1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pattern matching instruction selector for PowerPC, 11 // converting from a legalized dag to a PPC dag. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PPC.h" 16 #include "MCTargetDesc/PPCPredicates.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCTargetMachine.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/SelectionDAGISel.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalValue.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetOptions.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "ppc-codegen" 40 41 // FIXME: Remove this once the bug has been fixed! 42 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", 43 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); 44 45 static cl::opt<bool> 46 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), 47 cl::desc("use aggressive ppc isel for bit permutations"), 48 cl::Hidden); 49 static cl::opt<bool> BPermRewriterNoMasking( 50 "ppc-bit-perm-rewriter-stress-rotates", 51 cl::desc("stress rotate selection in aggressive ppc isel for " 52 "bit permutations"), 53 cl::Hidden); 54 55 namespace llvm { 56 void initializePPCDAGToDAGISelPass(PassRegistry&); 57 } 58 59 namespace { 60 //===--------------------------------------------------------------------===// 61 /// PPCDAGToDAGISel - PPC specific code to select PPC machine 62 /// instructions for SelectionDAG operations. 63 /// 64 class PPCDAGToDAGISel : public SelectionDAGISel { 65 const PPCTargetMachine &TM; 66 const PPCSubtarget *PPCSubTarget; 67 const PPCTargetLowering *PPCLowering; 68 unsigned GlobalBaseReg; 69 public: 70 explicit PPCDAGToDAGISel(PPCTargetMachine &tm) 71 : SelectionDAGISel(tm), TM(tm) { 72 initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry()); 73 } 74 75 bool runOnMachineFunction(MachineFunction &MF) override { 76 // Make sure we re-emit a set of the global base reg if necessary 77 GlobalBaseReg = 0; 78 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); 79 PPCLowering = PPCSubTarget->getTargetLowering(); 80 SelectionDAGISel::runOnMachineFunction(MF); 81 82 if (!PPCSubTarget->isSVR4ABI()) 83 InsertVRSaveCode(MF); 84 85 return true; 86 } 87 88 void PreprocessISelDAG() override; 89 void PostprocessISelDAG() override; 90 91 /// getI32Imm - Return a target constant with the specified value, of type 92 /// i32. 93 inline SDValue getI32Imm(unsigned Imm) { 94 return CurDAG->getTargetConstant(Imm, MVT::i32); 95 } 96 97 /// getI64Imm - Return a target constant with the specified value, of type 98 /// i64. 99 inline SDValue getI64Imm(uint64_t Imm) { 100 return CurDAG->getTargetConstant(Imm, MVT::i64); 101 } 102 103 /// getSmallIPtrImm - Return a target constant of pointer type. 104 inline SDValue getSmallIPtrImm(unsigned Imm) { 105 return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy()); 106 } 107 108 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a 109 /// rotate and mask opcode and mask operation. 110 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, 111 unsigned &SH, unsigned &MB, unsigned &ME); 112 113 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC 114 /// base register. Return the virtual register that holds this value. 115 SDNode *getGlobalBaseReg(); 116 117 SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); 118 119 // Select - Convert the specified operand from a target-independent to a 120 // target-specific node if it hasn't already been changed. 121 SDNode *Select(SDNode *N) override; 122 123 SDNode *SelectBitfieldInsert(SDNode *N); 124 SDNode *SelectBitPermutation(SDNode *N); 125 126 /// SelectCC - Select a comparison of the specified values with the 127 /// specified condition code, returning the CR# of the expression. 128 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl); 129 130 /// SelectAddrImm - Returns true if the address N can be represented by 131 /// a base register plus a signed 16-bit displacement [r+imm]. 132 bool SelectAddrImm(SDValue N, SDValue &Disp, 133 SDValue &Base) { 134 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false); 135 } 136 137 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc 138 /// immediate field. Note that the operand at this point is already the 139 /// result of a prior SelectAddressRegImm call. 140 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { 141 if (N.getOpcode() == ISD::TargetConstant || 142 N.getOpcode() == ISD::TargetGlobalAddress) { 143 Out = N; 144 return true; 145 } 146 147 return false; 148 } 149 150 /// SelectAddrIdx - Given the specified addressed, check to see if it can be 151 /// represented as an indexed [r+r] operation. Returns false if it can 152 /// be represented by [r+imm], which are preferred. 153 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { 154 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG); 155 } 156 157 /// SelectAddrIdxOnly - Given the specified addressed, force it to be 158 /// represented as an indexed [r+r] operation. 159 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { 160 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); 161 } 162 163 /// SelectAddrImmX4 - Returns true if the address N can be represented by 164 /// a base register plus a signed 16-bit displacement that is a multiple of 4. 165 /// Suitable for use by STD and friends. 166 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { 167 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true); 168 } 169 170 // Select an address into a single register. 171 bool SelectAddr(SDValue N, SDValue &Base) { 172 Base = N; 173 return true; 174 } 175 176 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for 177 /// inline asm expressions. It is always correct to compute the value into 178 /// a register. The case of adding a (possibly relocatable) constant to a 179 /// register can be improved, but it is wrong to substitute Reg+Reg for 180 /// Reg in an asm, because the load or store opcode would have to change. 181 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 182 unsigned ConstraintID, 183 std::vector<SDValue> &OutOps) override { 184 185 switch(ConstraintID) { 186 default: 187 errs() << "ConstraintID: " << ConstraintID << "\n"; 188 llvm_unreachable("Unexpected asm memory constraint"); 189 case InlineAsm::Constraint_es: 190 case InlineAsm::Constraint_i: 191 case InlineAsm::Constraint_m: 192 case InlineAsm::Constraint_o: 193 case InlineAsm::Constraint_Q: 194 case InlineAsm::Constraint_Z: 195 case InlineAsm::Constraint_Zy: 196 // We need to make sure that this one operand does not end up in r0 197 // (because we might end up lowering this as 0(%op)). 198 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); 199 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); 200 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); 201 SDValue NewOp = 202 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 203 SDLoc(Op), Op.getValueType(), 204 Op, RC), 0); 205 206 OutOps.push_back(NewOp); 207 return false; 208 } 209 return true; 210 } 211 212 void InsertVRSaveCode(MachineFunction &MF); 213 214 const char *getPassName() const override { 215 return "PowerPC DAG->DAG Pattern Instruction Selection"; 216 } 217 218 // Include the pieces autogenerated from the target description. 219 #include "PPCGenDAGISel.inc" 220 221 private: 222 SDNode *SelectSETCC(SDNode *N); 223 224 void PeepholePPC64(); 225 void PeepholePPC64ZExt(); 226 void PeepholeCROps(); 227 228 SDValue combineToCMPB(SDNode *N); 229 void foldBoolExts(SDValue &Res, SDNode *&N); 230 231 bool AllUsersSelectZero(SDNode *N); 232 void SwapAllSelectUsers(SDNode *N); 233 234 SDNode *transferMemOperands(SDNode *N, SDNode *Result); 235 }; 236 } 237 238 /// InsertVRSaveCode - Once the entire function has been instruction selected, 239 /// all virtual registers are created and all machine instructions are built, 240 /// check to see if we need to save/restore VRSAVE. If so, do it. 241 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { 242 // Check to see if this function uses vector registers, which means we have to 243 // save and restore the VRSAVE register and update it with the regs we use. 244 // 245 // In this case, there will be virtual registers of vector type created 246 // by the scheduler. Detect them now. 247 bool HasVectorVReg = false; 248 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { 249 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 250 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { 251 HasVectorVReg = true; 252 break; 253 } 254 } 255 if (!HasVectorVReg) return; // nothing to do. 256 257 // If we have a vector register, we want to emit code into the entry and exit 258 // blocks to save and restore the VRSAVE register. We do this here (instead 259 // of marking all vector instructions as clobbering VRSAVE) for two reasons: 260 // 261 // 1. This (trivially) reduces the load on the register allocator, by not 262 // having to represent the live range of the VRSAVE register. 263 // 2. This (more significantly) allows us to create a temporary virtual 264 // register to hold the saved VRSAVE value, allowing this temporary to be 265 // register allocated, instead of forcing it to be spilled to the stack. 266 267 // Create two vregs - one to hold the VRSAVE register that is live-in to the 268 // function and one for the value after having bits or'd into it. 269 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 270 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 271 272 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 273 MachineBasicBlock &EntryBB = *Fn.begin(); 274 DebugLoc dl; 275 // Emit the following code into the entry block: 276 // InVRSAVE = MFVRSAVE 277 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE 278 // MTVRSAVE UpdatedVRSAVE 279 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point 280 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); 281 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), 282 UpdatedVRSAVE).addReg(InVRSAVE); 283 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); 284 285 // Find all return blocks, outputting a restore in each epilog. 286 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 287 if (!BB->empty() && BB->back().isReturn()) { 288 IP = BB->end(); --IP; 289 290 // Skip over all terminator instructions, which are part of the return 291 // sequence. 292 MachineBasicBlock::iterator I2 = IP; 293 while (I2 != BB->begin() && (--I2)->isTerminator()) 294 IP = I2; 295 296 // Emit: MTVRSAVE InVRSave 297 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); 298 } 299 } 300 } 301 302 303 /// getGlobalBaseReg - Output the instructions required to put the 304 /// base address to use for accessing globals into a register. 305 /// 306 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { 307 if (!GlobalBaseReg) { 308 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); 309 // Insert the set of GlobalBaseReg into the first MBB of the function 310 MachineBasicBlock &FirstMBB = MF->front(); 311 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 312 const Module *M = MF->getFunction()->getParent(); 313 DebugLoc dl; 314 315 if (PPCLowering->getPointerTy() == MVT::i32) { 316 if (PPCSubTarget->isTargetELF()) { 317 GlobalBaseReg = PPC::R30; 318 if (M->getPICLevel() == PICLevel::Small) { 319 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); 320 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 321 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 322 } else { 323 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 324 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 325 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); 326 BuildMI(FirstMBB, MBBI, dl, 327 TII.get(PPC::UpdateGBR), GlobalBaseReg) 328 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); 329 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); 330 } 331 } else { 332 GlobalBaseReg = 333 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass); 334 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); 335 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); 336 } 337 } else { 338 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass); 339 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); 340 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); 341 } 342 } 343 return CurDAG->getRegister(GlobalBaseReg, 344 PPCLowering->getPointerTy()).getNode(); 345 } 346 347 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 348 /// or 64-bit immediate, and if the value can be accurately represented as a 349 /// sign extension from a 16-bit value. If so, this returns true and the 350 /// immediate. 351 static bool isIntS16Immediate(SDNode *N, short &Imm) { 352 if (N->getOpcode() != ISD::Constant) 353 return false; 354 355 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); 356 if (N->getValueType(0) == MVT::i32) 357 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 358 else 359 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 360 } 361 362 static bool isIntS16Immediate(SDValue Op, short &Imm) { 363 return isIntS16Immediate(Op.getNode(), Imm); 364 } 365 366 367 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant 368 /// operand. If so Imm will receive the 32-bit value. 369 static bool isInt32Immediate(SDNode *N, unsigned &Imm) { 370 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { 371 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 372 return true; 373 } 374 return false; 375 } 376 377 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant 378 /// operand. If so Imm will receive the 64-bit value. 379 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { 380 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { 381 Imm = cast<ConstantSDNode>(N)->getZExtValue(); 382 return true; 383 } 384 return false; 385 } 386 387 // isInt32Immediate - This method tests to see if a constant operand. 388 // If so Imm will receive the 32 bit value. 389 static bool isInt32Immediate(SDValue N, unsigned &Imm) { 390 return isInt32Immediate(N.getNode(), Imm); 391 } 392 393 394 // isOpcWithIntImmediate - This method tests to see if the node is a specific 395 // opcode and that it has a immediate integer right operand. 396 // If so Imm will receive the 32 bit value. 397 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { 398 return N->getOpcode() == Opc 399 && isInt32Immediate(N->getOperand(1).getNode(), Imm); 400 } 401 402 SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { 403 SDLoc dl(SN); 404 int FI = cast<FrameIndexSDNode>(N)->getIndex(); 405 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); 406 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; 407 if (SN->hasOneUse()) 408 return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, 409 getSmallIPtrImm(Offset)); 410 return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, 411 getSmallIPtrImm(Offset)); 412 } 413 414 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, 415 bool isShiftMask, unsigned &SH, 416 unsigned &MB, unsigned &ME) { 417 // Don't even go down this path for i64, since different logic will be 418 // necessary for rldicl/rldicr/rldimi. 419 if (N->getValueType(0) != MVT::i32) 420 return false; 421 422 unsigned Shift = 32; 423 unsigned Indeterminant = ~0; // bit mask marking indeterminant results 424 unsigned Opcode = N->getOpcode(); 425 if (N->getNumOperands() != 2 || 426 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) 427 return false; 428 429 if (Opcode == ISD::SHL) { 430 // apply shift left to mask if it comes first 431 if (isShiftMask) Mask = Mask << Shift; 432 // determine which bits are made indeterminant by shift 433 Indeterminant = ~(0xFFFFFFFFu << Shift); 434 } else if (Opcode == ISD::SRL) { 435 // apply shift right to mask if it comes first 436 if (isShiftMask) Mask = Mask >> Shift; 437 // determine which bits are made indeterminant by shift 438 Indeterminant = ~(0xFFFFFFFFu >> Shift); 439 // adjust for the left rotate 440 Shift = 32 - Shift; 441 } else if (Opcode == ISD::ROTL) { 442 Indeterminant = 0; 443 } else { 444 return false; 445 } 446 447 // if the mask doesn't intersect any Indeterminant bits 448 if (Mask && !(Mask & Indeterminant)) { 449 SH = Shift & 31; 450 // make sure the mask is still a mask (wrap arounds may not be) 451 return isRunOfOnes(Mask, MB, ME); 452 } 453 return false; 454 } 455 456 /// SelectBitfieldInsert - turn an or of two masked values into 457 /// the rotate left word immediate then mask insert (rlwimi) instruction. 458 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { 459 SDValue Op0 = N->getOperand(0); 460 SDValue Op1 = N->getOperand(1); 461 SDLoc dl(N); 462 463 APInt LKZ, LKO, RKZ, RKO; 464 CurDAG->computeKnownBits(Op0, LKZ, LKO); 465 CurDAG->computeKnownBits(Op1, RKZ, RKO); 466 467 unsigned TargetMask = LKZ.getZExtValue(); 468 unsigned InsertMask = RKZ.getZExtValue(); 469 470 if ((TargetMask | InsertMask) == 0xFFFFFFFF) { 471 unsigned Op0Opc = Op0.getOpcode(); 472 unsigned Op1Opc = Op1.getOpcode(); 473 unsigned Value, SH = 0; 474 TargetMask = ~TargetMask; 475 InsertMask = ~InsertMask; 476 477 // If the LHS has a foldable shift and the RHS does not, then swap it to the 478 // RHS so that we can fold the shift into the insert. 479 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { 480 if (Op0.getOperand(0).getOpcode() == ISD::SHL || 481 Op0.getOperand(0).getOpcode() == ISD::SRL) { 482 if (Op1.getOperand(0).getOpcode() != ISD::SHL && 483 Op1.getOperand(0).getOpcode() != ISD::SRL) { 484 std::swap(Op0, Op1); 485 std::swap(Op0Opc, Op1Opc); 486 std::swap(TargetMask, InsertMask); 487 } 488 } 489 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { 490 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && 491 Op1.getOperand(0).getOpcode() != ISD::SRL) { 492 std::swap(Op0, Op1); 493 std::swap(Op0Opc, Op1Opc); 494 std::swap(TargetMask, InsertMask); 495 } 496 } 497 498 unsigned MB, ME; 499 if (isRunOfOnes(InsertMask, MB, ME)) { 500 SDValue Tmp1, Tmp2; 501 502 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && 503 isInt32Immediate(Op1.getOperand(1), Value)) { 504 Op1 = Op1.getOperand(0); 505 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; 506 } 507 if (Op1Opc == ISD::AND) { 508 // The AND mask might not be a constant, and we need to make sure that 509 // if we're going to fold the masking with the insert, all bits not 510 // know to be zero in the mask are known to be one. 511 APInt MKZ, MKO; 512 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO); 513 bool CanFoldMask = InsertMask == MKO.getZExtValue(); 514 515 unsigned SHOpc = Op1.getOperand(0).getOpcode(); 516 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && 517 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { 518 // Note that Value must be in range here (less than 32) because 519 // otherwise there would not be any bits set in InsertMask. 