Home | History | Annotate | Download | only in Instrumentation
      1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of AddressSanitizer, an address sanity checker.
     11 // Details of the algorithm:
     12 //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Instrumentation.h"
     17 #include "llvm/ADT/ArrayRef.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/DenseSet.h"
     20 #include "llvm/ADT/DepthFirstIterator.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/ADT/Triple.h"
     27 #include "llvm/Analysis/MemoryBuiltins.h"
     28 #include "llvm/Analysis/TargetLibraryInfo.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/IR/CallSite.h"
     31 #include "llvm/IR/DIBuilder.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/Dominators.h"
     34 #include "llvm/IR/Function.h"
     35 #include "llvm/IR/IRBuilder.h"
     36 #include "llvm/IR/InlineAsm.h"
     37 #include "llvm/IR/InstVisitor.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/LLVMContext.h"
     40 #include "llvm/IR/MDBuilder.h"
     41 #include "llvm/IR/Module.h"
     42 #include "llvm/IR/Type.h"
     43 #include "llvm/MC/MCSectionMachO.h"
     44 #include "llvm/Support/CommandLine.h"
     45 #include "llvm/Support/DataTypes.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/Endian.h"
     48 #include "llvm/Support/SwapByteOrder.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include "llvm/Transforms/Scalar.h"
     51 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
     52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     53 #include "llvm/Transforms/Utils/Cloning.h"
     54 #include "llvm/Transforms/Utils/Local.h"
     55 #include "llvm/Transforms/Utils/ModuleUtils.h"
     56 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     57 #include <algorithm>
     58 #include <string>
     59 #include <system_error>
     60 
     61 using namespace llvm;
     62 
     63 #define DEBUG_TYPE "asan"
     64 
     65 static const uint64_t kDefaultShadowScale = 3;
     66 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
     67 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
     68 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
     69 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
     70 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
     71 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
     72 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
     73 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
     74 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
     75 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
     76 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
     77 
     78 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
     79 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
     80 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
     81 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
     82 
     83 static const char *const kAsanModuleCtorName = "asan.module_ctor";
     84 static const char *const kAsanModuleDtorName = "asan.module_dtor";
     85 static const uint64_t kAsanCtorAndDtorPriority = 1;
     86 static const char *const kAsanReportErrorTemplate = "__asan_report_";
     87 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
     88 static const char *const kAsanUnregisterGlobalsName =
     89     "__asan_unregister_globals";
     90 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
     91 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
     92 static const char *const kAsanInitName = "__asan_init_v5";
     93 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
     94 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
     95 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
     96 static const int kMaxAsanStackMallocSizeClass = 10;
     97 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
     98 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
     99 static const char *const kAsanGenPrefix = "__asan_gen_";
    100 static const char *const kSanCovGenPrefix = "__sancov_gen_";
    101 static const char *const kAsanPoisonStackMemoryName =
    102     "__asan_poison_stack_memory";
    103 static const char *const kAsanUnpoisonStackMemoryName =
    104     "__asan_unpoison_stack_memory";
    105 
    106 static const char *const kAsanOptionDetectUAR =
    107     "__asan_option_detect_stack_use_after_return";
    108 
    109 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
    110 static const size_t kNumberOfAccessSizes = 5;
    111 
    112 static const unsigned kAllocaRzSize = 32;
    113 static const unsigned kAsanAllocaLeftMagic = 0xcacacacaU;
    114 static const unsigned kAsanAllocaRightMagic = 0xcbcbcbcbU;
    115 static const unsigned kAsanAllocaPartialVal1 = 0xcbcbcb00U;
    116 static const unsigned kAsanAllocaPartialVal2 = 0x000000cbU;
    117 
    118 // Command-line flags.
    119 
    120 // This flag may need to be replaced with -f[no-]asan-reads.
    121 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
    122                                        cl::desc("instrument read instructions"),
    123                                        cl::Hidden, cl::init(true));
    124 static cl::opt<bool> ClInstrumentWrites(
    125     "asan-instrument-writes", cl::desc("instrument write instructions"),
    126     cl::Hidden, cl::init(true));
    127 static cl::opt<bool> ClInstrumentAtomics(
    128     "asan-instrument-atomics",
    129     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
    130     cl::init(true));
    131 static cl::opt<bool> ClAlwaysSlowPath(
    132     "asan-always-slow-path",
    133     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
    134     cl::init(false));
    135 // This flag limits the number of instructions to be instrumented
    136 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
    137 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
    138 // set it to 10000.
    139 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
    140     "asan-max-ins-per-bb", cl::init(10000),
    141     cl::desc("maximal number of instructions to instrument in any given BB"),
    142     cl::Hidden);
    143 // This flag may need to be replaced with -f[no]asan-stack.
    144 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
    145                              cl::Hidden, cl::init(true));
    146 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
    147                                       cl::desc("Check return-after-free"),
    148                                       cl::Hidden, cl::init(true));
    149 // This flag may need to be replaced with -f[no]asan-globals.
    150 static cl::opt<bool> ClGlobals("asan-globals",
    151                                cl::desc("Handle global objects"), cl::Hidden,
    152                                cl::init(true));
    153 static cl::opt<bool> ClInitializers("asan-initialization-order",
    154                                     cl::desc("Handle C++ initializer order"),
    155                                     cl::Hidden, cl::init(true));
    156 static cl::opt<bool> ClInvalidPointerPairs(
    157     "asan-detect-invalid-pointer-pair",
    158     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
    159     cl::init(false));
    160 static cl::opt<unsigned> ClRealignStack(
    161     "asan-realign-stack",
    162     cl::desc("Realign stack to the value of this flag (power of two)"),
    163     cl::Hidden, cl::init(32));
    164 static cl::opt<int> ClInstrumentationWithCallsThreshold(
    165     "asan-instrumentation-with-call-threshold",
    166     cl::desc(
    167         "If the function being instrumented contains more than "
    168         "this number of memory accesses, use callbacks instead of "
    169         "inline checks (-1 means never use callbacks)."),
    170     cl::Hidden, cl::init(7000));
    171 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
    172     "asan-memory-access-callback-prefix",
    173     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
    174     cl::init("__asan_"));
    175 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
    176                                          cl::desc("instrument dynamic allocas"),
    177                                          cl::Hidden, cl::init(false));
    178 static cl::opt<bool> ClSkipPromotableAllocas(
    179     "asan-skip-promotable-allocas",
    180     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
    181     cl::init(true));
    182 
    183 // These flags allow to change the shadow mapping.
    184 // The shadow mapping looks like
    185 //    Shadow = (Mem >> scale) + (1 << offset_log)
    186 static cl::opt<int> ClMappingScale("asan-mapping-scale",
    187                                    cl::desc("scale of asan shadow mapping"),
    188                                    cl::Hidden, cl::init(0));
    189 
    190 // Optimization flags. Not user visible, used mostly for testing
    191 // and benchmarking the tool.
    192 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
    193                            cl::Hidden, cl::init(true));
    194 static cl::opt<bool> ClOptSameTemp(
    195     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
    196     cl::Hidden, cl::init(true));
    197 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
    198                                   cl::desc("Don't instrument scalar globals"),
    199                                   cl::Hidden, cl::init(true));
    200 static cl::opt<bool> ClOptStack(
    201     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
    202     cl::Hidden, cl::init(false));
    203 
    204 static cl::opt<bool> ClCheckLifetime(
    205     "asan-check-lifetime",
    206     cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden,
    207     cl::init(false));
    208 
    209 static cl::opt<bool> ClDynamicAllocaStack(
    210     "asan-stack-dynamic-alloca",
    211     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
    212     cl::init(true));
    213 
    214 static cl::opt<uint32_t> ClForceExperiment(
    215     "asan-force-experiment",
    216     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
    217     cl::init(0));
    218 
    219 // Debug flags.
    220 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
    221                             cl::init(0));
    222 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
    223                                  cl::Hidden, cl::init(0));
    224 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
    225                                         cl::desc("Debug func"));
    226 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
    227                                cl::Hidden, cl::init(-1));
    228 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
    229                                cl::Hidden, cl::init(-1));
    230 
    231 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
    232 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
    233 STATISTIC(NumInstrumentedDynamicAllocas,
    234           "Number of instrumented dynamic allocas");
    235 STATISTIC(NumOptimizedAccessesToGlobalVar,
    236           "Number of optimized accesses to global vars");
    237 STATISTIC(NumOptimizedAccessesToStackVar,
    238           "Number of optimized accesses to stack vars");
    239 
    240 namespace {
    241 /// Frontend-provided metadata for source location.
    242 struct LocationMetadata {
    243   StringRef Filename;
    244   int LineNo;
    245   int ColumnNo;
    246 
    247   LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
    248 
    249   bool empty() const { return Filename.empty(); }
    250 
    251   void parse(MDNode *MDN) {
    252     assert(MDN->getNumOperands() == 3);
    253     MDString *MDFilename = cast<MDString>(MDN->getOperand(0));
    254     Filename = MDFilename->getString();
    255     LineNo =
    256         mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
    257     ColumnNo =
    258         mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
    259   }
    260 };
    261 
    262 /// Frontend-provided metadata for global variables.
