Home | History | Annotate | Download | only in Vectorize
      1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
     11 // and generates target-independent LLVM-IR.
     12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
     13 // of instructions in order to estimate the profitability of vectorization.
     14 //
     15 // The loop vectorizer combines consecutive loop iterations into a single
     16 // 'wide' iteration. After this transformation the index is incremented
     17 // by the SIMD vector width, and not by one.
     18 //
     19 // This pass has three parts:
     20 // 1. The main loop pass that drives the different parts.
     21 // 2. LoopVectorizationLegality - A unit that checks for the legality
     22 //    of the vectorization.
     23 // 3. InnerLoopVectorizer - A unit that performs the actual
     24 //    widening of instructions.
     25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
     26 //    of vectorization. It decides on the optimal vector width, which
     27 //    can be one, if vectorization is not profitable.
     28 //
     29 //===----------------------------------------------------------------------===//
     30 //
     31 // The reduction-variable vectorization is based on the paper:
     32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
     33 //
     34 // Variable uniformity checks are inspired by:
     35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
     36 //
     37 // Other ideas/concepts are from:
     38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
     39 //
     40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
     41 //  Vectorizing Compilers.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 
     45 #include "llvm/Transforms/Vectorize.h"
     46 #include "llvm/ADT/DenseMap.h"
     47 #include "llvm/ADT/EquivalenceClasses.h"
     48 #include "llvm/ADT/Hashing.h"
     49 #include "llvm/ADT/MapVector.h"
     50 #include "llvm/ADT/SetVector.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/SmallSet.h"
     53 #include "llvm/ADT/SmallVector.h"
     54 #include "llvm/ADT/Statistic.h"
     55 #include "llvm/ADT/StringExtras.h"
     56 #include "llvm/Analysis/AliasAnalysis.h"
     57 #include "llvm/Analysis/AliasSetTracker.h"
     58 #include "llvm/Analysis/AssumptionCache.h"
     59 #include "llvm/Analysis/BlockFrequencyInfo.h"
     60 #include "llvm/Analysis/CodeMetrics.h"
     61 #include "llvm/Analysis/LoopAccessAnalysis.h"
     62 #include "llvm/Analysis/LoopInfo.h"
     63 #include "llvm/Analysis/LoopIterator.h"
     64 #include "llvm/Analysis/LoopPass.h"
     65 #include "llvm/Analysis/ScalarEvolution.h"
     66 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     67 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     68 #include "llvm/Analysis/TargetTransformInfo.h"
     69 #include "llvm/Analysis/ValueTracking.h"
     70 #include "llvm/IR/Constants.h"
     71 #include "llvm/IR/DataLayout.h"
     72 #include "llvm/IR/DebugInfo.h"
     73 #include "llvm/IR/DerivedTypes.h"
     74 #include "llvm/IR/DiagnosticInfo.h"
     75 #include "llvm/IR/Dominators.h"
     76 #include "llvm/IR/Function.h"
     77 #include "llvm/IR/IRBuilder.h"
     78 #include "llvm/IR/Instructions.h"
     79 #include "llvm/IR/IntrinsicInst.h"
     80 #include "llvm/IR/LLVMContext.h"
     81 #include "llvm/IR/Module.h"
     82 #include "llvm/IR/PatternMatch.h"
     83 #include "llvm/IR/Type.h"
     84 #include "llvm/IR/Value.h"
     85 #include "llvm/IR/ValueHandle.h"
     86 #include "llvm/IR/Verifier.h"
     87 #include "llvm/Pass.h"
     88 #include "llvm/Support/BranchProbability.h"
     89 #include "llvm/Support/CommandLine.h"
     90 #include "llvm/Support/Debug.h"
     91 #include "llvm/Support/raw_ostream.h"
     92 #include "llvm/Transforms/Scalar.h"
     93 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     94 #include "llvm/Transforms/Utils/Local.h"
     95 #include "llvm/Transforms/Utils/VectorUtils.h"
     96 #include "llvm/Transforms/Utils/LoopUtils.h"
     97 #include <algorithm>
     98 #include <map>
     99 #include <tuple>
    100 
    101 using namespace llvm;
    102 using namespace llvm::PatternMatch;
    103 
    104 #define LV_NAME "loop-vectorize"
    105 #define DEBUG_TYPE LV_NAME
    106 
    107 STATISTIC(LoopsVectorized, "Number of loops vectorized");
    108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
    109 
    110 static cl::opt<bool>
    111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
    112                    cl::desc("Enable if-conversion during vectorization."));
    113 
    114 /// We don't vectorize loops with a known constant trip count below this number.
    115 static cl::opt<unsigned>
    116 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
    117                              cl::Hidden,
    118                              cl::desc("Don't vectorize loops with a constant "
    119                                       "trip count that is smaller than this "
    120                                       "value."));
    121 
    122 /// This enables versioning on the strides of symbolically striding memory
    123 /// accesses in code like the following.
    124 ///   for (i = 0; i < N; ++i)
    125 ///     A[i * Stride1] += B[i * Stride2] ...
    126 ///
    127 /// Will be roughly translated to
    128 ///    if (Stride1 == 1 && Stride2 == 1) {
    129 ///      for (i = 0; i < N; i+=4)
    130 ///       A[i:i+3] += ...
    131 ///    } else
    132 ///      ...
    133 static cl::opt<bool> EnableMemAccessVersioning(
    134     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
    135     cl::desc("Enable symblic stride memory access versioning"));
    136 
    137 /// We don't unroll loops with a known constant trip count below this number.
    138 static const unsigned TinyTripCountUnrollThreshold = 128;
    139 
    140 static cl::opt<unsigned> ForceTargetNumScalarRegs(
    141     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
    142     cl::desc("A flag that overrides the target's number of scalar registers."));
    143 
    144 static cl::opt<unsigned> ForceTargetNumVectorRegs(
    145     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
    146     cl::desc("A flag that overrides the target's number of vector registers."));
    147 
    148 /// Maximum vectorization interleave count.
    149 static const unsigned MaxInterleaveFactor = 16;
    150 
    151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
    152     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
    153     cl::desc("A flag that overrides the target's max interleave factor for "
    154              "scalar loops."));
    155 
    156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
    157     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
    158     cl::desc("A flag that overrides the target's max interleave factor for "
    159              "vectorized loops."));
    160 
    161 static cl::opt<unsigned> ForceTargetInstructionCost(
    162     "force-target-instruction-cost", cl::init(0), cl::Hidden,
    163     cl::desc("A flag that overrides the target's expected cost for "
    164              "an instruction to a single constant value. Mostly "
    165              "useful for getting consistent testing."));
    166 
    167 static cl::opt<unsigned> SmallLoopCost(
    168     "small-loop-cost", cl::init(20), cl::Hidden,
    169     cl::desc("The cost of a loop that is considered 'small' by the unroller."));
    170 
    171 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
    172     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
    173     cl::desc("Enable the use of the block frequency analysis to access PGO "
    174              "heuristics minimizing code growth in cold regions and being more "
    175              "aggressive in hot regions."));
    176 
    177 // Runtime unroll loops for load/store throughput.
    178 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
    179     "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
    180     cl::desc("Enable runtime unrolling until load/store ports are saturated"));
    181 
    182 /// The number of stores in a loop that are allowed to need predication.
    183 static cl::opt<unsigned> NumberOfStoresToPredicate(
    184     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
    185     cl::desc("Max number of stores to be predicated behind an if."));
    186 
    187 static cl::opt<bool> EnableIndVarRegisterHeur(
    188     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
    189     cl::desc("Count the induction variable only once when unrolling"));
    190 
    191 static cl::opt<bool> EnableCondStoresVectorization(
    192     "enable-cond-stores-vec", cl::init(false), cl::Hidden,
    193     cl::desc("Enable if predication of stores during vectorization."));
    194 
    195 static cl::opt<unsigned> MaxNestedScalarReductionUF(
    196     "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
    197     cl::desc("The maximum unroll factor to use when unrolling a scalar "
    198              "reduction in a nested loop."));
    199 
    200 namespace {
    201 
    202 // Forward declarations.
    203 class LoopVectorizationLegality;
    204 class LoopVectorizationCostModel;
    205 class LoopVectorizeHints;
    206 
    207 /// \brief This modifies LoopAccessReport to initialize message with
    208 /// loop-vectorizer-specific part.
    209 class VectorizationReport : public LoopAccessReport {
    210 public:
    211   VectorizationReport(Instruction *I = nullptr)
    212       : LoopAccessReport("loop not vectorized: ", I) {}
    213 
    214   /// \brief This allows promotion of the loop-access analysis report into the
    215   /// loop-vectorizer report.  It modifies the message to add the
    216   /// loop-vectorizer-specific part of the message.
    217   explicit VectorizationReport(const LoopAccessReport &R)
    218       : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
    219                          R.getInstr()) {}
    220 };
    221 
    222 /// A helper function for converting Scalar types to vector types.
    223 /// If the incoming type is void, we return void. If the VF is 1, we return
    224 /// the scalar type.
    225 static Type* ToVectorTy(Type *Scalar, unsigned VF) {
    226   if (Scalar->isVoidTy() || VF == 1)
    227     return Scalar;
    228   return VectorType::get(Scalar, VF);
    229 }
    230 
    231 /// InnerLoopVectorizer vectorizes loops which contain only one basic
    232 /// block to a specified vectorization factor (VF).
    233 /// This class performs the widening of scalars into vectors, or multiple
    234 /// scalars. This class also implements the following features:
    235 /// * It inserts an epilogue loop for handling loops that don't have iteration
    236 ///   counts that are known to be a multiple of the vectorization factor.
    237 /// * It handles the code generation for reduction variables.
    238 /// * Scalarization (implementation using scalars) of un-vectorizable
    239 ///   instructions.
    240 /// InnerLoopVectorizer does not perform any vectorization-legality
    241 /// checks, and relies on the caller to check for the different legality
    242 /// aspects. The InnerLoopVectorizer relies on the
    243 /// LoopVectorizationLegality class to provide information about the induction
    244 /// and reduction variables that were found to a given vectorization factor.
    245 class InnerLoopVectorizer {
    246 public:
    247   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
    248                       DominatorTree *DT, const TargetLibraryInfo *TLI,
    249                       const TargetTransformInfo *TTI, unsigned VecWidth,
    250                       unsigned UnrollFactor)
    251       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
    252         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
    253         Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
    254         Legal(nullptr), AddedSafetyChecks(false) {}
    255 
    256   // Perform the actual loop widening (vectorization).
    257   void vectorize(LoopVectorizationLegality *L) {
    258     Legal = L;
    259     // Create a new empty loop. Unlink the old loop and connect the new one.
    260     createEmptyLoop();
    261     // Widen each instruction in the old loop to a new one in the new loop.
    262     // Use the Legality module to find the induction and reduction variables.
    263     vectorizeLoop();
    264     // Register the new loop and update the analysis passes.
    265     updateAnalysis();
    266   }
    267 
    268   // Return true if any runtime check is added.
    269   bool IsSafetyChecksAdded() {
    270     return AddedSafetyChecks;
    271   }
    272 
    273   virtual ~InnerLoopVectorizer() {}
    274 
    275 protected:
    276   /// A small list of PHINodes.
    277   typedef SmallVector<PHINode*, 4> PhiVector;
    278   /// When we unroll loops we have multiple vector values for each scalar.
    279   /// This data structure holds the unrolled and vectorized values that
    280   /// originated from one scalar instruction.
    281   typedef SmallVector<Value*, 2> VectorParts;
    282 
    283   // When we if-convert we need create edge masks. We have to cache values so
    284   // that we don't end up with exponential recursion/IR.
    285   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
    286                    VectorParts> EdgeMaskCache;
    287 
    288   /// \brief Add checks for strides that where assumed to be 1.
    289   ///
    290   /// Returns the last check instruction and the first check instruction in the
    291   /// pair as (first, last).
    292   std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
    293 
    294   /// Create an empty loop, based on the loop ranges of the old loop.
    295   void createEmptyLoop();
    296   /// Copy and widen the instructions from the old loop.
    297   virtual void vectorizeLoop();
    298 
    299   /// \brief The Loop exit block may have single value PHI nodes where the
    300   /// incoming value is 'Undef'. While vectorizing we only handled real values
    301   /// that were defined inside the loop. Here we fix the 'undef case'.
    302   /// See PR14725.
    303   void fixLCSSAPHIs();
    304 
    305   /// A helper function that computes the predicate of the block BB, assuming
    306   /// that the header block of the loop is set to True. It returns the *entry*
    307   /// mask for the block BB.
    308   VectorParts createBlockInMask(BasicBlock *BB);
    309   /// A helper function that computes the predicate of the edge between SRC
    310   /// and DST.
    311   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
    312 
    313   /// A helper function to vectorize a single BB within the innermost loop.
    314   void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
    315 
    316   /// Vectorize a single PHINode in a block. This method handles the induction
    317   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
    318   /// arbitrary length vectors.
    319   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
    320                            unsigned UF, unsigned VF, PhiVector *PV);
    321 
    322   /// Insert the new loop to the loop hierarchy and pass manager
    323   /// and update the analysis passes.
    324   void updateAnalysis();
    325 
    326   /// This instruction is un-vectorizable. Implement it as a sequence
    327   /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
    328   /// scalarized instruction behind an if block predicated on the control
    329   /// dependence of the instruction.
    330   virtual void scalarizeInstruction(Instruction *Instr,
    331                                     bool IfPredicateStore=false);
    332 
    333   /// Vectorize Load and Store instructions,
    334   virtual void vectorizeMemoryInstruction(Instruction *Instr);
    335 
    336   /// Create a broadcast instruction. This method generates a broadcast
    337   /// instruction (shuffle) for loop invariant values and for the induction
    338   /// value. If this is the induction variable then we extend it to N, N+1, ...
    339   /// this is needed because each iteration in the loop corresponds to a SIMD
    340   /// element.
    341   virtual Value *getBroadcastInstrs(Value *V);
    342 
    343   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
    344   /// to each vector element of Val. The sequence starts at StartIndex.
    345   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
    346 
    347   /// When we go over instructions in the basic block we rely on previous
    348   /// values within the current basic block or on loop invariant values.
    349   /// When we widen (vectorize) values we place them in the map. If the values
    350   /// are not within the map, they have to be loop invariant, so we simply
    351   /// broadcast them into a vector.
    352   VectorParts &getVectorValue(Value *V);
    353 
    354   /// Generate a shuffle sequence that will reverse the vector Vec.
    355   virtual Value *reverseVector(Value *Vec);
    356 
    357   /// This is a helper class that holds the vectorizer state. It maps scalar
    358   /// instructions to vector instructions. When the code is 'unrolled' then
    359   /// then a single scalar value is mapped to multiple vector parts. The parts
    360   /// are stored in the VectorPart type.
    361   struct ValueMap {
    362     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
    363     /// are mapped.
    364     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
    365 
    366     /// \return True if 'Key' is saved in the Value Map.
    367     bool has(Value *Key) const { return MapStorage.count(Key); }
    368 
    369     /// Initializes a new entry in the map. Sets all of the vector parts to the
    370     /// save value in 'Val'.
    371     /// \return A reference to a vector with splat values.
    372     VectorParts &splat(Value *Key, Value *Val) {
    373       VectorParts &Entry = MapStorage[Key];
    374       Entry.assign(UF, Val);
    375       return Entry;
    376     }
    377 
    378     ///\return A reference to the value that is stored at 'Key'.
    379     VectorParts &get(Value *Key) {
    380       VectorParts &Entry = MapStorage[Key];
    381       if (Entry.empty())
    382         Entry.resize(UF);
    383       assert(Entry.size() == UF);
    384       return Entry;
    385     }
    386 
    387   private:
    388     /// The unroll factor. Each entry in the map stores this number of vector
    389     /// elements.
    390     unsigned UF;
    391 
    392     /// Map storage. We use std::map and not DenseMap because insertions to a
    393     /// dense map invalidates its iterators.
    394     std::map<Value *, VectorParts> MapStorage;
    395   };
    396 
    397   /// The original loop.
    398   Loop *OrigLoop;
    399   /// Scev analysis to use.
    400   ScalarEvolution *SE;
    401   /// Loop Info.
    402   LoopInfo *LI;
    403   /// Dominator Tree.
    404   DominatorTree *DT;
    405   /// Alias Analysis.
    406   AliasAnalysis *AA;
    407   /// Target Library Info.
    408   const TargetLibraryInfo *TLI;
    409   /// Target Transform Info.
    410   const TargetTransformInfo *TTI;
    411 
    412   /// The vectorization SIMD factor to use. Each vector will have this many
    413   /// vector elements.
    414   unsigned VF;
    415 
    416 protected:
    417   /// The vectorization unroll factor to use. Each scalar is vectorized to this
    418   /// many different vector instructions.
    419   unsigned UF;
    420 
    421   /// The builder that we use
    422   IRBuilder<> Builder;
    423 
    424   // --- Vectorization state ---
    425 
    426   /// The vector-loop preheader.
    427   BasicBlock *LoopVectorPreHeader;
    428   /// The scalar-loop preheader.
    429   BasicBlock *LoopScalarPreHeader;
    430   /// Middle Block between the vector and the scalar.
    431   BasicBlock *LoopMiddleBlock;
    432   ///The ExitBlock of the scalar loop.
    433   BasicBlock *LoopExitBlock;
    434   ///The vector loop body.
    435   SmallVector<BasicBlock *, 4> LoopVectorBody;
    436   ///The scalar loop body.
    437   BasicBlock *LoopScalarBody;
    438   /// A list of all bypass blocks. The first block is the entry of the loop.
    439   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
    440 
    441   /// The new Induction variable which was added to the new block.
    442   PHINode *Induction;
    443   /// The induction variable of the old basic block.
    444   PHINode *OldInduction;
    445   /// Holds the extended (to the widest induction type) start index.
    446   Value *ExtendedIdx;
    447   /// Maps scalars to widened vectors.
    448   ValueMap WidenMap;
    449   EdgeMaskCache MaskCache;
    450 
    451   LoopVectorizationLegality *Legal;
    452 
    453   // Record whether runtime check is added.
    454   bool AddedSafetyChecks;
    455 };
    456 
    457 class InnerLoopUnroller : public InnerLoopVectorizer {
    458 public:
    459   InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
    460                     DominatorTree *DT, const TargetLibraryInfo *TLI,
    461                     const TargetTransformInfo *TTI, unsigned UnrollFactor)
    462       : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {}
    463 
    464 private:
    465   void scalarizeInstruction(Instruction *Instr,
    466                             bool IfPredicateStore = false) override;
    467   void vectorizeMemoryInstruction(Instruction *Instr) override;
    468   Value *getBroadcastInstrs(Value *V) override;
    469   Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
    470   Value *reverseVector(Value *Vec) override;
    471 };
    472 
    473 /// \brief Look for a meaningful debug location on the instruction or it's
    474 /// operands.
    475 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
    476   if (!I)
    477     return I;
    478 
    479   DebugLoc Empty;
    480   if (I->getDebugLoc() != Empty)
    481     return I;
    482 
    483   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
    484     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
    485       if (OpInst->getDebugLoc() != Empty)
    486         return OpInst;
    487   }
    488 
    489   return I;
    490 }
    491 
    492 /// \brief Set the debug location in the builder using the debug location in the
    493 /// instruction.
    494 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
    495   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
    496     B.SetCurrentDebugLocation(Inst->getDebugLoc());
    497   else
    498     B.SetCurrentDebugLocation(DebugLoc());
    499 }
    500 
    501 #ifndef NDEBUG
    502 /// \return string containing a file name and a line # for the given loop.
    503 static std::string getDebugLocString(const Loop *L) {
    504   std::string Result;
    505   if (L) {
    506     raw_string_ostream OS(Result);
    507     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
    508       LoopDbgLoc.print(OS);
    509     else
    510       // Just print the module name.
    511       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
    512     OS.flush();
    513   }
    514   return Result;
    515 }
    516 #endif
    517 
    518 /// \brief Propagate known metadata from one instruction to another.
    519 static void propagateMetadata(Instruction *To, const Instruction *From) {
    520   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
    521   From->getAllMetadataOtherThanDebugLoc(Metadata);
    522 
    523   for (auto M : Metadata) {
    524     unsigned Kind = M.first;
    525 
    526     // These are safe to transfer (this is safe for TBAA, even when we
    527     // if-convert, because should that metadata have had a control dependency
    528     // on the condition, and thus actually aliased with some other
    529     // non-speculated memory access when the condition was false, this would be
    530     // caught by the runtime overlap checks).
    531     if (Kind != LLVMContext::MD_tbaa &&
    532         Kind != LLVMContext::MD_alias_scope &&
    533         Kind != LLVMContext::MD_noalias &&
    534         Kind != LLVMContext::MD_fpmath)
    535       continue;
    536 
    537     To->setMetadata(Kind, M.second);
    538   }
    539 }
    540 
    541 /// \brief Propagate known metadata from one instruction to a vector of others.
    542 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
    543   for (Value *V : To)
    544     if (Instruction *I = dyn_cast<Instruction>(V))
    545       propagateMetadata(I, From);
    546 }
    547 
    548 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
    549 /// to what vectorization factor.
    550 /// This class does not look at the profitability of vectorization, only the
    551 /// legality. This class has two main kinds of checks:
    552 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
    553 ///   will change the order of memory accesses in a way that will change the
    554 ///   correctness of the program.
    555 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
    556 /// checks for a number of different conditions, such as the availability of a
    557 /// single induction variable, that all types are supported and vectorize-able,
    558 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
    559 /// This class is also used by InnerLoopVectorizer for identifying
    560 /// induction variable and the different reduction variables.
    561 class LoopVectorizationLegality {
    562 public:
    563   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
    564                             TargetLibraryInfo *TLI, AliasAnalysis *AA,
    565                             Function *F, const TargetTransformInfo *TTI,
    566                             LoopAccessAnalysis *LAA)
    567       : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
    568         TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr),
    569         WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
    570 
    571   /// This enum represents the kinds of reductions that we support.
    572   enum ReductionKind {
    573     RK_NoReduction, ///< Not a reduction.
    574     RK_IntegerAdd,  ///< Sum of integers.
    575     RK_IntegerMult, ///< Product of integers.
    576     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
    577     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
    578     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
    579     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
    580     RK_FloatAdd,    ///< Sum of floats.
    581     RK_FloatMult,   ///< Product of floats.
    582     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
    583   };
    584 
    585   /// This enum represents the kinds of inductions that we support.
    586   enum InductionKind {
    587     IK_NoInduction,  ///< Not an induction variable.
    588     IK_IntInduction, ///< Integer induction variable. Step = C.
    589     IK_PtrInduction  ///< Pointer induction var. Step = C / sizeof(elem).
    590   };
    591 
    592   // This enum represents the kind of minmax reduction.
    593   enum MinMaxReductionKind {
    594     MRK_Invalid,
    595     MRK_UIntMin,
    596     MRK_UIntMax,
    597     MRK_SIntMin,
    598     MRK_SIntMax,
    599     MRK_FloatMin,
    600     MRK_FloatMax
    601   };
    602 
    603   /// This struct holds information about reduction variables.
    604   struct ReductionDescriptor {
    605     ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
    606       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
    607 
    608     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
    609                         MinMaxReductionKind MK)
    610         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
    611 
    612     // The starting value of the reduction.
    613     // It does not have to be zero!
    614     TrackingVH<Value> StartValue;
    615     // The instruction who's value is used outside the loop.
    616     Instruction *LoopExitInstr;
    617     // The kind of the reduction.
    618     ReductionKind Kind;
    619     // If this a min/max reduction the kind of reduction.
    620     MinMaxReductionKind MinMaxKind;
    621   };
    622 
    623   /// This POD struct holds information about a potential reduction operation.
    624   struct ReductionInstDesc {
    625     ReductionInstDesc(bool IsRedux, Instruction *I) :
    626       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
    627 
    628     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
    629       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
    630 
    631     // Is this instruction a reduction candidate.
    632     bool IsReduction;
    633     // The last instruction in a min/max pattern (select of the select(icmp())
    634     // pattern), or the current reduction instruction otherwise.
    635     Instruction *PatternLastInst;
    636     // If this is a min/max pattern the comparison predicate.
    637     MinMaxReductionKind MinMaxKind;
    638   };
    639 
    640   /// A struct for saving information about induction variables.
    641   struct InductionInfo {
    642     InductionInfo(Value *Start, InductionKind K, ConstantInt *Step)
    643         : StartValue(Start), IK(K), StepValue(Step) {
    644       assert(IK != IK_NoInduction && "Not an induction");
    645       assert(StartValue && "StartValue is null");
    646       assert(StepValue && !StepValue->isZero() && "StepValue is zero");
    647       assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
    648              "StartValue is not a pointer for pointer induction");
    649       assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
    650              "StartValue is not an integer for integer induction");
    651       assert(StepValue->getType()->isIntegerTy() &&
    652              "StepValue is not an integer");
    653     }
    654     InductionInfo()
    655         : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {}
    656 
    657     /// Get the consecutive direction. Returns:
    658     ///   0 - unknown or non-consecutive.
