893     // narrow for the chain, so we can no longer use it. We do allow using a
   2894     // wider phi, assuming the LSR checked for free truncation. In that case we
   2895     // should already have a truncate on this operand such that
   2896     // getSCEV(IVSrc) == IncExpr.
   2897     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2898         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2899       break;
   2900     }
   2901     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2902   }
   2903   if (IVOpIter == IVOpEnd) {
   2904     // Gracefully give up on this chain.
   2905     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2906     return;
   2907   }
   2908 
   2909   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2910   Type *IVTy = IVSrc->getType();
   2911   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2912   const SCEV *LeftOverExpr = nullptr;
   2913   for (IVChain::const_iterator IncI = Chain.begin(),
   2914          IncE = Chain.end(); IncI != IncE; ++IncI) {
   2915 
   2916     Instruction *InsertPt = IncI->UserInst;
   2917     if (isa<PHINode>(InsertPt))
   2918       InsertPt = L->getLoopLatch()->getTerminator();
   2919 
   2920     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2921     // value currently held in a register.
   2922     Value *IVOper = IVSrc;
   2923     if (!IncI->IncExpr->isZero()) {
   2924       // IncExpr was the result of subtraction of two narrow values, so must
   2925       // be signed.
   2926       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
   2927       LeftOverExpr = LeftOverExpr ?
   2928         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2929     }
   2930     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2931       // Expand the IV increment.
   2932       Rewriter.clearPostInc();
   2933       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2934       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2935                                              SE.getUnknown(IncV));
   2936       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2937 
   2938       // If an IV increment can't be folded, use it as the next IV value.
   2939       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
   2940                             TTI)) {
   2941         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2942         IVSrc = IVOper;
   2943         LeftOverExpr = nullptr;
   2944       }
   2945     }
   2946     Type *OperTy = IncI->IVOperand->getType();
   2947     if (IVTy != OperTy) {
   2948       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2949              "cannot extend a chained IV");
   2950       IRBuilder<> Builder(InsertPt);
   2951       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2952     }
   2953     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
   2954     DeadInsts.push_back(IncI->IVOperand);
   2955   }
   2956   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2957   // do this if we also found a wide value for the head of the chain.
   2958   if (isa<PHINode>(Chain.tailUserInst())) {
   2959     for (BasicBlock::iterator I = L->getHeader()->begin();
   2960          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2961       if (!isCompatibleIVType(Phi, IVSrc))
   2962         continue;
   2963       Instruction *PostIncV = dyn_cast<Instruction>(
   2964         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2965       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2966         continue;
   2967       Value *IVOper = IVSrc;
   2968       Type *PostIncTy = PostIncV->getType();
   2969       if (IVTy != PostIncTy) {
   2970         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2971         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2972         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2973         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2974       }
   2975       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2976       DeadInsts.push_back(PostIncV);
   2977     }
   2978   }
   2979 }
   2980 
   2981 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2982   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2983     Instruction *UserInst = UI->getUser();
   2984     // Skip IV users that are part of profitable IV Chains.
   2985     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2986                                        UI->getOperandValToReplace());
   2987     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2988     if (IVIncSet.count(UseI))
   2989       continue;
   2990 
   2991     // Record the uses.
   2992     LSRFixup &LF = getNewFixup();
   2993     LF.UserInst = UserInst;
   2994     LF.OperandValToReplace = UI->getOperandValToReplace();
   2995     LF.PostIncLoops = UI->getPostIncLoops();
   2996 
   2997     LSRUse::KindType Kind = LSRUse::Basic;
   2998     Type *AccessTy = nullptr;
   2999     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   3000       Kind = LSRUse::Address;
   3001       AccessTy = getAccessType(LF.UserInst);
   3002     }
   3003 
   3004     const SCEV *S = IU.getExpr(*UI);
   3005 
   3006     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   3007     // (N - i == 0), and this allows (N - i) to be the expression that we work
   3008     // with rather than just N or i, so we can consider the register
   3009     // requirements for both N and i at the same time. Limiting this code to
   3010     // equality icmps is not a problem because all interesting loops use
   3011     // equality icmps, thanks to IndVarSimplify.
   3012     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   3013       if (CI->isEquality()) {
   3014         // Swap the operands if needed to put the OperandValToReplace on the
   3015         // left, for consistency.
   3016         Value *NV = CI->getOperand(1);
   3017         if (NV == LF.OperandValToReplace) {
   3018           CI->setOperand(1, CI->getOperand(0));
   3019           CI->setOperand(0, NV);
   3020           NV = CI->getOperand(1);
   3021           Changed = true;
   3022         }
   3023 
   3024         // x == y  -->  x - y == 0
   3025         const SCEV *N = SE.getSCEV(NV);
   3026         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
   3027           // S is normalized, so normalize N before folding it into S
   3028           // to keep the result normalized.
   3029           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
   3030                                      LF.PostIncLoops, SE, DT);
   3031           Kind = LSRUse::ICmpZero;
   3032           S = SE.getMinusSCEV(N, S);
   3033         }
   3034 
   3035         // -1 and the negations of all interesting strides (except the negation
   3036         // of -1) are now also interesting.
   3037         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   3038           if (Factors[i] != -1)
   3039             Factors.insert(-(uint64_t)Factors[i]);
   3040         Factors.insert(-1);
   3041       }
   3042 
   3043     // Set up the initial formula for this use.
   3044     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   3045     LF.LUIdx = P.first;
   3046     LF.Offset = P.second;
   3047     LSRUse &LU = Uses[LF.LUIdx];
   3048     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3049     if (!LU.WidestFixupType ||
   3050         SE.getTypeSizeInBits(LU.WidestFixupType) <
   3051         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3052       LU.WidestFixupType = LF.OperandValToReplace->getType();
   3053 
   3054     // If this is the first use of this LSRUse, give it a formula.
   3055     if (LU.Formulae.empty()) {
   3056       InsertInitialFormula(S, LU, LF.LUIdx);
   3057       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   3058     }
   3059   }
   3060 
   3061   DEBUG(print_fixups(dbgs()));
   3062 }
   3063 
   3064 /// InsertInitialFormula - Insert a formula for the given expression into
   3065 /// the given use, separating out loop-variant portions from loop-invariant
   3066 /// and loop-computable portions.
   3067 void
   3068 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   3069   // Mark uses whose expressions cannot be expanded.
   3070   if (!isSafeToExpand(S, SE))
   3071     LU.RigidFormula = true;
   3072 
   3073   Formula F;
   3074   F.InitialMatch(S, L, SE);
   3075   bool Inserted = InsertFormula(LU, LUIdx, F);
   3076   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   3077 }
   3078 
   3079 /// InsertSupplementalFormula - Insert a simple single-register formula for
   3080 /// the given expression into the given use.
   3081 void
   3082 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   3083                                        LSRUse &LU, size_t LUIdx) {
   3084   Formula F;
   3085   F.BaseRegs.push_back(S);
   3086   F.HasBaseReg = true;
   3087   bool Inserted = InsertFormula(LU, LUIdx, F);
   3088   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   3089 }
   3090 
   3091 /// CountRegisters - Note which registers are used by the given formula,
   3092 /// updating RegUses.
   3093 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   3094   if (F.ScaledReg)
   3095     RegUses.CountRegister(F.ScaledReg, LUIdx);
   3096   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   3097        E = F.BaseRegs.end(); I != E; ++I)
   3098     RegUses.CountRegister(*I, LUIdx);
   3099 }
   3100 
   3101 /// InsertFormula - If the given formula has not yet been inserted, add it to
   3102 /// the list, and return true. Return false otherwise.
   3103 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   3104   // Do not insert formula that we will not be able to expand.
   3105   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
   3106          "Formula is illegal");
   3107   if (!LU.InsertFormula(F))
   3108     return false;
   3109 
   3110   CountRegisters(F, LUIdx);
   3111   return true;
   3112 }
   3113 
   3114 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
   3115 /// loop-invariant values which we're tracking. These other uses will pin these
   3116 /// values in registers, making them less profitable for elimination.
   3117 /// TODO: This currently misses non-constant addrec step registers.
   3118 /// TODO: Should this give more weight to users inside the loop?
   3119 void
   3120 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   3121   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   3122   SmallPtrSet<const SCEV *, 8> Inserted;
   3123 
   3124   while (!Worklist.empty()) {
   3125     const SCEV *S = Worklist.pop_back_val();
   3126 
   3127     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   3128       Worklist.append(N->op_begin(), N->op_end());
   3129     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   3130       Worklist.push_back(C->getOperand());
   3131     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   3132       Worklist.push_back(D->getLHS());
   3133       Worklist.push_back(D->getRHS());
   3134     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
   3135       if (!Inserted.insert(US)) continue;
   3136       const Value *V = US->getValue();
   3137       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   3138         // Look for instructions defined outside the loop.
   3139         if (L->contains(Inst)) continue;
   3140       } else if (isa<UndefValue>(V))
   3141         // Undef doesn't have a live range, so it doesn't matter.
   3142         continue;
   3143       for (const Use &U : V->uses()) {
   3144         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
   3145         // Ignore non-instructions.
   3146         if (!UserInst)
   3147           continue;
   3148         // Ignore instructions in other functions (as can happen with
   3149         // Constants).
   3150         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   3151           continue;
   3152         // Ignore instructions not dominated by the loop.