    263 class GlobalsMetadata {
    264  public:
    265   struct Entry {
    266     Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
    267     LocationMetadata SourceLoc;
    268     StringRef Name;
    269     bool IsDynInit;
    270     bool IsBlacklisted;
    271   };
    272 
    273   GlobalsMetadata() : inited_(false) {}
    274 
    275   void init(Module &M) {
    276     assert(!inited_);
    277     inited_ = true;
    278     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
    279     if (!Globals) return;
    280     for (auto MDN : Globals->operands()) {
    281       // Metadata node contains the global and the fields of "Entry".
    282       assert(MDN->getNumOperands() == 5);
    283       auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
    284       // The optimizer may optimize away a global entirely.
    285       if (!GV) continue;
    286       // We can already have an entry for GV if it was merged with another
    287       // global.
    288       Entry &E = Entries[GV];
    289       if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
    290         E.SourceLoc.parse(Loc);
    291       if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
    292         E.Name = Name->getString();
    293       ConstantInt *IsDynInit =
    294           mdconst::extract<ConstantInt>(MDN->getOperand(3));
    295       E.IsDynInit |= IsDynInit->isOne();
    296       ConstantInt *IsBlacklisted =
    297           mdconst::extract<ConstantInt>(MDN->getOperand(4));
    298       E.IsBlacklisted |= IsBlacklisted->isOne();
    299     }
    300   }
    301 
    302   /// Returns metadata entry for a given global.
    303   Entry get(GlobalVariable *G) const {
    304     auto Pos = Entries.find(G);
    305     return (Pos != Entries.end()) ? Pos->second : Entry();
    306   }
    307 
    308  private:
    309   bool inited_;
    310   DenseMap<GlobalVariable *, Entry> Entries;
    311 };
    312 
    313 /// This struct defines the shadow mapping using the rule:
    314 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
    315 struct ShadowMapping {
    316   int Scale;
    317   uint64_t Offset;
    318   bool OrShadowOffset;
    319 };
    320 
    321 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize) {
    322   bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
    323   bool IsIOS = TargetTriple.isiOS();
    324   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
    325   bool IsLinux = TargetTriple.isOSLinux();
    326   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
    327                  TargetTriple.getArch() == llvm::Triple::ppc64le;
    328   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
    329   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
    330                   TargetTriple.getArch() == llvm::Triple::mipsel;
    331   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
    332                   TargetTriple.getArch() == llvm::Triple::mips64el;
    333   bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
    334   bool IsWindows = TargetTriple.isOSWindows();
    335 
    336   ShadowMapping Mapping;
    337 
    338   if (LongSize == 32) {
    339     if (IsAndroid)
    340       Mapping.Offset = 0;
    341     else if (IsMIPS32)
    342       Mapping.Offset = kMIPS32_ShadowOffset32;
    343     else if (IsFreeBSD)
    344       Mapping.Offset = kFreeBSD_ShadowOffset32;
    345     else if (IsIOS)
    346       Mapping.Offset = kIOSShadowOffset32;
    347     else if (IsWindows)
    348       Mapping.Offset = kWindowsShadowOffset32;
    349     else
    350       Mapping.Offset = kDefaultShadowOffset32;
    351   } else {  // LongSize == 64
    352     if (IsPPC64)
    353       Mapping.Offset = kPPC64_ShadowOffset64;
    354     else if (IsFreeBSD)
    355       Mapping.Offset = kFreeBSD_ShadowOffset64;
    356     else if (IsLinux && IsX86_64)
    357       Mapping.Offset = kSmallX86_64ShadowOffset;
    358     else if (IsMIPS64)
    359       Mapping.Offset = kMIPS64_ShadowOffset64;
    360     else if (IsAArch64)
    361       Mapping.Offset = kAArch64_ShadowOffset64;
    362     else
    363       Mapping.Offset = kDefaultShadowOffset64;
    364   }
    365 
    366   Mapping.Scale = kDefaultShadowScale;
    367   if (ClMappingScale) {
    368     Mapping.Scale = ClMappingScale;
    369   }
    370 
    371   // OR-ing shadow offset if more efficient (at least on x86) if the offset
    372   // is a power of two, but on ppc64 we have to use add since the shadow
    373   // offset is not necessary 1/8-th of the address space.
    374   Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1));
    375 
    376   return Mapping;
    377 }
    378 
    379 static size_t RedzoneSizeForScale(int MappingScale) {
    380   // Redzone used for stack and globals is at least 32 bytes.
    381   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
    382   return std::max(32U, 1U << MappingScale);
    383 }
    384 
    385 /// AddressSanitizer: instrument the code in module to find memory bugs.
    386 struct AddressSanitizer : public FunctionPass {
    387   AddressSanitizer() : FunctionPass(ID) {
    388     initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
    389   }
    390   const char *getPassName() const override {
    391     return "AddressSanitizerFunctionPass";
    392   }
    393   void getAnalysisUsage(AnalysisUsage &AU) const override {
    394     AU.addRequired<DominatorTreeWrapperPass>();
    395     AU.addRequired<TargetLibraryInfoWrapperPass>();
    396   }
    397   uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
    398     Type *Ty = AI->getAllocatedType();
    399     uint64_t SizeInBytes =
    400         AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
    401     return SizeInBytes;
    402   }
    403   /// Check if we want (and can) handle this alloca.
    404   bool isInterestingAlloca(AllocaInst &AI);
    405   /// If it is an interesting memory access, return the PointerOperand
    406   /// and set IsWrite/Alignment. Otherwise return nullptr.
    407   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
    408                                    uint64_t *TypeSize,
    409                                    unsigned *Alignment);
    410   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
    411                      bool UseCalls, const DataLayout &DL);
    412   void instrumentPointerComparisonOrSubtraction(Instruction *I);
    413   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
    414                          Value *Addr, uint32_t TypeSize, bool IsWrite,
    415                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
    416   void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
    417                                         uint32_t TypeSize, bool IsWrite,
    418                                         Value *SizeArgument, bool UseCalls,
    419                                         uint32_t Exp);
    420   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    421                            Value *ShadowValue, uint32_t TypeSize);
    422   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
    423                                  bool IsWrite, size_t AccessSizeIndex,
    424                                  Value *SizeArgument, uint32_t Exp);
    425   void instrumentMemIntrinsic(MemIntrinsic *MI);
    426   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
    427   bool runOnFunction(Function &F) override;
    428   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
    429   bool doInitialization(Module &M) override;
    430   static char ID;  // Pass identification, replacement for typeid
    431 
    432   DominatorTree &getDominatorTree() const { return *DT; }
    433 
    434  private:
    435   void initializeCallbacks(Module &M);
    436 
    437   bool LooksLikeCodeInBug11395(Instruction *I);
    438   bool GlobalIsLinkerInitialized(GlobalVariable *G);
    439   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
    440                     uint64_t TypeSize) const;
    441 
    442   LLVMContext *C;
    443   Triple TargetTriple;
    444   int LongSize;
    445   Type *IntptrTy;
    446   ShadowMapping Mapping;
    447   DominatorTree *DT;
    448   Function *AsanCtorFunction;
    449   Function *AsanInitFunction;
    450   Function *AsanHandleNoReturnFunc;
    451   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
    452   // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
    453   Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
    454   Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
    455   // This array is indexed by AccessIsWrite and Experiment.
    456   Function *AsanErrorCallbackSized[2][2];
    457   Function *AsanMemoryAccessCallbackSized[2][2];
    458   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
    459   InlineAsm *EmptyAsm;
    460   GlobalsMetadata GlobalsMD;
    461   DenseMap<AllocaInst *, bool> ProcessedAllocas;
    462 
    463   friend struct FunctionStackPoisoner;
    464 };
    465 
    466 class AddressSanitizerModule : public ModulePass {
    467  public:
    468   AddressSanitizerModule() : ModulePass(ID) {}
    469   bool runOnModule(Module &M) override;
    470   static char ID;  // Pass identification, replacement for typeid
    471   const char *getPassName() const override { return "AddressSanitizerModule"; }
    472 
    473  private:
    474   void initializeCallbacks(Module &M);
    475 
    476   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
    477   bool ShouldInstrumentGlobal(GlobalVariable *G);
    478   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
    479   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
    480   size_t MinRedzoneSizeForGlobal() const {
    481     return RedzoneSizeForScale(Mapping.Scale);
    482   }
    483 
    484   GlobalsMetadata GlobalsMD;
    485   Type *IntptrTy;
    486   LLVMContext *C;
    487   Triple TargetTriple;
    488   ShadowMapping Mapping;
    489   Function *AsanPoisonGlobals;
    490   Function *AsanUnpoisonGlobals;
    491   Function *AsanRegisterGlobals;
    492   Function *AsanUnregisterGlobals;
    493 };
    494 
    495 // Stack poisoning does not play well with exception handling.
    496 // When an exception is thrown, we essentially bypass the code
    497 // that unpoisones the stack. This is why the run-time library has
    498 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
    499 // stack in the interceptor. This however does not work inside the
    500 // actual function which catches the exception. Most likely because the
    501 // compiler hoists the load of the shadow value somewhere too high.
    502 // This causes asan to report a non-existing bug on 453.povray.
    503 // It sounds like an LLVM bug.