    659     ///   1 - consecutive and increasing.
    660     ///  -1 - consecutive and decreasing.
    661     int getConsecutiveDirection() const {
    662       if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
    663         return StepValue->getSExtValue();
    664       return 0;
    665     }
    666 
    667     /// Compute the transformed value of Index at offset StartValue using step
    668     /// StepValue.
    669     /// For integer induction, returns StartValue + Index * StepValue.
    670     /// For pointer induction, returns StartValue[Index * StepValue].
    671     /// FIXME: The newly created binary instructions should contain nsw/nuw
    672     /// flags, which can be found from the original scalar operations.
    673     Value *transform(IRBuilder<> &B, Value *Index) const {
    674       switch (IK) {
    675       case IK_IntInduction:
    676         assert(Index->getType() == StartValue->getType() &&
    677                "Index type does not match StartValue type");
    678         if (StepValue->isMinusOne())
    679           return B.CreateSub(StartValue, Index);
    680         if (!StepValue->isOne())
    681           Index = B.CreateMul(Index, StepValue);
    682         return B.CreateAdd(StartValue, Index);
    683 
    684       case IK_PtrInduction:
    685         if (StepValue->isMinusOne())
    686           Index = B.CreateNeg(Index);
    687         else if (!StepValue->isOne())
    688           Index = B.CreateMul(Index, StepValue);
    689         return B.CreateGEP(nullptr, StartValue, Index);
    690 
    691       case IK_NoInduction:
    692         return nullptr;
    693       }
    694       llvm_unreachable("invalid enum");
    695     }
    696 
    697     /// Start value.
    698     TrackingVH<Value> StartValue;
    699     /// Induction kind.
    700     InductionKind IK;
    701     /// Step value.
    702     ConstantInt *StepValue;
    703   };
    704 
    705   /// ReductionList contains the reduction descriptors for all
    706   /// of the reductions that were found in the loop.
    707   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
    708 
    709   /// InductionList saves induction variables and maps them to the
    710   /// induction descriptor.
    711   typedef MapVector<PHINode*, InductionInfo> InductionList;
    712 
    713   /// Returns true if it is legal to vectorize this loop.
    714   /// This does not mean that it is profitable to vectorize this
    715   /// loop, only that it is legal to do so.
    716   bool canVectorize();
    717 
    718   /// Returns the Induction variable.
    719   PHINode *getInduction() { return Induction; }
    720 
    721   /// Returns the reduction variables found in the loop.
    722   ReductionList *getReductionVars() { return &Reductions; }
    723 
    724   /// Returns the induction variables found in the loop.
    725   InductionList *getInductionVars() { return &Inductions; }
    726 
    727   /// Returns the widest induction type.
    728   Type *getWidestInductionType() { return WidestIndTy; }
    729 
    730   /// Returns True if V is an induction variable in this loop.
    731   bool isInductionVariable(const Value *V);
    732 
    733   /// Return true if the block BB needs to be predicated in order for the loop
    734   /// to be vectorized.
    735   bool blockNeedsPredication(BasicBlock *BB);
    736 
    737   /// Check if this  pointer is consecutive when vectorizing. This happens
    738   /// when the last index of the GEP is the induction variable, or that the
    739   /// pointer itself is an induction variable.
    740   /// This check allows us to vectorize A[idx] into a wide load/store.
    741   /// Returns:
    742   /// 0 - Stride is unknown or non-consecutive.
    743   /// 1 - Address is consecutive.
    744   /// -1 - Address is consecutive, and decreasing.
    745   int isConsecutivePtr(Value *Ptr);
    746 
    747   /// Returns true if the value V is uniform within the loop.
    748   bool isUniform(Value *V);
    749 
    750   /// Returns true if this instruction will remain scalar after vectorization.
    751   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
    752 
    753   /// Returns the information that we collected about runtime memory check.
    754   const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const {
    755     return LAI->getRuntimePointerCheck();
    756   }
    757 
    758   const LoopAccessInfo *getLAI() const {
    759     return LAI;
    760   }
    761 
    762   /// This function returns the identity element (or neutral element) for
    763   /// the operation K.
    764   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
    765 
    766   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
    767 
    768   bool hasStride(Value *V) { return StrideSet.count(V); }
    769   bool mustCheckStrides() { return !StrideSet.empty(); }
    770   SmallPtrSet<Value *, 8>::iterator strides_begin() {
    771     return StrideSet.begin();
    772   }
    773   SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
    774 
    775   /// Returns true if the target machine supports masked store operation
    776   /// for the given \p DataType and kind of access to \p Ptr.
    777   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
    778     return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
    779   }
    780   /// Returns true if the target machine supports masked load operation
    781   /// for the given \p DataType and kind of access to \p Ptr.
    782   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
    783     return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
    784   }
    785   /// Returns true if vector representation of the instruction \p I
    786   /// requires mask.
    787   bool isMaskRequired(const Instruction* I) {
    788     return (MaskedOp.count(I) != 0);
    789   }
    790   unsigned getNumStores() const {
    791     return LAI->getNumStores();
    792   }
    793   unsigned getNumLoads() const {
    794     return LAI->getNumLoads();
    795   }
    796   unsigned getNumPredStores() const {
    797     return NumPredStores;
    798   }
    799 private:
    800   /// Check if a single basic block loop is vectorizable.
    801   /// At this point we know that this is a loop with a constant trip count
    802   /// and we only need to check individual instructions.
    803   bool canVectorizeInstrs();
    804 
    805   /// When we vectorize loops we may change the order in which
    806   /// we read and write from memory. This method checks if it is
    807   /// legal to vectorize the code, considering only memory constrains.
    808   /// Returns true if the loop is vectorizable
    809   bool canVectorizeMemory();
    810 
    811   /// Return true if we can vectorize this loop using the IF-conversion
    812   /// transformation.
    813   bool canVectorizeWithIfConvert();
    814 
    815   /// Collect the variables that need to stay uniform after vectorization.
    816   void collectLoopUniforms();
    817 
    818   /// Return true if all of the instructions in the block can be speculatively
    819   /// executed. \p SafePtrs is a list of addresses that are known to be legal
    820   /// and we know that we can read from them without segfault.
    821   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
    822 
    823   /// Returns True, if 'Phi' is the kind of reduction variable for type
    824   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
    825   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
    826   /// Returns a struct describing if the instruction 'I' can be a reduction
    827   /// variable of type 'Kind'. If the reduction is a min/max pattern of
    828   /// select(icmp()) this function advances the instruction pointer 'I' from the
    829   /// compare instruction to the select instruction and stores this pointer in
    830   /// 'PatternLastInst' member of the returned struct.
    831   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
    832                                      ReductionInstDesc &Desc);
    833   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
    834   /// pattern corresponding to a min(X, Y) or max(X, Y).
    835   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
    836                                                     ReductionInstDesc &Prev);
    837   /// Returns the induction kind of Phi and record the step. This function may
    838   /// return NoInduction if the PHI is not an induction variable.
    839   InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue);
    840 
    841   /// \brief Collect memory access with loop invariant strides.
    842   ///
    843   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
    844   /// invariant.
    845   void collectStridedAccess(Value *LoadOrStoreInst);
    846 
    847   /// Report an analysis message to assist the user in diagnosing loops that are
    848   /// not vectorized.  These are handled as LoopAccessReport rather than
    849   /// VectorizationReport because the << operator of VectorizationReport returns
    850   /// LoopAccessReport.
    851   void emitAnalysis(const LoopAccessReport &Message) {
    852     LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
    853   }
    854 
    855   unsigned NumPredStores;
    856 
    857   /// The loop that we evaluate.
    858   Loop *TheLoop;
    859   /// Scev analysis.
    860   ScalarEvolution *SE;
    861   /// Target Library Info.
    862   TargetLibraryInfo *TLI;
    863   /// Parent function
    864   Function *TheFunction;
    865   /// Target Transform Info
    866   const TargetTransformInfo *TTI;
    867   /// Dominator Tree.
    868   DominatorTree *DT;
    869   // LoopAccess analysis.
    870   LoopAccessAnalysis *LAA;
    871   // And the loop-accesses info corresponding to this loop.  This pointer is
    872   // null until canVectorizeMemory sets it up.
    873   const LoopAccessInfo *LAI;
    874 
    875   //  ---  vectorization state --- //
    876 
    877   /// Holds the integer induction variable. This is the counter of the
    878   /// loop.
    879   PHINode *Induction;
    880   /// Holds the reduction variables.
    881   ReductionList Reductions;
    882   /// Holds all of the induction variables that we found in the loop.
    883   /// Notice that inductions don't need to start at zero and that induction
    884   /// variables can be pointers.
    885   InductionList Inductions;
    886   /// Holds the widest induction type encountered.
    887   Type *WidestIndTy;
    888 
    889   /// Allowed outside users. This holds the reduction
    890   /// vars which can be accessed from outside the loop.
    891   SmallPtrSet<Value*, 4> AllowedExit;
    892   /// This set holds the variables which are known to be uniform after
    893   /// vectorization.
    894   SmallPtrSet<Instruction*, 4> Uniforms;
    895 
    896   /// Can we assume the absence of NaNs.
    897   bool HasFunNoNaNAttr;
    898 
    899   ValueToValueMap Strides;
    900   SmallPtrSet<Value *, 8> StrideSet;
    901 
    902   /// While vectorizing these instructions we have to generate a
    903   /// call to the appropriate masked intrinsic
    904   SmallPtrSet<const Instruction*, 8> MaskedOp;
    905 };
    906 
    907 /// LoopVectorizationCostModel - estimates the expected speedups due to
    908 /// vectorization.
    909 /// In many cases vectorization is not profitable. This can happen because of
    910 /// a number of reasons. In this class we mainly attempt to predict the
    911 /// expected speedup/slowdowns due to the supported instruction set. We use the
    912 /// TargetTransformInfo to query the different backends for the cost of
    913 /// different operations.
    914 class LoopVectorizationCostModel {
    915 public:
    916   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
    917                              LoopVectorizationLegality *Legal,
    918                              const TargetTransformInfo &TTI,
    919                              const TargetLibraryInfo *TLI, AssumptionCache *AC,
    920                              const Function *F, const LoopVectorizeHints *Hints)
    921       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI),
    922         TheFunction(F), Hints(Hints) {
    923     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
    924   }
    925 
    926   /// Information about vectorization costs
    927   struct VectorizationFactor {
    928     unsigned Width; // Vector width with best cost
    929     unsigned Cost; // Cost of the loop with that width
    930   };
    931   /// \return The most profitable vectorization factor and the cost of that VF.
    932   /// This method checks every power of two up to VF. If UserVF is not ZERO
    933   /// then this vectorization factor will be selected if vectorization is
    934   /// possible.
    935   VectorizationFactor selectVectorizationFactor(bool OptForSize);
    936 
    937   /// \return The size (in bits) of the widest type in the code that
    938   /// needs to be vectorized. We ignore values that remain scalar such as
    939   /// 64 bit loop indices.
    940   unsigned getWidestType();
    941 
    942   /// \return The most profitable unroll factor.
    943   /// If UserUF is non-zero then this method finds the best unroll-factor
    944   /// based on register pressure and other parameters.
    945   /// VF and LoopCost are the selected vectorization factor and the cost of the
    946   /// selected VF.
    947   unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
    948 
    949   /// \brief A struct that represents some properties of the register usage
    950   /// of a loop.
    951   struct RegisterUsage {
    952     /// Holds the number of loop invariant values that are used in the loop.
    953     unsigned LoopInvariantRegs;
    954     /// Holds the maximum number of concurrent live intervals in the loop.
    955     unsigned MaxLocalUsers;
    956     /// Holds the number of instructions in the loop.
    957     unsigned NumInstructions;
    958   };
    959 
    960   /// \return  information about the register usage of the loop.
    961   RegisterUsage calculateRegisterUsage();
    962 
    963 private:
    964   /// Returns the expected execution cost. The unit of the cost does
    965   /// not matter because we use the 'cost' units to compare different
    966   /// vector widths. The cost that is returned is *not* normalized by
    967   /// the factor width.
    968   unsigned expectedCost(unsigned VF);
    969 
    970   /// Returns the execution time cost of an instruction for a given vector
    971   /// width. Vector width of one means scalar.
    972   unsigned getInstructionCost(Instruction *I, unsigned VF);
    973 
    974   /// Returns whether the instruction is a load or store and will be a emitted
    975   /// as a vector operation.
    976   bool isConsecutiveLoadOrStore(Instruction *I);
    977 
    978   /// Report an analysis message to assist the user in diagnosing loops that are
    979   /// not vectorized.  These are handled as LoopAccessReport rather than
    980   /// VectorizationReport because the << operator of VectorizationReport returns
    981   /// LoopAccessReport.
    982   void emitAnalysis(const LoopAccessReport &Message) {
    983     LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
    984   }
    985 
    986   /// Values used only by @llvm.assume calls.
    987   SmallPtrSet<const Value *, 32> EphValues;
    988 
    989   /// The loop that we evaluate.
    990   Loop *TheLoop;
    991   /// Scev analysis.
    992   ScalarEvolution *SE;
    993   /// Loop Info analysis.
    994   LoopInfo *LI;
    995   /// Vectorization legality.
    996   LoopVectorizationLegality *Legal;
    997   /// Vector target information.
    998   const TargetTransformInfo &TTI;
    999   /// Target Library Info.
   1000   const TargetLibraryInfo *TLI;
   1001   const Function *TheFunction;
   1002   // Loop Vectorize Hint.
   1003   const LoopVectorizeHints *Hints;
   1004 };
   1005 
   1006 /// Utility class for getting and setting loop vectorizer hints in the form
   1007 /// of loop metadata.
   1008 /// This class keeps a number of loop annotations locally (as member variables)
   1009 /// and can, upon request, write them back as metadata on the loop. It will
   1010 /// initially scan the loop for existing metadata, and will update the local
   1011 /// values based on information in the loop.
   1012 /// We cannot write all values to metadata, as the mere presence of some info,
   1013 /// for example 'force', means a decision has been made. So, we need to be
   1014 /// careful NOT to add them if the user hasn't specifically asked so.
   1015 class LoopVectorizeHints {
   1016   enum HintKind {
   1017     HK_WIDTH,
   1018     HK_UNROLL,
   1019     HK_FORCE
   1020   };
   1021 
   1022   /// Hint - associates name and validation with the hint value.
   1023   struct Hint {
   1024     const char * Name;
   1025     unsigned Value; // This may have to change for non-numeric values.
   1026     HintKind Kind;
   1027 
   1028     Hint(const char * Name, unsigned Value, HintKind Kind)
   1029       : Name(Name), Value(Value), Kind(Kind) { }
   1030 
   1031     bool validate(unsigned Val) {
   1032       switch (Kind) {
   1033       case HK_WIDTH:
   1034         return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
   1035       case HK_UNROLL:
   1036         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
   1037       case HK_FORCE:
   1038         return (Val <= 1);
   1039       }
   1040       return false;
   1041     }
   1042   };
   1043 
   1044   /// Vectorization width.
   1045   Hint Width;
   1046   /// Vectorization interleave factor.
   1047   Hint Interleave;
   1048   /// Vectorization forced
   1049   Hint Force;
   1050 
   1051   /// Return the loop metadata prefix.
   1052   static StringRef Prefix() { return "llvm.loop."; }
   1053 
   1054 public:
   1055   enum ForceKind {
   1056     FK_Undefined = -1, ///< Not selected.
   1057     FK_Disabled = 0,   ///< Forcing disabled.
   1058     FK_Enabled = 1,    ///< Forcing enabled.
   1059   };
   1060 
   1061   LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
   1062       : Width("vectorize.width", VectorizerParams::VectorizationFactor,
   1063               HK_WIDTH),
   1064         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
   1065         Force("vectorize.enable", FK_Undefined, HK_FORCE),
   1066         TheLoop(L) {
   1067     // Populate values with existing loop metadata.
   1068     getHintsFromMetadata();
   1069 
   1070     // force-vector-interleave overrides DisableInterleaving.
   1071     if (VectorizerParams::isInterleaveForced())
   1072       Interleave.Value = VectorizerParams::VectorizationInterleave;
   1073 
   1074     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
   1075           << "LV: Interleaving disabled by the pass manager\n");
   1076   }
   1077 
   1078   /// Mark the loop L as already vectorized by setting the width to 1.
   1079   void setAlreadyVectorized() {
   1080     Width.Value = Interleave.Value = 1;
   1081     Hint Hints[] = {Width, Interleave};
   1082     writeHintsToMetadata(Hints);
   1083   }
   1084 
   1085   /// Dumps all the hint information.
   1086   std::string emitRemark() const {
   1087     VectorizationReport R;
   1088     if (Force.Value == LoopVectorizeHints::FK_Disabled)
   1089       R << "vectorization is explicitly disabled";
   1090     else {
   1091       R << "use -Rpass-analysis=loop-vectorize for more info";
   1092       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
   1093         R << " (Force=true";
   1094         if (Width.Value != 0)
   1095           R << ", Vector Width=" << Width.Value;
   1096         if (Interleave.Value != 0)
   1097           R << ", Interleave Count=" << Interleave.Value;
   1098         R << ")";
   1099       }
   1100     }
   1101 
   1102     return R.str();
   1103   }
   1104 
   1105   unsigned getWidth() const { return Width.Value; }
   1106   unsigned getInterleave() const { return Interleave.Value; }
   1107   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
   1108 
   1109 private:
   1110   /// Find hints specified in the loop metadata and update local values.
   1111   void getHintsFromMetadata() {
   1112     MDNode *LoopID = TheLoop->getLoopID();
   1113     if (!LoopID)
   1114       return;
   1115 
   1116     // First operand should refer to the loop id itself.
   1117     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
   1118     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
   1119 
   1120     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
   1121       const MDString *S = nullptr;
   1122       SmallVector<Metadata *, 4> Args;
   1123 
   1124       // The expected hint is either a MDString or a MDNode with the first
   1125       // operand a MDString.
   1126       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
   1127         if (!MD || MD->getNumOperands() == 0)
   1128           continue;
   1129         S = dyn_cast<MDString>(MD->getOperand(0));
   1130         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
   1131           Args.push_back(MD->getOperand(i));
   1132       } else {
   1133         S = dyn_cast<MDString>(LoopID->getOperand(i));
   1134         assert(Args.size() == 0 && "too many arguments for MDString");
   1135       }
   1136 
   1137       if (!S)
   1138         continue;
   1139 
   1140       // Check if the hint starts with the loop metadata prefix.
   1141       StringRef Name = S->getString();
   1142       if (Args.size() == 1)
   1143         setHint(Name, Args[0]);
   1144     }
   1145   }
   1146 
   1147   /// Checks string hint with one operand and set value if valid.
   1148   void setHint(StringRef Name, Metadata *Arg) {
   1149     if (!Name.startswith(Prefix()))
   1150       return;
   1151     Name = Name.substr(Prefix().size(), StringRef::npos);
   1152 
   1153     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
   1154     if (!C) return;
   1155     unsigned Val = C->getZExtValue();
   1156 
   1157     Hint *Hints[] = {&Width, &Interleave, &Force};
   1158     for (auto H : Hints) {
   1159       if (Name == H->Name) {
   1160         if (H->validate(Val))
   1161           H->Value = Val;
   1162         else
   1163           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
   1164         break;
   1165       }
   1166     }
   1167   }
   1168 
   1169   /// Create a new hint from name / value pair.
   1170   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
   1171     LLVMContext &Context = TheLoop->getHeader()->getContext();
   1172     Metadata *MDs[] = {MDString::get(Context, Name),
   1173                        ConstantAsMetadata::get(
   1174                            ConstantInt::get(Type::getInt32Ty(Context), V))};
   1175     return MDNode::get(Context, MDs);
   1176   }
   1177 
   1178   /// Matches metadata with hint name.
   1179   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
   1180     MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
   1181     if (!Name)
   1182       return false;
   1183 
   1184     for (auto H : HintTypes)
   1185       if (Name->getString().endswith(H.Name))
   1186         return true;
   1187     return false;
   1188   }
   1189 
   1190   /// Sets current hints into loop metadata, keeping other values intact.
   1191   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
   1192     if (HintTypes.size() == 0)
   1193       return;
   1194 
   1195     // Reserve the first element to LoopID (see below).
   1196     SmallVector<Metadata *, 4> MDs(1);
   1197     // If the loop already has metadata, then ignore the existing operands.
   1198     MDNode *LoopID = TheLoop->getLoopID();
   1199     if (LoopID) {
   1200       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
   1201         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
   1202         // If node in update list, ignore old value.
   1203         if (!matchesHintMetadataName(Node, HintTypes))
   1204           MDs.push_back(Node);
   1205       }
   1206     }
   1207 
   1208     // Now, add the missing hints.
   1209     for (auto H : HintTypes)
   1210       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
   1211 
   1212     // Replace current metadata node with new one.
   1213     LLVMContext &Context = TheLoop->getHeader()->getContext();
   1214     MDNode *NewLoopID = MDNode::get(Context, MDs);
   1215     // Set operand 0 to refer to the loop id itself.
   1216     NewLoopID->replaceOperandWith(0, NewLoopID);
   1217 
   1218     TheLoop->setLoopID(NewLoopID);
   1219   }
   1220 
   1221   /// The loop these hints belong to.
   1222   const Loop *TheLoop;
   1223 };
   1224 
   1225 static void emitMissedWarning(Function *F, Loop *L,
   1226                               const LoopVectorizeHints &LH) {
   1227   emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
   1228                                L->getStartLoc(), LH.emitRemark());
   1229 
   1230   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
   1231     if (LH.getWidth() != 1)
   1232       emitLoopVectorizeWarning(
   1233           F->getContext(), *F, L->getStartLoc(),
   1234           "failed explicitly specified loop vectorization");
   1235     else if (LH.getInterleave() != 1)
   1236       emitLoopInterleaveWarning(
   1237           F->getContext(), *F, L->getStartLoc(),
   1238           "failed explicitly specified loop interleaving");
   1239   }
   1240 }
   1241 
   1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
   1243   if (L.empty())
   1244     return V.push_back(&L);
   1245 
   1246   for (Loop *InnerL : L)
   1247     addInnerLoop(*InnerL, V);
   1248 }
   1249 
   1250 /// The LoopVectorize Pass.
   1251 struct LoopVectorize : public FunctionPass {
   1252   /// Pass identification, replacement for typeid
   1253   static char ID;
   1254 
   1255   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
   1256     : FunctionPass(ID),
   1257       DisableUnrolling(NoUnrolling),
   1258       AlwaysVectorize(AlwaysVectorize) {
   1259     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
   1260   }
   1261 
   1262   ScalarEvolution *SE;
   1263   LoopInfo *LI;
   1264   TargetTransformInfo *TTI;
   1265   DominatorTree *DT;
   1266   BlockFrequencyInfo *BFI;
   1267   TargetLibraryInfo *TLI;
   1268   AliasAnalysis *AA;
   1269   AssumptionCache *AC;
   1270   LoopAccessAnalysis *LAA;
   1271   bool DisableUnrolling;
   1272   bool AlwaysVectorize;
   1273 
   1274   BlockFrequency ColdEntryFreq;
   1275 
   1276   bool runOnFunction(Function &F) override {
   1277     SE = &getAnalysis<ScalarEvolution>();
   1278     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1279     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   1280     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1281     BFI = &getAnalysis<BlockFrequencyInfo>();
   1282     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
   1283     TLI = TLIP ? &TLIP->getTLI() : nullptr;
   1284     AA = &getAnalysis<AliasAnalysis>();
   1285     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   1286     LAA = &getAnalysis<LoopAccessAnalysis>();
   1287 
   1288     // Compute some weights outside of the loop over the loops. Compute this
   1289     // using a BranchProbability to re-use its scaling math.
   1290     const BranchProbability ColdProb(1, 5); // 20%
   1291     ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
   1292 
   1293     // If the target claims to have no vector registers don't attempt
   1294     // vectorization.
   1295     if (!TTI->getNumberOfRegisters(true))
   1296       return false;
   1297 
   1298     // Build up a worklist of inner-loops to vectorize. This is necessary as
   1299     // the act of vectorizing or partially unrolling a loop creates new loops
   1300     // and can invalidate iterators across the loops.
   1301     SmallVector<Loop *, 8> Worklist;
   1302 
   1303     for (Loop *L : *LI)
   1304       addInnerLoop(*L, Worklist);
   1305 
   1306     LoopsAnalyzed += Worklist.size();
   1307 
   1308     // Now walk the identified inner loops.