520 Op1 = Op1.getOperand(0).getOperand(0); 521 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; 522 } 523 } 524 525 SH &= 31; 526 SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), 527 getI32Imm(ME) }; 528 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); 529 } 530 } 531 return nullptr; 532 } 533 534 // Predict the number of instructions that would be generated by calling 535 // SelectInt64(N). 536 static unsigned SelectInt64CountDirect(int64_t Imm) { 537 // Assume no remaining bits. 538 unsigned Remainder = 0; 539 // Assume no shift required. 540 unsigned Shift = 0; 541 542 // If it can't be represented as a 32 bit value. 543 if (!isInt<32>(Imm)) { 544 Shift = countTrailingZeros<uint64_t>(Imm); 545 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 546 547 // If the shifted value fits 32 bits. 548 if (isInt<32>(ImmSh)) { 549 // Go with the shifted value. 550 Imm = ImmSh; 551 } else { 552 // Still stuck with a 64 bit value. 553 Remainder = Imm; 554 Shift = 32; 555 Imm >>= 32; 556 } 557 } 558 559 // Intermediate operand. 560 unsigned Result = 0; 561 562 // Handle first 32 bits. 563 unsigned Lo = Imm & 0xFFFF; 564 unsigned Hi = (Imm >> 16) & 0xFFFF; 565 566 // Simple value. 567 if (isInt<16>(Imm)) { 568 // Just the Lo bits. 569 ++Result; 570 } else if (Lo) { 571 // Handle the Hi bits and Lo bits. 572 Result += 2; 573 } else { 574 // Just the Hi bits. 575 ++Result; 576 } 577 578 // If no shift, we're done. 579 if (!Shift) return Result; 580 581 // Shift for next step if the upper 32-bits were not zero. 582 if (Imm) 583 ++Result; 584 585 // Add in the last bits as required. 586 if ((Hi = (Remainder >> 16) & 0xFFFF)) 587 ++Result; 588 if ((Lo = Remainder & 0xFFFF)) 589 ++Result; 590 591 return Result; 592 } 593 594 static uint64_t Rot64(uint64_t Imm, unsigned R) { 595 return (Imm << R) | (Imm >> (64 - R)); 596 } 597 598 static unsigned SelectInt64Count(int64_t Imm) { 599 unsigned Count = SelectInt64CountDirect(Imm); 600 if (Count == 1) 601 return Count; 602 603 for (unsigned r = 1; r < 63; ++r) { 604 uint64_t RImm = Rot64(Imm, r); 605 unsigned RCount = SelectInt64CountDirect(RImm) + 1; 606 Count = std::min(Count, RCount); 607 608 // See comments in SelectInt64 for an explanation of the logic below. 609 unsigned LS = findLastSet(RImm); 610 if (LS != r-1) 611 continue; 612 613 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 614 uint64_t RImmWithOnes = RImm | OnesMask; 615 616 RCount = SelectInt64CountDirect(RImmWithOnes) + 1; 617 Count = std::min(Count, RCount); 618 } 619 620 return Count; 621 } 622 623 // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count 624 // (above) needs to be kept in sync with this function. 625 static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) { 626 // Assume no remaining bits. 627 unsigned Remainder = 0; 628 // Assume no shift required. 629 unsigned Shift = 0; 630 631 // If it can't be represented as a 32 bit value. 632 if (!isInt<32>(Imm)) { 633 Shift = countTrailingZeros<uint64_t>(Imm); 634 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 635 636 // If the shifted value fits 32 bits. 637 if (isInt<32>(ImmSh)) { 638 // Go with the shifted value. 639 Imm = ImmSh; 640 } else { 641 // Still stuck with a 64 bit value. 642 Remainder = Imm; 643 Shift = 32; 644 Imm >>= 32; 645 } 646 } 647 648 // Intermediate operand. 649 SDNode *Result; 650 651 // Handle first 32 bits. 652 unsigned Lo = Imm & 0xFFFF; 653 unsigned Hi = (Imm >> 16) & 0xFFFF; 654 655 auto getI32Imm = [CurDAG](unsigned Imm) { 656 return CurDAG->getTargetConstant(Imm, MVT::i32); 657 }; 658 659 // Simple value. 660 if (isInt<16>(Imm)) { 661 // Just the Lo bits. 662 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); 663 } else if (Lo) { 664 // Handle the Hi bits. 665 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; 666 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); 667 // And Lo bits. 668 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 669 SDValue(Result, 0), getI32Imm(Lo)); 670 } else { 671 // Just the Hi bits. 672 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); 673 } 674 675 // If no shift, we're done. 676 if (!Shift) return Result; 677 678 // Shift for next step if the upper 32-bits were not zero. 679 if (Imm) { 680 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, 681 SDValue(Result, 0), 682 getI32Imm(Shift), 683 getI32Imm(63 - Shift)); 684 } 685 686 // Add in the last bits as required. 687 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 688 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, 689 SDValue(Result, 0), getI32Imm(Hi)); 690 } 691 if ((Lo = Remainder & 0xFFFF)) { 692 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, 693 SDValue(Result, 0), getI32Imm(Lo)); 694 } 695 696 return Result; 697 } 698 699 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) { 700 unsigned Count = SelectInt64CountDirect(Imm); 701 if (Count == 1) 702 return SelectInt64Direct(CurDAG, dl, Imm); 703 704 unsigned RMin = 0; 705 706 int64_t MatImm; 707 unsigned MaskEnd; 708 709 for (unsigned r = 1; r < 63; ++r) { 710 uint64_t RImm = Rot64(Imm, r); 711 unsigned RCount = SelectInt64CountDirect(RImm) + 1; 712 if (RCount < Count) { 713 Count = RCount; 714 RMin = r; 715 MatImm = RImm; 716 MaskEnd = 63; 717 } 718 719 // If the immediate to generate has many trailing zeros, it might be 720 // worthwhile to generate a rotated value with too many leading ones 721 // (because that's free with li/lis's sign-extension semantics), and then 722 // mask them off after rotation. 723 724 unsigned LS = findLastSet(RImm); 725 // We're adding (63-LS) higher-order ones, and we expect to mask them off 726 // after performing the inverse rotation by (64-r). So we need that: 727 // 63-LS == 64-r => LS == r-1 728 if (LS != r-1) 729 continue; 730 731 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); 732 uint64_t RImmWithOnes = RImm | OnesMask; 733 734 RCount = SelectInt64CountDirect(RImmWithOnes) + 1; 735 if (RCount < Count) { 736 Count = RCount; 737 RMin = r; 738 MatImm = RImmWithOnes; 739 MaskEnd = LS; 740 } 741 } 742 743 if (!RMin) 744 return SelectInt64Direct(CurDAG, dl, Imm); 745 746 auto getI32Imm = [CurDAG](unsigned Imm) { 747 return CurDAG->getTargetConstant(Imm, MVT::i32); 748 }; 749 750 SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0); 751 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, 752 getI32Imm(64 - RMin), getI32Imm(MaskEnd)); 753 } 754 755 // Select a 64-bit constant. 756 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) { 757 SDLoc dl(N); 758 759 // Get 64 bit value. 760 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); 761 return SelectInt64(CurDAG, dl, Imm); 762 } 763 764 namespace { 765 class BitPermutationSelector { 766 struct ValueBit { 767 SDValue V; 768 769 // The bit number in the value, using a convention where bit 0 is the 770 // lowest-order bit. 771 unsigned Idx; 772 773 enum Kind { 774 ConstZero, 775 Variable 776 } K; 777 778 ValueBit(SDValue V, unsigned I, Kind K = Variable) 779 : V(V), Idx(I), K(K) {} 780 ValueBit(Kind K = Variable) 781 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} 782 783 bool isZero() const { 784 return K == ConstZero; 785 } 786 787 bool hasValue() const { 788 return K == Variable; 789 } 790 791 SDValue getValue() const { 792 assert(hasValue() && "Cannot get the value of a constant bit"); 793 return V; 794 } 795 796 unsigned getValueBitIndex() const { 797 assert(hasValue() && "Cannot get the value bit index of a constant bit"); 798 return Idx; 799 } 800 }; 801 802 // A bit group has the same underlying value and the same rotate factor. 803 struct BitGroup { 804 SDValue V; 805 unsigned RLAmt; 806 unsigned StartIdx, EndIdx; 807 808 // This rotation amount assumes that the lower 32 bits of the quantity are 809 // replicated in the high 32 bits by the rotation operator (which is done 810 // by rlwinm and friends in 64-bit mode). 811 bool Repl32; 812 // Did converting to Repl32 == true change the rotation factor? If it did, 813 // it decreased it by 32. 814 bool Repl32CR; 815 // Was this group coalesced after setting Repl32 to true? 816 bool Repl32Coalesced; 817 818 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) 819 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), 820 Repl32Coalesced(false) { 821 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R << 822 " [" << S << ", " << E << "]\n"); 823 } 824 }; 825 826 // Information on each (Value, RLAmt) pair (like the number of groups 827 // associated with each) used to choose the lowering method. 828 struct ValueRotInfo { 829 SDValue V; 830 unsigned RLAmt; 831 unsigned NumGroups; 832 unsigned FirstGroupStartIdx; 833 bool Repl32; 834 835 ValueRotInfo() 836 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX), 837 Repl32(false) {} 838 839 // For sorting (in reverse order) by NumGroups, and then by 840 // FirstGroupStartIdx. 841 bool operator < (const ValueRotInfo &Other) const { 842 // We need to sort so that the non-Repl32 come first because, when we're 843 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit 844 // masking operation. 845 if (Repl32 < Other.Repl32) 846 return true; 847 else if (Repl32 > Other.Repl32) 848 return false; 849 else if (NumGroups > Other.NumGroups) 850 return true; 851 else if (NumGroups < Other.NumGroups) 852 return false; 853 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) 854 return true; 855 return false; 856 } 857 }; 858 859 // Return true if something interesting was deduced, return false if we're 860 // providing only a generic representation of V (or something else likewise 861 // uninteresting for instruction selection). 862 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) { 863 switch (V.getOpcode()) { 864 default: break; 865 case ISD::ROTL: 866 if (isa<ConstantSDNode>(V.getOperand(1))) { 867 unsigned RotAmt = V.getConstantOperandVal(1); 868 869 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 870 getValueBits(V.getOperand(0), LHSBits); 871 872 for (unsigned i = 0; i < Bits.size(); ++i) 873 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt]; 874 875 return true; 876 } 877 break; 878 case ISD::SHL: 879 if (isa<ConstantSDNode>(V.getOperand(1))) { 880 unsigned ShiftAmt = V.getConstantOperandVal(1); 881 882 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 883 getValueBits(V.getOperand(0), LHSBits); 884 885 for (unsigned i = ShiftAmt; i < Bits.size(); ++i) 886 Bits[i] = LHSBits[i - ShiftAmt]; 887 888 for (unsigned i = 0; i < ShiftAmt; ++i) 889 Bits[i] = ValueBit(ValueBit::ConstZero); 890 891 return true; 892 } 893 break; 894 case ISD::SRL: 895 if (isa<ConstantSDNode>(V.getOperand(1))) { 896 unsigned ShiftAmt = V.getConstantOperandVal(1); 897 898 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 899 getValueBits(V.getOperand(0), LHSBits); 900 901 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i) 902 Bits[i] = LHSBits[i + ShiftAmt]; 903 904 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i) 905 Bits[i] = ValueBit(ValueBit::ConstZero); 906 907 return true; 908 } 909 break; 910 case ISD::AND: 911 if (isa<ConstantSDNode>(V.getOperand(1))) { 912 uint64_t Mask = V.getConstantOperandVal(1); 913 914 SmallVector<ValueBit, 64> LHSBits(Bits.size()); 915 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits); 916 917 for (unsigned i = 0; i < Bits.size(); ++i) 918 if (((Mask >> i) & 1) == 1) 919 Bits[i] = LHSBits[i]; 920 else 921 Bits[i] = ValueBit(ValueBit::ConstZero); 922 923 // Mark this as interesting, only if the LHS was also interesting. This 924 // prevents the overall procedure from matching a single immediate 'and' 925 // (which is non-optimal because such an and might be folded with other 926 // things if we don't select it here). 927 return LHSTrivial; 928 } 929 break; 930 case ISD::OR: { 931 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size()); 932 getValueBits(V.getOperand(0), LHSBits); 933 getValueBits(V.getOperand(1), RHSBits); 934 935 bool AllDisjoint = true; 936 for (unsigned i = 0; i < Bits.size(); ++i) 937 if (LHSBits[i].isZero()) 938 Bits[i] = RHSBits[i]; 939 else if (RHSBits[i].isZero()) 940 Bits[i] = LHSBits[i]; 941 else { 942 AllDisjoint = false; 943 break; 944 } 945 946 if (!AllDisjoint) 947 break; 948 949 return true; 950 } 951 } 952 953 for (unsigned i = 0; i < Bits.size(); ++i) 954 Bits[i] = ValueBit(V, i); 955 956 return false; 957 } 958 959 // For each value (except the constant ones), compute the left-rotate amount 960 // to get it from its original to final position. 961 void computeRotationAmounts() { 962 HasZeros = false; 963 RLAmt.resize(Bits.size()); 964 for (unsigned i = 0; i < Bits.size(); ++i) 965 if (Bits[i].hasValue()) { 966 unsigned VBI = Bits[i].getValueBitIndex(); 967 if (i >= VBI) 968 RLAmt[i] = i - VBI; 969 else 970 RLAmt[i] = Bits.size() - (VBI - i); 971 } else if (Bits[i].isZero()) { 972 HasZeros = true; 973 RLAmt[i] = UINT32_MAX; 974 } else { 975 llvm_unreachable("Unknown value bit type"); 976 } 977 } 978 979 // Collect groups of consecutive bits with the same underlying value and 980 // rotation factor. If we're doing late masking, we ignore zeros, otherwise 981 // they break up groups. 982 void collectBitGroups(bool LateMask) { 983 BitGroups.clear(); 984 985 unsigned LastRLAmt = RLAmt[0]; 986 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); 987 unsigned LastGroupStartIdx = 0; 988 for (unsigned i = 1; i < Bits.size(); ++i) { 989 unsigned ThisRLAmt = RLAmt[i]; 990 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); 991 if (LateMask && !ThisValue) { 992 ThisValue = LastValue; 993 ThisRLAmt = LastRLAmt; 994 // If we're doing late masking, then the first bit group always starts 995 // at zero (even if the first bits were zero). 996 if (BitGroups.empty()) 997 LastGroupStartIdx = 0; 998 } 999 1000 // If this bit has the same underlying value and the same rotate factor as 1001 // the last one, then they're part of the same group. 1002 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) 1003 continue; 1004 1005 if (LastValue.getNode()) 1006 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1007 i-1)); 1008 LastRLAmt = ThisRLAmt; 1009 LastValue = ThisValue; 1010 LastGroupStartIdx = i; 1011 } 1012 if (LastValue.getNode()) 1013 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, 1014 Bits.size()-1)); 1015 1016 if (BitGroups.empty()) 1017 return; 1018 1019 // We might be able to combine the first and last groups. 1020 if (BitGroups.size() > 1) { 1021 // If the first and last groups are the same, then remove the first group 1022 // in favor of the last group, making the ending index of the last group 1023 // equal to the ending index of the to-be-removed first group. 1024 if (BitGroups[0].StartIdx == 0 && 1025 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && 1026 BitGroups[0].V == BitGroups[BitGroups.size()-1].V && 1027 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { 1028 DEBUG(dbgs() << "\tcombining final bit group with inital one\n"); 1029 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; 1030 BitGroups.erase(BitGroups.begin()); 1031 } 1032 } 1033 } 1034 1035 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups 1036 // associated with each. If there is a degeneracy, pick the one that occurs 1037 // first (in the final value). 1038 void collectValueRotInfo() { 1039 ValueRots.clear(); 1040 1041 for (auto &BG : BitGroups) { 1042 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); 1043 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; 1044 VRI.V = BG.V; 1045 VRI.RLAmt = BG.RLAmt; 1046 VRI.Repl32 = BG.Repl32; 1047 VRI.NumGroups += 1; 1048 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); 1049 } 1050 1051 // Now that we've collected the various ValueRotInfo instances, we need to 1052 // sort them. 1053 ValueRotsVec.clear(); 1054 for (auto &I : ValueRots) { 1055 ValueRotsVec.push_back(I.second); 1056 } 1057 std::sort(ValueRotsVec.begin(), ValueRotsVec.end()); 1058 } 1059 1060 // In 64-bit mode, rlwinm and friends have a rotation operator that 1061 // replicates the low-order 32 bits into the high-order 32-bits. The mask 1062 // indices of these instructions can only be in the lower 32 bits, so they 1063 // can only represent some 64-bit bit groups. However, when they can be used, 1064 // the 32-bit replication can be used to represent, as a single bit group, 1065 // otherwise separate bit groups. We'll convert to replicated-32-bit bit 1066 // groups when possible. Returns true if any of the bit groups were 1067 // converted. 1068 void assignRepl32BitGroups() { 1069 // If we have bits like this: 1070 // 1071 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1072 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 1073 // Groups: | RLAmt = 8 | RLAmt = 40 | 1074 // 1075 // But, making use of a 32-bit operation that replicates the low-order 32 1076 // bits into the high-order 32 bits, this can be one bit group with a RLAmt 1077 // of 8. 