Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a pattern matching instruction selector for PowerPC,
     11 // converting from a legalized dag to a PPC dag.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "PPC.h"
     16 #include "MCTargetDesc/PPCPredicates.h"
     17 #include "PPCMachineFunctionInfo.h"
     18 #include "PPCTargetMachine.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/CodeGen/SelectionDAGISel.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/GlobalAlias.h"
     27 #include "llvm/IR/GlobalValue.h"
     28 #include "llvm/IR/GlobalVariable.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "ppc-codegen"
     40 
     41 // FIXME: Remove this once the bug has been fixed!
     42 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
     43 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
     44 
     45 static cl::opt<bool>
     46     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
     47                        cl::desc("use aggressive ppc isel for bit permutations"),
     48                        cl::Hidden);
     49 static cl::opt<bool> BPermRewriterNoMasking(
     50     "ppc-bit-perm-rewriter-stress-rotates",
     51     cl::desc("stress rotate selection in aggressive ppc isel for "
     52              "bit permutations"),
     53     cl::Hidden);
     54 
     55 namespace llvm {
     56   void initializePPCDAGToDAGISelPass(PassRegistry&);
     57 }
     58 
     59 namespace {
     60   //===--------------------------------------------------------------------===//
     61   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
     62   /// instructions for SelectionDAG operations.
     63   ///
     64   class PPCDAGToDAGISel : public SelectionDAGISel {
     65     const PPCTargetMachine &TM;
     66     const PPCSubtarget *PPCSubTarget;
     67     const PPCTargetLowering *PPCLowering;
     68     unsigned GlobalBaseReg;
     69   public:
     70     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
     71         : SelectionDAGISel(tm), TM(tm) {
     72       initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
     73     }
     74 
     75     bool runOnMachineFunction(MachineFunction &MF) override {
     76       // Make sure we re-emit a set of the global base reg if necessary
     77       GlobalBaseReg = 0;
     78       PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
     79       PPCLowering = PPCSubTarget->getTargetLowering();
     80       SelectionDAGISel::runOnMachineFunction(MF);
     81 
     82       if (!PPCSubTarget->isSVR4ABI())
     83         InsertVRSaveCode(MF);
     84 
     85       return true;
     86     }
     87 
     88     void PreprocessISelDAG() override;
     89     void PostprocessISelDAG() override;
     90 
     91     /// getI32Imm - Return a target constant with the specified value, of type
     92     /// i32.
     93     inline SDValue getI32Imm(unsigned Imm) {
     94       return CurDAG->getTargetConstant(Imm, MVT::i32);
     95     }
     96 
     97     /// getI64Imm - Return a target constant with the specified value, of type
     98     /// i64.
     99     inline SDValue getI64Imm(uint64_t Imm) {
    100       return CurDAG->getTargetConstant(Imm, MVT::i64);
    101     }
    102 
    103     /// getSmallIPtrImm - Return a target constant of pointer type.
    104     inline SDValue getSmallIPtrImm(unsigned Imm) {
    105       return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy());
    106     }
    107 
    108     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
    109     /// rotate and mask opcode and mask operation.
    110     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
    111                                 unsigned &SH, unsigned &MB, unsigned &ME);
    112 
    113     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
    114     /// base register.  Return the virtual register that holds this value.
    115     SDNode *getGlobalBaseReg();
    116 
    117     SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
    118 
    119     // Select - Convert the specified operand from a target-independent to a
    120     // target-specific node if it hasn't already been changed.
    121     SDNode *Select(SDNode *N) override;
    122 
    123     SDNode *SelectBitfieldInsert(SDNode *N);
    124     SDNode *SelectBitPermutation(SDNode *N);
    125 
    126     /// SelectCC - Select a comparison of the specified values with the
    127     /// specified condition code, returning the CR# of the expression.
    128     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
    129 
    130     /// SelectAddrImm - Returns true if the address N can be represented by
    131     /// a base register plus a signed 16-bit displacement [r+imm].
    132     bool SelectAddrImm(SDValue N, SDValue &Disp,
    133                        SDValue &Base) {
    134       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
    135     }
    136 
    137     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
    138     /// immediate field.  Note that the operand at this point is already the
    139     /// result of a prior SelectAddressRegImm call.
    140     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
    141       if (N.getOpcode() == ISD::TargetConstant ||
    142           N.getOpcode() == ISD::TargetGlobalAddress) {
    143         Out = N;
    144         return true;
    145       }
    146 
    147       return false;
    148     }
    149 
    150     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
    151     /// represented as an indexed [r+r] operation.  Returns false if it can
    152     /// be represented by [r+imm], which are preferred.
    153     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
    154       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
    155     }
    156 
    157     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
    158     /// represented as an indexed [r+r] operation.
    159     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
    160       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
    161     }
    162 
    163     /// SelectAddrImmX4 - Returns true if the address N can be represented by
    164     /// a base register plus a signed 16-bit displacement that is a multiple of 4.
    165     /// Suitable for use by STD and friends.
    166     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
    167       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
    168     }
    169 
    170     // Select an address into a single register.
    171     bool SelectAddr(SDValue N, SDValue &Base) {
    172       Base = N;
    173       return true;
    174     }
    175 
    176     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    177     /// inline asm expressions.  It is always correct to compute the value into
    178     /// a register.  The case of adding a (possibly relocatable) constant to a
    179     /// register can be improved, but it is wrong to substitute Reg+Reg for
    180     /// Reg in an asm, because the load or store opcode would have to change.
    181     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    182                                       unsigned ConstraintID,
    183                                       std::vector<SDValue> &OutOps) override {
    184 
    185       switch(ConstraintID) {
    186       default:
    187         errs() << "ConstraintID: " << ConstraintID << "\n";
    188         llvm_unreachable("Unexpected asm memory constraint");
    189       case InlineAsm::Constraint_es:
    190       case InlineAsm::Constraint_i:
    191       case InlineAsm::Constraint_m:
    192       case InlineAsm::Constraint_o:
    193       case InlineAsm::Constraint_Q:
    194       case InlineAsm::Constraint_Z:
    195       case InlineAsm::Constraint_Zy:
    196         // We need to make sure that this one operand does not end up in r0
    197         // (because we might end up lowering this as 0(%op)).
    198         const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
    199         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
    200         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
    201         SDValue NewOp =
    202           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
    203                                          SDLoc(Op), Op.getValueType(),
    204                                          Op, RC), 0);
    205 
    206         OutOps.push_back(NewOp);
    207         return false;
    208       }
    209       return true;
    210     }
    211 
    212     void InsertVRSaveCode(MachineFunction &MF);
    213 
    214     const char *getPassName() const override {
    215       return "PowerPC DAG->DAG Pattern Instruction Selection";
    216     }
    217 
    218 // Include the pieces autogenerated from the target description.
    219 #include "PPCGenDAGISel.inc"
    220 
    221 private:
    222     SDNode *SelectSETCC(SDNode *N);
    223 
    224     void PeepholePPC64();
    225     void PeepholePPC64ZExt();
    226     void PeepholeCROps();
    227 
    228     SDValue combineToCMPB(SDNode *N);
    229     void foldBoolExts(SDValue &Res, SDNode *&N);
    230 
    231     bool AllUsersSelectZero(SDNode *N);
    232     void SwapAllSelectUsers(SDNode *N);
    233 
    234     SDNode *transferMemOperands(SDNode *N, SDNode *Result);
    235   };
    236 }
    237 
    238 /// InsertVRSaveCode - Once the entire function has been instruction selected,
    239 /// all virtual registers are created and all machine instructions are built,
    240 /// check to see if we need to save/restore VRSAVE.  If so, do it.
    241 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
    242   // Check to see if this function uses vector registers, which means we have to
    243   // save and restore the VRSAVE register and update it with the regs we use.
    244   //
    245   // In this case, there will be virtual registers of vector type created
    246   // by the scheduler.  Detect them now.
    247   bool HasVectorVReg = false;
    248   for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
    249     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    250     if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
    251       HasVectorVReg = true;
    252       break;
    253     }
    254   }
    255   if (!HasVectorVReg) return;  // nothing to do.
    256 
    257   // If we have a vector register, we want to emit code into the entry and exit
    258   // blocks to save and restore the VRSAVE register.  We do this here (instead
    259   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
    260   //
    261   // 1. This (trivially) reduces the load on the register allocator, by not
    262   //    having to represent the live range of the VRSAVE register.
    263   // 2. This (more significantly) allows us to create a temporary virtual
    264   //    register to hold the saved VRSAVE value, allowing this temporary to be
    265   //    register allocated, instead of forcing it to be spilled to the stack.
    266 
    267   // Create two vregs - one to hold the VRSAVE register that is live-in to the
    268   // function and one for the value after having bits or'd into it.
    269   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    270   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    271 
    272   const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    273   MachineBasicBlock &EntryBB = *Fn.begin();
    274   DebugLoc dl;
    275   // Emit the following code into the entry block:
    276   // InVRSAVE = MFVRSAVE
    277   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
    278   // MTVRSAVE UpdatedVRSAVE
    279   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
    280   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
    281   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
    282           UpdatedVRSAVE).addReg(InVRSAVE);
    283   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
    284 
    285   // Find all return blocks, outputting a restore in each epilog.
    286   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    287     if (!BB->empty() && BB->back().isReturn()) {
    288       IP = BB->end(); --IP;
    289 
    290       // Skip over all terminator instructions, which are part of the return
    291       // sequence.
    292       MachineBasicBlock::iterator I2 = IP;
    293       while (I2 != BB->begin() && (--I2)->isTerminator())
    294         IP = I2;
    295 
    296       // Emit: MTVRSAVE InVRSave
    297       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
    298     }
    299   }
    300 }
    301 
    302 
    303 /// getGlobalBaseReg - Output the instructions required to put the
    304 /// base address to use for accessing globals into a register.
    305 ///
    306 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
    307   if (!GlobalBaseReg) {
    308     const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
    309     // Insert the set of GlobalBaseReg into the first MBB of the function
    310     MachineBasicBlock &FirstMBB = MF->front();
    311     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
    312     const Module *M = MF->getFunction()->getParent();
    313     DebugLoc dl;
    314 
    315     if (PPCLowering->getPointerTy() == MVT::i32) {
    316       if (PPCSubTarget->isTargetELF()) {
    317         GlobalBaseReg = PPC::R30;
    318         if (M->getPICLevel() == PICLevel::Small) {
    319           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
    320           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    321           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
    322         } else {
    323           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    324           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    325           unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
    326           BuildMI(FirstMBB, MBBI, dl,
    327                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
    328                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
    329           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
    330         }
    331       } else {
    332         GlobalBaseReg =
    333           RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
    334         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
    335         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
    336       }
    337     } else {
    338       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
    339       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
    340       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
    341     }
    342   }
    343   return CurDAG->getRegister(GlobalBaseReg,
    344                              PPCLowering->getPointerTy()).getNode();
    345 }
    346 
    347 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
    348 /// or 64-bit immediate, and if the value can be accurately represented as a
    349 /// sign extension from a 16-bit value.  If so, this returns true and the
    350 /// immediate.
    351 static bool isIntS16Immediate(SDNode *N, short &Imm) {
    352   if (N->getOpcode() != ISD::Constant)
    353     return false;
    354 
    355   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
    356   if (N->getValueType(0) == MVT::i32)
    357     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
    358   else
    359     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
    360 }
    361 
    362 static bool isIntS16Immediate(SDValue Op, short &Imm) {
    363   return isIntS16Immediate(Op.getNode(), Imm);
    364 }
    365 
    366 
    367 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    368 /// operand. If so Imm will receive the 32-bit value.
    369 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    370   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    371     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    372     return true;
    373   }
    374   return false;
    375 }
    376 
    377 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
    378 /// operand.  If so Imm will receive the 64-bit value.
    379 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
    380   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
    381     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    382     return true;
    383   }
    384   return false;
    385 }
    386 
    387 // isInt32Immediate - This method tests to see if a constant operand.
    388 // If so Imm will receive the 32 bit value.
    389 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    390   return isInt32Immediate(N.getNode(), Imm);
    391 }
    392 
    393 
    394 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    395 // opcode and that it has a immediate integer right operand.
    396 // If so Imm will receive the 32 bit value.
    397 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    398   return N->getOpcode() == Opc
    399          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
    400 }
    401 
    402 SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
    403   SDLoc dl(SN);
    404   int FI = cast<FrameIndexSDNode>(N)->getIndex();
    405   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
    406   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
    407   if (SN->hasOneUse())
    408     return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
    409                                 getSmallIPtrImm(Offset));
    410   return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
    411                                 getSmallIPtrImm(Offset));
    412 }
    413 
    414 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
    415                                       bool isShiftMask, unsigned &SH,
    416                                       unsigned &MB, unsigned &ME) {
    417   // Don't even go down this path for i64, since different logic will be
    418   // necessary for rldicl/rldicr/rldimi.
    419   if (N->getValueType(0) != MVT::i32)
    420     return false;
    421 
    422   unsigned Shift  = 32;
    423   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
    424   unsigned Opcode = N->getOpcode();
    425   if (N->getNumOperands() != 2 ||
    426       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
    427     return false;
    428 
    429   if (Opcode == ISD::SHL) {
    430     // apply shift left to mask if it comes first
    431     if (isShiftMask) Mask = Mask << Shift;
    432     // determine which bits are made indeterminant by shift
    433     Indeterminant = ~(0xFFFFFFFFu << Shift);
    434   } else if (Opcode == ISD::SRL) {
    435     // apply shift right to mask if it comes first
    436     if (isShiftMask) Mask = Mask >> Shift;
    437     // determine which bits are made indeterminant by shift
    438     Indeterminant = ~(0xFFFFFFFFu >> Shift);
    439     // adjust for the left rotate
    440     Shift = 32 - Shift;
    441   } else if (Opcode == ISD::ROTL) {
    442     Indeterminant = 0;
    443   } else {
    444     return false;
    445   }
    446 
    447   // if the mask doesn't intersect any Indeterminant bits
    448   if (Mask && !(Mask & Indeterminant)) {
    449     SH = Shift & 31;
    450     // make sure the mask is still a mask (wrap arounds may not be)
    451     return isRunOfOnes(Mask, MB, ME);
    452   }
    453   return false;
    454 }
    455 
    456 /// SelectBitfieldInsert - turn an or of two masked values into
    457 /// the rotate left word immediate then mask insert (rlwimi) instruction.
    458 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
    459   SDValue Op0 = N->getOperand(0);
    460   SDValue Op1 = N->getOperand(1);
    461   SDLoc dl(N);
    462 
    463   APInt LKZ, LKO, RKZ, RKO;
    464   CurDAG->computeKnownBits(Op0, LKZ, LKO);
    465   CurDAG->computeKnownBits(Op1, RKZ, RKO);
    466 
    467   unsigned TargetMask = LKZ.getZExtValue();
    468   unsigned InsertMask = RKZ.getZExtValue();
    469 
    470   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
    471     unsigned Op0Opc = Op0.getOpcode();
    472     unsigned Op1Opc = Op1.getOpcode();
    473     unsigned Value, SH = 0;
    474     TargetMask = ~TargetMask;
    475     InsertMask = ~InsertMask;
    476 
    477     // If the LHS has a foldable shift and the RHS does not, then swap it to the
    478     // RHS so that we can fold the shift into the insert.
    479     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
    480       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
    481           Op0.getOperand(0).getOpcode() == ISD::SRL) {
    482         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
    483             Op1.getOperand(0).getOpcode() != ISD::SRL) {
    484           std::swap(Op0, Op1);
    485           std::swap(Op0Opc, Op1Opc);
    486           std::swap(TargetMask, InsertMask);
    487         }
    488       }
    489     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
    490       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
    491           Op1.getOperand(0).getOpcode() != ISD::SRL) {
    492         std::swap(Op0, Op1);
    493         std::swap(Op0Opc, Op1Opc);
    494         std::swap(TargetMask, InsertMask);
    495       }
    496     }
    497 
    498     unsigned MB, ME;
    499     if (isRunOfOnes(InsertMask, MB, ME)) {
    500       SDValue Tmp1, Tmp2;
    501 
    502       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
    503           isInt32Immediate(Op1.getOperand(1), Value)) {
    504         Op1 = Op1.getOperand(0);
    505         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
    506       }
    507       if (Op1Opc == ISD::AND) {
    508        // The AND mask might not be a constant, and we need to make sure that
    509        // if we're going to fold the masking with the insert, all bits not
    510        // know to be zero in the mask are known to be one.
    511         APInt MKZ, MKO;
    512         CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
    513         bool CanFoldMask = InsertMask == MKO.getZExtValue();
    514 
    515         unsigned SHOpc = Op1.getOperand(0).getOpcode();
    516         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
    517             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
    518           // Note that Value must be in range here (less than 32) because
    519           // otherwise there would not be any bits set in InsertMask.
    520           Op1 = Op1.getOperand(0).getOperand(0);
    521           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
    522         }
    523       }
    524 
    525       SH &= 31;
    526       SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
    527                           getI32Imm(ME) };
    528       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
    529     }
    530   }
    531   return nullptr;
    532 }
    533 
    534 // Predict the number of instructions that would be generated by calling
    535 // SelectInt64(N).
    536 static unsigned SelectInt64CountDirect(int64_t Imm) {
    537   // Assume no remaining bits.
    538   unsigned Remainder = 0;
    539   // Assume no shift required.
    540   unsigned Shift = 0;
    541 
    542   // If it can't be represented as a 32 bit value.
    543   if (!isInt<32>(Imm)) {
    544     Shift = countTrailingZeros<uint64_t>(Imm);
    545     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    546 
    547     // If the shifted value fits 32 bits.
    548     if (isInt<32>(ImmSh)) {
    549       // Go with the shifted value.
    550       Imm = ImmSh;
    551     } else {
    552       // Still stuck with a 64 bit value.
    553       Remainder = Imm;
    554       Shift = 32;
    555       Imm >>= 32;
    556     }
    557   }
    558 
    559   // Intermediate operand.
    560   unsigned Result = 0;
    561 
    562   // Handle first 32 bits.
    563   unsigned Lo = Imm & 0xFFFF;
    564   unsigned Hi = (Imm >> 16) & 0xFFFF;
    565 
    566   // Simple value.
    567   if (isInt<16>(Imm)) {
    568     // Just the Lo bits.
    569     ++Result;
    570   } else if (Lo) {
    571     // Handle the Hi bits and Lo bits.
    572     Result += 2;
    573   } else {
    574     // Just the Hi bits.
    575     ++Result;
    576   }
    577 
    578   // If no shift, we're done.
    579   if (!Shift) return Result;
    580 
    581   // Shift for next step if the upper 32-bits were not zero.