   1309     bool Changed = false;
   1310     while (!Worklist.empty())
   1311       Changed |= processLoop(Worklist.pop_back_val());
   1312 
   1313     // Process each loop nest in the function.
   1314     return Changed;
   1315   }
   1316 
   1317   static void AddRuntimeUnrollDisableMetaData(Loop *L) {
   1318     SmallVector<Metadata *, 4> MDs;
   1319     // Reserve first location for self reference to the LoopID metadata node.
   1320     MDs.push_back(nullptr);
   1321     bool IsUnrollMetadata = false;
   1322     MDNode *LoopID = L->getLoopID();
   1323     if (LoopID) {
   1324       // First find existing loop unrolling disable metadata.
   1325       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
   1326         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
   1327         if (MD) {
   1328           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
   1329           IsUnrollMetadata =
   1330               S && S->getString().startswith("llvm.loop.unroll.disable");
   1331         }
   1332         MDs.push_back(LoopID->getOperand(i));
   1333       }
   1334     }
   1335 
   1336     if (!IsUnrollMetadata) {
   1337       // Add runtime unroll disable metadata.
   1338       LLVMContext &Context = L->getHeader()->getContext();
   1339       SmallVector<Metadata *, 1> DisableOperands;
   1340       DisableOperands.push_back(
   1341           MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
   1342       MDNode *DisableNode = MDNode::get(Context, DisableOperands);
   1343       MDs.push_back(DisableNode);
   1344       MDNode *NewLoopID = MDNode::get(Context, MDs);
   1345       // Set operand 0 to refer to the loop id itself.
   1346       NewLoopID->replaceOperandWith(0, NewLoopID);
   1347       L->setLoopID(NewLoopID);
   1348     }
   1349   }
   1350 
   1351   bool processLoop(Loop *L) {
   1352     assert(L->empty() && "Only process inner loops.");
   1353 
   1354 #ifndef NDEBUG
   1355     const std::string DebugLocStr = getDebugLocString(L);
   1356 #endif /* NDEBUG */
   1357 
   1358     DEBUG(dbgs() << "\nLV: Checking a loop in \""
   1359                  << L->getHeader()->getParent()->getName() << "\" from "
   1360                  << DebugLocStr << "\n");
   1361 
   1362     LoopVectorizeHints Hints(L, DisableUnrolling);
   1363 
   1364     DEBUG(dbgs() << "LV: Loop hints:"
   1365                  << " force="
   1366                  << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
   1367                          ? "disabled"
   1368                          : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
   1369                                 ? "enabled"
   1370                                 : "?")) << " width=" << Hints.getWidth()
   1371                  << " unroll=" << Hints.getInterleave() << "\n");
   1372 
   1373     // Function containing loop
   1374     Function *F = L->getHeader()->getParent();
   1375 
   1376     // Looking at the diagnostic output is the only way to determine if a loop
   1377     // was vectorized (other than looking at the IR or machine code), so it
   1378     // is important to generate an optimization remark for each loop. Most of
   1379     // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
   1380     // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
   1381     // less verbose reporting vectorized loops and unvectorized loops that may
   1382     // benefit from vectorization, respectively.
   1383 
   1384     if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
   1385       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
   1386       emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
   1387                                      L->getStartLoc(), Hints.emitRemark());
   1388       return false;
   1389     }
   1390 
   1391     if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
   1392       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
   1393       emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
   1394                                      L->getStartLoc(), Hints.emitRemark());
   1395       return false;
   1396     }
   1397 
   1398     if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
   1399       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
   1400       emitOptimizationRemarkAnalysis(
   1401           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1402           "loop not vectorized: vector width and interleave count are "
   1403           "explicitly set to 1");
   1404       return false;
   1405     }
   1406 
   1407     // Check the loop for a trip count threshold:
   1408     // do not vectorize loops with a tiny trip count.
   1409     const unsigned TC = SE->getSmallConstantTripCount(L);
   1410     if (TC > 0u && TC < TinyTripCountVectorThreshold) {
   1411       DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
   1412                    << "This loop is not worth vectorizing.");
   1413       if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
   1414         DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
   1415       else {
   1416         DEBUG(dbgs() << "\n");
   1417         emitOptimizationRemarkAnalysis(
   1418             F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1419             "vectorization is not beneficial and is not explicitly forced");
   1420         return false;
   1421       }
   1422     }
   1423 
   1424     // Check if it is legal to vectorize the loop.
   1425     LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA);
   1426     if (!LVL.canVectorize()) {
   1427       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
   1428       emitMissedWarning(F, L, Hints);
   1429       return false;
   1430     }
   1431 
   1432     // Use the cost model.
   1433     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints);
   1434 
   1435     // Check the function attributes to find out if this function should be
   1436     // optimized for size.
   1437     bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
   1438                       F->hasFnAttribute(Attribute::OptimizeForSize);
   1439 
   1440     // Compute the weighted frequency of this loop being executed and see if it
   1441     // is less than 20% of the function entry baseline frequency. Note that we
   1442     // always have a canonical loop here because we think we *can* vectoriez.
   1443     // FIXME: This is hidden behind a flag due to pervasive problems with
   1444     // exactly what block frequency models.
   1445     if (LoopVectorizeWithBlockFrequency) {
   1446       BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
   1447       if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
   1448           LoopEntryFreq < ColdEntryFreq)
   1449         OptForSize = true;
   1450     }
   1451 
   1452     // Check the function attributes to see if implicit floats are allowed.a
   1453     // FIXME: This check doesn't seem possibly correct -- what if the loop is
   1454     // an integer loop and the vector instructions selected are purely integer
   1455     // vector instructions?
   1456     if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   1457       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
   1458             "attribute is used.\n");
   1459       emitOptimizationRemarkAnalysis(
   1460           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1461           "loop not vectorized due to NoImplicitFloat attribute");
   1462       emitMissedWarning(F, L, Hints);
   1463       return false;
   1464     }
   1465 
   1466     // Select the optimal vectorization factor.
   1467     const LoopVectorizationCostModel::VectorizationFactor VF =
   1468         CM.selectVectorizationFactor(OptForSize);
   1469 
   1470     // Select the unroll factor.
   1471     const unsigned UF =
   1472         CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
   1473 
   1474     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
   1475                  << DebugLocStr << '\n');
   1476     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
   1477 
   1478     if (VF.Width == 1) {
   1479       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
   1480 
   1481       if (UF == 1) {
   1482         emitOptimizationRemarkAnalysis(
   1483             F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1484             "not beneficial to vectorize and user disabled interleaving");
   1485         return false;
   1486       }
   1487       DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
   1488 
   1489       // Report the unrolling decision.
   1490       emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1491                              Twine("unrolled with interleaving factor " +
   1492                                    Twine(UF) +
   1493                                    " (vectorization not beneficial)"));
   1494 
   1495       // We decided not to vectorize, but we may want to unroll.
   1496 
   1497       InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF);
   1498       Unroller.vectorize(&LVL);
   1499     } else {
   1500       // If we decided that it is *legal* to vectorize the loop then do it.
   1501       InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF);
   1502       LB.vectorize(&LVL);
   1503       ++LoopsVectorized;
   1504 
   1505       // Add metadata to disable runtime unrolling scalar loop when there's no
   1506       // runtime check about strides and memory. Because at this situation,
   1507       // scalar loop is rarely used not worthy to be unrolled.
   1508       if (!LB.IsSafetyChecksAdded())
   1509         AddRuntimeUnrollDisableMetaData(L);
   1510 
   1511       // Report the vectorization decision.
   1512       emitOptimizationRemark(
   1513           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
   1514           Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
   1515               ", unrolling interleave factor: " + Twine(UF) + ")");
   1516     }
   1517 
   1518     // Mark the loop as already vectorized to avoid vectorizing again.
   1519     Hints.setAlreadyVectorized();
   1520 
   1521     DEBUG(verifyFunction(*L->getHeader()->getParent()));
   1522     return true;
   1523   }
   1524 
   1525   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1526     AU.addRequired<AssumptionCacheTracker>();
   1527     AU.addRequiredID(LoopSimplifyID);
   1528     AU.addRequiredID(LCSSAID);
   1529     AU.addRequired<BlockFrequencyInfo>();
   1530     AU.addRequired<DominatorTreeWrapperPass>();
   1531     AU.addRequired<LoopInfoWrapperPass>();
   1532     AU.addRequired<ScalarEvolution>();
   1533     AU.addRequired<TargetTransformInfoWrapperPass>();
   1534     AU.addRequired<AliasAnalysis>();
   1535     AU.addRequired<LoopAccessAnalysis>();
   1536     AU.addPreserved<LoopInfoWrapperPass>();
   1537     AU.addPreserved<DominatorTreeWrapperPass>();
   1538     AU.addPreserved<AliasAnalysis>();
   1539   }
   1540 
   1541 };
   1542 
   1543 } // end anonymous namespace
   1544 
   1545 //===----------------------------------------------------------------------===//
   1546 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
   1547 // LoopVectorizationCostModel.
   1548 //===----------------------------------------------------------------------===//
   1549 
   1550 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
   1551   // We need to place the broadcast of invariant variables outside the loop.
   1552   Instruction *Instr = dyn_cast<Instruction>(V);
   1553   bool NewInstr =
   1554       (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
   1555                           Instr->getParent()) != LoopVectorBody.end());
   1556   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
   1557 
   1558   // Place the code for broadcasting invariant variables in the new preheader.
   1559   IRBuilder<>::InsertPointGuard Guard(Builder);
   1560   if (Invariant)
   1561     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
   1562 
   1563   // Broadcast the scalar into all locations in the vector.
   1564   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
   1565 
   1566   return Shuf;
   1567 }
   1568 
   1569 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
   1570                                           Value *Step) {
   1571   assert(Val->getType()->isVectorTy() && "Must be a vector");
   1572   assert(Val->getType()->getScalarType()->isIntegerTy() &&
   1573          "Elem must be an integer");
   1574   assert(Step->getType() == Val->getType()->getScalarType() &&
   1575          "Step has wrong type");
   1576   // Create the types.
   1577   Type *ITy = Val->getType()->getScalarType();
   1578   VectorType *Ty = cast<VectorType>(Val->getType());
   1579   int VLen = Ty->getNumElements();
   1580   SmallVector<Constant*, 8> Indices;
   1581 
   1582   // Create a vector of consecutive numbers from zero to VF.
   1583   for (int i = 0; i < VLen; ++i)
   1584     Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
   1585 
   1586   // Add the consecutive indices to the vector value.
   1587   Constant *Cv = ConstantVector::get(Indices);
   1588   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
   1589   Step = Builder.CreateVectorSplat(VLen, Step);
   1590   assert(Step->getType() == Val->getType() && "Invalid step vec");
   1591   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
   1592   // which can be found from the original scalar operations.
   1593   Step = Builder.CreateMul(Cv, Step);
   1594   return Builder.CreateAdd(Val, Step, "induction");
   1595 }
   1596 
   1597 /// \brief Find the operand of the GEP that should be checked for consecutive
   1598 /// stores. This ignores trailing indices that have no effect on the final
   1599 /// pointer.
   1600 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
   1601   const DataLayout &DL = Gep->getModule()->getDataLayout();
   1602   unsigned LastOperand = Gep->getNumOperands() - 1;
   1603   unsigned GEPAllocSize = DL.getTypeAllocSize(
   1604       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
   1605 
   1606   // Walk backwards and try to peel off zeros.
   1607   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
   1608     // Find the type we're currently indexing into.
   1609     gep_type_iterator GEPTI = gep_type_begin(Gep);
   1610     std::advance(GEPTI, LastOperand - 1);
   1611 
   1612     // If it's a type with the same allocation size as the result of the GEP we
   1613     // can peel off the zero index.
   1614     if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
   1615       break;
   1616     --LastOperand;
   1617   }
   1618 
   1619   return LastOperand;
   1620 }
   1621 
   1622 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
   1623   assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
   1624   // Make sure that the pointer does not point to structs.
   1625   if (Ptr->getType()->getPointerElementType()->isAggregateType())
   1626     return 0;
   1627 
   1628   // If this value is a pointer induction variable we know it is consecutive.
   1629   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
   1630   if (Phi && Inductions.count(Phi)) {
   1631     InductionInfo II = Inductions[Phi];
   1632     return II.getConsecutiveDirection();
   1633   }
   1634 
   1635   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
   1636   if (!Gep)
   1637     return 0;
   1638 
   1639   unsigned NumOperands = Gep->getNumOperands();
   1640   Value *GpPtr = Gep->getPointerOperand();
   1641   // If this GEP value is a consecutive pointer induction variable and all of
   1642   // the indices are constant then we know it is consecutive. We can
   1643   Phi = dyn_cast<PHINode>(GpPtr);
   1644   if (Phi && Inductions.count(Phi)) {
   1645 
   1646     // Make sure that the pointer does not point to structs.
   1647     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
   1648     if (GepPtrType->getElementType()->isAggregateType())
   1649       return 0;
   1650 
   1651     // Make sure that all of the index operands are loop invariant.
   1652     for (unsigned i = 1; i < NumOperands; ++i)
   1653       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
   1654         return 0;
   1655 
   1656     InductionInfo II = Inductions[Phi];
   1657     return II.getConsecutiveDirection();
   1658   }
   1659 
   1660   unsigned InductionOperand = getGEPInductionOperand(Gep);
   1661 
   1662   // Check that all of the gep indices are uniform except for our induction
   1663   // operand.
   1664   for (unsigned i = 0; i != NumOperands; ++i)
   1665     if (i != InductionOperand &&
   1666         !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
   1667       return 0;
   1668 
   1669   // We can emit wide load/stores only if the last non-zero index is the
   1670   // induction variable.
   1671   const SCEV *Last = nullptr;
   1672   if (!Strides.count(Gep))
   1673     Last = SE->getSCEV(Gep->getOperand(InductionOperand));
   1674   else {
   1675     // Because of the multiplication by a stride we can have a s/zext cast.
   1676     // We are going to replace this stride by 1 so the cast is safe to ignore.
   1677     //
   1678     //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
   1679     //  %0 = trunc i64 %indvars.iv to i32
   1680     //  %mul = mul i32 %0, %Stride1
   1681     //  %idxprom = zext i32 %mul to i64  << Safe cast.
   1682     //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
   1683     //
   1684     Last = replaceSymbolicStrideSCEV(SE, Strides,
   1685                                      Gep->getOperand(InductionOperand), Gep);
   1686     if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
   1687       Last =
   1688           (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
   1689               ? C->getOperand()
   1690               : Last;
   1691   }
   1692   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
   1693     const SCEV *Step = AR->getStepRecurrence(*SE);
   1694 
   1695     // The memory is consecutive because the last index is consecutive
   1696     // and all other indices are loop invariant.
   1697     if (Step->isOne())
   1698       return 1;
   1699     if (Step->isAllOnesValue())
   1700       return -1;
   1701   }
   1702 
   1703   return 0;
   1704 }
   1705 
   1706 bool LoopVectorizationLegality::isUniform(Value *V) {
   1707   return LAI->isUniform(V);
   1708 }
   1709 
   1710 InnerLoopVectorizer::VectorParts&
   1711 InnerLoopVectorizer::getVectorValue(Value *V) {
   1712   assert(V != Induction && "The new induction variable should not be used.");
   1713   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
   1714 
   1715   // If we have a stride that is replaced by one, do it here.
   1716   if (Legal->hasStride(V))
   1717     V = ConstantInt::get(V->getType(), 1);
   1718 
   1719   // If we have this scalar in the map, return it.
   1720   if (WidenMap.has(V))
   1721     return WidenMap.get(V);
   1722 
   1723   // If this scalar is unknown, assume that it is a constant or that it is
   1724   // loop invariant. Broadcast V and save the value for future uses.
   1725   Value *B = getBroadcastInstrs(V);
   1726   return WidenMap.splat(V, B);
   1727 }
   1728 
   1729 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
   1730   assert(Vec->getType()->isVectorTy() && "Invalid type");
   1731   SmallVector<Constant*, 8> ShuffleMask;
   1732   for (unsigned i = 0; i < VF; ++i)
   1733     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
   1734 
   1735   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
   1736                                      ConstantVector::get(ShuffleMask),
   1737                                      "reverse");
   1738 }
   1739 
   1740 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
   1741   // Attempt to issue a wide load.
   1742   LoadInst *LI = dyn_cast<LoadInst>(Instr);
   1743   StoreInst *SI = dyn_cast<StoreInst>(Instr);
   1744 
   1745   assert((LI || SI) && "Invalid Load/Store instruction");
   1746 
   1747   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
   1748   Type *DataTy = VectorType::get(ScalarDataTy, VF);
   1749   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
   1750   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
   1751   // An alignment of 0 means target abi alignment. We need to use the scalar's
   1752   // target abi alignment in such a case.
   1753   const DataLayout &DL = Instr->getModule()->getDataLayout();
   1754   if (!Alignment)
   1755     Alignment = DL.getABITypeAlignment(ScalarDataTy);
   1756   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
   1757   unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
   1758   unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
   1759 
   1760   if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
   1761       !Legal->isMaskRequired(SI))
   1762     return scalarizeInstruction(Instr, true);
   1763 
   1764   if (ScalarAllocatedSize != VectorElementSize)
   1765     return scalarizeInstruction(Instr);
   1766 
   1767   // If the pointer is loop invariant or if it is non-consecutive,
   1768   // scalarize the load.
   1769   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   1770   bool Reverse = ConsecutiveStride < 0;
   1771   bool UniformLoad = LI && Legal->isUniform(Ptr);
   1772   if (!ConsecutiveStride || UniformLoad)
   1773     return scalarizeInstruction(Instr);
   1774 
   1775   Constant *Zero = Builder.getInt32(0);
   1776   VectorParts &Entry = WidenMap.get(Instr);
   1777 
   1778   // Handle consecutive loads/stores.
   1779   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
   1780   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
   1781     setDebugLocFromInst(Builder, Gep);
   1782     Value *PtrOperand = Gep->getPointerOperand();
   1783     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
   1784     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
   1785 
   1786     // Create the new GEP with the new induction variable.
   1787     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
   1788     Gep2->setOperand(0, FirstBasePtr);
   1789     Gep2->setName("gep.indvar.base");
   1790     Ptr = Builder.Insert(Gep2);
   1791   } else if (Gep) {
   1792     setDebugLocFromInst(Builder, Gep);
   1793     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
   1794                                OrigLoop) && "Base ptr must be invariant");
   1795 
   1796     // The last index does not have to be the induction. It can be
   1797     // consecutive and be a function of the index. For example A[I+1];
   1798     unsigned NumOperands = Gep->getNumOperands();
   1799     unsigned InductionOperand = getGEPInductionOperand(Gep);
   1800     // Create the new GEP with the new induction variable.
   1801     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
   1802 
   1803     for (unsigned i = 0; i < NumOperands; ++i) {
   1804       Value *GepOperand = Gep->getOperand(i);
   1805       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
   1806 
   1807       // Update last index or loop invariant instruction anchored in loop.
   1808       if (i == InductionOperand ||
   1809           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
   1810         assert((i == InductionOperand ||
   1811                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
   1812                "Must be last index or loop invariant");
   1813 
   1814         VectorParts &GEPParts = getVectorValue(GepOperand);
   1815         Value *Index = GEPParts[0];
   1816         Index = Builder.CreateExtractElement(Index, Zero);
   1817         Gep2->setOperand(i, Index);
   1818         Gep2->setName("gep.indvar.idx");
   1819       }
   1820     }
   1821     Ptr = Builder.Insert(Gep2);
   1822   } else {
   1823     // Use the induction element ptr.
   1824     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
   1825     setDebugLocFromInst(Builder, Ptr);
   1826     VectorParts &PtrVal = getVectorValue(Ptr);
   1827     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
   1828   }
   1829 
   1830   VectorParts Mask = createBlockInMask(Instr->getParent());
   1831   // Handle Stores:
   1832   if (SI) {
   1833     assert(!Legal->isUniform(SI->getPointerOperand()) &&
   1834            "We do not allow storing to uniform addresses");
   1835     setDebugLocFromInst(Builder, SI);
   1836     // We don't want to update the value in the map as it might be used in
   1837     // another expression. So don't use a reference type for "StoredVal".
   1838     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
   1839 
   1840     for (unsigned Part = 0; Part < UF; ++Part) {
   1841       // Calculate the pointer for the specific unroll-part.
   1842       Value *PartPtr =
   1843           Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
   1844 
   1845       if (Reverse) {
   1846         // If we store to reverse consecutive memory locations then we need
   1847         // to reverse the order of elements in the stored value.
   1848         StoredVal[Part] = reverseVector(StoredVal[Part]);
   1849         // If the address is consecutive but reversed, then the
   1850         // wide store needs to start at the last vector element.
   1851         PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
   1852         PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
   1853         Mask[Part] = reverseVector(Mask[Part]);
   1854       }
   1855 
   1856       Value *VecPtr = Builder.CreateBitCast(PartPtr,
   1857                                             DataTy->getPointerTo(AddressSpace));
   1858 
   1859       Instruction *NewSI;
   1860       if (Legal->isMaskRequired(SI))
   1861         NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
   1862                                           Mask[Part]);
   1863       else
   1864         NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
   1865       propagateMetadata(NewSI, SI);
   1866     }
   1867     return;
   1868   }
   1869 
   1870   // Handle loads.
   1871   assert(LI && "Must have a load instruction");
   1872   setDebugLocFromInst(Builder, LI);
   1873   for (unsigned Part = 0; Part < UF; ++Part) {
   1874     // Calculate the pointer for the specific unroll-part.
   1875     Value *PartPtr =
   1876         Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
   1877 
   1878     if (Reverse) {
   1879       // If the address is consecutive but reversed, then the
   1880       // wide load needs to start at the last vector element.
   1881       PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
   1882       PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
   1883       Mask[Part] = reverseVector(Mask[Part]);
   1884     }
   1885 
   1886     Instruction* NewLI;
   1887     Value *VecPtr = Builder.CreateBitCast(PartPtr,
   1888                                           DataTy->getPointerTo(AddressSpace));
   1889     if (Legal->isMaskRequired(LI))
   1890       NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
   1891                                        UndefValue::get(DataTy),
   1892                                        "wide.masked.load");
   1893     else
   1894       NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
   1895     propagateMetadata(NewLI, LI);
   1896     Entry[Part] = Reverse ? reverseVector(NewLI) :  NewLI;
   1897   }
   1898 }
   1899 
   1900 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
   1901   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
   1902   // Holds vector parameters or scalars, in case of uniform vals.
   1903   SmallVector<VectorParts, 4> Params;
   1904 
   1905   setDebugLocFromInst(Builder, Instr);
   1906 
   1907   // Find all of the vectorized parameters.
   1908   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   1909     Value *SrcOp = Instr->getOperand(op);
   1910 
   1911     // If we are accessing the old induction variable, use the new one.
   1912     if (SrcOp == OldInduction) {
   1913       Params.push_back(getVectorValue(SrcOp));
   1914       continue;
   1915     }
   1916 
   1917     // Try using previously calculated values.
   1918     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
   1919 
   1920     // If the src is an instruction that appeared earlier in the basic block
   1921     // then it should already be vectorized.
   1922     if (SrcInst && OrigLoop->contains(SrcInst)) {
   1923       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
   1924       // The parameter is a vector value from earlier.
   1925       Params.push_back(WidenMap.get(SrcInst));
   1926     } else {
   1927       // The parameter is a scalar from outside the loop. Maybe even a constant.
   1928       VectorParts Scalars;
   1929       Scalars.append(UF, SrcOp);
   1930       Params.push_back(Scalars);
   1931     }
   1932   }
   1933 
   1934   assert(Params.size() == Instr->getNumOperands() &&
   1935          "Invalid number of operands");
   1936 
   1937   // Does this instruction return a value ?
   1938   bool IsVoidRetTy = Instr->getType()->isVoidTy();
   1939 
   1940   Value *UndefVec = IsVoidRetTy ? nullptr :
   1941     UndefValue::get(VectorType::get(Instr->getType(), VF));
   1942   // Create a new entry in the WidenMap and initialize it to Undef or Null.
   1943   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
   1944 
   1945   Instruction *InsertPt = Builder.GetInsertPoint();
   1946   BasicBlock *IfBlock = Builder.GetInsertBlock();
   1947   BasicBlock *CondBlock = nullptr;
   1948 
   1949   VectorParts Cond;
   1950   Loop *VectorLp = nullptr;
   1951   if (IfPredicateStore) {
   1952     assert(Instr->getParent()->getSinglePredecessor() &&
   1953            "Only support single predecessor blocks");
   1954     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
   1955                           Instr->getParent());
   1956     VectorLp = LI->getLoopFor(IfBlock);
   1957     assert(VectorLp && "Must have a loop for this block");
   1958   }
   1959 
   1960   // For each vector unroll 'part':
   1961   for (unsigned Part = 0; Part < UF; ++Part) {
   1962     // For each scalar that we create:
   1963     for (unsigned Width = 0; Width < VF; ++Width) {
   1964 
   1965       // Start if-block.