   3153         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   3154           UserInst->getParent() :
   3155           cast<PHINode>(UserInst)->getIncomingBlock(
   3156             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
   3157         if (!DT.dominates(L->getHeader(), UseBB))
   3158           continue;
   3159         // Ignore uses which are part of other SCEV expressions, to avoid
   3160         // analyzing them multiple times.
   3161         if (SE.isSCEVable(UserInst->getType())) {
   3162           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   3163           // If the user is a no-op, look through to its uses.
   3164           if (!isa<SCEVUnknown>(UserS))
   3165             continue;
   3166           if (UserS == US) {
   3167             Worklist.push_back(
   3168               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   3169             continue;
   3170           }
   3171         }
   3172         // Ignore icmp instructions which are already being analyzed.
   3173         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   3174           unsigned OtherIdx = !U.getOperandNo();
   3175           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   3176           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   3177             continue;
   3178         }
   3179 
   3180         LSRFixup &LF = getNewFixup();
   3181         LF.UserInst = const_cast<Instruction *>(UserInst);
   3182         LF.OperandValToReplace = U;
   3183         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
   3184         LF.LUIdx = P.first;
   3185         LF.Offset = P.second;
   3186         LSRUse &LU = Uses[LF.LUIdx];
   3187         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3188         if (!LU.WidestFixupType ||
   3189             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3190             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3191           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3192         InsertSupplementalFormula(US, LU, LF.LUIdx);
   3193         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3194         break;
   3195       }
   3196     }
   3197   }
   3198 }
   3199 
   3200 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
   3201 /// separate registers. If C is non-null, multiply each subexpression by C.
   3202 ///
   3203 /// Return remainder expression after factoring the subexpressions captured by
   3204 /// Ops. If Ops is complete, return NULL.
   3205 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3206                                    SmallVectorImpl<const SCEV *> &Ops,
   3207                                    const Loop *L,
   3208                                    ScalarEvolution &SE,
   3209                                    unsigned Depth = 0) {
   3210   // Arbitrarily cap recursion to protect compile time.
   3211   if (Depth >= 3)
   3212     return S;
   3213 
   3214   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3215     // Break out add operands.
   3216     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   3217          I != E; ++I) {
   3218       const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
   3219       if (Remainder)
   3220         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3221     }
   3222     return nullptr;
   3223   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3224     // Split a non-zero base out of an addrec.
   3225     if (AR->getStart()->isZero())
   3226       return S;
   3227 
   3228     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3229                                             C, Ops, L, SE, Depth+1);
   3230     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3231     // does not pertain to this loop.
   3232     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3233       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3234       Remainder = nullptr;
   3235     }
   3236     if (Remainder != AR->getStart()) {
   3237       if (!Remainder)
   3238         Remainder = SE.getConstant(AR->getType(), 0);
   3239       return SE.getAddRecExpr(Remainder,
   3240                               AR->getStepRecurrence(SE),
   3241                               AR->getLoop(),
   3242                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3243                               SCEV::FlagAnyWrap);
   3244     }
   3245   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3246     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3247     if (Mul->getNumOperands() != 2)
   3248       return S;
   3249     if (const SCEVConstant *Op0 =
   3250         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3251       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3252       const SCEV *Remainder =
   3253         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3254       if (Remainder)
   3255         Ops.push_back(SE.getMulExpr(C, Remainder));
   3256       return nullptr;
   3257     }
   3258   }
   3259   return S;
   3260 }
   3261 
   3262 /// \brief Helper function for LSRInstance::GenerateReassociations.
   3263 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   3264                                              const Formula &Base,
   3265                                              unsigned Depth, size_t Idx,
   3266                                              bool IsScaledReg) {
   3267   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3268   SmallVector<const SCEV *, 8> AddOps;
   3269   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
   3270   if (Remainder)
   3271     AddOps.push_back(Remainder);
   3272 
   3273   if (AddOps.size() == 1)
   3274     return;
   3275 
   3276   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3277                                                      JE = AddOps.end();
   3278        J != JE; ++J) {
   3279 
   3280     // Loop-variant "unknown" values are uninteresting; we won't be able to
   3281     // do anything meaningful with them.
   3282     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3283       continue;
   3284 
   3285     // Don't pull a constant into a register if the constant could be folded
   3286     // into an immediate field.
   3287     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3288                          LU.AccessTy, *J, Base.getNumRegs() > 1))
   3289       continue;
   3290 
   3291     // Collect all operands except *J.
   3292     SmallVector<const SCEV *, 8> InnerAddOps(
   3293         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3294     InnerAddOps.append(std::next(J),
   3295                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3296 
   3297     // Don't leave just a constant behind in a register if the constant could
   3298     // be folded into an immediate field.
   3299     if (InnerAddOps.size() == 1 &&
   3300         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3301                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
   3302       continue;
   3303 
   3304     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3305     if (InnerSum->isZero())
   3306       continue;
   3307     Formula F = Base;
   3308 
   3309     // Add the remaining pieces of the add back into the new formula.
   3310     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3311     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3312         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3313                                 InnerSumSC->getValue()->getZExtValue())) {
   3314       F.UnfoldedOffset =
   3315           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
   3316       if (IsScaledReg)
   3317         F.ScaledReg = nullptr;
   3318       else
   3319         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
   3320     } else if (IsScaledReg)
   3321       F.ScaledReg = InnerSum;
   3322     else
   3323       F.BaseRegs[Idx] = InnerSum;
   3324 
   3325     // Add J as its own register, or an unfolded immediate.
   3326     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3327     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3328         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3329                                 SC->getValue()->getZExtValue()))
   3330       F.UnfoldedOffset =
   3331           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
   3332     else
   3333       F.BaseRegs.push_back(*J);
   3334     // We may have changed the number of register in base regs, adjust the
   3335     // formula accordingly.
   3336     F.Canonicalize();
   3337 
   3338     if (InsertFormula(LU, LUIdx, F))
   3339       // If that formula hadn't been seen before, recurse to find more like
   3340       // it.
   3341       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
   3342   }
   3343 }
   3344 
   3345 /// GenerateReassociations - Split out subexpressions from adds and the bases of
   3346 /// addrecs.
   3347 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3348                                          Formula Base, unsigned Depth) {
   3349   assert(Base.isCanonical() && "Input must be in the canonical form");
   3350   // Arbitrarily cap recursion to protect compile time.
   3351   if (Depth >= 3)
   3352     return;
   3353 
   3354   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3355     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
   3356 
   3357   if (Base.Scale == 1)
   3358     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
   3359                                /* Idx */ -1, /* IsScaledReg */ true);
   3360 }
   3361 
   3362 /// GenerateCombinations - Generate a formula consisting of all of the
   3363 /// loop-dominating registers added into a single register.
   3364 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3365                                        Formula Base) {
   3366   // This method is only interesting on a plurality of registers.
   3367   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
   3368     return;
   3369 
   3370   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
   3371   // processing the formula.
   3372   Base.Unscale();
   3373   Formula F = Base;
   3374   F.BaseRegs.clear();
   3375   SmallVector<const SCEV *, 4> Ops;
   3376   for (SmallVectorImpl<const SCEV *>::const_iterator
   3377        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
   3378     const SCEV *BaseReg = *I;
   3379     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3380         !SE.hasComputableLoopEvolution(BaseReg, L))
   3381       Ops.push_back(BaseReg);
   3382     else
   3383       F.BaseRegs.push_back(BaseReg);
   3384   }
   3385   if (Ops.size() > 1) {
   3386     const SCEV *Sum = SE.getAddExpr(Ops);
   3387     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3388     // opportunity to fold something. For now, just ignore such cases
   3389     // rather than proceed with zero in a register.
   3390     if (!Sum->isZero()) {
   3391       F.BaseRegs.push_back(Sum);
   3392       F.Canonicalize();
   3393       (void)InsertFormula(LU, LUIdx, F);
   3394     }
   3395   }
   3396 }
   3397 
   3398 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
   3399 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   3400                                               const Formula &Base, size_t Idx,
   3401                                               bool IsScaledReg) {
   3402   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3403   GlobalValue *GV = ExtractSymbol(G, SE);
   3404   if (G->isZero() || !GV)
   3405     return;
   3406   Formula F = Base;
   3407   F.BaseGV = GV;
   3408   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3409     return;
   3410   if (IsScaledReg)
   3411     F.ScaledReg = G;
   3412   else
   3413     F.BaseRegs[Idx] = G;
   3414   (void)InsertFormula(LU, LUIdx, F);
   3415 }
   3416 
   3417 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
   3418 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3419                                           Formula Base) {
   3420   // We can't add a symbolic offset if the address already contains one.
   3421   if (Base.BaseGV) return;
   3422 
   3423   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3424     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
   3425   if (Base.Scale == 1)
   3426     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
   3427                                 /* IsScaledReg */ true);
   3428 }
   3429 
   3430 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
   3431 void LSRInstance::GenerateConstantOffsetsImpl(
   3432     LSRUse &LU, unsigned LUIdx, const Formula &Base,
   3433     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
   3434   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3435   for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
   3436                                                 E = Worklist.end();
   3437        I != E; ++I) {
   3438     Formula F = Base;
   3439     F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
   3440     if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
   3441                    LU.AccessTy, F)) {
   3442       // Add the offset to the base register.
   3443       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
   3444       // If it cancelled out, drop the base register, otherwise update it.
