Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution expander,
     11 // which is used to generate the code corresponding to a given scalar evolution
     12 // expression.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/TargetTransformInfo.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/IR/Module.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 
     30 using namespace llvm;
     31 
     32 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
     33 /// reusing an existing cast if a suitable one exists, moving an existing
     34 /// cast if a suitable one exists but isn't in the right place, or
     35 /// creating a new one.
     36 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
     37                                        Instruction::CastOps Op,
     38                                        BasicBlock::iterator IP) {
     39   // This function must be called with the builder having a valid insertion
     40   // point. It doesn't need to be the actual IP where the uses of the returned
     41   // cast will be added, but it must dominate such IP.
     42   // We use this precondition to produce a cast that will dominate all its
     43   // uses. In particular, this is crucial for the case where the builder's
     44   // insertion point *is* the point where we were asked to put the cast.
     45   // Since we don't know the builder's insertion point is actually
     46   // where the uses will be added (only that it dominates it), we are
     47   // not allowed to move it.
     48   BasicBlock::iterator BIP = Builder.GetInsertPoint();
     49 
     50   Instruction *Ret = nullptr;
     51 
     52   // Check to see if there is already a cast!
     53   for (User *U : V->users())
     54     if (U->getType() == Ty)
     55       if (CastInst *CI = dyn_cast<CastInst>(U))
     56         if (CI->getOpcode() == Op) {
     57           // If the cast isn't where we want it, create a new cast at IP.
     58           // Likewise, do not reuse a cast at BIP because it must dominate
     59           // instructions that might be inserted before BIP.
     60           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
     61             // Create a new cast, and leave the old cast in place in case
     62             // it is being used as an insert point. Clear its operand
     63             // so that it doesn't hold anything live.
     64             Ret = CastInst::Create(Op, V, Ty, "", IP);
     65             Ret->takeName(CI);
     66             CI->replaceAllUsesWith(Ret);
     67             CI->setOperand(0, UndefValue::get(V->getType()));
     68             break;
     69           }
     70           Ret = CI;
     71           break;
     72         }
     73 
     74   // Create a new cast.
     75   if (!Ret)
     76     Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
     77 
     78   // We assert at the end of the function since IP might point to an
     79   // instruction with different dominance properties than a cast
     80   // (an invoke for example) and not dominate BIP (but the cast does).
     81   assert(SE.DT->dominates(Ret, BIP));
     82 
     83   rememberInstruction(Ret);
     84   return Ret;
     85 }
     86 
     87 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
     88 /// which must be possible with a noop cast, doing what we can to share
     89 /// the casts.
     90 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
     91   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
     92   assert((Op == Instruction::BitCast ||
     93           Op == Instruction::PtrToInt ||
     94           Op == Instruction::IntToPtr) &&
     95          "InsertNoopCastOfTo cannot perform non-noop casts!");
     96   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
     97          "InsertNoopCastOfTo cannot change sizes!");
     98 
     99   // Short-circuit unnecessary bitcasts.
    100   if (Op == Instruction::BitCast) {
    101     if (V->getType() == Ty)
    102       return V;
    103     if (CastInst *CI = dyn_cast<CastInst>(V)) {
    104       if (CI->getOperand(0)->getType() == Ty)
    105         return CI->getOperand(0);
    106     }
    107   }
    108   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
    109   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
    110       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    111     if (CastInst *CI = dyn_cast<CastInst>(V))
    112       if ((CI->getOpcode() == Instruction::PtrToInt ||
    113            CI->getOpcode() == Instruction::IntToPtr) &&
    114           SE.getTypeSizeInBits(CI->getType()) ==
    115           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
    116         return CI->getOperand(0);
    117     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    118       if ((CE->getOpcode() == Instruction::PtrToInt ||
    119            CE->getOpcode() == Instruction::IntToPtr) &&
    120           SE.getTypeSizeInBits(CE->getType()) ==
    121           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
    122         return CE->getOperand(0);
    123   }
    124 
    125   // Fold a cast of a constant.
    126   if (Constant *C = dyn_cast<Constant>(V))
    127     return ConstantExpr::getCast(Op, C, Ty);
    128 
    129   // Cast the argument at the beginning of the entry block, after
    130   // any bitcasts of other arguments.
    131   if (Argument *A = dyn_cast<Argument>(V)) {
    132     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    133     while ((isa<BitCastInst>(IP) &&
    134             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
    135             cast<BitCastInst>(IP)->getOperand(0) != A) ||
    136            isa<DbgInfoIntrinsic>(IP) ||
    137            isa<LandingPadInst>(IP))
    138       ++IP;
    139     return ReuseOrCreateCast(A, Ty, Op, IP);
    140   }
    141 
    142   // Cast the instruction immediately after the instruction.
    143   Instruction *I = cast<Instruction>(V);
    144   BasicBlock::iterator IP = I; ++IP;
    145   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    146     IP = II->getNormalDest()->begin();
    147   while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
    148     ++IP;
    149   return ReuseOrCreateCast(I, Ty, Op, IP);
    150 }
    151 
    152 /// InsertBinop - Insert the specified binary operator, doing a small amount
    153 /// of work to avoid inserting an obviously redundant operation.
    154 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
    155                                  Value *LHS, Value *RHS) {
    156   // Fold a binop with constant operands.
    157   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    158     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    159       return ConstantExpr::get(Opcode, CLHS, CRHS);
    160 
    161   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
    162   unsigned ScanLimit = 6;
    163   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    164   // Scanning starts from the last instruction before the insertion point.
    165   BasicBlock::iterator IP = Builder.GetInsertPoint();
    166   if (IP != BlockBegin) {
    167     --IP;
    168     for (; ScanLimit; --IP, --ScanLimit) {
    169       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    170       // generated code.
    171       if (isa<DbgInfoIntrinsic>(IP))
    172         ScanLimit++;
    173       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
    174           IP->getOperand(1) == RHS)
    175         return IP;
    176       if (IP == BlockBegin) break;
    177     }
    178   }
    179 
    180   // Save the original insertion point so we can restore it when we're done.
    181   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
    182   BuilderType::InsertPointGuard Guard(Builder);
    183 
    184   // Move the insertion point out of as many loops as we can.
    185   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    186     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    187     BasicBlock *Preheader = L->getLoopPreheader();
    188     if (!Preheader) break;
    189 
    190     // Ok, move up a level.
    191     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    192   }
    193 
    194   // If we haven't found this binop, insert it.
    195   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
    196   BO->setDebugLoc(Loc);
    197   rememberInstruction(BO);
    198 
    199   return BO;
    200 }
    201 
    202 /// FactorOutConstant - Test if S is divisible by Factor, using signed
    203 /// division. If so, update S with Factor divided out and return true.
    204 /// S need not be evenly divisible if a reasonable remainder can be
    205 /// computed.
    206 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
    207 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
    208 /// check to see if the divide was folded.
    209 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
    210                               const SCEV *Factor, ScalarEvolution &SE,
    211                               const DataLayout &DL) {
    212   // Everything is divisible by one.
    213   if (Factor->isOne())
    214     return true;
    215 
    216   // x/x == 1.
    217   if (S == Factor) {
    218     S = SE.getConstant(S->getType(), 1);
    219     return true;
    220   }
    221 
    222   // For a Constant, check for a multiple of the given factor.
    223   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    224     // 0/x == 0.
    225     if (C->isZero())
    226       return true;
    227     // Check for divisibility.
    228     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
    229       ConstantInt *CI =
    230         ConstantInt::get(SE.getContext(),
    231                          C->getValue()->getValue().sdiv(
    232                                                    FC->getValue()->getValue()));
    233       // If the quotient is zero and the remainder is non-zero, reject
    234       // the value at this scale. It will be considered for subsequent
    235       // smaller scales.
    236       if (!CI->isZero()) {
    237         const SCEV *Div = SE.getConstant(CI);
    238         S = Div;
    239         Remainder =
    240           SE.getAddExpr(Remainder,
    241                         SE.getConstant(C->getValue()->getValue().srem(
    242                                                   FC->getValue()->getValue())));
    243         return true;
    244       }
    245     }
    246   }
    247 
    248   // In a Mul, check if there is a constant operand which is a multiple
    249   // of the given factor.
    250   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    251     // Size is known, check if there is a constant operand which is a multiple
    252     // of the given factor. If so, we can factor it.
    253     const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    254     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
    255       if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
    256         SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    257         NewMulOps[0] = SE.getConstant(
    258             C->getValue()->getValue().sdiv(FC->getValue()->getValue()));
    259         S = SE.getMulExpr(NewMulOps);
    260         return true;
    261       }
    262   }
    263 
    264   // In an AddRec, check if both start and step are divisible.