    504 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
    505   Function &F;
    506   AddressSanitizer &ASan;
    507   DIBuilder DIB;
    508   LLVMContext *C;
    509   Type *IntptrTy;
    510   Type *IntptrPtrTy;
    511   ShadowMapping Mapping;
    512 
    513   SmallVector<AllocaInst *, 16> AllocaVec;
    514   SmallVector<Instruction *, 8> RetVec;
    515   unsigned StackAlignment;
    516 
    517   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
    518       *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
    519   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
    520 
    521   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
    522   struct AllocaPoisonCall {
    523     IntrinsicInst *InsBefore;
    524     AllocaInst *AI;
    525     uint64_t Size;
    526     bool DoPoison;
    527   };
    528   SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
    529 
    530   // Stores left and right redzone shadow addresses for dynamic alloca
    531   // and pointer to alloca instruction itself.
    532   // LeftRzAddr is a shadow address for alloca left redzone.
    533   // RightRzAddr is a shadow address for alloca right redzone.
    534   struct DynamicAllocaCall {
    535     AllocaInst *AI;
    536     Value *LeftRzAddr;
    537     Value *RightRzAddr;
    538     bool Poison;
    539     explicit DynamicAllocaCall(AllocaInst *AI, Value *LeftRzAddr = nullptr,
    540                                Value *RightRzAddr = nullptr)
    541         : AI(AI),
    542           LeftRzAddr(LeftRzAddr),
    543           RightRzAddr(RightRzAddr),
    544           Poison(true) {}
    545   };
    546   SmallVector<DynamicAllocaCall, 1> DynamicAllocaVec;
    547 
    548   // Maps Value to an AllocaInst from which the Value is originated.
    549   typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
    550   AllocaForValueMapTy AllocaForValue;
    551 
    552   bool HasNonEmptyInlineAsm;
    553   std::unique_ptr<CallInst> EmptyInlineAsm;
    554 
    555   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
    556       : F(F),
    557         ASan(ASan),
    558         DIB(*F.getParent(), /*AllowUnresolved*/ false),
    559         C(ASan.C),
    560         IntptrTy(ASan.IntptrTy),
    561         IntptrPtrTy(PointerType::get(IntptrTy, 0)),
    562         Mapping(ASan.Mapping),
    563         StackAlignment(1 << Mapping.Scale),
    564         HasNonEmptyInlineAsm(false),
    565         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
    566 
    567   bool runOnFunction() {
    568     if (!ClStack) return false;
    569     // Collect alloca, ret, lifetime instructions etc.
    570     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
    571 
    572     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
    573 
    574     initializeCallbacks(*F.getParent());
    575 
    576     poisonStack();
    577 
    578     if (ClDebugStack) {
    579       DEBUG(dbgs() << F);
    580     }
    581     return true;
    582   }
    583 
    584   // Finds all Alloca instructions and puts
    585   // poisoned red zones around all of them.
    586   // Then unpoison everything back before the function returns.
    587   void poisonStack();
    588 
    589   // ----------------------- Visitors.
    590   /// \brief Collect all Ret instructions.
    591   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
    592 
    593   // Unpoison dynamic allocas redzones.
    594   void unpoisonDynamicAlloca(DynamicAllocaCall &AllocaCall) {
    595     if (!AllocaCall.Poison) return;
    596     for (auto Ret : RetVec) {
    597       IRBuilder<> IRBRet(Ret);
    598       PointerType *Int32PtrTy = PointerType::getUnqual(IRBRet.getInt32Ty());
    599       Value *Zero = Constant::getNullValue(IRBRet.getInt32Ty());
    600       Value *PartialRzAddr = IRBRet.CreateSub(AllocaCall.RightRzAddr,
    601                                               ConstantInt::get(IntptrTy, 4));
    602       IRBRet.CreateStore(
    603           Zero, IRBRet.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy));
    604       IRBRet.CreateStore(Zero,
    605                          IRBRet.CreateIntToPtr(PartialRzAddr, Int32PtrTy));
    606       IRBRet.CreateStore(
    607           Zero, IRBRet.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy));
    608     }
    609   }
    610 
    611   // Right shift for BigEndian and left shift for LittleEndian.
    612   Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) {
    613     auto &DL = F.getParent()->getDataLayout();
    614     return DL.isLittleEndian() ? IRB.CreateShl(Val, Shift)
    615                                : IRB.CreateLShr(Val, Shift);
    616   }
    617 
    618   // Compute PartialRzMagic for dynamic alloca call. Since we don't know the
    619   // size of requested memory until runtime, we should compute it dynamically.
    620   // If PartialSize is 0, PartialRzMagic would contain kAsanAllocaRightMagic,
    621   // otherwise it would contain the value that we will use to poison the
    622   // partial redzone for alloca call.
    623   Value *computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB);
    624 
    625   // Deploy and poison redzones around dynamic alloca call. To do this, we
    626   // should replace this call with another one with changed parameters and
    627   // replace all its uses with new address, so
    628   //   addr = alloca type, old_size, align
    629   // is replaced by
    630   //   new_size = (old_size + additional_size) * sizeof(type)
    631   //   tmp = alloca i8, new_size, max(align, 32)
    632   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
    633   // Additional_size is added to make new memory allocation contain not only
    634   // requested memory, but also left, partial and right redzones.
    635   // After that, we should poison redzones:
    636   // (1) Left redzone with kAsanAllocaLeftMagic.
    637   // (2) Partial redzone with the value, computed in runtime by
    638   //     computePartialRzMagic function.
    639   // (3) Right redzone with kAsanAllocaRightMagic.
    640   void handleDynamicAllocaCall(DynamicAllocaCall &AllocaCall);
    641 
    642   /// \brief Collect Alloca instructions we want (and can) handle.
    643   void visitAllocaInst(AllocaInst &AI) {
    644     if (!ASan.isInterestingAlloca(AI)) return;
    645 
    646     StackAlignment = std::max(StackAlignment, AI.getAlignment());
    647     if (isDynamicAlloca(AI))
    648       DynamicAllocaVec.push_back(DynamicAllocaCall(&AI));
    649     else
    650       AllocaVec.push_back(&AI);
    651   }
    652 
    653   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
    654   /// errors.
    655   void visitIntrinsicInst(IntrinsicInst &II) {
    656     if (!ClCheckLifetime) return;
    657     Intrinsic::ID ID = II.getIntrinsicID();
    658     if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
    659       return;
    660     // Found lifetime intrinsic, add ASan instrumentation if necessary.
    661     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
    662     // If size argument is undefined, don't do anything.
    663     if (Size->isMinusOne()) return;
    664     // Check that size doesn't saturate uint64_t and can
    665     // be stored in IntptrTy.
    666     const uint64_t SizeValue = Size->getValue().getLimitedValue();
    667     if (SizeValue == ~0ULL ||
    668         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
    669       return;
    670     // Find alloca instruction that corresponds to llvm.lifetime argument.
    671     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    672     if (!AI) return;
    673     bool DoPoison = (ID == Intrinsic::lifetime_end);
    674     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
    675     AllocaPoisonCallVec.push_back(APC);
    676   }
    677 
    678   void visitCallInst(CallInst &CI) {
    679     HasNonEmptyInlineAsm |=
    680         CI.isInlineAsm() && !CI.isIdenticalTo(EmptyInlineAsm.get());
    681   }
    682 
    683   // ---------------------- Helpers.
    684   void initializeCallbacks(Module &M);
    685 
    686   bool doesDominateAllExits(const Instruction *I) const {
    687     for (auto Ret : RetVec) {
    688       if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
    689     }
    690     return true;
    691   }
    692 
    693   bool isDynamicAlloca(AllocaInst &AI) const {
    694     return AI.isArrayAllocation() || !AI.isStaticAlloca();
    695   }
    696   /// Finds alloca where the value comes from.
    697   AllocaInst *findAllocaForValue(Value *V);
    698   void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
    699                       Value *ShadowBase, bool DoPoison);
    700   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
    701 
    702   void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
    703                                           int Size);
    704   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
    705                                bool Dynamic);
    706   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
    707                      Instruction *ThenTerm, Value *ValueIfFalse);
    708 };
    709 
    710 }  // namespace
    711 
    712 char AddressSanitizer::ID = 0;
    713 INITIALIZE_PASS_BEGIN(
    714     AddressSanitizer, "asan",
    715     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    716     false)
    717 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    718 INITIALIZE_PASS_END(
    719     AddressSanitizer, "asan",
    720     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    721     false)
    722 FunctionPass *llvm::createAddressSanitizerFunctionPass() {
    723   return new AddressSanitizer();
    724 }
    725 
    726 char AddressSanitizerModule::ID = 0;
    727 INITIALIZE_PASS(
    728     AddressSanitizerModule, "asan-module",
    729     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    730     "ModulePass",
    731     false, false)
    732 ModulePass *llvm::createAddressSanitizerModulePass() {
    733   return new AddressSanitizerModule();
    734 }
    735 
    736 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
    737   size_t Res = countTrailingZeros(TypeSize / 8);
    738   assert(Res < kNumberOfAccessSizes);
    739   return Res;
    740 }
    741 
    742 // \brief Create a constant for Str so that we can pass it to the run-time lib.