1078 1079 auto IsAllLow32 = [this](BitGroup & BG) { 1080 if (BG.StartIdx <= BG.EndIdx) { 1081 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { 1082 if (!Bits[i].hasValue()) 1083 continue; 1084 if (Bits[i].getValueBitIndex() >= 32) 1085 return false; 1086 } 1087 } else { 1088 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { 1089 if (!Bits[i].hasValue()) 1090 continue; 1091 if (Bits[i].getValueBitIndex() >= 32) 1092 return false; 1093 } 1094 for (unsigned i = 0; i <= BG.EndIdx; ++i) { 1095 if (!Bits[i].hasValue()) 1096 continue; 1097 if (Bits[i].getValueBitIndex() >= 32) 1098 return false; 1099 } 1100 } 1101 1102 return true; 1103 }; 1104 1105 for (auto &BG : BitGroups) { 1106 if (BG.StartIdx < 32 && BG.EndIdx < 32) { 1107 if (IsAllLow32(BG)) { 1108 if (BG.RLAmt >= 32) { 1109 BG.RLAmt -= 32; 1110 BG.Repl32CR = true; 1111 } 1112 1113 BG.Repl32 = true; 1114 1115 DEBUG(dbgs() << "\t32-bit replicated bit group for " << 1116 BG.V.getNode() << " RLAmt = " << BG.RLAmt << 1117 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n"); 1118 } 1119 } 1120 } 1121 1122 // Now walk through the bit groups, consolidating where possible. 1123 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1124 // We might want to remove this bit group by merging it with the previous 1125 // group (which might be the ending group). 1126 auto IP = (I == BitGroups.begin()) ? 1127 std::prev(BitGroups.end()) : std::prev(I); 1128 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && 1129 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { 1130 1131 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " << 1132 I->V.getNode() << " RLAmt = " << I->RLAmt << 1133 " [" << I->StartIdx << ", " << I->EndIdx << 1134 "] with group with range [" << 1135 IP->StartIdx << ", " << IP->EndIdx << "]\n"); 1136 1137 IP->EndIdx = I->EndIdx; 1138 IP->Repl32CR = IP->Repl32CR || I->Repl32CR; 1139 IP->Repl32Coalesced = true; 1140 I = BitGroups.erase(I); 1141 continue; 1142 } else { 1143 // There is a special case worth handling: If there is a single group 1144 // covering the entire upper 32 bits, and it can be merged with both 1145 // the next and previous groups (which might be the same group), then 1146 // do so. If it is the same group (so there will be only one group in 1147 // total), then we need to reverse the order of the range so that it 1148 // covers the entire 64 bits. 1149 if (I->StartIdx == 32 && I->EndIdx == 63) { 1150 assert(std::next(I) == BitGroups.end() && 1151 "bit group ends at index 63 but there is another?"); 1152 auto IN = BitGroups.begin(); 1153 1154 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 1155 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && 1156 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && 1157 IsAllLow32(*I)) { 1158 1159 DEBUG(dbgs() << "\tcombining bit group for " << 1160 I->V.getNode() << " RLAmt = " << I->RLAmt << 1161 " [" << I->StartIdx << ", " << I->EndIdx << 1162 "] with 32-bit replicated groups with ranges [" << 1163 IP->StartIdx << ", " << IP->EndIdx << "] and [" << 1164 IN->StartIdx << ", " << IN->EndIdx << "]\n"); 1165 1166 if (IP == IN) { 1167 // There is only one other group; change it to cover the whole 1168 // range (backward, so that it can still be Repl32 but cover the 1169 // whole 64-bit range). 1170 IP->StartIdx = 31; 1171 IP->EndIdx = 30; 1172 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; 1173 IP->Repl32Coalesced = true; 1174 I = BitGroups.erase(I); 1175 } else { 1176 // There are two separate groups, one before this group and one 1177 // after us (at the beginning). We're going to remove this group, 1178 // but also the group at the very beginning. 1179 IP->EndIdx = IN->EndIdx; 1180 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; 1181 IP->Repl32Coalesced = true; 1182 I = BitGroups.erase(I); 1183 BitGroups.erase(BitGroups.begin()); 1184 } 1185 1186 // This must be the last group in the vector (and we might have 1187 // just invalidated the iterator above), so break here. 1188 break; 1189 } 1190 } 1191 } 1192 1193 ++I; 1194 } 1195 } 1196 1197 SDValue getI32Imm(unsigned Imm) { 1198 return CurDAG->getTargetConstant(Imm, MVT::i32); 1199 } 1200 1201 uint64_t getZerosMask() { 1202 uint64_t Mask = 0; 1203 for (unsigned i = 0; i < Bits.size(); ++i) { 1204 if (Bits[i].hasValue()) 1205 continue; 1206 Mask |= (UINT64_C(1) << i); 1207 } 1208 1209 return ~Mask; 1210 } 1211 1212 // Depending on the number of groups for a particular value, it might be 1213 // better to rotate, mask explicitly (using andi/andis), and then or the 1214 // result. Select this part of the result first. 1215 void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) { 1216 if (BPermRewriterNoMasking) 1217 return; 1218 1219 for (ValueRotInfo &VRI : ValueRotsVec) { 1220 unsigned Mask = 0; 1221 for (unsigned i = 0; i < Bits.size(); ++i) { 1222 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) 1223 continue; 1224 if (RLAmt[i] != VRI.RLAmt) 1225 continue; 1226 Mask |= (1u << i); 1227 } 1228 1229 // Compute the masks for andi/andis that would be necessary. 1230 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1231 assert((ANDIMask != 0 || ANDISMask != 0) && 1232 "No set bits in mask for value bit groups"); 1233 bool NeedsRotate = VRI.RLAmt != 0; 1234 1235 // We're trying to minimize the number of instructions. If we have one 1236 // group, using one of andi/andis can break even. If we have three 1237 // groups, we can use both andi and andis and break even (to use both 1238 // andi and andis we also need to or the results together). We need four 1239 // groups if we also need to rotate. To use andi/andis we need to do more 1240 // than break even because rotate-and-mask instructions tend to be easier 1241 // to schedule. 1242 1243 // FIXME: We've biased here against using andi/andis, which is right for 1244 // POWER cores, but not optimal everywhere. For example, on the A2, 1245 // andi/andis have single-cycle latency whereas the rotate-and-mask 1246 // instructions take two cycles, and it would be better to bias toward 1247 // andi/andis in break-even cases. 1248 1249 unsigned NumAndInsts = (unsigned) NeedsRotate + 1250 (unsigned) (ANDIMask != 0) + 1251 (unsigned) (ANDISMask != 0) + 1252 (unsigned) (ANDIMask != 0 && ANDISMask != 0) + 1253 (unsigned) (bool) Res; 1254 1255 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << 1256 " RL: " << VRI.RLAmt << ":" << 1257 "\n\t\t\tisel using masking: " << NumAndInsts << 1258 " using rotates: " << VRI.NumGroups << "\n"); 1259 1260 if (NumAndInsts >= VRI.NumGroups) 1261 continue; 1262 1263 DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1264 1265 if (InstCnt) *InstCnt += NumAndInsts; 1266 1267 SDValue VRot; 1268 if (VRI.RLAmt) { 1269 SDValue Ops[] = 1270 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) }; 1271 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, 1272 Ops), 0); 1273 } else { 1274 VRot = VRI.V; 1275 } 1276 1277 SDValue ANDIVal, ANDISVal; 1278 if (ANDIMask != 0) 1279 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1280 VRot, getI32Imm(ANDIMask)), 0); 1281 if (ANDISMask != 0) 1282 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1283 VRot, getI32Imm(ANDISMask)), 0); 1284 1285 SDValue TotalVal; 1286 if (!ANDIVal) 1287 TotalVal = ANDISVal; 1288 else if (!ANDISVal) 1289 TotalVal = ANDIVal; 1290 else 1291 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1292 ANDIVal, ANDISVal), 0); 1293 1294 if (!Res) 1295 Res = TotalVal; 1296 else 1297 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1298 Res, TotalVal), 0); 1299 1300 // Now, remove all groups with this underlying value and rotation 1301 // factor. 1302 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1303 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt) 1304 I = BitGroups.erase(I); 1305 else 1306 ++I; 1307 } 1308 } 1309 } 1310 1311 // Instruction selection for the 32-bit case. 1312 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { 1313 SDLoc dl(N); 1314 SDValue Res; 1315 1316 if (InstCnt) *InstCnt = 0; 1317 1318 // Take care of cases that should use andi/andis first. 1319 SelectAndParts32(dl, Res, InstCnt); 1320 1321 // If we've not yet selected a 'starting' instruction, and we have no zeros 1322 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1323 // number of groups), and start with this rotated value. 1324 if ((!HasZeros || LateMask) && !Res) { 1325 ValueRotInfo &VRI = ValueRotsVec[0]; 1326 if (VRI.RLAmt) { 1327 if (InstCnt) *InstCnt += 1; 1328 SDValue Ops[] = 1329 { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) }; 1330 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 1331 } else { 1332 Res = VRI.V; 1333 } 1334 1335 // Now, remove all groups with this underlying value and rotation factor. 1336 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1337 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt) 1338 I = BitGroups.erase(I); 1339 else 1340 ++I; 1341 } 1342 } 1343 1344 if (InstCnt) *InstCnt += BitGroups.size(); 1345 1346 // Insert the other groups (one at a time). 1347 for (auto &BG : BitGroups) { 1348 if (!Res) { 1349 SDValue Ops[] = 1350 { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1), 1351 getI32Imm(Bits.size() - BG.StartIdx - 1) }; 1352 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 1353 } else { 1354 SDValue Ops[] = 1355 { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1), 1356 getI32Imm(Bits.size() - BG.StartIdx - 1) }; 1357 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); 1358 } 1359 } 1360 1361 if (LateMask) { 1362 unsigned Mask = (unsigned) getZerosMask(); 1363 1364 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; 1365 assert((ANDIMask != 0 || ANDISMask != 0) && 1366 "No set bits in zeros mask?"); 1367 1368 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1369 (unsigned) (ANDISMask != 0) + 1370 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1371 1372 SDValue ANDIVal, ANDISVal; 1373 if (ANDIMask != 0) 1374 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, 1375 Res, getI32Imm(ANDIMask)), 0); 1376 if (ANDISMask != 0) 1377 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, 1378 Res, getI32Imm(ANDISMask)), 0); 1379 1380 if (!ANDIVal) 1381 Res = ANDISVal; 1382 else if (!ANDISVal) 1383 Res = ANDIVal; 1384 else 1385 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, 1386 ANDIVal, ANDISVal), 0); 1387 } 1388 1389 return Res.getNode(); 1390 } 1391 1392 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, 1393 unsigned MaskStart, unsigned MaskEnd, 1394 bool IsIns) { 1395 // In the notation used by the instructions, 'start' and 'end' are reversed 1396 // because bits are counted from high to low order. 1397 unsigned InstMaskStart = 64 - MaskEnd - 1, 1398 InstMaskEnd = 64 - MaskStart - 1; 1399 1400 if (Repl32) 1401 return 1; 1402 1403 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || 1404 InstMaskEnd == 63 - RLAmt) 1405 return 1; 1406 1407 return 2; 1408 } 1409 1410 // For 64-bit values, not all combinations of rotates and masks are 1411 // available. Produce one if it is available. 1412 SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32, 1413 unsigned MaskStart, unsigned MaskEnd, 1414 unsigned *InstCnt = nullptr) { 1415 // In the notation used by the instructions, 'start' and 'end' are reversed 1416 // because bits are counted from high to low order. 1417 unsigned InstMaskStart = 64 - MaskEnd - 1, 1418 InstMaskEnd = 64 - MaskStart - 1; 1419 1420 if (InstCnt) *InstCnt += 1; 1421 1422 if (Repl32) { 1423 // This rotation amount assumes that the lower 32 bits of the quantity 1424 // are replicated in the high 32 bits by the rotation operator (which is 1425 // done by rlwinm and friends). 1426 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1427 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1428 SDValue Ops[] = 1429 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32), 1430 getI32Imm(InstMaskEnd - 32) }; 1431 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, 1432 Ops), 0); 1433 } 1434 1435 if (InstMaskEnd == 63) { 1436 SDValue Ops[] = 1437 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) }; 1438 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); 1439 } 1440 1441 if (InstMaskStart == 0) { 1442 SDValue Ops[] = 1443 { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) }; 1444 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); 1445 } 1446 1447 if (InstMaskEnd == 63 - RLAmt) { 1448 SDValue Ops[] = 1449 { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) }; 1450 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); 1451 } 1452 1453 // We cannot do this with a single instruction, so we'll use two. The 1454 // problem is that we're not free to choose both a rotation amount and mask 1455 // start and end independently. We can choose an arbitrary mask start and 1456 // end, but then the rotation amount is fixed. Rotation, however, can be 1457 // inverted, and so by applying an "inverse" rotation first, we can get the 1458 // desired result. 1459 if (InstCnt) *InstCnt += 1; 1460 1461 // The rotation mask for the second instruction must be MaskStart. 1462 unsigned RLAmt2 = MaskStart; 1463 // The first instruction must rotate V so that the overall rotation amount 1464 // is RLAmt. 1465 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 1466 if (RLAmt1) 1467 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 1468 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); 1469 } 1470 1471 // For 64-bit values, not all combinations of rotates and masks are 1472 // available. Produce a rotate-mask-and-insert if one is available. 1473 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt, 1474 bool Repl32, unsigned MaskStart, 1475 unsigned MaskEnd, unsigned *InstCnt = nullptr) { 1476 // In the notation used by the instructions, 'start' and 'end' are reversed 1477 // because bits are counted from high to low order. 1478 unsigned InstMaskStart = 64 - MaskEnd - 1, 1479 InstMaskEnd = 64 - MaskStart - 1; 1480 1481 if (InstCnt) *InstCnt += 1; 1482 1483 if (Repl32) { 1484 // This rotation amount assumes that the lower 32 bits of the quantity 1485 // are replicated in the high 32 bits by the rotation operator (which is 1486 // done by rlwinm and friends). 1487 assert(InstMaskStart >= 32 && "Mask cannot start out of range"); 1488 assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); 1489 SDValue Ops[] = 1490 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32), 1491 getI32Imm(InstMaskEnd - 32) }; 1492 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, 1493 Ops), 0); 1494 } 1495 1496 if (InstMaskEnd == 63 - RLAmt) { 1497 SDValue Ops[] = 1498 { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) }; 1499 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); 1500 } 1501 1502 // We cannot do this with a single instruction, so we'll use two. The 1503 // problem is that we're not free to choose both a rotation amount and mask 1504 // start and end independently. We can choose an arbitrary mask start and 1505 // end, but then the rotation amount is fixed. Rotation, however, can be 1506 // inverted, and so by applying an "inverse" rotation first, we can get the 1507 // desired result. 1508 if (InstCnt) *InstCnt += 1; 1509 1510 // The rotation mask for the second instruction must be MaskStart. 1511 unsigned RLAmt2 = MaskStart; 1512 // The first instruction must rotate V so that the overall rotation amount 1513 // is RLAmt. 1514 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; 1515 if (RLAmt1) 1516 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); 1517 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); 1518 } 1519 1520 void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) { 1521 if (BPermRewriterNoMasking) 1522 return; 1523 1524 // The idea here is the same as in the 32-bit version, but with additional 1525 // complications from the fact that Repl32 might be true. Because we 1526 // aggressively convert bit groups to Repl32 form (which, for small 1527 // rotation factors, involves no other change), and then coalesce, it might 1528 // be the case that a single 64-bit masking operation could handle both 1529 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 1530 // form allowed coalescing, then we must use a 32-bit rotaton in order to 1531 // completely capture the new combined bit group. 1532 1533 for (ValueRotInfo &VRI : ValueRotsVec) { 1534 uint64_t Mask = 0; 1535 1536 // We need to add to the mask all bits from the associated bit groups. 1537 // If Repl32 is false, we need to add bits from bit groups that have 1538 // Repl32 true, but are trivially convertable to Repl32 false. Such a 1539 // group is trivially convertable if it overlaps only with the lower 32 1540 // bits, and the group has not been coalesced. 1541 auto MatchingBG = [VRI](BitGroup &BG) { 1542 if (VRI.V != BG.V) 1543 return false; 1544 1545 unsigned EffRLAmt = BG.RLAmt; 1546 if (!VRI.Repl32 && BG.Repl32) { 1547 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && 1548 !BG.Repl32Coalesced) { 1549 if (BG.Repl32CR) 1550 EffRLAmt += 32; 1551 } else { 1552 return false; 1553 } 1554 } else if (VRI.Repl32 != BG.Repl32) { 1555 return false; 1556 } 1557 1558 if (VRI.RLAmt != EffRLAmt) 1559 return false; 1560 1561 return true; 1562 }; 1563 1564 for (auto &BG : BitGroups) { 1565 if (!MatchingBG(BG)) 1566 continue; 1567 1568 if (BG.StartIdx <= BG.EndIdx) { 1569 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) 1570 Mask |= (UINT64_C(1) << i); 1571 } else { 1572 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) 1573 Mask |= (UINT64_C(1) << i); 1574 for (unsigned i = 0; i <= BG.EndIdx; ++i) 1575 Mask |= (UINT64_C(1) << i); 1576 } 1577 } 1578 1579 // We can use the 32-bit andi/andis technique if the mask does not 1580 // require any higher-order bits. This can save an instruction compared 1581 // to always using the general 64-bit technique. 1582 bool Use32BitInsts = isUInt<32>(Mask); 1583 // Compute the masks for andi/andis that would be necessary. 