    265   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    266     const SCEV *Step = A->getStepRecurrence(SE);
    267     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    268     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
    269       return false;
    270     if (!StepRem->isZero())
    271       return false;
    272     const SCEV *Start = A->getStart();
    273     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
    274       return false;
    275     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
    276                          A->getNoWrapFlags(SCEV::FlagNW));
    277     return true;
    278   }
    279 
    280   return false;
    281 }
    282 
    283 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
    284 /// is the number of SCEVAddRecExprs present, which are kept at the end of
    285 /// the list.
    286 ///
    287 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
    288                                 Type *Ty,
    289                                 ScalarEvolution &SE) {
    290   unsigned NumAddRecs = 0;
    291   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    292     ++NumAddRecs;
    293   // Group Ops into non-addrecs and addrecs.
    294   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
    295   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
    296   // Let ScalarEvolution sort and simplify the non-addrecs list.
    297   const SCEV *Sum = NoAddRecs.empty() ?
    298                     SE.getConstant(Ty, 0) :
    299                     SE.getAddExpr(NoAddRecs);
    300   // If it returned an add, use the operands. Otherwise it simplified
    301   // the sum into a single value, so just use that.
    302   Ops.clear();
    303   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    304     Ops.append(Add->op_begin(), Add->op_end());
    305   else if (!Sum->isZero())
    306     Ops.push_back(Sum);
    307   // Then append the addrecs.
    308   Ops.append(AddRecs.begin(), AddRecs.end());
    309 }
    310 
    311 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
    312 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
    313 /// This helps expose more opportunities for folding parts of the expressions
    314 /// into GEP indices.
    315 ///
    316 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
    317                          Type *Ty,
    318                          ScalarEvolution &SE) {
    319   // Find the addrecs.
    320   SmallVector<const SCEV *, 8> AddRecs;
    321   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    322     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
    323       const SCEV *Start = A->getStart();
    324       if (Start->isZero()) break;
    325       const SCEV *Zero = SE.getConstant(Ty, 0);
    326       AddRecs.push_back(SE.getAddRecExpr(Zero,
    327                                          A->getStepRecurrence(SE),
    328                                          A->getLoop(),
    329                                          A->getNoWrapFlags(SCEV::FlagNW)));
    330       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
    331         Ops[i] = Zero;
    332         Ops.append(Add->op_begin(), Add->op_end());
    333         e += Add->getNumOperands();
    334       } else {
    335         Ops[i] = Start;
    336       }
    337     }
    338   if (!AddRecs.empty()) {
    339     // Add the addrecs onto the end of the list.
    340     Ops.append(AddRecs.begin(), AddRecs.end());
    341     // Resort the operand list, moving any constants to the front.
    342     SimplifyAddOperands(Ops, Ty, SE);
    343   }
    344 }
    345 
    346 /// expandAddToGEP - Expand an addition expression with a pointer type into
    347 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
    348 /// BasicAliasAnalysis and other passes analyze the result. See the rules
    349 /// for getelementptr vs. inttoptr in
    350 /// http://llvm.org/docs/LangRef.html#pointeraliasing
    351 /// for details.
    352 ///
    353 /// Design note: The correctness of using getelementptr here depends on
    354 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
    355 /// they may introduce pointer arithmetic which may not be safely converted
    356 /// into getelementptr.
    357 ///
    358 /// Design note: It might seem desirable for this function to be more
    359 /// loop-aware. If some of the indices are loop-invariant while others
    360 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
    361 /// loop-invariant portions of the overall computation outside the loop.
    362 /// However, there are a few reasons this is not done here. Hoisting simple
    363 /// arithmetic is a low-level optimization that often isn't very
    364 /// important until late in the optimization process. In fact, passes
    365 /// like InstructionCombining will combine GEPs, even if it means
    366 /// pushing loop-invariant computation down into loops, so even if the
    367 /// GEPs were split here, the work would quickly be undone. The
    368 /// LoopStrengthReduction pass, which is usually run quite late (and
    369 /// after the last InstructionCombining pass), takes care of hoisting
    370 /// loop-invariant portions of expressions, after considering what
    371 /// can be folded using target addressing modes.
    372 ///
    373 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
    374                                     const SCEV *const *op_end,
    375                                     PointerType *PTy,
    376                                     Type *Ty,
    377                                     Value *V) {
    378   Type *OriginalElTy = PTy->getElementType();
    379   Type *ElTy = OriginalElTy;
    380   SmallVector<Value *, 4> GepIndices;
    381   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
    382   bool AnyNonZeroIndices = false;
    383 
    384   // Split AddRecs up into parts as either of the parts may be usable
    385   // without the other.
    386   SplitAddRecs(Ops, Ty, SE);
    387 
    388   Type *IntPtrTy = DL.getIntPtrType(PTy);
    389 
    390   // Descend down the pointer's type and attempt to convert the other
    391   // operands into GEP indices, at each level. The first index in a GEP
    392   // indexes into the array implied by the pointer operand; the rest of
    393   // the indices index into the element or field type selected by the
    394   // preceding index.
    395   for (;;) {
    396     // If the scale size is not 0, attempt to factor out a scale for
    397     // array indexing.
    398     SmallVector<const SCEV *, 8> ScaledOps;
    399     if (ElTy->isSized()) {
    400       const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
    401       if (!ElSize->isZero()) {
    402         SmallVector<const SCEV *, 8> NewOps;
    403         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    404           const SCEV *Op = Ops[i];
    405           const SCEV *Remainder = SE.getConstant(Ty, 0);
    406           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
    407             // Op now has ElSize factored out.
    408             ScaledOps.push_back(Op);
    409             if (!Remainder->isZero())
    410               NewOps.push_back(Remainder);
    411             AnyNonZeroIndices = true;
    412           } else {
    413             // The operand was not divisible, so add it to the list of operands
    414             // we'll scan next iteration.
    415             NewOps.push_back(Ops[i]);
    416           }
    417         }
    418         // If we made any changes, update Ops.
    419         if (!ScaledOps.empty()) {
    420           Ops = NewOps;
    421           SimplifyAddOperands(Ops, Ty, SE);
    422         }
    423       }
    424     }
    425 
    426     // Record the scaled array index for this level of the type. If
    427     // we didn't find any operands that could be factored, tentatively
    428     // assume that element zero was selected (since the zero offset
    429     // would obviously be folded away).
    430     Value *Scaled = ScaledOps.empty() ?
    431                     Constant::getNullValue(Ty) :
    432                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    433     GepIndices.push_back(Scaled);
    434 
    435     // Collect struct field index operands.
    436     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
    437       bool FoundFieldNo = false;
    438       // An empty struct has no fields.
    439       if (STy->getNumElements() == 0) break;
    440       // Field offsets are known. See if a constant offset falls within any of
    441       // the struct fields.
    442       if (Ops.empty())
    443         break;
    444       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
    445         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
    446           const StructLayout &SL = *DL.getStructLayout(STy);
    447           uint64_t FullOffset = C->getValue()->getZExtValue();
    448           if (FullOffset < SL.getSizeInBytes()) {
    449             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
    450             GepIndices.push_back(
    451                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
    452             ElTy = STy->getTypeAtIndex(ElIdx);
    453             Ops[0] =
    454                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
    455             AnyNonZeroIndices = true;
    456             FoundFieldNo = true;
    457           }
    458         }
    459       // If no struct field offsets were found, tentatively assume that
    460       // field zero was selected (since the zero offset would obviously
    461       // be folded away).
    462       if (!FoundFieldNo) {
    463         ElTy = STy->getTypeAtIndex(0u);
    464         GepIndices.push_back(
    465           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
    466       }
    467     }
    468 
    469     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
    470       ElTy = ATy->getElementType();
    471     else
    472       break;
    473   }
    474 
    475   // If none of the operands were convertible to proper GEP indices, cast
    476   // the base to i8* and do an ugly getelementptr with that. It's still
    477   // better than ptrtoint+arithmetic+inttoptr at least.
    478   if (!AnyNonZeroIndices) {
    479     // Cast the base to i8*.
    480     V = InsertNoopCastOfTo(V,
    481        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
    482 
    483     assert(!isa<Instruction>(V) ||
    484            SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
    485 
    486     // Expand the operands for a plain byte offset.
    487     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
    488 
    489     // Fold a GEP with constant operands.
    490     if (Constant *CLHS = dyn_cast<Constant>(V))
    491       if (Constant *CRHS = dyn_cast<Constant>(Idx))
    492         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
    493                                               CLHS, CRHS);
    494 
    495     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    496     unsigned ScanLimit = 6;
    497     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    498     // Scanning starts from the last instruction before the insertion point.