    743 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
    744                                                     bool AllowMerging) {
    745   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    746   // We use private linkage for module-local strings. If they can be merged
    747   // with another one, we set the unnamed_addr attribute.
    748   GlobalVariable *GV =
    749       new GlobalVariable(M, StrConst->getType(), true,
    750                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
    751   if (AllowMerging) GV->setUnnamedAddr(true);
    752   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
    753   return GV;
    754 }
    755 
    756 /// \brief Create a global describing a source location.
    757 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
    758                                                        LocationMetadata MD) {
    759   Constant *LocData[] = {
    760       createPrivateGlobalForString(M, MD.Filename, true),
    761       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
    762       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
    763   };
    764   auto LocStruct = ConstantStruct::getAnon(LocData);
    765   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
    766                                GlobalValue::PrivateLinkage, LocStruct,
    767                                kAsanGenPrefix);
    768   GV->setUnnamedAddr(true);
    769   return GV;
    770 }
    771 
    772 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
    773   return G->getName().find(kAsanGenPrefix) == 0 ||
    774          G->getName().find(kSanCovGenPrefix) == 0;
    775 }
    776 
    777 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
    778   // Shadow >> scale
    779   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
    780   if (Mapping.Offset == 0) return Shadow;
    781   // (Shadow >> scale) | offset
    782   if (Mapping.OrShadowOffset)
    783     return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    784   else
    785     return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    786 }
    787 
    788 // Instrument memset/memmove/memcpy
    789 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
    790   IRBuilder<> IRB(MI);
    791   if (isa<MemTransferInst>(MI)) {
    792     IRB.CreateCall3(
    793         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
    794         IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
    795         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
    796         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
    797   } else if (isa<MemSetInst>(MI)) {
    798     IRB.CreateCall3(
    799         AsanMemset,
    800         IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
    801         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
    802         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
    803   }
    804   MI->eraseFromParent();
    805 }
    806 
    807 /// Check if we want (and can) handle this alloca.
    808 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
    809   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
    810 
    811   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
    812     return PreviouslySeenAllocaInfo->getSecond();
    813 
    814   bool IsInteresting = (AI.getAllocatedType()->isSized() &&
    815     // alloca() may be called with 0 size, ignore it.
    816     getAllocaSizeInBytes(&AI) > 0 &&
    817     // We are only interested in allocas not promotable to registers.
    818     // Promotable allocas are common under -O0.
    819     (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)));
    820 
    821   ProcessedAllocas[&AI] = IsInteresting;
    822   return IsInteresting;
    823 }
    824 
    825 /// If I is an interesting memory access, return the PointerOperand
    826 /// and set IsWrite/Alignment. Otherwise return nullptr.
    827 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
    828                                                    bool *IsWrite,
    829                                                    uint64_t *TypeSize,
    830                                                    unsigned *Alignment) {
    831   // Skip memory accesses inserted by another instrumentation.
    832   if (I->getMetadata("nosanitize")) return nullptr;
    833 
    834   Value *PtrOperand = nullptr;
    835   const DataLayout &DL = I->getModule()->getDataLayout();
    836   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    837     if (!ClInstrumentReads) return nullptr;
    838     *IsWrite = false;
    839     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
    840     *Alignment = LI->getAlignment();
    841     PtrOperand = LI->getPointerOperand();
    842   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    843     if (!ClInstrumentWrites) return nullptr;
    844     *IsWrite = true;
    845     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
    846     *Alignment = SI->getAlignment();
    847     PtrOperand = SI->getPointerOperand();
    848   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    849     if (!ClInstrumentAtomics) return nullptr;
    850     *IsWrite = true;
    851     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
    852     *Alignment = 0;
    853     PtrOperand = RMW->getPointerOperand();
    854   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    855     if (!ClInstrumentAtomics) return nullptr;
    856     *IsWrite = true;
    857     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
    858     *Alignment = 0;
    859     PtrOperand = XCHG->getPointerOperand();
    860   }
    861 
    862   // Treat memory accesses to promotable allocas as non-interesting since they
    863   // will not cause memory violations. This greatly speeds up the instrumented
    864   // executable at -O0.
    865   if (ClSkipPromotableAllocas)
    866     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
    867       return isInterestingAlloca(*AI) ? AI : nullptr;
    868 
    869   return PtrOperand;
    870 }
    871 
    872 static bool isPointerOperand(Value *V) {
    873   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
    874 }
    875 
    876 // This is a rough heuristic; it may cause both false positives and
    877 // false negatives. The proper implementation requires cooperation with
    878 // the frontend.
    879 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
    880   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
    881     if (!Cmp->isRelational()) return false;
    882   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    883     if (BO->getOpcode() != Instruction::Sub) return false;
    884   } else {
    885     return false;
    886   }
    887   if (!isPointerOperand(I->getOperand(0)) ||
    888       !isPointerOperand(I->getOperand(1)))
    889     return false;
    890   return true;
    891 }
    892 
    893 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
    894   // If a global variable does not have dynamic initialization we don't
    895   // have to instrument it.  However, if a global does not have initializer
    896   // at all, we assume it has dynamic initializer (in other TU).
    897   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
    898 }
    899 
    900 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
    901     Instruction *I) {
    902   IRBuilder<> IRB(I);
    903   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
    904   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
    905   for (int i = 0; i < 2; i++) {
    906     if (Param[i]->getType()->isPointerTy())
    907       Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
    908   }
    909   IRB.CreateCall2(F, Param[0], Param[1]);
    910 }
    911 
    912 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
    913                                      Instruction *I, bool UseCalls,
    914                                      const DataLayout &DL) {
    915   bool IsWrite = false;
    916   unsigned Alignment = 0;
    917   uint64_t TypeSize = 0;
    918   Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
    919   assert(Addr);
    920 
    921   // Optimization experiments.
    922   // The experiments can be used to evaluate potential optimizations that remove
    923   // instrumentation (assess false negatives). Instead of completely removing
    924   // some instrumentation, you set Exp to a non-zero value (mask of optimization
    925   // experiments that want to remove instrumentation of this instruction).
    926   // If Exp is non-zero, this pass will emit special calls into runtime
    927   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
    928   // make runtime terminate the program in a special way (with a different
    929   // exit status). Then you run the new compiler on a buggy corpus, collect
    930   // the special terminations (ideally, you don't see them at all -- no false
    931   // negatives) and make the decision on the optimization.
    932   uint32_t Exp = ClForceExperiment;
    933 
    934   if (ClOpt && ClOptGlobals) {
    935     // If initialization order checking is disabled, a simple access to a
    936     // dynamically initialized global is always valid.
    937     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
    938     if (G != NULL && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
    939         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
    940       NumOptimizedAccessesToGlobalVar++;
    941       return;
    942     }
    943   }
    944 
    945   if (ClOpt && ClOptStack) {
    946     // A direct inbounds access to a stack variable is always valid.
    947     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
    948         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
    949       NumOptimizedAccessesToStackVar++;
    950       return;
    951     }
    952   }
    953 
    954   if (IsWrite)
    955     NumInstrumentedWrites++;
    956   else
    957     NumInstrumentedReads++;
    958 
    959   unsigned Granularity = 1 << Mapping.Scale;
    960   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
    961   // if the data is properly aligned.
    962   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
    963        TypeSize == 128) &&
    964       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
    965     return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
    966                              Exp);
    967   instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
    968                                    UseCalls, Exp);
    969 }
    970 
    971 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
    972                                                  Value *Addr, bool IsWrite,
    973                                                  size_t AccessSizeIndex,
    974                                                  Value *SizeArgument,
    975                                                  uint32_t Exp) {
    976   IRBuilder<> IRB(InsertBefore);
    977   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
    978   CallInst *Call = nullptr;
    979   if (SizeArgument) {
    980     if (Exp == 0)
    981       Call = IRB.CreateCall2(AsanErrorCallbackSized[IsWrite][0], Addr,
    982                              SizeArgument);
    983     else
    984       Call = IRB.CreateCall3(AsanErrorCallbackSized[IsWrite][1], Addr,
    985                              SizeArgument, ExpVal);
    986   } else {
    987     if (Exp == 0)
    988       Call =
    989           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
    990     else
    991       Call = IRB.CreateCall2(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
    992                              Addr, ExpVal);
    993   }
    994 
    995   // We don't do Call->setDoesNotReturn() because the BB already has
    996   // UnreachableInst at the end.
    997   // This EmptyAsm is required to avoid callback merge.