1584 unsigned ANDIMask = (Mask & UINT16_MAX), 1585 ANDISMask = (Mask >> 16) & UINT16_MAX; 1586 1587 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); 1588 1589 unsigned NumAndInsts = (unsigned) NeedsRotate + 1590 (unsigned) (bool) Res; 1591 if (Use32BitInsts) 1592 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + 1593 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1594 else 1595 NumAndInsts += SelectInt64Count(Mask) + /* and */ 1; 1596 1597 unsigned NumRLInsts = 0; 1598 bool FirstBG = true; 1599 for (auto &BG : BitGroups) { 1600 if (!MatchingBG(BG)) 1601 continue; 1602 NumRLInsts += 1603 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, 1604 !FirstBG); 1605 FirstBG = false; 1606 } 1607 1608 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << 1609 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << 1610 "\n\t\t\tisel using masking: " << NumAndInsts << 1611 " using rotates: " << NumRLInsts << "\n"); 1612 1613 // When we'd use andi/andis, we bias toward using the rotates (andi only 1614 // has a record form, and is cracked on POWER cores). However, when using 1615 // general 64-bit constant formation, bias toward the constant form, 1616 // because that exposes more opportunities for CSE. 1617 if (NumAndInsts > NumRLInsts) 1618 continue; 1619 if (Use32BitInsts && NumAndInsts == NumRLInsts) 1620 continue; 1621 1622 DEBUG(dbgs() << "\t\t\t\tusing masking\n"); 1623 1624 if (InstCnt) *InstCnt += NumAndInsts; 1625 1626 SDValue VRot; 1627 // We actually need to generate a rotation if we have a non-zero rotation 1628 // factor or, in the Repl32 case, if we care about any of the 1629 // higher-order replicated bits. In the latter case, we generate a mask 1630 // backward so that it actually includes the entire 64 bits. 1631 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) 1632 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 1633 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); 1634 else 1635 VRot = VRI.V; 1636 1637 SDValue TotalVal; 1638 if (Use32BitInsts) { 1639 assert((ANDIMask != 0 || ANDISMask != 0) && 1640 "No set bits in mask when using 32-bit ands for 64-bit value"); 1641 1642 SDValue ANDIVal, ANDISVal; 1643 if (ANDIMask != 0) 1644 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 1645 VRot, getI32Imm(ANDIMask)), 0); 1646 if (ANDISMask != 0) 1647 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 1648 VRot, getI32Imm(ANDISMask)), 0); 1649 1650 if (!ANDIVal) 1651 TotalVal = ANDISVal; 1652 else if (!ANDISVal) 1653 TotalVal = ANDIVal; 1654 else 1655 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1656 ANDIVal, ANDISVal), 0); 1657 } else { 1658 TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0); 1659 TotalVal = 1660 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 1661 VRot, TotalVal), 0); 1662 } 1663 1664 if (!Res) 1665 Res = TotalVal; 1666 else 1667 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1668 Res, TotalVal), 0); 1669 1670 // Now, remove all groups with this underlying value and rotation 1671 // factor. 1672 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1673 if (MatchingBG(*I)) 1674 I = BitGroups.erase(I); 1675 else 1676 ++I; 1677 } 1678 } 1679 } 1680 1681 // Instruction selection for the 64-bit case. 1682 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { 1683 SDLoc dl(N); 1684 SDValue Res; 1685 1686 if (InstCnt) *InstCnt = 0; 1687 1688 // Take care of cases that should use andi/andis first. 1689 SelectAndParts64(dl, Res, InstCnt); 1690 1691 // If we've not yet selected a 'starting' instruction, and we have no zeros 1692 // to fill in, select the (Value, RLAmt) with the highest priority (largest 1693 // number of groups), and start with this rotated value. 1694 if ((!HasZeros || LateMask) && !Res) { 1695 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 1696 // groups will come first, and so the VRI representing the largest number 1697 // of groups might not be first (it might be the first Repl32 groups). 1698 unsigned MaxGroupsIdx = 0; 1699 if (!ValueRotsVec[0].Repl32) { 1700 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) 1701 if (ValueRotsVec[i].Repl32) { 1702 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) 1703 MaxGroupsIdx = i; 1704 break; 1705 } 1706 } 1707 1708 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; 1709 bool NeedsRotate = false; 1710 if (VRI.RLAmt) { 1711 NeedsRotate = true; 1712 } else if (VRI.Repl32) { 1713 for (auto &BG : BitGroups) { 1714 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || 1715 BG.Repl32 != VRI.Repl32) 1716 continue; 1717 1718 // We don't need a rotate if the bit group is confined to the lower 1719 // 32 bits. 1720 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) 1721 continue; 1722 1723 NeedsRotate = true; 1724 break; 1725 } 1726 } 1727 1728 if (NeedsRotate) 1729 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, 1730 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, 1731 InstCnt); 1732 else 1733 Res = VRI.V; 1734 1735 // Now, remove all groups with this underlying value and rotation factor. 1736 if (Res) 1737 for (auto I = BitGroups.begin(); I != BitGroups.end();) { 1738 if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32) 1739 I = BitGroups.erase(I); 1740 else 1741 ++I; 1742 } 1743 } 1744 1745 // Because 64-bit rotates are more flexible than inserts, we might have a 1746 // preference regarding which one we do first (to save one instruction). 1747 if (!Res) 1748 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { 1749 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 1750 false) < 1751 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, 1752 true)) { 1753 if (I != BitGroups.begin()) { 1754 BitGroup BG = *I; 1755 BitGroups.erase(I); 1756 BitGroups.insert(BitGroups.begin(), BG); 1757 } 1758 1759 break; 1760 } 1761 } 1762 1763 // Insert the other groups (one at a time). 1764 for (auto &BG : BitGroups) { 1765 if (!Res) 1766 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, 1767 BG.EndIdx, InstCnt); 1768 else 1769 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, 1770 BG.StartIdx, BG.EndIdx, InstCnt); 1771 } 1772 1773 if (LateMask) { 1774 uint64_t Mask = getZerosMask(); 1775 1776 // We can use the 32-bit andi/andis technique if the mask does not 1777 // require any higher-order bits. This can save an instruction compared 1778 // to always using the general 64-bit technique. 1779 bool Use32BitInsts = isUInt<32>(Mask); 1780 // Compute the masks for andi/andis that would be necessary. 1781 unsigned ANDIMask = (Mask & UINT16_MAX), 1782 ANDISMask = (Mask >> 16) & UINT16_MAX; 1783 1784 if (Use32BitInsts) { 1785 assert((ANDIMask != 0 || ANDISMask != 0) && 1786 "No set bits in mask when using 32-bit ands for 64-bit value"); 1787 1788 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + 1789 (unsigned) (ANDISMask != 0) + 1790 (unsigned) (ANDIMask != 0 && ANDISMask != 0); 1791 1792 SDValue ANDIVal, ANDISVal; 1793 if (ANDIMask != 0) 1794 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, 1795 Res, getI32Imm(ANDIMask)), 0); 1796 if (ANDISMask != 0) 1797 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, 1798 Res, getI32Imm(ANDISMask)), 0); 1799 1800 if (!ANDIVal) 1801 Res = ANDISVal; 1802 else if (!ANDISVal) 1803 Res = ANDIVal; 1804 else 1805 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, 1806 ANDIVal, ANDISVal), 0); 1807 } else { 1808 if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1; 1809 1810 SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0); 1811 Res = 1812 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, 1813 Res, MaskVal), 0); 1814 } 1815 } 1816 1817 return Res.getNode(); 1818 } 1819 1820 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { 1821 // Fill in BitGroups. 1822 collectBitGroups(LateMask); 1823 if (BitGroups.empty()) 1824 return nullptr; 1825 1826 // For 64-bit values, figure out when we can use 32-bit instructions. 1827 if (Bits.size() == 64) 1828 assignRepl32BitGroups(); 1829 1830 // Fill in ValueRotsVec. 1831 collectValueRotInfo(); 1832 1833 if (Bits.size() == 32) { 1834 return Select32(N, LateMask, InstCnt); 1835 } else { 1836 assert(Bits.size() == 64 && "Not 64 bits here?"); 1837 return Select64(N, LateMask, InstCnt); 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 SmallVector<ValueBit, 64> Bits; 1844 1845 bool HasZeros; 1846 SmallVector<unsigned, 64> RLAmt; 1847 1848 SmallVector<BitGroup, 16> BitGroups; 1849 1850 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; 1851 SmallVector<ValueRotInfo, 16> ValueRotsVec; 1852 1853 SelectionDAG *CurDAG; 1854 1855 public: 1856 BitPermutationSelector(SelectionDAG *DAG) 1857 : CurDAG(DAG) {} 1858 1859 // Here we try to match complex bit permutations into a set of 1860 // rotate-and-shift/shift/and/or instructions, using a set of heuristics 1861 // known to produce optimial code for common cases (like i32 byte swapping). 1862 SDNode *Select(SDNode *N) { 1863 Bits.resize(N->getValueType(0).getSizeInBits()); 1864 if (!getValueBits(SDValue(N, 0), Bits)) 1865 return nullptr; 1866 1867 DEBUG(dbgs() << "Considering bit-permutation-based instruction" 1868 " selection for: "); 1869 DEBUG(N->dump(CurDAG)); 1870 1871 // Fill it RLAmt and set HasZeros. 1872 computeRotationAmounts(); 1873 1874 if (!HasZeros) 1875 return Select(N, false); 1876 1877 // We currently have two techniques for handling results with zeros: early 1878 // masking (the default) and late masking. Late masking is sometimes more 1879 // efficient, but because the structure of the bit groups is different, it 1880 // is hard to tell without generating both and comparing the results. With 1881 // late masking, we ignore zeros in the resulting value when inserting each 1882 // set of bit groups, and then mask in the zeros at the end. With early 1883 // masking, we only insert the non-zero parts of the result at every step. 1884 1885 unsigned InstCnt, InstCntLateMask; 1886 DEBUG(dbgs() << "\tEarly masking:\n"); 1887 SDNode *RN = Select(N, false, &InstCnt); 1888 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); 1889 1890 DEBUG(dbgs() << "\tLate masking:\n"); 1891 SDNode *RNLM = Select(N, true, &InstCntLateMask); 1892 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask << 1893 " instructions\n"); 1894 1895 if (InstCnt <= InstCntLateMask) { 1896 DEBUG(dbgs() << "\tUsing early-masking for isel\n"); 1897 return RN; 1898 } 1899 1900 DEBUG(dbgs() << "\tUsing late-masking for isel\n"); 1901 return RNLM; 1902 } 1903 }; 1904 } // anonymous namespace 1905 1906 SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) { 1907 if (N->getValueType(0) != MVT::i32 && 1908 N->getValueType(0) != MVT::i64) 1909 return nullptr; 1910 1911 if (!UseBitPermRewriter) 1912 return nullptr; 1913 1914 switch (N->getOpcode()) { 1915 default: break; 1916 case ISD::ROTL: 1917 case ISD::SHL: 1918 case ISD::SRL: 1919 case ISD::AND: 1920 case ISD::OR: { 1921 BitPermutationSelector BPS(CurDAG); 1922 return BPS.Select(N); 1923 } 1924 } 1925 1926 return nullptr; 1927 } 1928 1929 /// SelectCC - Select a comparison of the specified values with the specified 1930 /// condition code, returning the CR# of the expression. 1931 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, 1932 ISD::CondCode CC, SDLoc dl) { 1933 // Always select the LHS. 1934 unsigned Opc; 1935 1936 if (LHS.getValueType() == MVT::i32) { 1937 unsigned Imm; 1938 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 1939 if (isInt32Immediate(RHS, Imm)) { 1940 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 1941 if (isUInt<16>(Imm)) 1942 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 1943 getI32Imm(Imm & 0xFFFF)), 0); 1944 // If this is a 16-bit signed immediate, fold it. 1945 if (isInt<16>((int)Imm)) 1946 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 1947 getI32Imm(Imm & 0xFFFF)), 0); 1948 1949 // For non-equality comparisons, the default code would materialize the 1950 // constant, then compare against it, like this: 1951 // lis r2, 4660 1952 // ori r2, r2, 22136 1953 // cmpw cr0, r3, r2 1954 // Since we are just comparing for equality, we can emit this instead: 1955 // xoris r0,r3,0x1234 1956 // cmplwi cr0,r0,0x5678 1957 // beq cr0,L6 1958 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, 1959 getI32Imm(Imm >> 16)), 0); 1960 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, 1961 getI32Imm(Imm & 0xFFFF)), 0); 1962 } 1963 Opc = PPC::CMPLW; 1964 } else if (ISD::isUnsignedIntSetCC(CC)) { 1965 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) 1966 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, 1967 getI32Imm(Imm & 0xFFFF)), 0); 1968 Opc = PPC::CMPLW; 1969 } else { 1970 short SImm; 1971 if (isIntS16Immediate(RHS, SImm)) 1972 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, 1973 getI32Imm((int)SImm & 0xFFFF)), 1974 0); 1975 Opc = PPC::CMPW; 1976 } 1977 } else if (LHS.getValueType() == MVT::i64) { 1978 uint64_t Imm; 1979 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 1980 if (isInt64Immediate(RHS.getNode(), Imm)) { 1981 // SETEQ/SETNE comparison with 16-bit immediate, fold it. 1982 if (isUInt<16>(Imm)) 1983 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 1984 getI32Imm(Imm & 0xFFFF)), 0); 1985 // If this is a 16-bit signed immediate, fold it. 1986 if (isInt<16>(Imm)) 1987 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 1988 getI32Imm(Imm & 0xFFFF)), 0); 1989 1990 // For non-equality comparisons, the default code would materialize the 1991 // constant, then compare against it, like this: 1992 // lis r2, 4660 1993 // ori r2, r2, 22136 1994 // cmpd cr0, r3, r2 1995 // Since we are just comparing for equality, we can emit this instead: 1996 // xoris r0,r3,0x1234 1997 // cmpldi cr0,r0,0x5678 1998 // beq cr0,L6 1999 if (isUInt<32>(Imm)) { 2000 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, 2001 getI64Imm(Imm >> 16)), 0); 2002 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, 2003 getI64Imm(Imm & 0xFFFF)), 0); 2004 } 2005 } 2006 Opc = PPC::CMPLD; 2007 } else if (ISD::isUnsignedIntSetCC(CC)) { 2008 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) 2009 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, 2010 getI64Imm(Imm & 0xFFFF)), 0); 2011 Opc = PPC::CMPLD; 2012 } else { 2013 short SImm; 2014 if (isIntS16Immediate(RHS, SImm)) 2015 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, 2016 getI64Imm(SImm & 0xFFFF)), 2017 0); 2018 Opc = PPC::CMPD; 2019 } 2020 } else if (LHS.getValueType() == MVT::f32) { 2021 Opc = PPC::FCMPUS; 2022 } else { 2023 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); 2024 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; 2025 } 2026 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); 2027 } 2028 2029 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { 2030 switch (CC) { 2031 case ISD::SETUEQ: 2032 case ISD::SETONE: 2033 case ISD::SETOLE: 2034 case ISD::SETOGE: 2035 llvm_unreachable("Should be lowered by legalize!"); 2036 default: llvm_unreachable("Unknown condition!"); 2037 case ISD::SETOEQ: 2038 case ISD::SETEQ: return PPC::PRED_EQ; 2039 case ISD::SETUNE: 2040 case ISD::SETNE: return PPC::PRED_NE; 2041 case ISD::SETOLT: 2042 case ISD::SETLT: return PPC::PRED_LT; 2043 case ISD::SETULE: 2044 case ISD::SETLE: return PPC::PRED_LE; 2045 case ISD::SETOGT: 2046 case ISD::SETGT: return PPC::PRED_GT; 2047 case ISD::SETUGE: 2048 case ISD::SETGE: return PPC::PRED_GE; 2049 case ISD::SETO: return PPC::PRED_NU; 2050 case ISD::SETUO: return PPC::PRED_UN; 2051 // These two are invalid for floating point. Assume we have int. 2052 case ISD::SETULT: return PPC::PRED_LT; 2053 case ISD::SETUGT: return PPC::PRED_GT; 2054 } 2055 } 2056 2057 /// getCRIdxForSetCC - Return the index of the condition register field 2058 /// associated with the SetCC condition, and whether or not the field is 2059 /// treated as inverted. That is, lt = 0; ge = 0 inverted. 2060 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { 2061 Invert = false; 2062 switch (CC) { 2063 default: llvm_unreachable("Unknown condition!"); 2064 case ISD::SETOLT: 2065 case ISD::SETLT: return 0; // Bit #0 = SETOLT 2066 case ISD::SETOGT: 2067 case ISD::SETGT: return 1; // Bit #1 = SETOGT 2068 case ISD::SETOEQ: 2069 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ 2070 case ISD::SETUO: return 3; // Bit #3 = SETUO 2071 case ISD::SETUGE: 2072 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE 2073 case ISD::SETULE: 2074 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE 2075 case ISD::SETUNE: 2076 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE 2077 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO 2078 case ISD::SETUEQ: 2079 case ISD::SETOGE: 2080 case ISD::SETOLE: 2081 case ISD::SETONE: 2082 llvm_unreachable("Invalid branch code: should be expanded by legalize"); 2083 // These are invalid for floating point. Assume integer. 2084 case ISD::SETULT: return 0; 2085 case ISD::SETUGT: return 1; 2086 } 2087 } 2088 2089 // getVCmpInst: return the vector compare instruction for the specified 2090 // vector type and condition code. Since this is for altivec specific code, 2091 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). 