    499     BasicBlock::iterator IP = Builder.GetInsertPoint();
    500     if (IP != BlockBegin) {
    501       --IP;
    502       for (; ScanLimit; --IP, --ScanLimit) {
    503         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    504         // generated code.
    505         if (isa<DbgInfoIntrinsic>(IP))
    506           ScanLimit++;
    507         if (IP->getOpcode() == Instruction::GetElementPtr &&
    508             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
    509           return IP;
    510         if (IP == BlockBegin) break;
    511       }
    512     }
    513 
    514     // Save the original insertion point so we can restore it when we're done.
    515     BuilderType::InsertPointGuard Guard(Builder);
    516 
    517     // Move the insertion point out of as many loops as we can.
    518     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    519       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
    520       BasicBlock *Preheader = L->getLoopPreheader();
    521       if (!Preheader) break;
    522 
    523       // Ok, move up a level.
    524       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    525     }
    526 
    527     // Emit a GEP.
    528     Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
    529     rememberInstruction(GEP);
    530 
    531     return GEP;
    532   }
    533 
    534   // Save the original insertion point so we can restore it when we're done.
    535   BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
    536 
    537   // Move the insertion point out of as many loops as we can.
    538   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    539     if (!L->isLoopInvariant(V)) break;
    540 
    541     bool AnyIndexNotLoopInvariant = false;
    542     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
    543          E = GepIndices.end(); I != E; ++I)
    544       if (!L->isLoopInvariant(*I)) {
    545         AnyIndexNotLoopInvariant = true;
    546         break;
    547       }
    548     if (AnyIndexNotLoopInvariant)
    549       break;
    550 
    551     BasicBlock *Preheader = L->getLoopPreheader();
    552     if (!Preheader) break;
    553 
    554     // Ok, move up a level.
    555     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    556   }
    557 
    558   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    559   // because ScalarEvolution may have changed the address arithmetic to
    560   // compute a value which is beyond the end of the allocated object.
    561   Value *Casted = V;
    562   if (V->getType() != PTy)
    563     Casted = InsertNoopCastOfTo(Casted, PTy);
    564   Value *GEP = Builder.CreateGEP(OriginalElTy, Casted,
    565                                  GepIndices,
    566                                  "scevgep");
    567   Ops.push_back(SE.getUnknown(GEP));
    568   rememberInstruction(GEP);
    569 
    570   // Restore the original insert point.
    571   Builder.restoreIP(SaveInsertPt);
    572 
    573   return expand(SE.getAddExpr(Ops));
    574 }
    575 
    576 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
    577 /// SCEV expansion. If they are nested, this is the most nested. If they are
    578 /// neighboring, pick the later.
    579 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
    580                                         DominatorTree &DT) {
    581   if (!A) return B;
    582   if (!B) return A;
    583   if (A->contains(B)) return B;
    584   if (B->contains(A)) return A;
    585   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
    586   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
    587   return A; // Arbitrarily break the tie.
    588 }
    589 
    590 /// getRelevantLoop - Get the most relevant loop associated with the given
    591 /// expression, according to PickMostRelevantLoop.
    592 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
    593   // Test whether we've already computed the most relevant loop for this SCEV.
    594   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
    595     RelevantLoops.insert(std::make_pair(S, nullptr));
    596   if (!Pair.second)
    597     return Pair.first->second;
    598 
    599   if (isa<SCEVConstant>(S))
    600     // A constant has no relevant loops.
    601     return nullptr;
    602   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    603     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
    604       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
    605     // A non-instruction has no relevant loops.
    606     return nullptr;
    607   }
    608   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    609     const Loop *L = nullptr;
    610     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    611       L = AR->getLoop();
    612     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
    613          I != E; ++I)
    614       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
    615     return RelevantLoops[N] = L;
    616   }
    617   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    618     const Loop *Result = getRelevantLoop(C->getOperand());
    619     return RelevantLoops[C] = Result;
    620   }
    621   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    622     const Loop *Result =
    623       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
    624                            getRelevantLoop(D->getRHS()),
    625                            *SE.DT);
    626     return RelevantLoops[D] = Result;
    627   }
    628   llvm_unreachable("Unexpected SCEV type!");
    629 }
    630 
    631 namespace {
    632 
    633 /// LoopCompare - Compare loops by PickMostRelevantLoop.
    634 class LoopCompare {
    635   DominatorTree &DT;
    636 public:
    637   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
    638 
    639   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
    640                   std::pair<const Loop *, const SCEV *> RHS) const {
    641     // Keep pointer operands sorted at the end.
    642     if (LHS.second->getType()->isPointerTy() !=
    643         RHS.second->getType()->isPointerTy())
    644       return LHS.second->getType()->isPointerTy();
    645 
    646     // Compare loops with PickMostRelevantLoop.
    647     if (LHS.first != RHS.first)
    648       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
    649 
    650     // If one operand is a non-constant negative and the other is not,
    651     // put the non-constant negative on the right so that a sub can
    652     // be used instead of a negate and add.
    653     if (LHS.second->isNonConstantNegative()) {
    654       if (!RHS.second->isNonConstantNegative())
    655         return false;
    656     } else if (RHS.second->isNonConstantNegative())
    657       return true;
    658 
    659     // Otherwise they are equivalent according to this comparison.
    660     return false;
    661   }
    662 };
    663 
    664 }
    665 
    666 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
    667   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    668 
    669   // Collect all the add operands in a loop, along with their associated loops.
    670   // Iterate in reverse so that constants are emitted last, all else equal, and
    671   // so that pointer operands are inserted first, which the code below relies on
    672   // to form more involved GEPs.
    673   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    674   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
    675        E(S->op_begin()); I != E; ++I)
    676     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    677 
    678   // Sort by loop. Use a stable sort so that constants follow non-constants and
    679   // pointer operands precede non-pointer operands.
    680   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    681 
    682   // Emit instructions to add all the operands. Hoist as much as possible
    683   // out of loops, and form meaningful getelementptrs where possible.
    684   Value *Sum = nullptr;
    685   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    686        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    687     const Loop *CurLoop = I->first;
    688     const SCEV *Op = I->second;
    689     if (!Sum) {
    690       // This is the first operand. Just expand it.
    691       Sum = expand(Op);
    692       ++I;
    693     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
    694       // The running sum expression is a pointer. Try to form a getelementptr
    695       // at this level with that as the base.
    696       SmallVector<const SCEV *, 4> NewOps;
    697       for (; I != E && I->first == CurLoop; ++I) {
    698         // If the operand is SCEVUnknown and not instructions, peek through
    699         // it, to enable more of it to be folded into the GEP.
    700         const SCEV *X = I->second;
    701         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
    702           if (!isa<Instruction>(U->getValue()))
    703             X = SE.getSCEV(U->getValue());
    704         NewOps.push_back(X);
    705       }
    706       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    707     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
    708       // The running sum is an integer, and there's a pointer at this level.
    709       // Try to form a getelementptr. If the running sum is instructions,
    710       // use a SCEVUnknown to avoid re-analyzing them.
    711       SmallVector<const SCEV *, 4> NewOps;
    712       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
    713                                                SE.getSCEV(Sum));
    714       for (++I; I != E && I->first == CurLoop; ++I)
    715         NewOps.push_back(I->second);
    716       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    717     } else if (Op->isNonConstantNegative()) {
    718       // Instead of doing a negate and add, just do a subtract.
    719       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
    720       Sum = InsertNoopCastOfTo(Sum, Ty);
    721       Sum = InsertBinop(Instruction::Sub, Sum, W);
    722       ++I;
    723     } else {
    724       // A simple add.
    725       Value *W = expandCodeFor(Op, Ty);
    726       Sum = InsertNoopCastOfTo(Sum, Ty);
    727       // Canonicalize a constant to the RHS.
    728       if (isa<Constant>(Sum)) std::swap(Sum, W);
    729       Sum = InsertBinop(Instruction::Add, Sum, W);
    730       ++I;
    731     }
    732   }
    733 
    734   return Sum;
    735 }
    736 
    737 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
    738   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    739 
    740   // Collect all the mul operands in a loop, along with their associated loops.
    741   // Iterate in reverse so that constants are emitted last, all else equal.
    742   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    743   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
    744        E(S->op_begin()); I != E; ++I)
    745     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    746 
    747   // Sort by loop. Use a stable sort so that constants follow non-constants.
    748   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    749 
    750   // Emit instructions to mul all the operands. Hoist as much as possible
    751   // out of loops.