   3445       if (NewG->isZero()) {
   3446         if (IsScaledReg) {
   3447           F.Scale = 0;
   3448           F.ScaledReg = nullptr;
   3449         } else
   3450           F.DeleteBaseReg(F.BaseRegs[Idx]);
   3451         F.Canonicalize();
   3452       } else if (IsScaledReg)
   3453         F.ScaledReg = NewG;
   3454       else
   3455         F.BaseRegs[Idx] = NewG;
   3456 
   3457       (void)InsertFormula(LU, LUIdx, F);
   3458     }
   3459   }
   3460 
   3461   int64_t Imm = ExtractImmediate(G, SE);
   3462   if (G->isZero() || Imm == 0)
   3463     return;
   3464   Formula F = Base;
   3465   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
   3466   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3467     return;
   3468   if (IsScaledReg)
   3469     F.ScaledReg = G;
   3470   else
   3471     F.BaseRegs[Idx] = G;
   3472   (void)InsertFormula(LU, LUIdx, F);
   3473 }
   3474 
   3475 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3476 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3477                                           Formula Base) {
   3478   // TODO: For now, just add the min and max offset, because it usually isn't
   3479   // worthwhile looking at everything inbetween.
   3480   SmallVector<int64_t, 2> Worklist;
   3481   Worklist.push_back(LU.MinOffset);
   3482   if (LU.MaxOffset != LU.MinOffset)
   3483     Worklist.push_back(LU.MaxOffset);
   3484 
   3485   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3486     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
   3487   if (Base.Scale == 1)
   3488     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
   3489                                 /* IsScaledReg */ true);
   3490 }
   3491 
   3492 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
   3493 /// the comparison. For example, x == y -> x*c == y*c.
   3494 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3495                                          Formula Base) {
   3496   if (LU.Kind != LSRUse::ICmpZero) return;
   3497 
   3498   // Determine the integer type for the base formula.
   3499   Type *IntTy = Base.getType();
   3500   if (!IntTy) return;
   3501   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3502 
   3503   // Don't do this if there is more than one offset.
   3504   if (LU.MinOffset != LU.MaxOffset) return;
   3505 
   3506   assert(!Base.BaseGV && "ICmpZero use is not legal!");
   3507 
   3508   // Check each interesting stride.
   3509   for (SmallSetVector<int64_t, 8>::const_iterator
   3510        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3511     int64_t Factor = *I;
   3512 
   3513     // Check that the multiplication doesn't overflow.
   3514     if (Base.BaseOffset == INT64_MIN && Factor == -1)
   3515       continue;
   3516     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
   3517     if (NewBaseOffset / Factor != Base.BaseOffset)
   3518       continue;
   3519     // If the offset will be truncated at this use, check that it is in bounds.
   3520     if (!IntTy->isPointerTy() &&
   3521         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
   3522       continue;
   3523 
   3524     // Check that multiplying with the use offset doesn't overflow.
   3525     int64_t Offset = LU.MinOffset;
   3526     if (Offset == INT64_MIN && Factor == -1)
   3527       continue;
   3528     Offset = (uint64_t)Offset * Factor;
   3529     if (Offset / Factor != LU.MinOffset)
   3530       continue;
   3531     // If the offset will be truncated at this use, check that it is in bounds.
   3532     if (!IntTy->isPointerTy() &&
   3533         !ConstantInt::isValueValidForType(IntTy, Offset))
   3534       continue;
   3535 
   3536     Formula F = Base;
   3537     F.BaseOffset = NewBaseOffset;
   3538 
   3539     // Check that this scale is legal.
   3540     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
   3541       continue;
   3542 
   3543     // Compensate for the use having MinOffset built into it.
   3544     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
   3545 
   3546     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3547 
   3548     // Check that multiplying with each base register doesn't overflow.
   3549     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3550       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3551       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3552         goto next;
   3553     }
   3554 
   3555     // Check that multiplying with the scaled register doesn't overflow.
   3556     if (F.ScaledReg) {
   3557       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3558       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3559         continue;
   3560     }
   3561 
   3562     // Check that multiplying with the unfolded offset doesn't overflow.
   3563     if (F.UnfoldedOffset != 0) {
   3564       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3565         continue;
   3566       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3567       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3568         continue;
   3569       // If the offset will be truncated, check that it is in bounds.
   3570       if (!IntTy->isPointerTy() &&
   3571           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
   3572         continue;
   3573     }
   3574 
   3575     // If we make it here and it's legal, add it.
   3576     (void)InsertFormula(LU, LUIdx, F);
   3577   next:;
   3578   }
   3579 }
   3580 
   3581 /// GenerateScales - Generate stride factor reuse formulae by making use of
   3582 /// scaled-offset address modes, for example.
   3583 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3584   // Determine the integer type for the base formula.
   3585   Type *IntTy = Base.getType();
   3586   if (!IntTy) return;
   3587 
   3588   // If this Formula already has a scaled register, we can't add another one.
   3589   // Try to unscale the formula to generate a better scale.
   3590   if (Base.Scale != 0 && !Base.Unscale())
   3591     return;
   3592 
   3593   assert(Base.Scale == 0 && "Unscale did not did its job!");
   3594 
   3595   // Check each interesting stride.
   3596   for (SmallSetVector<int64_t, 8>::const_iterator
   3597        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3598     int64_t Factor = *I;
   3599 
   3600     Base.Scale = Factor;
   3601     Base.HasBaseReg = Base.BaseRegs.size() > 1;
   3602     // Check whether this scale is going to be legal.
   3603     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3604                     Base)) {
   3605       // As a special-case, handle special out-of-loop Basic users specially.
   3606       // TODO: Reconsider this special case.
   3607       if (LU.Kind == LSRUse::Basic &&
   3608           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
   3609                      LU.AccessTy, Base) &&
   3610           LU.AllFixupsOutsideLoop)
   3611         LU.Kind = LSRUse::Special;
   3612       else
   3613         continue;
   3614     }
   3615     // For an ICmpZero, negating a solitary base register won't lead to
   3616     // new solutions.
   3617     if (LU.Kind == LSRUse::ICmpZero &&
   3618         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
   3619       continue;
   3620     // For each addrec base reg, apply the scale, if possible.
   3621     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3622       if (const SCEVAddRecExpr *AR =
   3623             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3624         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3625         if (FactorS->isZero())
   3626           continue;
   3627         // Divide out the factor, ignoring high bits, since we'll be
   3628         // scaling the value back up in the end.
   3629         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3630           // TODO: This could be optimized to avoid all the copying.
   3631           Formula F = Base;
   3632           F.ScaledReg = Quotient;
   3633           F.DeleteBaseReg(F.BaseRegs[i]);
   3634           // The canonical representation of 1*reg is reg, which is already in
   3635           // Base. In that case, do not try to insert the formula, it will be
   3636           // rejected anyway.
   3637           if (F.Scale == 1 && F.BaseRegs.empty())
   3638             continue;
   3639           (void)InsertFormula(LU, LUIdx, F);
   3640         }
   3641       }
   3642   }
   3643 }
   3644 
   3645 /// GenerateTruncates - Generate reuse formulae from different IV types.
   3646 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3647   // Don't bother truncating symbolic values.
   3648   if (Base.BaseGV) return;
   3649 
   3650   // Determine the integer type for the base formula.
   3651   Type *DstTy = Base.getType();
   3652   if (!DstTy) return;
   3653   DstTy = SE.getEffectiveSCEVType(DstTy);
   3654 
   3655   for (SmallSetVector<Type *, 4>::const_iterator
   3656        I = Types.begin(), E = Types.end(); I != E; ++I) {
   3657     Type *SrcTy = *I;
   3658     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
   3659       Formula F = Base;
   3660 
   3661       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
   3662       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
   3663            JE = F.BaseRegs.end(); J != JE; ++J)
   3664         *J = SE.getAnyExtendExpr(*J, SrcTy);
   3665 
   3666       // TODO: This assumes we've done basic processing on all uses and
   3667       // have an idea what the register usage is.
   3668       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3669         continue;
   3670 
   3671       (void)InsertFormula(LU, LUIdx, F);
   3672     }
   3673   }
   3674 }
   3675 
   3676 namespace {
   3677 
   3678 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
   3679 /// defer modifications so that the search phase doesn't have to worry about
   3680 /// the data structures moving underneath it.
   3681 struct WorkItem {
   3682   size_t LUIdx;
   3683   int64_t Imm;
   3684   const SCEV *OrigReg;
   3685 
   3686   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3687     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3688 
   3689   void print(raw_ostream &OS) const;
   3690   void dump() const;
   3691 };
   3692 
   3693 }
   3694 
   3695 void WorkItem::print(raw_ostream &OS) const {
   3696   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3697      << " , add offset " << Imm;
   3698 }
   3699 
   3700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   3701 void WorkItem::dump() const {
   3702   print(errs()); errs() << '\n';
   3703 }
   3704 #endif
   3705 
   3706 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
   3707 /// distance apart and try to form reuse opportunities between them.
   3708 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3709   // Group the registers by their value without any added constant offset.
   3710   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3711   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
   3712   RegMapTy Map;
   3713   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3714   SmallVector<const SCEV *, 8> Sequence;
   3715   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3716        I != E; ++I) {
   3717     const SCEV *Reg = *I;
   3718     int64_t Imm = ExtractImmediate(Reg, SE);
   3719     std::pair<RegMapTy::iterator, bool> Pair =
   3720       Map.insert(std::make_pair(Reg, ImmMapTy()));
   3721     if (Pair.second)
   3722       Sequence.push_back(Reg);
   3723     Pair.first->second.insert(std::make_pair(Imm, *I));
   3724     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
   3725   }
   3726 
   3727   // Now examine each set of registers with the same base value. Build up
   3728   // a list of work to do and do the work in a separate step so that we're
   3729   // not adding formulae and register counts while we're searching.