    998   IRB.CreateCall(EmptyAsm);
    999   return Call;
   1000 }
   1001 
   1002 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
   1003                                            Value *ShadowValue,
   1004                                            uint32_t TypeSize) {
   1005   size_t Granularity = 1 << Mapping.Scale;
   1006   // Addr & (Granularity - 1)
   1007   Value *LastAccessedByte =
   1008       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
   1009   // (Addr & (Granularity - 1)) + size - 1
   1010   if (TypeSize / 8 > 1)
   1011     LastAccessedByte = IRB.CreateAdd(
   1012         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
   1013   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
   1014   LastAccessedByte =
   1015       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
   1016   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
   1017   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
   1018 }
   1019 
   1020 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
   1021                                          Instruction *InsertBefore, Value *Addr,
   1022                                          uint32_t TypeSize, bool IsWrite,
   1023                                          Value *SizeArgument, bool UseCalls,
   1024                                          uint32_t Exp) {
   1025   IRBuilder<> IRB(InsertBefore);
   1026   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
   1027   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
   1028 
   1029   if (UseCalls) {
   1030     if (Exp == 0)
   1031       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
   1032                      AddrLong);
   1033     else
   1034       IRB.CreateCall2(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
   1035                       AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp));
   1036     return;
   1037   }
   1038 
   1039   Type *ShadowTy =
   1040       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
   1041   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
   1042   Value *ShadowPtr = memToShadow(AddrLong, IRB);
   1043   Value *CmpVal = Constant::getNullValue(ShadowTy);
   1044   Value *ShadowValue =
   1045       IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
   1046 
   1047   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
   1048   size_t Granularity = 1 << Mapping.Scale;
   1049   TerminatorInst *CrashTerm = nullptr;
   1050 
   1051   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
   1052     // We use branch weights for the slow path check, to indicate that the slow
   1053     // path is rarely taken. This seems to be the case for SPEC benchmarks.
   1054     TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
   1055         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
   1056     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
   1057     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
   1058     IRB.SetInsertPoint(CheckTerm);
   1059     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
   1060     BasicBlock *CrashBlock =
   1061         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
   1062     CrashTerm = new UnreachableInst(*C, CrashBlock);
   1063     BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
   1064     ReplaceInstWithInst(CheckTerm, NewTerm);
   1065   } else {
   1066     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true);
   1067   }
   1068 
   1069   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
   1070                                          AccessSizeIndex, SizeArgument, Exp);
   1071   Crash->setDebugLoc(OrigIns->getDebugLoc());
   1072 }
   1073 
   1074 // Instrument unusual size or unusual alignment.
   1075 // We can not do it with a single check, so we do 1-byte check for the first
   1076 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
   1077 // to report the actual access size.
   1078 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
   1079     Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
   1080     Value *SizeArgument, bool UseCalls, uint32_t Exp) {
   1081   IRBuilder<> IRB(I);
   1082   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
   1083   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
   1084   if (UseCalls) {
   1085     if (Exp == 0)
   1086       IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite][0], AddrLong,
   1087                       Size);
   1088     else
   1089       IRB.CreateCall3(AsanMemoryAccessCallbackSized[IsWrite][1], AddrLong, Size,
   1090                       ConstantInt::get(IRB.getInt32Ty(), Exp));
   1091   } else {
   1092     Value *LastByte = IRB.CreateIntToPtr(
   1093         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
   1094         Addr->getType());
   1095     instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
   1096     instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
   1097   }
   1098 }
   1099 
   1100 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
   1101                                                   GlobalValue *ModuleName) {
   1102   // Set up the arguments to our poison/unpoison functions.
   1103   IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt());
   1104 
   1105   // Add a call to poison all external globals before the given function starts.
   1106   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
   1107   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
   1108 
   1109   // Add calls to unpoison all globals before each return instruction.
   1110   for (auto &BB : GlobalInit.getBasicBlockList())
   1111     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
   1112       CallInst::Create(AsanUnpoisonGlobals, "", RI);
   1113 }
   1114 
   1115 void AddressSanitizerModule::createInitializerPoisonCalls(
   1116     Module &M, GlobalValue *ModuleName) {
   1117   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
   1118 
   1119   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
   1120   for (Use &OP : CA->operands()) {
   1121     if (isa<ConstantAggregateZero>(OP)) continue;
   1122     ConstantStruct *CS = cast<ConstantStruct>(OP);
   1123 
   1124     // Must have a function or null ptr.
   1125     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
   1126       if (F->getName() == kAsanModuleCtorName) continue;
   1127       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1128       // Don't instrument CTORs that will run before asan.module_ctor.
   1129       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
   1130       poisonOneInitializer(*F, ModuleName);
   1131     }
   1132   }
   1133 }
   1134 
   1135 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
   1136   Type *Ty = cast<PointerType>(G->getType())->getElementType();
   1137   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
   1138 
   1139   if (GlobalsMD.get(G).IsBlacklisted) return false;
   1140   if (!Ty->isSized()) return false;
   1141   if (!G->hasInitializer()) return false;
   1142   if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
   1143   // Touch only those globals that will not be defined in other modules.
   1144   // Don't handle ODR linkage types and COMDATs since other modules may be built
   1145   // without ASan.
   1146   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
   1147       G->getLinkage() != GlobalVariable::PrivateLinkage &&
   1148       G->getLinkage() != GlobalVariable::InternalLinkage)
   1149     return false;
   1150   if (G->hasComdat()) return false;
   1151   // Two problems with thread-locals:
   1152   //   - The address of the main thread's copy can't be computed at link-time.
   1153   //   - Need to poison all copies, not just the main thread's one.
   1154   if (G->isThreadLocal()) return false;
   1155   // For now, just ignore this Global if the alignment is large.
   1156   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
   1157 
   1158   if (G->hasSection()) {
   1159     StringRef Section(G->getSection());
   1160 
   1161     if (TargetTriple.isOSBinFormatMachO()) {
   1162       StringRef ParsedSegment, ParsedSection;
   1163       unsigned TAA = 0, StubSize = 0;
   1164       bool TAAParsed;
   1165       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
   1166           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
   1167       if (!ErrorCode.empty()) {
   1168         report_fatal_error("Invalid section specifier '" + ParsedSection +
   1169                            "': " + ErrorCode + ".");
   1170       }
   1171 
   1172       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
   1173       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
   1174       // them.
   1175       if (ParsedSegment == "__OBJC" ||
   1176           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
   1177         DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
   1178         return false;
   1179       }
   1180       // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
   1181       // Constant CFString instances are compiled in the following way:
   1182       //  -- the string buffer is emitted into
   1183       //     __TEXT,__cstring,cstring_literals
   1184       //  -- the constant NSConstantString structure referencing that buffer
   1185       //     is placed into __DATA,__cfstring
   1186       // Therefore there's no point in placing redzones into __DATA,__cfstring.
   1187       // Moreover, it causes the linker to crash on OS X 10.7
   1188       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
   1189         DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
   1190         return false;
   1191       }
   1192       // The linker merges the contents of cstring_literals and removes the
   1193       // trailing zeroes.
   1194       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
   1195         DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
   1196         return false;
   1197       }
   1198     }
   1199 
   1200     // Callbacks put into the CRT initializer/terminator sections
   1201     // should not be instrumented.
   1202     // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
   1203     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
   1204     if (Section.startswith(".CRT")) {
   1205       DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
   1206       return false;
   1207     }
   1208 
   1209     // Globals from llvm.metadata aren't emitted, do not instrument them.
   1210     if (Section == "llvm.metadata") return false;
   1211   }
   1212 
   1213   return true;
   1214 }
   1215 
   1216 void AddressSanitizerModule::initializeCallbacks(Module &M) {
   1217   IRBuilder<> IRB(*C);
   1218   // Declare our poisoning and unpoisoning functions.
   1219   AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1220       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
   1221   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
   1222   AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1223       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
   1224   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
   1225   // Declare functions that register/unregister globals.
   1226   AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1227       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1228   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
   1229   AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
   1230       M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
   1231                             IntptrTy, IntptrTy, nullptr));
   1232   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
   1233 }
   1234 
   1235 // This function replaces all global variables with new variables that have
   1236 // trailing redzones. It also creates a function that poisons
   1237 // redzones and inserts this function into llvm.global_ctors.
   1238 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
   1239   GlobalsMD.init(M);
   1240 
   1241   SmallVector<GlobalVariable *, 16> GlobalsToChange;
   1242 
   1243   for (auto &G : M.globals()) {
   1244     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
   1245   }
   1246 
   1247   size_t n = GlobalsToChange.size();
   1248   if (n == 0) return false;
   1249 
   1250   // A global is described by a structure
   1251   //   size_t beg;
   1252   //   size_t size;
   1253   //   size_t size_with_redzone;
   1254   //   const char *name;
   1255   //   const char *module_name;
   1256   //   size_t has_dynamic_init;
   1257   //   void *source_location;
   1258   // We initialize an array of such structures and pass it to a run-time call.
   1259   StructType *GlobalStructTy =
   1260       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
   1261                       IntptrTy, IntptrTy, nullptr);
   1262   SmallVector<Constant *, 16> Initializers(n);
   1263 
   1264   bool HasDynamicallyInitializedGlobals = false;
   1265 
   1266   // We shouldn't merge same module names, as this string serves as unique
   1267   // module ID in runtime.
   1268   GlobalVariable *ModuleName = createPrivateGlobalForString(
   1269       M, M.getModuleIdentifier(), /*AllowMerging*/ false);
   1270 
   1271   auto &DL = M.getDataLayout();
   1272   for (size_t i = 0; i < n; i++) {
   1273     static const uint64_t kMaxGlobalRedzone = 1 << 18;
   1274     GlobalVariable *G = GlobalsToChange[i];
   1275 
   1276     auto MD = GlobalsMD.get(G);
   1277     // Create string holding the global name (use global name from metadata
   1278     // if it's available, otherwise just write the name of global variable).