    752   Value *Prod = nullptr;
    753   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    754        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    755     const SCEV *Op = I->second;
    756     if (!Prod) {
    757       // This is the first operand. Just expand it.
    758       Prod = expand(Op);
    759       ++I;
    760     } else if (Op->isAllOnesValue()) {
    761       // Instead of doing a multiply by negative one, just do a negate.
    762       Prod = InsertNoopCastOfTo(Prod, Ty);
    763       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
    764       ++I;
    765     } else {
    766       // A simple mul.
    767       Value *W = expandCodeFor(Op, Ty);
    768       Prod = InsertNoopCastOfTo(Prod, Ty);
    769       // Canonicalize a constant to the RHS.
    770       if (isa<Constant>(Prod)) std::swap(Prod, W);
    771       Prod = InsertBinop(Instruction::Mul, Prod, W);
    772       ++I;
    773     }
    774   }
    775 
    776   return Prod;
    777 }
    778 
    779 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
    780   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    781 
    782   Value *LHS = expandCodeFor(S->getLHS(), Ty);
    783   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    784     const APInt &RHS = SC->getValue()->getValue();
    785     if (RHS.isPowerOf2())
    786       return InsertBinop(Instruction::LShr, LHS,
    787                          ConstantInt::get(Ty, RHS.logBase2()));
    788   }
    789 
    790   Value *RHS = expandCodeFor(S->getRHS(), Ty);
    791   return InsertBinop(Instruction::UDiv, LHS, RHS);
    792 }
    793 
    794 /// Move parts of Base into Rest to leave Base with the minimal
    795 /// expression that provides a pointer operand suitable for a
    796 /// GEP expansion.
    797 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
    798                               ScalarEvolution &SE) {
    799   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    800     Base = A->getStart();
    801     Rest = SE.getAddExpr(Rest,
    802                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
    803                                           A->getStepRecurrence(SE),
    804                                           A->getLoop(),
    805                                           A->getNoWrapFlags(SCEV::FlagNW)));
    806   }
    807   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    808     Base = A->getOperand(A->getNumOperands()-1);
    809     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    810     NewAddOps.back() = Rest;
    811     Rest = SE.getAddExpr(NewAddOps);
    812     ExposePointerBase(Base, Rest, SE);
    813   }
    814 }
    815 
    816 /// Determine if this is a well-behaved chain of instructions leading back to
    817 /// the PHI. If so, it may be reused by expanded expressions.
    818 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
    819                                          const Loop *L) {
    820   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
    821       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    822     return false;
    823   // If any of the operands don't dominate the insert position, bail.
    824   // Addrec operands are always loop-invariant, so this can only happen
    825   // if there are instructions which haven't been hoisted.
    826   if (L == IVIncInsertLoop) {
    827     for (User::op_iterator OI = IncV->op_begin()+1,
    828            OE = IncV->op_end(); OI != OE; ++OI)
    829       if (Instruction *OInst = dyn_cast<Instruction>(OI))
    830         if (!SE.DT->dominates(OInst, IVIncInsertPos))
    831           return false;
    832   }
    833   // Advance to the next instruction.
    834   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    835   if (!IncV)
    836     return false;
    837 
    838   if (IncV->mayHaveSideEffects())
    839     return false;
    840 
    841   if (IncV != PN)
    842     return true;
    843 
    844   return isNormalAddRecExprPHI(PN, IncV, L);
    845 }
    846 
    847 /// getIVIncOperand returns an induction variable increment's induction
    848 /// variable operand.
    849 ///
    850 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
    851 /// operands dominate InsertPos.
    852 ///
    853 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
    854 /// simple patterns generated by getAddRecExprPHILiterally and
    855 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
    856 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
    857                                            Instruction *InsertPos,
    858                                            bool allowScale) {
    859   if (IncV == InsertPos)
    860     return nullptr;
    861 
    862   switch (IncV->getOpcode()) {
    863   default:
    864     return nullptr;
    865   // Check for a simple Add/Sub or GEP of a loop invariant step.
    866   case Instruction::Add:
    867   case Instruction::Sub: {
    868     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    869     if (!OInst || SE.DT->dominates(OInst, InsertPos))
    870       return dyn_cast<Instruction>(IncV->getOperand(0));
    871     return nullptr;
    872   }
    873   case Instruction::BitCast:
    874     return dyn_cast<Instruction>(IncV->getOperand(0));
    875   case Instruction::GetElementPtr:
    876     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
    877          I != E; ++I) {
    878       if (isa<Constant>(*I))
    879         continue;
    880       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
    881         if (!SE.DT->dominates(OInst, InsertPos))
    882           return nullptr;
    883       }
    884       if (allowScale) {
    885         // allow any kind of GEP as long as it can be hoisted.
    886         continue;
    887       }
    888       // This must be a pointer addition of constants (pretty), which is already
    889       // handled, or some number of address-size elements (ugly). Ugly geps
    890       // have 2 operands. i1* is used by the expander to represent an
    891       // address-size element.
    892       if (IncV->getNumOperands() != 2)
    893         return nullptr;
    894       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
    895       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
    896           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
    897         return nullptr;
    898       break;
    899     }
    900     return dyn_cast<Instruction>(IncV->getOperand(0));
    901   }
    902 }
    903 
    904 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
    905 /// it available to other uses in this loop. Recursively hoist any operands,
    906 /// until we reach a value that dominates InsertPos.
    907 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
    908   if (SE.DT->dominates(IncV, InsertPos))
    909       return true;
    910 
    911   // InsertPos must itself dominate IncV so that IncV's new position satisfies
    912   // its existing users.
    913   if (isa<PHINode>(InsertPos)
    914       || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
    915     return false;
    916 
    917   // Check that the chain of IV operands leading back to Phi can be hoisted.
    918   SmallVector<Instruction*, 4> IVIncs;
    919   for(;;) {
    920     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    921     if (!Oper)
    922       return false;
    923     // IncV is safe to hoist.
    924     IVIncs.push_back(IncV);
    925     IncV = Oper;
    926     if (SE.DT->dominates(IncV, InsertPos))
    927       break;
    928   }
    929   for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
    930          E = IVIncs.rend(); I != E; ++I) {
    931     (*I)->moveBefore(InsertPos);
    932   }
    933   return true;
    934 }
    935 
    936 /// Determine if this cyclic phi is in a form that would have been generated by
    937 /// LSR. We don't care if the phi was actually expanded in this pass, as long
    938 /// as it is in a low-cost form, for example, no implied multiplication. This
    939 /// should match any patterns generated by getAddRecExprPHILiterally and
    940 /// expandAddtoGEP.
    941 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
    942                                            const Loop *L) {
    943   for(Instruction *IVOper = IncV;
    944       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
    945                                 /*allowScale=*/false));) {
    946     if (IVOper == PN)
    947       return true;
    948   }
    949   return false;
    950 }
    951 
    952 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
    953 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
    954 /// need to materialize IV increments elsewhere to handle difficult situations.
    955 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
    956                                  Type *ExpandTy, Type *IntTy,
    957                                  bool useSubtract) {
    958   Value *IncV;
    959   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
    960   if (ExpandTy->isPointerTy()) {
    961     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
    962     // If the step isn't constant, don't use an implicitly scaled GEP, because
    963     // that would require a multiply inside the loop.
    964     if (!isa<ConstantInt>(StepV))
    965       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
    966                                   GEPPtrTy->getAddressSpace());
    967     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
    968     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
    969     if (IncV->getType() != PN->getType()) {
    970       IncV = Builder.CreateBitCast(IncV, PN->getType());
    971       rememberInstruction(IncV);
    972     }
    973   } else {
    974     IncV = useSubtract ?
    975       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
    976       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
    977     rememberInstruction(IncV);
    978   }
    979   return IncV;
    980 }
    981 
    982 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
    983 /// position. This routine assumes that this is possible (has been checked).
    984 static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
    985                            Instruction *Pos, PHINode *LoopPhi) {
    986   do {
    987     if (DT->dominates(InstToHoist, Pos))
    988       break;
    989     // Make sure the increment is where we want it. But don't move it
    990     // down past a potential existing post-inc user.
    991     InstToHoist->moveBefore(Pos);
    992     Pos = InstToHoist;
    993     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
    994   } while (InstToHoist != LoopPhi);
    995 }
    996 
    997 /// \brief Check whether we can cheaply express the requested SCEV in terms of
    998 /// the available PHI SCEV by truncation and/or invertion of the step.
    999 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
   1000                                     const SCEVAddRecExpr *Phi,
   1001                                     const SCEVAddRecExpr *Requested,
   1002                                     bool &InvertStep) {
   1003   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
   1004   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
   1005 
   1006   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
   1007     return false;
   1008 
   1009   // Try truncate it if necessary.