   3730   SmallVector<WorkItem, 32> WorkItems;
   3731   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3732   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
   3733        E = Sequence.end(); I != E; ++I) {
   3734     const SCEV *Reg = *I;
   3735     const ImmMapTy &Imms = Map.find(Reg)->second;
   3736 
   3737     // It's not worthwhile looking for reuse if there's only one offset.
   3738     if (Imms.size() == 1)
   3739       continue;
   3740 
   3741     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3742           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3743                J != JE; ++J)
   3744             dbgs() << ' ' << J->first;
   3745           dbgs() << '\n');
   3746 
   3747     // Examine each offset.
   3748     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3749          J != JE; ++J) {
   3750       const SCEV *OrigReg = J->second;
   3751 
   3752       int64_t JImm = J->first;
   3753       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3754 
   3755       if (!isa<SCEVConstant>(OrigReg) &&
   3756           UsedByIndicesMap[Reg].count() == 1) {
   3757         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3758         continue;
   3759       }
   3760 
   3761       // Conservatively examine offsets between this orig reg a few selected
   3762       // other orig regs.
   3763       ImmMapTy::const_iterator OtherImms[] = {
   3764         Imms.begin(), std::prev(Imms.end()),
   3765         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
   3766                          2)
   3767       };
   3768       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3769         ImmMapTy::const_iterator M = OtherImms[i];
   3770         if (M == J || M == JE) continue;
   3771 
   3772         // Compute the difference between the two.
   3773         int64_t Imm = (uint64_t)JImm - M->first;
   3774         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3775              LUIdx = UsedByIndices.find_next(LUIdx))
   3776           // Make a memo of this use, offset, and register tuple.
   3777           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
   3778             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3779       }
   3780     }
   3781   }
   3782 
   3783   Map.clear();
   3784   Sequence.clear();
   3785   UsedByIndicesMap.clear();
   3786   UniqueItems.clear();
   3787 
   3788   // Now iterate through the worklist and add new formulae.
   3789   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
   3790        E = WorkItems.end(); I != E; ++I) {
   3791     const WorkItem &WI = *I;
   3792     size_t LUIdx = WI.LUIdx;
   3793     LSRUse &LU = Uses[LUIdx];
   3794     int64_t Imm = WI.Imm;
   3795     const SCEV *OrigReg = WI.OrigReg;
   3796 
   3797     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3798     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3799     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3800 
   3801     // TODO: Use a more targeted data structure.
   3802     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3803       Formula F = LU.Formulae[L];
   3804       // FIXME: The code for the scaled and unscaled registers looks
   3805       // very similar but slightly different. Investigate if they
   3806       // could be merged. That way, we would not have to unscale the
   3807       // Formula.
   3808       F.Unscale();
   3809       // Use the immediate in the scaled register.
   3810       if (F.ScaledReg == OrigReg) {
   3811         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
   3812         // Don't create 50 + reg(-50).
   3813         if (F.referencesReg(SE.getSCEV(
   3814                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
   3815           continue;
   3816         Formula NewF = F;
   3817         NewF.BaseOffset = Offset;
   3818         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3819                         NewF))
   3820           continue;
   3821         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3822 
   3823         // If the new scale is a constant in a register, and adding the constant
   3824         // value to the immediate would produce a value closer to zero than the
   3825         // immediate itself, then the formula isn't worthwhile.
   3826         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3827           if (C->getValue()->isNegative() !=
   3828                 (NewF.BaseOffset < 0) &&
   3829               (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
   3830                 .ule(abs64(NewF.BaseOffset)))
   3831             continue;
   3832 
   3833         // OK, looks good.
   3834         NewF.Canonicalize();
   3835         (void)InsertFormula(LU, LUIdx, NewF);
   3836       } else {
   3837         // Use the immediate in a base register.
   3838         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3839           const SCEV *BaseReg = F.BaseRegs[N];
   3840           if (BaseReg != OrigReg)
   3841             continue;
   3842           Formula NewF = F;
   3843           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
   3844           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
   3845                           LU.Kind, LU.AccessTy, NewF)) {
   3846             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3847               continue;
   3848             NewF = F;
   3849             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3850           }
   3851           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3852 
   3853           // If the new formula has a constant in a register, and adding the
   3854           // constant value to the immediate would produce a value closer to
   3855           // zero than the immediate itself, then the formula isn't worthwhile.
   3856           for (SmallVectorImpl<const SCEV *>::const_iterator
   3857                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
   3858                J != JE; ++J)
   3859             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
   3860               if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
   3861                    abs64(NewF.BaseOffset)) &&
   3862                   (C->getValue()->getValue() +
   3863                    NewF.BaseOffset).countTrailingZeros() >=
   3864                    countTrailingZeros<uint64_t>(NewF.BaseOffset))
   3865                 goto skip_formula;
   3866 
   3867           // Ok, looks good.
   3868           NewF.Canonicalize();
   3869           (void)InsertFormula(LU, LUIdx, NewF);
   3870           break;
   3871         skip_formula:;
   3872         }
   3873       }
   3874     }
   3875   }
   3876 }
   3877 
   3878 /// GenerateAllReuseFormulae - Generate formulae for each use.
   3879 void
   3880 LSRInstance::GenerateAllReuseFormulae() {
   3881   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3882   // queries are more precise.
   3883   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3884     LSRUse &LU = Uses[LUIdx];
   3885     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3886       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3887     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3888       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3889   }
   3890   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3891     LSRUse &LU = Uses[LUIdx];
   3892     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3893       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3894     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3895       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3896     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3897       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3898     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3899       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3900   }
   3901   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3902     LSRUse &LU = Uses[LUIdx];
   3903     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3904       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3905   }
   3906 
   3907   GenerateCrossUseConstantOffsets();
   3908 
   3909   DEBUG(dbgs() << "\n"
   3910                   "After generating reuse formulae:\n";
   3911         print_uses(dbgs()));
   3912 }
   3913 
   3914 /// If there are multiple formulae with the same set of registers used
   3915 /// by other uses, pick the best one and delete the others.
   3916 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3917   DenseSet<const SCEV *> VisitedRegs;
   3918   SmallPtrSet<const SCEV *, 16> Regs;
   3919   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3920 #ifndef NDEBUG
   3921   bool ChangedFormulae = false;
   3922 #endif
   3923 
   3924   // Collect the best formula for each unique set of shared registers. This
   3925   // is reset for each use.
   3926   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
   3927     BestFormulaeTy;
   3928   BestFormulaeTy BestFormulae;
   3929 
   3930   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3931     LSRUse &LU = Uses[LUIdx];
   3932     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3933 
   3934     bool Any = false;
   3935     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3936          FIdx != NumForms; ++FIdx) {
   3937       Formula &F = LU.Formulae[FIdx];
   3938 
   3939       // Some formulas are instant losers. For example, they may depend on
   3940       // nonexistent AddRecs from other loops. These need to be filtered
   3941       // immediately, otherwise heuristics could choose them over others leading
   3942       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3943       // avoids the need to recompute this information across formulae using the
   3944       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3945       // the corresponding bad register from the Regs set.
   3946       Cost CostF;
   3947       Regs.clear();
   3948       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
   3949                         &LoserRegs);
   3950       if (CostF.isLoser()) {
   3951         // During initial formula generation, undesirable formulae are generated
   3952         // by uses within other loops that have some non-trivial address mode or
   3953         // use the postinc form of the IV. LSR needs to provide these formulae
   3954         // as the basis of rediscovering the desired formula that uses an AddRec
   3955         // corresponding to the existing phi. Once all formulae have been
   3956         // generated, these initial losers may be pruned.
   3957         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3958               dbgs() << "\n");
   3959       }
   3960       else {
   3961         SmallVector<const SCEV *, 4> Key;
   3962         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
   3963                JE = F.BaseRegs.end(); J != JE; ++J) {
   3964           const SCEV *Reg = *J;
   3965           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3966             Key.push_back(Reg);
   3967         }
   3968         if (F.ScaledReg &&
   3969             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3970           Key.push_back(F.ScaledReg);
   3971         // Unstable sort by host order ok, because this is only used for
   3972         // uniquifying.
   3973         std::sort(Key.begin(), Key.end());
   3974 
   3975         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3976           BestFormulae.insert(std::make_pair(Key, FIdx));
   3977         if (P.second)
   3978           continue;
   3979 
   3980         Formula &Best = LU.Formulae[P.first->second];
   3981 
   3982         Cost CostBest;
   3983         Regs.clear();
   3984         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
   3985                              DT, LU);
   3986         if (CostF < CostBest)
   3987           std::swap(F, Best);
   3988         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3989               dbgs() << "\n"
   3990                         "    in favor of formula "; Best.print(dbgs());
   3991               dbgs() << '\n');
   3992       }
   3993 #ifndef NDEBUG
   3994       ChangedFormulae = true;
   3995 #endif
   3996       LU.DeleteFormula(F);
   3997       --FIdx;
   3998       --NumForms;
   3999       Any = true;
   4000     }
   4001 
   4002     // Now that we've filtered out some formulae, recompute the Regs set.
   4003     if (Any)
   4004       LU.RecomputeRegs(LUIdx, RegUses);
   4005 
   4006     // Reset this to prepare for the next use.