2092 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, 2093 bool HasVSX, bool &Swap, bool &Negate) { 2094 Swap = false; 2095 Negate = false; 2096 2097 if (VecVT.isFloatingPoint()) { 2098 /* Handle some cases by swapping input operands. */ 2099 switch (CC) { 2100 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; 2101 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 2102 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; 2103 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; 2104 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 2105 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; 2106 default: break; 2107 } 2108 /* Handle some cases by negating the result. */ 2109 switch (CC) { 2110 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 2111 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; 2112 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; 2113 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; 2114 default: break; 2115 } 2116 /* We have instructions implementing the remaining cases. */ 2117 switch (CC) { 2118 case ISD::SETEQ: 2119 case ISD::SETOEQ: 2120 if (VecVT == MVT::v4f32) 2121 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; 2122 else if (VecVT == MVT::v2f64) 2123 return PPC::XVCMPEQDP; 2124 break; 2125 case ISD::SETGT: 2126 case ISD::SETOGT: 2127 if (VecVT == MVT::v4f32) 2128 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; 2129 else if (VecVT == MVT::v2f64) 2130 return PPC::XVCMPGTDP; 2131 break; 2132 case ISD::SETGE: 2133 case ISD::SETOGE: 2134 if (VecVT == MVT::v4f32) 2135 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; 2136 else if (VecVT == MVT::v2f64) 2137 return PPC::XVCMPGEDP; 2138 break; 2139 default: 2140 break; 2141 } 2142 llvm_unreachable("Invalid floating-point vector compare condition"); 2143 } else { 2144 /* Handle some cases by swapping input operands. */ 2145 switch (CC) { 2146 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; 2147 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; 2148 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; 2149 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; 2150 default: break; 2151 } 2152 /* Handle some cases by negating the result. */ 2153 switch (CC) { 2154 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; 2155 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; 2156 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; 2157 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; 2158 default: break; 2159 } 2160 /* We have instructions implementing the remaining cases. */ 2161 switch (CC) { 2162 case ISD::SETEQ: 2163 case ISD::SETUEQ: 2164 if (VecVT == MVT::v16i8) 2165 return PPC::VCMPEQUB; 2166 else if (VecVT == MVT::v8i16) 2167 return PPC::VCMPEQUH; 2168 else if (VecVT == MVT::v4i32) 2169 return PPC::VCMPEQUW; 2170 else if (VecVT == MVT::v2i64) 2171 return PPC::VCMPEQUD; 2172 break; 2173 case ISD::SETGT: 2174 if (VecVT == MVT::v16i8) 2175 return PPC::VCMPGTSB; 2176 else if (VecVT == MVT::v8i16) 2177 return PPC::VCMPGTSH; 2178 else if (VecVT == MVT::v4i32) 2179 return PPC::VCMPGTSW; 2180 else if (VecVT == MVT::v2i64) 2181 return PPC::VCMPGTSD; 2182 break; 2183 case ISD::SETUGT: 2184 if (VecVT == MVT::v16i8) 2185 return PPC::VCMPGTUB; 2186 else if (VecVT == MVT::v8i16) 2187 return PPC::VCMPGTUH; 2188 else if (VecVT == MVT::v4i32) 2189 return PPC::VCMPGTUW; 2190 else if (VecVT == MVT::v2i64) 2191 return PPC::VCMPGTUD; 2192 break; 2193 default: 2194 break; 2195 } 2196 llvm_unreachable("Invalid integer vector compare condition"); 2197 } 2198 } 2199 2200 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { 2201 SDLoc dl(N); 2202 unsigned Imm; 2203 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2204 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 2205 bool isPPC64 = (PtrVT == MVT::i64); 2206 2207 if (!PPCSubTarget->useCRBits() && 2208 isInt32Immediate(N->getOperand(1), Imm)) { 2209 // We can codegen setcc op, imm very efficiently compared to a brcond. 2210 // Check for those cases here. 2211 // setcc op, 0 2212 if (Imm == 0) { 2213 SDValue Op = N->getOperand(0); 2214 switch (CC) { 2215 default: break; 2216 case ISD::SETEQ: { 2217 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); 2218 SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; 2219 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2220 } 2221 case ISD::SETNE: { 2222 if (isPPC64) break; 2223 SDValue AD = 2224 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2225 Op, getI32Imm(~0U)), 0); 2226 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 2227 AD.getValue(1)); 2228 } 2229 case ISD::SETLT: { 2230 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 2231 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2232 } 2233 case ISD::SETGT: { 2234 SDValue T = 2235 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); 2236 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); 2237 SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 2238 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2239 } 2240 } 2241 } else if (Imm == ~0U) { // setcc op, -1 2242 SDValue Op = N->getOperand(0); 2243 switch (CC) { 2244 default: break; 2245 case ISD::SETEQ: 2246 if (isPPC64) break; 2247 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2248 Op, getI32Imm(1)), 0); 2249 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 2250 SDValue(CurDAG->getMachineNode(PPC::LI, dl, 2251 MVT::i32, 2252 getI32Imm(0)), 0), 2253 Op.getValue(1)); 2254 case ISD::SETNE: { 2255 if (isPPC64) break; 2256 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); 2257 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2258 Op, getI32Imm(~0U)); 2259 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), 2260 Op, SDValue(AD, 1)); 2261 } 2262 case ISD::SETLT: { 2263 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, 2264 getI32Imm(1)), 0); 2265 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, 2266 Op), 0); 2267 SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 2268 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2269 } 2270 case ISD::SETGT: { 2271 SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; 2272 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 2273 0); 2274 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, 2275 getI32Imm(1)); 2276 } 2277 } 2278 } 2279 } 2280 2281 SDValue LHS = N->getOperand(0); 2282 SDValue RHS = N->getOperand(1); 2283 2284 // Altivec Vector compare instructions do not set any CR register by default and 2285 // vector compare operations return the same type as the operands. 2286 if (LHS.getValueType().isVector()) { 2287 if (PPCSubTarget->hasQPX()) 2288 return nullptr; 2289 2290 EVT VecVT = LHS.getValueType(); 2291 bool Swap, Negate; 2292 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, 2293 PPCSubTarget->hasVSX(), Swap, Negate); 2294 if (Swap) 2295 std::swap(LHS, RHS); 2296 2297 if (Negate) { 2298 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); 2299 return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : 2300 PPC::VNOR, 2301 VecVT, VCmp, VCmp); 2302 } 2303 2304 return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); 2305 } 2306 2307 if (PPCSubTarget->useCRBits()) 2308 return nullptr; 2309 2310 bool Inv; 2311 unsigned Idx = getCRIdxForSetCC(CC, Inv); 2312 SDValue CCReg = SelectCC(LHS, RHS, CC, dl); 2313 SDValue IntCR; 2314 2315 // Force the ccreg into CR7. 2316 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); 2317 2318 SDValue InFlag(nullptr, 0); // Null incoming flag value. 2319 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, 2320 InFlag).getValue(1); 2321 2322 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, 2323 CCReg), 0); 2324 2325 SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), 2326 getI32Imm(31), getI32Imm(31) }; 2327 if (!Inv) 2328 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2329 2330 // Get the specified bit. 2331 SDValue Tmp = 2332 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); 2333 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); 2334 } 2335 2336 SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { 2337 // Transfer memoperands. 2338 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); 2339 MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); 2340 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); 2341 return Result; 2342 } 2343 2344 2345 // Select - Convert the specified operand from a target-independent to a 2346 // target-specific node if it hasn't already been changed. 2347 SDNode *PPCDAGToDAGISel::Select(SDNode *N) { 2348 SDLoc dl(N); 2349 if (N->isMachineOpcode()) { 2350 N->setNodeId(-1); 2351 return nullptr; // Already selected. 2352 } 2353 2354 // In case any misguided DAG-level optimizations form an ADD with a 2355 // TargetConstant operand, crash here instead of miscompiling (by selecting 2356 // an r+r add instead of some kind of r+i add). 2357 if (N->getOpcode() == ISD::ADD && 2358 N->getOperand(1).getOpcode() == ISD::TargetConstant) 2359 llvm_unreachable("Invalid ADD with TargetConstant operand"); 2360 2361 // Try matching complex bit permutations before doing anything else. 2362 if (SDNode *NN = SelectBitPermutation(N)) 2363 return NN; 2364 2365 switch (N->getOpcode()) { 2366 default: break; 2367 2368 case ISD::Constant: { 2369 if (N->getValueType(0) == MVT::i64) 2370 return SelectInt64(CurDAG, N); 2371 break; 2372 } 2373 2374 case ISD::SETCC: { 2375 SDNode *SN = SelectSETCC(N); 2376 if (SN) 2377 return SN; 2378 break; 2379 } 2380 case PPCISD::GlobalBaseReg: 2381 return getGlobalBaseReg(); 2382 2383 case ISD::FrameIndex: 2384 return getFrameIndex(N, N); 2385 2386 case PPCISD::MFOCRF: { 2387 SDValue InFlag = N->getOperand(1); 2388 return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, 2389 N->getOperand(0), InFlag); 2390 } 2391 2392 case PPCISD::READ_TIME_BASE: { 2393 return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, 2394 MVT::Other, N->getOperand(0)); 2395 } 2396 2397 case PPCISD::SRA_ADDZE: { 2398 SDValue N0 = N->getOperand(0); 2399 SDValue ShiftAmt = 2400 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> 2401 getConstantIntValue(), N->getValueType(0)); 2402 if (N->getValueType(0) == MVT::i64) { 2403 SDNode *Op = 2404 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, 2405 N0, ShiftAmt); 2406 return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, 2407 SDValue(Op, 0), SDValue(Op, 1)); 2408 } else { 2409 assert(N->getValueType(0) == MVT::i32 && 2410 "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); 2411 SDNode *Op = 2412 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, 2413 N0, ShiftAmt); 2414 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 2415 SDValue(Op, 0), SDValue(Op, 1)); 2416 } 2417 } 2418 2419 case ISD::LOAD: { 2420 // Handle preincrement loads. 2421 LoadSDNode *LD = cast<LoadSDNode>(N); 2422 EVT LoadedVT = LD->getMemoryVT(); 2423 2424 // Normal loads are handled by code generated from the .td file. 2425 if (LD->getAddressingMode() != ISD::PRE_INC) 2426 break; 2427 2428 SDValue Offset = LD->getOffset(); 2429 if (Offset.getOpcode() == ISD::TargetConstant || 2430 Offset.getOpcode() == ISD::TargetGlobalAddress) { 2431 2432 unsigned Opcode; 2433 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 2434 if (LD->getValueType(0) != MVT::i64) { 2435 // Handle PPC32 integer and normal FP loads. 2436 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2437 switch (LoadedVT.getSimpleVT().SimpleTy) { 2438 default: llvm_unreachable("Invalid PPC load type!"); 2439 case MVT::f64: Opcode = PPC::LFDU; break; 2440 case MVT::f32: Opcode = PPC::LFSU; break; 2441 case MVT::i32: Opcode = PPC::LWZU; break; 2442 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; 2443 case MVT::i1: 2444 case MVT::i8: Opcode = PPC::LBZU; break; 2445 } 2446 } else { 2447 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 2448 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2449 switch (LoadedVT.getSimpleVT().SimpleTy) { 2450 default: llvm_unreachable("Invalid PPC load type!"); 2451 case MVT::i64: Opcode = PPC::LDU; break; 2452 case MVT::i32: Opcode = PPC::LWZU8; break; 2453 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; 2454 case MVT::i1: 2455 case MVT::i8: Opcode = PPC::LBZU8; break; 2456 } 2457 } 2458 2459 SDValue Chain = LD->getChain(); 2460 SDValue Base = LD->getBasePtr(); 2461 SDValue Ops[] = { Offset, Base, Chain }; 2462 return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl, 2463 LD->getValueType(0), 2464 PPCLowering->getPointerTy(), 2465 MVT::Other, Ops)); 2466 } else { 2467 unsigned Opcode; 2468 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; 2469 if (LD->getValueType(0) != MVT::i64) { 2470 // Handle PPC32 integer and normal FP loads. 2471 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); 2472 switch (LoadedVT.getSimpleVT().SimpleTy) { 2473 default: llvm_unreachable("Invalid PPC load type!"); 2474 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX 2475 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX 2476 case MVT::f64: Opcode = PPC::LFDUX; break; 2477 case MVT::f32: Opcode = PPC::LFSUX; break; 2478 case MVT::i32: Opcode = PPC::LWZUX; break; 2479 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; 2480 case MVT::i1: 2481 case MVT::i8: Opcode = PPC::LBZUX; break; 2482 } 2483 } else { 2484 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); 2485 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && 2486 "Invalid sext update load"); 2487 switch (LoadedVT.getSimpleVT().SimpleTy) { 2488 default: llvm_unreachable("Invalid PPC load type!"); 2489 case MVT::i64: Opcode = PPC::LDUX; break; 2490 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; 2491 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; 2492 case MVT::i1: 2493 case MVT::i8: Opcode = PPC::LBZUX8; break; 2494 } 2495 } 2496 2497 SDValue Chain = LD->getChain(); 2498 SDValue Base = LD->getBasePtr(); 2499 SDValue Ops[] = { Base, Offset, Chain }; 2500 return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl, 2501 LD->getValueType(0), 2502 PPCLowering->getPointerTy(), 2503 MVT::Other, Ops)); 2504 } 2505 } 2506 2507 case ISD::AND: { 2508 unsigned Imm, Imm2, SH, MB, ME; 2509 uint64_t Imm64; 2510 2511 // If this is an and of a value rotated between 0 and 31 bits and then and'd 2512 // with a mask, emit rlwinm 2513 if (isInt32Immediate(N->getOperand(1), Imm) && 2514 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { 2515 SDValue Val = N->getOperand(0).getOperand(0); 2516 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 2517 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2518 } 2519 // If this is just a masked value where the input is not handled above, and 2520 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm 2521 if (isInt32Immediate(N->getOperand(1), Imm) && 2522 isRunOfOnes(Imm, MB, ME) && 2523 N->getOperand(0).getOpcode() != ISD::ROTL) { 2524 SDValue Val = N->getOperand(0); 2525 SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; 2526 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2527 } 2528 // If this is a 64-bit zero-extension mask, emit rldicl. 2529 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && 2530 isMask_64(Imm64)) { 2531 SDValue Val = N->getOperand(0); 2532 MB = 64 - countTrailingOnes(Imm64); 2533 SH = 0; 2534 2535 // If the operand is a logical right shift, we can fold it into this 2536 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) 2537 // for n <= mb. The right shift is really a left rotate followed by a 2538 // mask, and this mask is a more-restrictive sub-mask of the mask implied 2539 // by the shift. 2540 if (Val.getOpcode() == ISD::SRL && 2541 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { 2542 assert(Imm < 64 && "Illegal shift amount"); 2543 Val = Val.getOperand(0); 2544 SH = 64 - Imm; 2545 } 2546 2547 SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) }; 2548 return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); 2549 } 2550 // AND X, 0 -> 0, not "rlwinm 32". 2551 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { 2552 ReplaceUses(SDValue(N, 0), N->getOperand(1)); 2553 return nullptr; 2554 } 2555 // ISD::OR doesn't get all the bitfield insertion fun. 2556 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert 2557 if (isInt32Immediate(N->getOperand(1), Imm) && 2558 N->getOperand(0).getOpcode() == ISD::OR && 2559 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { 2560 unsigned MB, ME; 2561 Imm = ~(Imm^Imm2); 2562 if (isRunOfOnes(Imm, MB, ME)) { 2563 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2564 N->getOperand(0).getOperand(1), 2565 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; 2566 return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); 2567 } 2568 } 2569 2570 // Other cases are autogenerated. 2571 break; 2572 } 2573 case ISD::OR: { 2574 if (N->getValueType(0) == MVT::i32) 2575 if (SDNode *I = SelectBitfieldInsert(N)) 2576 return I; 2577 2578 short Imm; 2579 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 2580 isIntS16Immediate(N->getOperand(1), Imm)) { 2581 APInt LHSKnownZero, LHSKnownOne; 2582 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne); 2583 2584 // If this is equivalent to an add, then we can fold it with the 2585 // FrameIndex calculation. 2586 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) 2587 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 2588 } 2589 2590 // Other cases are autogenerated. 2591 break; 2592 } 2593 case ISD::ADD: { 2594 short Imm; 2595 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && 2596 isIntS16Immediate(N->getOperand(1), Imm)) 2597 return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); 2598 2599 break; 2600 } 2601 case ISD::SHL: { 2602 unsigned Imm, SH, MB, ME; 2603 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 2604 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 2605 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2606 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 2607 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2608 } 2609 2610 // Other cases are autogenerated. 2611 break; 2612 } 2613 case ISD::SRL: { 2614 unsigned Imm, SH, MB, ME; 2615 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && 2616 isRotateAndMask(N, Imm, true, SH, MB, ME)) { 2617 SDValue Ops[] = { N->getOperand(0).getOperand(0), 2618 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; 2619 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); 2620 } 2621 2622 // Other cases are autogenerated. 2623 break; 2624 } 2625 // FIXME: Remove this once the ANDI glue bug is fixed: 2626 case PPCISD::ANDIo_1_EQ_BIT: 2627 case PPCISD::ANDIo_1_GT_BIT: { 2628 if (!ANDIGlueBug) 2629 break; 2630 2631 EVT InVT = N->getOperand(0).getValueType(); 2632 assert((InVT == MVT::i64 || InVT == MVT::i32) && 2633 "Invalid input type for ANDIo_1_EQ_BIT"); 2634 2635 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; 2636 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, 2637 N->getOperand(0), 2638 CurDAG->getTargetConstant(1, InVT)), 0); 2639 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); 2640 SDValue SRIdxVal = 2641 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? 