    582   if (Imm)
    583     ++Result;
    584 
    585   // Add in the last bits as required.
    586   if ((Hi = (Remainder >> 16) & 0xFFFF))
    587     ++Result;
    588   if ((Lo = Remainder & 0xFFFF))
    589     ++Result;
    590 
    591   return Result;
    592 }
    593 
    594 static uint64_t Rot64(uint64_t Imm, unsigned R) {
    595   return (Imm << R) | (Imm >> (64 - R));
    596 }
    597 
    598 static unsigned SelectInt64Count(int64_t Imm) {
    599   unsigned Count = SelectInt64CountDirect(Imm);
    600   if (Count == 1)
    601     return Count;
    602 
    603   for (unsigned r = 1; r < 63; ++r) {
    604     uint64_t RImm = Rot64(Imm, r);
    605     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
    606     Count = std::min(Count, RCount);
    607 
    608     // See comments in SelectInt64 for an explanation of the logic below.
    609     unsigned LS = findLastSet(RImm);
    610     if (LS != r-1)
    611       continue;
    612 
    613     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    614     uint64_t RImmWithOnes = RImm | OnesMask;
    615 
    616     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
    617     Count = std::min(Count, RCount);
    618   }
    619 
    620   return Count;
    621 }
    622 
    623 // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
    624 // (above) needs to be kept in sync with this function.
    625 static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
    626   // Assume no remaining bits.
    627   unsigned Remainder = 0;
    628   // Assume no shift required.
    629   unsigned Shift = 0;
    630 
    631   // If it can't be represented as a 32 bit value.
    632   if (!isInt<32>(Imm)) {
    633     Shift = countTrailingZeros<uint64_t>(Imm);
    634     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
    635 
    636     // If the shifted value fits 32 bits.
    637     if (isInt<32>(ImmSh)) {
    638       // Go with the shifted value.
    639       Imm = ImmSh;
    640     } else {
    641       // Still stuck with a 64 bit value.
    642       Remainder = Imm;
    643       Shift = 32;
    644       Imm >>= 32;
    645     }
    646   }
    647 
    648   // Intermediate operand.
    649   SDNode *Result;
    650 
    651   // Handle first 32 bits.
    652   unsigned Lo = Imm & 0xFFFF;
    653   unsigned Hi = (Imm >> 16) & 0xFFFF;
    654 
    655   auto getI32Imm = [CurDAG](unsigned Imm) {
    656       return CurDAG->getTargetConstant(Imm, MVT::i32);
    657   };
    658 
    659   // Simple value.
    660   if (isInt<16>(Imm)) {
    661     // Just the Lo bits.
    662     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
    663   } else if (Lo) {
    664     // Handle the Hi bits.
    665     unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
    666     Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
    667     // And Lo bits.
    668     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    669                                     SDValue(Result, 0), getI32Imm(Lo));
    670   } else {
    671     // Just the Hi bits.
    672     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
    673   }
    674 
    675   // If no shift, we're done.
    676   if (!Shift) return Result;
    677 
    678   // Shift for next step if the upper 32-bits were not zero.
    679   if (Imm) {
    680     Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
    681                                     SDValue(Result, 0),
    682                                     getI32Imm(Shift),
    683                                     getI32Imm(63 - Shift));
    684   }
    685 
    686   // Add in the last bits as required.
    687   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
    688     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
    689                                     SDValue(Result, 0), getI32Imm(Hi));
    690   }
    691   if ((Lo = Remainder & 0xFFFF)) {
    692     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
    693                                     SDValue(Result, 0), getI32Imm(Lo));
    694   }
    695 
    696   return Result;
    697 }
    698 
    699 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
    700   unsigned Count = SelectInt64CountDirect(Imm);
    701   if (Count == 1)
    702     return SelectInt64Direct(CurDAG, dl, Imm);
    703 
    704   unsigned RMin = 0;
    705 
    706   int64_t MatImm;
    707   unsigned MaskEnd;
    708 
    709   for (unsigned r = 1; r < 63; ++r) {
    710     uint64_t RImm = Rot64(Imm, r);
    711     unsigned RCount = SelectInt64CountDirect(RImm) + 1;
    712     if (RCount < Count) {
    713       Count = RCount;
    714       RMin = r;
    715       MatImm = RImm;
    716       MaskEnd = 63;
    717     }
    718 
    719     // If the immediate to generate has many trailing zeros, it might be
    720     // worthwhile to generate a rotated value with too many leading ones
    721     // (because that's free with li/lis's sign-extension semantics), and then
    722     // mask them off after rotation.
    723 
    724     unsigned LS = findLastSet(RImm);
    725     // We're adding (63-LS) higher-order ones, and we expect to mask them off
    726     // after performing the inverse rotation by (64-r). So we need that:
    727     //   63-LS == 64-r => LS == r-1
    728     if (LS != r-1)
    729       continue;
    730 
    731     uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
    732     uint64_t RImmWithOnes = RImm | OnesMask;
    733 
    734     RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
    735     if (RCount < Count) {
    736       Count = RCount;
    737       RMin = r;
    738       MatImm = RImmWithOnes;
    739       MaskEnd = LS;
    740     }
    741   }
    742 
    743   if (!RMin)
    744     return SelectInt64Direct(CurDAG, dl, Imm);
    745 
    746   auto getI32Imm = [CurDAG](unsigned Imm) {
    747       return CurDAG->getTargetConstant(Imm, MVT::i32);
    748   };
    749 
    750   SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
    751   return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
    752                                 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
    753 }
    754 
    755 // Select a 64-bit constant.
    756 static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
    757   SDLoc dl(N);
    758 
    759   // Get 64 bit value.
    760   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
    761   return SelectInt64(CurDAG, dl, Imm);
    762 }
    763 
    764 namespace {
    765 class BitPermutationSelector {
    766   struct ValueBit {
    767     SDValue V;
    768 
    769     // The bit number in the value, using a convention where bit 0 is the
    770     // lowest-order bit.
    771     unsigned Idx;
    772 
    773     enum Kind {
    774       ConstZero,
    775       Variable
    776     } K;
    777 
    778     ValueBit(SDValue V, unsigned I, Kind K = Variable)
    779       : V(V), Idx(I), K(K) {}
    780     ValueBit(Kind K = Variable)
    781       : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
    782 
    783     bool isZero() const {
    784       return K == ConstZero;
    785     }
    786 
    787     bool hasValue() const {
    788       return K == Variable;
    789     }
    790 
    791     SDValue getValue() const {
    792       assert(hasValue() && "Cannot get the value of a constant bit");
    793       return V;
    794     }
    795 
    796     unsigned getValueBitIndex() const {
    797       assert(hasValue() && "Cannot get the value bit index of a constant bit");
    798       return Idx;
    799     }
    800   };
    801 
    802   // A bit group has the same underlying value and the same rotate factor.
    803   struct BitGroup {
    804     SDValue V;
    805     unsigned RLAmt;
    806     unsigned StartIdx, EndIdx;
    807 
    808     // This rotation amount assumes that the lower 32 bits of the quantity are
    809     // replicated in the high 32 bits by the rotation operator (which is done
    810     // by rlwinm and friends in 64-bit mode).
    811     bool Repl32;
    812     // Did converting to Repl32 == true change the rotation factor? If it did,
    813     // it decreased it by 32.
    814     bool Repl32CR;
    815     // Was this group coalesced after setting Repl32 to true?
    816     bool Repl32Coalesced;
    817 
    818     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
    819       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
    820         Repl32Coalesced(false) {
    821       DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
    822                       " [" << S << ", " << E << "]\n");
    823     }
    824   };
    825 
    826   // Information on each (Value, RLAmt) pair (like the number of groups
    827   // associated with each) used to choose the lowering method.
    828   struct ValueRotInfo {
    829     SDValue V;
    830     unsigned RLAmt;
    831     unsigned NumGroups;
    832     unsigned FirstGroupStartIdx;
    833     bool Repl32;
    834 
    835     ValueRotInfo()
    836       : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
    837         Repl32(false) {}
    838 
    839     // For sorting (in reverse order) by NumGroups, and then by
    840     // FirstGroupStartIdx.
    841     bool operator < (const ValueRotInfo &Other) const {
    842       // We need to sort so that the non-Repl32 come first because, when we're
    843       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
    844       // masking operation.
    845       if (Repl32 < Other.Repl32)
    846         return true;
    847       else if (Repl32 > Other.Repl32)
    848         return false;
    849       else if (NumGroups > Other.NumGroups)
    850         return true;
    851       else if (NumGroups < Other.NumGroups)
    852         return false;
    853       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
    854         return true;
    855       return false;
    856     }
    857   };
    858 
    859   // Return true if something interesting was deduced, return false if we're
    860   // providing only a generic representation of V (or something else likewise
    861   // uninteresting for instruction selection).
    862   bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
    863     switch (V.getOpcode()) {
    864     default: break;
    865     case ISD::ROTL:
    866       if (isa<ConstantSDNode>(V.getOperand(1))) {
    867         unsigned RotAmt = V.getConstantOperandVal(1);
    868 
    869         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    870         getValueBits(V.getOperand(0), LHSBits);
    871 
    872         for (unsigned i = 0; i < Bits.size(); ++i)
    873           Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
    874 
    875         return true;
    876       }
    877       break;
    878     case ISD::SHL:
    879       if (isa<ConstantSDNode>(V.getOperand(1))) {
    880         unsigned ShiftAmt = V.getConstantOperandVal(1);
    881 
    882         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    883         getValueBits(V.getOperand(0), LHSBits);
    884 
    885         for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
    886           Bits[i] = LHSBits[i - ShiftAmt];
    887 
    888         for (unsigned i = 0; i < ShiftAmt; ++i)
    889           Bits[i] = ValueBit(ValueBit::ConstZero);
    890 
    891         return true;
    892       }
    893       break;
    894     case ISD::SRL:
    895       if (isa<ConstantSDNode>(V.getOperand(1))) {
    896         unsigned ShiftAmt = V.getConstantOperandVal(1);
    897 
    898         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    899         getValueBits(V.getOperand(0), LHSBits);
    900 
    901         for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
    902           Bits[i] = LHSBits[i + ShiftAmt];
    903 
    904         for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
    905           Bits[i] = ValueBit(ValueBit::ConstZero);
    906 
    907         return true;
    908       }
    909       break;
    910     case ISD::AND:
    911       if (isa<ConstantSDNode>(V.getOperand(1))) {
    912         uint64_t Mask = V.getConstantOperandVal(1);
    913 
    914         SmallVector<ValueBit, 64> LHSBits(Bits.size());
    915         bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
    916 
    917         for (unsigned i = 0; i < Bits.size(); ++i)
    918           if (((Mask >> i) & 1) == 1)
    919             Bits[i] = LHSBits[i];
    920           else
    921             Bits[i] = ValueBit(ValueBit::ConstZero);
    922 
    923         // Mark this as interesting, only if the LHS was also interesting. This
    924         // prevents the overall procedure from matching a single immediate 'and'
    925         // (which is non-optimal because such an and might be folded with other
    926         // things if we don't select it here).
    927         return LHSTrivial;
    928       }
    929       break;
    930     case ISD::OR: {
    931       SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
    932       getValueBits(V.getOperand(0), LHSBits);
    933       getValueBits(V.getOperand(1), RHSBits);
    934 
    935       bool AllDisjoint = true;
    936       for (unsigned i = 0; i < Bits.size(); ++i)
    937         if (LHSBits[i].isZero())
    938           Bits[i] = RHSBits[i];
    939         else if (RHSBits[i].isZero())
    940           Bits[i] = LHSBits[i];
    941         else {
    942           AllDisjoint = false;
    943           break;
    944         }
    945 
    946       if (!AllDisjoint)
    947         break;
    948 
    949       return true;
    950     }
    951     }
    952 
    953     for (unsigned i = 0; i < Bits.size(); ++i)
    954       Bits[i] = ValueBit(V, i);
    955 
    956     return false;
    957   }
    958 
    959   // For each value (except the constant ones), compute the left-rotate amount
    960   // to get it from its original to final position.
    961   void computeRotationAmounts() {
    962     HasZeros = false;
    963     RLAmt.resize(Bits.size());
    964     for (unsigned i = 0; i < Bits.size(); ++i)
    965       if (Bits[i].hasValue()) {
    966         unsigned VBI = Bits[i].getValueBitIndex();
    967         if (i >= VBI)
    968           RLAmt[i] = i - VBI;
    969         else
    970           RLAmt[i] = Bits.size() - (VBI - i);
    971       } else if (Bits[i].isZero()) {
    972         HasZeros = true;
    973         RLAmt[i] = UINT32_MAX;
    974       } else {
    975         llvm_unreachable("Unknown value bit type");
    976       }
    977   }
    978 
    979   // Collect groups of consecutive bits with the same underlying value and
    980   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
    981   // they break up groups.
    982   void collectBitGroups(bool LateMask) {
    983     BitGroups.clear();
    984 
    985     unsigned LastRLAmt = RLAmt[0];
    986     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
    987     unsigned LastGroupStartIdx = 0;
    988     for (unsigned i = 1; i < Bits.size(); ++i) {
    989       unsigned ThisRLAmt = RLAmt[i];
    990       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
    991       if (LateMask && !ThisValue) {
    992         ThisValue = LastValue;
    993         ThisRLAmt = LastRLAmt;
    994         // If we're doing late masking, then the first bit group always starts
    995         // at zero (even if the first bits were zero).
    996         if (BitGroups.empty())
    997           LastGroupStartIdx = 0;
    998       }
    999 
   1000       // If this bit has the same underlying value and the same rotate factor as
   1001       // the last one, then they're part of the same group.
   1002       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
   1003         continue;
   1004 
   1005       if (LastValue.getNode())
   1006         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
   1007                                      i-1));
   1008       LastRLAmt = ThisRLAmt;
   1009       LastValue = ThisValue;
   1010       LastGroupStartIdx = i;
   1011     }
   1012     if (LastValue.getNode())
   1013       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
   1014                                    Bits.size()-1));
   1015 
   1016     if (BitGroups.empty())
   1017       return;
   1018 
   1019     // We might be able to combine the first and last groups.
   1020     if (BitGroups.size() > 1) {
   1021       // If the first and last groups are the same, then remove the first group
   1022       // in favor of the last group, making the ending index of the last group
   1023       // equal to the ending index of the to-be-removed first group.
   1024       if (BitGroups[0].StartIdx == 0 &&
   1025           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
   1026           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
   1027           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
   1028         DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
   1029         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
   1030         BitGroups.erase(BitGroups.begin());
   1031       }
   1032     }
   1033   }
   1034 
   1035   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
   1036   // associated with each. If there is a degeneracy, pick the one that occurs
   1037   // first (in the final value).
   1038   void collectValueRotInfo() {
   1039     ValueRots.clear();
   1040 
   1041     for (auto &BG : BitGroups) {
   1042       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
   1043       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
   1044       VRI.V = BG.V;
   1045       VRI.RLAmt = BG.RLAmt;
   1046       VRI.Repl32 = BG.Repl32;
   1047       VRI.NumGroups += 1;
   1048       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
   1049     }
   1050 
   1051     // Now that we've collected the various ValueRotInfo instances, we need to
   1052     // sort them.
   1053     ValueRotsVec.clear();
   1054     for (auto &I : ValueRots) {
   1055       ValueRotsVec.push_back(I.second);
   1056     }
   1057     std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
   1058   }
   1059 
   1060   // In 64-bit mode, rlwinm and friends have a rotation operator that
   1061   // replicates the low-order 32 bits into the high-order 32-bits. The mask
   1062   // indices of these instructions can only be in the lower 32 bits, so they
   1063   // can only represent some 64-bit bit groups. However, when they can be used,
   1064   // the 32-bit replication can be used to represent, as a single bit group,
   1065   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
   1066   // groups when possible. Returns true if any of the bit groups were
   1067   // converted.
   1068   void assignRepl32BitGroups() {
   1069     // If we have bits like this:
   1070     //
   1071     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
   1072     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
   1073     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
   1074     //
   1075     // But, making use of a 32-bit operation that replicates the low-order 32
   1076     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
   1077     // of 8.
   1078 
   1079     auto IsAllLow32 = [this](BitGroup & BG) {
   1080       if (BG.StartIdx <= BG.EndIdx) {
   1081         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
   1082           if (!Bits[i].hasValue())
   1083             continue;
   1084           if (Bits[i].getValueBitIndex() >= 32)
   1085             return false;
   1086         }
   1087       } else {
   1088         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
   1089           if (!Bits[i].hasValue())
   1090             continue;
   1091           if (Bits[i].getValueBitIndex() >= 32)
   1092             return false;
   1093         }
   1094         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
   1095           if (!Bits[i].hasValue())
   1096             continue;
   1097           if (Bits[i].getValueBitIndex() >= 32)
   1098             return false;
   1099         }
   1100       }
   1101 
   1102       return true;
   1103     };
   1104 
   1105     for (auto &BG : BitGroups) {
   1106       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
   1107         if (IsAllLow32(BG)) {
   1108           if (BG.RLAmt >= 32) {
   1109             BG.RLAmt -= 32;
   1110             BG.Repl32CR = true;
   1111           }
   1112 
   1113           BG.Repl32 = true;
   1114 
   1115           DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
   1116                           BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
   1117                           " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
   1118         }
   1119       }
   1120     }
   1121 
   1122     // Now walk through the bit groups, consolidating where possible.
   1123     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1124       // We might want to remove this bit group by merging it with the previous
   1125       // group (which might be the ending group).
   1126       auto IP = (I == BitGroups.begin()) ?
   1127                 std::prev(BitGroups.end()) : std::prev(I);
   1128       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
   1129           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
   1130 
   1131         DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
   1132                         I->V.getNode() << " RLAmt = " << I->RLAmt <<
   1133                         " [" << I->StartIdx << ", " << I->EndIdx <<
   1134                         "] with group with range [" <<
   1135                         IP->StartIdx << ", " << IP->EndIdx << "]\n");
   1136 
   1137         IP->EndIdx = I->EndIdx;
   1138         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
   1139         IP->Repl32Coalesced = true;
   1140         I = BitGroups.erase(I);
   1141         continue;
   1142       } else {
   1143         // There is a special case worth handling: If there is a single group
   1144         // covering the entire upper 32 bits, and it can be merged with both
   1145         // the next and previous groups (which might be the same group), then
   1146         // do so. If it is the same group (so there will be only one group in
   1147         // total), then we need to reverse the order of the range so that it
   1148         // covers the entire 64 bits.