   4007     BestFormulae.clear();
   4008   }
   4009 
   4010   DEBUG(if (ChangedFormulae) {
   4011           dbgs() << "\n"
   4012                     "After filtering out undesirable candidates:\n";
   4013           print_uses(dbgs());
   4014         });
   4015 }
   4016 
   4017 // This is a rough guess that seems to work fairly well.
   4018 static const size_t ComplexityLimit = UINT16_MAX;
   4019 
   4020 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
   4021 /// solutions the solver might have to consider. It almost never considers
   4022 /// this many solutions because it prune the search space, but the pruning
   4023 /// isn't always sufficient.
   4024 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   4025   size_t Power = 1;
   4026   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4027        E = Uses.end(); I != E; ++I) {
   4028     size_t FSize = I->Formulae.size();
   4029     if (FSize >= ComplexityLimit) {
   4030       Power = ComplexityLimit;
   4031       break;
   4032     }
   4033     Power *= FSize;
   4034     if (Power >= ComplexityLimit)
   4035       break;
   4036   }
   4037   return Power;
   4038 }
   4039 
   4040 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
   4041 /// of the registers of another formula, it won't help reduce register
   4042 /// pressure (though it may not necessarily hurt register pressure); remove
   4043 /// it to simplify the system.
   4044 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   4045   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4046     DEBUG(dbgs() << "The search space is too complex.\n");
   4047 
   4048     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   4049                     "which use a superset of registers used by other "
   4050                     "formulae.\n");
   4051 
   4052     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4053       LSRUse &LU = Uses[LUIdx];
   4054       bool Any = false;
   4055       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4056         Formula &F = LU.Formulae[i];
   4057         // Look for a formula with a constant or GV in a register. If the use
   4058         // also has a formula with that same value in an immediate field,
   4059         // delete the one that uses a register.
   4060         for (SmallVectorImpl<const SCEV *>::const_iterator
   4061              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   4062           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   4063             Formula NewF = F;
   4064             NewF.BaseOffset += C->getValue()->getSExtValue();
   4065             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4066                                 (I - F.BaseRegs.begin()));
   4067             if (LU.HasFormulaWithSameRegs(NewF)) {
   4068               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4069               LU.DeleteFormula(F);
   4070               --i;
   4071               --e;
   4072               Any = true;
   4073               break;
   4074             }
   4075           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   4076             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   4077               if (!F.BaseGV) {
   4078                 Formula NewF = F;
   4079                 NewF.BaseGV = GV;
   4080                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4081                                     (I - F.BaseRegs.begin()));
   4082                 if (LU.HasFormulaWithSameRegs(NewF)) {
   4083                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4084                         dbgs() << '\n');
   4085                   LU.DeleteFormula(F);
   4086                   --i;
   4087                   --e;
   4088                   Any = true;
   4089                   break;
   4090                 }
   4091               }
   4092           }
   4093         }
   4094       }
   4095       if (Any)
   4096         LU.RecomputeRegs(LUIdx, RegUses);
   4097     }
   4098 
   4099     DEBUG(dbgs() << "After pre-selection:\n";
   4100           print_uses(dbgs()));
   4101   }
   4102 }
   4103 
   4104 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
   4105 /// for expressions like A, A+1, A+2, etc., allocate a single register for
   4106 /// them.
   4107 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   4108   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
   4109     return;
   4110 
   4111   DEBUG(dbgs() << "The search space is too complex.\n"
   4112                   "Narrowing the search space by assuming that uses separated "
   4113                   "by a constant offset will use the same registers.\n");
   4114 
   4115   // This is especially useful for unrolled loops.
   4116 
   4117   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4118     LSRUse &LU = Uses[LUIdx];
   4119     for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4120          E = LU.Formulae.end(); I != E; ++I) {
   4121       const Formula &F = *I;
   4122       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
   4123         continue;
   4124 
   4125       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
   4126       if (!LUThatHas)
   4127         continue;
   4128 
   4129       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
   4130                               LU.Kind, LU.AccessTy))
   4131         continue;
   4132 
   4133       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
   4134 
   4135       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   4136 
   4137       // Update the relocs to reference the new use.
   4138       for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
   4139            E = Fixups.end(); I != E; ++I) {
   4140         LSRFixup &Fixup = *I;
   4141         if (Fixup.LUIdx == LUIdx) {
   4142           Fixup.LUIdx = LUThatHas - &Uses.front();
   4143           Fixup.Offset += F.BaseOffset;
   4144           // Add the new offset to LUThatHas' offset list.
   4145           if (LUThatHas->Offsets.back() != Fixup.Offset) {
   4146             LUThatHas->Offsets.push_back(Fixup.Offset);
   4147             if (Fixup.Offset > LUThatHas->MaxOffset)
   4148               LUThatHas->MaxOffset = Fixup.Offset;
   4149             if (Fixup.Offset < LUThatHas->MinOffset)
   4150               LUThatHas->MinOffset = Fixup.Offset;
   4151           }
   4152           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
   4153         }
   4154         if (Fixup.LUIdx == NumUses-1)
   4155           Fixup.LUIdx = LUIdx;
   4156       }
   4157 
   4158       // Delete formulae from the new use which are no longer legal.
   4159       bool Any = false;
   4160       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   4161         Formula &F = LUThatHas->Formulae[i];
   4162         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
   4163                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
   4164           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4165                 dbgs() << '\n');
   4166           LUThatHas->DeleteFormula(F);
   4167           --i;
   4168           --e;
   4169           Any = true;
   4170         }
   4171       }
   4172 
   4173       if (Any)
   4174         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   4175 
   4176       // Delete the old use.
   4177       DeleteUse(LU, LUIdx);
   4178       --LUIdx;
   4179       --NumUses;
   4180       break;
   4181     }
   4182   }
   4183 
   4184   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
   4185 }
   4186 
   4187 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
   4188 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   4189 /// we've done more filtering, as it may be able to find more formulae to
   4190 /// eliminate.
   4191 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   4192   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4193     DEBUG(dbgs() << "The search space is too complex.\n");
   4194 
   4195     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   4196                     "undesirable dedicated registers.\n");
   4197 
   4198     FilterOutUndesirableDedicatedRegisters();
   4199 
   4200     DEBUG(dbgs() << "After pre-selection:\n";
   4201           print_uses(dbgs()));
   4202   }
   4203 }
   4204 
   4205 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
   4206 /// to be profitable, and then in any use which has any reference to that
   4207 /// register, delete all formulae which do not reference that register.
   4208 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   4209   // With all other options exhausted, loop until the system is simple
   4210   // enough to handle.
   4211   SmallPtrSet<const SCEV *, 4> Taken;
   4212   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4213     // Ok, we have too many of formulae on our hands to conveniently handle.
   4214     // Use a rough heuristic to thin out the list.
   4215     DEBUG(dbgs() << "The search space is too complex.\n");
   4216 
   4217     // Pick the register which is used by the most LSRUses, which is likely
   4218     // to be a good reuse register candidate.
   4219     const SCEV *Best = nullptr;
   4220     unsigned BestNum = 0;
   4221     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   4222          I != E; ++I) {
   4223       const SCEV *Reg = *I;
   4224       if (Taken.count(Reg))
   4225         continue;
   4226       if (!Best)
   4227         Best = Reg;
   4228       else {
   4229         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   4230         if (Count > BestNum) {
   4231           Best = Reg;
   4232           BestNum = Count;
   4233         }
   4234       }
   4235     }
   4236 
   4237     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   4238                  << " will yield profitable reuse.\n");
   4239     Taken.insert(Best);
   4240 
   4241     // In any use with formulae which references this register, delete formulae
   4242     // which don't reference it.
   4243     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4244       LSRUse &LU = Uses[LUIdx];
   4245       if (!LU.Regs.count(Best)) continue;
   4246 
   4247       bool Any = false;
   4248       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4249         Formula &F = LU.Formulae[i];
   4250         if (!F.referencesReg(Best)) {
   4251           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4252           LU.DeleteFormula(F);
   4253           --e;
   4254           --i;
   4255           Any = true;
   4256           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4257           continue;
   4258         }
   4259       }
   4260 
   4261       if (Any)
   4262         LU.RecomputeRegs(LUIdx, RegUses);
   4263     }
   4264 
   4265     DEBUG(dbgs() << "After pre-selection:\n";
   4266           print_uses(dbgs()));
   4267   }
   4268 }
   4269 
   4270 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
   4271 /// formulae to choose from, use some rough heuristics to prune down the number
   4272 /// of formulae. This keeps the main solver from taking an extraordinary amount
   4273 /// of time in some worst-case scenarios.
   4274 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4275   NarrowSearchSpaceByDetectingSupersets();
   4276   NarrowSearchSpaceByCollapsingUnrolledCode();
   4277   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4278   NarrowSearchSpaceByPickingWinnerRegs();
   4279 }
   4280 
   4281 /// SolveRecurse - This is the recursive solver.
   4282 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4283                                Cost &SolutionCost,
   4284                                SmallVectorImpl<const Formula *> &Workspace,
   4285                                const Cost &CurCost,
   4286                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4287                                DenseSet<const SCEV *> &VisitedRegs) const {
   4288   // Some ideas:
   4289   //  - prune more:
   4290   //    - use more aggressive filtering
   4291   //    - sort the formula so that the most profitable solutions are found first
   4292   //    - sort the uses too
   4293   //  - search faster:
   4294   //    - don't compute a cost, and then compare. compare while computing a cost
   4295   //      and bail early.