2642 PPC::sub_eq : PPC::sub_gt, MVT::i32); 2643 2644 return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, 2645 CR0Reg, SRIdxVal, 2646 SDValue(AndI.getNode(), 1) /* glue */); 2647 } 2648 case ISD::SELECT_CC: { 2649 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2650 EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); 2651 bool isPPC64 = (PtrVT == MVT::i64); 2652 2653 // If this is a select of i1 operands, we'll pattern match it. 2654 if (PPCSubTarget->useCRBits() && 2655 N->getOperand(0).getValueType() == MVT::i1) 2656 break; 2657 2658 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc 2659 if (!isPPC64) 2660 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2661 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 2662 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 2663 if (N1C->isNullValue() && N3C->isNullValue() && 2664 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && 2665 // FIXME: Implement this optzn for PPC64. 2666 N->getValueType(0) == MVT::i32) { 2667 SDNode *Tmp = 2668 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, 2669 N->getOperand(0), getI32Imm(~0U)); 2670 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, 2671 SDValue(Tmp, 0), N->getOperand(0), 2672 SDValue(Tmp, 1)); 2673 } 2674 2675 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); 2676 2677 if (N->getValueType(0) == MVT::i1) { 2678 // An i1 select is: (c & t) | (!c & f). 2679 bool Inv; 2680 unsigned Idx = getCRIdxForSetCC(CC, Inv); 2681 2682 unsigned SRI; 2683 switch (Idx) { 2684 default: llvm_unreachable("Invalid CC index"); 2685 case 0: SRI = PPC::sub_lt; break; 2686 case 1: SRI = PPC::sub_gt; break; 2687 case 2: SRI = PPC::sub_eq; break; 2688 case 3: SRI = PPC::sub_un; break; 2689 } 2690 2691 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); 2692 2693 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, 2694 CCBit, CCBit), 0); 2695 SDValue C = Inv ? NotCCBit : CCBit, 2696 NotC = Inv ? CCBit : NotCCBit; 2697 2698 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 2699 C, N->getOperand(2)), 0); 2700 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, 2701 NotC, N->getOperand(3)), 0); 2702 2703 return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); 2704 } 2705 2706 unsigned BROpc = getPredicateForSetCC(CC); 2707 2708 unsigned SelectCCOp; 2709 if (N->getValueType(0) == MVT::i32) 2710 SelectCCOp = PPC::SELECT_CC_I4; 2711 else if (N->getValueType(0) == MVT::i64) 2712 SelectCCOp = PPC::SELECT_CC_I8; 2713 else if (N->getValueType(0) == MVT::f32) 2714 SelectCCOp = PPC::SELECT_CC_F4; 2715 else if (N->getValueType(0) == MVT::f64) 2716 if (PPCSubTarget->hasVSX()) 2717 SelectCCOp = PPC::SELECT_CC_VSFRC; 2718 else 2719 SelectCCOp = PPC::SELECT_CC_F8; 2720 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) 2721 SelectCCOp = PPC::SELECT_CC_QFRC; 2722 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) 2723 SelectCCOp = PPC::SELECT_CC_QSRC; 2724 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) 2725 SelectCCOp = PPC::SELECT_CC_QBRC; 2726 else if (N->getValueType(0) == MVT::v2f64 || 2727 N->getValueType(0) == MVT::v2i64) 2728 SelectCCOp = PPC::SELECT_CC_VSRC; 2729 else 2730 SelectCCOp = PPC::SELECT_CC_VRRC; 2731 2732 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), 2733 getI32Imm(BROpc) }; 2734 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); 2735 } 2736 case ISD::VSELECT: 2737 if (PPCSubTarget->hasVSX()) { 2738 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) }; 2739 return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops); 2740 } 2741 2742 break; 2743 case ISD::VECTOR_SHUFFLE: 2744 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || 2745 N->getValueType(0) == MVT::v2i64)) { 2746 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 2747 2748 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), 2749 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); 2750 unsigned DM[2]; 2751 2752 for (int i = 0; i < 2; ++i) 2753 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) 2754 DM[i] = 0; 2755 else 2756 DM[i] = 1; 2757 2758 // For little endian, we must swap the input operands and adjust 2759 // the mask elements (reverse and invert them). 2760 if (PPCSubTarget->isLittleEndian()) { 2761 std::swap(Op1, Op2); 2762 unsigned tmp = DM[0]; 2763 DM[0] = 1 - DM[1]; 2764 DM[1] = 1 - tmp; 2765 } 2766 2767 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32); 2768 2769 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && 2770 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && 2771 isa<LoadSDNode>(Op1.getOperand(0))) { 2772 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); 2773 SDValue Base, Offset; 2774 2775 if (LD->isUnindexed() && 2776 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { 2777 SDValue Chain = LD->getChain(); 2778 SDValue Ops[] = { Base, Offset, Chain }; 2779 return CurDAG->SelectNodeTo(N, PPC::LXVDSX, 2780 N->getValueType(0), Ops); 2781 } 2782 } 2783 2784 SDValue Ops[] = { Op1, Op2, DMV }; 2785 return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); 2786 } 2787 2788 break; 2789 case PPCISD::BDNZ: 2790 case PPCISD::BDZ: { 2791 bool IsPPC64 = PPCSubTarget->isPPC64(); 2792 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; 2793 return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ? 2794 (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 2795 (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), 2796 MVT::Other, Ops); 2797 } 2798 case PPCISD::COND_BRANCH: { 2799 // Op #0 is the Chain. 2800 // Op #1 is the PPC::PRED_* number. 2801 // Op #2 is the CR# 2802 // Op #3 is the Dest MBB 2803 // Op #4 is the Flag. 2804 // Prevent PPC::PRED_* from being selected into LI. 2805 SDValue Pred = 2806 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()); 2807 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), 2808 N->getOperand(0), N->getOperand(4) }; 2809 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 2810 } 2811 case ISD::BR_CC: { 2812 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 2813 unsigned PCC = getPredicateForSetCC(CC); 2814 2815 if (N->getOperand(2).getValueType() == MVT::i1) { 2816 unsigned Opc; 2817 bool Swap; 2818 switch (PCC) { 2819 default: llvm_unreachable("Unexpected Boolean-operand predicate"); 2820 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; 2821 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; 2822 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; 2823 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; 2824 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; 2825 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; 2826 } 2827 2828 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, 2829 N->getOperand(Swap ? 3 : 2), 2830 N->getOperand(Swap ? 2 : 3)), 0); 2831 return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, 2832 BitComp, N->getOperand(4), N->getOperand(0)); 2833 } 2834 2835 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); 2836 SDValue Ops[] = { getI32Imm(PCC), CondCode, 2837 N->getOperand(4), N->getOperand(0) }; 2838 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); 2839 } 2840 case ISD::BRIND: { 2841 // FIXME: Should custom lower this. 2842 SDValue Chain = N->getOperand(0); 2843 SDValue Target = N->getOperand(1); 2844 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; 2845 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; 2846 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, 2847 Chain), 0); 2848 return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); 2849 } 2850 case PPCISD::TOC_ENTRY: { 2851 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && 2852 "Only supported for 64-bit ABI and 32-bit SVR4"); 2853 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { 2854 SDValue GA = N->getOperand(0); 2855 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl, 2856 MVT::i32, GA, N->getOperand(1))); 2857 } 2858 2859 // For medium and large code model, we generate two instructions as 2860 // described below. Otherwise we allow SelectCodeCommon to handle this, 2861 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. 2862 CodeModel::Model CModel = TM.getCodeModel(); 2863 if (CModel != CodeModel::Medium && CModel != CodeModel::Large) 2864 break; 2865 2866 // The first source operand is a TargetGlobalAddress or a TargetJumpTable. 2867 // If it is an externally defined symbol, a symbol with common linkage, 2868 // a non-local function address, or a jump table address, or if we are 2869 // generating code for large code model, we generate: 2870 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>)) 2871 // Otherwise we generate: 2872 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>) 2873 SDValue GA = N->getOperand(0); 2874 SDValue TOCbase = N->getOperand(1); 2875 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, 2876 TOCbase, GA); 2877 2878 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) || 2879 CModel == CodeModel::Large) 2880 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl, 2881 MVT::i64, GA, SDValue(Tmp, 0))); 2882 2883 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { 2884 const GlobalValue *GValue = G->getGlobal(); 2885 if ((GValue->getType()->getElementType()->isFunctionTy() && 2886 (GValue->isDeclaration() || GValue->isWeakForLinker())) || 2887 GValue->isDeclaration() || GValue->hasCommonLinkage() || 2888 GValue->hasAvailableExternallyLinkage()) 2889 return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl, 2890 MVT::i64, GA, SDValue(Tmp, 0))); 2891 } 2892 2893 return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, 2894 SDValue(Tmp, 0), GA); 2895 } 2896 case PPCISD::PPC32_PICGOT: { 2897 // Generate a PIC-safe GOT reference. 2898 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && 2899 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); 2900 return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(), MVT::i32); 2901 } 2902 case PPCISD::VADD_SPLAT: { 2903 // This expands into one of three sequences, depending on whether 2904 // the first operand is odd or even, positive or negative. 2905 assert(isa<ConstantSDNode>(N->getOperand(0)) && 2906 isa<ConstantSDNode>(N->getOperand(1)) && 2907 "Invalid operand on VADD_SPLAT!"); 2908 2909 int Elt = N->getConstantOperandVal(0); 2910 int EltSize = N->getConstantOperandVal(1); 2911 unsigned Opc1, Opc2, Opc3; 2912 EVT VT; 2913 2914 if (EltSize == 1) { 2915 Opc1 = PPC::VSPLTISB; 2916 Opc2 = PPC::VADDUBM; 2917 Opc3 = PPC::VSUBUBM; 2918 VT = MVT::v16i8; 2919 } else if (EltSize == 2) { 2920 Opc1 = PPC::VSPLTISH; 2921 Opc2 = PPC::VADDUHM; 2922 Opc3 = PPC::VSUBUHM; 2923 VT = MVT::v8i16; 2924 } else { 2925 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); 2926 Opc1 = PPC::VSPLTISW; 2927 Opc2 = PPC::VADDUWM; 2928 Opc3 = PPC::VSUBUWM; 2929 VT = MVT::v4i32; 2930 } 2931 2932 if ((Elt & 1) == 0) { 2933 // Elt is even, in the range [-32,-18] + [16,30]. 2934 // 2935 // Convert: VADD_SPLAT elt, size 2936 // Into: tmp = VSPLTIS[BHW] elt 2937 // VADDU[BHW]M tmp, tmp 2938 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 2939 SDValue EltVal = getI32Imm(Elt >> 1); 2940 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2941 SDValue TmpVal = SDValue(Tmp, 0); 2942 return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal); 2943 2944 } else if (Elt > 0) { 2945 // Elt is odd and positive, in the range [17,31]. 2946 // 2947 // Convert: VADD_SPLAT elt, size 2948 // Into: tmp1 = VSPLTIS[BHW] elt-16 2949 // tmp2 = VSPLTIS[BHW] -16 2950 // VSUBU[BHW]M tmp1, tmp2 2951 SDValue EltVal = getI32Imm(Elt - 16); 2952 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2953 EltVal = getI32Imm(-16); 2954 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2955 return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), 2956 SDValue(Tmp2, 0)); 2957 2958 } else { 2959 // Elt is odd and negative, in the range [-31,-17]. 2960 // 2961 // Convert: VADD_SPLAT elt, size 2962 // Into: tmp1 = VSPLTIS[BHW] elt+16 2963 // tmp2 = VSPLTIS[BHW] -16 2964 // VADDU[BHW]M tmp1, tmp2 2965 SDValue EltVal = getI32Imm(Elt + 16); 2966 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2967 EltVal = getI32Imm(-16); 2968 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); 2969 return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), 2970 SDValue(Tmp2, 0)); 2971 } 2972 } 2973 } 2974 2975 return SelectCode(N); 2976 } 2977 2978 // If the target supports the cmpb instruction, do the idiom recognition here. 2979 // We don't do this as a DAG combine because we don't want to do it as nodes 2980 // are being combined (because we might miss part of the eventual idiom). We 2981 // don't want to do it during instruction selection because we want to reuse 2982 // the logic for lowering the masking operations already part of the 2983 // instruction selector. 2984 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { 2985 SDLoc dl(N); 2986 2987 assert(N->getOpcode() == ISD::OR && 2988 "Only OR nodes are supported for CMPB"); 2989 2990 SDValue Res; 2991 if (!PPCSubTarget->hasCMPB()) 2992 return Res; 2993 2994 if (N->getValueType(0) != MVT::i32 && 2995 N->getValueType(0) != MVT::i64) 2996 return Res; 2997 2998 EVT VT = N->getValueType(0); 2999 3000 SDValue RHS, LHS; 3001 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 3002 uint64_t Mask = 0, Alt = 0; 3003 3004 auto IsByteSelectCC = [this](SDValue O, unsigned &b, 3005 uint64_t &Mask, uint64_t &Alt, 3006 SDValue &LHS, SDValue &RHS) { 3007 if (O.getOpcode() != ISD::SELECT_CC) 3008 return false; 3009 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); 3010 3011 if (!isa<ConstantSDNode>(O.getOperand(2)) || 3012 !isa<ConstantSDNode>(O.getOperand(3))) 3013 return false; 3014 3015 uint64_t PM = O.getConstantOperandVal(2); 3016 uint64_t PAlt = O.getConstantOperandVal(3); 3017 for (b = 0; b < 8; ++b) { 3018 uint64_t Mask = UINT64_C(0xFF) << (8*b); 3019 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) 3020 break; 3021 } 3022 3023 if (b == 8) 3024 return false; 3025 Mask |= PM; 3026 Alt |= PAlt; 3027 3028 if (!isa<ConstantSDNode>(O.getOperand(1)) || 3029 O.getConstantOperandVal(1) != 0) { 3030 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); 3031 if (Op0.getOpcode() == ISD::TRUNCATE) 3032 Op0 = Op0.getOperand(0); 3033 if (Op1.getOpcode() == ISD::TRUNCATE) 3034 Op1 = Op1.getOperand(0); 3035 3036 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && 3037 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && 3038 isa<ConstantSDNode>(Op0.getOperand(1))) { 3039 3040 unsigned Bits = Op0.getValueType().getSizeInBits(); 3041 if (b != Bits/8-1) 3042 return false; 3043 if (Op0.getConstantOperandVal(1) != Bits-8) 3044 return false; 3045 3046 LHS = Op0.getOperand(0); 3047 RHS = Op1.getOperand(0); 3048 return true; 3049 } 3050 3051 // When we have small integers (i16 to be specific), the form present 3052 // post-legalization uses SETULT in the SELECT_CC for the 3053 // higher-order byte, depending on the fact that the 3054 // even-higher-order bytes are known to all be zero, for example: 3055 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult 3056 // (so when the second byte is the same, because all higher-order 3057 // bits from bytes 3 and 4 are known to be zero, the result of the 3058 // xor can be at most 255) 3059 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && 3060 isa<ConstantSDNode>(O.getOperand(1))) { 3061 3062 uint64_t ULim = O.getConstantOperandVal(1); 3063 if (ULim != (UINT64_C(1) << b*8)) 3064 return false; 3065 3066 // Now we need to make sure that the upper bytes are known to be 3067 // zero. 3068 unsigned Bits = Op0.getValueType().getSizeInBits(); 3069 if (!CurDAG->MaskedValueIsZero(Op0, 3070 APInt::getHighBitsSet(Bits, Bits - (b+1)*8))) 3071 return false; 3072 3073 LHS = Op0.getOperand(0); 3074 RHS = Op0.getOperand(1); 3075 return true; 3076 } 3077 3078 return false; 3079 } 3080 3081 if (CC != ISD::SETEQ) 3082 return false; 3083 3084 SDValue Op = O.getOperand(0); 3085 if (Op.getOpcode() == ISD::AND) { 3086 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3087 return false; 3088 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) 3089 return false; 3090 3091 SDValue XOR = Op.getOperand(0); 3092 if (XOR.getOpcode() == ISD::TRUNCATE) 3093 XOR = XOR.getOperand(0); 3094 if (XOR.getOpcode() != ISD::XOR) 3095 return false; 3096 3097 LHS = XOR.getOperand(0); 3098 RHS = XOR.getOperand(1); 3099 return true; 3100 } else if (Op.getOpcode() == ISD::SRL) { 3101 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3102 return false; 3103 unsigned Bits = Op.getValueType().getSizeInBits(); 3104 if (b != Bits/8-1) 3105 return false; 3106 if (Op.getConstantOperandVal(1) != Bits-8) 3107 return false; 3108 3109 SDValue XOR = Op.getOperand(0); 3110 if (XOR.getOpcode() == ISD::TRUNCATE) 3111 XOR = XOR.getOperand(0); 3112 if (XOR.getOpcode() != ISD::XOR) 3113 return false; 3114 3115 LHS = XOR.getOperand(0); 3116 RHS = XOR.getOperand(1); 3117 return true; 3118 } 3119 3120 return false; 3121 }; 3122 3123 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); 3124 while (!Queue.empty()) { 3125 SDValue V = Queue.pop_back_val(); 3126 3127 for (const SDValue &O : V.getNode()->ops()) { 3128 unsigned b; 3129 uint64_t M = 0, A = 0; 3130 SDValue OLHS, ORHS; 3131 if (O.getOpcode() == ISD::OR) { 3132 Queue.push_back(O); 3133 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { 3134 if (!LHS) { 3135 LHS = OLHS; 3136 RHS = ORHS; 3137 BytesFound[b] = true; 3138 Mask |= M; 3139 Alt |= A; 3140 } else if ((LHS == ORHS && RHS == OLHS) || 3141 (RHS == ORHS && LHS == OLHS)) { 3142 BytesFound[b] = true; 3143 Mask |= M; 3144 Alt |= A; 3145 } else { 3146 return Res; 3147 } 3148 } else { 3149 return Res; 3150 } 3151 } 3152 } 3153 3154 unsigned LastB = 0, BCnt = 0; 3155 for (unsigned i = 0; i < 8; ++i) 3156 if (BytesFound[LastB]) { 3157 ++BCnt; 3158 LastB = i; 3159 } 3160 3161 if (!LastB || BCnt < 2) 3162 return Res; 3163 3164 // Because we'll be zero-extending the output anyway if don't have a specific 3165 // value for each input byte (via the Mask), we can 'anyext' the inputs. 3166 if (LHS.getValueType() != VT) { 3167 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); 3168 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); 3169 } 3170 3171 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); 3172 3173 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); 3174 if (NonTrivialMask && !Alt) { 3175 // Res = Mask & CMPB 3176 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT)); 3177 } else if (Alt) { 3178 // Res = (CMPB & Mask) | (~CMPB & Alt) 3179 // Which, as suggested here: 3180 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge 3181 // can be written as: 3182 // Res = Alt ^ ((Alt ^ Mask) & CMPB) 3183 // useful because the (Alt ^ Mask) can be pre-computed. 