   1279     GlobalVariable *Name = createPrivateGlobalForString(
   1280         M, MD.Name.empty() ? G->getName() : MD.Name,
   1281         /*AllowMerging*/ true);
   1282 
   1283     PointerType *PtrTy = cast<PointerType>(G->getType());
   1284     Type *Ty = PtrTy->getElementType();
   1285     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
   1286     uint64_t MinRZ = MinRedzoneSizeForGlobal();
   1287     // MinRZ <= RZ <= kMaxGlobalRedzone
   1288     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
   1289     uint64_t RZ = std::max(
   1290         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
   1291     uint64_t RightRedzoneSize = RZ;
   1292     // Round up to MinRZ
   1293     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
   1294     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
   1295     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
   1296 
   1297     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
   1298     Constant *NewInitializer =
   1299         ConstantStruct::get(NewTy, G->getInitializer(),
   1300                             Constant::getNullValue(RightRedZoneTy), nullptr);
   1301 
   1302     // Create a new global variable with enough space for a redzone.
   1303     GlobalValue::LinkageTypes Linkage = G->getLinkage();
   1304     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
   1305       Linkage = GlobalValue::InternalLinkage;
   1306     GlobalVariable *NewGlobal =
   1307         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
   1308                            "", G, G->getThreadLocalMode());
   1309     NewGlobal->copyAttributesFrom(G);
   1310     NewGlobal->setAlignment(MinRZ);
   1311 
   1312     Value *Indices2[2];
   1313     Indices2[0] = IRB.getInt32(0);
   1314     Indices2[1] = IRB.getInt32(0);
   1315 
   1316     G->replaceAllUsesWith(
   1317         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
   1318     NewGlobal->takeName(G);
   1319     G->eraseFromParent();
   1320 
   1321     Constant *SourceLoc;
   1322     if (!MD.SourceLoc.empty()) {
   1323       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
   1324       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
   1325     } else {
   1326       SourceLoc = ConstantInt::get(IntptrTy, 0);
   1327     }
   1328 
   1329     Initializers[i] = ConstantStruct::get(
   1330         GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
   1331         ConstantInt::get(IntptrTy, SizeInBytes),
   1332         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
   1333         ConstantExpr::getPointerCast(Name, IntptrTy),
   1334         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
   1335         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);
   1336 
   1337     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
   1338 
   1339     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
   1340   }
   1341 
   1342   ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
   1343   GlobalVariable *AllGlobals = new GlobalVariable(
   1344       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
   1345       ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
   1346 
   1347   // Create calls for poisoning before initializers run and unpoisoning after.
   1348   if (HasDynamicallyInitializedGlobals)
   1349     createInitializerPoisonCalls(M, ModuleName);
   1350   IRB.CreateCall2(AsanRegisterGlobals,
   1351                   IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1352                   ConstantInt::get(IntptrTy, n));
   1353 
   1354   // We also need to unregister globals at the end, e.g. when a shared library
   1355   // gets closed.
   1356   Function *AsanDtorFunction =
   1357       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
   1358                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
   1359   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
   1360   IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
   1361   IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
   1362                        IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1363                        ConstantInt::get(IntptrTy, n));
   1364   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
   1365 
   1366   DEBUG(dbgs() << M);
   1367   return true;
   1368 }
   1369 
   1370 bool AddressSanitizerModule::runOnModule(Module &M) {
   1371   C = &(M.getContext());
   1372   int LongSize = M.getDataLayout().getPointerSizeInBits();
   1373   IntptrTy = Type::getIntNTy(*C, LongSize);
   1374   TargetTriple = Triple(M.getTargetTriple());
   1375   Mapping = getShadowMapping(TargetTriple, LongSize);
   1376   initializeCallbacks(M);
   1377 
   1378   bool Changed = false;
   1379 
   1380   Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
   1381   assert(CtorFunc);
   1382   IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
   1383 
   1384   if (ClGlobals) Changed |= InstrumentGlobals(IRB, M);
   1385 
   1386   return Changed;
   1387 }
   1388 
   1389 void AddressSanitizer::initializeCallbacks(Module &M) {
   1390   IRBuilder<> IRB(*C);
   1391   // Create __asan_report* callbacks.
   1392   // IsWrite, TypeSize and Exp are encoded in the function name.
   1393   for (int Exp = 0; Exp < 2; Exp++) {
   1394     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
   1395       const std::string TypeStr = AccessIsWrite ? "store" : "load";
   1396       const std::string ExpStr = Exp ? "exp_" : "";
   1397       const Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
   1398       AsanErrorCallbackSized[AccessIsWrite][Exp] =
   1399           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1400               kAsanReportErrorTemplate + ExpStr + TypeStr + "_n",
   1401               IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
   1402       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
   1403           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1404               ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N",
   1405               IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
   1406       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
   1407            AccessSizeIndex++) {
   1408         const std::string Suffix = TypeStr + itostr(1 << AccessSizeIndex);
   1409         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
   1410             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1411                 kAsanReportErrorTemplate + ExpStr + Suffix, IRB.getVoidTy(),
   1412                 IntptrTy, ExpType, nullptr));
   1413         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
   1414             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1415                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix, IRB.getVoidTy(),
   1416                 IntptrTy, ExpType, nullptr));
   1417       }
   1418     }
   1419   }
   1420 
   1421   AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1422       ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
   1423       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
   1424   AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1425       ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
   1426       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
   1427   AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1428       ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(),
   1429       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
   1430 
   1431   AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
   1432       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
   1433 
   1434   AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1435       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1436   AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1437       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1438   // We insert an empty inline asm after __asan_report* to avoid callback merge.
   1439   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
   1440                             StringRef(""), StringRef(""),
   1441                             /*hasSideEffects=*/true);
   1442 }
   1443 
   1444 // virtual
   1445 bool AddressSanitizer::doInitialization(Module &M) {
   1446   // Initialize the private fields. No one has accessed them before.
   1447 
   1448   GlobalsMD.init(M);
   1449 
   1450   C = &(M.getContext());
   1451   LongSize = M.getDataLayout().getPointerSizeInBits();
   1452   IntptrTy = Type::getIntNTy(*C, LongSize);
   1453   TargetTriple = Triple(M.getTargetTriple());
   1454 
   1455   AsanCtorFunction =
   1456       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
   1457                        GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
   1458   BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
   1459   // call __asan_init in the module ctor.
   1460   IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
   1461   AsanInitFunction = checkSanitizerInterfaceFunction(
   1462       M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), nullptr));
   1463   AsanInitFunction->setLinkage(Function::ExternalLinkage);
   1464   IRB.CreateCall(AsanInitFunction);
   1465 
   1466   Mapping = getShadowMapping(TargetTriple, LongSize);
   1467 
   1468   appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
   1469   return true;
   1470 }
   1471 
   1472 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
   1473   // For each NSObject descendant having a +load method, this method is invoked
   1474   // by the ObjC runtime before any of the static constructors is called.
   1475   // Therefore we need to instrument such methods with a call to __asan_init
   1476   // at the beginning in order to initialize our runtime before any access to
   1477   // the shadow memory.
   1478   // We cannot just ignore these methods, because they may call other
   1479   // instrumented functions.
   1480   if (F.getName().find(" load]") != std::string::npos) {
   1481     IRBuilder<> IRB(F.begin()->begin());
   1482     IRB.CreateCall(AsanInitFunction);
   1483     return true;
   1484   }
   1485   return false;
   1486 }
   1487 
   1488 bool AddressSanitizer::runOnFunction(Function &F) {
   1489   if (&F == AsanCtorFunction) return false;
   1490   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
   1491   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
   1492   initializeCallbacks(*F.getParent());
   1493 
   1494   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1495 
   1496   // If needed, insert __asan_init before checking for SanitizeAddress attr.
   1497   maybeInsertAsanInitAtFunctionEntry(F);
   1498 
   1499   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
   1500 
   1501   if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
   1502 
   1503   // We want to instrument every address only once per basic block (unless there
   1504   // are calls between uses).
   1505   SmallSet<Value *, 16> TempsToInstrument;
   1506   SmallVector<Instruction *, 16> ToInstrument;
   1507   SmallVector<Instruction *, 8> NoReturnCalls;
   1508   SmallVector<BasicBlock *, 16> AllBlocks;
   1509   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
   1510   int NumAllocas = 0;
   1511   bool IsWrite;
   1512   unsigned Alignment;
   1513   uint64_t TypeSize;
   1514 
   1515   // Fill the set of memory operations to instrument.
   1516   for (auto &BB : F) {
   1517     AllBlocks.push_back(&BB);
   1518     TempsToInstrument.clear();
   1519     int NumInsnsPerBB = 0;
   1520     for (auto &Inst : BB) {
   1521       if (LooksLikeCodeInBug11395(&Inst)) return false;
   1522       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
   1523                                                   &Alignment)) {
   1524         if (ClOpt && ClOptSameTemp) {
   1525           if (!TempsToInstrument.insert(Addr).second)
   1526             continue;  // We've seen this temp in the current BB.