   4296   //    - track register sets with SmallBitVector
   4297 
   4298   const LSRUse &LU = Uses[Workspace.size()];
   4299 
   4300   // If this use references any register that's already a part of the
   4301   // in-progress solution, consider it a requirement that a formula must
   4302   // reference that register in order to be considered. This prunes out
   4303   // unprofitable searching.
   4304   SmallSetVector<const SCEV *, 4> ReqRegs;
   4305   for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
   4306        E = CurRegs.end(); I != E; ++I)
   4307     if (LU.Regs.count(*I))
   4308       ReqRegs.insert(*I);
   4309 
   4310   SmallPtrSet<const SCEV *, 16> NewRegs;
   4311   Cost NewCost;
   4312   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4313        E = LU.Formulae.end(); I != E; ++I) {
   4314     const Formula &F = *I;
   4315 
   4316     // Ignore formulae which may not be ideal in terms of register reuse of
   4317     // ReqRegs.  The formula should use all required registers before
   4318     // introducing new ones.
   4319     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
   4320     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
   4321          JE = ReqRegs.end(); J != JE; ++J) {
   4322       const SCEV *Reg = *J;
   4323       if ((F.ScaledReg && F.ScaledReg == Reg) ||
   4324           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
   4325           F.BaseRegs.end()) {
   4326         --NumReqRegsToFind;
   4327         if (NumReqRegsToFind == 0)
   4328           break;
   4329       }
   4330     }
   4331     if (NumReqRegsToFind != 0) {
   4332       // If none of the formulae satisfied the required registers, then we could
   4333       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4334       continue;
   4335     }
   4336 
   4337     // Evaluate the cost of the current formula. If it's already worse than
   4338     // the current best, prune the search at that point.
   4339     NewCost = CurCost;
   4340     NewRegs = CurRegs;
   4341     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
   4342                         LU);
   4343     if (NewCost < SolutionCost) {
   4344       Workspace.push_back(&F);
   4345       if (Workspace.size() != Uses.size()) {
   4346         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4347                      NewRegs, VisitedRegs);
   4348         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4349           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4350       } else {
   4351         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4352               dbgs() << ".\n Regs:";
   4353               for (SmallPtrSet<const SCEV *, 16>::const_iterator
   4354                    I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
   4355                 dbgs() << ' ' << **I;
   4356               dbgs() << '\n');
   4357 
   4358         SolutionCost = NewCost;
   4359         Solution = Workspace;
   4360       }
   4361       Workspace.pop_back();
   4362     }
   4363   }
   4364 }
   4365 
   4366 /// Solve - Choose one formula from each use. Return the results in the given
   4367 /// Solution vector.
   4368 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4369   SmallVector<const Formula *, 8> Workspace;
   4370   Cost SolutionCost;
   4371   SolutionCost.Lose();
   4372   Cost CurCost;
   4373   SmallPtrSet<const SCEV *, 16> CurRegs;
   4374   DenseSet<const SCEV *> VisitedRegs;
   4375   Workspace.reserve(Uses.size());
   4376 
   4377   // SolveRecurse does all the work.
   4378   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4379                CurRegs, VisitedRegs);
   4380   if (Solution.empty()) {
   4381     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4382     return;
   4383   }
   4384 
   4385   // Ok, we've now made all our decisions.
   4386   DEBUG(dbgs() << "\n"
   4387                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4388         dbgs() << ":\n";
   4389         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4390           dbgs() << "  ";
   4391           Uses[i].print(dbgs());
   4392           dbgs() << "\n"
   4393                     "    ";
   4394           Solution[i]->print(dbgs());
   4395           dbgs() << '\n';
   4396         });
   4397 
   4398   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4399 }
   4400 
   4401 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
   4402 /// the dominator tree far as we can go while still being dominated by the
   4403 /// input positions. This helps canonicalize the insert position, which
   4404 /// encourages sharing.
   4405 BasicBlock::iterator
   4406 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4407                                  const SmallVectorImpl<Instruction *> &Inputs)
   4408                                                                          const {
   4409   for (;;) {
   4410     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4411     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4412 
   4413     BasicBlock *IDom;
   4414     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4415       if (!Rung) return IP;
   4416       Rung = Rung->getIDom();
   4417       if (!Rung) return IP;
   4418       IDom = Rung->getBlock();
   4419 
   4420       // Don't climb into a loop though.
   4421       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4422       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4423       if (IDomDepth <= IPLoopDepth &&
   4424           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4425         break;
   4426     }
   4427 
   4428     bool AllDominate = true;
   4429     Instruction *BetterPos = nullptr;
   4430     Instruction *Tentative = IDom->getTerminator();
   4431     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
   4432          E = Inputs.end(); I != E; ++I) {
   4433       Instruction *Inst = *I;
   4434       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4435         AllDominate = false;
   4436         break;
   4437       }
   4438       // Attempt to find an insert position in the middle of the block,
   4439       // instead of at the end, so that it can be used for other expansions.
   4440       if (IDom == Inst->getParent() &&
   4441           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4442         BetterPos = std::next(BasicBlock::iterator(Inst));
   4443     }
   4444     if (!AllDominate)
   4445       break;
   4446     if (BetterPos)
   4447       IP = BetterPos;
   4448     else
   4449       IP = Tentative;
   4450   }
   4451 
   4452   return IP;
   4453 }
   4454 
   4455 /// AdjustInsertPositionForExpand - Determine an input position which will be
   4456 /// dominated by the operands and which will dominate the result.
   4457 BasicBlock::iterator
   4458 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4459                                            const LSRFixup &LF,
   4460                                            const LSRUse &LU,
   4461                                            SCEVExpander &Rewriter) const {
   4462   // Collect some instructions which must be dominated by the
   4463   // expanding replacement. These must be dominated by any operands that
   4464   // will be required in the expansion.
   4465   SmallVector<Instruction *, 4> Inputs;
   4466   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4467     Inputs.push_back(I);
   4468   if (LU.Kind == LSRUse::ICmpZero)
   4469     if (Instruction *I =
   4470           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4471       Inputs.push_back(I);
   4472   if (LF.PostIncLoops.count(L)) {
   4473     if (LF.isUseFullyOutsideLoop(L))
   4474       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4475     else
   4476       Inputs.push_back(IVIncInsertPos);
   4477   }
   4478   // The expansion must also be dominated by the increment positions of any
   4479   // loops it for which it is using post-inc mode.
   4480   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
   4481        E = LF.PostIncLoops.end(); I != E; ++I) {
   4482     const Loop *PIL = *I;
   4483     if (PIL == L) continue;
   4484 
   4485     // Be dominated by the loop exit.
   4486     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4487     PIL->getExitingBlocks(ExitingBlocks);
   4488     if (!ExitingBlocks.empty()) {
   4489       BasicBlock *BB = ExitingBlocks[0];
   4490       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4491         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4492       Inputs.push_back(BB->getTerminator());
   4493     }
   4494   }
   4495 
   4496   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
   4497          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4498          "Insertion point must be a normal instruction");
   4499 
   4500   // Then, climb up the immediate dominator tree as far as we can go while
   4501   // still being dominated by the input positions.
   4502   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4503 
   4504   // Don't insert instructions before PHI nodes.
   4505   while (isa<PHINode>(IP)) ++IP;
   4506 
   4507   // Ignore landingpad instructions.
   4508   while (isa<LandingPadInst>(IP)) ++IP;
   4509 
   4510   // Ignore debug intrinsics.
   4511   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4512 
   4513   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4514   // IP consistent across expansions and allows the previously inserted
   4515   // instructions to be reused by subsequent expansion.
   4516   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
   4517 
   4518   return IP;
   4519 }
   4520 
   4521 /// Expand - Emit instructions for the leading candidate expression for this
   4522 /// LSRUse (this is called "expanding").
   4523 Value *LSRInstance::Expand(const LSRFixup &LF,
   4524                            const Formula &F,
   4525                            BasicBlock::iterator IP,
   4526                            SCEVExpander &Rewriter,
   4527                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4528   const LSRUse &LU = Uses[LF.LUIdx];
   4529   if (LU.RigidFormula)
   4530     return LF.OperandValToReplace;
   4531 
   4532   // Determine an input position which will be dominated by the operands and
   4533   // which will dominate the result.
   4534   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4535 
   4536   // Inform the Rewriter if we have a post-increment use, so that it can
   4537   // perform an advantageous expansion.
   4538   Rewriter.setPostInc(LF.PostIncLoops);
   4539 
   4540   // This is the type that the user actually needs.
   4541   Type *OpTy = LF.OperandValToReplace->getType();
   4542   // This will be the type that we'll initially expand to.
   4543   Type *Ty = F.getType();
   4544   if (!Ty)
   4545     // No type known; just expand directly to the ultimate type.
   4546     Ty = OpTy;
   4547   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4548     // Expand directly to the ultimate type if it's the right size.
   4549     Ty = OpTy;
   4550   // This is the type to do integer arithmetic in.
   4551   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4552 
   4553   // Build up a list of operands to add together to form the full base.
   4554   SmallVector<const SCEV *, 8> Ops;
   4555 
   4556   // Expand the BaseRegs portion.
   4557   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   4558        E = F.BaseRegs.end(); I != E; ++I) {
   4559     const SCEV *Reg = *I;
   4560     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4561 
   4562     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4563     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4564     Reg = TransformForPostIncUse(Denormalize, Reg,
   4565                                  LF.UserInst, LF.OperandValToReplace,
   4566                                  Loops, SE, DT);
   4567 
   4568     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
   4569   }
   4570 
   4571   // Expand the ScaledReg portion.