   1149         if (I->StartIdx == 32 && I->EndIdx == 63) {
   1150           assert(std::next(I) == BitGroups.end() &&
   1151                  "bit group ends at index 63 but there is another?");
   1152           auto IN = BitGroups.begin();
   1153 
   1154           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
   1155               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
   1156               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
   1157               IsAllLow32(*I)) {
   1158 
   1159             DEBUG(dbgs() << "\tcombining bit group for " <<
   1160                             I->V.getNode() << " RLAmt = " << I->RLAmt <<
   1161                             " [" << I->StartIdx << ", " << I->EndIdx <<
   1162                             "] with 32-bit replicated groups with ranges [" <<
   1163                             IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
   1164                             IN->StartIdx << ", " << IN->EndIdx << "]\n");
   1165 
   1166             if (IP == IN) {
   1167               // There is only one other group; change it to cover the whole
   1168               // range (backward, so that it can still be Repl32 but cover the
   1169               // whole 64-bit range).
   1170               IP->StartIdx = 31;
   1171               IP->EndIdx = 30;
   1172               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
   1173               IP->Repl32Coalesced = true;
   1174               I = BitGroups.erase(I);
   1175             } else {
   1176               // There are two separate groups, one before this group and one
   1177               // after us (at the beginning). We're going to remove this group,
   1178               // but also the group at the very beginning.
   1179               IP->EndIdx = IN->EndIdx;
   1180               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
   1181               IP->Repl32Coalesced = true;
   1182               I = BitGroups.erase(I);
   1183               BitGroups.erase(BitGroups.begin());
   1184             }
   1185 
   1186             // This must be the last group in the vector (and we might have
   1187             // just invalidated the iterator above), so break here.
   1188             break;
   1189           }
   1190         }
   1191       }
   1192 
   1193       ++I;
   1194     }
   1195   }
   1196 
   1197   SDValue getI32Imm(unsigned Imm) {
   1198     return CurDAG->getTargetConstant(Imm, MVT::i32);
   1199   }
   1200 
   1201   uint64_t getZerosMask() {
   1202     uint64_t Mask = 0;
   1203     for (unsigned i = 0; i < Bits.size(); ++i) {
   1204       if (Bits[i].hasValue())
   1205         continue;
   1206       Mask |= (UINT64_C(1) << i);
   1207     }
   1208 
   1209     return ~Mask;
   1210   }
   1211 
   1212   // Depending on the number of groups for a particular value, it might be
   1213   // better to rotate, mask explicitly (using andi/andis), and then or the
   1214   // result. Select this part of the result first.
   1215   void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
   1216     if (BPermRewriterNoMasking)
   1217       return;
   1218 
   1219     for (ValueRotInfo &VRI : ValueRotsVec) {
   1220       unsigned Mask = 0;
   1221       for (unsigned i = 0; i < Bits.size(); ++i) {
   1222         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
   1223           continue;
   1224         if (RLAmt[i] != VRI.RLAmt)
   1225           continue;
   1226         Mask |= (1u << i);
   1227       }
   1228 
   1229       // Compute the masks for andi/andis that would be necessary.
   1230       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
   1231       assert((ANDIMask != 0 || ANDISMask != 0) &&
   1232              "No set bits in mask for value bit groups");
   1233       bool NeedsRotate = VRI.RLAmt != 0;
   1234 
   1235       // We're trying to minimize the number of instructions. If we have one
   1236       // group, using one of andi/andis can break even.  If we have three
   1237       // groups, we can use both andi and andis and break even (to use both
   1238       // andi and andis we also need to or the results together). We need four
   1239       // groups if we also need to rotate. To use andi/andis we need to do more
   1240       // than break even because rotate-and-mask instructions tend to be easier
   1241       // to schedule.
   1242 
   1243       // FIXME: We've biased here against using andi/andis, which is right for
   1244       // POWER cores, but not optimal everywhere. For example, on the A2,
   1245       // andi/andis have single-cycle latency whereas the rotate-and-mask
   1246       // instructions take two cycles, and it would be better to bias toward
   1247       // andi/andis in break-even cases.
   1248 
   1249       unsigned NumAndInsts = (unsigned) NeedsRotate +
   1250                              (unsigned) (ANDIMask != 0) +
   1251                              (unsigned) (ANDISMask != 0) +
   1252                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
   1253                              (unsigned) (bool) Res;
   1254 
   1255       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
   1256                       " RL: " << VRI.RLAmt << ":" <<
   1257                       "\n\t\t\tisel using masking: " << NumAndInsts <<
   1258                       " using rotates: " << VRI.NumGroups << "\n");
   1259 
   1260       if (NumAndInsts >= VRI.NumGroups)
   1261         continue;
   1262 
   1263       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
   1264 
   1265       if (InstCnt) *InstCnt += NumAndInsts;
   1266 
   1267       SDValue VRot;
   1268       if (VRI.RLAmt) {
   1269         SDValue Ops[] =
   1270           { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
   1271         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
   1272                                               Ops), 0);
   1273       } else {
   1274         VRot = VRI.V;
   1275       }
   1276 
   1277       SDValue ANDIVal, ANDISVal;
   1278       if (ANDIMask != 0)
   1279         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
   1280                             VRot, getI32Imm(ANDIMask)), 0);
   1281       if (ANDISMask != 0)
   1282         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
   1283                              VRot, getI32Imm(ANDISMask)), 0);
   1284 
   1285       SDValue TotalVal;
   1286       if (!ANDIVal)
   1287         TotalVal = ANDISVal;
   1288       else if (!ANDISVal)
   1289         TotalVal = ANDIVal;
   1290       else
   1291         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1292                              ANDIVal, ANDISVal), 0);
   1293 
   1294       if (!Res)
   1295         Res = TotalVal;
   1296       else
   1297         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1298                         Res, TotalVal), 0);
   1299 
   1300       // Now, remove all groups with this underlying value and rotation
   1301       // factor.
   1302       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1303         if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
   1304           I = BitGroups.erase(I);
   1305         else
   1306           ++I;
   1307       }
   1308     }
   1309   }
   1310 
   1311   // Instruction selection for the 32-bit case.
   1312   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
   1313     SDLoc dl(N);
   1314     SDValue Res;
   1315 
   1316     if (InstCnt) *InstCnt = 0;
   1317 
   1318     // Take care of cases that should use andi/andis first.
   1319     SelectAndParts32(dl, Res, InstCnt);
   1320 
   1321     // If we've not yet selected a 'starting' instruction, and we have no zeros
   1322     // to fill in, select the (Value, RLAmt) with the highest priority (largest
   1323     // number of groups), and start with this rotated value.
   1324     if ((!HasZeros || LateMask) && !Res) {
   1325       ValueRotInfo &VRI = ValueRotsVec[0];
   1326       if (VRI.RLAmt) {
   1327         if (InstCnt) *InstCnt += 1;
   1328         SDValue Ops[] =
   1329           { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) };
   1330         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   1331       } else {
   1332         Res = VRI.V;
   1333       }
   1334 
   1335       // Now, remove all groups with this underlying value and rotation factor.
   1336       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1337         if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
   1338           I = BitGroups.erase(I);
   1339         else
   1340           ++I;
   1341       }
   1342     }
   1343 
   1344     if (InstCnt) *InstCnt += BitGroups.size();
   1345 
   1346     // Insert the other groups (one at a time).
   1347     for (auto &BG : BitGroups) {
   1348       if (!Res) {
   1349         SDValue Ops[] =
   1350           { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
   1351             getI32Imm(Bits.size() - BG.StartIdx - 1) };
   1352         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   1353       } else {
   1354         SDValue Ops[] =
   1355           { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1),
   1356             getI32Imm(Bits.size() - BG.StartIdx - 1) };
   1357         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
   1358       }
   1359     }
   1360 
   1361     if (LateMask) {
   1362       unsigned Mask = (unsigned) getZerosMask();
   1363 
   1364       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
   1365       assert((ANDIMask != 0 || ANDISMask != 0) &&
   1366              "No set bits in zeros mask?");
   1367 
   1368       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
   1369                                (unsigned) (ANDISMask != 0) +
   1370                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1371 
   1372       SDValue ANDIVal, ANDISVal;
   1373       if (ANDIMask != 0)
   1374         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
   1375                             Res, getI32Imm(ANDIMask)), 0);
   1376       if (ANDISMask != 0)
   1377         ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
   1378                              Res, getI32Imm(ANDISMask)), 0);
   1379 
   1380       if (!ANDIVal)
   1381         Res = ANDISVal;
   1382       else if (!ANDISVal)
   1383         Res = ANDIVal;
   1384       else
   1385         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
   1386                         ANDIVal, ANDISVal), 0);
   1387     }
   1388 
   1389     return Res.getNode();
   1390   }
   1391 
   1392   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
   1393                                 unsigned MaskStart, unsigned MaskEnd,
   1394                                 bool IsIns) {
   1395     // In the notation used by the instructions, 'start' and 'end' are reversed
   1396     // because bits are counted from high to low order.
   1397     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1398              InstMaskEnd   = 64 - MaskStart - 1;
   1399 
   1400     if (Repl32)
   1401       return 1;
   1402 
   1403     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
   1404         InstMaskEnd == 63 - RLAmt)
   1405       return 1;
   1406 
   1407     return 2;
   1408   }
   1409 
   1410   // For 64-bit values, not all combinations of rotates and masks are
   1411   // available. Produce one if it is available.
   1412   SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
   1413                           unsigned MaskStart, unsigned MaskEnd,
   1414                           unsigned *InstCnt = nullptr) {
   1415     // In the notation used by the instructions, 'start' and 'end' are reversed
   1416     // because bits are counted from high to low order.
   1417     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1418              InstMaskEnd   = 64 - MaskStart - 1;
   1419 
   1420     if (InstCnt) *InstCnt += 1;
   1421 
   1422     if (Repl32) {
   1423       // This rotation amount assumes that the lower 32 bits of the quantity
   1424       // are replicated in the high 32 bits by the rotation operator (which is
   1425       // done by rlwinm and friends).
   1426       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
   1427       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
   1428       SDValue Ops[] =
   1429         { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
   1430           getI32Imm(InstMaskEnd - 32) };
   1431       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
   1432                                             Ops), 0);
   1433     }
   1434 
   1435     if (InstMaskEnd == 63) {
   1436       SDValue Ops[] =
   1437         { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
   1438       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
   1439     }
   1440 
   1441     if (InstMaskStart == 0) {
   1442       SDValue Ops[] =
   1443         { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) };
   1444       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
   1445     }
   1446 
   1447     if (InstMaskEnd == 63 - RLAmt) {
   1448       SDValue Ops[] =
   1449         { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
   1450       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
   1451     }
   1452 
   1453     // We cannot do this with a single instruction, so we'll use two. The
   1454     // problem is that we're not free to choose both a rotation amount and mask
   1455     // start and end independently. We can choose an arbitrary mask start and
   1456     // end, but then the rotation amount is fixed. Rotation, however, can be
   1457     // inverted, and so by applying an "inverse" rotation first, we can get the
   1458     // desired result.
   1459     if (InstCnt) *InstCnt += 1;
   1460 
   1461     // The rotation mask for the second instruction must be MaskStart.
   1462     unsigned RLAmt2 = MaskStart;
   1463     // The first instruction must rotate V so that the overall rotation amount
   1464     // is RLAmt.
   1465     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
   1466     if (RLAmt1)
   1467       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
   1468     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
   1469   }
   1470 
   1471   // For 64-bit values, not all combinations of rotates and masks are
   1472   // available. Produce a rotate-mask-and-insert if one is available.
   1473   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
   1474                              bool Repl32, unsigned MaskStart,
   1475                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
   1476     // In the notation used by the instructions, 'start' and 'end' are reversed
   1477     // because bits are counted from high to low order.
   1478     unsigned InstMaskStart = 64 - MaskEnd - 1,
   1479              InstMaskEnd   = 64 - MaskStart - 1;
   1480 
   1481     if (InstCnt) *InstCnt += 1;
   1482 
   1483     if (Repl32) {
   1484       // This rotation amount assumes that the lower 32 bits of the quantity
   1485       // are replicated in the high 32 bits by the rotation operator (which is
   1486       // done by rlwinm and friends).
   1487       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
   1488       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
   1489       SDValue Ops[] =
   1490         { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32),
   1491           getI32Imm(InstMaskEnd - 32) };
   1492       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
   1493                                             Ops), 0);
   1494     }
   1495 
   1496     if (InstMaskEnd == 63 - RLAmt) {
   1497       SDValue Ops[] =
   1498         { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) };
   1499       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
   1500     }
   1501 
   1502     // We cannot do this with a single instruction, so we'll use two. The
   1503     // problem is that we're not free to choose both a rotation amount and mask
   1504     // start and end independently. We can choose an arbitrary mask start and
   1505     // end, but then the rotation amount is fixed. Rotation, however, can be
   1506     // inverted, and so by applying an "inverse" rotation first, we can get the
   1507     // desired result.
   1508     if (InstCnt) *InstCnt += 1;
   1509 
   1510     // The rotation mask for the second instruction must be MaskStart.
   1511     unsigned RLAmt2 = MaskStart;
   1512     // The first instruction must rotate V so that the overall rotation amount
   1513     // is RLAmt.
   1514     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
   1515     if (RLAmt1)
   1516       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
   1517     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
   1518   }
   1519 
   1520   void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
   1521     if (BPermRewriterNoMasking)
   1522       return;
   1523 
   1524     // The idea here is the same as in the 32-bit version, but with additional
   1525     // complications from the fact that Repl32 might be true. Because we
   1526     // aggressively convert bit groups to Repl32 form (which, for small
   1527     // rotation factors, involves no other change), and then coalesce, it might
   1528     // be the case that a single 64-bit masking operation could handle both
   1529     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
   1530     // form allowed coalescing, then we must use a 32-bit rotaton in order to
   1531     // completely capture the new combined bit group.
   1532 
   1533     for (ValueRotInfo &VRI : ValueRotsVec) {
   1534       uint64_t Mask = 0;
   1535 
   1536       // We need to add to the mask all bits from the associated bit groups.
   1537       // If Repl32 is false, we need to add bits from bit groups that have
   1538       // Repl32 true, but are trivially convertable to Repl32 false. Such a
   1539       // group is trivially convertable if it overlaps only with the lower 32
   1540       // bits, and the group has not been coalesced.
   1541       auto MatchingBG = [VRI](BitGroup &BG) {
   1542         if (VRI.V != BG.V)
   1543           return false;
   1544 
   1545         unsigned EffRLAmt = BG.RLAmt;
   1546         if (!VRI.Repl32 && BG.Repl32) {
   1547           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
   1548               !BG.Repl32Coalesced) {
   1549             if (BG.Repl32CR)
   1550               EffRLAmt += 32;
   1551           } else {
   1552             return false;
   1553           }
   1554         } else if (VRI.Repl32 != BG.Repl32) {
   1555           return false;
   1556         }
   1557 
   1558         if (VRI.RLAmt != EffRLAmt)
   1559           return false;
   1560 
   1561         return true;
   1562       };
   1563 
   1564       for (auto &BG : BitGroups) {
   1565         if (!MatchingBG(BG))
   1566           continue;
   1567 
   1568         if (BG.StartIdx <= BG.EndIdx) {
   1569           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
   1570             Mask |= (UINT64_C(1) << i);
   1571         } else {
   1572           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
   1573             Mask |= (UINT64_C(1) << i);
   1574           for (unsigned i = 0; i <= BG.EndIdx; ++i)
   1575             Mask |= (UINT64_C(1) << i);
   1576         }
   1577       }
   1578 
   1579       // We can use the 32-bit andi/andis technique if the mask does not
   1580       // require any higher-order bits. This can save an instruction compared
   1581       // to always using the general 64-bit technique.
   1582       bool Use32BitInsts = isUInt<32>(Mask);
   1583       // Compute the masks for andi/andis that would be necessary.
   1584       unsigned ANDIMask = (Mask & UINT16_MAX),
   1585                ANDISMask = (Mask >> 16) & UINT16_MAX;
   1586 
   1587       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
   1588 
   1589       unsigned NumAndInsts = (unsigned) NeedsRotate +
   1590                              (unsigned) (bool) Res;
   1591       if (Use32BitInsts)
   1592         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
   1593                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1594       else
   1595         NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
   1596 
   1597       unsigned NumRLInsts = 0;
   1598       bool FirstBG = true;
   1599       for (auto &BG : BitGroups) {
   1600         if (!MatchingBG(BG))
   1601           continue;
   1602         NumRLInsts +=
   1603           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
   1604                                !FirstBG);
   1605         FirstBG = false;
   1606       }
   1607 
   1608       DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
   1609                       " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
   1610                       "\n\t\t\tisel using masking: " << NumAndInsts <<
   1611                       " using rotates: " << NumRLInsts << "\n");
   1612 
   1613       // When we'd use andi/andis, we bias toward using the rotates (andi only
   1614       // has a record form, and is cracked on POWER cores). However, when using
   1615       // general 64-bit constant formation, bias toward the constant form,
   1616       // because that exposes more opportunities for CSE.
   1617       if (NumAndInsts > NumRLInsts)
   1618         continue;
   1619       if (Use32BitInsts && NumAndInsts == NumRLInsts)
   1620         continue;
   1621 
   1622       DEBUG(dbgs() << "\t\t\t\tusing masking\n");
   1623 
   1624       if (InstCnt) *InstCnt += NumAndInsts;
   1625 
   1626       SDValue VRot;
   1627       // We actually need to generate a rotation if we have a non-zero rotation
   1628       // factor or, in the Repl32 case, if we care about any of the
   1629       // higher-order replicated bits. In the latter case, we generate a mask
   1630       // backward so that it actually includes the entire 64 bits.
   1631       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
   1632         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
   1633                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
   1634       else
   1635         VRot = VRI.V;
   1636 
   1637       SDValue TotalVal;
   1638       if (Use32BitInsts) {
   1639         assert((ANDIMask != 0 || ANDISMask != 0) &&
   1640                "No set bits in mask when using 32-bit ands for 64-bit value");
   1641 
   1642         SDValue ANDIVal, ANDISVal;
   1643         if (ANDIMask != 0)
   1644           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
   1645                               VRot, getI32Imm(ANDIMask)), 0);
   1646         if (ANDISMask != 0)
   1647           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
   1648                                VRot, getI32Imm(ANDISMask)), 0);
   1649 
   1650         if (!ANDIVal)
   1651           TotalVal = ANDISVal;
   1652         else if (!ANDISVal)
   1653           TotalVal = ANDIVal;
   1654         else
   1655           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   1656                                ANDIVal, ANDISVal), 0);
   1657       } else {
   1658         TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
   1659         TotalVal =
   1660           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
   1661                                          VRot, TotalVal), 0);
   1662      }
   1663 
   1664       if (!Res)
   1665         Res = TotalVal;
   1666       else
   1667         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   1668                                              Res, TotalVal), 0);
   1669 
   1670       // Now, remove all groups with this underlying value and rotation
   1671       // factor.