   1010   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
   1011   if (!Phi)
   1012     return false;
   1013 
   1014   // Check whether truncation will help.
   1015   if (Phi == Requested) {
   1016     InvertStep = false;
   1017     return true;
   1018   }
   1019 
   1020   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
   1021   if (SE.getAddExpr(Requested->getStart(),
   1022                     SE.getNegativeSCEV(Requested)) == Phi) {
   1023     InvertStep = true;
   1024     return true;
   1025   }
   1026 
   1027   return false;
   1028 }
   1029 
   1030 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
   1031   if (!isa<IntegerType>(AR->getType()))
   1032     return false;
   1033 
   1034   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
   1035   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
   1036   const SCEV *Step = AR->getStepRecurrence(SE);
   1037   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
   1038                                             SE.getSignExtendExpr(AR, WideTy));
   1039   const SCEV *ExtendAfterOp =
   1040     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
   1041   return ExtendAfterOp == OpAfterExtend;
   1042 }
   1043 
   1044 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
   1045   if (!isa<IntegerType>(AR->getType()))
   1046     return false;
   1047 
   1048   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
   1049   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
   1050   const SCEV *Step = AR->getStepRecurrence(SE);
   1051   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
   1052                                             SE.getZeroExtendExpr(AR, WideTy));
   1053   const SCEV *ExtendAfterOp =
   1054     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
   1055   return ExtendAfterOp == OpAfterExtend;
   1056 }
   1057 
   1058 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
   1059 /// the base addrec, which is the addrec without any non-loop-dominating
   1060 /// values, and return the PHI.
   1061 PHINode *
   1062 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
   1063                                         const Loop *L,
   1064                                         Type *ExpandTy,
   1065                                         Type *IntTy,
   1066                                         Type *&TruncTy,
   1067                                         bool &InvertStep) {
   1068   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
   1069 
   1070   // Reuse a previously-inserted PHI, if present.
   1071   BasicBlock *LatchBlock = L->getLoopLatch();
   1072   if (LatchBlock) {
   1073     PHINode *AddRecPhiMatch = nullptr;
   1074     Instruction *IncV = nullptr;
   1075     TruncTy = nullptr;
   1076     InvertStep = false;
   1077 
   1078     // Only try partially matching scevs that need truncation and/or
   1079     // step-inversion if we know this loop is outside the current loop.
   1080     bool TryNonMatchingSCEV = IVIncInsertLoop &&
   1081       SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
   1082 
   1083     for (BasicBlock::iterator I = L->getHeader()->begin();
   1084          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1085       if (!SE.isSCEVable(PN->getType()))
   1086         continue;
   1087 
   1088       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
   1089       if (!PhiSCEV)
   1090         continue;
   1091 
   1092       bool IsMatchingSCEV = PhiSCEV == Normalized;
   1093       // We only handle truncation and inversion of phi recurrences for the
   1094       // expanded expression if the expanded expression's loop dominates the
   1095       // loop we insert to. Check now, so we can bail out early.
   1096       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
   1097           continue;
   1098 
   1099       Instruction *TempIncV =
   1100           cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
   1101 
   1102       // Check whether we can reuse this PHI node.
   1103       if (LSRMode) {
   1104         if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
   1105           continue;
   1106         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
   1107           continue;
   1108       } else {
   1109         if (!isNormalAddRecExprPHI(PN, TempIncV, L))
   1110           continue;
   1111       }
   1112 
   1113       // Stop if we have found an exact match SCEV.
   1114       if (IsMatchingSCEV) {
   1115         IncV = TempIncV;
   1116         TruncTy = nullptr;
   1117         InvertStep = false;
   1118         AddRecPhiMatch = PN;
   1119         break;
   1120       }
   1121 
   1122       // Try whether the phi can be translated into the requested form
   1123       // (truncated and/or offset by a constant).
   1124       if ((!TruncTy || InvertStep) &&
   1125           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
   1126         // Record the phi node. But don't stop we might find an exact match
   1127         // later.
   1128         AddRecPhiMatch = PN;
   1129         IncV = TempIncV;
   1130         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
   1131       }
   1132     }
   1133 
   1134     if (AddRecPhiMatch) {
   1135       // Potentially, move the increment. We have made sure in
   1136       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
   1137       if (L == IVIncInsertLoop)
   1138         hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
   1139 
   1140       // Ok, the add recurrence looks usable.
   1141       // Remember this PHI, even in post-inc mode.
   1142       InsertedValues.insert(AddRecPhiMatch);
   1143       // Remember the increment.
   1144       rememberInstruction(IncV);
   1145       return AddRecPhiMatch;
   1146     }
   1147   }
   1148 
   1149   // Save the original insertion point so we can restore it when we're done.
   1150   BuilderType::InsertPointGuard Guard(Builder);
   1151 
   1152   // Another AddRec may need to be recursively expanded below. For example, if
   1153   // this AddRec is quadratic, the StepV may itself be an AddRec in this
   1154   // loop. Remove this loop from the PostIncLoops set before expanding such
   1155   // AddRecs. Otherwise, we cannot find a valid position for the step
   1156   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
   1157   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
   1158   // so it's not worth implementing SmallPtrSet::swap.
   1159   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
   1160   PostIncLoops.clear();
   1161 
   1162   // Expand code for the start value.
   1163   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
   1164                                 L->getHeader()->begin());
   1165 
   1166   // StartV must be hoisted into L's preheader to dominate the new phi.
   1167   assert(!isa<Instruction>(StartV) ||
   1168          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
   1169                                   L->getHeader()));
   1170 
   1171   // Expand code for the step value. Do this before creating the PHI so that PHI
   1172   // reuse code doesn't see an incomplete PHI.
   1173   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1174   // If the stride is negative, insert a sub instead of an add for the increment
   1175   // (unless it's a constant, because subtracts of constants are canonicalized
   1176   // to adds).
   1177   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1178   if (useSubtract)
   1179     Step = SE.getNegativeSCEV(Step);
   1180   // Expand the step somewhere that dominates the loop header.
   1181   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1182 
   1183   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
   1184   // we actually do emit an addition.  It does not apply if we emit a
   1185   // subtraction.
   1186   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
   1187   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
   1188 
   1189   // Create the PHI.
   1190   BasicBlock *Header = L->getHeader();
   1191   Builder.SetInsertPoint(Header, Header->begin());
   1192   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1193   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
   1194                                   Twine(IVName) + ".iv");
   1195   rememberInstruction(PN);
   1196 
   1197   // Create the step instructions and populate the PHI.
   1198   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1199     BasicBlock *Pred = *HPI;
   1200 
   1201     // Add a start value.
   1202     if (!L->contains(Pred)) {
   1203       PN->addIncoming(StartV, Pred);
   1204       continue;
   1205     }
   1206 
   1207     // Create a step value and add it to the PHI.
   1208     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
   1209     // instructions at IVIncInsertPos.
   1210     Instruction *InsertPos = L == IVIncInsertLoop ?
   1211       IVIncInsertPos : Pred->getTerminator();
   1212     Builder.SetInsertPoint(InsertPos);
   1213     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1214 
   1215     if (isa<OverflowingBinaryOperator>(IncV)) {
   1216       if (IncrementIsNUW)
   1217         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
   1218       if (IncrementIsNSW)
   1219         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
   1220     }
   1221     PN->addIncoming(IncV, Pred);
   1222   }
   1223 
   1224   // After expanding subexpressions, restore the PostIncLoops set so the caller
   1225   // can ensure that IVIncrement dominates the current uses.
   1226   PostIncLoops = SavedPostIncLoops;
   1227 
   1228   // Remember this PHI, even in post-inc mode.
   1229   InsertedValues.insert(PN);
   1230 
   1231   return PN;
   1232 }
   1233 
   1234 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
   1235   Type *STy = S->getType();
   1236   Type *IntTy = SE.getEffectiveSCEVType(STy);
   1237   const Loop *L = S->getLoop();
   1238 
   1239   // Determine a normalized form of this expression, which is the expression
   1240   // before any post-inc adjustment is made.
   1241   const SCEVAddRecExpr *Normalized = S;
   1242   if (PostIncLoops.count(L)) {
   1243     PostIncLoopSet Loops;
   1244     Loops.insert(L);
   1245     Normalized =
   1246       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, nullptr,
   1247                                                   nullptr, Loops, SE, *SE.DT));
   1248   }
   1249 
   1250   // Strip off any non-loop-dominating component from the addrec start.