   4572   Value *ICmpScaledV = nullptr;
   4573   if (F.Scale != 0) {
   4574     const SCEV *ScaledS = F.ScaledReg;
   4575 
   4576     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4577     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4578     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4579                                      LF.UserInst, LF.OperandValToReplace,
   4580                                      Loops, SE, DT);
   4581 
   4582     if (LU.Kind == LSRUse::ICmpZero) {
   4583       // Expand ScaleReg as if it was part of the base regs.
   4584       if (F.Scale == 1)
   4585         Ops.push_back(
   4586             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
   4587       else {
   4588         // An interesting way of "folding" with an icmp is to use a negated
   4589         // scale, which we'll implement by inserting it into the other operand
   4590         // of the icmp.
   4591         assert(F.Scale == -1 &&
   4592                "The only scale supported by ICmpZero uses is -1!");
   4593         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
   4594       }
   4595     } else {
   4596       // Otherwise just expand the scaled register and an explicit scale,
   4597       // which is expected to be matched as part of the address.
   4598 
   4599       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4600       // Unless the addressing mode will not be folded.
   4601       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
   4602           isAMCompletelyFolded(TTI, LU, F)) {
   4603         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4604         Ops.clear();
   4605         Ops.push_back(SE.getUnknown(FullV));
   4606       }
   4607       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
   4608       if (F.Scale != 1)
   4609         ScaledS =
   4610             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
   4611       Ops.push_back(ScaledS);
   4612     }
   4613   }
   4614 
   4615   // Expand the GV portion.
   4616   if (F.BaseGV) {
   4617     // Flush the operand list to suppress SCEVExpander hoisting.
   4618     if (!Ops.empty()) {
   4619       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4620       Ops.clear();
   4621       Ops.push_back(SE.getUnknown(FullV));
   4622     }
   4623     Ops.push_back(SE.getUnknown(F.BaseGV));
   4624   }
   4625 
   4626   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4627   // unfolded offsets. LSR assumes they both live next to their uses.
   4628   if (!Ops.empty()) {
   4629     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4630     Ops.clear();
   4631     Ops.push_back(SE.getUnknown(FullV));
   4632   }
   4633 
   4634   // Expand the immediate portion.
   4635   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
   4636   if (Offset != 0) {
   4637     if (LU.Kind == LSRUse::ICmpZero) {
   4638       // The other interesting way of "folding" with an ICmpZero is to use a
   4639       // negated immediate.
   4640       if (!ICmpScaledV)
   4641         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4642       else {
   4643         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4644         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4645       }
   4646     } else {
   4647       // Just add the immediate values. These again are expected to be matched
   4648       // as part of the address.
   4649       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4650     }
   4651   }
   4652 
   4653   // Expand the unfolded offset portion.
   4654   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4655   if (UnfoldedOffset != 0) {
   4656     // Just add the immediate values.
   4657     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4658                                                        UnfoldedOffset)));
   4659   }
   4660 
   4661   // Emit instructions summing all the operands.
   4662   const SCEV *FullS = Ops.empty() ?
   4663                       SE.getConstant(IntTy, 0) :
   4664                       SE.getAddExpr(Ops);
   4665   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
   4666 
   4667   // We're done expanding now, so reset the rewriter.
   4668   Rewriter.clearPostInc();
   4669 
   4670   // An ICmpZero Formula represents an ICmp which we're handling as a
   4671   // comparison against zero. Now that we've expanded an expression for that
   4672   // form, update the ICmp's other operand.
   4673   if (LU.Kind == LSRUse::ICmpZero) {
   4674     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4675     DeadInsts.push_back(CI->getOperand(1));
   4676     assert(!F.BaseGV && "ICmp does not support folding a global value and "
   4677                            "a scale at the same time!");
   4678     if (F.Scale == -1) {
   4679       if (ICmpScaledV->getType() != OpTy) {
   4680         Instruction *Cast =
   4681           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4682                                                    OpTy, false),
   4683                            ICmpScaledV, OpTy, "tmp", CI);
   4684         ICmpScaledV = Cast;
   4685       }
   4686       CI->setOperand(1, ICmpScaledV);
   4687     } else {
   4688       // A scale of 1 means that the scale has been expanded as part of the
   4689       // base regs.
   4690       assert((F.Scale == 0 || F.Scale == 1) &&
   4691              "ICmp does not support folding a global value and "
   4692              "a scale at the same time!");
   4693       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4694                                            -(uint64_t)Offset);
   4695       if (C->getType() != OpTy)
   4696         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4697                                                           OpTy, false),
   4698                                   C, OpTy);
   4699 
   4700       CI->setOperand(1, C);
   4701     }
   4702   }
   4703 
   4704   return FullV;
   4705 }
   4706 
   4707 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
   4708 /// of their operands effectively happens in their predecessor blocks, so the
   4709 /// expression may need to be expanded in multiple places.
   4710 void LSRInstance::RewriteForPHI(PHINode *PN,
   4711                                 const LSRFixup &LF,
   4712                                 const Formula &F,
   4713                                 SCEVExpander &Rewriter,
   4714                                 SmallVectorImpl<WeakVH> &DeadInsts,
   4715                                 Pass *P) const {
   4716   DenseMap<BasicBlock *, Value *> Inserted;
   4717   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4718     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4719       BasicBlock *BB = PN->getIncomingBlock(i);
   4720 
   4721       // If this is a critical edge, split the edge so that we do not insert
   4722       // the code on all predecessor/successor paths.  We do this unless this
   4723       // is the canonical backedge for this loop, which complicates post-inc
   4724       // users.
   4725       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4726           !isa<IndirectBrInst>(BB->getTerminator())) {
   4727         BasicBlock *Parent = PN->getParent();
   4728         Loop *PNLoop = LI.getLoopFor(Parent);
   4729         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4730           // Split the critical edge.
   4731           BasicBlock *NewBB = nullptr;
   4732           if (!Parent->isLandingPad()) {
   4733             NewBB = SplitCriticalEdge(BB, Parent, P,
   4734                                       /*MergeIdenticalEdges=*/true,
   4735                                       /*DontDeleteUselessPhis=*/true);
   4736           } else {
   4737             SmallVector<BasicBlock*, 2> NewBBs;
   4738             SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
   4739             NewBB = NewBBs[0];
   4740           }
   4741           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
   4742           // phi predecessors are identical. The simple thing to do is skip
   4743           // splitting in this case rather than complicate the API.
   4744           if (NewBB) {
   4745             // If PN is outside of the loop and BB is in the loop, we want to
   4746             // move the block to be immediately before the PHI block, not
   4747             // immediately after BB.
   4748             if (L->contains(BB) && !L->contains(PN))
   4749               NewBB->moveBefore(PN->getParent());
   4750 
   4751             // Splitting the edge can reduce the number of PHI entries we have.
   4752             e = PN->getNumIncomingValues();
   4753             BB = NewBB;
   4754             i = PN->getBasicBlockIndex(BB);
   4755           }
   4756         }
   4757       }
   4758 
   4759       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4760         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
   4761       if (!Pair.second)
   4762         PN->setIncomingValue(i, Pair.first->second);
   4763       else {
   4764         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
   4765 
   4766         // If this is reuse-by-noop-cast, insert the noop cast.
   4767         Type *OpTy = LF.OperandValToReplace->getType();
   4768         if (FullV->getType() != OpTy)
   4769           FullV =
   4770             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4771                                                      OpTy, false),
   4772                              FullV, LF.OperandValToReplace->getType(),
   4773                              "tmp", BB->getTerminator());
   4774 
   4775         PN->setIncomingValue(i, FullV);
   4776         Pair.first->second = FullV;
   4777       }
   4778     }
   4779 }
   4780 
   4781 /// Rewrite - Emit instructions for the leading candidate expression for this
   4782 /// LSRUse (this is called "expanding"), and update the UserInst to reference
   4783 /// the newly expanded value.
   4784 void LSRInstance::Rewrite(const LSRFixup &LF,
   4785                           const Formula &F,
   4786                           SCEVExpander &Rewriter,
   4787                           SmallVectorImpl<WeakVH> &DeadInsts,
   4788                           Pass *P) const {
   4789   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4790   // find the nearest block which dominates all the relevant uses.
   4791   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4792     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
   4793   } else {
   4794     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
   4795 
   4796     // If this is reuse-by-noop-cast, insert the noop cast.
   4797     Type *OpTy = LF.OperandValToReplace->getType();
   4798     if (FullV->getType() != OpTy) {
   4799       Instruction *Cast =
   4800         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4801                          FullV, OpTy, "tmp", LF.UserInst);
   4802       FullV = Cast;
   4803     }
   4804 
   4805     // Update the user. ICmpZero is handled specially here (for now) because
   4806     // Expand may have updated one of the operands of the icmp already, and
   4807     // its new value may happen to be equal to LF.OperandValToReplace, in
   4808     // which case doing replaceUsesOfWith leads to replacing both operands
   4809     // with the same value. TODO: Reorganize this.
   4810     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4811       LF.UserInst->setOperand(0, FullV);
   4812     else
   4813       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4814   }
   4815 
   4816   DeadInsts.push_back(LF.OperandValToReplace);
   4817 }
   4818 
   4819 /// ImplementSolution - Rewrite all the fixup locations with new values,
   4820 /// following the chosen solution.
   4821 void
   4822 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   4823                                Pass *P) {
   4824   // Keep track of instructions we may have made dead, so that
   4825   // we can remove them after we are done working.