   1672       for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1673         if (MatchingBG(*I))
   1674           I = BitGroups.erase(I);
   1675         else
   1676           ++I;
   1677       }
   1678     }
   1679   }
   1680 
   1681   // Instruction selection for the 64-bit case.
   1682   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
   1683     SDLoc dl(N);
   1684     SDValue Res;
   1685 
   1686     if (InstCnt) *InstCnt = 0;
   1687 
   1688     // Take care of cases that should use andi/andis first.
   1689     SelectAndParts64(dl, Res, InstCnt);
   1690 
   1691     // If we've not yet selected a 'starting' instruction, and we have no zeros
   1692     // to fill in, select the (Value, RLAmt) with the highest priority (largest
   1693     // number of groups), and start with this rotated value.
   1694     if ((!HasZeros || LateMask) && !Res) {
   1695       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
   1696       // groups will come first, and so the VRI representing the largest number
   1697       // of groups might not be first (it might be the first Repl32 groups).
   1698       unsigned MaxGroupsIdx = 0;
   1699       if (!ValueRotsVec[0].Repl32) {
   1700         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
   1701           if (ValueRotsVec[i].Repl32) {
   1702             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
   1703               MaxGroupsIdx = i;
   1704             break;
   1705           }
   1706       }
   1707 
   1708       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
   1709       bool NeedsRotate = false;
   1710       if (VRI.RLAmt) {
   1711         NeedsRotate = true;
   1712       } else if (VRI.Repl32) {
   1713         for (auto &BG : BitGroups) {
   1714           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
   1715               BG.Repl32 != VRI.Repl32)
   1716             continue;
   1717 
   1718           // We don't need a rotate if the bit group is confined to the lower
   1719           // 32 bits.
   1720           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
   1721             continue;
   1722 
   1723           NeedsRotate = true;
   1724           break;
   1725         }
   1726       }
   1727 
   1728       if (NeedsRotate)
   1729         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
   1730                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
   1731                               InstCnt);
   1732       else
   1733         Res = VRI.V;
   1734 
   1735       // Now, remove all groups with this underlying value and rotation factor.
   1736       if (Res)
   1737         for (auto I = BitGroups.begin(); I != BitGroups.end();) {
   1738           if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
   1739             I = BitGroups.erase(I);
   1740           else
   1741             ++I;
   1742         }
   1743     }
   1744 
   1745     // Because 64-bit rotates are more flexible than inserts, we might have a
   1746     // preference regarding which one we do first (to save one instruction).
   1747     if (!Res)
   1748       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
   1749         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
   1750                                 false) <
   1751             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
   1752                                 true)) {
   1753           if (I != BitGroups.begin()) {
   1754             BitGroup BG = *I;
   1755             BitGroups.erase(I);
   1756             BitGroups.insert(BitGroups.begin(), BG);
   1757           }
   1758 
   1759           break;
   1760         }
   1761       }
   1762 
   1763     // Insert the other groups (one at a time).
   1764     for (auto &BG : BitGroups) {
   1765       if (!Res)
   1766         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
   1767                               BG.EndIdx, InstCnt);
   1768       else
   1769         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
   1770                                  BG.StartIdx, BG.EndIdx, InstCnt);
   1771     }
   1772 
   1773     if (LateMask) {
   1774       uint64_t Mask = getZerosMask();
   1775 
   1776       // We can use the 32-bit andi/andis technique if the mask does not
   1777       // require any higher-order bits. This can save an instruction compared
   1778       // to always using the general 64-bit technique.
   1779       bool Use32BitInsts = isUInt<32>(Mask);
   1780       // Compute the masks for andi/andis that would be necessary.
   1781       unsigned ANDIMask = (Mask & UINT16_MAX),
   1782                ANDISMask = (Mask >> 16) & UINT16_MAX;
   1783 
   1784       if (Use32BitInsts) {
   1785         assert((ANDIMask != 0 || ANDISMask != 0) &&
   1786                "No set bits in mask when using 32-bit ands for 64-bit value");
   1787 
   1788         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
   1789                                  (unsigned) (ANDISMask != 0) +
   1790                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
   1791 
   1792         SDValue ANDIVal, ANDISVal;
   1793         if (ANDIMask != 0)
   1794           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
   1795                               Res, getI32Imm(ANDIMask)), 0);
   1796         if (ANDISMask != 0)
   1797           ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
   1798                                Res, getI32Imm(ANDISMask)), 0);
   1799 
   1800         if (!ANDIVal)
   1801           Res = ANDISVal;
   1802         else if (!ANDISVal)
   1803           Res = ANDIVal;
   1804         else
   1805           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
   1806                           ANDIVal, ANDISVal), 0);
   1807       } else {
   1808         if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
   1809 
   1810         SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
   1811         Res =
   1812           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
   1813                                          Res, MaskVal), 0);
   1814       }
   1815     }
   1816 
   1817     return Res.getNode();
   1818   }
   1819 
   1820   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
   1821     // Fill in BitGroups.
   1822     collectBitGroups(LateMask);
   1823     if (BitGroups.empty())
   1824       return nullptr;
   1825 
   1826     // For 64-bit values, figure out when we can use 32-bit instructions.
   1827     if (Bits.size() == 64)
   1828       assignRepl32BitGroups();
   1829 
   1830     // Fill in ValueRotsVec.
   1831     collectValueRotInfo();
   1832 
   1833     if (Bits.size() == 32) {
   1834       return Select32(N, LateMask, InstCnt);
   1835     } else {
   1836       assert(Bits.size() == 64 && "Not 64 bits here?");
   1837       return Select64(N, LateMask, InstCnt);
   1838     }
   1839 
   1840     return nullptr;
   1841   }
   1842 
   1843   SmallVector<ValueBit, 64> Bits;
   1844 
   1845   bool HasZeros;
   1846   SmallVector<unsigned, 64> RLAmt;
   1847 
   1848   SmallVector<BitGroup, 16> BitGroups;
   1849 
   1850   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
   1851   SmallVector<ValueRotInfo, 16> ValueRotsVec;
   1852 
   1853   SelectionDAG *CurDAG;
   1854 
   1855 public:
   1856   BitPermutationSelector(SelectionDAG *DAG)
   1857     : CurDAG(DAG) {}
   1858 
   1859   // Here we try to match complex bit permutations into a set of
   1860   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
   1861   // known to produce optimial code for common cases (like i32 byte swapping).
   1862   SDNode *Select(SDNode *N) {
   1863     Bits.resize(N->getValueType(0).getSizeInBits());
   1864     if (!getValueBits(SDValue(N, 0), Bits))
   1865       return nullptr;
   1866 
   1867     DEBUG(dbgs() << "Considering bit-permutation-based instruction"
   1868                     " selection for:    ");
   1869     DEBUG(N->dump(CurDAG));
   1870 
   1871     // Fill it RLAmt and set HasZeros.
   1872     computeRotationAmounts();
   1873 
   1874     if (!HasZeros)
   1875       return Select(N, false);
   1876 
   1877     // We currently have two techniques for handling results with zeros: early
   1878     // masking (the default) and late masking. Late masking is sometimes more
   1879     // efficient, but because the structure of the bit groups is different, it
   1880     // is hard to tell without generating both and comparing the results. With
   1881     // late masking, we ignore zeros in the resulting value when inserting each
   1882     // set of bit groups, and then mask in the zeros at the end. With early
   1883     // masking, we only insert the non-zero parts of the result at every step.
   1884 
   1885     unsigned InstCnt, InstCntLateMask;
   1886     DEBUG(dbgs() << "\tEarly masking:\n");
   1887     SDNode *RN = Select(N, false, &InstCnt);
   1888     DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
   1889 
   1890     DEBUG(dbgs() << "\tLate masking:\n");
   1891     SDNode *RNLM = Select(N, true, &InstCntLateMask);
   1892     DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
   1893                     " instructions\n");
   1894 
   1895     if (InstCnt <= InstCntLateMask) {
   1896       DEBUG(dbgs() << "\tUsing early-masking for isel\n");
   1897       return RN;
   1898     }
   1899 
   1900     DEBUG(dbgs() << "\tUsing late-masking for isel\n");
   1901     return RNLM;
   1902   }
   1903 };
   1904 } // anonymous namespace
   1905 
   1906 SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
   1907   if (N->getValueType(0) != MVT::i32 &&
   1908       N->getValueType(0) != MVT::i64)
   1909     return nullptr;
   1910 
   1911   if (!UseBitPermRewriter)
   1912     return nullptr;
   1913 
   1914   switch (N->getOpcode()) {
   1915   default: break;
   1916   case ISD::ROTL:
   1917   case ISD::SHL:
   1918   case ISD::SRL:
   1919   case ISD::AND:
   1920   case ISD::OR: {
   1921     BitPermutationSelector BPS(CurDAG);
   1922     return BPS.Select(N);
   1923   }
   1924   }
   1925 
   1926   return nullptr;
   1927 }
   1928 
   1929 /// SelectCC - Select a comparison of the specified values with the specified
   1930 /// condition code, returning the CR# of the expression.
   1931 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
   1932                                     ISD::CondCode CC, SDLoc dl) {
   1933   // Always select the LHS.
   1934   unsigned Opc;
   1935 
   1936   if (LHS.getValueType() == MVT::i32) {
   1937     unsigned Imm;
   1938     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   1939       if (isInt32Immediate(RHS, Imm)) {
   1940         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
   1941         if (isUInt<16>(Imm))
   1942           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
   1943                                                 getI32Imm(Imm & 0xFFFF)), 0);
   1944         // If this is a 16-bit signed immediate, fold it.
   1945         if (isInt<16>((int)Imm))
   1946           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
   1947                                                 getI32Imm(Imm & 0xFFFF)), 0);
   1948 
   1949         // For non-equality comparisons, the default code would materialize the
   1950         // constant, then compare against it, like this:
   1951         //   lis r2, 4660
   1952         //   ori r2, r2, 22136
   1953         //   cmpw cr0, r3, r2
   1954         // Since we are just comparing for equality, we can emit this instead:
   1955         //   xoris r0,r3,0x1234
   1956         //   cmplwi cr0,r0,0x5678
   1957         //   beq cr0,L6
   1958         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
   1959                                            getI32Imm(Imm >> 16)), 0);
   1960         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
   1961                                               getI32Imm(Imm & 0xFFFF)), 0);
   1962       }
   1963       Opc = PPC::CMPLW;
   1964     } else if (ISD::isUnsignedIntSetCC(CC)) {
   1965       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
   1966         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
   1967                                               getI32Imm(Imm & 0xFFFF)), 0);
   1968       Opc = PPC::CMPLW;
   1969     } else {
   1970       short SImm;
   1971       if (isIntS16Immediate(RHS, SImm))
   1972         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
   1973                                               getI32Imm((int)SImm & 0xFFFF)),
   1974                          0);
   1975       Opc = PPC::CMPW;
   1976     }
   1977   } else if (LHS.getValueType() == MVT::i64) {
   1978     uint64_t Imm;
   1979     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
   1980       if (isInt64Immediate(RHS.getNode(), Imm)) {
   1981         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
   1982         if (isUInt<16>(Imm))
   1983           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
   1984                                                 getI32Imm(Imm & 0xFFFF)), 0);
   1985         // If this is a 16-bit signed immediate, fold it.
   1986         if (isInt<16>(Imm))
   1987           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
   1988                                                 getI32Imm(Imm & 0xFFFF)), 0);
   1989 
   1990         // For non-equality comparisons, the default code would materialize the
   1991         // constant, then compare against it, like this:
   1992         //   lis r2, 4660
   1993         //   ori r2, r2, 22136
   1994         //   cmpd cr0, r3, r2
   1995         // Since we are just comparing for equality, we can emit this instead:
   1996         //   xoris r0,r3,0x1234
   1997         //   cmpldi cr0,r0,0x5678
   1998         //   beq cr0,L6
   1999         if (isUInt<32>(Imm)) {
   2000           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
   2001                                              getI64Imm(Imm >> 16)), 0);
   2002           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
   2003                                                 getI64Imm(Imm & 0xFFFF)), 0);
   2004         }
   2005       }
   2006       Opc = PPC::CMPLD;
   2007     } else if (ISD::isUnsignedIntSetCC(CC)) {
   2008       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
   2009         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
   2010                                               getI64Imm(Imm & 0xFFFF)), 0);
   2011       Opc = PPC::CMPLD;
   2012     } else {
   2013       short SImm;
   2014       if (isIntS16Immediate(RHS, SImm))
   2015         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
   2016                                               getI64Imm(SImm & 0xFFFF)),
   2017                          0);
   2018       Opc = PPC::CMPD;
   2019     }
   2020   } else if (LHS.getValueType() == MVT::f32) {
   2021     Opc = PPC::FCMPUS;
   2022   } else {
   2023     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
   2024     Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
   2025   }
   2026   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
   2027 }
   2028 
   2029 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
   2030   switch (CC) {
   2031   case ISD::SETUEQ:
   2032   case ISD::SETONE:
   2033   case ISD::SETOLE:
   2034   case ISD::SETOGE:
   2035     llvm_unreachable("Should be lowered by legalize!");
   2036   default: llvm_unreachable("Unknown condition!");
   2037   case ISD::SETOEQ:
   2038   case ISD::SETEQ:  return PPC::PRED_EQ;
   2039   case ISD::SETUNE:
   2040   case ISD::SETNE:  return PPC::PRED_NE;
   2041   case ISD::SETOLT:
   2042   case ISD::SETLT:  return PPC::PRED_LT;
   2043   case ISD::SETULE:
   2044   case ISD::SETLE:  return PPC::PRED_LE;
   2045   case ISD::SETOGT:
   2046   case ISD::SETGT:  return PPC::PRED_GT;
   2047   case ISD::SETUGE:
   2048   case ISD::SETGE:  return PPC::PRED_GE;
   2049   case ISD::SETO:   return PPC::PRED_NU;
   2050   case ISD::SETUO:  return PPC::PRED_UN;
   2051     // These two are invalid for floating point.  Assume we have int.
   2052   case ISD::SETULT: return PPC::PRED_LT;
   2053   case ISD::SETUGT: return PPC::PRED_GT;
   2054   }
   2055 }
   2056 
   2057 /// getCRIdxForSetCC - Return the index of the condition register field
   2058 /// associated with the SetCC condition, and whether or not the field is
   2059 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
   2060 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
   2061   Invert = false;
   2062   switch (CC) {
   2063   default: llvm_unreachable("Unknown condition!");
   2064   case ISD::SETOLT:
   2065   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
   2066   case ISD::SETOGT:
   2067   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
   2068   case ISD::SETOEQ:
   2069   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
   2070   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
   2071   case ISD::SETUGE:
   2072   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
   2073   case ISD::SETULE:
   2074   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
   2075   case ISD::SETUNE:
   2076   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
   2077   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
   2078   case ISD::SETUEQ:
   2079   case ISD::SETOGE:
   2080   case ISD::SETOLE:
   2081   case ISD::SETONE:
   2082     llvm_unreachable("Invalid branch code: should be expanded by legalize");
   2083   // These are invalid for floating point.  Assume integer.
   2084   case ISD::SETULT: return 0;
   2085   case ISD::SETUGT: return 1;
   2086   }
   2087 }
   2088 
   2089 // getVCmpInst: return the vector compare instruction for the specified
   2090 // vector type and condition code. Since this is for altivec specific code,
   2091 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
   2092 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
   2093                                 bool HasVSX, bool &Swap, bool &Negate) {
   2094   Swap = false;
   2095   Negate = false;
   2096 
   2097   if (VecVT.isFloatingPoint()) {
   2098     /* Handle some cases by swapping input operands.  */
   2099     switch (CC) {
   2100       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
   2101       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
   2102       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
   2103       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
   2104       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
   2105       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
   2106       default: break;
   2107     }
   2108     /* Handle some cases by negating the result.  */
   2109     switch (CC) {
   2110       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
   2111       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
   2112       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
   2113       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
   2114       default: break;
   2115     }
   2116     /* We have instructions implementing the remaining cases.  */
   2117     switch (CC) {
   2118       case ISD::SETEQ:
   2119       case ISD::SETOEQ:
   2120         if (VecVT == MVT::v4f32)
   2121           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
   2122         else if (VecVT == MVT::v2f64)
   2123           return PPC::XVCMPEQDP;
   2124         break;
   2125       case ISD::SETGT:
   2126       case ISD::SETOGT:
   2127         if (VecVT == MVT::v4f32)
   2128           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
   2129         else if (VecVT == MVT::v2f64)
   2130           return PPC::XVCMPGTDP;
   2131         break;
   2132       case ISD::SETGE:
   2133       case ISD::SETOGE:
   2134         if (VecVT == MVT::v4f32)
   2135           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
   2136         else if (VecVT == MVT::v2f64)
   2137           return PPC::XVCMPGEDP;
   2138         break;
   2139       default:
   2140         break;
   2141     }
   2142     llvm_unreachable("Invalid floating-point vector compare condition");
   2143   } else {
   2144     /* Handle some cases by swapping input operands.  */
   2145     switch (CC) {
   2146       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
   2147       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
   2148       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
   2149       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
   2150       default: break;
   2151     }
   2152     /* Handle some cases by negating the result.  */
   2153     switch (CC) {
   2154       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
   2155       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
   2156       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
   2157       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
   2158       default: break;
   2159     }
   2160     /* We have instructions implementing the remaining cases.  */
   2161     switch (CC) {
   2162       case ISD::SETEQ:
   2163       case ISD::SETUEQ:
   2164         if (VecVT == MVT::v16i8)
   2165           return PPC::VCMPEQUB;
   2166         else if (VecVT == MVT::v8i16)
   2167           return PPC::VCMPEQUH;
   2168         else if (VecVT == MVT::v4i32)
   2169           return PPC::VCMPEQUW;
   2170         else if (VecVT == MVT::v2i64)
   2171           return PPC::VCMPEQUD;
   2172         break;
   2173       case ISD::SETGT:
   2174         if (VecVT == MVT::v16i8)
   2175           return PPC::VCMPGTSB;
   2176         else if (VecVT == MVT::v8i16)
   2177           return PPC::VCMPGTSH;
   2178         else if (VecVT == MVT::v4i32)
   2179           return PPC::VCMPGTSW;
   2180         else if (VecVT == MVT::v2i64)
   2181           return PPC::VCMPGTSD;
   2182         break;
   2183       case ISD::SETUGT:
   2184         if (VecVT == MVT::v16i8)
   2185           return PPC::VCMPGTUB;
   2186         else if (VecVT == MVT::v8i16)
   2187           return PPC::VCMPGTUH;
   2188         else if (VecVT == MVT::v4i32)
   2189           return PPC::VCMPGTUW;
   2190         else if (VecVT == MVT::v2i64)
   2191           return PPC::VCMPGTUD;
   2192         break;
   2193       default:
   2194         break;
   2195     }
   2196     llvm_unreachable("Invalid integer vector compare condition");
   2197   }
   2198 }
   2199 
   2200 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
   2201   SDLoc dl(N);
   2202   unsigned Imm;
   2203   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   2204   EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
   2205   bool isPPC64 = (PtrVT == MVT::i64);
   2206 
   2207   if (!PPCSubTarget->useCRBits() &&
   2208       isInt32Immediate(N->getOperand(1), Imm)) {
   2209     // We can codegen setcc op, imm very efficiently compared to a brcond.