   1966       Value *Cmp = nullptr;
   1967       if (IfPredicateStore) {
   1968         Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
   1969         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
   1970         CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
   1971         LoopVectorBody.push_back(CondBlock);
   1972         VectorLp->addBasicBlockToLoop(CondBlock, *LI);
   1973         // Update Builder with newly created basic block.
   1974         Builder.SetInsertPoint(InsertPt);
   1975       }
   1976 
   1977       Instruction *Cloned = Instr->clone();
   1978       if (!IsVoidRetTy)
   1979         Cloned->setName(Instr->getName() + ".cloned");
   1980       // Replace the operands of the cloned instructions with extracted scalars.
   1981       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   1982         Value *Op = Params[op][Part];
   1983         // Param is a vector. Need to extract the right lane.
   1984         if (Op->getType()->isVectorTy())
   1985           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
   1986         Cloned->setOperand(op, Op);
   1987       }
   1988 
   1989       // Place the cloned scalar in the new loop.
   1990       Builder.Insert(Cloned);
   1991 
   1992       // If the original scalar returns a value we need to place it in a vector
   1993       // so that future users will be able to use it.
   1994       if (!IsVoidRetTy)
   1995         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
   1996                                                        Builder.getInt32(Width));
   1997       // End if-block.
   1998       if (IfPredicateStore) {
   1999          BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
   2000          LoopVectorBody.push_back(NewIfBlock);
   2001          VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
   2002          Builder.SetInsertPoint(InsertPt);
   2003          Instruction *OldBr = IfBlock->getTerminator();
   2004          BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   2005          OldBr->eraseFromParent();
   2006          IfBlock = NewIfBlock;
   2007       }
   2008     }
   2009   }
   2010 }
   2011 
   2012 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
   2013                                  Instruction *Loc) {
   2014   if (FirstInst)
   2015     return FirstInst;
   2016   if (Instruction *I = dyn_cast<Instruction>(V))
   2017     return I->getParent() == Loc->getParent() ? I : nullptr;
   2018   return nullptr;
   2019 }
   2020 
   2021 std::pair<Instruction *, Instruction *>
   2022 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
   2023   Instruction *tnullptr = nullptr;
   2024   if (!Legal->mustCheckStrides())
   2025     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
   2026 
   2027   IRBuilder<> ChkBuilder(Loc);
   2028 
   2029   // Emit checks.
   2030   Value *Check = nullptr;
   2031   Instruction *FirstInst = nullptr;
   2032   for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
   2033                                          SE = Legal->strides_end();
   2034        SI != SE; ++SI) {
   2035     Value *Ptr = stripIntegerCast(*SI);
   2036     Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
   2037                                        "stride.chk");
   2038     // Store the first instruction we create.
   2039     FirstInst = getFirstInst(FirstInst, C, Loc);
   2040     if (Check)
   2041       Check = ChkBuilder.CreateOr(Check, C);
   2042     else
   2043       Check = C;
   2044   }
   2045 
   2046   // We have to do this trickery because the IRBuilder might fold the check to a
   2047   // constant expression in which case there is no Instruction anchored in a
   2048   // the block.
   2049   LLVMContext &Ctx = Loc->getContext();
   2050   Instruction *TheCheck =
   2051       BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
   2052   ChkBuilder.Insert(TheCheck, "stride.not.one");
   2053   FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
   2054 
   2055   return std::make_pair(FirstInst, TheCheck);
   2056 }
   2057 
   2058 void InnerLoopVectorizer::createEmptyLoop() {
   2059   /*
   2060    In this function we generate a new loop. The new loop will contain
   2061    the vectorized instructions while the old loop will continue to run the
   2062    scalar remainder.
   2063 
   2064        [ ] <-- Back-edge taken count overflow check.
   2065     /   |
   2066    /    v
   2067   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
   2068   |  /  |
   2069   | /   v
   2070   ||   [ ]     <-- vector pre header.
   2071   ||    |
   2072   ||    v
   2073   ||   [  ] \
   2074   ||   [  ]_|   <-- vector loop.
   2075   ||    |
   2076   | \   v
   2077   |   >[ ]   <--- middle-block.
   2078   |  /  |
   2079   | /   v
   2080   -|- >[ ]     <--- new preheader.
   2081    |    |
   2082    |    v
   2083    |   [ ] \
   2084    |   [ ]_|   <-- old scalar loop to handle remainder.
   2085     \   |
   2086      \  v
   2087       >[ ]     <-- exit block.
   2088    ...
   2089    */
   2090 
   2091   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
   2092   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
   2093   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
   2094   assert(BypassBlock && "Invalid loop structure");
   2095   assert(ExitBlock && "Must have an exit block");
   2096 
   2097   // Some loops have a single integer induction variable, while other loops
   2098   // don't. One example is c++ iterators that often have multiple pointer
   2099   // induction variables. In the code below we also support a case where we
   2100   // don't have a single induction variable.
   2101   OldInduction = Legal->getInduction();
   2102   Type *IdxTy = Legal->getWidestInductionType();
   2103 
   2104   // Find the loop boundaries.
   2105   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
   2106   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
   2107 
   2108   // The exit count might have the type of i64 while the phi is i32. This can
   2109   // happen if we have an induction variable that is sign extended before the
   2110   // compare. The only way that we get a backedge taken count is that the
   2111   // induction variable was signed and as such will not overflow. In such a case
   2112   // truncation is legal.
   2113   if (ExitCount->getType()->getPrimitiveSizeInBits() >
   2114       IdxTy->getPrimitiveSizeInBits())
   2115     ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
   2116 
   2117   const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
   2118   // Get the total trip count from the count by adding 1.
   2119   ExitCount = SE->getAddExpr(BackedgeTakeCount,
   2120                              SE->getConstant(BackedgeTakeCount->getType(), 1));
   2121 
   2122   const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout();
   2123 
   2124   // Expand the trip count and place the new instructions in the preheader.
   2125   // Notice that the pre-header does not change, only the loop body.
   2126   SCEVExpander Exp(*SE, DL, "induction");
   2127 
   2128   // We need to test whether the backedge-taken count is uint##_max. Adding one
   2129   // to it will cause overflow and an incorrect loop trip count in the vector
   2130   // body. In case of overflow we want to directly jump to the scalar remainder
   2131   // loop.
   2132   Value *BackedgeCount =
   2133       Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
   2134                         BypassBlock->getTerminator());
   2135   if (BackedgeCount->getType()->isPointerTy())
   2136     BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
   2137                                                 "backedge.ptrcnt.to.int",
   2138                                                 BypassBlock->getTerminator());
   2139   Instruction *CheckBCOverflow =
   2140       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
   2141                       Constant::getAllOnesValue(BackedgeCount->getType()),
   2142                       "backedge.overflow", BypassBlock->getTerminator());
   2143 
   2144   // The loop index does not have to start at Zero. Find the original start
   2145   // value from the induction PHI node. If we don't have an induction variable
   2146   // then we know that it starts at zero.
   2147   Builder.SetInsertPoint(BypassBlock->getTerminator());
   2148   Value *StartIdx = ExtendedIdx = OldInduction ?
   2149     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
   2150                        IdxTy):
   2151     ConstantInt::get(IdxTy, 0);
   2152 
   2153   // We need an instruction to anchor the overflow check on. StartIdx needs to
   2154   // be defined before the overflow check branch. Because the scalar preheader
   2155   // is going to merge the start index and so the overflow branch block needs to
   2156   // contain a definition of the start index.
   2157   Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
   2158       StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
   2159       BypassBlock->getTerminator());
   2160 
   2161   // Count holds the overall loop count (N).
   2162   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
   2163                                    BypassBlock->getTerminator());
   2164 
   2165   LoopBypassBlocks.push_back(BypassBlock);
   2166 
   2167   // Split the single block loop into the two loop structure described above.
   2168   BasicBlock *VectorPH =
   2169   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
   2170   BasicBlock *VecBody =
   2171   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
   2172   BasicBlock *MiddleBlock =
   2173   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
   2174   BasicBlock *ScalarPH =
   2175   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
   2176 
   2177   // Create and register the new vector loop.
   2178   Loop* Lp = new Loop();
   2179   Loop *ParentLoop = OrigLoop->getParentLoop();
   2180 
   2181   // Insert the new loop into the loop nest and register the new basic blocks
   2182   // before calling any utilities such as SCEV that require valid LoopInfo.
   2183   if (ParentLoop) {
   2184     ParentLoop->addChildLoop(Lp);
   2185     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
   2186     ParentLoop->addBasicBlockToLoop(VectorPH, *LI);
   2187     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
   2188   } else {
   2189     LI->addTopLevelLoop(Lp);
   2190   }
   2191   Lp->addBasicBlockToLoop(VecBody, *LI);
   2192 
   2193   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
   2194   // inside the loop.
   2195   Builder.SetInsertPoint(VecBody->getFirstNonPHI());
   2196 
   2197   // Generate the induction variable.
   2198   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
   2199   Induction = Builder.CreatePHI(IdxTy, 2, "index");
   2200   // The loop step is equal to the vectorization factor (num of SIMD elements)
   2201   // times the unroll factor (num of SIMD instructions).
   2202   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
   2203 
   2204   // This is the IR builder that we use to add all of the logic for bypassing
   2205   // the new vector loop.
   2206   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
   2207   setDebugLocFromInst(BypassBuilder,
   2208                       getDebugLocFromInstOrOperands(OldInduction));
   2209 
   2210   // We may need to extend the index in case there is a type mismatch.
   2211   // We know that the count starts at zero and does not overflow.
   2212   if (Count->getType() != IdxTy) {
   2213     // The exit count can be of pointer type. Convert it to the correct
   2214     // integer type.
   2215     if (ExitCount->getType()->isPointerTy())
   2216       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
   2217     else
   2218       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
   2219   }
   2220 
   2221   // Add the start index to the loop count to get the new end index.
   2222   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
   2223 
   2224   // Now we need to generate the expression for N - (N % VF), which is
   2225   // the part that the vectorized body will execute.
   2226   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
   2227   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
   2228   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
   2229                                                      "end.idx.rnd.down");
   2230 
   2231   // Now, compare the new count to zero. If it is zero skip the vector loop and
   2232   // jump to the scalar loop.
   2233   Value *Cmp =
   2234       BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
   2235 
   2236   BasicBlock *LastBypassBlock = BypassBlock;
   2237 
   2238   // Generate code to check that the loops trip count that we computed by adding
   2239   // one to the backedge-taken count will not overflow.
   2240   {
   2241     auto PastOverflowCheck =
   2242         std::next(BasicBlock::iterator(OverflowCheckAnchor));
   2243     BasicBlock *CheckBlock =
   2244       LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
   2245     if (ParentLoop)
   2246       ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
   2247     LoopBypassBlocks.push_back(CheckBlock);
   2248     Instruction *OldTerm = LastBypassBlock->getTerminator();
   2249     BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
   2250     OldTerm->eraseFromParent();
   2251     LastBypassBlock = CheckBlock;
   2252   }
   2253 
   2254   // Generate the code to check that the strides we assumed to be one are really
   2255   // one. We want the new basic block to start at the first instruction in a
   2256   // sequence of instructions that form a check.
   2257   Instruction *StrideCheck;
   2258   Instruction *FirstCheckInst;
   2259   std::tie(FirstCheckInst, StrideCheck) =
   2260       addStrideCheck(LastBypassBlock->getTerminator());
   2261   if (StrideCheck) {
   2262     AddedSafetyChecks = true;
   2263     // Create a new block containing the stride check.
   2264     BasicBlock *CheckBlock =
   2265         LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
   2266     if (ParentLoop)
   2267       ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
   2268     LoopBypassBlocks.push_back(CheckBlock);
   2269 
   2270     // Replace the branch into the memory check block with a conditional branch
   2271     // for the "few elements case".
   2272     Instruction *OldTerm = LastBypassBlock->getTerminator();
   2273     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
   2274     OldTerm->eraseFromParent();
   2275 
   2276     Cmp = StrideCheck;
   2277     LastBypassBlock = CheckBlock;
   2278   }
   2279 
   2280   // Generate the code that checks in runtime if arrays overlap. We put the
   2281   // checks into a separate block to make the more common case of few elements
   2282   // faster.
   2283   Instruction *MemRuntimeCheck;
   2284   std::tie(FirstCheckInst, MemRuntimeCheck) =
   2285     Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator());
   2286   if (MemRuntimeCheck) {
   2287     AddedSafetyChecks = true;
   2288     // Create a new block containing the memory check.
   2289     BasicBlock *CheckBlock =
   2290         LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck");
   2291     if (ParentLoop)
   2292       ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
   2293     LoopBypassBlocks.push_back(CheckBlock);
   2294 
   2295     // Replace the branch into the memory check block with a conditional branch
   2296     // for the "few elements case".
   2297     Instruction *OldTerm = LastBypassBlock->getTerminator();
   2298     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
   2299     OldTerm->eraseFromParent();
   2300 
   2301     Cmp = MemRuntimeCheck;
   2302     LastBypassBlock = CheckBlock;
   2303   }
   2304 
   2305   LastBypassBlock->getTerminator()->eraseFromParent();
   2306   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
   2307                      LastBypassBlock);
   2308 
   2309   // We are going to resume the execution of the scalar loop.
   2310   // Go over all of the induction variables that we found and fix the
   2311   // PHIs that are left in the scalar version of the loop.
   2312   // The starting values of PHI nodes depend on the counter of the last
   2313   // iteration in the vectorized loop.
   2314   // If we come from a bypass edge then we need to start from the original
   2315   // start value.
   2316 
   2317   // This variable saves the new starting index for the scalar loop.
   2318   PHINode *ResumeIndex = nullptr;
   2319   LoopVectorizationLegality::InductionList::iterator I, E;
   2320   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
   2321   // Set builder to point to last bypass block.
   2322   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
   2323   for (I = List->begin(), E = List->end(); I != E; ++I) {
   2324     PHINode *OrigPhi = I->first;
   2325     LoopVectorizationLegality::InductionInfo II = I->second;
   2326 
   2327     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
   2328     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
   2329                                          MiddleBlock->getTerminator());
   2330     // We might have extended the type of the induction variable but we need a
   2331     // truncated version for the scalar loop.
   2332     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
   2333       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
   2334                       MiddleBlock->getTerminator()) : nullptr;
   2335 
   2336     // Create phi nodes to merge from the  backedge-taken check block.
   2337     PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
   2338                                            ScalarPH->getTerminator());
   2339     BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
   2340 
   2341     PHINode *BCTruncResumeVal = nullptr;
   2342     if (OrigPhi == OldInduction) {
   2343       BCTruncResumeVal =
   2344           PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
   2345                           ScalarPH->getTerminator());
   2346       BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
   2347     }
   2348 
   2349     Value *EndValue = nullptr;
   2350     switch (II.IK) {
   2351     case LoopVectorizationLegality::IK_NoInduction:
   2352       llvm_unreachable("Unknown induction");
   2353     case LoopVectorizationLegality::IK_IntInduction: {
   2354       // Handle the integer induction counter.
   2355       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
   2356 
   2357       // We have the canonical induction variable.
   2358       if (OrigPhi == OldInduction) {
   2359         // Create a truncated version of the resume value for the scalar loop,
   2360         // we might have promoted the type to a larger width.
   2361         EndValue =
   2362           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
   2363         // The new PHI merges the original incoming value, in case of a bypass,
   2364         // or the value at the end of the vectorized loop.
   2365         for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2366           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
   2367         TruncResumeVal->addIncoming(EndValue, VecBody);
   2368 
   2369         BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
   2370 
   2371         // We know what the end value is.
   2372         EndValue = IdxEndRoundDown;
   2373         // We also know which PHI node holds it.
   2374         ResumeIndex = ResumeVal;
   2375         break;
   2376       }
   2377 
   2378       // Not the canonical induction variable - add the vector loop count to the
   2379       // start value.
   2380       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
   2381                                                    II.StartValue->getType(),
   2382                                                    "cast.crd");
   2383       EndValue = II.transform(BypassBuilder, CRD);
   2384       EndValue->setName("ind.end");
   2385       break;
   2386     }
   2387     case LoopVectorizationLegality::IK_PtrInduction: {
   2388       EndValue = II.transform(BypassBuilder, CountRoundDown);
   2389       EndValue->setName("ptr.ind.end");
   2390       break;
   2391     }
   2392     }// end of case
   2393 
   2394     // The new PHI merges the original incoming value, in case of a bypass,
   2395     // or the value at the end of the vectorized loop.
   2396     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
   2397       if (OrigPhi == OldInduction)
   2398         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
   2399       else
   2400         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
   2401     }
   2402     ResumeVal->addIncoming(EndValue, VecBody);
   2403 
   2404     // Fix the scalar body counter (PHI node).
   2405     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
   2406 
   2407     // The old induction's phi node in the scalar body needs the truncated
   2408     // value.
   2409     if (OrigPhi == OldInduction) {
   2410       BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
   2411       OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
   2412     } else {
   2413       BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
   2414       OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
   2415     }
   2416   }
   2417 
   2418   // If we are generating a new induction variable then we also need to
   2419   // generate the code that calculates the exit value. This value is not
   2420   // simply the end of the counter because we may skip the vectorized body
   2421   // in case of a runtime check.
   2422   if (!OldInduction){
   2423     assert(!ResumeIndex && "Unexpected resume value found");
   2424     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
   2425                                   MiddleBlock->getTerminator());
   2426     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2427       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
   2428     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
   2429   }
   2430 
   2431   // Make sure that we found the index where scalar loop needs to continue.
   2432   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
   2433          "Invalid resume Index");
   2434 
   2435   // Add a check in the middle block to see if we have completed
   2436   // all of the iterations in the first vector loop.
   2437   // If (N - N%VF) == N, then we *don't* need to run the remainder.
   2438   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
   2439                                 ResumeIndex, "cmp.n",
   2440                                 MiddleBlock->getTerminator());
   2441 
   2442   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
   2443   // Remove the old terminator.
   2444   MiddleBlock->getTerminator()->eraseFromParent();
   2445 
   2446   // Create i+1 and fill the PHINode.
   2447   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
   2448   Induction->addIncoming(StartIdx, VectorPH);
   2449   Induction->addIncoming(NextIdx, VecBody);
   2450   // Create the compare.
   2451   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
   2452   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
   2453 
   2454   // Now we have two terminators. Remove the old one from the block.
   2455   VecBody->getTerminator()->eraseFromParent();
   2456 
   2457   // Get ready to start creating new instructions into the vectorized body.
   2458   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
   2459 
   2460   // Save the state.
   2461   LoopVectorPreHeader = VectorPH;
   2462   LoopScalarPreHeader = ScalarPH;
   2463   LoopMiddleBlock = MiddleBlock;
   2464   LoopExitBlock = ExitBlock;
   2465   LoopVectorBody.push_back(VecBody);
   2466   LoopScalarBody = OldBasicBlock;
   2467 
   2468   LoopVectorizeHints Hints(Lp, true);
   2469   Hints.setAlreadyVectorized();
   2470 }
   2471 
   2472 /// This function returns the identity element (or neutral element) for
   2473 /// the operation K.
   2474 Constant*
   2475 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
   2476   switch (K) {
   2477   case RK_IntegerXor:
   2478   case RK_IntegerAdd:
   2479   case RK_IntegerOr:
   2480     // Adding, Xoring, Oring zero to a number does not change it.
   2481     return ConstantInt::get(Tp, 0);
   2482   case RK_IntegerMult:
   2483     // Multiplying a number by 1 does not change it.
   2484     return ConstantInt::get(Tp, 1);
   2485   case RK_IntegerAnd:
   2486     // AND-ing a number with an all-1 value does not change it.
   2487     return ConstantInt::get(Tp, -1, true);
   2488   case  RK_FloatMult:
   2489     // Multiplying a number by 1 does not change it.
   2490     return ConstantFP::get(Tp, 1.0L);
   2491   case  RK_FloatAdd:
   2492     // Adding zero to a number does not change it.
   2493     return ConstantFP::get(Tp, 0.0L);
   2494   default:
   2495     llvm_unreachable("Unknown reduction kind");
   2496   }
   2497 }
   2498 
   2499 /// This function translates the reduction kind to an LLVM binary operator.
   2500 static unsigned
   2501 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
   2502   switch (Kind) {
   2503     case LoopVectorizationLegality::RK_IntegerAdd:
   2504       return Instruction::Add;
   2505     case LoopVectorizationLegality::RK_IntegerMult:
   2506       return Instruction::Mul;
   2507     case LoopVectorizationLegality::RK_IntegerOr:
   2508       return Instruction::Or;
   2509     case LoopVectorizationLegality::RK_IntegerAnd:
   2510       return Instruction::And;
   2511     case LoopVectorizationLegality::RK_IntegerXor:
   2512       return Instruction::Xor;
   2513     case LoopVectorizationLegality::RK_FloatMult:
   2514       return Instruction::FMul;
   2515     case LoopVectorizationLegality::RK_FloatAdd:
   2516       return Instruction::FAdd;
   2517     case LoopVectorizationLegality::RK_IntegerMinMax:
   2518       return Instruction::ICmp;
   2519     case LoopVectorizationLegality::RK_FloatMinMax:
   2520       return Instruction::FCmp;
   2521     default:
   2522       llvm_unreachable("Unknown reduction operation");
   2523   }
   2524 }
   2525 
   2526 static Value *createMinMaxOp(IRBuilder<> &Builder,
   2527                              LoopVectorizationLegality::MinMaxReductionKind RK,
   2528                              Value *Left, Value *Right) {
   2529   CmpInst::Predicate P = CmpInst::ICMP_NE;
   2530   switch (RK) {
   2531   default:
   2532     llvm_unreachable("Unknown min/max reduction kind");
   2533   case LoopVectorizationLegality::MRK_UIntMin:
   2534     P = CmpInst::ICMP_ULT;
   2535     break;
   2536   case LoopVectorizationLegality::MRK_UIntMax:
   2537     P = CmpInst::ICMP_UGT;
   2538     break;
   2539   case LoopVectorizationLegality::MRK_SIntMin:
   2540     P = CmpInst::ICMP_SLT;
   2541     break;
   2542   case LoopVectorizationLegality::MRK_SIntMax:
   2543     P = CmpInst::ICMP_SGT;
   2544     break;
   2545   case LoopVectorizationLegality::MRK_FloatMin:
   2546     P = CmpInst::FCMP_OLT;
   2547     break;
   2548   case LoopVectorizationLegality::MRK_FloatMax:
   2549     P = CmpInst::FCMP_OGT;
   2550     break;
   2551   }
   2552 
   2553   Value *Cmp;
   2554   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
   2555       RK == LoopVectorizationLegality::MRK_FloatMax)
   2556     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
   2557   else
   2558     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
   2559 
   2560   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
   2561   return Select;
   2562 }
   2563 
   2564 namespace {
   2565 struct CSEDenseMapInfo {
   2566   static bool canHandle(Instruction *I) {
   2567     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
   2568            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
   2569   }
   2570   static inline Instruction *getEmptyKey() {
   2571     return DenseMapInfo<Instruction *>::getEmptyKey();
   2572   }
   2573   static inline Instruction *getTombstoneKey() {
   2574     return DenseMapInfo<Instruction *>::getTombstoneKey();
   2575   }
   2576   static unsigned getHashValue(Instruction *I) {
   2577     assert(canHandle(I) && "Unknown instruction!");
   2578     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
   2579                                                            I->value_op_end()));
   2580   }
   2581   static bool isEqual(Instruction *LHS, Instruction *RHS) {
   2582     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
   2583         LHS == getTombstoneKey() || RHS == getTombstoneKey())
   2584       return LHS == RHS;
   2585     return LHS->isIdenticalTo(RHS);
   2586   }
   2587 };
   2588 }
   2589 
   2590 /// \brief Check whether this block is a predicated block.
   2591 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
   2592 /// = ...;  " blocks. We start with one vectorized basic block. For every
   2593 /// conditional block we split this vectorized block. Therefore, every second
   2594 /// block will be a predicated one.
   2595 static bool isPredicatedBlock(unsigned BlockNum) {
   2596   return BlockNum % 2;
   2597 }
   2598 
   2599 ///\brief Perform cse of induction variable instructions.
   2600 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
   2601   // Perform simple cse.
   2602   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
   2603   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
   2604     BasicBlock *BB = BBs[i];
   2605     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
   2606       Instruction *In = I++;
   2607 
   2608       if (!CSEDenseMapInfo::canHandle(In))
   2609         continue;
   2610 
   2611       // Check if we can replace this instruction with any of the
   2612       // visited instructions.