   1251   const SCEV *Start = Normalized->getStart();
   1252   const SCEV *PostLoopOffset = nullptr;
   1253   if (!SE.properlyDominates(Start, L->getHeader())) {
   1254     PostLoopOffset = Start;
   1255     Start = SE.getConstant(Normalized->getType(), 0);
   1256     Normalized = cast<SCEVAddRecExpr>(
   1257       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
   1258                        Normalized->getLoop(),
   1259                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
   1260   }
   1261 
   1262   // Strip off any non-loop-dominating component from the addrec step.
   1263   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1264   const SCEV *PostLoopScale = nullptr;
   1265   if (!SE.dominates(Step, L->getHeader())) {
   1266     PostLoopScale = Step;
   1267     Step = SE.getConstant(Normalized->getType(), 1);
   1268     Normalized =
   1269       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
   1270                              Start, Step, Normalized->getLoop(),
   1271                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
   1272   }
   1273 
   1274   // Expand the core addrec. If we need post-loop scaling, force it to
   1275   // expand to an integer type to avoid the need for additional casting.
   1276   Type *ExpandTy = PostLoopScale ? IntTy : STy;
   1277   // In some cases, we decide to reuse an existing phi node but need to truncate
   1278   // it and/or invert the step.
   1279   Type *TruncTy = nullptr;
   1280   bool InvertStep = false;
   1281   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
   1282                                           TruncTy, InvertStep);
   1283 
   1284   // Accommodate post-inc mode, if necessary.
   1285   Value *Result;
   1286   if (!PostIncLoops.count(L))
   1287     Result = PN;
   1288   else {
   1289     // In PostInc mode, use the post-incremented value.
   1290     BasicBlock *LatchBlock = L->getLoopLatch();
   1291     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
   1292     Result = PN->getIncomingValueForBlock(LatchBlock);
   1293 
   1294     // For an expansion to use the postinc form, the client must call
   1295     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
   1296     // or dominated by IVIncInsertPos.
   1297     if (isa<Instruction>(Result)
   1298         && !SE.DT->dominates(cast<Instruction>(Result),
   1299                              Builder.GetInsertPoint())) {
   1300       // The induction variable's postinc expansion does not dominate this use.
   1301       // IVUsers tries to prevent this case, so it is rare. However, it can
   1302       // happen when an IVUser outside the loop is not dominated by the latch
   1303       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
   1304       // all cases. Consider a phi outide whose operand is replaced during
   1305       // expansion with the value of the postinc user. Without fundamentally
   1306       // changing the way postinc users are tracked, the only remedy is
   1307       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
   1308       // but hopefully expandCodeFor handles that.
   1309       bool useSubtract =
   1310         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1311       if (useSubtract)
   1312         Step = SE.getNegativeSCEV(Step);
   1313       Value *StepV;
   1314       {
   1315         // Expand the step somewhere that dominates the loop header.
   1316         BuilderType::InsertPointGuard Guard(Builder);
   1317         StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1318       }
   1319       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1320     }
   1321   }
   1322 
   1323   // We have decided to reuse an induction variable of a dominating loop. Apply
   1324   // truncation and/or invertion of the step.
   1325   if (TruncTy) {
   1326     Type *ResTy = Result->getType();
   1327     // Normalize the result type.
   1328     if (ResTy != SE.getEffectiveSCEVType(ResTy))
   1329       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
   1330     // Truncate the result.
   1331     if (TruncTy != Result->getType()) {
   1332       Result = Builder.CreateTrunc(Result, TruncTy);
   1333       rememberInstruction(Result);
   1334     }
   1335     // Invert the result.
   1336     if (InvertStep) {
   1337       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
   1338                                  Result);
   1339       rememberInstruction(Result);
   1340     }
   1341   }
   1342 
   1343   // Re-apply any non-loop-dominating scale.
   1344   if (PostLoopScale) {
   1345     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
   1346     Result = InsertNoopCastOfTo(Result, IntTy);
   1347     Result = Builder.CreateMul(Result,
   1348                                expandCodeFor(PostLoopScale, IntTy));
   1349     rememberInstruction(Result);
   1350   }
   1351 
   1352   // Re-apply any non-loop-dominating offset.
   1353   if (PostLoopOffset) {
   1354     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
   1355       const SCEV *const OffsetArray[1] = { PostLoopOffset };
   1356       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
   1357     } else {
   1358       Result = InsertNoopCastOfTo(Result, IntTy);
   1359       Result = Builder.CreateAdd(Result,
   1360                                  expandCodeFor(PostLoopOffset, IntTy));
   1361       rememberInstruction(Result);
   1362     }
   1363   }
   1364 
   1365   return Result;
   1366 }
   1367 
   1368 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
   1369   if (!CanonicalMode) return expandAddRecExprLiterally(S);
   1370 
   1371   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1372   const Loop *L = S->getLoop();
   1373 
   1374   // First check for an existing canonical IV in a suitable type.
   1375   PHINode *CanonicalIV = nullptr;
   1376   if (PHINode *PN = L->getCanonicalInductionVariable())
   1377     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
   1378       CanonicalIV = PN;
   1379 
   1380   // Rewrite an AddRec in terms of the canonical induction variable, if
   1381   // its type is more narrow.
   1382   if (CanonicalIV &&
   1383       SE.getTypeSizeInBits(CanonicalIV->getType()) >
   1384       SE.getTypeSizeInBits(Ty)) {
   1385     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
   1386     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
   1387       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
   1388     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
   1389                                        S->getNoWrapFlags(SCEV::FlagNW)));
   1390     BasicBlock::iterator NewInsertPt =
   1391       std::next(BasicBlock::iterator(cast<Instruction>(V)));
   1392     BuilderType::InsertPointGuard Guard(Builder);
   1393     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
   1394            isa<LandingPadInst>(NewInsertPt))
   1395       ++NewInsertPt;
   1396     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
   1397                       NewInsertPt);
   1398     return V;
   1399   }
   1400 
   1401   // {X,+,F} --> X + {0,+,F}
   1402   if (!S->getStart()->isZero()) {
   1403     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
   1404     NewOps[0] = SE.getConstant(Ty, 0);
   1405     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
   1406                                         S->getNoWrapFlags(SCEV::FlagNW));
   1407 
   1408     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
   1409     // comments on expandAddToGEP for details.
   1410     const SCEV *Base = S->getStart();
   1411     const SCEV *RestArray[1] = { Rest };
   1412     // Dig into the expression to find the pointer base for a GEP.
   1413     ExposePointerBase(Base, RestArray[0], SE);
   1414     // If we found a pointer, expand the AddRec with a GEP.
   1415     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
   1416       // Make sure the Base isn't something exotic, such as a multiplied
   1417       // or divided pointer value. In those cases, the result type isn't
   1418       // actually a pointer type.
   1419       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
   1420         Value *StartV = expand(Base);
   1421         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
   1422         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
   1423       }
   1424     }
   1425 
   1426     // Just do a normal add. Pre-expand the operands to suppress folding.
   1427     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
   1428                                 SE.getUnknown(expand(Rest))));
   1429   }
   1430 
   1431   // If we don't yet have a canonical IV, create one.
   1432   if (!CanonicalIV) {
   1433     // Create and insert the PHI node for the induction variable in the
   1434     // specified loop.
   1435     BasicBlock *Header = L->getHeader();
   1436     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1437     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
   1438                                   Header->begin());
   1439     rememberInstruction(CanonicalIV);
   1440 
   1441     SmallSet<BasicBlock *, 4> PredSeen;
   1442     Constant *One = ConstantInt::get(Ty, 1);
   1443     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1444       BasicBlock *HP = *HPI;
   1445       if (!PredSeen.insert(HP).second) {
   1446         // There must be an incoming value for each predecessor, even the
   1447         // duplicates!
   1448         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
   1449         continue;
   1450       }
   1451 
   1452       if (L->contains(HP)) {
   1453         // Insert a unit add instruction right before the terminator
   1454         // corresponding to the back-edge.
   1455         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
   1456                                                      "indvar.next",
   1457                                                      HP->getTerminator());
   1458         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
   1459         rememberInstruction(Add);
   1460         CanonicalIV->addIncoming(Add, HP);
   1461       } else {
   1462         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
   1463       }
   1464     }
   1465   }
   1466 
   1467   // {0,+,1} --> Insert a canonical induction variable into the loop!
   1468   if (S->isAffine() && S->getOperand(1)->isOne()) {
   1469     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
   1470            "IVs with types different from the canonical IV should "
   1471            "already have been handled!");
   1472     return CanonicalIV;
   1473   }
   1474 
   1475   // {0,+,F} --> {0,+,1} * F
   1476 
   1477   // If this is a simple linear addrec, emit it now as a special case.