   2210     // Check for those cases here.
   2211     // setcc op, 0
   2212     if (Imm == 0) {
   2213       SDValue Op = N->getOperand(0);
   2214       switch (CC) {
   2215       default: break;
   2216       case ISD::SETEQ: {
   2217         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
   2218         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
   2219         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2220       }
   2221       case ISD::SETNE: {
   2222         if (isPPC64) break;
   2223         SDValue AD =
   2224           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2225                                          Op, getI32Imm(~0U)), 0);
   2226         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
   2227                                     AD.getValue(1));
   2228       }
   2229       case ISD::SETLT: {
   2230         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
   2231         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2232       }
   2233       case ISD::SETGT: {
   2234         SDValue T =
   2235           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
   2236         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
   2237         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
   2238         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2239       }
   2240       }
   2241     } else if (Imm == ~0U) {        // setcc op, -1
   2242       SDValue Op = N->getOperand(0);
   2243       switch (CC) {
   2244       default: break;
   2245       case ISD::SETEQ:
   2246         if (isPPC64) break;
   2247         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2248                                             Op, getI32Imm(1)), 0);
   2249         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
   2250                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
   2251                                                              MVT::i32,
   2252                                                              getI32Imm(0)), 0),
   2253                                       Op.getValue(1));
   2254       case ISD::SETNE: {
   2255         if (isPPC64) break;
   2256         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
   2257         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2258                                             Op, getI32Imm(~0U));
   2259         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
   2260                                     Op, SDValue(AD, 1));
   2261       }
   2262       case ISD::SETLT: {
   2263         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
   2264                                                     getI32Imm(1)), 0);
   2265         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
   2266                                                     Op), 0);
   2267         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
   2268         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2269       }
   2270       case ISD::SETGT: {
   2271         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
   2272         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
   2273                      0);
   2274         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
   2275                                     getI32Imm(1));
   2276       }
   2277       }
   2278     }
   2279   }
   2280 
   2281   SDValue LHS = N->getOperand(0);
   2282   SDValue RHS = N->getOperand(1);
   2283 
   2284   // Altivec Vector compare instructions do not set any CR register by default and
   2285   // vector compare operations return the same type as the operands.
   2286   if (LHS.getValueType().isVector()) {
   2287     if (PPCSubTarget->hasQPX())
   2288       return nullptr;
   2289 
   2290     EVT VecVT = LHS.getValueType();
   2291     bool Swap, Negate;
   2292     unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
   2293                                         PPCSubTarget->hasVSX(), Swap, Negate);
   2294     if (Swap)
   2295       std::swap(LHS, RHS);
   2296 
   2297     if (Negate) {
   2298       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
   2299       return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
   2300                                                               PPC::VNOR,
   2301                                   VecVT, VCmp, VCmp);
   2302     }
   2303 
   2304     return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
   2305   }
   2306 
   2307   if (PPCSubTarget->useCRBits())
   2308     return nullptr;
   2309 
   2310   bool Inv;
   2311   unsigned Idx = getCRIdxForSetCC(CC, Inv);
   2312   SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
   2313   SDValue IntCR;
   2314 
   2315   // Force the ccreg into CR7.
   2316   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
   2317 
   2318   SDValue InFlag(nullptr, 0);  // Null incoming flag value.
   2319   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
   2320                                InFlag).getValue(1);
   2321 
   2322   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
   2323                                          CCReg), 0);
   2324 
   2325   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
   2326                       getI32Imm(31), getI32Imm(31) };
   2327   if (!Inv)
   2328     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2329 
   2330   // Get the specified bit.
   2331   SDValue Tmp =
   2332     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
   2333   return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
   2334 }
   2335 
   2336 SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
   2337   // Transfer memoperands.
   2338   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2339   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
   2340   cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
   2341   return Result;
   2342 }
   2343 
   2344 
   2345 // Select - Convert the specified operand from a target-independent to a
   2346 // target-specific node if it hasn't already been changed.
   2347 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
   2348   SDLoc dl(N);
   2349   if (N->isMachineOpcode()) {
   2350     N->setNodeId(-1);
   2351     return nullptr;   // Already selected.
   2352   }
   2353 
   2354   // In case any misguided DAG-level optimizations form an ADD with a
   2355   // TargetConstant operand, crash here instead of miscompiling (by selecting
   2356   // an r+r add instead of some kind of r+i add).
   2357   if (N->getOpcode() == ISD::ADD &&
   2358       N->getOperand(1).getOpcode() == ISD::TargetConstant)
   2359     llvm_unreachable("Invalid ADD with TargetConstant operand");
   2360 
   2361   // Try matching complex bit permutations before doing anything else.
   2362   if (SDNode *NN = SelectBitPermutation(N))
   2363     return NN;
   2364 
   2365   switch (N->getOpcode()) {
   2366   default: break;
   2367 
   2368   case ISD::Constant: {
   2369     if (N->getValueType(0) == MVT::i64)
   2370       return SelectInt64(CurDAG, N);
   2371     break;
   2372   }
   2373 
   2374   case ISD::SETCC: {
   2375     SDNode *SN = SelectSETCC(N);
   2376     if (SN)
   2377       return SN;
   2378     break;
   2379   }
   2380   case PPCISD::GlobalBaseReg:
   2381     return getGlobalBaseReg();
   2382 
   2383   case ISD::FrameIndex:
   2384     return getFrameIndex(N, N);
   2385 
   2386   case PPCISD::MFOCRF: {
   2387     SDValue InFlag = N->getOperand(1);
   2388     return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
   2389                                   N->getOperand(0), InFlag);
   2390   }
   2391 
   2392   case PPCISD::READ_TIME_BASE: {
   2393     return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
   2394                                   MVT::Other, N->getOperand(0));
   2395   }
   2396 
   2397   case PPCISD::SRA_ADDZE: {
   2398     SDValue N0 = N->getOperand(0);
   2399     SDValue ShiftAmt =
   2400       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
   2401                                   getConstantIntValue(), N->getValueType(0));
   2402     if (N->getValueType(0) == MVT::i64) {
   2403       SDNode *Op =
   2404         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
   2405                                N0, ShiftAmt);
   2406       return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
   2407                                   SDValue(Op, 0), SDValue(Op, 1));
   2408     } else {
   2409       assert(N->getValueType(0) == MVT::i32 &&
   2410              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
   2411       SDNode *Op =
   2412         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
   2413                                N0, ShiftAmt);
   2414       return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
   2415                                   SDValue(Op, 0), SDValue(Op, 1));
   2416     }
   2417   }
   2418 
   2419   case ISD::LOAD: {
   2420     // Handle preincrement loads.
   2421     LoadSDNode *LD = cast<LoadSDNode>(N);
   2422     EVT LoadedVT = LD->getMemoryVT();
   2423 
   2424     // Normal loads are handled by code generated from the .td file.
   2425     if (LD->getAddressingMode() != ISD::PRE_INC)
   2426       break;
   2427 
   2428     SDValue Offset = LD->getOffset();
   2429     if (Offset.getOpcode() == ISD::TargetConstant ||
   2430         Offset.getOpcode() == ISD::TargetGlobalAddress) {
   2431 
   2432       unsigned Opcode;
   2433       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   2434       if (LD->getValueType(0) != MVT::i64) {
   2435         // Handle PPC32 integer and normal FP loads.
   2436         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   2437         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2438           default: llvm_unreachable("Invalid PPC load type!");
   2439           case MVT::f64: Opcode = PPC::LFDU; break;
   2440           case MVT::f32: Opcode = PPC::LFSU; break;
   2441           case MVT::i32: Opcode = PPC::LWZU; break;
   2442           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
   2443           case MVT::i1:
   2444           case MVT::i8:  Opcode = PPC::LBZU; break;
   2445         }
   2446       } else {
   2447         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   2448         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   2449         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2450           default: llvm_unreachable("Invalid PPC load type!");
   2451           case MVT::i64: Opcode = PPC::LDU; break;
   2452           case MVT::i32: Opcode = PPC::LWZU8; break;
   2453           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
   2454           case MVT::i1:
   2455           case MVT::i8:  Opcode = PPC::LBZU8; break;
   2456         }
   2457       }
   2458 
   2459       SDValue Chain = LD->getChain();
   2460       SDValue Base = LD->getBasePtr();
   2461       SDValue Ops[] = { Offset, Base, Chain };
   2462       return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
   2463                                       LD->getValueType(0),
   2464                                       PPCLowering->getPointerTy(),
   2465                                       MVT::Other, Ops));
   2466     } else {
   2467       unsigned Opcode;
   2468       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
   2469       if (LD->getValueType(0) != MVT::i64) {
   2470         // Handle PPC32 integer and normal FP loads.
   2471         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
   2472         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2473           default: llvm_unreachable("Invalid PPC load type!");
   2474           case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
   2475           case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
   2476           case MVT::f64: Opcode = PPC::LFDUX; break;
   2477           case MVT::f32: Opcode = PPC::LFSUX; break;
   2478           case MVT::i32: Opcode = PPC::LWZUX; break;
   2479           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
   2480           case MVT::i1:
   2481           case MVT::i8:  Opcode = PPC::LBZUX; break;
   2482         }
   2483       } else {
   2484         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
   2485         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
   2486                "Invalid sext update load");
   2487         switch (LoadedVT.getSimpleVT().SimpleTy) {
   2488           default: llvm_unreachable("Invalid PPC load type!");
   2489           case MVT::i64: Opcode = PPC::LDUX; break;
   2490           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
   2491           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
   2492           case MVT::i1:
   2493           case MVT::i8:  Opcode = PPC::LBZUX8; break;
   2494         }
   2495       }
   2496 
   2497       SDValue Chain = LD->getChain();
   2498       SDValue Base = LD->getBasePtr();
   2499       SDValue Ops[] = { Base, Offset, Chain };
   2500       return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
   2501                                       LD->getValueType(0),
   2502                                       PPCLowering->getPointerTy(),
   2503                                       MVT::Other, Ops));
   2504     }
   2505   }
   2506 
   2507   case ISD::AND: {
   2508     unsigned Imm, Imm2, SH, MB, ME;
   2509     uint64_t Imm64;
   2510 
   2511     // If this is an and of a value rotated between 0 and 31 bits and then and'd
   2512     // with a mask, emit rlwinm
   2513     if (isInt32Immediate(N->getOperand(1), Imm) &&
   2514         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
   2515       SDValue Val = N->getOperand(0).getOperand(0);
   2516       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
   2517       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2518     }
   2519     // If this is just a masked value where the input is not handled above, and
   2520     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
   2521     if (isInt32Immediate(N->getOperand(1), Imm) &&
   2522         isRunOfOnes(Imm, MB, ME) &&
   2523         N->getOperand(0).getOpcode() != ISD::ROTL) {
   2524       SDValue Val = N->getOperand(0);
   2525       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
   2526       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2527     }
   2528     // If this is a 64-bit zero-extension mask, emit rldicl.
   2529     if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
   2530         isMask_64(Imm64)) {
   2531       SDValue Val = N->getOperand(0);
   2532       MB = 64 - countTrailingOnes(Imm64);
   2533       SH = 0;
   2534 
   2535       // If the operand is a logical right shift, we can fold it into this
   2536       // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
   2537       // for n <= mb. The right shift is really a left rotate followed by a
   2538       // mask, and this mask is a more-restrictive sub-mask of the mask implied
   2539       // by the shift.
   2540       if (Val.getOpcode() == ISD::SRL &&
   2541           isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
   2542         assert(Imm < 64 && "Illegal shift amount");
   2543         Val = Val.getOperand(0);
   2544         SH = 64 - Imm;
   2545       }
   2546 
   2547       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) };
   2548       return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
   2549     }
   2550     // AND X, 0 -> 0, not "rlwinm 32".
   2551     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
   2552       ReplaceUses(SDValue(N, 0), N->getOperand(1));
   2553       return nullptr;
   2554     }
   2555     // ISD::OR doesn't get all the bitfield insertion fun.
   2556     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
   2557     if (isInt32Immediate(N->getOperand(1), Imm) &&
   2558         N->getOperand(0).getOpcode() == ISD::OR &&
   2559         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
   2560       unsigned MB, ME;
   2561       Imm = ~(Imm^Imm2);
   2562       if (isRunOfOnes(Imm, MB, ME)) {
   2563         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2564                             N->getOperand(0).getOperand(1),
   2565                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
   2566         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
   2567       }
   2568     }
   2569 
   2570     // Other cases are autogenerated.
   2571     break;
   2572   }
   2573   case ISD::OR: {
   2574     if (N->getValueType(0) == MVT::i32)
   2575       if (SDNode *I = SelectBitfieldInsert(N))
   2576         return I;
   2577 
   2578     short Imm;
   2579     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
   2580         isIntS16Immediate(N->getOperand(1), Imm)) {
   2581       APInt LHSKnownZero, LHSKnownOne;
   2582       CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
   2583 
   2584       // If this is equivalent to an add, then we can fold it with the
   2585       // FrameIndex calculation.
   2586       if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
   2587         return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
   2588     }
   2589 
   2590     // Other cases are autogenerated.
   2591     break;
   2592   }
   2593   case ISD::ADD: {
   2594     short Imm;
   2595     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
   2596         isIntS16Immediate(N->getOperand(1), Imm))
   2597       return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
   2598 
   2599     break;
   2600   }
   2601   case ISD::SHL: {
   2602     unsigned Imm, SH, MB, ME;
   2603     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   2604         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   2605       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2606                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
   2607       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2608     }
   2609 
   2610     // Other cases are autogenerated.
   2611     break;
   2612   }
   2613   case ISD::SRL: {
   2614     unsigned Imm, SH, MB, ME;
   2615     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
   2616         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
   2617       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2618                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
   2619       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
   2620     }
   2621 
   2622     // Other cases are autogenerated.
   2623     break;
   2624   }
   2625   // FIXME: Remove this once the ANDI glue bug is fixed:
   2626   case PPCISD::ANDIo_1_EQ_BIT:
   2627   case PPCISD::ANDIo_1_GT_BIT: {
   2628     if (!ANDIGlueBug)
   2629       break;
   2630 
   2631     EVT InVT = N->getOperand(0).getValueType();
   2632     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
   2633            "Invalid input type for ANDIo_1_EQ_BIT");
   2634 
   2635     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
   2636     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
   2637                                         N->getOperand(0),
   2638                                         CurDAG->getTargetConstant(1, InVT)), 0);
   2639     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
   2640     SDValue SRIdxVal =
   2641       CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
   2642                                 PPC::sub_eq : PPC::sub_gt, MVT::i32);
   2643 
   2644     return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
   2645                                 CR0Reg, SRIdxVal,
   2646                                 SDValue(AndI.getNode(), 1) /* glue */);
   2647   }
   2648   case ISD::SELECT_CC: {
   2649     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   2650     EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
   2651     bool isPPC64 = (PtrVT == MVT::i64);
   2652 
   2653     // If this is a select of i1 operands, we'll pattern match it.
   2654     if (PPCSubTarget->useCRBits() &&
   2655         N->getOperand(0).getValueType() == MVT::i1)
   2656       break;
   2657 
   2658     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
   2659     if (!isPPC64)
   2660       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   2661         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
   2662           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
   2663             if (N1C->isNullValue() && N3C->isNullValue() &&
   2664                 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
   2665                 // FIXME: Implement this optzn for PPC64.
   2666                 N->getValueType(0) == MVT::i32) {
   2667               SDNode *Tmp =
   2668                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
   2669                                        N->getOperand(0), getI32Imm(~0U));
   2670               return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
   2671                                           SDValue(Tmp, 0), N->getOperand(0),
   2672                                           SDValue(Tmp, 1));
   2673             }
   2674 
   2675     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
   2676 
   2677     if (N->getValueType(0) == MVT::i1) {
   2678       // An i1 select is: (c & t) | (!c & f).
   2679       bool Inv;
   2680       unsigned Idx = getCRIdxForSetCC(CC, Inv);
   2681 
   2682       unsigned SRI;
   2683       switch (Idx) {
   2684       default: llvm_unreachable("Invalid CC index");
   2685       case 0: SRI = PPC::sub_lt; break;
   2686       case 1: SRI = PPC::sub_gt; break;
   2687       case 2: SRI = PPC::sub_eq; break;
   2688       case 3: SRI = PPC::sub_un; break;
   2689       }
   2690 
   2691       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
   2692 
   2693       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
   2694                                               CCBit, CCBit), 0);
   2695       SDValue C =    Inv ? NotCCBit : CCBit,
   2696               NotC = Inv ? CCBit    : NotCCBit;
   2697 
   2698       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
   2699                                            C, N->getOperand(2)), 0);
   2700       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
   2701                                               NotC, N->getOperand(3)), 0);
   2702 
   2703       return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
   2704     }
   2705 
   2706     unsigned BROpc = getPredicateForSetCC(CC);
   2707 
   2708     unsigned SelectCCOp;
   2709     if (N->getValueType(0) == MVT::i32)
   2710       SelectCCOp = PPC::SELECT_CC_I4;
   2711     else if (N->getValueType(0) == MVT::i64)
   2712       SelectCCOp = PPC::SELECT_CC_I8;
   2713     else if (N->getValueType(0) == MVT::f32)
   2714       SelectCCOp = PPC::SELECT_CC_F4;
   2715     else if (N->getValueType(0) == MVT::f64)
   2716       if (PPCSubTarget->hasVSX())
   2717         SelectCCOp = PPC::SELECT_CC_VSFRC;
   2718       else
   2719         SelectCCOp = PPC::SELECT_CC_F8;
   2720     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
   2721       SelectCCOp = PPC::SELECT_CC_QFRC;
   2722     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
   2723       SelectCCOp = PPC::SELECT_CC_QSRC;
   2724     else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
   2725       SelectCCOp = PPC::SELECT_CC_QBRC;
   2726     else if (N->getValueType(0) == MVT::v2f64 ||
   2727              N->getValueType(0) == MVT::v2i64)
   2728       SelectCCOp = PPC::SELECT_CC_VSRC;
   2729     else
   2730       SelectCCOp = PPC::SELECT_CC_VRRC;
   2731 
   2732     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
   2733                         getI32Imm(BROpc) };
   2734     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
   2735   }
   2736   case ISD::VSELECT:
   2737     if (PPCSubTarget->hasVSX()) {
   2738       SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
   2739       return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
   2740     }
   2741 
   2742     break;
   2743   case ISD::VECTOR_SHUFFLE:
   2744     if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
   2745                                   N->getValueType(0) == MVT::v2i64)) {
   2746       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   2747 
   2748       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
   2749               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
   2750       unsigned DM[2];
   2751 
   2752       for (int i = 0; i < 2; ++i)
   2753         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
   2754           DM[i] = 0;
   2755         else
   2756           DM[i] = 1;
   2757 
   2758       // For little endian, we must swap the input operands and adjust
   2759       // the mask elements (reverse and invert them).