3184 Res = CurDAG->getNode(ISD::AND, dl, VT, Res, 3185 CurDAG->getConstant(Mask ^ Alt, VT)); 3186 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT)); 3187 } 3188 3189 return Res; 3190 } 3191 3192 // When CR bit registers are enabled, an extension of an i1 variable to a i32 3193 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus 3194 // involves constant materialization of a 0 or a 1 or both. If the result of 3195 // the extension is then operated upon by some operator that can be constant 3196 // folded with a constant 0 or 1, and that constant can be materialized using 3197 // only one instruction (like a zero or one), then we should fold in those 3198 // operations with the select. 3199 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { 3200 if (!PPCSubTarget->useCRBits()) 3201 return; 3202 3203 if (N->getOpcode() != ISD::ZERO_EXTEND && 3204 N->getOpcode() != ISD::SIGN_EXTEND && 3205 N->getOpcode() != ISD::ANY_EXTEND) 3206 return; 3207 3208 if (N->getOperand(0).getValueType() != MVT::i1) 3209 return; 3210 3211 if (!N->hasOneUse()) 3212 return; 3213 3214 SDLoc dl(N); 3215 EVT VT = N->getValueType(0); 3216 SDValue Cond = N->getOperand(0); 3217 SDValue ConstTrue = 3218 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT); 3219 SDValue ConstFalse = CurDAG->getConstant(0, VT); 3220 3221 do { 3222 SDNode *User = *N->use_begin(); 3223 if (User->getNumOperands() != 2) 3224 break; 3225 3226 auto TryFold = [this, N, User](SDValue Val) { 3227 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); 3228 SDValue O0 = UserO0.getNode() == N ? Val : UserO0; 3229 SDValue O1 = UserO1.getNode() == N ? Val : UserO1; 3230 3231 return CurDAG->FoldConstantArithmetic(User->getOpcode(), 3232 User->getValueType(0), 3233 O0.getNode(), O1.getNode()); 3234 }; 3235 3236 SDValue TrueRes = TryFold(ConstTrue); 3237 if (!TrueRes) 3238 break; 3239 SDValue FalseRes = TryFold(ConstFalse); 3240 if (!FalseRes) 3241 break; 3242 3243 // For us to materialize these using one instruction, we must be able to 3244 // represent them as signed 16-bit integers. 3245 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), 3246 False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); 3247 if (!isInt<16>(True) || !isInt<16>(False)) 3248 break; 3249 3250 // We can replace User with a new SELECT node, and try again to see if we 3251 // can fold the select with its user. 3252 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); 3253 N = User; 3254 ConstTrue = TrueRes; 3255 ConstFalse = FalseRes; 3256 } while (N->hasOneUse()); 3257 } 3258 3259 void PPCDAGToDAGISel::PreprocessISelDAG() { 3260 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 3261 ++Position; 3262 3263 bool MadeChange = false; 3264 while (Position != CurDAG->allnodes_begin()) { 3265 SDNode *N = --Position; 3266 if (N->use_empty()) 3267 continue; 3268 3269 SDValue Res; 3270 switch (N->getOpcode()) { 3271 default: break; 3272 case ISD::OR: 3273 Res = combineToCMPB(N); 3274 break; 3275 } 3276 3277 if (!Res) 3278 foldBoolExts(Res, N); 3279 3280 if (Res) { 3281 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); 3282 DEBUG(N->dump(CurDAG)); 3283 DEBUG(dbgs() << "\nNew: "); 3284 DEBUG(Res.getNode()->dump(CurDAG)); 3285 DEBUG(dbgs() << "\n"); 3286 3287 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 3288 MadeChange = true; 3289 } 3290 } 3291 3292 if (MadeChange) 3293 CurDAG->RemoveDeadNodes(); 3294 } 3295 3296 /// PostprocessISelDAG - Perform some late peephole optimizations 3297 /// on the DAG representation. 3298 void PPCDAGToDAGISel::PostprocessISelDAG() { 3299 3300 // Skip peepholes at -O0. 3301 if (TM.getOptLevel() == CodeGenOpt::None) 3302 return; 3303 3304 PeepholePPC64(); 3305 PeepholeCROps(); 3306 PeepholePPC64ZExt(); 3307 } 3308 3309 // Check if all users of this node will become isel where the second operand 3310 // is the constant zero. If this is so, and if we can negate the condition, 3311 // then we can flip the true and false operands. This will allow the zero to 3312 // be folded with the isel so that we don't need to materialize a register 3313 // containing zero. 3314 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { 3315 // If we're not using isel, then this does not matter. 3316 if (!PPCSubTarget->hasISEL()) 3317 return false; 3318 3319 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 3320 UI != UE; ++UI) { 3321 SDNode *User = *UI; 3322 if (!User->isMachineOpcode()) 3323 return false; 3324 if (User->getMachineOpcode() != PPC::SELECT_I4 && 3325 User->getMachineOpcode() != PPC::SELECT_I8) 3326 return false; 3327 3328 SDNode *Op2 = User->getOperand(2).getNode(); 3329 if (!Op2->isMachineOpcode()) 3330 return false; 3331 3332 if (Op2->getMachineOpcode() != PPC::LI && 3333 Op2->getMachineOpcode() != PPC::LI8) 3334 return false; 3335 3336 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); 3337 if (!C) 3338 return false; 3339 3340 if (!C->isNullValue()) 3341 return false; 3342 } 3343 3344 return true; 3345 } 3346 3347 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { 3348 SmallVector<SDNode *, 4> ToReplace; 3349 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 3350 UI != UE; ++UI) { 3351 SDNode *User = *UI; 3352 assert((User->getMachineOpcode() == PPC::SELECT_I4 || 3353 User->getMachineOpcode() == PPC::SELECT_I8) && 3354 "Must have all select users"); 3355 ToReplace.push_back(User); 3356 } 3357 3358 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), 3359 UE = ToReplace.end(); UI != UE; ++UI) { 3360 SDNode *User = *UI; 3361 SDNode *ResNode = 3362 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), 3363 User->getValueType(0), User->getOperand(0), 3364 User->getOperand(2), 3365 User->getOperand(1)); 3366 3367 DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 3368 DEBUG(User->dump(CurDAG)); 3369 DEBUG(dbgs() << "\nNew: "); 3370 DEBUG(ResNode->dump(CurDAG)); 3371 DEBUG(dbgs() << "\n"); 3372 3373 ReplaceUses(User, ResNode); 3374 } 3375 } 3376 3377 void PPCDAGToDAGISel::PeepholeCROps() { 3378 bool IsModified; 3379 do { 3380 IsModified = false; 3381 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 3382 E = CurDAG->allnodes_end(); I != E; ++I) { 3383 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I); 3384 if (!MachineNode || MachineNode->use_empty()) 3385 continue; 3386 SDNode *ResNode = MachineNode; 3387 3388 bool Op1Set = false, Op1Unset = false, 3389 Op1Not = false, 3390 Op2Set = false, Op2Unset = false, 3391 Op2Not = false; 3392 3393 unsigned Opcode = MachineNode->getMachineOpcode(); 3394 switch (Opcode) { 3395 default: break; 3396 case PPC::CRAND: 3397 case PPC::CRNAND: 3398 case PPC::CROR: 3399 case PPC::CRXOR: 3400 case PPC::CRNOR: 3401 case PPC::CREQV: 3402 case PPC::CRANDC: 3403 case PPC::CRORC: { 3404 SDValue Op = MachineNode->getOperand(1); 3405 if (Op.isMachineOpcode()) { 3406 if (Op.getMachineOpcode() == PPC::CRSET) 3407 Op2Set = true; 3408 else if (Op.getMachineOpcode() == PPC::CRUNSET) 3409 Op2Unset = true; 3410 else if (Op.getMachineOpcode() == PPC::CRNOR && 3411 Op.getOperand(0) == Op.getOperand(1)) 3412 Op2Not = true; 3413 } 3414 } // fallthrough 3415 case PPC::BC: 3416 case PPC::BCn: 3417 case PPC::SELECT_I4: 3418 case PPC::SELECT_I8: 3419 case PPC::SELECT_F4: 3420 case PPC::SELECT_F8: 3421 case PPC::SELECT_QFRC: 3422 case PPC::SELECT_QSRC: 3423 case PPC::SELECT_QBRC: 3424 case PPC::SELECT_VRRC: 3425 case PPC::SELECT_VSFRC: 3426 case PPC::SELECT_VSRC: { 3427 SDValue Op = MachineNode->getOperand(0); 3428 if (Op.isMachineOpcode()) { 3429 if (Op.getMachineOpcode() == PPC::CRSET) 3430 Op1Set = true; 3431 else if (Op.getMachineOpcode() == PPC::CRUNSET) 3432 Op1Unset = true; 3433 else if (Op.getMachineOpcode() == PPC::CRNOR && 3434 Op.getOperand(0) == Op.getOperand(1)) 3435 Op1Not = true; 3436 } 3437 } 3438 break; 3439 } 3440 3441 bool SelectSwap = false; 3442 switch (Opcode) { 3443 default: break; 3444 case PPC::CRAND: 3445 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3446 // x & x = x 3447 ResNode = MachineNode->getOperand(0).getNode(); 3448 else if (Op1Set) 3449 // 1 & y = y 3450 ResNode = MachineNode->getOperand(1).getNode(); 3451 else if (Op2Set) 3452 // x & 1 = x 3453 ResNode = MachineNode->getOperand(0).getNode(); 3454 else if (Op1Unset || Op2Unset) 3455 // x & 0 = 0 & y = 0 3456 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3457 MVT::i1); 3458 else if (Op1Not) 3459 // ~x & y = andc(y, x) 3460 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3461 MVT::i1, MachineNode->getOperand(1), 3462 MachineNode->getOperand(0). 3463 getOperand(0)); 3464 else if (Op2Not) 3465 // x & ~y = andc(x, y) 3466 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3467 MVT::i1, MachineNode->getOperand(0), 3468 MachineNode->getOperand(1). 3469 getOperand(0)); 3470 else if (AllUsersSelectZero(MachineNode)) 3471 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 3472 MVT::i1, MachineNode->getOperand(0), 3473 MachineNode->getOperand(1)), 3474 SelectSwap = true; 3475 break; 3476 case PPC::CRNAND: 3477 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3478 // nand(x, x) -> nor(x, x) 3479 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3480 MVT::i1, MachineNode->getOperand(0), 3481 MachineNode->getOperand(0)); 3482 else if (Op1Set) 3483 // nand(1, y) -> nor(y, y) 3484 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3485 MVT::i1, MachineNode->getOperand(1), 3486 MachineNode->getOperand(1)); 3487 else if (Op2Set) 3488 // nand(x, 1) -> nor(x, x) 3489 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3490 MVT::i1, MachineNode->getOperand(0), 3491 MachineNode->getOperand(0)); 3492 else if (Op1Unset || Op2Unset) 3493 // nand(x, 0) = nand(0, y) = 1 3494 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3495 MVT::i1); 3496 else if (Op1Not) 3497 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) 3498 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3499 MVT::i1, MachineNode->getOperand(0). 3500 getOperand(0), 3501 MachineNode->getOperand(1)); 3502 else if (Op2Not) 3503 // nand(x, ~y) = ~x | y = orc(y, x) 3504 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3505 MVT::i1, MachineNode->getOperand(1). 3506 getOperand(0), 3507 MachineNode->getOperand(0)); 3508 else if (AllUsersSelectZero(MachineNode)) 3509 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 3510 MVT::i1, MachineNode->getOperand(0), 3511 MachineNode->getOperand(1)), 3512 SelectSwap = true; 3513 break; 3514 case PPC::CROR: 3515 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3516 // x | x = x 3517 ResNode = MachineNode->getOperand(0).getNode(); 3518 else if (Op1Set || Op2Set) 3519 // x | 1 = 1 | y = 1 3520 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3521 MVT::i1); 3522 else if (Op1Unset) 3523 // 0 | y = y 3524 ResNode = MachineNode->getOperand(1).getNode(); 3525 else if (Op2Unset) 3526 // x | 0 = x 3527 ResNode = MachineNode->getOperand(0).getNode(); 3528 else if (Op1Not) 3529 // ~x | y = orc(y, x) 3530 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3531 MVT::i1, MachineNode->getOperand(1), 3532 MachineNode->getOperand(0). 3533 getOperand(0)); 3534 else if (Op2Not) 3535 // x | ~y = orc(x, y) 3536 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3537 MVT::i1, MachineNode->getOperand(0), 3538 MachineNode->getOperand(1). 3539 getOperand(0)); 3540 else if (AllUsersSelectZero(MachineNode)) 3541 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3542 MVT::i1, MachineNode->getOperand(0), 3543 MachineNode->getOperand(1)), 3544 SelectSwap = true; 3545 break; 3546 case PPC::CRXOR: 3547 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3548 // xor(x, x) = 0 3549 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3550 MVT::i1); 3551 else if (Op1Set) 3552 // xor(1, y) -> nor(y, y) 3553 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3554 MVT::i1, MachineNode->getOperand(1), 3555 MachineNode->getOperand(1)); 3556 else if (Op2Set) 3557 // xor(x, 1) -> nor(x, x) 3558 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3559 MVT::i1, MachineNode->getOperand(0), 3560 MachineNode->getOperand(0)); 3561 else if (Op1Unset) 3562 // xor(0, y) = y 3563 ResNode = MachineNode->getOperand(1).getNode(); 3564 else if (Op2Unset) 3565 // xor(x, 0) = x 3566 ResNode = MachineNode->getOperand(0).getNode(); 3567 else if (Op1Not) 3568 // xor(~x, y) = eqv(x, y) 3569 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3570 MVT::i1, MachineNode->getOperand(0). 3571 getOperand(0), 3572 MachineNode->getOperand(1)); 3573 else if (Op2Not) 3574 // xor(x, ~y) = eqv(x, y) 3575 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3576 MVT::i1, MachineNode->getOperand(0), 3577 MachineNode->getOperand(1). 3578 getOperand(0)); 3579 else if (AllUsersSelectZero(MachineNode)) 3580 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), 3581 MVT::i1, MachineNode->getOperand(0), 3582 MachineNode->getOperand(1)), 3583 SelectSwap = true; 3584 break; 3585 case PPC::CRNOR: 3586 if (Op1Set || Op2Set) 3587 // nor(1, y) -> 0 3588 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3589 MVT::i1); 3590 else if (Op1Unset) 3591 // nor(0, y) = ~y -> nor(y, y) 3592 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3593 MVT::i1, MachineNode->getOperand(1), 3594 MachineNode->getOperand(1)); 3595 else if (Op2Unset) 3596 // nor(x, 0) = ~x 3597 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3598 MVT::i1, MachineNode->getOperand(0), 3599 MachineNode->getOperand(0)); 3600 else if (Op1Not) 3601 // nor(~x, y) = andc(x, y) 3602 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3603 MVT::i1, MachineNode->getOperand(0). 3604 getOperand(0), 3605 MachineNode->getOperand(1)); 3606 else if (Op2Not) 3607 // nor(x, ~y) = andc(y, x) 3608 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3609 MVT::i1, MachineNode->getOperand(1). 3610 getOperand(0), 3611 MachineNode->getOperand(0)); 3612 else if (AllUsersSelectZero(MachineNode)) 3613 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 3614 MVT::i1, MachineNode->getOperand(0), 3615 MachineNode->getOperand(1)), 3616 SelectSwap = true; 3617 break; 3618 case PPC::CREQV: 3619 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3620 // eqv(x, x) = 1 3621 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3622 MVT::i1); 3623 else if (Op1Set) 3624 // eqv(1, y) = y 3625 ResNode = MachineNode->getOperand(1).getNode(); 3626 else if (Op2Set) 3627 // eqv(x, 1) = x 3628 ResNode = MachineNode->getOperand(0).getNode(); 3629 else if (Op1Unset) 3630 // eqv(0, y) = ~y -> nor(y, y) 3631 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3632 MVT::i1, MachineNode->getOperand(1), 3633 MachineNode->getOperand(1)); 3634 else if (Op2Unset) 3635 // eqv(x, 0) = ~x 3636 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3637 MVT::i1, MachineNode->getOperand(0), 3638 MachineNode->getOperand(0)); 3639 else if (Op1Not) 3640 // eqv(~x, y) = xor(x, y) 3641 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3642 MVT::i1, MachineNode->getOperand(0). 3643 getOperand(0), 3644 MachineNode->getOperand(1)); 3645 else if (Op2Not) 3646 // eqv(x, ~y) = xor(x, y) 3647 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3648 MVT::i1, MachineNode->getOperand(0), 3649 MachineNode->getOperand(1). 3650 getOperand(0)); 3651 else if (AllUsersSelectZero(MachineNode)) 3652 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), 3653 MVT::i1, MachineNode->getOperand(0), 3654 MachineNode->getOperand(1)), 3655 SelectSwap = true; 3656 break; 3657 case PPC::CRANDC: 3658 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3659 // andc(x, x) = 0 3660 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3661 MVT::i1); 3662 else if (Op1Set) 3663 // andc(1, y) = ~y 3664 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3665 MVT::i1, MachineNode->getOperand(1), 3666 MachineNode->getOperand(1)); 3667 else if (Op1Unset || Op2Set) 3668 // andc(0, y) = andc(x, 1) = 0 3669 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), 3670 MVT::i1); 3671 else if (Op2Unset) 3672 // andc(x, 0) = x 3673 ResNode = MachineNode->getOperand(0).getNode(); 3674 else if (Op1Not) 3675 // andc(~x, y) = ~(x | y) = nor(x, y) 3676 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3677 MVT::i1, MachineNode->getOperand(0). 3678 getOperand(0), 3679 MachineNode->getOperand(1)); 3680 else if (Op2Not) 3681 // andc(x, ~y) = x & y 3682 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), 3683 MVT::i1, MachineNode->getOperand(0), 3684 MachineNode->getOperand(1). 3685 getOperand(0)); 3686 else if (AllUsersSelectZero(MachineNode)) 3687 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), 3688 MVT::i1, MachineNode->getOperand(1), 3689 MachineNode->getOperand(0)), 3690 SelectSwap = true; 3691 break; 3692 case PPC::CRORC: 3693 if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) 3694 // orc(x, x) = 1 3695 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3696 MVT::i1); 3697 else if (Op1Set || Op2Unset) 3698 // orc(1, y) = orc(x, 0) = 1 3699 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), 3700 MVT::i1); 3701 else if (Op2Set) 3702 // orc(x, 1) = x 3703 ResNode = MachineNode->getOperand(0).getNode(); 3704 else if (Op1Unset) 3705 // orc(0, y) = ~y 3706 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), 3707 MVT::i1, MachineNode->getOperand(1), 3708 MachineNode->getOperand(1)); 3709 else if (Op1Not) 3710 // orc(~x, y) = ~(x & y) = nand(x, y) 3711 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), 3712 MVT::i1, MachineNode->getOperand(0). 3713 getOperand(0), 3714 MachineNode->getOperand(1)); 3715 else if (Op2Not) 3716 // orc(x, ~y) = x | y 3717 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), 3718 MVT::i1, MachineNode->getOperand(0), 3719 MachineNode->getOperand(1). 