   1478   if (S->isAffine())    // {0,+,F} --> i*F
   1479     return
   1480       expand(SE.getTruncateOrNoop(
   1481         SE.getMulExpr(SE.getUnknown(CanonicalIV),
   1482                       SE.getNoopOrAnyExtend(S->getOperand(1),
   1483                                             CanonicalIV->getType())),
   1484         Ty));
   1485 
   1486   // If this is a chain of recurrences, turn it into a closed form, using the
   1487   // folders, then expandCodeFor the closed form.  This allows the folders to
   1488   // simplify the expression without having to build a bunch of special code
   1489   // into this folder.
   1490   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
   1491 
   1492   // Promote S up to the canonical IV type, if the cast is foldable.
   1493   const SCEV *NewS = S;
   1494   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
   1495   if (isa<SCEVAddRecExpr>(Ext))
   1496     NewS = Ext;
   1497 
   1498   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
   1499   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
   1500 
   1501   // Truncate the result down to the original type, if needed.
   1502   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
   1503   return expand(T);
   1504 }
   1505 
   1506 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
   1507   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1508   Value *V = expandCodeFor(S->getOperand(),
   1509                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1510   Value *I = Builder.CreateTrunc(V, Ty);
   1511   rememberInstruction(I);
   1512   return I;
   1513 }
   1514 
   1515 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
   1516   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1517   Value *V = expandCodeFor(S->getOperand(),
   1518                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1519   Value *I = Builder.CreateZExt(V, Ty);
   1520   rememberInstruction(I);
   1521   return I;
   1522 }
   1523 
   1524 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
   1525   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1526   Value *V = expandCodeFor(S->getOperand(),
   1527                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1528   Value *I = Builder.CreateSExt(V, Ty);
   1529   rememberInstruction(I);
   1530   return I;
   1531 }
   1532 
   1533 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
   1534   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1535   Type *Ty = LHS->getType();
   1536   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1537     // In the case of mixed integer and pointer types, do the
   1538     // rest of the comparisons as integer.
   1539     if (S->getOperand(i)->getType() != Ty) {
   1540       Ty = SE.getEffectiveSCEVType(Ty);
   1541       LHS = InsertNoopCastOfTo(LHS, Ty);
   1542     }
   1543     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1544     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
   1545     rememberInstruction(ICmp);
   1546     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
   1547     rememberInstruction(Sel);
   1548     LHS = Sel;
   1549   }
   1550   // In the case of mixed integer and pointer types, cast the
   1551   // final result back to the pointer type.
   1552   if (LHS->getType() != S->getType())
   1553     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1554   return LHS;
   1555 }
   1556 
   1557 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
   1558   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1559   Type *Ty = LHS->getType();
   1560   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1561     // In the case of mixed integer and pointer types, do the
   1562     // rest of the comparisons as integer.
   1563     if (S->getOperand(i)->getType() != Ty) {
   1564       Ty = SE.getEffectiveSCEVType(Ty);
   1565       LHS = InsertNoopCastOfTo(LHS, Ty);
   1566     }
   1567     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1568     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
   1569     rememberInstruction(ICmp);
   1570     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
   1571     rememberInstruction(Sel);
   1572     LHS = Sel;
   1573   }
   1574   // In the case of mixed integer and pointer types, cast the
   1575   // final result back to the pointer type.
   1576   if (LHS->getType() != S->getType())
   1577     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1578   return LHS;
   1579 }
   1580 
   1581 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
   1582                                    Instruction *IP) {
   1583   Builder.SetInsertPoint(IP->getParent(), IP);
   1584   return expandCodeFor(SH, Ty);
   1585 }
   1586 
   1587 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
   1588   // Expand the code for this SCEV.
   1589   Value *V = expand(SH);
   1590   if (Ty) {
   1591     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
   1592            "non-trivial casts should be done with the SCEVs directly!");
   1593     V = InsertNoopCastOfTo(V, Ty);
   1594   }
   1595   return V;
   1596 }
   1597 
   1598 Value *SCEVExpander::expand(const SCEV *S) {
   1599   // Compute an insertion point for this SCEV object. Hoist the instructions
   1600   // as far out in the loop nest as possible.
   1601   Instruction *InsertPt = Builder.GetInsertPoint();
   1602   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
   1603        L = L->getParentLoop())
   1604     if (SE.isLoopInvariant(S, L)) {
   1605       if (!L) break;
   1606       if (BasicBlock *Preheader = L->getLoopPreheader())
   1607         InsertPt = Preheader->getTerminator();
   1608       else {
   1609         // LSR sets the insertion point for AddRec start/step values to the
   1610         // block start to simplify value reuse, even though it's an invalid
   1611         // position. SCEVExpander must correct for this in all cases.
   1612         InsertPt = L->getHeader()->getFirstInsertionPt();
   1613       }
   1614     } else {
   1615       // If the SCEV is computable at this level, insert it into the header
   1616       // after the PHIs (and after any other instructions that we've inserted
   1617       // there) so that it is guaranteed to dominate any user inside the loop.
   1618       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
   1619         InsertPt = L->getHeader()->getFirstInsertionPt();
   1620       while (InsertPt != Builder.GetInsertPoint()
   1621              && (isInsertedInstruction(InsertPt)
   1622                  || isa<DbgInfoIntrinsic>(InsertPt))) {
   1623         InsertPt = std::next(BasicBlock::iterator(InsertPt));
   1624       }
   1625       break;
   1626     }
   1627 
   1628   // Check to see if we already expanded this here.
   1629   std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
   1630     I = InsertedExpressions.find(std::make_pair(S, InsertPt));
   1631   if (I != InsertedExpressions.end())
   1632     return I->second;
   1633 
   1634   BuilderType::InsertPointGuard Guard(Builder);
   1635   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
   1636 
   1637   // Expand the expression into instructions.
   1638   Value *V = visit(S);
   1639 
   1640   // Remember the expanded value for this SCEV at this location.
   1641   //
   1642   // This is independent of PostIncLoops. The mapped value simply materializes
   1643   // the expression at this insertion point. If the mapped value happened to be
   1644   // a postinc expansion, it could be reused by a non-postinc user, but only if
   1645   // its insertion point was already at the head of the loop.
   1646   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
   1647   return V;
   1648 }
   1649 
   1650 void SCEVExpander::rememberInstruction(Value *I) {
   1651   if (!PostIncLoops.empty())
   1652     InsertedPostIncValues.insert(I);
   1653   else
   1654     InsertedValues.insert(I);
   1655 }
   1656 
   1657 /// getOrInsertCanonicalInductionVariable - This method returns the
   1658 /// canonical induction variable of the specified type for the specified
   1659 /// loop (inserting one if there is none).  A canonical induction variable
   1660 /// starts at zero and steps by one on each iteration.
   1661 PHINode *
   1662 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
   1663                                                     Type *Ty) {
   1664   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
   1665 
   1666   // Build a SCEV for {0,+,1}<L>.
   1667   // Conservatively use FlagAnyWrap for now.
   1668   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
   1669                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
   1670 
   1671   // Emit code for it.
   1672   BuilderType::InsertPointGuard Guard(Builder);
   1673   PHINode *V = cast<PHINode>(expandCodeFor(H, nullptr,
   1674                                            L->getHeader()->begin()));
   1675 
   1676   return V;
   1677 }
   1678 
   1679 /// replaceCongruentIVs - Check for congruent phis in this loop header and
   1680 /// replace them with their most canonical representative. Return the number of
   1681 /// phis eliminated.
   1682 ///
   1683 /// This does not depend on any SCEVExpander state but should be used in
   1684 /// the same context that SCEVExpander is used.
   1685 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
   1686                                            SmallVectorImpl<WeakVH> &DeadInsts,
   1687                                            const TargetTransformInfo *TTI) {
   1688   // Find integer phis in order of increasing width.
   1689   SmallVector<PHINode*, 8> Phis;
   1690   for (BasicBlock::iterator I = L->getHeader()->begin();
   1691        PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   1692     Phis.push_back(Phi);
   1693   }
   1694   if (TTI)
   1695     std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
   1696       // Put pointers at the back and make sure pointer < pointer = false.
   1697       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
   1698         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
   1699       return RHS->getType()->getPrimitiveSizeInBits() <
   1700              LHS->getType()->getPrimitiveSizeInBits();
   1701     });
   1702 
   1703   unsigned NumElim = 0;
   1704   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
   1705   // Process phis from wide to narrow. Mapping wide phis to the their truncation
   1706   // so narrow phis can reuse them.