   2760       if (PPCSubTarget->isLittleEndian()) {
   2761         std::swap(Op1, Op2);
   2762         unsigned tmp = DM[0];
   2763         DM[0] = 1 - DM[1];
   2764         DM[1] = 1 - tmp;
   2765       }
   2766 
   2767       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32);
   2768 
   2769       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
   2770           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   2771           isa<LoadSDNode>(Op1.getOperand(0))) {
   2772         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
   2773         SDValue Base, Offset;
   2774 
   2775         if (LD->isUnindexed() &&
   2776             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
   2777           SDValue Chain = LD->getChain();
   2778           SDValue Ops[] = { Base, Offset, Chain };
   2779           return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
   2780                                       N->getValueType(0), Ops);
   2781         }
   2782       }
   2783 
   2784       SDValue Ops[] = { Op1, Op2, DMV };
   2785       return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
   2786     }
   2787 
   2788     break;
   2789   case PPCISD::BDNZ:
   2790   case PPCISD::BDZ: {
   2791     bool IsPPC64 = PPCSubTarget->isPPC64();
   2792     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
   2793     return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
   2794                                    (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
   2795                                    (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
   2796                                 MVT::Other, Ops);
   2797   }
   2798   case PPCISD::COND_BRANCH: {
   2799     // Op #0 is the Chain.
   2800     // Op #1 is the PPC::PRED_* number.
   2801     // Op #2 is the CR#
   2802     // Op #3 is the Dest MBB
   2803     // Op #4 is the Flag.
   2804     // Prevent PPC::PRED_* from being selected into LI.
   2805     SDValue Pred =
   2806       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
   2807     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
   2808       N->getOperand(0), N->getOperand(4) };
   2809     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
   2810   }
   2811   case ISD::BR_CC: {
   2812     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
   2813     unsigned PCC = getPredicateForSetCC(CC);
   2814 
   2815     if (N->getOperand(2).getValueType() == MVT::i1) {
   2816       unsigned Opc;
   2817       bool Swap;
   2818       switch (PCC) {
   2819       default: llvm_unreachable("Unexpected Boolean-operand predicate");
   2820       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
   2821       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
   2822       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
   2823       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
   2824       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
   2825       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
   2826       }
   2827 
   2828       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
   2829                                              N->getOperand(Swap ? 3 : 2),
   2830                                              N->getOperand(Swap ? 2 : 3)), 0);
   2831       return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
   2832                                   BitComp, N->getOperand(4), N->getOperand(0));
   2833     }
   2834 
   2835     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
   2836     SDValue Ops[] = { getI32Imm(PCC), CondCode,
   2837                         N->getOperand(4), N->getOperand(0) };
   2838     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
   2839   }
   2840   case ISD::BRIND: {
   2841     // FIXME: Should custom lower this.
   2842     SDValue Chain = N->getOperand(0);
   2843     SDValue Target = N->getOperand(1);
   2844     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
   2845     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
   2846     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
   2847                                            Chain), 0);
   2848     return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
   2849   }
   2850   case PPCISD::TOC_ENTRY: {
   2851     assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
   2852             "Only supported for 64-bit ABI and 32-bit SVR4");
   2853     if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
   2854       SDValue GA = N->getOperand(0);
   2855       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
   2856                                       MVT::i32, GA, N->getOperand(1)));
   2857     }
   2858 
   2859     // For medium and large code model, we generate two instructions as
   2860     // described below.  Otherwise we allow SelectCodeCommon to handle this,
   2861     // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
   2862     CodeModel::Model CModel = TM.getCodeModel();
   2863     if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
   2864       break;
   2865 
   2866     // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
   2867     // If it is an externally defined symbol, a symbol with common linkage,
   2868     // a non-local function address, or a jump table address, or if we are
   2869     // generating code for large code model, we generate:
   2870     //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
   2871     // Otherwise we generate:
   2872     //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
   2873     SDValue GA = N->getOperand(0);
   2874     SDValue TOCbase = N->getOperand(1);
   2875     SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
   2876                                          TOCbase, GA);
   2877 
   2878     if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
   2879         CModel == CodeModel::Large)
   2880       return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
   2881                                       MVT::i64, GA, SDValue(Tmp, 0)));
   2882 
   2883     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
   2884       const GlobalValue *GValue = G->getGlobal();
   2885       if ((GValue->getType()->getElementType()->isFunctionTy() &&
   2886            (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
   2887           GValue->isDeclaration() || GValue->hasCommonLinkage() ||
   2888           GValue->hasAvailableExternallyLinkage())
   2889         return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
   2890                                         MVT::i64, GA, SDValue(Tmp, 0)));
   2891     }
   2892 
   2893     return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
   2894                                   SDValue(Tmp, 0), GA);
   2895   }
   2896   case PPCISD::PPC32_PICGOT: {
   2897     // Generate a PIC-safe GOT reference.
   2898     assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
   2899       "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
   2900     return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(),  MVT::i32);
   2901   }
   2902   case PPCISD::VADD_SPLAT: {
   2903     // This expands into one of three sequences, depending on whether
   2904     // the first operand is odd or even, positive or negative.
   2905     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
   2906            isa<ConstantSDNode>(N->getOperand(1)) &&
   2907            "Invalid operand on VADD_SPLAT!");
   2908 
   2909     int Elt     = N->getConstantOperandVal(0);
   2910     int EltSize = N->getConstantOperandVal(1);
   2911     unsigned Opc1, Opc2, Opc3;
   2912     EVT VT;
   2913 
   2914     if (EltSize == 1) {
   2915       Opc1 = PPC::VSPLTISB;
   2916       Opc2 = PPC::VADDUBM;
   2917       Opc3 = PPC::VSUBUBM;
   2918       VT = MVT::v16i8;
   2919     } else if (EltSize == 2) {
   2920       Opc1 = PPC::VSPLTISH;
   2921       Opc2 = PPC::VADDUHM;
   2922       Opc3 = PPC::VSUBUHM;
   2923       VT = MVT::v8i16;
   2924     } else {
   2925       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
   2926       Opc1 = PPC::VSPLTISW;
   2927       Opc2 = PPC::VADDUWM;
   2928       Opc3 = PPC::VSUBUWM;
   2929       VT = MVT::v4i32;
   2930     }
   2931 
   2932     if ((Elt & 1) == 0) {
   2933       // Elt is even, in the range [-32,-18] + [16,30].
   2934       //
   2935       // Convert: VADD_SPLAT elt, size
   2936       // Into:    tmp = VSPLTIS[BHW] elt
   2937       //          VADDU[BHW]M tmp, tmp
   2938       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
   2939       SDValue EltVal = getI32Imm(Elt >> 1);
   2940       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   2941       SDValue TmpVal = SDValue(Tmp, 0);
   2942       return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
   2943 
   2944     } else if (Elt > 0) {
   2945       // Elt is odd and positive, in the range [17,31].
   2946       //
   2947       // Convert: VADD_SPLAT elt, size
   2948       // Into:    tmp1 = VSPLTIS[BHW] elt-16
   2949       //          tmp2 = VSPLTIS[BHW] -16
   2950       //          VSUBU[BHW]M tmp1, tmp2
   2951       SDValue EltVal = getI32Imm(Elt - 16);
   2952       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   2953       EltVal = getI32Imm(-16);
   2954       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   2955       return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
   2956                                     SDValue(Tmp2, 0));
   2957 
   2958     } else {
   2959       // Elt is odd and negative, in the range [-31,-17].
   2960       //
   2961       // Convert: VADD_SPLAT elt, size
   2962       // Into:    tmp1 = VSPLTIS[BHW] elt+16
   2963       //          tmp2 = VSPLTIS[BHW] -16
   2964       //          VADDU[BHW]M tmp1, tmp2
   2965       SDValue EltVal = getI32Imm(Elt + 16);
   2966       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   2967       EltVal = getI32Imm(-16);
   2968       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
   2969       return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
   2970                                     SDValue(Tmp2, 0));
   2971     }
   2972   }
   2973   }
   2974 
   2975   return SelectCode(N);
   2976 }
   2977 
   2978 // If the target supports the cmpb instruction, do the idiom recognition here.
   2979 // We don't do this as a DAG combine because we don't want to do it as nodes
   2980 // are being combined (because we might miss part of the eventual idiom). We
   2981 // don't want to do it during instruction selection because we want to reuse
   2982 // the logic for lowering the masking operations already part of the
   2983 // instruction selector.
   2984 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
   2985   SDLoc dl(N);
   2986 
   2987   assert(N->getOpcode() == ISD::OR &&
   2988          "Only OR nodes are supported for CMPB");
   2989 
   2990   SDValue Res;
   2991   if (!PPCSubTarget->hasCMPB())
   2992     return Res;
   2993 
   2994   if (N->getValueType(0) != MVT::i32 &&
   2995       N->getValueType(0) != MVT::i64)
   2996     return Res;
   2997 
   2998   EVT VT = N->getValueType(0);
   2999 
   3000   SDValue RHS, LHS;
   3001   bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   3002   uint64_t Mask = 0, Alt = 0;
   3003 
   3004   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
   3005                                uint64_t &Mask, uint64_t &Alt,
   3006                                SDValue &LHS, SDValue &RHS) {
   3007     if (O.getOpcode() != ISD::SELECT_CC)
   3008       return false;
   3009     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
   3010 
   3011     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
   3012         !isa<ConstantSDNode>(O.getOperand(3)))
   3013       return false;
   3014 
   3015     uint64_t PM = O.getConstantOperandVal(2);
   3016     uint64_t PAlt = O.getConstantOperandVal(3);
   3017     for (b = 0; b < 8; ++b) {
   3018       uint64_t Mask = UINT64_C(0xFF) << (8*b);
   3019       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
   3020         break;
   3021     }
   3022 
   3023     if (b == 8)
   3024       return false;
   3025     Mask |= PM;
   3026     Alt  |= PAlt;
   3027 
   3028     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
   3029         O.getConstantOperandVal(1) != 0) {
   3030       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
   3031       if (Op0.getOpcode() == ISD::TRUNCATE)
   3032         Op0 = Op0.getOperand(0);
   3033       if (Op1.getOpcode() == ISD::TRUNCATE)
   3034         Op1 = Op1.getOperand(0);
   3035 
   3036       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
   3037           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
   3038           isa<ConstantSDNode>(Op0.getOperand(1))) {
   3039 
   3040         unsigned Bits = Op0.getValueType().getSizeInBits();
   3041         if (b != Bits/8-1)
   3042           return false;
   3043         if (Op0.getConstantOperandVal(1) != Bits-8)
   3044           return false;
   3045 
   3046         LHS = Op0.getOperand(0);
   3047         RHS = Op1.getOperand(0);
   3048         return true;
   3049       }
   3050 
   3051       // When we have small integers (i16 to be specific), the form present
   3052       // post-legalization uses SETULT in the SELECT_CC for the
   3053       // higher-order byte, depending on the fact that the
   3054       // even-higher-order bytes are known to all be zero, for example:
   3055       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
   3056       // (so when the second byte is the same, because all higher-order
   3057       // bits from bytes 3 and 4 are known to be zero, the result of the
   3058       // xor can be at most 255)
   3059       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
   3060           isa<ConstantSDNode>(O.getOperand(1))) {
   3061 
   3062         uint64_t ULim = O.getConstantOperandVal(1);
   3063         if (ULim != (UINT64_C(1) << b*8))
   3064           return false;
   3065 
   3066         // Now we need to make sure that the upper bytes are known to be
   3067         // zero.
   3068         unsigned Bits = Op0.getValueType().getSizeInBits();
   3069         if (!CurDAG->MaskedValueIsZero(Op0,
   3070               APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
   3071           return false;
   3072 
   3073         LHS = Op0.getOperand(0);
   3074         RHS = Op0.getOperand(1);
   3075         return true;
   3076       }
   3077 
   3078       return false;
   3079     }
   3080 
   3081     if (CC != ISD::SETEQ)
   3082       return false;
   3083 
   3084     SDValue Op = O.getOperand(0);
   3085     if (Op.getOpcode() == ISD::AND) {
   3086       if (!isa<ConstantSDNode>(Op.getOperand(1)))
   3087         return false;
   3088       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
   3089         return false;
   3090 
   3091       SDValue XOR = Op.getOperand(0);
   3092       if (XOR.getOpcode() == ISD::TRUNCATE)
   3093         XOR = XOR.getOperand(0);
   3094       if (XOR.getOpcode() != ISD::XOR)
   3095         return false;
   3096 
   3097       LHS = XOR.getOperand(0);
   3098       RHS = XOR.getOperand(1);
   3099       return true;
   3100     } else if (Op.getOpcode() == ISD::SRL) {
   3101       if (!isa<ConstantSDNode>(Op.getOperand(1)))
   3102         return false;
   3103       unsigned Bits = Op.getValueType().getSizeInBits();
   3104       if (b != Bits/8-1)
   3105         return false;
   3106       if (Op.getConstantOperandVal(1) != Bits-8)
   3107         return false;
   3108 
   3109       SDValue XOR = Op.getOperand(0);
   3110       if (XOR.getOpcode() == ISD::TRUNCATE)
   3111         XOR = XOR.getOperand(0);
   3112       if (XOR.getOpcode() != ISD::XOR)
   3113         return false;
   3114 
   3115       LHS = XOR.getOperand(0);
   3116       RHS = XOR.getOperand(1);
   3117       return true;
   3118     }
   3119 
   3120     return false;
   3121   };
   3122 
   3123   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
   3124   while (!Queue.empty()) {
   3125     SDValue V = Queue.pop_back_val();
   3126 
   3127     for (const SDValue &O : V.getNode()->ops()) {
   3128       unsigned b;
   3129       uint64_t M = 0, A = 0;
   3130       SDValue OLHS, ORHS;
   3131       if (O.getOpcode() == ISD::OR) {
   3132         Queue.push_back(O);
   3133       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
   3134         if (!LHS) {
   3135           LHS = OLHS;
   3136           RHS = ORHS;
   3137           BytesFound[b] = true;
   3138           Mask |= M;
   3139           Alt  |= A;
   3140         } else if ((LHS == ORHS && RHS == OLHS) ||
   3141                    (RHS == ORHS && LHS == OLHS)) {
   3142           BytesFound[b] = true;
   3143           Mask |= M;
   3144           Alt  |= A;
   3145         } else {
   3146           return Res;
   3147         }
   3148       } else {
   3149         return Res;
   3150       }
   3151     }
   3152   }
   3153 
   3154   unsigned LastB = 0, BCnt = 0;
   3155   for (unsigned i = 0; i < 8; ++i)
   3156     if (BytesFound[LastB]) {
   3157       ++BCnt;
   3158       LastB = i;
   3159     }
   3160 
   3161   if (!LastB || BCnt < 2)
   3162     return Res;
   3163 
   3164   // Because we'll be zero-extending the output anyway if don't have a specific
   3165   // value for each input byte (via the Mask), we can 'anyext' the inputs.
   3166   if (LHS.getValueType() != VT) {
   3167     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
   3168     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
   3169   }
   3170 
   3171   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
   3172 
   3173   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
   3174   if (NonTrivialMask && !Alt) {
   3175     // Res = Mask & CMPB
   3176     Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT));
   3177   } else if (Alt) {
   3178     // Res = (CMPB & Mask) | (~CMPB & Alt)
   3179     // Which, as suggested here:
   3180     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
   3181     // can be written as:
   3182     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
   3183     // useful because the (Alt ^ Mask) can be pre-computed.
   3184     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
   3185                           CurDAG->getConstant(Mask ^ Alt, VT));
   3186     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT));
   3187   }
   3188 
   3189   return Res;
   3190 }
   3191 
   3192 // When CR bit registers are enabled, an extension of an i1 variable to a i32
   3193 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
   3194 // involves constant materialization of a 0 or a 1 or both. If the result of
   3195 // the extension is then operated upon by some operator that can be constant
   3196 // folded with a constant 0 or 1, and that constant can be materialized using
   3197 // only one instruction (like a zero or one), then we should fold in those
   3198 // operations with the select.
   3199 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
   3200   if (!PPCSubTarget->useCRBits())
   3201     return;
   3202 
   3203   if (N->getOpcode() != ISD::ZERO_EXTEND &&
   3204       N->getOpcode() != ISD::SIGN_EXTEND &&
   3205       N->getOpcode() != ISD::ANY_EXTEND)
   3206     return;
   3207 
   3208   if (N->getOperand(0).getValueType() != MVT::i1)
   3209     return;
   3210 
   3211   if (!N->hasOneUse())
   3212     return;
   3213 
   3214   SDLoc dl(N);
   3215   EVT VT = N->getValueType(0);
   3216   SDValue Cond = N->getOperand(0);
   3217   SDValue ConstTrue =
   3218     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT);
   3219   SDValue ConstFalse = CurDAG->getConstant(0, VT);
   3220 
   3221   do {
   3222     SDNode *User = *N->use_begin();
   3223     if (User->getNumOperands() != 2)
   3224       break;
   3225 
   3226     auto TryFold = [this, N, User](SDValue Val) {
   3227       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
   3228       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
   3229       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
   3230 
   3231       return CurDAG->FoldConstantArithmetic(User->getOpcode(),
   3232                                             User->getValueType(0),
   3233                                             O0.getNode(), O1.getNode());
   3234     };
   3235 
   3236     SDValue TrueRes = TryFold(ConstTrue);
   3237     if (!TrueRes)
   3238       break;
   3239     SDValue FalseRes = TryFold(ConstFalse);
   3240     if (!FalseRes)
   3241       break;
   3242 
   3243     // For us to materialize these using one instruction, we must be able to
   3244     // represent them as signed 16-bit integers.
   3245     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
   3246              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
   3247     if (!isInt<16>(True) || !isInt<16>(False))
   3248       break;
   3249 
   3250     // We can replace User with a new SELECT node, and try again to see if we
   3251     // can fold the select with its user.