3720 getOperand(0)); 3721 else if (AllUsersSelectZero(MachineNode)) 3722 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), 3723 MVT::i1, MachineNode->getOperand(1), 3724 MachineNode->getOperand(0)), 3725 SelectSwap = true; 3726 break; 3727 case PPC::SELECT_I4: 3728 case PPC::SELECT_I8: 3729 case PPC::SELECT_F4: 3730 case PPC::SELECT_F8: 3731 case PPC::SELECT_QFRC: 3732 case PPC::SELECT_QSRC: 3733 case PPC::SELECT_QBRC: 3734 case PPC::SELECT_VRRC: 3735 case PPC::SELECT_VSFRC: 3736 case PPC::SELECT_VSRC: 3737 if (Op1Set) 3738 ResNode = MachineNode->getOperand(1).getNode(); 3739 else if (Op1Unset) 3740 ResNode = MachineNode->getOperand(2).getNode(); 3741 else if (Op1Not) 3742 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), 3743 SDLoc(MachineNode), 3744 MachineNode->getValueType(0), 3745 MachineNode->getOperand(0). 3746 getOperand(0), 3747 MachineNode->getOperand(2), 3748 MachineNode->getOperand(1)); 3749 break; 3750 case PPC::BC: 3751 case PPC::BCn: 3752 if (Op1Not) 3753 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : 3754 PPC::BC, 3755 SDLoc(MachineNode), 3756 MVT::Other, 3757 MachineNode->getOperand(0). 3758 getOperand(0), 3759 MachineNode->getOperand(1), 3760 MachineNode->getOperand(2)); 3761 // FIXME: Handle Op1Set, Op1Unset here too. 3762 break; 3763 } 3764 3765 // If we're inverting this node because it is used only by selects that 3766 // we'd like to swap, then swap the selects before the node replacement. 3767 if (SelectSwap) 3768 SwapAllSelectUsers(MachineNode); 3769 3770 if (ResNode != MachineNode) { 3771 DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); 3772 DEBUG(MachineNode->dump(CurDAG)); 3773 DEBUG(dbgs() << "\nNew: "); 3774 DEBUG(ResNode->dump(CurDAG)); 3775 DEBUG(dbgs() << "\n"); 3776 3777 ReplaceUses(MachineNode, ResNode); 3778 IsModified = true; 3779 } 3780 } 3781 if (IsModified) 3782 CurDAG->RemoveDeadNodes(); 3783 } while (IsModified); 3784 } 3785 3786 // Gather the set of 32-bit operations that are known to have their 3787 // higher-order 32 bits zero, where ToPromote contains all such operations. 3788 static bool PeepholePPC64ZExtGather(SDValue Op32, 3789 SmallPtrSetImpl<SDNode *> &ToPromote) { 3790 if (!Op32.isMachineOpcode()) 3791 return false; 3792 3793 // First, check for the "frontier" instructions (those that will clear the 3794 // higher-order 32 bits. 3795 3796 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap 3797 // around. If it does not, then these instructions will clear the 3798 // higher-order bits. 3799 if ((Op32.getMachineOpcode() == PPC::RLWINM || 3800 Op32.getMachineOpcode() == PPC::RLWNM) && 3801 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { 3802 ToPromote.insert(Op32.getNode()); 3803 return true; 3804 } 3805 3806 // SLW and SRW always clear the higher-order bits. 3807 if (Op32.getMachineOpcode() == PPC::SLW || 3808 Op32.getMachineOpcode() == PPC::SRW) { 3809 ToPromote.insert(Op32.getNode()); 3810 return true; 3811 } 3812 3813 // For LI and LIS, we need the immediate to be positive (so that it is not 3814 // sign extended). 3815 if (Op32.getMachineOpcode() == PPC::LI || 3816 Op32.getMachineOpcode() == PPC::LIS) { 3817 if (!isUInt<15>(Op32.getConstantOperandVal(0))) 3818 return false; 3819 3820 ToPromote.insert(Op32.getNode()); 3821 return true; 3822 } 3823 3824 // LHBRX and LWBRX always clear the higher-order bits. 3825 if (Op32.getMachineOpcode() == PPC::LHBRX || 3826 Op32.getMachineOpcode() == PPC::LWBRX) { 3827 ToPromote.insert(Op32.getNode()); 3828 return true; 3829 } 3830 3831 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended. 3832 if (Op32.getMachineOpcode() == PPC::CNTLZW) { 3833 ToPromote.insert(Op32.getNode()); 3834 return true; 3835 } 3836 3837 // Next, check for those instructions we can look through. 3838 3839 // Assuming the mask does not wrap around, then the higher-order bits are 3840 // taken directly from the first operand. 3841 if (Op32.getMachineOpcode() == PPC::RLWIMI && 3842 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { 3843 SmallPtrSet<SDNode *, 16> ToPromote1; 3844 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 3845 return false; 3846 3847 ToPromote.insert(Op32.getNode()); 3848 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3849 return true; 3850 } 3851 3852 // For OR, the higher-order bits are zero if that is true for both operands. 3853 // For SELECT_I4, the same is true (but the relevant operand numbers are 3854 // shifted by 1). 3855 if (Op32.getMachineOpcode() == PPC::OR || 3856 Op32.getMachineOpcode() == PPC::SELECT_I4) { 3857 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; 3858 SmallPtrSet<SDNode *, 16> ToPromote1; 3859 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) 3860 return false; 3861 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) 3862 return false; 3863 3864 ToPromote.insert(Op32.getNode()); 3865 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3866 return true; 3867 } 3868 3869 // For ORI and ORIS, we need the higher-order bits of the first operand to be 3870 // zero, and also for the constant to be positive (so that it is not sign 3871 // extended). 3872 if (Op32.getMachineOpcode() == PPC::ORI || 3873 Op32.getMachineOpcode() == PPC::ORIS) { 3874 SmallPtrSet<SDNode *, 16> ToPromote1; 3875 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) 3876 return false; 3877 if (!isUInt<15>(Op32.getConstantOperandVal(1))) 3878 return false; 3879 3880 ToPromote.insert(Op32.getNode()); 3881 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3882 return true; 3883 } 3884 3885 // The higher-order bits of AND are zero if that is true for at least one of 3886 // the operands. 3887 if (Op32.getMachineOpcode() == PPC::AND) { 3888 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; 3889 bool Op0OK = 3890 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 3891 bool Op1OK = 3892 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); 3893 if (!Op0OK && !Op1OK) 3894 return false; 3895 3896 ToPromote.insert(Op32.getNode()); 3897 3898 if (Op0OK) 3899 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3900 3901 if (Op1OK) 3902 ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); 3903 3904 return true; 3905 } 3906 3907 // For ANDI and ANDIS, the higher-order bits are zero if either that is true 3908 // of the first operand, or if the second operand is positive (so that it is 3909 // not sign extended). 3910 if (Op32.getMachineOpcode() == PPC::ANDIo || 3911 Op32.getMachineOpcode() == PPC::ANDISo) { 3912 SmallPtrSet<SDNode *, 16> ToPromote1; 3913 bool Op0OK = 3914 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); 3915 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); 3916 if (!Op0OK && !Op1OK) 3917 return false; 3918 3919 ToPromote.insert(Op32.getNode()); 3920 3921 if (Op0OK) 3922 ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); 3923 3924 return true; 3925 } 3926 3927 return false; 3928 } 3929 3930 void PPCDAGToDAGISel::PeepholePPC64ZExt() { 3931 if (!PPCSubTarget->isPPC64()) 3932 return; 3933 3934 // When we zero-extend from i32 to i64, we use a pattern like this: 3935 // def : Pat<(i64 (zext i32:$in)), 3936 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 3937 // 0, 32)>; 3938 // There are several 32-bit shift/rotate instructions, however, that will 3939 // clear the higher-order bits of their output, rendering the RLDICL 3940 // unnecessary. When that happens, we remove it here, and redefine the 3941 // relevant 32-bit operation to be a 64-bit operation. 3942 3943 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 3944 ++Position; 3945 3946 bool MadeChange = false; 3947 while (Position != CurDAG->allnodes_begin()) { 3948 SDNode *N = --Position; 3949 // Skip dead nodes and any non-machine opcodes. 3950 if (N->use_empty() || !N->isMachineOpcode()) 3951 continue; 3952 3953 if (N->getMachineOpcode() != PPC::RLDICL) 3954 continue; 3955 3956 if (N->getConstantOperandVal(1) != 0 || 3957 N->getConstantOperandVal(2) != 32) 3958 continue; 3959 3960 SDValue ISR = N->getOperand(0); 3961 if (!ISR.isMachineOpcode() || 3962 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) 3963 continue; 3964 3965 if (!ISR.hasOneUse()) 3966 continue; 3967 3968 if (ISR.getConstantOperandVal(2) != PPC::sub_32) 3969 continue; 3970 3971 SDValue IDef = ISR.getOperand(0); 3972 if (!IDef.isMachineOpcode() || 3973 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) 3974 continue; 3975 3976 // We now know that we're looking at a canonical i32 -> i64 zext. See if we 3977 // can get rid of it. 3978 3979 SDValue Op32 = ISR->getOperand(1); 3980 if (!Op32.isMachineOpcode()) 3981 continue; 3982 3983 // There are some 32-bit instructions that always clear the high-order 32 3984 // bits, there are also some instructions (like AND) that we can look 3985 // through. 3986 SmallPtrSet<SDNode *, 16> ToPromote; 3987 if (!PeepholePPC64ZExtGather(Op32, ToPromote)) 3988 continue; 3989 3990 // If the ToPromote set contains nodes that have uses outside of the set 3991 // (except for the original INSERT_SUBREG), then abort the transformation. 3992 bool OutsideUse = false; 3993 for (SDNode *PN : ToPromote) { 3994 for (SDNode *UN : PN->uses()) { 3995 if (!ToPromote.count(UN) && UN != ISR.getNode()) { 3996 OutsideUse = true; 3997 break; 3998 } 3999 } 4000 4001 if (OutsideUse) 4002 break; 4003 } 4004 if (OutsideUse) 4005 continue; 4006 4007 MadeChange = true; 4008 4009 // We now know that this zero extension can be removed by promoting to 4010 // nodes in ToPromote to 64-bit operations, where for operations in the 4011 // frontier of the set, we need to insert INSERT_SUBREGs for their 4012 // operands. 4013 for (SDNode *PN : ToPromote) { 4014 unsigned NewOpcode; 4015 switch (PN->getMachineOpcode()) { 4016 default: 4017 llvm_unreachable("Don't know the 64-bit variant of this instruction"); 4018 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; 4019 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; 4020 case PPC::SLW: NewOpcode = PPC::SLW8; break; 4021 case PPC::SRW: NewOpcode = PPC::SRW8; break; 4022 case PPC::LI: NewOpcode = PPC::LI8; break; 4023 case PPC::LIS: NewOpcode = PPC::LIS8; break; 4024 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; 4025 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; 4026 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; 4027 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; 4028 case PPC::OR: NewOpcode = PPC::OR8; break; 4029 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; 4030 case PPC::ORI: NewOpcode = PPC::ORI8; break; 4031 case PPC::ORIS: NewOpcode = PPC::ORIS8; break; 4032 case PPC::AND: NewOpcode = PPC::AND8; break; 4033 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; 4034 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; 4035 } 4036 4037 // Note: During the replacement process, the nodes will be in an 4038 // inconsistent state (some instructions will have operands with values 4039 // of the wrong type). Once done, however, everything should be right 4040 // again. 4041 4042 SmallVector<SDValue, 4> Ops; 4043 for (const SDValue &V : PN->ops()) { 4044 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && 4045 !isa<ConstantSDNode>(V)) { 4046 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; 4047 SDNode *ReplOp = 4048 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), 4049 ISR.getNode()->getVTList(), ReplOpOps); 4050 Ops.push_back(SDValue(ReplOp, 0)); 4051 } else { 4052 Ops.push_back(V); 4053 } 4054 } 4055 4056 // Because all to-be-promoted nodes only have users that are other 4057 // promoted nodes (or the original INSERT_SUBREG), we can safely replace 4058 // the i32 result value type with i64. 4059 4060 SmallVector<EVT, 2> NewVTs; 4061 SDVTList VTs = PN->getVTList(); 4062 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) 4063 if (VTs.VTs[i] == MVT::i32) 4064 NewVTs.push_back(MVT::i64); 4065 else 4066 NewVTs.push_back(VTs.VTs[i]); 4067 4068 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); 4069 DEBUG(PN->dump(CurDAG)); 4070 4071 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); 4072 4073 DEBUG(dbgs() << "\nNew: "); 4074 DEBUG(PN->dump(CurDAG)); 4075 DEBUG(dbgs() << "\n"); 4076 } 4077 4078 // Now we replace the original zero extend and its associated INSERT_SUBREG 4079 // with the value feeding the INSERT_SUBREG (which has now been promoted to 4080 // return an i64). 4081 4082 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); 4083 DEBUG(N->dump(CurDAG)); 4084 DEBUG(dbgs() << "\nNew: "); 4085 DEBUG(Op32.getNode()->dump(CurDAG)); 4086 DEBUG(dbgs() << "\n"); 4087 4088 ReplaceUses(N, Op32.getNode()); 4089 } 4090 4091 if (MadeChange) 4092 CurDAG->RemoveDeadNodes(); 4093 } 4094 4095 void PPCDAGToDAGISel::PeepholePPC64() { 4096 // These optimizations are currently supported only for 64-bit SVR4. 4097 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) 4098 return; 4099 4100 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); 4101 ++Position; 4102 4103 while (Position != CurDAG->allnodes_begin()) { 4104 SDNode *N = --Position; 4105 // Skip dead nodes and any non-machine opcodes. 4106 if (N->use_empty() || !N->isMachineOpcode()) 4107 continue; 4108 4109 unsigned FirstOp; 4110 unsigned StorageOpcode = N->getMachineOpcode(); 4111 4112 switch (StorageOpcode) { 4113 default: continue; 4114 4115 case PPC::LBZ: 4116 case PPC::LBZ8: 4117 case PPC::LD: 4118 case PPC::LFD: 4119 case PPC::LFS: 4120 case PPC::LHA: 4121 case PPC::LHA8: 4122 case PPC::LHZ: 4123 case PPC::LHZ8: 4124 case PPC::LWA: 4125 case PPC::LWZ: 4126 case PPC::LWZ8: 4127 FirstOp = 0; 4128 break; 4129 4130 case PPC::STB: 4131 case PPC::STB8: 4132 case PPC::STD: 4133 case PPC::STFD: 4134 case PPC::STFS: 4135 case PPC::STH: 4136 case PPC::STH8: 4137 case PPC::STW: 4138 case PPC::STW8: 4139 FirstOp = 1; 4140 break; 4141 } 4142 4143 // If this is a load or store with a zero offset, we may be able to 4144 // fold an add-immediate into the memory operation. 4145 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) || 4146 N->getConstantOperandVal(FirstOp) != 0) 4147 continue; 4148 4149 SDValue Base = N->getOperand(FirstOp + 1); 4150 if (!Base.isMachineOpcode()) 4151 continue; 4152 4153 unsigned Flags = 0; 4154 bool ReplaceFlags = true; 4155 4156 // When the feeding operation is an add-immediate of some sort, 4157 // determine whether we need to add relocation information to the 4158 // target flags on the immediate operand when we fold it into the 4159 // load instruction. 4160 // 4161 // For something like ADDItocL, the relocation information is 4162 // inferred from the opcode; when we process it in the AsmPrinter, 4163 // we add the necessary relocation there. A load, though, can receive 4164 // relocation from various flavors of ADDIxxx, so we need to carry 4165 // the relocation information in the target flags. 4166 switch (Base.getMachineOpcode()) { 4167 default: continue; 4168 4169 case PPC::ADDI8: 4170 case PPC::ADDI: 4171 // In some cases (such as TLS) the relocation information 4172 // is already in place on the operand, so copying the operand 4173 // is sufficient. 4174 ReplaceFlags = false; 4175 // For these cases, the immediate may not be divisible by 4, in 4176 // which case the fold is illegal for DS-form instructions. (The 4177 // other cases provide aligned addresses and are always safe.) 4178 if ((StorageOpcode == PPC::LWA || 4179 StorageOpcode == PPC::LD || 4180 StorageOpcode == PPC::STD) && 4181 (!isa<ConstantSDNode>(Base.getOperand(1)) || 4182 Base.getConstantOperandVal(1) % 4 != 0)) 4183 continue; 4184 break; 4185 case PPC::ADDIdtprelL: 4186 Flags = PPCII::MO_DTPREL_LO; 4187 break; 4188 case PPC::ADDItlsldL: 4189 Flags = PPCII::MO_TLSLD_LO; 4190 break; 4191 case PPC::ADDItocL: 4192 Flags = PPCII::MO_TOC_LO; 4193 break; 4194 } 4195 4196 // We found an opportunity. Reverse the operands from the add 4197 // immediate and substitute them into the load or store. If 4198 // needed, update the target flags for the immediate operand to 4199 // reflect the necessary relocation information. 4200 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); 4201 DEBUG(Base->dump(CurDAG)); 4202 DEBUG(dbgs() << "\nN: "); 4203 DEBUG(N->dump(CurDAG)); 4204 DEBUG(dbgs() << "\n"); 4205 4206 SDValue ImmOpnd = Base.getOperand(1); 4207 4208 // If the relocation information isn't already present on the 4209 // immediate operand, add it now. 4210 if (ReplaceFlags) { 4211 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { 4212 SDLoc dl(GA); 4213 const GlobalValue *GV = GA->getGlobal(); 4214 // We can't perform this optimization for data whose alignment 4215 // is insufficient for the instruction encoding. 4216 if (GV->getAlignment() < 4 && 4217 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || 4218 StorageOpcode == PPC::LWA)) { 4219 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); 4220 continue; 4221 } 4222 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); 4223 } else if (ConstantPoolSDNode *CP = 4224 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { 4225 const Constant *C = CP->getConstVal(); 4226 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, 4227 CP->getAlignment(), 4228 0, Flags); 4229 } 4230 } 4231 4232 if (FirstOp == 1) // Store 4233 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, 4234 Base.getOperand(0), N->getOperand(3)); 4235 else // Load 4236 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), 4237 N->getOperand(2)); 4238 4239 // The add-immediate may now be dead, in which case remove it. 4240 if (Base.getNode()->use_empty()) 4241 CurDAG->RemoveDeadNode(Base.getNode()); 4242 } 4243 } 4244 4245 4246 /// createPPCISelDag - This pass converts a legalized DAG into a 4247 /// PowerPC-specific DAG, ready for instruction scheduling. 4248 /// 4249 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { 4250 return new PPCDAGToDAGISel(TM); 4251 } 4252 4253 static void initializePassOnce(PassRegistry &Registry) { 4254 const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection"; 4255 PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 4256 nullptr, false, false); 4257 Registry.registerPass(*PI, true); 4258 } 4259 4260 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) { 4261 CALL_ONCE_INITIALIZATION(initializePassOnce); 4262 } 4263 4264