   2613       if (Instruction *V = CSEMap.lookup(In)) {
   2614         In->replaceAllUsesWith(V);
   2615         In->eraseFromParent();
   2616         continue;
   2617       }
   2618       // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
   2619       // ...;" blocks for predicated stores. Every second block is a predicated
   2620       // block.
   2621       if (isPredicatedBlock(i))
   2622         continue;
   2623 
   2624       CSEMap[In] = In;
   2625     }
   2626   }
   2627 }
   2628 
   2629 /// \brief Adds a 'fast' flag to floating point operations.
   2630 static Value *addFastMathFlag(Value *V) {
   2631   if (isa<FPMathOperator>(V)){
   2632     FastMathFlags Flags;
   2633     Flags.setUnsafeAlgebra();
   2634     cast<Instruction>(V)->setFastMathFlags(Flags);
   2635   }
   2636   return V;
   2637 }
   2638 
   2639 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
   2640 /// the result needs to be inserted and/or extracted from vectors.
   2641 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
   2642                                          const TargetTransformInfo &TTI) {
   2643   if (Ty->isVoidTy())
   2644     return 0;
   2645 
   2646   assert(Ty->isVectorTy() && "Can only scalarize vectors");
   2647   unsigned Cost = 0;
   2648 
   2649   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
   2650     if (Insert)
   2651       Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
   2652     if (Extract)
   2653       Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
   2654   }
   2655 
   2656   return Cost;
   2657 }
   2658 
   2659 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
   2660 // Return the cost of the instruction, including scalarization overhead if it's
   2661 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
   2662 // i.e. either vector version isn't available, or is too expensive.
   2663 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
   2664                                   const TargetTransformInfo &TTI,
   2665                                   const TargetLibraryInfo *TLI,
   2666                                   bool &NeedToScalarize) {
   2667   Function *F = CI->getCalledFunction();
   2668   StringRef FnName = CI->getCalledFunction()->getName();
   2669   Type *ScalarRetTy = CI->getType();
   2670   SmallVector<Type *, 4> Tys, ScalarTys;
   2671   for (auto &ArgOp : CI->arg_operands())
   2672     ScalarTys.push_back(ArgOp->getType());
   2673 
   2674   // Estimate cost of scalarized vector call. The source operands are assumed
   2675   // to be vectors, so we need to extract individual elements from there,
   2676   // execute VF scalar calls, and then gather the result into the vector return
   2677   // value.
   2678   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
   2679   if (VF == 1)
   2680     return ScalarCallCost;
   2681 
   2682   // Compute corresponding vector type for return value and arguments.
   2683   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
   2684   for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
   2685     Tys.push_back(ToVectorTy(ScalarTys[i], VF));
   2686 
   2687   // Compute costs of unpacking argument values for the scalar calls and
   2688   // packing the return values to a vector.
   2689   unsigned ScalarizationCost =
   2690       getScalarizationOverhead(RetTy, true, false, TTI);
   2691   for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
   2692     ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
   2693 
   2694   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
   2695 
   2696   // If we can't emit a vector call for this function, then the currently found
   2697   // cost is the cost we need to return.
   2698   NeedToScalarize = true;
   2699   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
   2700     return Cost;
   2701 
   2702   // If the corresponding vector cost is cheaper, return its cost.
   2703   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
   2704   if (VectorCallCost < Cost) {
   2705     NeedToScalarize = false;
   2706     return VectorCallCost;
   2707   }
   2708   return Cost;
   2709 }
   2710 
   2711 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
   2712 // factor VF.  Return the cost of the instruction, including scalarization
   2713 // overhead if it's needed.
   2714 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
   2715                                        const TargetTransformInfo &TTI,
   2716                                        const TargetLibraryInfo *TLI) {
   2717   Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   2718   assert(ID && "Expected intrinsic call!");
   2719 
   2720   Type *RetTy = ToVectorTy(CI->getType(), VF);
   2721   SmallVector<Type *, 4> Tys;
   2722   for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
   2723     Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
   2724 
   2725   return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
   2726 }
   2727 
   2728 void InnerLoopVectorizer::vectorizeLoop() {
   2729   //===------------------------------------------------===//
   2730   //
   2731   // Notice: any optimization or new instruction that go
   2732   // into the code below should be also be implemented in
   2733   // the cost-model.
   2734   //
   2735   //===------------------------------------------------===//
   2736   Constant *Zero = Builder.getInt32(0);
   2737 
   2738   // In order to support reduction variables we need to be able to vectorize
   2739   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
   2740   // stages. First, we create a new vector PHI node with no incoming edges.
   2741   // We use this value when we vectorize all of the instructions that use the
   2742   // PHI. Next, after all of the instructions in the block are complete we
   2743   // add the new incoming edges to the PHI. At this point all of the
   2744   // instructions in the basic block are vectorized, so we can use them to
   2745   // construct the PHI.
   2746   PhiVector RdxPHIsToFix;
   2747 
   2748   // Scan the loop in a topological order to ensure that defs are vectorized
   2749   // before users.
   2750   LoopBlocksDFS DFS(OrigLoop);
   2751   DFS.perform(LI);
   2752 
   2753   // Vectorize all of the blocks in the original loop.
   2754   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
   2755        be = DFS.endRPO(); bb != be; ++bb)
   2756     vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
   2757 
   2758   // At this point every instruction in the original loop is widened to
   2759   // a vector form. We are almost done. Now, we need to fix the PHI nodes
   2760   // that we vectorized. The PHI nodes are currently empty because we did
   2761   // not want to introduce cycles. Notice that the remaining PHI nodes
   2762   // that we need to fix are reduction variables.
   2763 
   2764   // Create the 'reduced' values for each of the induction vars.
   2765   // The reduced values are the vector values that we scalarize and combine
   2766   // after the loop is finished.
   2767   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
   2768        it != e; ++it) {
   2769     PHINode *RdxPhi = *it;
   2770     assert(RdxPhi && "Unable to recover vectorized PHI");
   2771 
   2772     // Find the reduction variable descriptor.
   2773     assert(Legal->getReductionVars()->count(RdxPhi) &&
   2774            "Unable to find the reduction variable");
   2775     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
   2776     (*Legal->getReductionVars())[RdxPhi];
   2777 
   2778     setDebugLocFromInst(Builder, RdxDesc.StartValue);
   2779 
   2780     // We need to generate a reduction vector from the incoming scalar.
   2781     // To do so, we need to generate the 'identity' vector and override
   2782     // one of the elements with the incoming scalar reduction. We need
   2783     // to do it in the vector-loop preheader.
   2784     Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
   2785 
   2786     // This is the vector-clone of the value that leaves the loop.
   2787     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
   2788     Type *VecTy = VectorExit[0]->getType();
   2789 
   2790     // Find the reduction identity variable. Zero for addition, or, xor,
   2791     // one for multiplication, -1 for And.
   2792     Value *Identity;
   2793     Value *VectorStart;
   2794     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
   2795         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
   2796       // MinMax reduction have the start value as their identify.
   2797       if (VF == 1) {
   2798         VectorStart = Identity = RdxDesc.StartValue;
   2799       } else {
   2800         VectorStart = Identity = Builder.CreateVectorSplat(VF,
   2801                                                            RdxDesc.StartValue,
   2802                                                            "minmax.ident");
   2803       }
   2804     } else {
   2805       // Handle other reduction kinds:
   2806       Constant *Iden =
   2807       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
   2808                                                       VecTy->getScalarType());
   2809       if (VF == 1) {
   2810         Identity = Iden;
   2811         // This vector is the Identity vector where the first element is the
   2812         // incoming scalar reduction.
   2813         VectorStart = RdxDesc.StartValue;
   2814       } else {
   2815         Identity = ConstantVector::getSplat(VF, Iden);
   2816 
   2817         // This vector is the Identity vector where the first element is the
   2818         // incoming scalar reduction.
   2819         VectorStart = Builder.CreateInsertElement(Identity,
   2820                                                   RdxDesc.StartValue, Zero);
   2821       }
   2822     }
   2823 
   2824     // Fix the vector-loop phi.
   2825 
   2826     // Reductions do not have to start at zero. They can start with
   2827     // any loop invariant values.
   2828     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
   2829     BasicBlock *Latch = OrigLoop->getLoopLatch();
   2830     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
   2831     VectorParts &Val = getVectorValue(LoopVal);
   2832     for (unsigned part = 0; part < UF; ++part) {
   2833       // Make sure to add the reduction stat value only to the
   2834       // first unroll part.
   2835       Value *StartVal = (part == 0) ? VectorStart : Identity;
   2836       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
   2837                                                   LoopVectorPreHeader);
   2838       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
   2839                                                   LoopVectorBody.back());
   2840     }
   2841 
   2842     // Before each round, move the insertion point right between
   2843     // the PHIs and the values we are going to write.
   2844     // This allows us to write both PHINodes and the extractelement
   2845     // instructions.
   2846     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
   2847 
   2848     VectorParts RdxParts;
   2849     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
   2850     for (unsigned part = 0; part < UF; ++part) {
   2851       // This PHINode contains the vectorized reduction variable, or
   2852       // the initial value vector, if we bypass the vector loop.
   2853       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
   2854       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
   2855       Value *StartVal = (part == 0) ? VectorStart : Identity;
   2856       for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   2857         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
   2858       NewPhi->addIncoming(RdxExitVal[part],
   2859                           LoopVectorBody.back());
   2860       RdxParts.push_back(NewPhi);
   2861     }
   2862 
   2863     // Reduce all of the unrolled parts into a single vector.
   2864     Value *ReducedPartRdx = RdxParts[0];
   2865     unsigned Op = getReductionBinOp(RdxDesc.Kind);
   2866     setDebugLocFromInst(Builder, ReducedPartRdx);
   2867     for (unsigned part = 1; part < UF; ++part) {
   2868       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
   2869         // Floating point operations had to be 'fast' to enable the reduction.
   2870         ReducedPartRdx = addFastMathFlag(
   2871             Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
   2872                                 ReducedPartRdx, "bin.rdx"));
   2873       else
   2874         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
   2875                                         ReducedPartRdx, RdxParts[part]);
   2876     }
   2877 
   2878     if (VF > 1) {
   2879       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
   2880       // and vector ops, reducing the set of values being computed by half each
   2881       // round.
   2882       assert(isPowerOf2_32(VF) &&
   2883              "Reduction emission only supported for pow2 vectors!");
   2884       Value *TmpVec = ReducedPartRdx;
   2885       SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
   2886       for (unsigned i = VF; i != 1; i >>= 1) {
   2887         // Move the upper half of the vector to the lower half.
   2888         for (unsigned j = 0; j != i/2; ++j)
   2889           ShuffleMask[j] = Builder.getInt32(i/2 + j);
   2890 
   2891         // Fill the rest of the mask with undef.
   2892         std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
   2893                   UndefValue::get(Builder.getInt32Ty()));
   2894 
   2895         Value *Shuf =
   2896         Builder.CreateShuffleVector(TmpVec,
   2897                                     UndefValue::get(TmpVec->getType()),
   2898                                     ConstantVector::get(ShuffleMask),
   2899                                     "rdx.shuf");
   2900 
   2901         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
   2902           // Floating point operations had to be 'fast' to enable the reduction.
   2903           TmpVec = addFastMathFlag(Builder.CreateBinOp(
   2904               (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
   2905         else
   2906           TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
   2907       }
   2908 
   2909       // The result is in the first element of the vector.
   2910       ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
   2911                                                     Builder.getInt32(0));
   2912     }
   2913 
   2914     // Create a phi node that merges control-flow from the backedge-taken check
   2915     // block and the middle block.
   2916     PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
   2917                                           LoopScalarPreHeader->getTerminator());
   2918     BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
   2919     BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
   2920 
   2921     // Now, we need to fix the users of the reduction variable
   2922     // inside and outside of the scalar remainder loop.
   2923     // We know that the loop is in LCSSA form. We need to update the
   2924     // PHI nodes in the exit blocks.
   2925     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
   2926          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
   2927       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
   2928       if (!LCSSAPhi) break;
   2929 
   2930       // All PHINodes need to have a single entry edge, or two if
   2931       // we already fixed them.
   2932       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
   2933 
   2934       // We found our reduction value exit-PHI. Update it with the
   2935       // incoming bypass edge.
   2936       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
   2937         // Add an edge coming from the bypass.
   2938         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
   2939         break;
   2940       }
   2941     }// end of the LCSSA phi scan.
   2942 
   2943     // Fix the scalar loop reduction variable with the incoming reduction sum
   2944     // from the vector body and from the backedge value.
   2945     int IncomingEdgeBlockIdx =
   2946     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
   2947     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
   2948     // Pick the other block.
   2949     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
   2950     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
   2951     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
   2952   }// end of for each redux variable.
   2953 
   2954   fixLCSSAPHIs();
   2955 
   2956   // Remove redundant induction instructions.
   2957   cse(LoopVectorBody);
   2958 }
   2959 
   2960 void InnerLoopVectorizer::fixLCSSAPHIs() {
   2961   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
   2962        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
   2963     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
   2964     if (!LCSSAPhi) break;
   2965     if (LCSSAPhi->getNumIncomingValues() == 1)
   2966       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
   2967                             LoopMiddleBlock);
   2968   }
   2969 }
   2970 
   2971 InnerLoopVectorizer::VectorParts
   2972 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
   2973   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
   2974          "Invalid edge");
   2975 
   2976   // Look for cached value.
   2977   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
   2978   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
   2979   if (ECEntryIt != MaskCache.end())
   2980     return ECEntryIt->second;
   2981 
   2982   VectorParts SrcMask = createBlockInMask(Src);
   2983 
   2984   // The terminator has to be a branch inst!
   2985   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
   2986   assert(BI && "Unexpected terminator found");
   2987 
   2988   if (BI->isConditional()) {
   2989     VectorParts EdgeMask = getVectorValue(BI->getCondition());
   2990 
   2991     if (BI->getSuccessor(0) != Dst)
   2992       for (unsigned part = 0; part < UF; ++part)
   2993         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
   2994 
   2995     for (unsigned part = 0; part < UF; ++part)
   2996       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
   2997 
   2998     MaskCache[Edge] = EdgeMask;
   2999     return EdgeMask;
   3000   }
   3001 
   3002   MaskCache[Edge] = SrcMask;
   3003   return SrcMask;
   3004 }
   3005 
   3006 InnerLoopVectorizer::VectorParts
   3007 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
   3008   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
   3009 
   3010   // Loop incoming mask is all-one.
   3011   if (OrigLoop->getHeader() == BB) {
   3012     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
   3013     return getVectorValue(C);
   3014   }
   3015 
   3016   // This is the block mask. We OR all incoming edges, and with zero.
   3017   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
   3018   VectorParts BlockMask = getVectorValue(Zero);
   3019 
   3020   // For each pred:
   3021   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
   3022     VectorParts EM = createEdgeMask(*it, BB);
   3023     for (unsigned part = 0; part < UF; ++part)
   3024       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
   3025   }
   3026 
   3027   return BlockMask;
   3028 }
   3029 
   3030 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
   3031                                               InnerLoopVectorizer::VectorParts &Entry,
   3032                                               unsigned UF, unsigned VF, PhiVector *PV) {
   3033   PHINode* P = cast<PHINode>(PN);
   3034   // Handle reduction variables:
   3035   if (Legal->getReductionVars()->count(P)) {
   3036     for (unsigned part = 0; part < UF; ++part) {
   3037       // This is phase one of vectorizing PHIs.
   3038       Type *VecTy = (VF == 1) ? PN->getType() :
   3039       VectorType::get(PN->getType(), VF);
   3040       Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
   3041                                     LoopVectorBody.back()-> getFirstInsertionPt());
   3042     }
   3043     PV->push_back(P);
   3044     return;
   3045   }
   3046 
   3047   setDebugLocFromInst(Builder, P);
   3048   // Check for PHI nodes that are lowered to vector selects.
   3049   if (P->getParent() != OrigLoop->getHeader()) {
   3050     // We know that all PHIs in non-header blocks are converted into
   3051     // selects, so we don't have to worry about the insertion order and we
   3052     // can just use the builder.
   3053     // At this point we generate the predication tree. There may be
   3054     // duplications since this is a simple recursive scan, but future
   3055     // optimizations will clean it up.
   3056 
   3057     unsigned NumIncoming = P->getNumIncomingValues();
   3058 
   3059     // Generate a sequence of selects of the form:
   3060     // SELECT(Mask3, In3,
   3061     //      SELECT(Mask2, In2,
   3062     //                   ( ...)))
   3063     for (unsigned In = 0; In < NumIncoming; In++) {
   3064       VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
   3065                                         P->getParent());
   3066       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
   3067 
   3068       for (unsigned part = 0; part < UF; ++part) {
   3069         // We might have single edge PHIs (blocks) - use an identity
   3070         // 'select' for the first PHI operand.
   3071         if (In == 0)
   3072           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
   3073                                              In0[part]);
   3074         else
   3075           // Select between the current value and the previous incoming edge
   3076           // based on the incoming mask.
   3077           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
   3078                                              Entry[part], "predphi");
   3079       }
   3080     }
   3081     return;
   3082   }
   3083 
   3084   // This PHINode must be an induction variable.
   3085   // Make sure that we know about it.
   3086   assert(Legal->getInductionVars()->count(P) &&
   3087          "Not an induction variable");
   3088 
   3089   LoopVectorizationLegality::InductionInfo II =
   3090   Legal->getInductionVars()->lookup(P);
   3091 
   3092   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
   3093   // which can be found from the original scalar operations.
   3094   switch (II.IK) {
   3095     case LoopVectorizationLegality::IK_NoInduction:
   3096       llvm_unreachable("Unknown induction");
   3097     case LoopVectorizationLegality::IK_IntInduction: {
   3098       assert(P->getType() == II.StartValue->getType() && "Types must match");
   3099       Type *PhiTy = P->getType();
   3100       Value *Broadcasted;
   3101       if (P == OldInduction) {
   3102         // Handle the canonical induction variable. We might have had to
   3103         // extend the type.
   3104         Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
   3105       } else {
   3106         // Handle other induction variables that are now based on the
   3107         // canonical one.
   3108         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
   3109                                                  "normalized.idx");
   3110         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
   3111         Broadcasted = II.transform(Builder, NormalizedIdx);
   3112         Broadcasted->setName("offset.idx");
   3113       }
   3114       Broadcasted = getBroadcastInstrs(Broadcasted);
   3115       // After broadcasting the induction variable we need to make the vector
   3116       // consecutive by adding 0, 1, 2, etc.
   3117       for (unsigned part = 0; part < UF; ++part)
   3118         Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue);
   3119       return;
   3120     }
   3121     case LoopVectorizationLegality::IK_PtrInduction:
   3122       // Handle the pointer induction variable case.
   3123       assert(P->getType()->isPointerTy() && "Unexpected type.");
   3124       // This is the normalized GEP that starts counting at zero.
   3125       Value *NormalizedIdx =
   3126           Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx");
   3127       // This is the vector of results. Notice that we don't generate
   3128       // vector geps because scalar geps result in better code.
   3129       for (unsigned part = 0; part < UF; ++part) {
   3130         if (VF == 1) {
   3131           int EltIndex = part;
   3132           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
   3133           Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
   3134           Value *SclrGep = II.transform(Builder, GlobalIdx);
   3135           SclrGep->setName("next.gep");
   3136           Entry[part] = SclrGep;
   3137           continue;
   3138         }
   3139 
   3140         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
   3141         for (unsigned int i = 0; i < VF; ++i) {
   3142           int EltIndex = i + part * VF;
   3143           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
   3144           Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
   3145           Value *SclrGep = II.transform(Builder, GlobalIdx);
   3146           SclrGep->setName("next.gep");
   3147           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
   3148                                                Builder.getInt32(i),
   3149                                                "insert.gep");
   3150         }
   3151         Entry[part] = VecVal;
   3152       }
   3153       return;
   3154   }
   3155 }
   3156 
   3157 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
   3158   // For each instruction in the old loop.
   3159   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   3160     VectorParts &Entry = WidenMap.get(it);
   3161     switch (it->getOpcode()) {
   3162     case Instruction::Br:
   3163       // Nothing to do for PHIs and BR, since we already took care of the
   3164       // loop control flow instructions.
   3165       continue;
   3166     case Instruction::PHI: {
   3167       // Vectorize PHINodes.
   3168       widenPHIInstruction(it, Entry, UF, VF, PV);
   3169       continue;
   3170     }// End of PHI.
   3171 
   3172     case Instruction::Add:
   3173     case Instruction::FAdd:
   3174     case Instruction::Sub:
   3175     case Instruction::FSub:
   3176     case Instruction::Mul:
   3177     case Instruction::FMul:
   3178     case Instruction::UDiv:
   3179     case Instruction::SDiv:
   3180     case Instruction::FDiv:
   3181     case Instruction::URem:
   3182     case Instruction::SRem:
   3183     case Instruction::FRem:
   3184     case Instruction::Shl:
   3185     case Instruction::LShr:
   3186     case Instruction::AShr:
   3187     case Instruction::And:
   3188     case Instruction::Or:
   3189     case Instruction::Xor: {
   3190       // Just widen binops.
   3191       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
   3192       setDebugLocFromInst(Builder, BinOp);
   3193       VectorParts &A = getVectorValue(it->getOperand(0));
   3194       VectorParts &B = getVectorValue(it->getOperand(1));
   3195 
   3196       // Use this vector value for all users of the original instruction.
   3197       for (unsigned Part = 0; Part < UF; ++Part) {
   3198         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
   3199 
   3200         if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
   3201           VecOp->copyIRFlags(BinOp);
   3202 
   3203         Entry[Part] = V;
   3204       }
   3205 
   3206       propagateMetadata(Entry, it);
   3207       break;
   3208     }
   3209     case Instruction::Select: {
   3210       // Widen selects.
   3211       // If the selector is loop invariant we can create a select
   3212       // instruction with a scalar condition. Otherwise, use vector-select.
   3213       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
   3214                                                OrigLoop);
   3215       setDebugLocFromInst(Builder, it);
   3216 
   3217       // The condition can be loop invariant  but still defined inside the
   3218       // loop. This means that we can't just use the original 'cond' value.
   3219       // We have to take the 'vectorized' value and pick the first lane.
   3220       // Instcombine will make this a no-op.
   3221       VectorParts &Cond = getVectorValue(it->getOperand(0));
   3222       VectorParts &Op0  = getVectorValue(it->getOperand(1));
   3223       VectorParts &Op1  = getVectorValue(it->getOperand(2));
   3224 
   3225       Value *ScalarCond = (VF == 1) ? Cond[0] :
   3226         Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
   3227 
   3228       for (unsigned Part = 0; Part < UF; ++Part) {
   3229         Entry[Part] = Builder.CreateSelect(
   3230           InvariantCond ? ScalarCond : Cond[Part],
   3231           Op0[Part],
   3232           Op1[Part]);
   3233       }
   3234 
   3235       propagateMetadata(Entry, it);
   3236       break;
   3237     }
   3238 
   3239     case Instruction::ICmp:
   3240     case Instruction::FCmp: {
   3241       // Widen compares. Generate vector compares.
   3242       bool FCmp = (it->getOpcode() == Instruction::FCmp);
   3243       CmpInst *Cmp = dyn_cast<CmpInst>(it);
   3244       setDebugLocFromInst(Builder, it);
   3245       VectorParts &A = getVectorValue(it->getOperand(0));
   3246       VectorParts &B = getVectorValue(it->getOperand(1));
   3247       for (unsigned Part = 0; Part < UF; ++Part) {
   3248         Value *C = nullptr;
   3249         if (FCmp)
   3250           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
   3251         else
   3252           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
   3253         Entry[Part] = C;
   3254       }
   3255 
   3256       propagateMetadata(Entry, it);
   3257       break;
   3258     }
   3259 
   3260     case Instruction::Store:
   3261     case Instruction::Load:
   3262       vectorizeMemoryInstruction(it);
   3263         break;
   3264     case Instruction::ZExt:
   3265     case Instruction::SExt:
   3266     case Instruction::FPToUI:
   3267     case Instruction::FPToSI:
   3268     case Instruction::FPExt:
   3269     case Instruction::PtrToInt:
   3270     case Instruction::IntToPtr:
   3271     case Instruction::SIToFP:
   3272     case Instruction::UIToFP:
   3273     case Instruction::Trunc:
   3274     case Instruction::FPTrunc:
   3275     case Instruction::BitCast: {
   3276       CastInst *CI = dyn_cast<CastInst>(it);
   3277       setDebugLocFromInst(Builder, it);
   3278       /// Optimize the special case where the source is the induction
   3279       /// variable. Notice that we can only optimize the 'trunc' case
   3280       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
   3281       /// c. other casts depend on pointer size.