   3252     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
   3253     N = User;
   3254     ConstTrue = TrueRes;
   3255     ConstFalse = FalseRes;
   3256   } while (N->hasOneUse());
   3257 }
   3258 
   3259 void PPCDAGToDAGISel::PreprocessISelDAG() {
   3260   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   3261   ++Position;
   3262 
   3263   bool MadeChange = false;
   3264   while (Position != CurDAG->allnodes_begin()) {
   3265     SDNode *N = --Position;
   3266     if (N->use_empty())
   3267       continue;
   3268 
   3269     SDValue Res;
   3270     switch (N->getOpcode()) {
   3271     default: break;
   3272     case ISD::OR:
   3273       Res = combineToCMPB(N);
   3274       break;
   3275     }
   3276 
   3277     if (!Res)
   3278       foldBoolExts(Res, N);
   3279 
   3280     if (Res) {
   3281       DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
   3282       DEBUG(N->dump(CurDAG));
   3283       DEBUG(dbgs() << "\nNew: ");
   3284       DEBUG(Res.getNode()->dump(CurDAG));
   3285       DEBUG(dbgs() << "\n");
   3286 
   3287       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
   3288       MadeChange = true;
   3289     }
   3290   }
   3291 
   3292   if (MadeChange)
   3293     CurDAG->RemoveDeadNodes();
   3294 }
   3295 
   3296 /// PostprocessISelDAG - Perform some late peephole optimizations
   3297 /// on the DAG representation.
   3298 void PPCDAGToDAGISel::PostprocessISelDAG() {
   3299 
   3300   // Skip peepholes at -O0.
   3301   if (TM.getOptLevel() == CodeGenOpt::None)
   3302     return;
   3303 
   3304   PeepholePPC64();
   3305   PeepholeCROps();
   3306   PeepholePPC64ZExt();
   3307 }
   3308 
   3309 // Check if all users of this node will become isel where the second operand
   3310 // is the constant zero. If this is so, and if we can negate the condition,
   3311 // then we can flip the true and false operands. This will allow the zero to
   3312 // be folded with the isel so that we don't need to materialize a register
   3313 // containing zero.
   3314 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
   3315   // If we're not using isel, then this does not matter.
   3316   if (!PPCSubTarget->hasISEL())
   3317     return false;
   3318 
   3319   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   3320        UI != UE; ++UI) {
   3321     SDNode *User = *UI;
   3322     if (!User->isMachineOpcode())
   3323       return false;
   3324     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
   3325         User->getMachineOpcode() != PPC::SELECT_I8)
   3326       return false;
   3327 
   3328     SDNode *Op2 = User->getOperand(2).getNode();
   3329     if (!Op2->isMachineOpcode())
   3330       return false;
   3331 
   3332     if (Op2->getMachineOpcode() != PPC::LI &&
   3333         Op2->getMachineOpcode() != PPC::LI8)
   3334       return false;
   3335 
   3336     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
   3337     if (!C)
   3338       return false;
   3339 
   3340     if (!C->isNullValue())
   3341       return false;
   3342   }
   3343 
   3344   return true;
   3345 }
   3346 
   3347 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
   3348   SmallVector<SDNode *, 4> ToReplace;
   3349   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
   3350        UI != UE; ++UI) {
   3351     SDNode *User = *UI;
   3352     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
   3353             User->getMachineOpcode() == PPC::SELECT_I8) &&
   3354            "Must have all select users");
   3355     ToReplace.push_back(User);
   3356   }
   3357 
   3358   for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
   3359        UE = ToReplace.end(); UI != UE; ++UI) {
   3360     SDNode *User = *UI;
   3361     SDNode *ResNode =
   3362       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
   3363                              User->getValueType(0), User->getOperand(0),
   3364                              User->getOperand(2),
   3365                              User->getOperand(1));
   3366 
   3367       DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
   3368       DEBUG(User->dump(CurDAG));
   3369       DEBUG(dbgs() << "\nNew: ");
   3370       DEBUG(ResNode->dump(CurDAG));
   3371       DEBUG(dbgs() << "\n");
   3372 
   3373       ReplaceUses(User, ResNode);
   3374   }
   3375 }
   3376 
   3377 void PPCDAGToDAGISel::PeepholeCROps() {
   3378   bool IsModified;
   3379   do {
   3380     IsModified = false;
   3381     for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
   3382          E = CurDAG->allnodes_end(); I != E; ++I) {
   3383       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
   3384       if (!MachineNode || MachineNode->use_empty())
   3385         continue;
   3386       SDNode *ResNode = MachineNode;
   3387 
   3388       bool Op1Set   = false, Op1Unset = false,
   3389            Op1Not   = false,
   3390            Op2Set   = false, Op2Unset = false,
   3391            Op2Not   = false;
   3392 
   3393       unsigned Opcode = MachineNode->getMachineOpcode();
   3394       switch (Opcode) {
   3395       default: break;
   3396       case PPC::CRAND:
   3397       case PPC::CRNAND:
   3398       case PPC::CROR:
   3399       case PPC::CRXOR:
   3400       case PPC::CRNOR:
   3401       case PPC::CREQV:
   3402       case PPC::CRANDC:
   3403       case PPC::CRORC: {
   3404         SDValue Op = MachineNode->getOperand(1);
   3405         if (Op.isMachineOpcode()) {
   3406           if (Op.getMachineOpcode() == PPC::CRSET)
   3407             Op2Set = true;
   3408           else if (Op.getMachineOpcode() == PPC::CRUNSET)
   3409             Op2Unset = true;
   3410           else if (Op.getMachineOpcode() == PPC::CRNOR &&
   3411                    Op.getOperand(0) == Op.getOperand(1))
   3412             Op2Not = true;
   3413         }
   3414         }  // fallthrough
   3415       case PPC::BC:
   3416       case PPC::BCn:
   3417       case PPC::SELECT_I4:
   3418       case PPC::SELECT_I8:
   3419       case PPC::SELECT_F4:
   3420       case PPC::SELECT_F8:
   3421       case PPC::SELECT_QFRC:
   3422       case PPC::SELECT_QSRC:
   3423       case PPC::SELECT_QBRC:
   3424       case PPC::SELECT_VRRC:
   3425       case PPC::SELECT_VSFRC:
   3426       case PPC::SELECT_VSRC: {
   3427         SDValue Op = MachineNode->getOperand(0);
   3428         if (Op.isMachineOpcode()) {
   3429           if (Op.getMachineOpcode() == PPC::CRSET)
   3430             Op1Set = true;
   3431           else if (Op.getMachineOpcode() == PPC::CRUNSET)
   3432             Op1Unset = true;
   3433           else if (Op.getMachineOpcode() == PPC::CRNOR &&
   3434                    Op.getOperand(0) == Op.getOperand(1))
   3435             Op1Not = true;
   3436         }
   3437         }
   3438         break;
   3439       }
   3440 
   3441       bool SelectSwap = false;
   3442       switch (Opcode) {
   3443       default: break;
   3444       case PPC::CRAND:
   3445         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3446           // x & x = x
   3447           ResNode = MachineNode->getOperand(0).getNode();
   3448         else if (Op1Set)
   3449           // 1 & y = y
   3450           ResNode = MachineNode->getOperand(1).getNode();
   3451         else if (Op2Set)
   3452           // x & 1 = x
   3453           ResNode = MachineNode->getOperand(0).getNode();
   3454         else if (Op1Unset || Op2Unset)
   3455           // x & 0 = 0 & y = 0
   3456           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3457                                            MVT::i1);
   3458         else if (Op1Not)
   3459           // ~x & y = andc(y, x)
   3460           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3461                                            MVT::i1, MachineNode->getOperand(1),
   3462                                            MachineNode->getOperand(0).
   3463                                              getOperand(0));
   3464         else if (Op2Not)
   3465           // x & ~y = andc(x, y)
   3466           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3467                                            MVT::i1, MachineNode->getOperand(0),
   3468                                            MachineNode->getOperand(1).
   3469                                              getOperand(0));
   3470         else if (AllUsersSelectZero(MachineNode))
   3471           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
   3472                                            MVT::i1, MachineNode->getOperand(0),
   3473                                            MachineNode->getOperand(1)),
   3474           SelectSwap = true;
   3475         break;
   3476       case PPC::CRNAND:
   3477         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3478           // nand(x, x) -> nor(x, x)
   3479           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3480                                            MVT::i1, MachineNode->getOperand(0),
   3481                                            MachineNode->getOperand(0));
   3482         else if (Op1Set)
   3483           // nand(1, y) -> nor(y, y)
   3484           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3485                                            MVT::i1, MachineNode->getOperand(1),
   3486                                            MachineNode->getOperand(1));
   3487         else if (Op2Set)
   3488           // nand(x, 1) -> nor(x, x)
   3489           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3490                                            MVT::i1, MachineNode->getOperand(0),
   3491                                            MachineNode->getOperand(0));
   3492         else if (Op1Unset || Op2Unset)
   3493           // nand(x, 0) = nand(0, y) = 1
   3494           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3495                                            MVT::i1);
   3496         else if (Op1Not)
   3497           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
   3498           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3499                                            MVT::i1, MachineNode->getOperand(0).
   3500                                                       getOperand(0),
   3501                                            MachineNode->getOperand(1));
   3502         else if (Op2Not)
   3503           // nand(x, ~y) = ~x | y = orc(y, x)
   3504           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3505                                            MVT::i1, MachineNode->getOperand(1).
   3506                                                       getOperand(0),
   3507                                            MachineNode->getOperand(0));
   3508         else if (AllUsersSelectZero(MachineNode))
   3509           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
   3510                                            MVT::i1, MachineNode->getOperand(0),
   3511                                            MachineNode->getOperand(1)),
   3512           SelectSwap = true;
   3513         break;
   3514       case PPC::CROR:
   3515         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3516           // x | x = x
   3517           ResNode = MachineNode->getOperand(0).getNode();
   3518         else if (Op1Set || Op2Set)
   3519           // x | 1 = 1 | y = 1
   3520           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3521                                            MVT::i1);
   3522         else if (Op1Unset)
   3523           // 0 | y = y
   3524           ResNode = MachineNode->getOperand(1).getNode();
   3525         else if (Op2Unset)
   3526           // x | 0 = x
   3527           ResNode = MachineNode->getOperand(0).getNode();
   3528         else if (Op1Not)
   3529           // ~x | y = orc(y, x)
   3530           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3531                                            MVT::i1, MachineNode->getOperand(1),
   3532                                            MachineNode->getOperand(0).
   3533                                              getOperand(0));
   3534         else if (Op2Not)
   3535           // x | ~y = orc(x, y)
   3536           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3537                                            MVT::i1, MachineNode->getOperand(0),
   3538                                            MachineNode->getOperand(1).
   3539                                              getOperand(0));
   3540         else if (AllUsersSelectZero(MachineNode))
   3541           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3542                                            MVT::i1, MachineNode->getOperand(0),
   3543                                            MachineNode->getOperand(1)),
   3544           SelectSwap = true;
   3545         break;
   3546       case PPC::CRXOR:
   3547         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3548           // xor(x, x) = 0
   3549           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3550                                            MVT::i1);
   3551         else if (Op1Set)
   3552           // xor(1, y) -> nor(y, y)
   3553           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3554                                            MVT::i1, MachineNode->getOperand(1),
   3555                                            MachineNode->getOperand(1));
   3556         else if (Op2Set)
   3557           // xor(x, 1) -> nor(x, x)
   3558           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3559                                            MVT::i1, MachineNode->getOperand(0),
   3560                                            MachineNode->getOperand(0));
   3561         else if (Op1Unset)
   3562           // xor(0, y) = y
   3563           ResNode = MachineNode->getOperand(1).getNode();
   3564         else if (Op2Unset)
   3565           // xor(x, 0) = x
   3566           ResNode = MachineNode->getOperand(0).getNode();
   3567         else if (Op1Not)
   3568           // xor(~x, y) = eqv(x, y)
   3569           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   3570                                            MVT::i1, MachineNode->getOperand(0).
   3571                                                       getOperand(0),
   3572                                            MachineNode->getOperand(1));
   3573         else if (Op2Not)
   3574           // xor(x, ~y) = eqv(x, y)
   3575           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   3576                                            MVT::i1, MachineNode->getOperand(0),
   3577                                            MachineNode->getOperand(1).
   3578                                              getOperand(0));
   3579         else if (AllUsersSelectZero(MachineNode))
   3580           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
   3581                                            MVT::i1, MachineNode->getOperand(0),
   3582                                            MachineNode->getOperand(1)),
   3583           SelectSwap = true;
   3584         break;
   3585       case PPC::CRNOR:
   3586         if (Op1Set || Op2Set)
   3587           // nor(1, y) -> 0
   3588           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3589                                            MVT::i1);
   3590         else if (Op1Unset)
   3591           // nor(0, y) = ~y -> nor(y, y)
   3592           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3593                                            MVT::i1, MachineNode->getOperand(1),
   3594                                            MachineNode->getOperand(1));
   3595         else if (Op2Unset)
   3596           // nor(x, 0) = ~x
   3597           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3598                                            MVT::i1, MachineNode->getOperand(0),
   3599                                            MachineNode->getOperand(0));
   3600         else if (Op1Not)
   3601           // nor(~x, y) = andc(x, y)
   3602           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3603                                            MVT::i1, MachineNode->getOperand(0).
   3604                                                       getOperand(0),
   3605                                            MachineNode->getOperand(1));
   3606         else if (Op2Not)
   3607           // nor(x, ~y) = andc(y, x)
   3608           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3609                                            MVT::i1, MachineNode->getOperand(1).
   3610                                                       getOperand(0),
   3611                                            MachineNode->getOperand(0));
   3612         else if (AllUsersSelectZero(MachineNode))
   3613           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
   3614                                            MVT::i1, MachineNode->getOperand(0),
   3615                                            MachineNode->getOperand(1)),
   3616           SelectSwap = true;
   3617         break;
   3618       case PPC::CREQV:
   3619         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3620           // eqv(x, x) = 1
   3621           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3622                                            MVT::i1);
   3623         else if (Op1Set)
   3624           // eqv(1, y) = y
   3625           ResNode = MachineNode->getOperand(1).getNode();
   3626         else if (Op2Set)
   3627           // eqv(x, 1) = x
   3628           ResNode = MachineNode->getOperand(0).getNode();
   3629         else if (Op1Unset)
   3630           // eqv(0, y) = ~y -> nor(y, y)
   3631           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3632                                            MVT::i1, MachineNode->getOperand(1),
   3633                                            MachineNode->getOperand(1));
   3634         else if (Op2Unset)
   3635           // eqv(x, 0) = ~x
   3636           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3637                                            MVT::i1, MachineNode->getOperand(0),
   3638                                            MachineNode->getOperand(0));
   3639         else if (Op1Not)
   3640           // eqv(~x, y) = xor(x, y)
   3641           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   3642                                            MVT::i1, MachineNode->getOperand(0).
   3643                                                       getOperand(0),
   3644                                            MachineNode->getOperand(1));
   3645         else if (Op2Not)
   3646           // eqv(x, ~y) = xor(x, y)
   3647           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   3648                                            MVT::i1, MachineNode->getOperand(0),
   3649                                            MachineNode->getOperand(1).
   3650                                              getOperand(0));
   3651         else if (AllUsersSelectZero(MachineNode))
   3652           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
   3653                                            MVT::i1, MachineNode->getOperand(0),
   3654                                            MachineNode->getOperand(1)),
   3655           SelectSwap = true;
   3656         break;
   3657       case PPC::CRANDC:
   3658         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3659           // andc(x, x) = 0
   3660           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3661                                            MVT::i1);
   3662         else if (Op1Set)
   3663           // andc(1, y) = ~y
   3664           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3665                                            MVT::i1, MachineNode->getOperand(1),
   3666                                            MachineNode->getOperand(1));
   3667         else if (Op1Unset || Op2Set)
   3668           // andc(0, y) = andc(x, 1) = 0
   3669           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
   3670                                            MVT::i1);
   3671         else if (Op2Unset)
   3672           // andc(x, 0) = x
   3673           ResNode = MachineNode->getOperand(0).getNode();
   3674         else if (Op1Not)
   3675           // andc(~x, y) = ~(x | y) = nor(x, y)
   3676           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3677                                            MVT::i1, MachineNode->getOperand(0).
   3678                                                       getOperand(0),
   3679                                            MachineNode->getOperand(1));
   3680         else if (Op2Not)
   3681           // andc(x, ~y) = x & y
   3682           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
   3683                                            MVT::i1, MachineNode->getOperand(0),
   3684                                            MachineNode->getOperand(1).
   3685                                              getOperand(0));
   3686         else if (AllUsersSelectZero(MachineNode))
   3687           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
   3688                                            MVT::i1, MachineNode->getOperand(1),
   3689                                            MachineNode->getOperand(0)),
   3690           SelectSwap = true;
   3691         break;
   3692       case PPC::CRORC:
   3693         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
   3694           // orc(x, x) = 1
   3695           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3696                                            MVT::i1);
   3697         else if (Op1Set || Op2Unset)
   3698           // orc(1, y) = orc(x, 0) = 1
   3699           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
   3700                                            MVT::i1);
   3701         else if (Op2Set)
   3702           // orc(x, 1) = x
   3703           ResNode = MachineNode->getOperand(0).getNode();
   3704         else if (Op1Unset)
   3705           // orc(0, y) = ~y
   3706           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
   3707                                            MVT::i1, MachineNode->getOperand(1),
   3708                                            MachineNode->getOperand(1));
   3709         else if (Op1Not)
   3710           // orc(~x, y) = ~(x & y) = nand(x, y)
   3711           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
   3712                                            MVT::i1, MachineNode->getOperand(0).
   3713                                                       getOperand(0),
   3714                                            MachineNode->getOperand(1));
   3715         else if (Op2Not)
   3716           // orc(x, ~y) = x | y
   3717           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
   3718                                            MVT::i1, MachineNode->getOperand(0),
   3719                                            MachineNode->getOperand(1).
   3720                                              getOperand(0));
   3721         else if (AllUsersSelectZero(MachineNode))
   3722           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
   3723                                            MVT::i1, MachineNode->getOperand(1),
   3724                                            MachineNode->getOperand(0)),
   3725           SelectSwap = true;
   3726         break;
   3727       case PPC::SELECT_I4:
   3728       case PPC::SELECT_I8:
   3729       case PPC::SELECT_F4:
   3730       case PPC::SELECT_F8:
   3731       case PPC::SELECT_QFRC:
   3732       case PPC::SELECT_QSRC:
   3733       case PPC::SELECT_QBRC:
   3734       case PPC::SELECT_VRRC:
   3735       case PPC::SELECT_VSFRC:
   3736       case PPC::SELECT_VSRC:
   3737         if (Op1Set)
   3738           ResNode = MachineNode->getOperand(1).getNode();
   3739         else if (Op1Unset)
   3740           ResNode = MachineNode->getOperand(2).getNode();
   3741         else if (Op1Not)
   3742           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
   3743                                            SDLoc(MachineNode),
   3744                                            MachineNode->getValueType(0),
   3745                                            MachineNode->getOperand(0).
   3746                                              getOperand(0),
   3747                                            MachineNode->getOperand(2),
   3748                                            MachineNode->getOperand(1));
   3749         break;
   3750       case PPC::BC:
   3751       case PPC::BCn:
   3752         if (Op1Not)
   3753           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
   3754                                                                PPC::BC,
   3755                                            SDLoc(MachineNode),
   3756                                            MVT::Other,
   3757                                            MachineNode->getOperand(0).
   3758                                              getOperand(0),
   3759                                            MachineNode->getOperand(1),
   3760                                            MachineNode->getOperand(2));
   3761         // FIXME: Handle Op1Set, Op1Unset here too.