   1527         }
   1528       } else if (ClInvalidPointerPairs &&
   1529                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
   1530         PointerComparisonsOrSubtracts.push_back(&Inst);
   1531         continue;
   1532       } else if (isa<MemIntrinsic>(Inst)) {
   1533         // ok, take it.
   1534       } else {
   1535         if (isa<AllocaInst>(Inst)) NumAllocas++;
   1536         CallSite CS(&Inst);
   1537         if (CS) {
   1538           // A call inside BB.
   1539           TempsToInstrument.clear();
   1540           if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
   1541         }
   1542         continue;
   1543       }
   1544       ToInstrument.push_back(&Inst);
   1545       NumInsnsPerBB++;
   1546       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
   1547     }
   1548   }
   1549 
   1550   bool UseCalls = false;
   1551   if (ClInstrumentationWithCallsThreshold >= 0 &&
   1552       ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold)
   1553     UseCalls = true;
   1554 
   1555   const TargetLibraryInfo *TLI =
   1556       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1557   const DataLayout &DL = F.getParent()->getDataLayout();
   1558   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
   1559                                      /*RoundToAlign=*/true);
   1560 
   1561   // Instrument.
   1562   int NumInstrumented = 0;
   1563   for (auto Inst : ToInstrument) {
   1564     if (ClDebugMin < 0 || ClDebugMax < 0 ||
   1565         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
   1566       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
   1567         instrumentMop(ObjSizeVis, Inst, UseCalls,
   1568                       F.getParent()->getDataLayout());
   1569       else
   1570         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
   1571     }
   1572     NumInstrumented++;
   1573   }
   1574 
   1575   FunctionStackPoisoner FSP(F, *this);
   1576   bool ChangedStack = FSP.runOnFunction();
   1577 
   1578   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
   1579   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
   1580   for (auto CI : NoReturnCalls) {
   1581     IRBuilder<> IRB(CI);
   1582     IRB.CreateCall(AsanHandleNoReturnFunc);
   1583   }
   1584 
   1585   for (auto Inst : PointerComparisonsOrSubtracts) {
   1586     instrumentPointerComparisonOrSubtraction(Inst);
   1587     NumInstrumented++;
   1588   }
   1589 
   1590   bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
   1591 
   1592   DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
   1593 
   1594   return res;
   1595 }
   1596 
   1597 // Workaround for bug 11395: we don't want to instrument stack in functions
   1598 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
   1599 // FIXME: remove once the bug 11395 is fixed.
   1600 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
   1601   if (LongSize != 32) return false;
   1602   CallInst *CI = dyn_cast<CallInst>(I);
   1603   if (!CI || !CI->isInlineAsm()) return false;
   1604   if (CI->getNumArgOperands() <= 5) return false;
   1605   // We have inline assembly with quite a few arguments.
   1606   return true;
   1607 }
   1608 
   1609 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
   1610   IRBuilder<> IRB(*C);
   1611   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
   1612     std::string Suffix = itostr(i);
   1613     AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
   1614         M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
   1615                               IntptrTy, nullptr));
   1616     AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
   1617         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
   1618                               IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1619   }
   1620   AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
   1621       M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
   1622                             IntptrTy, IntptrTy, nullptr));
   1623   AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
   1624       M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
   1625                             IntptrTy, IntptrTy, nullptr));
   1626 }
   1627 
   1628 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
   1629                                            IRBuilder<> &IRB, Value *ShadowBase,
   1630                                            bool DoPoison) {
   1631   size_t n = ShadowBytes.size();
   1632   size_t i = 0;
   1633   // We need to (un)poison n bytes of stack shadow. Poison as many as we can
   1634   // using 64-bit stores (if we are on 64-bit arch), then poison the rest
   1635   // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
   1636   for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
   1637        LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
   1638     for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
   1639       uint64_t Val = 0;
   1640       for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
   1641         if (F.getParent()->getDataLayout().isLittleEndian())
   1642           Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
   1643         else
   1644           Val = (Val << 8) | ShadowBytes[i + j];
   1645       }
   1646       if (!Val) continue;
   1647       Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
   1648       Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
   1649       Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
   1650       IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
   1651     }
   1652   }
   1653 }
   1654 
   1655 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
   1656 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
   1657 static int StackMallocSizeClass(uint64_t LocalStackSize) {
   1658   assert(LocalStackSize <= kMaxStackMallocSize);
   1659   uint64_t MaxSize = kMinStackMallocSize;
   1660   for (int i = 0;; i++, MaxSize *= 2)
   1661     if (LocalStackSize <= MaxSize) return i;
   1662   llvm_unreachable("impossible LocalStackSize");
   1663 }
   1664 
   1665 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
   1666 // We can not use MemSet intrinsic because it may end up calling the actual
   1667 // memset. Size is a multiple of 8.
   1668 // Currently this generates 8-byte stores on x86_64; it may be better to
   1669 // generate wider stores.
   1670 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
   1671     IRBuilder<> &IRB, Value *ShadowBase, int Size) {
   1672   assert(!(Size % 8));
   1673 
   1674   // kAsanStackAfterReturnMagic is 0xf5.
   1675   const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
   1676 
   1677   for (int i = 0; i < Size; i += 8) {
   1678     Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
   1679     IRB.CreateStore(
   1680         ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
   1681         IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
   1682   }
   1683 }
   1684 
   1685 static DebugLoc getFunctionEntryDebugLocation(Function &F) {
   1686   for (const auto &Inst : F.getEntryBlock())
   1687     if (!isa<AllocaInst>(Inst)) return Inst.getDebugLoc();
   1688   return DebugLoc();
   1689 }
   1690 
   1691 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
   1692                                           Value *ValueIfTrue,
   1693                                           Instruction *ThenTerm,
   1694                                           Value *ValueIfFalse) {
   1695   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
   1696   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
   1697   PHI->addIncoming(ValueIfFalse, CondBlock);
   1698   BasicBlock *ThenBlock = ThenTerm->getParent();
   1699   PHI->addIncoming(ValueIfTrue, ThenBlock);
   1700   return PHI;
   1701 }
   1702 
   1703 Value *FunctionStackPoisoner::createAllocaForLayout(
   1704     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
   1705   AllocaInst *Alloca;
   1706   if (Dynamic) {
   1707     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
   1708                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
   1709                               "MyAlloca");
   1710   } else {
   1711     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
   1712                               nullptr, "MyAlloca");
   1713     assert(Alloca->isStaticAlloca());
   1714   }
   1715   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
   1716   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
   1717   Alloca->setAlignment(FrameAlignment);
   1718   return IRB.CreatePointerCast(Alloca, IntptrTy);
   1719 }
   1720 
   1721 void FunctionStackPoisoner::poisonStack() {
   1722   assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
   1723 
   1724   if (ClInstrumentAllocas) {
   1725     // Handle dynamic allocas.
   1726     for (auto &AllocaCall : DynamicAllocaVec) {
   1727       handleDynamicAllocaCall(AllocaCall);
   1728       unpoisonDynamicAlloca(AllocaCall);
   1729     }
   1730   }
   1731 
   1732   if (AllocaVec.size() == 0) return;
   1733 
   1734   int StackMallocIdx = -1;
   1735   DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F);
   1736 
   1737   Instruction *InsBefore = AllocaVec[0];
   1738   IRBuilder<> IRB(InsBefore);
   1739   IRB.SetCurrentDebugLocation(EntryDebugLocation);
   1740 
   1741   SmallVector<ASanStackVariableDescription, 16> SVD;
   1742   SVD.reserve(AllocaVec.size());
   1743   for (AllocaInst *AI : AllocaVec) {
   1744     ASanStackVariableDescription D = {AI->getName().data(),
   1745                                       ASan.getAllocaSizeInBytes(AI),
   1746                                       AI->getAlignment(), AI, 0};
   1747     SVD.push_back(D);
   1748   }
   1749   // Minimal header size (left redzone) is 4 pointers,
   1750   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
   1751   size_t MinHeaderSize = ASan.LongSize / 2;
   1752   ASanStackFrameLayout L;
   1753   ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
   1754   DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
   1755   uint64_t LocalStackSize = L.FrameSize;
   1756   bool DoStackMalloc =
   1757       ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize;
   1758   // Don't do dynamic alloca in presence of inline asm: too often it makes
   1759   // assumptions on which registers are available. Don't do stack malloc in the
   1760   // presence of inline asm on 32-bit platforms for the same reason.