   3282       if (CI->getOperand(0) == OldInduction &&
   3283           it->getOpcode() == Instruction::Trunc) {
   3284         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
   3285                                                CI->getType());
   3286         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
   3287         LoopVectorizationLegality::InductionInfo II =
   3288             Legal->getInductionVars()->lookup(OldInduction);
   3289         Constant *Step =
   3290             ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue());
   3291         for (unsigned Part = 0; Part < UF; ++Part)
   3292           Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
   3293         propagateMetadata(Entry, it);
   3294         break;
   3295       }
   3296       /// Vectorize casts.
   3297       Type *DestTy = (VF == 1) ? CI->getType() :
   3298                                  VectorType::get(CI->getType(), VF);
   3299 
   3300       VectorParts &A = getVectorValue(it->getOperand(0));
   3301       for (unsigned Part = 0; Part < UF; ++Part)
   3302         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
   3303       propagateMetadata(Entry, it);
   3304       break;
   3305     }
   3306 
   3307     case Instruction::Call: {
   3308       // Ignore dbg intrinsics.
   3309       if (isa<DbgInfoIntrinsic>(it))
   3310         break;
   3311       setDebugLocFromInst(Builder, it);
   3312 
   3313       Module *M = BB->getParent()->getParent();
   3314       CallInst *CI = cast<CallInst>(it);
   3315 
   3316       StringRef FnName = CI->getCalledFunction()->getName();
   3317       Function *F = CI->getCalledFunction();
   3318       Type *RetTy = ToVectorTy(CI->getType(), VF);
   3319       SmallVector<Type *, 4> Tys;
   3320       for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
   3321         Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
   3322 
   3323       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
   3324       if (ID &&
   3325           (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
   3326            ID == Intrinsic::lifetime_start)) {
   3327         scalarizeInstruction(it);
   3328         break;
   3329       }
   3330       // The flag shows whether we use Intrinsic or a usual Call for vectorized
   3331       // version of the instruction.
   3332       // Is it beneficial to perform intrinsic call compared to lib call?
   3333       bool NeedToScalarize;
   3334       unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
   3335       bool UseVectorIntrinsic =
   3336           ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
   3337       if (!UseVectorIntrinsic && NeedToScalarize) {
   3338         scalarizeInstruction(it);
   3339         break;
   3340       }
   3341 
   3342       for (unsigned Part = 0; Part < UF; ++Part) {
   3343         SmallVector<Value *, 4> Args;
   3344         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
   3345           Value *Arg = CI->getArgOperand(i);
   3346           // Some intrinsics have a scalar argument - don't replace it with a
   3347           // vector.
   3348           if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
   3349             VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
   3350             Arg = VectorArg[Part];
   3351           }
   3352           Args.push_back(Arg);
   3353         }
   3354 
   3355         Function *VectorF;
   3356         if (UseVectorIntrinsic) {
   3357           // Use vector version of the intrinsic.
   3358           Type *TysForDecl[] = {CI->getType()};
   3359           if (VF > 1)
   3360             TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
   3361           VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
   3362         } else {
   3363           // Use vector version of the library call.
   3364           StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
   3365           assert(!VFnName.empty() && "Vector function name is empty.");
   3366           VectorF = M->getFunction(VFnName);
   3367           if (!VectorF) {
   3368             // Generate a declaration
   3369             FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
   3370             VectorF =
   3371                 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
   3372             VectorF->copyAttributesFrom(F);
   3373           }
   3374         }
   3375         assert(VectorF && "Can't create vector function.");
   3376         Entry[Part] = Builder.CreateCall(VectorF, Args);
   3377       }
   3378 
   3379       propagateMetadata(Entry, it);
   3380       break;
   3381     }
   3382 
   3383     default:
   3384       // All other instructions are unsupported. Scalarize them.
   3385       scalarizeInstruction(it);
   3386       break;
   3387     }// end of switch.
   3388   }// end of for_each instr.
   3389 }
   3390 
   3391 void InnerLoopVectorizer::updateAnalysis() {
   3392   // Forget the original basic block.
   3393   SE->forgetLoop(OrigLoop);
   3394 
   3395   // Update the dominator tree information.
   3396   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
   3397          "Entry does not dominate exit.");
   3398 
   3399   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
   3400     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
   3401   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
   3402 
   3403   // Due to if predication of stores we might create a sequence of "if(pred)
   3404   // a[i] = ...;  " blocks.
   3405   for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
   3406     if (i == 0)
   3407       DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
   3408     else if (isPredicatedBlock(i)) {
   3409       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
   3410     } else {
   3411       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
   3412     }
   3413   }
   3414 
   3415   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
   3416   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
   3417   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
   3418   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
   3419 
   3420   DEBUG(DT->verifyDomTree());
   3421 }
   3422 
   3423 /// \brief Check whether it is safe to if-convert this phi node.
   3424 ///
   3425 /// Phi nodes with constant expressions that can trap are not safe to if
   3426 /// convert.
   3427 static bool canIfConvertPHINodes(BasicBlock *BB) {
   3428   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   3429     PHINode *Phi = dyn_cast<PHINode>(I);
   3430     if (!Phi)
   3431       return true;
   3432     for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
   3433       if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
   3434         if (C->canTrap())
   3435           return false;
   3436   }
   3437   return true;
   3438 }
   3439 
   3440 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
   3441   if (!EnableIfConversion) {
   3442     emitAnalysis(VectorizationReport() << "if-conversion is disabled");
   3443     return false;
   3444   }
   3445 
   3446   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
   3447 
   3448   // A list of pointers that we can safely read and write to.
   3449   SmallPtrSet<Value *, 8> SafePointes;
   3450 
   3451   // Collect safe addresses.
   3452   for (Loop::block_iterator BI = TheLoop->block_begin(),
   3453          BE = TheLoop->block_end(); BI != BE; ++BI) {
   3454     BasicBlock *BB = *BI;
   3455 
   3456     if (blockNeedsPredication(BB))
   3457       continue;
   3458 
   3459     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   3460       if (LoadInst *LI = dyn_cast<LoadInst>(I))
   3461         SafePointes.insert(LI->getPointerOperand());
   3462       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
   3463         SafePointes.insert(SI->getPointerOperand());
   3464     }
   3465   }
   3466 
   3467   // Collect the blocks that need predication.
   3468   BasicBlock *Header = TheLoop->getHeader();
   3469   for (Loop::block_iterator BI = TheLoop->block_begin(),
   3470          BE = TheLoop->block_end(); BI != BE; ++BI) {
   3471     BasicBlock *BB = *BI;
   3472 
   3473     // We don't support switch statements inside loops.
   3474     if (!isa<BranchInst>(BB->getTerminator())) {
   3475       emitAnalysis(VectorizationReport(BB->getTerminator())
   3476                    << "loop contains a switch statement");
   3477       return false;
   3478     }
   3479 
   3480     // We must be able to predicate all blocks that need to be predicated.
   3481     if (blockNeedsPredication(BB)) {
   3482       if (!blockCanBePredicated(BB, SafePointes)) {
   3483         emitAnalysis(VectorizationReport(BB->getTerminator())
   3484                      << "control flow cannot be substituted for a select");
   3485         return false;
   3486       }
   3487     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
   3488       emitAnalysis(VectorizationReport(BB->getTerminator())
   3489                    << "control flow cannot be substituted for a select");
   3490       return false;
   3491     }
   3492   }
   3493 
   3494   // We can if-convert this loop.
   3495   return true;
   3496 }
   3497 
   3498 bool LoopVectorizationLegality::canVectorize() {
   3499   // We must have a loop in canonical form. Loops with indirectbr in them cannot
   3500   // be canonicalized.
   3501   if (!TheLoop->getLoopPreheader()) {
   3502     emitAnalysis(
   3503         VectorizationReport() <<
   3504         "loop control flow is not understood by vectorizer");
   3505     return false;
   3506   }
   3507 
   3508   // We can only vectorize innermost loops.
   3509   if (!TheLoop->getSubLoopsVector().empty()) {
   3510     emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
   3511     return false;
   3512   }
   3513 
   3514   // We must have a single backedge.
   3515   if (TheLoop->getNumBackEdges() != 1) {
   3516     emitAnalysis(
   3517         VectorizationReport() <<
   3518         "loop control flow is not understood by vectorizer");
   3519     return false;
   3520   }
   3521 
   3522   // We must have a single exiting block.
   3523   if (!TheLoop->getExitingBlock()) {
   3524     emitAnalysis(
   3525         VectorizationReport() <<
   3526         "loop control flow is not understood by vectorizer");
   3527     return false;
   3528   }
   3529 
   3530   // We only handle bottom-tested loops, i.e. loop in which the condition is
   3531   // checked at the end of each iteration. With that we can assume that all
   3532   // instructions in the loop are executed the same number of times.
   3533   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
   3534     emitAnalysis(
   3535         VectorizationReport() <<
   3536         "loop control flow is not understood by vectorizer");
   3537     return false;
   3538   }
   3539 
   3540   // We need to have a loop header.
   3541   DEBUG(dbgs() << "LV: Found a loop: " <<
   3542         TheLoop->getHeader()->getName() << '\n');
   3543 
   3544   // Check if we can if-convert non-single-bb loops.
   3545   unsigned NumBlocks = TheLoop->getNumBlocks();
   3546   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
   3547     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
   3548     return false;
   3549   }
   3550 
   3551   // ScalarEvolution needs to be able to find the exit count.
   3552   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
   3553   if (ExitCount == SE->getCouldNotCompute()) {
   3554     emitAnalysis(VectorizationReport() <<
   3555                  "could not determine number of loop iterations");
   3556     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
   3557     return false;
   3558   }
   3559 
   3560   // Check if we can vectorize the instructions and CFG in this loop.
   3561   if (!canVectorizeInstrs()) {
   3562     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
   3563     return false;
   3564   }
   3565 
   3566   // Go over each instruction and look at memory deps.
   3567   if (!canVectorizeMemory()) {
   3568     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
   3569     return false;
   3570   }
   3571 
   3572   // Collect all of the variables that remain uniform after vectorization.
   3573   collectLoopUniforms();
   3574 
   3575   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
   3576         (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
   3577          "")
   3578         <<"!\n");
   3579 
   3580   // Okay! We can vectorize. At this point we don't have any other mem analysis
   3581   // which may limit our maximum vectorization factor, so just return true with
   3582   // no restrictions.
   3583   return true;
   3584 }
   3585 
   3586 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
   3587   if (Ty->isPointerTy())
   3588     return DL.getIntPtrType(Ty);
   3589 
   3590   // It is possible that char's or short's overflow when we ask for the loop's
   3591   // trip count, work around this by changing the type size.
   3592   if (Ty->getScalarSizeInBits() < 32)
   3593     return Type::getInt32Ty(Ty->getContext());
   3594 
   3595   return Ty;
   3596 }
   3597 
   3598 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
   3599   Ty0 = convertPointerToIntegerType(DL, Ty0);
   3600   Ty1 = convertPointerToIntegerType(DL, Ty1);
   3601   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
   3602     return Ty0;
   3603   return Ty1;
   3604 }
   3605 
   3606 /// \brief Check that the instruction has outside loop users and is not an
   3607 /// identified reduction variable.
   3608 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
   3609                                SmallPtrSetImpl<Value *> &Reductions) {
   3610   // Reduction instructions are allowed to have exit users. All other
   3611   // instructions must not have external users.
   3612   if (!Reductions.count(Inst))
   3613     //Check that all of the users of the loop are inside the BB.
   3614     for (User *U : Inst->users()) {
   3615       Instruction *UI = cast<Instruction>(U);
   3616       // This user may be a reduction exit value.
   3617       if (!TheLoop->contains(UI)) {
   3618         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
   3619         return true;
   3620       }
   3621     }
   3622   return false;
   3623 }
   3624 
   3625 bool LoopVectorizationLegality::canVectorizeInstrs() {
   3626   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
   3627   BasicBlock *Header = TheLoop->getHeader();
   3628 
   3629   // Look for the attribute signaling the absence of NaNs.
   3630   Function &F = *Header->getParent();
   3631   const DataLayout &DL = F.getParent()->getDataLayout();
   3632   if (F.hasFnAttribute("no-nans-fp-math"))
   3633     HasFunNoNaNAttr =
   3634         F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
   3635 
   3636   // For each block in the loop.
   3637   for (Loop::block_iterator bb = TheLoop->block_begin(),
   3638        be = TheLoop->block_end(); bb != be; ++bb) {
   3639 
   3640     // Scan the instructions in the block and look for hazards.
   3641     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   3642          ++it) {
   3643 
   3644       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
   3645         Type *PhiTy = Phi->getType();
   3646         // Check that this PHI type is allowed.
   3647         if (!PhiTy->isIntegerTy() &&
   3648             !PhiTy->isFloatingPointTy() &&
   3649             !PhiTy->isPointerTy()) {
   3650           emitAnalysis(VectorizationReport(it)
   3651                        << "loop control flow is not understood by vectorizer");
   3652           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
   3653           return false;
   3654         }
   3655 
   3656         // If this PHINode is not in the header block, then we know that we
   3657         // can convert it to select during if-conversion. No need to check if
   3658         // the PHIs in this block are induction or reduction variables.
   3659         if (*bb != Header) {
   3660           // Check that this instruction has no outside users or is an
   3661           // identified reduction value with an outside user.
   3662           if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
   3663             continue;
   3664           emitAnalysis(VectorizationReport(it) <<
   3665                        "value could not be identified as "
   3666                        "an induction or reduction variable");
   3667           return false;
   3668         }
   3669 
   3670         // We only allow if-converted PHIs with exactly two incoming values.
   3671         if (Phi->getNumIncomingValues() != 2) {
   3672           emitAnalysis(VectorizationReport(it)
   3673                        << "control flow not understood by vectorizer");
   3674           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
   3675           return false;
   3676         }
   3677 
   3678         // This is the value coming from the preheader.
   3679         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
   3680         ConstantInt *StepValue = nullptr;
   3681         // Check if this is an induction variable.
   3682         InductionKind IK = isInductionVariable(Phi, StepValue);
   3683 
   3684         if (IK_NoInduction != IK) {
   3685           // Get the widest type.
   3686           if (!WidestIndTy)
   3687             WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
   3688           else
   3689             WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
   3690 
   3691           // Int inductions are special because we only allow one IV.
   3692           if (IK == IK_IntInduction && StepValue->isOne()) {
   3693             // Use the phi node with the widest type as induction. Use the last
   3694             // one if there are multiple (no good reason for doing this other
   3695             // than it is expedient).
   3696             if (!Induction || PhiTy == WidestIndTy)
   3697               Induction = Phi;
   3698           }
   3699 
   3700           DEBUG(dbgs() << "LV: Found an induction variable.\n");
   3701           Inductions[Phi] = InductionInfo(StartValue, IK, StepValue);
   3702 
   3703           // Until we explicitly handle the case of an induction variable with
   3704           // an outside loop user we have to give up vectorizing this loop.
   3705           if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
   3706             emitAnalysis(VectorizationReport(it) <<
   3707                          "use of induction value outside of the "
   3708                          "loop is not handled by vectorizer");
   3709             return false;
   3710           }
   3711 
   3712           continue;
   3713         }
   3714 
   3715         if (AddReductionVar(Phi, RK_IntegerAdd)) {
   3716           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
   3717           continue;
   3718         }
   3719         if (AddReductionVar(Phi, RK_IntegerMult)) {
   3720           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
   3721           continue;
   3722         }
   3723         if (AddReductionVar(Phi, RK_IntegerOr)) {
   3724           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
   3725           continue;
   3726         }
   3727         if (AddReductionVar(Phi, RK_IntegerAnd)) {
   3728           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
   3729           continue;
   3730         }
   3731         if (AddReductionVar(Phi, RK_IntegerXor)) {
   3732           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
   3733           continue;
   3734         }
   3735         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
   3736           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
   3737           continue;
   3738         }
   3739         if (AddReductionVar(Phi, RK_FloatMult)) {
   3740           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
   3741           continue;
   3742         }
   3743         if (AddReductionVar(Phi, RK_FloatAdd)) {
   3744           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
   3745           continue;
   3746         }
   3747         if (AddReductionVar(Phi, RK_FloatMinMax)) {
   3748           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
   3749                 "\n");
   3750           continue;
   3751         }
   3752 
   3753         emitAnalysis(VectorizationReport(it) <<
   3754                      "value that could not be identified as "
   3755                      "reduction is used outside the loop");
   3756         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
   3757         return false;
   3758       }// end of PHI handling
   3759 
   3760       // We handle calls that:
   3761       //   * Are debug info intrinsics.
   3762       //   * Have a mapping to an IR intrinsic.
   3763       //   * Have a vector version available.
   3764       CallInst *CI = dyn_cast<CallInst>(it);
   3765       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
   3766           !(CI->getCalledFunction() && TLI &&
   3767             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
   3768         emitAnalysis(VectorizationReport(it) <<
   3769                      "call instruction cannot be vectorized");
   3770         DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
   3771         return false;
   3772       }
   3773 
   3774       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
   3775       // second argument is the same (i.e. loop invariant)
   3776       if (CI &&
   3777           hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
   3778         if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
   3779           emitAnalysis(VectorizationReport(it)
   3780                        << "intrinsic instruction cannot be vectorized");
   3781           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
   3782           return false;
   3783         }
   3784       }
   3785 
   3786       // Check that the instruction return type is vectorizable.
   3787       // Also, we can't vectorize extractelement instructions.
   3788       if ((!VectorType::isValidElementType(it->getType()) &&
   3789            !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
   3790         emitAnalysis(VectorizationReport(it)
   3791                      << "instruction return type cannot be vectorized");
   3792         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
   3793         return false;
   3794       }
   3795 
   3796       // Check that the stored type is vectorizable.
   3797       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
   3798         Type *T = ST->getValueOperand()->getType();
   3799         if (!VectorType::isValidElementType(T)) {
   3800           emitAnalysis(VectorizationReport(ST) <<
   3801                        "store instruction cannot be vectorized");
   3802           return false;
   3803         }
   3804         if (EnableMemAccessVersioning)
   3805           collectStridedAccess(ST);
   3806       }
   3807 
   3808       if (EnableMemAccessVersioning)
   3809         if (LoadInst *LI = dyn_cast<LoadInst>(it))
   3810           collectStridedAccess(LI);
   3811 
   3812       // Reduction instructions are allowed to have exit users.
   3813       // All other instructions must not have external users.
   3814       if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
   3815         emitAnalysis(VectorizationReport(it) <<
   3816                      "value cannot be used outside the loop");
   3817         return false;
   3818       }
   3819 
   3820     } // next instr.
   3821 
   3822   }
   3823 
   3824   if (!Induction) {
   3825     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
   3826     if (Inductions.empty()) {
   3827       emitAnalysis(VectorizationReport()
   3828                    << "loop induction variable could not be identified");
   3829       return false;
   3830     }
   3831   }
   3832 
   3833   return true;
   3834 }
   3835 
   3836 ///\brief Remove GEPs whose indices but the last one are loop invariant and
   3837 /// return the induction operand of the gep pointer.
   3838 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
   3839   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
   3840   if (!GEP)
   3841     return Ptr;
   3842 
   3843   unsigned InductionOperand = getGEPInductionOperand(GEP);
   3844 
   3845   // Check that all of the gep indices are uniform except for our induction
   3846   // operand.
   3847   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
   3848     if (i != InductionOperand &&
   3849         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
   3850       return Ptr;
   3851   return GEP->getOperand(InductionOperand);
   3852 }
   3853 
   3854 ///\brief Look for a cast use of the passed value.
   3855 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
   3856   Value *UniqueCast = nullptr;
   3857   for (User *U : Ptr->users()) {
   3858     CastInst *CI = dyn_cast<CastInst>(U);
   3859     if (CI && CI->getType() == Ty) {
   3860       if (!UniqueCast)
   3861         UniqueCast = CI;
   3862       else
   3863         return nullptr;
   3864     }
   3865   }
   3866   return UniqueCast;
   3867 }
   3868 
   3869 ///\brief Get the stride of a pointer access in a loop.
   3870 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
   3871 /// pointer to the Value, or null otherwise.
   3872 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
   3873   const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
   3874   if (!PtrTy || PtrTy->isAggregateType())
   3875     return nullptr;
   3876 
   3877   // Try to remove a gep instruction to make the pointer (actually index at this
   3878   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
   3879   // pointer, otherwise, we are analyzing the index.
   3880   Value *OrigPtr = Ptr;
   3881 
   3882   // The size of the pointer access.
   3883   int64_t PtrAccessSize = 1;
   3884 
   3885   Ptr = stripGetElementPtr(Ptr, SE, Lp);
   3886   const SCEV *V = SE->getSCEV(Ptr);
   3887 
   3888   if (Ptr != OrigPtr)
   3889     // Strip off casts.
   3890     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
   3891       V = C->getOperand();
   3892 
   3893   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
   3894   if (!S)
   3895     return nullptr;
   3896 
   3897   V = S->getStepRecurrence(*SE);
   3898   if (!V)
   3899     return nullptr;
   3900 
   3901   // Strip off the size of access multiplication if we are still analyzing the
   3902   // pointer.
   3903   if (OrigPtr == Ptr) {
   3904     const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
   3905     DL.getTypeAllocSize(PtrTy->getElementType());
   3906     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
   3907       if (M->getOperand(0)->getSCEVType() != scConstant)
   3908         return nullptr;
   3909 
   3910       const APInt &APStepVal =
   3911           cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
   3912 
   3913       // Huge step value - give up.
   3914       if (APStepVal.getBitWidth() > 64)
   3915         return nullptr;
   3916 
   3917       int64_t StepVal = APStepVal.getSExtValue();
   3918       if (PtrAccessSize != StepVal)
   3919         return nullptr;
   3920       V = M->getOperand(1);
   3921     }
   3922   }
   3923 
   3924   // Strip off casts.
   3925   Type *StripedOffRecurrenceCast = nullptr;
   3926   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
   3927     StripedOffRecurrenceCast = C->getType();
   3928     V = C->getOperand();
   3929   }
   3930 
   3931   // Look for the loop invariant symbolic value.
   3932   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
   3933   if (!U)
   3934     return nullptr;
   3935 
   3936   Value *Stride = U->getValue();
   3937   if (!Lp->isLoopInvariant(Stride))
   3938     return nullptr;
   3939 
   3940   // If we have stripped off the recurrence cast we have to make sure that we
   3941   // return the value that is used in this loop so that we can replace it later.
   3942   if (StripedOffRecurrenceCast)
   3943     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
   3944 
   3945   return Stride;
   3946 }
   3947 
   3948 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
   3949   Value *Ptr = nullptr;
   3950   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
   3951     Ptr = LI->getPointerOperand();
   3952   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
   3953     Ptr = SI->getPointerOperand();
   3954   else
   3955     return;
   3956 
   3957   Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop);
   3958   if (!Stride)
   3959     return;
   3960 
   3961   DEBUG(dbgs() << "LV: Found a strided access that we can version");
   3962   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
   3963   Strides[Ptr] = Stride;
   3964   StrideSet.insert(Stride);
   3965 }
   3966 
   3967 void LoopVectorizationLegality::collectLoopUniforms() {
   3968   // We now know that the loop is vectorizable!
   3969   // Collect variables that will remain uniform after vectorization.
   3970   std::vector<Value*> Worklist;
   3971   BasicBlock *Latch = TheLoop->getLoopLatch();
   3972 
   3973   // Start with the conditional branch and walk up the block.
   3974   Worklist.push_back(Latch->getTerminator()->getOperand(0));
   3975 
   3976   // Also add all consecutive pointer values; these values will be uniform
   3977   // after vectorization (and subsequent cleanup) and, until revectorization is
   3978   // supported, all dependencies must also be uniform.
   3979   for (Loop::block_iterator B = TheLoop->block_begin(),
   3980        BE = TheLoop->block_end(); B != BE; ++B)
   3981     for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
   3982          I != IE; ++I)
   3983       if (I->getType()->isPointerTy() && isConsecutivePtr(I))
   3984         Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
   3985 
   3986   while (!Worklist.empty()) {
   3987     Instruction *I = dyn_cast<Instruction>(Worklist.back());
   3988     Worklist.pop_back();
   3989 
   3990     // Look at instructions inside this loop.
   3991     // Stop when reaching PHI nodes.
   3992     // TODO: we need to follow values all over the loop, not only in this block.
   3993     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
   3994       continue;
   3995 
   3996     // This is a known uniform.
   3997     Uniforms.insert(I);
   3998 
   3999     // Insert all operands.