   3762         break;
   3763       }
   3764 
   3765       // If we're inverting this node because it is used only by selects that
   3766       // we'd like to swap, then swap the selects before the node replacement.
   3767       if (SelectSwap)
   3768         SwapAllSelectUsers(MachineNode);
   3769 
   3770       if (ResNode != MachineNode) {
   3771         DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
   3772         DEBUG(MachineNode->dump(CurDAG));
   3773         DEBUG(dbgs() << "\nNew: ");
   3774         DEBUG(ResNode->dump(CurDAG));
   3775         DEBUG(dbgs() << "\n");
   3776 
   3777         ReplaceUses(MachineNode, ResNode);
   3778         IsModified = true;
   3779       }
   3780     }
   3781     if (IsModified)
   3782       CurDAG->RemoveDeadNodes();
   3783   } while (IsModified);
   3784 }
   3785 
   3786 // Gather the set of 32-bit operations that are known to have their
   3787 // higher-order 32 bits zero, where ToPromote contains all such operations.
   3788 static bool PeepholePPC64ZExtGather(SDValue Op32,
   3789                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
   3790   if (!Op32.isMachineOpcode())
   3791     return false;
   3792 
   3793   // First, check for the "frontier" instructions (those that will clear the
   3794   // higher-order 32 bits.
   3795 
   3796   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
   3797   // around. If it does not, then these instructions will clear the
   3798   // higher-order bits.
   3799   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
   3800        Op32.getMachineOpcode() == PPC::RLWNM) &&
   3801       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
   3802     ToPromote.insert(Op32.getNode());
   3803     return true;
   3804   }
   3805 
   3806   // SLW and SRW always clear the higher-order bits.
   3807   if (Op32.getMachineOpcode() == PPC::SLW ||
   3808       Op32.getMachineOpcode() == PPC::SRW) {
   3809     ToPromote.insert(Op32.getNode());
   3810     return true;
   3811   }
   3812 
   3813   // For LI and LIS, we need the immediate to be positive (so that it is not
   3814   // sign extended).
   3815   if (Op32.getMachineOpcode() == PPC::LI ||
   3816       Op32.getMachineOpcode() == PPC::LIS) {
   3817     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
   3818       return false;
   3819 
   3820     ToPromote.insert(Op32.getNode());
   3821     return true;
   3822   }
   3823 
   3824   // LHBRX and LWBRX always clear the higher-order bits.
   3825   if (Op32.getMachineOpcode() == PPC::LHBRX ||
   3826       Op32.getMachineOpcode() == PPC::LWBRX) {
   3827     ToPromote.insert(Op32.getNode());
   3828     return true;
   3829   }
   3830 
   3831   // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
   3832   if (Op32.getMachineOpcode() == PPC::CNTLZW) {
   3833     ToPromote.insert(Op32.getNode());
   3834     return true;
   3835   }
   3836 
   3837   // Next, check for those instructions we can look through.
   3838 
   3839   // Assuming the mask does not wrap around, then the higher-order bits are
   3840   // taken directly from the first operand.
   3841   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
   3842       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
   3843     SmallPtrSet<SDNode *, 16> ToPromote1;
   3844     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
   3845       return false;
   3846 
   3847     ToPromote.insert(Op32.getNode());
   3848     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3849     return true;
   3850   }
   3851 
   3852   // For OR, the higher-order bits are zero if that is true for both operands.
   3853   // For SELECT_I4, the same is true (but the relevant operand numbers are
   3854   // shifted by 1).
   3855   if (Op32.getMachineOpcode() == PPC::OR ||
   3856       Op32.getMachineOpcode() == PPC::SELECT_I4) {
   3857     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
   3858     SmallPtrSet<SDNode *, 16> ToPromote1;
   3859     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
   3860       return false;
   3861     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
   3862       return false;
   3863 
   3864     ToPromote.insert(Op32.getNode());
   3865     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3866     return true;
   3867   }
   3868 
   3869   // For ORI and ORIS, we need the higher-order bits of the first operand to be
   3870   // zero, and also for the constant to be positive (so that it is not sign
   3871   // extended).
   3872   if (Op32.getMachineOpcode() == PPC::ORI ||
   3873       Op32.getMachineOpcode() == PPC::ORIS) {
   3874     SmallPtrSet<SDNode *, 16> ToPromote1;
   3875     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
   3876       return false;
   3877     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
   3878       return false;
   3879 
   3880     ToPromote.insert(Op32.getNode());
   3881     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3882     return true;
   3883   }
   3884 
   3885   // The higher-order bits of AND are zero if that is true for at least one of
   3886   // the operands.
   3887   if (Op32.getMachineOpcode() == PPC::AND) {
   3888     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
   3889     bool Op0OK =
   3890       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
   3891     bool Op1OK =
   3892       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
   3893     if (!Op0OK && !Op1OK)
   3894       return false;
   3895 
   3896     ToPromote.insert(Op32.getNode());
   3897 
   3898     if (Op0OK)
   3899       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3900 
   3901     if (Op1OK)
   3902       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
   3903 
   3904     return true;
   3905   }
   3906 
   3907   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
   3908   // of the first operand, or if the second operand is positive (so that it is
   3909   // not sign extended).
   3910   if (Op32.getMachineOpcode() == PPC::ANDIo ||
   3911       Op32.getMachineOpcode() == PPC::ANDISo) {
   3912     SmallPtrSet<SDNode *, 16> ToPromote1;
   3913     bool Op0OK =
   3914       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
   3915     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
   3916     if (!Op0OK && !Op1OK)
   3917       return false;
   3918 
   3919     ToPromote.insert(Op32.getNode());
   3920 
   3921     if (Op0OK)
   3922       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
   3923 
   3924     return true;
   3925   }
   3926 
   3927   return false;
   3928 }
   3929 
   3930 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
   3931   if (!PPCSubTarget->isPPC64())
   3932     return;
   3933 
   3934   // When we zero-extend from i32 to i64, we use a pattern like this:
   3935   // def : Pat<(i64 (zext i32:$in)),
   3936   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
   3937   //                   0, 32)>;
   3938   // There are several 32-bit shift/rotate instructions, however, that will
   3939   // clear the higher-order bits of their output, rendering the RLDICL
   3940   // unnecessary. When that happens, we remove it here, and redefine the
   3941   // relevant 32-bit operation to be a 64-bit operation.
   3942 
   3943   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   3944   ++Position;
   3945 
   3946   bool MadeChange = false;
   3947   while (Position != CurDAG->allnodes_begin()) {
   3948     SDNode *N = --Position;
   3949     // Skip dead nodes and any non-machine opcodes.
   3950     if (N->use_empty() || !N->isMachineOpcode())
   3951       continue;
   3952 
   3953     if (N->getMachineOpcode() != PPC::RLDICL)
   3954       continue;
   3955 
   3956     if (N->getConstantOperandVal(1) != 0 ||
   3957         N->getConstantOperandVal(2) != 32)
   3958       continue;
   3959 
   3960     SDValue ISR = N->getOperand(0);
   3961     if (!ISR.isMachineOpcode() ||
   3962         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
   3963       continue;
   3964 
   3965     if (!ISR.hasOneUse())
   3966       continue;
   3967 
   3968     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
   3969       continue;
   3970 
   3971     SDValue IDef = ISR.getOperand(0);
   3972     if (!IDef.isMachineOpcode() ||
   3973         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
   3974       continue;
   3975 
   3976     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
   3977     // can get rid of it.
   3978 
   3979     SDValue Op32 = ISR->getOperand(1);
   3980     if (!Op32.isMachineOpcode())
   3981       continue;
   3982 
   3983     // There are some 32-bit instructions that always clear the high-order 32
   3984     // bits, there are also some instructions (like AND) that we can look
   3985     // through.
   3986     SmallPtrSet<SDNode *, 16> ToPromote;
   3987     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
   3988       continue;
   3989 
   3990     // If the ToPromote set contains nodes that have uses outside of the set
   3991     // (except for the original INSERT_SUBREG), then abort the transformation.
   3992     bool OutsideUse = false;
   3993     for (SDNode *PN : ToPromote) {
   3994       for (SDNode *UN : PN->uses()) {
   3995         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
   3996           OutsideUse = true;
   3997           break;
   3998         }
   3999       }
   4000 
   4001       if (OutsideUse)
   4002         break;
   4003     }
   4004     if (OutsideUse)
   4005       continue;
   4006 
   4007     MadeChange = true;
   4008 
   4009     // We now know that this zero extension can be removed by promoting to
   4010     // nodes in ToPromote to 64-bit operations, where for operations in the
   4011     // frontier of the set, we need to insert INSERT_SUBREGs for their
   4012     // operands.
   4013     for (SDNode *PN : ToPromote) {
   4014       unsigned NewOpcode;
   4015       switch (PN->getMachineOpcode()) {
   4016       default:
   4017         llvm_unreachable("Don't know the 64-bit variant of this instruction");
   4018       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
   4019       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
   4020       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
   4021       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
   4022       case PPC::LI:        NewOpcode = PPC::LI8; break;
   4023       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
   4024       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
   4025       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
   4026       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
   4027       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
   4028       case PPC::OR:        NewOpcode = PPC::OR8; break;
   4029       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
   4030       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
   4031       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
   4032       case PPC::AND:       NewOpcode = PPC::AND8; break;
   4033       case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
   4034       case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
   4035       }
   4036 
   4037       // Note: During the replacement process, the nodes will be in an
   4038       // inconsistent state (some instructions will have operands with values
   4039       // of the wrong type). Once done, however, everything should be right
   4040       // again.
   4041 
   4042       SmallVector<SDValue, 4> Ops;
   4043       for (const SDValue &V : PN->ops()) {
   4044         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
   4045             !isa<ConstantSDNode>(V)) {
   4046           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
   4047           SDNode *ReplOp =
   4048             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
   4049                                    ISR.getNode()->getVTList(), ReplOpOps);
   4050           Ops.push_back(SDValue(ReplOp, 0));
   4051         } else {
   4052           Ops.push_back(V);
   4053         }
   4054       }
   4055 
   4056       // Because all to-be-promoted nodes only have users that are other
   4057       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
   4058       // the i32 result value type with i64.
   4059 
   4060       SmallVector<EVT, 2> NewVTs;
   4061       SDVTList VTs = PN->getVTList();
   4062       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
   4063         if (VTs.VTs[i] == MVT::i32)
   4064           NewVTs.push_back(MVT::i64);
   4065         else
   4066           NewVTs.push_back(VTs.VTs[i]);
   4067 
   4068       DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
   4069       DEBUG(PN->dump(CurDAG));
   4070 
   4071       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
   4072 
   4073       DEBUG(dbgs() << "\nNew: ");
   4074       DEBUG(PN->dump(CurDAG));
   4075       DEBUG(dbgs() << "\n");
   4076     }
   4077 
   4078     // Now we replace the original zero extend and its associated INSERT_SUBREG
   4079     // with the value feeding the INSERT_SUBREG (which has now been promoted to
   4080     // return an i64).
   4081 
   4082     DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
   4083     DEBUG(N->dump(CurDAG));
   4084     DEBUG(dbgs() << "\nNew: ");
   4085     DEBUG(Op32.getNode()->dump(CurDAG));
   4086     DEBUG(dbgs() << "\n");
   4087 
   4088     ReplaceUses(N, Op32.getNode());
   4089   }
   4090 
   4091   if (MadeChange)
   4092     CurDAG->RemoveDeadNodes();
   4093 }
   4094 
   4095 void PPCDAGToDAGISel::PeepholePPC64() {
   4096   // These optimizations are currently supported only for 64-bit SVR4.
   4097   if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
   4098     return;
   4099 
   4100   SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
   4101   ++Position;
   4102 
   4103   while (Position != CurDAG->allnodes_begin()) {
   4104     SDNode *N = --Position;
   4105     // Skip dead nodes and any non-machine opcodes.
   4106     if (N->use_empty() || !N->isMachineOpcode())
   4107       continue;
   4108 
   4109     unsigned FirstOp;
   4110     unsigned StorageOpcode = N->getMachineOpcode();
   4111 
   4112     switch (StorageOpcode) {
   4113     default: continue;
   4114 
   4115     case PPC::LBZ:
   4116     case PPC::LBZ8:
   4117     case PPC::LD:
   4118     case PPC::LFD:
   4119     case PPC::LFS:
   4120     case PPC::LHA:
   4121     case PPC::LHA8:
   4122     case PPC::LHZ:
   4123     case PPC::LHZ8:
   4124     case PPC::LWA:
   4125     case PPC::LWZ:
   4126     case PPC::LWZ8:
   4127       FirstOp = 0;
   4128       break;
   4129 
   4130     case PPC::STB:
   4131     case PPC::STB8:
   4132     case PPC::STD:
   4133     case PPC::STFD:
   4134     case PPC::STFS:
   4135     case PPC::STH:
   4136     case PPC::STH8:
   4137     case PPC::STW:
   4138     case PPC::STW8:
   4139       FirstOp = 1;
   4140       break;
   4141     }
   4142 
   4143     // If this is a load or store with a zero offset, we may be able to
   4144     // fold an add-immediate into the memory operation.
   4145     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
   4146         N->getConstantOperandVal(FirstOp) != 0)
   4147       continue;
   4148 
   4149     SDValue Base = N->getOperand(FirstOp + 1);
   4150     if (!Base.isMachineOpcode())
   4151       continue;
   4152 
   4153     unsigned Flags = 0;
   4154     bool ReplaceFlags = true;
   4155 
   4156     // When the feeding operation is an add-immediate of some sort,
   4157     // determine whether we need to add relocation information to the
   4158     // target flags on the immediate operand when we fold it into the
   4159     // load instruction.
   4160     //
   4161     // For something like ADDItocL, the relocation information is
   4162     // inferred from the opcode; when we process it in the AsmPrinter,
   4163     // we add the necessary relocation there.  A load, though, can receive
   4164     // relocation from various flavors of ADDIxxx, so we need to carry
   4165     // the relocation information in the target flags.
   4166     switch (Base.getMachineOpcode()) {
   4167     default: continue;
   4168 
   4169     case PPC::ADDI8:
   4170     case PPC::ADDI:
   4171       // In some cases (such as TLS) the relocation information
   4172       // is already in place on the operand, so copying the operand
   4173       // is sufficient.
   4174       ReplaceFlags = false;
   4175       // For these cases, the immediate may not be divisible by 4, in
   4176       // which case the fold is illegal for DS-form instructions.  (The
   4177       // other cases provide aligned addresses and are always safe.)
   4178       if ((StorageOpcode == PPC::LWA ||
   4179            StorageOpcode == PPC::LD  ||
   4180            StorageOpcode == PPC::STD) &&
   4181           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
   4182            Base.getConstantOperandVal(1) % 4 != 0))
   4183         continue;
   4184       break;
   4185     case PPC::ADDIdtprelL:
   4186       Flags = PPCII::MO_DTPREL_LO;
   4187       break;
   4188     case PPC::ADDItlsldL:
   4189       Flags = PPCII::MO_TLSLD_LO;
   4190       break;
   4191     case PPC::ADDItocL:
   4192       Flags = PPCII::MO_TOC_LO;
   4193       break;
   4194     }
   4195 
   4196     // We found an opportunity.  Reverse the operands from the add
   4197     // immediate and substitute them into the load or store.  If
   4198     // needed, update the target flags for the immediate operand to
   4199     // reflect the necessary relocation information.
   4200     DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
   4201     DEBUG(Base->dump(CurDAG));
   4202     DEBUG(dbgs() << "\nN: ");
   4203     DEBUG(N->dump(CurDAG));
   4204     DEBUG(dbgs() << "\n");
   4205 
   4206     SDValue ImmOpnd = Base.getOperand(1);
   4207 
   4208     // If the relocation information isn't already present on the
   4209     // immediate operand, add it now.
   4210     if (ReplaceFlags) {
   4211       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
   4212         SDLoc dl(GA);
   4213         const GlobalValue *GV = GA->getGlobal();
   4214         // We can't perform this optimization for data whose alignment
   4215         // is insufficient for the instruction encoding.
   4216         if (GV->getAlignment() < 4 &&
   4217             (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
   4218              StorageOpcode == PPC::LWA)) {
   4219           DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
   4220           continue;
   4221         }
   4222         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
   4223       } else if (ConstantPoolSDNode *CP =
   4224                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
   4225         const Constant *C = CP->getConstVal();
   4226         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
   4227                                                 CP->getAlignment(),
   4228                                                 0, Flags);
   4229       }
   4230     }
   4231 
   4232     if (FirstOp == 1) // Store
   4233       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
   4234                                        Base.getOperand(0), N->getOperand(3));
   4235     else // Load
   4236       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
   4237                                        N->getOperand(2));
   4238 
   4239     // The add-immediate may now be dead, in which case remove it.
   4240     if (Base.getNode()->use_empty())
   4241       CurDAG->RemoveDeadNode(Base.getNode());
   4242   }
   4243 }
   4244 
   4245 
   4246 /// createPPCISelDag - This pass converts a legalized DAG into a
   4247 /// PowerPC-specific DAG, ready for instruction scheduling.
   4248 ///
   4249 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
   4250   return new PPCDAGToDAGISel(TM);
   4251 }
   4252 
   4253 static void initializePassOnce(PassRegistry &Registry) {
   4254   const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
   4255   PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
   4256                               nullptr, false, false);
   4257   Registry.registerPass(*PI, true);
   4258 }
   4259 
   4260 void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
   4261   CALL_ONCE_INITIALIZATION(initializePassOnce);
   4262 }
   4263 
   4264