   4826   SmallVector<WeakVH, 16> DeadInsts;
   4827 
   4828   SCEVExpander Rewriter(SE, "lsr");
   4829 #ifndef NDEBUG
   4830   Rewriter.setDebugType(DEBUG_TYPE);
   4831 #endif
   4832   Rewriter.disableCanonicalMode();
   4833   Rewriter.enableLSRMode();
   4834   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4835 
   4836   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4837   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4838          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4839     if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
   4840       Rewriter.setChainedPhi(PN);
   4841   }
   4842 
   4843   // Expand the new value definitions and update the users.
   4844   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4845        E = Fixups.end(); I != E; ++I) {
   4846     const LSRFixup &Fixup = *I;
   4847 
   4848     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
   4849 
   4850     Changed = true;
   4851   }
   4852 
   4853   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4854          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4855     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
   4856     Changed = true;
   4857   }
   4858   // Clean up after ourselves. This must be done before deleting any
   4859   // instructions.
   4860   Rewriter.clear();
   4861 
   4862   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4863 }
   4864 
   4865 LSRInstance::LSRInstance(Loop *L, Pass *P)
   4866     : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
   4867       DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
   4868       LI(P->getAnalysis<LoopInfo>()),
   4869       TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
   4870       IVIncInsertPos(nullptr) {
   4871   // If LoopSimplify form is not available, stay out of trouble.
   4872   if (!L->isLoopSimplifyForm())
   4873     return;
   4874 
   4875   // If there's no interesting work to be done, bail early.
   4876   if (IU.empty()) return;
   4877 
   4878   // If there's too much analysis to be done, bail early. We won't be able to
   4879   // model the problem anyway.
   4880   unsigned NumUsers = 0;
   4881   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   4882     if (++NumUsers > MaxIVUsers) {
   4883       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
   4884             << "\n");
   4885       return;
   4886     }
   4887   }
   4888 
   4889 #ifndef NDEBUG
   4890   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4891   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4892   //
   4893   // IVUsers analysis should only create users that are dominated by simple loop
   4894   // headers. Since this loop should dominate all of its users, its user list
   4895   // should be empty if this loop itself is not within a simple loop nest.
   4896   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4897        Rung; Rung = Rung->getIDom()) {
   4898     BasicBlock *BB = Rung->getBlock();
   4899     const Loop *DomLoop = LI.getLoopFor(BB);
   4900     if (DomLoop && DomLoop->getHeader() == BB) {
   4901       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4902     }
   4903   }
   4904 #endif // DEBUG
   4905 
   4906   DEBUG(dbgs() << "\nLSR on loop ";
   4907         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
   4908         dbgs() << ":\n");
   4909 
   4910   // First, perform some low-level loop optimizations.
   4911   OptimizeShadowIV();
   4912   OptimizeLoopTermCond();
   4913 
   4914   // If loop preparation eliminates all interesting IV users, bail.
   4915   if (IU.empty()) return;
   4916 
   4917   // Skip nested loops until we can model them better with formulae.
   4918   if (!L->empty()) {
   4919     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4920     return;
   4921   }
   4922 
   4923   // Start collecting data and preparing for the solver.
   4924   CollectChains();
   4925   CollectInterestingTypesAndFactors();
   4926   CollectFixupsAndInitialFormulae();
   4927   CollectLoopInvariantFixupsAndFormulae();
   4928 
   4929   assert(!Uses.empty() && "IVUsers reported at least one use");
   4930   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4931         print_uses(dbgs()));
   4932 
   4933   // Now use the reuse data to generate a bunch of interesting ways
   4934   // to formulate the values needed for the uses.
   4935   GenerateAllReuseFormulae();
   4936 
   4937   FilterOutUndesirableDedicatedRegisters();
   4938   NarrowSearchSpaceUsingHeuristics();
   4939 
   4940   SmallVector<const Formula *, 8> Solution;
   4941   Solve(Solution);
   4942 
   4943   // Release memory that is no longer needed.
   4944   Factors.clear();
   4945   Types.clear();
   4946   RegUses.clear();
   4947 
   4948   if (Solution.empty())
   4949     return;
   4950 
   4951 #ifndef NDEBUG
   4952   // Formulae should be legal.
   4953   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
   4954        I != E; ++I) {
   4955     const LSRUse &LU = *I;
   4956     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4957                                                   JE = LU.Formulae.end();
   4958          J != JE; ++J)
   4959       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   4960                         *J) && "Illegal formula generated!");
   4961   };
   4962 #endif
   4963 
   4964   // Now that we've decided what we want, make it so.
   4965   ImplementSolution(Solution, P);
   4966 }
   4967 
   4968 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4969   if (Factors.empty() && Types.empty()) return;
   4970 
   4971   OS << "LSR has identified the following interesting factors and types: ";
   4972   bool First = true;
   4973 
   4974   for (SmallSetVector<int64_t, 8>::const_iterator
   4975        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   4976     if (!First) OS << ", ";
   4977     First = false;
   4978     OS << '*' << *I;
   4979   }
   4980 
   4981   for (SmallSetVector<Type *, 4>::const_iterator
   4982        I = Types.begin(), E = Types.end(); I != E; ++I) {
   4983     if (!First) OS << ", ";
   4984     First = false;
   4985     OS << '(' << **I << ')';
   4986   }
   4987   OS << '\n';
   4988 }
   4989 
   4990 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4991   OS << "LSR is examining the following fixup sites:\n";
   4992   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4993        E = Fixups.end(); I != E; ++I) {
   4994     dbgs() << "  ";
   4995     I->print(OS);
   4996     OS << '\n';
   4997   }
   4998 }
   4999 
   5000 void LSRInstance::print_uses(raw_ostream &OS) const {
   5001   OS << "LSR is examining the following uses:\n";
   5002   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   5003        E = Uses.end(); I != E; ++I) {
   5004     const LSRUse &LU = *I;
   5005     dbgs() << "  ";
   5006     LU.print(OS);
   5007     OS << '\n';
   5008     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   5009          JE = LU.Formulae.end(); J != JE; ++J) {
   5010       OS << "    ";
   5011       J->print(OS);
   5012       OS << '\n';
   5013     }
   5014   }
   5015 }
   5016 
   5017 void LSRInstance::print(raw_ostream &OS) const {
   5018   print_factors_and_types(OS);
   5019   print_fixups(OS);
   5020   print_uses(OS);
   5021 }
   5022 
   5023 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   5024 void LSRInstance::dump() const {
   5025   print(errs()); errs() << '\n';
   5026 }
   5027 #endif
   5028 
   5029 namespace {
   5030 
   5031 class LoopStrengthReduce : public LoopPass {
   5032 public:
   5033   static char ID; // Pass ID, replacement for typeid
   5034   LoopStrengthReduce();
   5035 
   5036 private:
   5037   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
   5038   void getAnalysisUsage(AnalysisUsage &AU) const override;
   5039 };
   5040 
   5041 }
   5042 
   5043 char LoopStrengthReduce::ID = 0;
   5044 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   5045                 "Loop Strength Reduction", false, false)
   5046 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   5047 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   5048 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   5049 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   5050 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   5051 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   5052 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   5053                 "Loop Strength Reduction", false, false)
   5054 
   5055 
   5056 Pass *llvm::createLoopStrengthReducePass() {
   5057   return new LoopStrengthReduce();
   5058 }
   5059 
   5060 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
   5061   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   5062 }
   5063 
   5064 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   5065   // We split critical edges, so we change the CFG.  However, we do update
   5066   // many analyses if they are around.
   5067   AU.addPreservedID(LoopSimplifyID);
   5068 
   5069   AU.addRequired<LoopInfo>();
   5070   AU.addPreserved<LoopInfo>();
   5071   AU.addRequiredID(LoopSimplifyID);
   5072   AU.addRequired<DominatorTreeWrapperPass>();
   5073   AU.addPreserved<DominatorTreeWrapperPass>();
   5074   AU.addRequired<ScalarEvolution>();
   5075   AU.addPreserved<ScalarEvolution>();
   5076   // Requiring LoopSimplify a second time here prevents IVUsers from running
   5077   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   5078   AU.addRequiredID(LoopSimplifyID);
   5079   AU.addRequired<IVUsers>();
   5080   AU.addPreserved<IVUsers>();
   5081   AU.addRequired<TargetTransformInfo>();
   5082 }
   5083 
   5084 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   5085   if (skipOptnoneFunction(L))
   5086     return false;
   5087 
   5088   bool Changed = false;
   5089 
   5090   // Run the main LSR transformation.
   5091   Changed |= LSRInstance(L, this).getChanged();
   5092 
   5093   // Remove any extra phis created by processing inner loops.
   5094   Changed |= DeleteDeadPHIs(L->getHeader());
   5095   if (EnablePhiElim && L->isLoopSimplifyForm()) {
   5096     SmallVector<WeakVH, 16> DeadInsts;
   5097     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
   5098 #ifndef NDEBUG
   5099     Rewriter.setDebugType(DEBUG_TYPE);
   5100 #endif
   5101     unsigned numFolded = Rewriter.replaceCongruentIVs(
   5102         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
   5103         &getAnalysis<TargetTransformInfo>());
   5104     if (numFolded) {
   5105       Changed = true;
   5106       DeleteTriviallyDeadInstructions(DeadInsts);
   5107       DeleteDeadPHIs(L->getHeader());
   5108     }
   5109   }
   5110   return Changed;
   5111 }
   5112