   4000     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
   4001   }
   4002 }
   4003 
   4004 bool LoopVectorizationLegality::canVectorizeMemory() {
   4005   LAI = &LAA->getInfo(TheLoop, Strides);
   4006   auto &OptionalReport = LAI->getReport();
   4007   if (OptionalReport)
   4008     emitAnalysis(VectorizationReport(*OptionalReport));
   4009   if (!LAI->canVectorizeMemory())
   4010     return false;
   4011 
   4012   if (LAI->hasStoreToLoopInvariantAddress()) {
   4013     emitAnalysis(
   4014         VectorizationReport()
   4015         << "write to a loop invariant address could not be vectorized");
   4016     DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
   4017     return false;
   4018   }
   4019 
   4020   if (LAI->getNumRuntimePointerChecks() >
   4021       VectorizerParams::RuntimeMemoryCheckThreshold) {
   4022     emitAnalysis(VectorizationReport()
   4023                  << LAI->getNumRuntimePointerChecks() << " exceeds limit of "
   4024                  << VectorizerParams::RuntimeMemoryCheckThreshold
   4025                  << " dependent memory operations checked at runtime");
   4026     DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
   4027     return false;
   4028   }
   4029   return true;
   4030 }
   4031 
   4032 static bool hasMultipleUsesOf(Instruction *I,
   4033                               SmallPtrSetImpl<Instruction *> &Insts) {
   4034   unsigned NumUses = 0;
   4035   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
   4036     if (Insts.count(dyn_cast<Instruction>(*Use)))
   4037       ++NumUses;
   4038     if (NumUses > 1)
   4039       return true;
   4040   }
   4041 
   4042   return false;
   4043 }
   4044 
   4045 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
   4046   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
   4047     if (!Set.count(dyn_cast<Instruction>(*Use)))
   4048       return false;
   4049   return true;
   4050 }
   4051 
   4052 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
   4053                                                 ReductionKind Kind) {
   4054   if (Phi->getNumIncomingValues() != 2)
   4055     return false;
   4056 
   4057   // Reduction variables are only found in the loop header block.
   4058   if (Phi->getParent() != TheLoop->getHeader())
   4059     return false;
   4060 
   4061   // Obtain the reduction start value from the value that comes from the loop
   4062   // preheader.
   4063   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
   4064 
   4065   // ExitInstruction is the single value which is used outside the loop.
   4066   // We only allow for a single reduction value to be used outside the loop.
   4067   // This includes users of the reduction, variables (which form a cycle
   4068   // which ends in the phi node).
   4069   Instruction *ExitInstruction = nullptr;
   4070   // Indicates that we found a reduction operation in our scan.
   4071   bool FoundReduxOp = false;
   4072 
   4073   // We start with the PHI node and scan for all of the users of this
   4074   // instruction. All users must be instructions that can be used as reduction
   4075   // variables (such as ADD). We must have a single out-of-block user. The cycle
   4076   // must include the original PHI.
   4077   bool FoundStartPHI = false;
   4078 
   4079   // To recognize min/max patterns formed by a icmp select sequence, we store
   4080   // the number of instruction we saw from the recognized min/max pattern,
   4081   //  to make sure we only see exactly the two instructions.
   4082   unsigned NumCmpSelectPatternInst = 0;
   4083   ReductionInstDesc ReduxDesc(false, nullptr);
   4084 
   4085   SmallPtrSet<Instruction *, 8> VisitedInsts;
   4086   SmallVector<Instruction *, 8> Worklist;
   4087   Worklist.push_back(Phi);
   4088   VisitedInsts.insert(Phi);
   4089 
   4090   // A value in the reduction can be used:
   4091   //  - By the reduction:
   4092   //      - Reduction operation:
   4093   //        - One use of reduction value (safe).
   4094   //        - Multiple use of reduction value (not safe).
   4095   //      - PHI:
   4096   //        - All uses of the PHI must be the reduction (safe).
   4097   //        - Otherwise, not safe.
   4098   //  - By one instruction outside of the loop (safe).
   4099   //  - By further instructions outside of the loop (not safe).
   4100   //  - By an instruction that is not part of the reduction (not safe).
   4101   //    This is either:
   4102   //      * An instruction type other than PHI or the reduction operation.
   4103   //      * A PHI in the header other than the initial PHI.
   4104   while (!Worklist.empty()) {
   4105     Instruction *Cur = Worklist.back();
   4106     Worklist.pop_back();
   4107 
   4108     // No Users.
   4109     // If the instruction has no users then this is a broken chain and can't be
   4110     // a reduction variable.
   4111     if (Cur->use_empty())
   4112       return false;
   4113 
   4114     bool IsAPhi = isa<PHINode>(Cur);
   4115 
   4116     // A header PHI use other than the original PHI.
   4117     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
   4118       return false;
   4119 
   4120     // Reductions of instructions such as Div, and Sub is only possible if the
   4121     // LHS is the reduction variable.
   4122     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
   4123         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
   4124         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
   4125       return false;
   4126 
   4127     // Any reduction instruction must be of one of the allowed kinds.
   4128     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
   4129     if (!ReduxDesc.IsReduction)
   4130       return false;
   4131 
   4132     // A reduction operation must only have one use of the reduction value.
   4133     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
   4134         hasMultipleUsesOf(Cur, VisitedInsts))
   4135       return false;
   4136 
   4137     // All inputs to a PHI node must be a reduction value.
   4138     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
   4139       return false;
   4140 
   4141     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
   4142                                      isa<SelectInst>(Cur)))
   4143       ++NumCmpSelectPatternInst;
   4144     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
   4145                                    isa<SelectInst>(Cur)))
   4146       ++NumCmpSelectPatternInst;
   4147 
   4148     // Check  whether we found a reduction operator.
   4149     FoundReduxOp |= !IsAPhi;
   4150 
   4151     // Process users of current instruction. Push non-PHI nodes after PHI nodes
   4152     // onto the stack. This way we are going to have seen all inputs to PHI
   4153     // nodes once we get to them.
   4154     SmallVector<Instruction *, 8> NonPHIs;
   4155     SmallVector<Instruction *, 8> PHIs;
   4156     for (User *U : Cur->users()) {
   4157       Instruction *UI = cast<Instruction>(U);
   4158 
   4159       // Check if we found the exit user.
   4160       BasicBlock *Parent = UI->getParent();
   4161       if (!TheLoop->contains(Parent)) {
   4162         // Exit if you find multiple outside users or if the header phi node is
   4163         // being used. In this case the user uses the value of the previous
   4164         // iteration, in which case we would loose "VF-1" iterations of the
   4165         // reduction operation if we vectorize.
   4166         if (ExitInstruction != nullptr || Cur == Phi)
   4167           return false;
   4168 
   4169         // The instruction used by an outside user must be the last instruction
   4170         // before we feed back to the reduction phi. Otherwise, we loose VF-1
   4171         // operations on the value.
   4172         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
   4173          return false;
   4174 
   4175         ExitInstruction = Cur;
   4176         continue;
   4177       }
   4178 
   4179       // Process instructions only once (termination). Each reduction cycle
   4180       // value must only be used once, except by phi nodes and min/max
   4181       // reductions which are represented as a cmp followed by a select.
   4182       ReductionInstDesc IgnoredVal(false, nullptr);
   4183       if (VisitedInsts.insert(UI).second) {
   4184         if (isa<PHINode>(UI))
   4185           PHIs.push_back(UI);
   4186         else
   4187           NonPHIs.push_back(UI);
   4188       } else if (!isa<PHINode>(UI) &&
   4189                  ((!isa<FCmpInst>(UI) &&
   4190                    !isa<ICmpInst>(UI) &&
   4191                    !isa<SelectInst>(UI)) ||
   4192                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
   4193         return false;
   4194 
   4195       // Remember that we completed the cycle.
   4196       if (UI == Phi)
   4197         FoundStartPHI = true;
   4198     }
   4199     Worklist.append(PHIs.begin(), PHIs.end());
   4200     Worklist.append(NonPHIs.begin(), NonPHIs.end());
   4201   }
   4202 
   4203   // This means we have seen one but not the other instruction of the
   4204   // pattern or more than just a select and cmp.
   4205   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
   4206       NumCmpSelectPatternInst != 2)
   4207     return false;
   4208 
   4209   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
   4210     return false;
   4211 
   4212   // We found a reduction var if we have reached the original phi node and we
   4213   // only have a single instruction with out-of-loop users.
   4214 
   4215   // This instruction is allowed to have out-of-loop users.
   4216   AllowedExit.insert(ExitInstruction);
   4217 
   4218   // Save the description of this reduction variable.
   4219   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
   4220                          ReduxDesc.MinMaxKind);
   4221   Reductions[Phi] = RD;
   4222   // We've ended the cycle. This is a reduction variable if we have an
   4223   // outside user and it has a binary op.
   4224 
   4225   return true;
   4226 }
   4227 
   4228 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
   4229 /// pattern corresponding to a min(X, Y) or max(X, Y).
   4230 LoopVectorizationLegality::ReductionInstDesc
   4231 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
   4232                                                     ReductionInstDesc &Prev) {
   4233 
   4234   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
   4235          "Expect a select instruction");
   4236   Instruction *Cmp = nullptr;
   4237   SelectInst *Select = nullptr;
   4238 
   4239   // We must handle the select(cmp()) as a single instruction. Advance to the
   4240   // select.
   4241   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
   4242     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
   4243       return ReductionInstDesc(false, I);
   4244     return ReductionInstDesc(Select, Prev.MinMaxKind);
   4245   }
   4246 
   4247   // Only handle single use cases for now.
   4248   if (!(Select = dyn_cast<SelectInst>(I)))
   4249     return ReductionInstDesc(false, I);
   4250   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
   4251       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
   4252     return ReductionInstDesc(false, I);
   4253   if (!Cmp->hasOneUse())
   4254     return ReductionInstDesc(false, I);
   4255 
   4256   Value *CmpLeft;
   4257   Value *CmpRight;
   4258 
   4259   // Look for a min/max pattern.
   4260   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4261     return ReductionInstDesc(Select, MRK_UIntMin);
   4262   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4263     return ReductionInstDesc(Select, MRK_UIntMax);
   4264   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4265     return ReductionInstDesc(Select, MRK_SIntMax);
   4266   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4267     return ReductionInstDesc(Select, MRK_SIntMin);
   4268   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4269     return ReductionInstDesc(Select, MRK_FloatMin);
   4270   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4271     return ReductionInstDesc(Select, MRK_FloatMax);
   4272   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4273     return ReductionInstDesc(Select, MRK_FloatMin);
   4274   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
   4275     return ReductionInstDesc(Select, MRK_FloatMax);
   4276 
   4277   return ReductionInstDesc(false, I);
   4278 }
   4279 
   4280 LoopVectorizationLegality::ReductionInstDesc
   4281 LoopVectorizationLegality::isReductionInstr(Instruction *I,
   4282                                             ReductionKind Kind,
   4283                                             ReductionInstDesc &Prev) {
   4284   bool FP = I->getType()->isFloatingPointTy();
   4285   bool FastMath = FP && I->hasUnsafeAlgebra();
   4286   switch (I->getOpcode()) {
   4287   default:
   4288     return ReductionInstDesc(false, I);
   4289   case Instruction::PHI:
   4290       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
   4291                  Kind != RK_FloatMinMax))
   4292         return ReductionInstDesc(false, I);
   4293     return ReductionInstDesc(I, Prev.MinMaxKind);
   4294   case Instruction::Sub:
   4295   case Instruction::Add:
   4296     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
   4297   case Instruction::Mul:
   4298     return ReductionInstDesc(Kind == RK_IntegerMult, I);
   4299   case Instruction::And:
   4300     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
   4301   case Instruction::Or:
   4302     return ReductionInstDesc(Kind == RK_IntegerOr, I);
   4303   case Instruction::Xor:
   4304     return ReductionInstDesc(Kind == RK_IntegerXor, I);
   4305   case Instruction::FMul:
   4306     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
   4307   case Instruction::FSub:
   4308   case Instruction::FAdd:
   4309     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
   4310   case Instruction::FCmp:
   4311   case Instruction::ICmp:
   4312   case Instruction::Select:
   4313     if (Kind != RK_IntegerMinMax &&
   4314         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
   4315       return ReductionInstDesc(false, I);
   4316     return isMinMaxSelectCmpPattern(I, Prev);
   4317   }
   4318 }
   4319 
   4320 bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
   4321                           ConstantInt *&StepValue) {
   4322   Type *PhiTy = Phi->getType();
   4323   // We only handle integer and pointer inductions variables.
   4324   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
   4325     return false;
   4326 
   4327   // Check that the PHI is consecutive.
   4328   const SCEV *PhiScev = SE->getSCEV(Phi);
   4329   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
   4330   if (!AR) {
   4331     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
   4332     return false;
   4333   }
   4334 
   4335   const SCEV *Step = AR->getStepRecurrence(*SE);
   4336   // Calculate the pointer stride and check if it is consecutive.
   4337   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   4338   if (!C)
   4339     return false;
   4340 
   4341   ConstantInt *CV = C->getValue();
   4342   if (PhiTy->isIntegerTy()) {
   4343     StepValue = CV;
   4344     return true;
   4345   }
   4346 
   4347   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
   4348   Type *PointerElementType = PhiTy->getPointerElementType();
   4349   // The pointer stride cannot be determined if the pointer element type is not
   4350   // sized.
   4351   if (!PointerElementType->isSized())
   4352     return false;
   4353 
   4354   const DataLayout &DL = Phi->getModule()->getDataLayout();
   4355   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
   4356   int64_t CVSize = CV->getSExtValue();
   4357   if (CVSize % Size)
   4358     return false;
   4359   StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
   4360   return true;
   4361 }
   4362 
   4363 LoopVectorizationLegality::InductionKind
   4364 LoopVectorizationLegality::isInductionVariable(PHINode *Phi,
   4365                                                ConstantInt *&StepValue) {
   4366   if (!isInductionPHI(Phi, SE, StepValue))
   4367     return IK_NoInduction;
   4368 
   4369   Type *PhiTy = Phi->getType();
   4370   // Found an Integer induction variable.
   4371   if (PhiTy->isIntegerTy())
   4372     return IK_IntInduction;
   4373   // Found an Pointer induction variable.
   4374   return IK_PtrInduction;
   4375 }
   4376 
   4377 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
   4378   Value *In0 = const_cast<Value*>(V);
   4379   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
   4380   if (!PN)
   4381     return false;
   4382 
   4383   return Inductions.count(PN);
   4384 }
   4385 
   4386 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
   4387   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
   4388 }
   4389 
   4390 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
   4391                                            SmallPtrSetImpl<Value *> &SafePtrs) {
   4392 
   4393   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   4394     // Check that we don't have a constant expression that can trap as operand.
   4395     for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
   4396          OI != OE; ++OI) {
   4397       if (Constant *C = dyn_cast<Constant>(*OI))
   4398         if (C->canTrap())
   4399           return false;
   4400     }
   4401     // We might be able to hoist the load.
   4402     if (it->mayReadFromMemory()) {
   4403       LoadInst *LI = dyn_cast<LoadInst>(it);
   4404       if (!LI)
   4405         return false;
   4406       if (!SafePtrs.count(LI->getPointerOperand())) {
   4407         if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
   4408           MaskedOp.insert(LI);
   4409           continue;
   4410         }
   4411         return false;
   4412       }
   4413     }
   4414 
   4415     // We don't predicate stores at the moment.
   4416     if (it->mayWriteToMemory()) {
   4417       StoreInst *SI = dyn_cast<StoreInst>(it);
   4418       // We only support predication of stores in basic blocks with one
   4419       // predecessor.
   4420       if (!SI)
   4421         return false;
   4422 
   4423       bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
   4424       bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
   4425 
   4426       if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
   4427           !isSinglePredecessor) {
   4428         // Build a masked store if it is legal for the target, otherwise scalarize
   4429         // the block.
   4430         bool isLegalMaskedOp =
   4431           isLegalMaskedStore(SI->getValueOperand()->getType(),
   4432                              SI->getPointerOperand());
   4433         if (isLegalMaskedOp) {
   4434           --NumPredStores;
   4435           MaskedOp.insert(SI);
   4436           continue;
   4437         }
   4438         return false;
   4439       }
   4440     }
   4441     if (it->mayThrow())
   4442       return false;
   4443 
   4444     // The instructions below can trap.
   4445     switch (it->getOpcode()) {
   4446     default: continue;
   4447     case Instruction::UDiv:
   4448     case Instruction::SDiv:
   4449     case Instruction::URem:
   4450     case Instruction::SRem:
   4451       return false;
   4452     }
   4453   }
   4454 
   4455   return true;
   4456 }
   4457 
   4458 LoopVectorizationCostModel::VectorizationFactor
   4459 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
   4460   // Width 1 means no vectorize
   4461   VectorizationFactor Factor = { 1U, 0U };
   4462   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
   4463     emitAnalysis(VectorizationReport() <<
   4464                  "runtime pointer checks needed. Enable vectorization of this "
   4465                  "loop with '#pragma clang loop vectorize(enable)' when "
   4466                  "compiling with -Os");
   4467     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
   4468     return Factor;
   4469   }
   4470 
   4471   if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
   4472     emitAnalysis(VectorizationReport() <<
   4473                  "store that is conditionally executed prevents vectorization");
   4474     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
   4475     return Factor;
   4476   }
   4477 
   4478   // Find the trip count.
   4479   unsigned TC = SE->getSmallConstantTripCount(TheLoop);
   4480   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
   4481 
   4482   unsigned WidestType = getWidestType();
   4483   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
   4484   unsigned MaxSafeDepDist = -1U;
   4485   if (Legal->getMaxSafeDepDistBytes() != -1U)
   4486     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
   4487   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
   4488                     WidestRegister : MaxSafeDepDist);
   4489   unsigned MaxVectorSize = WidestRegister / WidestType;
   4490   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
   4491   DEBUG(dbgs() << "LV: The Widest register is: "
   4492           << WidestRegister << " bits.\n");
   4493 
   4494   if (MaxVectorSize == 0) {
   4495     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
   4496     MaxVectorSize = 1;
   4497   }
   4498 
   4499   assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
   4500          " into one vector!");
   4501 
   4502   unsigned VF = MaxVectorSize;
   4503 
   4504   // If we optimize the program for size, avoid creating the tail loop.
   4505   if (OptForSize) {
   4506     // If we are unable to calculate the trip count then don't try to vectorize.
   4507     if (TC < 2) {
   4508       emitAnalysis
   4509         (VectorizationReport() <<
   4510          "unable to calculate the loop count due to complex control flow");
   4511       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
   4512       return Factor;
   4513     }
   4514 
   4515     // Find the maximum SIMD width that can fit within the trip count.
   4516     VF = TC % MaxVectorSize;
   4517 
   4518     if (VF == 0)
   4519       VF = MaxVectorSize;
   4520 
   4521     // If the trip count that we found modulo the vectorization factor is not
   4522     // zero then we require a tail.
   4523     if (VF < 2) {
   4524       emitAnalysis(VectorizationReport() <<
   4525                    "cannot optimize for size and vectorize at the "
   4526                    "same time. Enable vectorization of this loop "
   4527                    "with '#pragma clang loop vectorize(enable)' "
   4528                    "when compiling with -Os");
   4529       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
   4530       return Factor;
   4531     }
   4532   }
   4533 
   4534   int UserVF = Hints->getWidth();
   4535   if (UserVF != 0) {
   4536     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
   4537     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
   4538 
   4539     Factor.Width = UserVF;
   4540     return Factor;
   4541   }
   4542 
   4543   float Cost = expectedCost(1);
   4544 #ifndef NDEBUG
   4545   const float ScalarCost = Cost;
   4546 #endif /* NDEBUG */
   4547   unsigned Width = 1;
   4548   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
   4549 
   4550   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
   4551   // Ignore scalar width, because the user explicitly wants vectorization.
   4552   if (ForceVectorization && VF > 1) {
   4553     Width = 2;
   4554     Cost = expectedCost(Width) / (float)Width;
   4555   }
   4556 
   4557   for (unsigned i=2; i <= VF; i*=2) {
   4558     // Notice that the vector loop needs to be executed less times, so
   4559     // we need to divide the cost of the vector loops by the width of
   4560     // the vector elements.
   4561     float VectorCost = expectedCost(i) / (float)i;
   4562     DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
   4563           (int)VectorCost << ".\n");
   4564     if (VectorCost < Cost) {
   4565       Cost = VectorCost;
   4566       Width = i;
   4567     }
   4568   }
   4569 
   4570   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
   4571         << "LV: Vectorization seems to be not beneficial, "
   4572         << "but was forced by a user.\n");
   4573   DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
   4574   Factor.Width = Width;
   4575   Factor.Cost = Width * Cost;
   4576   return Factor;
   4577 }
   4578 
   4579 unsigned LoopVectorizationCostModel::getWidestType() {
   4580   unsigned MaxWidth = 8;
   4581   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
   4582 
   4583   // For each block.
   4584   for (Loop::block_iterator bb = TheLoop->block_begin(),
   4585        be = TheLoop->block_end(); bb != be; ++bb) {
   4586     BasicBlock *BB = *bb;
   4587 
   4588     // For each instruction in the loop.
   4589     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   4590       Type *T = it->getType();
   4591 
   4592       // Ignore ephemeral values.
   4593       if (EphValues.count(it))
   4594         continue;
   4595 
   4596       // Only examine Loads, Stores and PHINodes.
   4597       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
   4598         continue;
   4599 
   4600       // Examine PHI nodes that are reduction variables.
   4601       if (PHINode *PN = dyn_cast<PHINode>(it))
   4602         if (!Legal->getReductionVars()->count(PN))
   4603           continue;
   4604 
   4605       // Examine the stored values.
   4606       if (StoreInst *ST = dyn_cast<StoreInst>(it))
   4607         T = ST->getValueOperand()->getType();
   4608 
   4609       // Ignore loaded pointer types and stored pointer types that are not
   4610       // consecutive. However, we do want to take consecutive stores/loads of
   4611       // pointer vectors into account.
   4612       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
   4613         continue;
   4614 
   4615       MaxWidth = std::max(MaxWidth,
   4616                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
   4617     }
   4618   }
   4619 
   4620   return MaxWidth;
   4621 }
   4622 
   4623 unsigned
   4624 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
   4625                                                unsigned VF,
   4626                                                unsigned LoopCost) {
   4627 
   4628   // -- The unroll heuristics --
   4629   // We unroll the loop in order to expose ILP and reduce the loop overhead.
   4630   // There are many micro-architectural considerations that we can't predict
   4631   // at this level. For example, frontend pressure (on decode or fetch) due to
   4632   // code size, or the number and capabilities of the execution ports.
   4633   //
   4634   // We use the following heuristics to select the unroll factor:
   4635   // 1. If the code has reductions, then we unroll in order to break the cross
   4636   // iteration dependency.
   4637   // 2. If the loop is really small, then we unroll in order to reduce the loop
   4638   // overhead.
   4639   // 3. We don't unroll if we think that we will spill registers to memory due
   4640   // to the increased register pressure.
   4641 
   4642   // Use the user preference, unless 'auto' is selected.
   4643   int UserUF = Hints->getInterleave();
   4644   if (UserUF != 0)
   4645     return UserUF;
   4646 
   4647   // When we optimize for size, we don't unroll.
   4648   if (OptForSize)
   4649     return 1;
   4650 
   4651   // We used the distance for the unroll factor.
   4652   if (Legal->getMaxSafeDepDistBytes() != -1U)
   4653     return 1;
   4654 
   4655   // Do not unroll loops with a relatively small trip count.
   4656   unsigned TC = SE->getSmallConstantTripCount(TheLoop);
   4657   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
   4658     return 1;
   4659 
   4660   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
   4661   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
   4662         " registers\n");
   4663 
   4664   if (VF == 1) {
   4665     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
   4666       TargetNumRegisters = ForceTargetNumScalarRegs;
   4667   } else {
   4668     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
   4669       TargetNumRegisters = ForceTargetNumVectorRegs;
   4670   }
   4671 
   4672   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
   4673   // We divide by these constants so assume that we have at least one
   4674   // instruction that uses at least one register.
   4675   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
   4676   R.NumInstructions = std::max(R.NumInstructions, 1U);
   4677 
   4678   // We calculate the unroll factor using the following formula.
   4679   // Subtract the number of loop invariants from the number of available
   4680   // registers. These registers are used by all of the unrolled instances.
   4681   // Next, divide the remaining registers by the number of registers that is
   4682   // required by the loop, in order to estimate how many parallel instances
   4683   // fit without causing spills. All of this is rounded down if necessary to be
   4684   // a power of two. We want power of two unroll factors to simplify any
   4685   // addressing operations or alignment considerations.
   4686   unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
   4687                               R.MaxLocalUsers);
   4688 
   4689   // Don't count the induction variable as unrolled.
   4690   if (EnableIndVarRegisterHeur)
   4691     UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
   4692                        std::max(1U, (R.MaxLocalUsers - 1)));
   4693 
   4694   // Clamp the unroll factor ranges to reasonable factors.
   4695   unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
   4696 
   4697   // Check if the user has overridden the unroll max.