   1707   for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
   1708          PEnd = Phis.end(); PIter != PEnd; ++PIter) {
   1709     PHINode *Phi = *PIter;
   1710 
   1711     // Fold constant phis. They may be congruent to other constant phis and
   1712     // would confuse the logic below that expects proper IVs.
   1713     if (Value *V = SimplifyInstruction(Phi, DL, SE.TLI, SE.DT, SE.AC)) {
   1714       Phi->replaceAllUsesWith(V);
   1715       DeadInsts.push_back(Phi);
   1716       ++NumElim;
   1717       DEBUG_WITH_TYPE(DebugType, dbgs()
   1718                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
   1719       continue;
   1720     }
   1721 
   1722     if (!SE.isSCEVable(Phi->getType()))
   1723       continue;
   1724 
   1725     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
   1726     if (!OrigPhiRef) {
   1727       OrigPhiRef = Phi;
   1728       if (Phi->getType()->isIntegerTy() && TTI
   1729           && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
   1730         // This phi can be freely truncated to the narrowest phi type. Map the
   1731         // truncated expression to it so it will be reused for narrow types.
   1732         const SCEV *TruncExpr =
   1733           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
   1734         ExprToIVMap[TruncExpr] = Phi;
   1735       }
   1736       continue;
   1737     }
   1738 
   1739     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
   1740     // sense.
   1741     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
   1742       continue;
   1743 
   1744     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1745       Instruction *OrigInc =
   1746         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
   1747       Instruction *IsomorphicInc =
   1748         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
   1749 
   1750       // If this phi has the same width but is more canonical, replace the
   1751       // original with it. As part of the "more canonical" determination,
   1752       // respect a prior decision to use an IV chain.
   1753       if (OrigPhiRef->getType() == Phi->getType()
   1754           && !(ChainedPhis.count(Phi)
   1755                || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
   1756           && (ChainedPhis.count(Phi)
   1757               || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
   1758         std::swap(OrigPhiRef, Phi);
   1759         std::swap(OrigInc, IsomorphicInc);
   1760       }
   1761       // Replacing the congruent phi is sufficient because acyclic redundancy
   1762       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
   1763       // that a phi is congruent, it's often the head of an IV user cycle that
   1764       // is isomorphic with the original phi. It's worth eagerly cleaning up the
   1765       // common case of a single IV increment so that DeleteDeadPHIs can remove
   1766       // cycles that had postinc uses.
   1767       const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
   1768                                                    IsomorphicInc->getType());
   1769       if (OrigInc != IsomorphicInc
   1770           && TruncExpr == SE.getSCEV(IsomorphicInc)
   1771           && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
   1772               || hoistIVInc(OrigInc, IsomorphicInc))) {
   1773         DEBUG_WITH_TYPE(DebugType, dbgs()
   1774                         << "INDVARS: Eliminated congruent iv.inc: "
   1775                         << *IsomorphicInc << '\n');
   1776         Value *NewInc = OrigInc;
   1777         if (OrigInc->getType() != IsomorphicInc->getType()) {
   1778           Instruction *IP = nullptr;
   1779           if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
   1780             IP = PN->getParent()->getFirstInsertionPt();
   1781           else
   1782             IP = OrigInc->getNextNode();
   1783 
   1784           IRBuilder<> Builder(IP);
   1785           Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
   1786           NewInc = Builder.
   1787             CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
   1788         }
   1789         IsomorphicInc->replaceAllUsesWith(NewInc);
   1790         DeadInsts.push_back(IsomorphicInc);
   1791       }
   1792     }
   1793     DEBUG_WITH_TYPE(DebugType, dbgs()
   1794                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
   1795     ++NumElim;
   1796     Value *NewIV = OrigPhiRef;
   1797     if (OrigPhiRef->getType() != Phi->getType()) {
   1798       IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
   1799       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
   1800       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
   1801     }
   1802     Phi->replaceAllUsesWith(NewIV);
   1803     DeadInsts.push_back(Phi);
   1804   }
   1805   return NumElim;
   1806 }
   1807 
   1808 bool SCEVExpander::isHighCostExpansionHelper(
   1809     const SCEV *S, Loop *L, SmallPtrSetImpl<const SCEV *> &Processed) {
   1810   if (!Processed.insert(S).second)
   1811     return false;
   1812 
   1813   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
   1814     // If the divisor is a power of two and the SCEV type fits in a native
   1815     // integer, consider the divison cheap irrespective of whether it occurs in
   1816     // the user code since it can be lowered into a right shift.
   1817     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
   1818       if (SC->getValue()->getValue().isPowerOf2()) {
   1819         const DataLayout &DL =
   1820             L->getHeader()->getParent()->getParent()->getDataLayout();
   1821         unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
   1822         return DL.isIllegalInteger(Width);
   1823       }
   1824 
   1825     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
   1826     // HowManyLessThans produced to compute a precise expression, rather than a
   1827     // UDiv from the user's code. If we can't find a UDiv in the code with some
   1828     // simple searching, assume the former consider UDivExpr expensive to
   1829     // compute.
   1830     BasicBlock *ExitingBB = L->getExitingBlock();
   1831     if (!ExitingBB)
   1832       return true;
   1833 
   1834     BranchInst *ExitingBI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
   1835     if (!ExitingBI || !ExitingBI->isConditional())
   1836       return true;
   1837 
   1838     ICmpInst *OrigCond = dyn_cast<ICmpInst>(ExitingBI->getCondition());
   1839     if (!OrigCond)
   1840       return true;
   1841 
   1842     const SCEV *RHS = SE.getSCEV(OrigCond->getOperand(1));
   1843     RHS = SE.getMinusSCEV(RHS, SE.getConstant(RHS->getType(), 1));
   1844     if (RHS != S) {
   1845       const SCEV *LHS = SE.getSCEV(OrigCond->getOperand(0));
   1846       LHS = SE.getMinusSCEV(LHS, SE.getConstant(LHS->getType(), 1));
   1847       if (LHS != S)
   1848         return true;
   1849     }
   1850   }
   1851 
   1852   // Recurse past add expressions, which commonly occur in the
   1853   // BackedgeTakenCount. They may already exist in program code, and if not,
   1854   // they are not too expensive rematerialize.
   1855   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   1856     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   1857          I != E; ++I) {
   1858       if (isHighCostExpansionHelper(*I, L, Processed))
   1859         return true;
   1860     }
   1861     return false;
   1862   }
   1863 
   1864   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
   1865   // the exit condition.
   1866   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
   1867     return true;
   1868 
   1869   // If we haven't recognized an expensive SCEV pattern, assume it's an
   1870   // expression produced by program code.
   1871   return false;
   1872 }
   1873 
   1874 namespace {
   1875 // Search for a SCEV subexpression that is not safe to expand.  Any expression
   1876 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
   1877 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
   1878 // instruction, but the important thing is that we prove the denominator is
   1879 // nonzero before expansion.
   1880 //
   1881 // IVUsers already checks that IV-derived expressions are safe. So this check is
   1882 // only needed when the expression includes some subexpression that is not IV
   1883 // derived.
   1884 //
   1885 // Currently, we only allow division by a nonzero constant here. If this is
   1886 // inadequate, we could easily allow division by SCEVUnknown by using
   1887 // ValueTracking to check isKnownNonZero().
   1888 //
   1889 // We cannot generally expand recurrences unless the step dominates the loop
   1890 // header. The expander handles the special case of affine recurrences by
   1891 // scaling the recurrence outside the loop, but this technique isn't generally
   1892 // applicable. Expanding a nested recurrence outside a loop requires computing
   1893 // binomial coefficients. This could be done, but the recurrence has to be in a
   1894 // perfectly reduced form, which can't be guaranteed.
   1895 struct SCEVFindUnsafe {
   1896   ScalarEvolution &SE;
   1897   bool IsUnsafe;
   1898 
   1899   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
   1900 
   1901   bool follow(const SCEV *S) {
   1902     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   1903       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
   1904       if (!SC || SC->getValue()->isZero()) {
   1905         IsUnsafe = true;
   1906         return false;
   1907       }
   1908     }
   1909     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   1910       const SCEV *Step = AR->getStepRecurrence(SE);
   1911       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
   1912         IsUnsafe = true;
   1913         return false;
   1914       }
   1915     }
   1916     return true;
   1917   }
   1918   bool isDone() const { return IsUnsafe; }
   1919 };
   1920 }
   1921 
   1922 namespace llvm {
   1923 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
   1924   SCEVFindUnsafe Search(SE);
   1925   visitAll(S, Search);
   1926   return !Search.IsUnsafe;
   1927 }
   1928 }
   1929