   4698   if (VF == 1) {
   4699     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
   4700       MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
   4701   } else {
   4702     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
   4703       MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
   4704   }
   4705 
   4706   // If we did not calculate the cost for VF (because the user selected the VF)
   4707   // then we calculate the cost of VF here.
   4708   if (LoopCost == 0)
   4709     LoopCost = expectedCost(VF);
   4710 
   4711   // Clamp the calculated UF to be between the 1 and the max unroll factor
   4712   // that the target allows.
   4713   if (UF > MaxInterleaveSize)
   4714     UF = MaxInterleaveSize;
   4715   else if (UF < 1)
   4716     UF = 1;
   4717 
   4718   // Unroll if we vectorized this loop and there is a reduction that could
   4719   // benefit from unrolling.
   4720   if (VF > 1 && Legal->getReductionVars()->size()) {
   4721     DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
   4722     return UF;
   4723   }
   4724 
   4725   // Note that if we've already vectorized the loop we will have done the
   4726   // runtime check and so unrolling won't require further checks.
   4727   bool UnrollingRequiresRuntimePointerCheck =
   4728       (VF == 1 && Legal->getRuntimePointerCheck()->Need);
   4729 
   4730   // We want to unroll small loops in order to reduce the loop overhead and
   4731   // potentially expose ILP opportunities.
   4732   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
   4733   if (!UnrollingRequiresRuntimePointerCheck &&
   4734       LoopCost < SmallLoopCost) {
   4735     // We assume that the cost overhead is 1 and we use the cost model
   4736     // to estimate the cost of the loop and unroll until the cost of the
   4737     // loop overhead is about 5% of the cost of the loop.
   4738     unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
   4739 
   4740     // Unroll until store/load ports (estimated by max unroll factor) are
   4741     // saturated.
   4742     unsigned NumStores = Legal->getNumStores();
   4743     unsigned NumLoads = Legal->getNumLoads();
   4744     unsigned StoresUF = UF / (NumStores ? NumStores : 1);
   4745     unsigned LoadsUF = UF /  (NumLoads ? NumLoads : 1);
   4746 
   4747     // If we have a scalar reduction (vector reductions are already dealt with
   4748     // by this point), we can increase the critical path length if the loop
   4749     // we're unrolling is inside another loop. Limit, by default to 2, so the
   4750     // critical path only gets increased by one reduction operation.
   4751     if (Legal->getReductionVars()->size() &&
   4752         TheLoop->getLoopDepth() > 1) {
   4753       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
   4754       SmallUF = std::min(SmallUF, F);
   4755       StoresUF = std::min(StoresUF, F);
   4756       LoadsUF = std::min(LoadsUF, F);
   4757     }
   4758 
   4759     if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
   4760       DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
   4761       return std::max(StoresUF, LoadsUF);
   4762     }
   4763 
   4764     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
   4765     return SmallUF;
   4766   }
   4767 
   4768   // Unroll if this is a large loop (small loops are already dealt with by this
   4769   // point) that could benefit from interleaved unrolling.
   4770   bool HasReductions = (Legal->getReductionVars()->size() > 0);
   4771   if (TTI.enableAggressiveInterleaving(HasReductions)) {
   4772     DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n");
   4773     return UF;
   4774   }
   4775 
   4776   DEBUG(dbgs() << "LV: Not Unrolling.\n");
   4777   return 1;
   4778 }
   4779 
   4780 LoopVectorizationCostModel::RegisterUsage
   4781 LoopVectorizationCostModel::calculateRegisterUsage() {
   4782   // This function calculates the register usage by measuring the highest number
   4783   // of values that are alive at a single location. Obviously, this is a very
   4784   // rough estimation. We scan the loop in a topological order in order and
   4785   // assign a number to each instruction. We use RPO to ensure that defs are
   4786   // met before their users. We assume that each instruction that has in-loop
   4787   // users starts an interval. We record every time that an in-loop value is
   4788   // used, so we have a list of the first and last occurrences of each
   4789   // instruction. Next, we transpose this data structure into a multi map that
   4790   // holds the list of intervals that *end* at a specific location. This multi
   4791   // map allows us to perform a linear search. We scan the instructions linearly
   4792   // and record each time that a new interval starts, by placing it in a set.
   4793   // If we find this value in the multi-map then we remove it from the set.
   4794   // The max register usage is the maximum size of the set.
   4795   // We also search for instructions that are defined outside the loop, but are
   4796   // used inside the loop. We need this number separately from the max-interval
   4797   // usage number because when we unroll, loop-invariant values do not take
   4798   // more register.
   4799   LoopBlocksDFS DFS(TheLoop);
   4800   DFS.perform(LI);
   4801 
   4802   RegisterUsage R;
   4803   R.NumInstructions = 0;
   4804 
   4805   // Each 'key' in the map opens a new interval. The values
   4806   // of the map are the index of the 'last seen' usage of the
   4807   // instruction that is the key.
   4808   typedef DenseMap<Instruction*, unsigned> IntervalMap;
   4809   // Maps instruction to its index.
   4810   DenseMap<unsigned, Instruction*> IdxToInstr;
   4811   // Marks the end of each interval.
   4812   IntervalMap EndPoint;
   4813   // Saves the list of instruction indices that are used in the loop.
   4814   SmallSet<Instruction*, 8> Ends;
   4815   // Saves the list of values that are used in the loop but are
   4816   // defined outside the loop, such as arguments and constants.
   4817   SmallPtrSet<Value*, 8> LoopInvariants;
   4818 
   4819   unsigned Index = 0;
   4820   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
   4821        be = DFS.endRPO(); bb != be; ++bb) {
   4822     R.NumInstructions += (*bb)->size();
   4823     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
   4824          ++it) {
   4825       Instruction *I = it;
   4826       IdxToInstr[Index++] = I;
   4827 
   4828       // Save the end location of each USE.
   4829       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   4830         Value *U = I->getOperand(i);
   4831         Instruction *Instr = dyn_cast<Instruction>(U);
   4832 
   4833         // Ignore non-instruction values such as arguments, constants, etc.
   4834         if (!Instr) continue;
   4835 
   4836         // If this instruction is outside the loop then record it and continue.
   4837         if (!TheLoop->contains(Instr)) {
   4838           LoopInvariants.insert(Instr);
   4839           continue;
   4840         }
   4841 
   4842         // Overwrite previous end points.
   4843         EndPoint[Instr] = Index;
   4844         Ends.insert(Instr);
   4845       }
   4846     }
   4847   }
   4848 
   4849   // Saves the list of intervals that end with the index in 'key'.
   4850   typedef SmallVector<Instruction*, 2> InstrList;
   4851   DenseMap<unsigned, InstrList> TransposeEnds;
   4852 
   4853   // Transpose the EndPoints to a list of values that end at each index.
   4854   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
   4855        it != e; ++it)
   4856     TransposeEnds[it->second].push_back(it->first);
   4857 
   4858   SmallSet<Instruction*, 8> OpenIntervals;
   4859   unsigned MaxUsage = 0;
   4860 
   4861 
   4862   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
   4863   for (unsigned int i = 0; i < Index; ++i) {
   4864     Instruction *I = IdxToInstr[i];
   4865     // Ignore instructions that are never used within the loop.
   4866     if (!Ends.count(I)) continue;
   4867 
   4868     // Ignore ephemeral values.
   4869     if (EphValues.count(I))
   4870       continue;
   4871 
   4872     // Remove all of the instructions that end at this location.
   4873     InstrList &List = TransposeEnds[i];
   4874     for (unsigned int j=0, e = List.size(); j < e; ++j)
   4875       OpenIntervals.erase(List[j]);
   4876 
   4877     // Count the number of live interals.
   4878     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
   4879 
   4880     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
   4881           OpenIntervals.size() << '\n');
   4882 
   4883     // Add the current instruction to the list of open intervals.
   4884     OpenIntervals.insert(I);
   4885   }
   4886 
   4887   unsigned Invariant = LoopInvariants.size();
   4888   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
   4889   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
   4890   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
   4891 
   4892   R.LoopInvariantRegs = Invariant;
   4893   R.MaxLocalUsers = MaxUsage;
   4894   return R;
   4895 }
   4896 
   4897 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
   4898   unsigned Cost = 0;
   4899 
   4900   // For each block.
   4901   for (Loop::block_iterator bb = TheLoop->block_begin(),
   4902        be = TheLoop->block_end(); bb != be; ++bb) {
   4903     unsigned BlockCost = 0;
   4904     BasicBlock *BB = *bb;
   4905 
   4906     // For each instruction in the old loop.
   4907     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   4908       // Skip dbg intrinsics.
   4909       if (isa<DbgInfoIntrinsic>(it))
   4910         continue;
   4911 
   4912       // Ignore ephemeral values.
   4913       if (EphValues.count(it))
   4914         continue;
   4915 
   4916       unsigned C = getInstructionCost(it, VF);
   4917 
   4918       // Check if we should override the cost.
   4919       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
   4920         C = ForceTargetInstructionCost;
   4921 
   4922       BlockCost += C;
   4923       DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
   4924             VF << " For instruction: " << *it << '\n');
   4925     }
   4926 
   4927     // We assume that if-converted blocks have a 50% chance of being executed.
   4928     // When the code is scalar then some of the blocks are avoided due to CF.
   4929     // When the code is vectorized we execute all code paths.
   4930     if (VF == 1 && Legal->blockNeedsPredication(*bb))
   4931       BlockCost /= 2;
   4932 
   4933     Cost += BlockCost;
   4934   }
   4935 
   4936   return Cost;
   4937 }
   4938 
   4939 /// \brief Check whether the address computation for a non-consecutive memory
   4940 /// access looks like an unlikely candidate for being merged into the indexing
   4941 /// mode.
   4942 ///
   4943 /// We look for a GEP which has one index that is an induction variable and all
   4944 /// other indices are loop invariant. If the stride of this access is also
   4945 /// within a small bound we decide that this address computation can likely be
   4946 /// merged into the addressing mode.
   4947 /// In all other cases, we identify the address computation as complex.
   4948 static bool isLikelyComplexAddressComputation(Value *Ptr,
   4949                                               LoopVectorizationLegality *Legal,
   4950                                               ScalarEvolution *SE,
   4951                                               const Loop *TheLoop) {
   4952   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
   4953   if (!Gep)
   4954     return true;
   4955 
   4956   // We are looking for a gep with all loop invariant indices except for one
   4957   // which should be an induction variable.
   4958   unsigned NumOperands = Gep->getNumOperands();
   4959   for (unsigned i = 1; i < NumOperands; ++i) {
   4960     Value *Opd = Gep->getOperand(i);
   4961     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
   4962         !Legal->isInductionVariable(Opd))
   4963       return true;
   4964   }
   4965 
   4966   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
   4967   // can likely be merged into the address computation.
   4968   unsigned MaxMergeDistance = 64;
   4969 
   4970   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
   4971   if (!AddRec)
   4972     return true;
   4973 
   4974   // Check the step is constant.
   4975   const SCEV *Step = AddRec->getStepRecurrence(*SE);
   4976   // Calculate the pointer stride and check if it is consecutive.
   4977   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
   4978   if (!C)
   4979     return true;
   4980 
   4981   const APInt &APStepVal = C->getValue()->getValue();
   4982 
   4983   // Huge step value - give up.
   4984   if (APStepVal.getBitWidth() > 64)
   4985     return true;
   4986 
   4987   int64_t StepVal = APStepVal.getSExtValue();
   4988 
   4989   return StepVal > MaxMergeDistance;
   4990 }
   4991 
   4992 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
   4993   if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
   4994     return true;
   4995   return false;
   4996 }
   4997 
   4998 unsigned
   4999 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
   5000   // If we know that this instruction will remain uniform, check the cost of
   5001   // the scalar version.
   5002   if (Legal->isUniformAfterVectorization(I))
   5003     VF = 1;
   5004 
   5005   Type *RetTy = I->getType();
   5006   Type *VectorTy = ToVectorTy(RetTy, VF);
   5007 
   5008   // TODO: We need to estimate the cost of intrinsic calls.
   5009   switch (I->getOpcode()) {
   5010   case Instruction::GetElementPtr:
   5011     // We mark this instruction as zero-cost because the cost of GEPs in
   5012     // vectorized code depends on whether the corresponding memory instruction
   5013     // is scalarized or not. Therefore, we handle GEPs with the memory
   5014     // instruction cost.
   5015     return 0;
   5016   case Instruction::Br: {
   5017     return TTI.getCFInstrCost(I->getOpcode());
   5018   }
   5019   case Instruction::PHI:
   5020     //TODO: IF-converted IFs become selects.
   5021     return 0;
   5022   case Instruction::Add:
   5023   case Instruction::FAdd:
   5024   case Instruction::Sub:
   5025   case Instruction::FSub:
   5026   case Instruction::Mul:
   5027   case Instruction::FMul:
   5028   case Instruction::UDiv:
   5029   case Instruction::SDiv:
   5030   case Instruction::FDiv:
   5031   case Instruction::URem:
   5032   case Instruction::SRem:
   5033   case Instruction::FRem:
   5034   case Instruction::Shl:
   5035   case Instruction::LShr:
   5036   case Instruction::AShr:
   5037   case Instruction::And:
   5038   case Instruction::Or:
   5039   case Instruction::Xor: {
   5040     // Since we will replace the stride by 1 the multiplication should go away.
   5041     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
   5042       return 0;
   5043     // Certain instructions can be cheaper to vectorize if they have a constant
   5044     // second vector operand. One example of this are shifts on x86.
   5045     TargetTransformInfo::OperandValueKind Op1VK =
   5046       TargetTransformInfo::OK_AnyValue;
   5047     TargetTransformInfo::OperandValueKind Op2VK =
   5048       TargetTransformInfo::OK_AnyValue;
   5049     TargetTransformInfo::OperandValueProperties Op1VP =
   5050         TargetTransformInfo::OP_None;
   5051     TargetTransformInfo::OperandValueProperties Op2VP =
   5052         TargetTransformInfo::OP_None;
   5053     Value *Op2 = I->getOperand(1);
   5054 
   5055     // Check for a splat of a constant or for a non uniform vector of constants.
   5056     if (isa<ConstantInt>(Op2)) {
   5057       ConstantInt *CInt = cast<ConstantInt>(Op2);
   5058       if (CInt && CInt->getValue().isPowerOf2())
   5059         Op2VP = TargetTransformInfo::OP_PowerOf2;
   5060       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
   5061     } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
   5062       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
   5063       Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
   5064       if (SplatValue) {
   5065         ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
   5066         if (CInt && CInt->getValue().isPowerOf2())
   5067           Op2VP = TargetTransformInfo::OP_PowerOf2;
   5068         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
   5069       }
   5070     }
   5071 
   5072     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
   5073                                       Op1VP, Op2VP);
   5074   }
   5075   case Instruction::Select: {
   5076     SelectInst *SI = cast<SelectInst>(I);
   5077     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
   5078     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
   5079     Type *CondTy = SI->getCondition()->getType();
   5080     if (!ScalarCond)
   5081       CondTy = VectorType::get(CondTy, VF);
   5082 
   5083     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
   5084   }
   5085   case Instruction::ICmp:
   5086   case Instruction::FCmp: {
   5087     Type *ValTy = I->getOperand(0)->getType();
   5088     VectorTy = ToVectorTy(ValTy, VF);
   5089     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
   5090   }
   5091   case Instruction::Store:
   5092   case Instruction::Load: {
   5093     StoreInst *SI = dyn_cast<StoreInst>(I);
   5094     LoadInst *LI = dyn_cast<LoadInst>(I);
   5095     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
   5096                    LI->getType());
   5097     VectorTy = ToVectorTy(ValTy, VF);
   5098 
   5099     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
   5100     unsigned AS = SI ? SI->getPointerAddressSpace() :
   5101       LI->getPointerAddressSpace();
   5102     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
   5103     // We add the cost of address computation here instead of with the gep
   5104     // instruction because only here we know whether the operation is
   5105     // scalarized.
   5106     if (VF == 1)
   5107       return TTI.getAddressComputationCost(VectorTy) +
   5108         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
   5109 
   5110     // Scalarized loads/stores.
   5111     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
   5112     bool Reverse = ConsecutiveStride < 0;
   5113     const DataLayout &DL = I->getModule()->getDataLayout();
   5114     unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
   5115     unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
   5116     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
   5117       bool IsComplexComputation =
   5118         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
   5119       unsigned Cost = 0;
   5120       // The cost of extracting from the value vector and pointer vector.
   5121       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
   5122       for (unsigned i = 0; i < VF; ++i) {
   5123         //  The cost of extracting the pointer operand.
   5124         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
   5125         // In case of STORE, the cost of ExtractElement from the vector.
   5126         // In case of LOAD, the cost of InsertElement into the returned
   5127         // vector.
   5128         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
   5129                                             Instruction::InsertElement,
   5130                                             VectorTy, i);
   5131       }
   5132 
   5133       // The cost of the scalar loads/stores.
   5134       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
   5135       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
   5136                                        Alignment, AS);
   5137       return Cost;
   5138     }
   5139 
   5140     // Wide load/stores.
   5141     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
   5142     if (Legal->isMaskRequired(I))
   5143       Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment,
   5144                                         AS);
   5145     else
   5146       Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
   5147 
   5148     if (Reverse)
   5149       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
   5150                                   VectorTy, 0);
   5151     return Cost;
   5152   }
   5153   case Instruction::ZExt:
   5154   case Instruction::SExt:
   5155   case Instruction::FPToUI:
   5156   case Instruction::FPToSI:
   5157   case Instruction::FPExt:
   5158   case Instruction::PtrToInt:
   5159   case Instruction::IntToPtr:
   5160   case Instruction::SIToFP:
   5161   case Instruction::UIToFP:
   5162   case Instruction::Trunc:
   5163   case Instruction::FPTrunc:
   5164   case Instruction::BitCast: {
   5165     // We optimize the truncation of induction variable.
   5166     // The cost of these is the same as the scalar operation.
   5167     if (I->getOpcode() == Instruction::Trunc &&
   5168         Legal->isInductionVariable(I->getOperand(0)))
   5169       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
   5170                                   I->getOperand(0)->getType());
   5171 
   5172     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
   5173     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
   5174   }
   5175   case Instruction::Call: {
   5176     bool NeedToScalarize;
   5177     CallInst *CI = cast<CallInst>(I);
   5178     unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
   5179     if (getIntrinsicIDForCall(CI, TLI))
   5180       return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
   5181     return CallCost;
   5182   }
   5183   default: {
   5184     // We are scalarizing the instruction. Return the cost of the scalar
   5185     // instruction, plus the cost of insert and extract into vector
   5186     // elements, times the vector width.
   5187     unsigned Cost = 0;
   5188 
   5189     if (!RetTy->isVoidTy() && VF != 1) {
   5190       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
   5191                                                 VectorTy);
   5192       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
   5193                                                 VectorTy);
   5194 
   5195       // The cost of inserting the results plus extracting each one of the
   5196       // operands.
   5197       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
   5198     }
   5199 
   5200     // The cost of executing VF copies of the scalar instruction. This opcode
   5201     // is unknown. Assume that it is the same as 'mul'.
   5202     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
   5203     return Cost;
   5204   }
   5205   }// end of switch.
   5206 }
   5207 
   5208 char LoopVectorize::ID = 0;
   5209 static const char lv_name[] = "Loop Vectorization";
   5210 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
   5211 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   5212 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
   5213 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   5214 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
   5215 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   5216 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   5217 INITIALIZE_PASS_DEPENDENCY(LCSSA)
   5218 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   5219 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   5220 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
   5221 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
   5222 
   5223 namespace llvm {
   5224   Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
   5225     return new LoopVectorize(NoUnrolling, AlwaysVectorize);
   5226   }
   5227 }
   5228 
   5229 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
   5230   // Check for a store.
   5231   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
   5232     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
   5233 
   5234   // Check for a load.
   5235   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
   5236     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
   5237 
   5238   return false;
   5239 }
   5240 
   5241 
   5242 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
   5243                                              bool IfPredicateStore) {
   5244   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
   5245   // Holds vector parameters or scalars, in case of uniform vals.
   5246   SmallVector<VectorParts, 4> Params;
   5247 
   5248   setDebugLocFromInst(Builder, Instr);
   5249 
   5250   // Find all of the vectorized parameters.
   5251   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   5252     Value *SrcOp = Instr->getOperand(op);
   5253 
   5254     // If we are accessing the old induction variable, use the new one.
   5255     if (SrcOp == OldInduction) {
   5256       Params.push_back(getVectorValue(SrcOp));
   5257       continue;
   5258     }
   5259 
   5260     // Try using previously calculated values.
   5261     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
   5262 
   5263     // If the src is an instruction that appeared earlier in the basic block
   5264     // then it should already be vectorized.
   5265     if (SrcInst && OrigLoop->contains(SrcInst)) {
   5266       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
   5267       // The parameter is a vector value from earlier.
   5268       Params.push_back(WidenMap.get(SrcInst));
   5269     } else {
   5270       // The parameter is a scalar from outside the loop. Maybe even a constant.
   5271       VectorParts Scalars;
   5272       Scalars.append(UF, SrcOp);
   5273       Params.push_back(Scalars);
   5274     }
   5275   }
   5276 
   5277   assert(Params.size() == Instr->getNumOperands() &&
   5278          "Invalid number of operands");
   5279 
   5280   // Does this instruction return a value ?
   5281   bool IsVoidRetTy = Instr->getType()->isVoidTy();
   5282 
   5283   Value *UndefVec = IsVoidRetTy ? nullptr :
   5284   UndefValue::get(Instr->getType());
   5285   // Create a new entry in the WidenMap and initialize it to Undef or Null.
   5286   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
   5287 
   5288   Instruction *InsertPt = Builder.GetInsertPoint();
   5289   BasicBlock *IfBlock = Builder.GetInsertBlock();
   5290   BasicBlock *CondBlock = nullptr;
   5291 
   5292   VectorParts Cond;
   5293   Loop *VectorLp = nullptr;
   5294   if (IfPredicateStore) {
   5295     assert(Instr->getParent()->getSinglePredecessor() &&
   5296            "Only support single predecessor blocks");
   5297     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
   5298                           Instr->getParent());
   5299     VectorLp = LI->getLoopFor(IfBlock);
   5300     assert(VectorLp && "Must have a loop for this block");
   5301   }
   5302 
   5303   // For each vector unroll 'part':
   5304   for (unsigned Part = 0; Part < UF; ++Part) {
   5305     // For each scalar that we create:
   5306 
   5307     // Start an "if (pred) a[i] = ..." block.
   5308     Value *Cmp = nullptr;
   5309     if (IfPredicateStore) {
   5310       if (Cond[Part]->getType()->isVectorTy())
   5311         Cond[Part] =
   5312             Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
   5313       Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
   5314                                ConstantInt::get(Cond[Part]->getType(), 1));
   5315       CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
   5316       LoopVectorBody.push_back(CondBlock);
   5317       VectorLp->addBasicBlockToLoop(CondBlock, *LI);
   5318       // Update Builder with newly created basic block.
   5319       Builder.SetInsertPoint(InsertPt);
   5320     }
   5321 
   5322     Instruction *Cloned = Instr->clone();
   5323       if (!IsVoidRetTy)
   5324         Cloned->setName(Instr->getName() + ".cloned");
   5325       // Replace the operands of the cloned instructions with extracted scalars.
   5326       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
   5327         Value *Op = Params[op][Part];
   5328         Cloned->setOperand(op, Op);
   5329       }
   5330 
   5331       // Place the cloned scalar in the new loop.
   5332       Builder.Insert(Cloned);
   5333 
   5334       // If the original scalar returns a value we need to place it in a vector
   5335       // so that future users will be able to use it.
   5336       if (!IsVoidRetTy)
   5337         VecResults[Part] = Cloned;
   5338 
   5339     // End if-block.
   5340       if (IfPredicateStore) {
   5341         BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
   5342         LoopVectorBody.push_back(NewIfBlock);
   5343         VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
   5344         Builder.SetInsertPoint(InsertPt);
   5345         Instruction *OldBr = IfBlock->getTerminator();
   5346         BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
   5347         OldBr->eraseFromParent();
   5348         IfBlock = NewIfBlock;
   5349       }
   5350   }
   5351 }
   5352 
   5353 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
   5354   StoreInst *SI = dyn_cast<StoreInst>(Instr);
   5355   bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
   5356 
   5357   return scalarizeInstruction(Instr, IfPredicateStore);
   5358 }
   5359 
   5360 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
   5361   return Vec;
   5362 }
   5363 
   5364 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
   5365   return V;
   5366 }
   5367 
   5368 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
   5369   // When unrolling and the VF is 1, we only need to add a simple scalar.
   5370   Type *ITy = Val->getType();
   5371   assert(!ITy->isVectorTy() && "Val must be a scalar");
   5372   Constant *C = ConstantInt::get(ITy, StartIdx);
   5373   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
   5374 }
   5375