   1761   bool DoDynamicAlloca = ClDynamicAllocaStack && !HasNonEmptyInlineAsm;
   1762   DoStackMalloc &= !HasNonEmptyInlineAsm || ASan.LongSize != 32;
   1763 
   1764   Value *StaticAlloca =
   1765       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
   1766 
   1767   Value *FakeStack;
   1768   Value *LocalStackBase;
   1769 
   1770   if (DoStackMalloc) {
   1771     // void *FakeStack = __asan_option_detect_stack_use_after_return
   1772     //     ? __asan_stack_malloc_N(LocalStackSize)
   1773     //     : nullptr;
   1774     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
   1775     Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
   1776         kAsanOptionDetectUAR, IRB.getInt32Ty());
   1777     Value *UARIsEnabled =
   1778         IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
   1779                          Constant::getNullValue(IRB.getInt32Ty()));
   1780     Instruction *Term =
   1781         SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
   1782     IRBuilder<> IRBIf(Term);
   1783     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
   1784     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
   1785     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
   1786     Value *FakeStackValue =
   1787         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
   1788                          ConstantInt::get(IntptrTy, LocalStackSize));
   1789     IRB.SetInsertPoint(InsBefore);
   1790     IRB.SetCurrentDebugLocation(EntryDebugLocation);
   1791     FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
   1792                           ConstantInt::get(IntptrTy, 0));
   1793 
   1794     Value *NoFakeStack =
   1795         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
   1796     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
   1797     IRBIf.SetInsertPoint(Term);
   1798     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
   1799     Value *AllocaValue =
   1800         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
   1801     IRB.SetInsertPoint(InsBefore);
   1802     IRB.SetCurrentDebugLocation(EntryDebugLocation);
   1803     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
   1804   } else {
   1805     // void *FakeStack = nullptr;
   1806     // void *LocalStackBase = alloca(LocalStackSize);
   1807     FakeStack = ConstantInt::get(IntptrTy, 0);
   1808     LocalStackBase =
   1809         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
   1810   }
   1811 
   1812   // Insert poison calls for lifetime intrinsics for alloca.
   1813   bool HavePoisonedAllocas = false;
   1814   for (const auto &APC : AllocaPoisonCallVec) {
   1815     assert(APC.InsBefore);
   1816     assert(APC.AI);
   1817     IRBuilder<> IRB(APC.InsBefore);
   1818     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
   1819     HavePoisonedAllocas |= APC.DoPoison;
   1820   }
   1821 
   1822   // Replace Alloca instructions with base+offset.
   1823   for (const auto &Desc : SVD) {
   1824     AllocaInst *AI = Desc.AI;
   1825     Value *NewAllocaPtr = IRB.CreateIntToPtr(
   1826         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
   1827         AI->getType());
   1828     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
   1829     AI->replaceAllUsesWith(NewAllocaPtr);
   1830   }
   1831 
   1832   // The left-most redzone has enough space for at least 4 pointers.
   1833   // Write the Magic value to redzone[0].
   1834   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
   1835   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
   1836                   BasePlus0);
   1837   // Write the frame description constant to redzone[1].
   1838   Value *BasePlus1 = IRB.CreateIntToPtr(
   1839       IRB.CreateAdd(LocalStackBase,
   1840                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
   1841       IntptrPtrTy);
   1842   GlobalVariable *StackDescriptionGlobal =
   1843       createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
   1844                                    /*AllowMerging*/ true);
   1845   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
   1846   IRB.CreateStore(Description, BasePlus1);
   1847   // Write the PC to redzone[2].
   1848   Value *BasePlus2 = IRB.CreateIntToPtr(
   1849       IRB.CreateAdd(LocalStackBase,
   1850                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
   1851       IntptrPtrTy);
   1852   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
   1853 
   1854   // Poison the stack redzones at the entry.
   1855   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
   1856   poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
   1857 
   1858   // (Un)poison the stack before all ret instructions.
   1859   for (auto Ret : RetVec) {
   1860     IRBuilder<> IRBRet(Ret);
   1861     // Mark the current frame as retired.
   1862     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
   1863                        BasePlus0);
   1864     if (DoStackMalloc) {
   1865       assert(StackMallocIdx >= 0);
   1866       // if FakeStack != 0  // LocalStackBase == FakeStack
   1867       //     // In use-after-return mode, poison the whole stack frame.
   1868       //     if StackMallocIdx <= 4
   1869       //         // For small sizes inline the whole thing:
   1870       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
   1871       //         **SavedFlagPtr(FakeStack) = 0
   1872       //     else
   1873       //         __asan_stack_free_N(FakeStack, LocalStackSize)
   1874       // else
   1875       //     <This is not a fake stack; unpoison the redzones>
   1876       Value *Cmp =
   1877           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
   1878       TerminatorInst *ThenTerm, *ElseTerm;
   1879       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
   1880 
   1881       IRBuilder<> IRBPoison(ThenTerm);
   1882       if (StackMallocIdx <= 4) {
   1883         int ClassSize = kMinStackMallocSize << StackMallocIdx;
   1884         SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
   1885                                            ClassSize >> Mapping.Scale);
   1886         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
   1887             FakeStack,
   1888             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
   1889         Value *SavedFlagPtr = IRBPoison.CreateLoad(
   1890             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
   1891         IRBPoison.CreateStore(
   1892             Constant::getNullValue(IRBPoison.getInt8Ty()),
   1893             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
   1894       } else {
   1895         // For larger frames call __asan_stack_free_*.
   1896         IRBPoison.CreateCall2(AsanStackFreeFunc[StackMallocIdx], FakeStack,
   1897                               ConstantInt::get(IntptrTy, LocalStackSize));
   1898       }
   1899 
   1900       IRBuilder<> IRBElse(ElseTerm);
   1901       poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
   1902     } else if (HavePoisonedAllocas) {
   1903       // If we poisoned some allocas in llvm.lifetime analysis,
   1904       // unpoison whole stack frame now.
   1905       poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
   1906     } else {
   1907       poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
   1908     }
   1909   }
   1910 
   1911   // We are done. Remove the old unused alloca instructions.
   1912   for (auto AI : AllocaVec) AI->eraseFromParent();
   1913 }
   1914 
   1915 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
   1916                                          IRBuilder<> &IRB, bool DoPoison) {
   1917   // For now just insert the call to ASan runtime.
   1918   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
   1919   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
   1920   IRB.CreateCall2(
   1921       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
   1922       AddrArg, SizeArg);
   1923 }
   1924 
   1925 // Handling llvm.lifetime intrinsics for a given %alloca:
   1926 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
   1927 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
   1928 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
   1929 //     could be poisoned by previous llvm.lifetime.end instruction, as the
   1930 //     variable may go in and out of scope several times, e.g. in loops).
   1931 // (3) if we poisoned at least one %alloca in a function,
   1932 //     unpoison the whole stack frame at function exit.
   1933 
   1934 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
   1935   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
   1936     // We're intested only in allocas we can handle.
   1937     return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
   1938   // See if we've already calculated (or started to calculate) alloca for a
   1939   // given value.
   1940   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
   1941   if (I != AllocaForValue.end()) return I->second;
   1942   // Store 0 while we're calculating alloca for value V to avoid
   1943   // infinite recursion if the value references itself.
   1944   AllocaForValue[V] = nullptr;
   1945   AllocaInst *Res = nullptr;
   1946   if (CastInst *CI = dyn_cast<CastInst>(V))
   1947     Res = findAllocaForValue(CI->getOperand(0));
   1948   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1949     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1950       Value *IncValue = PN->getIncomingValue(i);
   1951       // Allow self-referencing phi-nodes.
   1952       if (IncValue == PN) continue;
   1953       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
   1954       // AI for incoming values should exist and should all be equal.
   1955       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
   1956         return nullptr;
   1957       Res = IncValueAI;
   1958     }
   1959   }
   1960   if (Res) AllocaForValue[V] = Res;
   1961   return Res;
   1962 }
   1963 
   1964 // Compute PartialRzMagic for dynamic alloca call. PartialRzMagic is
   1965 // constructed from two separate 32-bit numbers: PartialRzMagic = Val1 | Val2.
   1966 // (1) Val1 is resposible for forming base value for PartialRzMagic, containing
   1967 //     only 00 for fully addressable and 0xcb for fully poisoned bytes for each
   1968 //     8-byte chunk of user memory respectively.
   1969 // (2) Val2 forms the value for marking first poisoned byte in shadow memory
   1970 //     with appropriate value (0x01 - 0x07 or 0xcb if Padding % 8 == 0).
   1971 
   1972 // Shift = Padding & ~7; // the number of bits we need to shift to access first
   1973 //                          chunk in shadow memory, containing nonzero bytes.
   1974 // Example:
   1975 // Padding = 21                       Padding = 16
   1976 // Shadow:  |00|00|05|cb|          Shadow:  |00|00|cb|cb|
   1977 //                ^                               ^
   1978 //                |                               |
   1979 // Shift = 21 & ~7 = 16            Shift = 16 & ~7 = 16
   1980 //
   1981 // Val1 = 0xcbcbcbcb << Shift;
   1982 // PartialBits = Padding ? Padding & 7 : 0xcb;
   1983 // Val2 = PartialBits << Shift;
   1984 // Result = Val1 | Val2;
   1985 Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize,
   1986                                                     IRBuilder<> &IRB) {
   1987   PartialSize = IRB.CreateIntCast(PartialSize, IRB.getInt32Ty(), false);
   1988   Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7));
   1989   unsigned Val1Int = kAsanAllocaPartialVal1;
   1990   unsigned Val2Int = kAsanAllocaPartialVal2;
   1991   if (!F.getParent()->getDataLayout().isLittleEndian()) {
   1992     Val1Int = sys::getSwappedBytes(Val1Int);
   1993     Val2Int = sys::getSwappedBytes(Val2Int);
   1994   }
   1995   Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift);
   1996   Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7));
   1997   // For BigEndian get 0x000000YZ -> 0xYZ000000.
   1998   if (F.getParent()->getDataLayout().isBigEndian())
   1999     PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24));
   2000   Value *Val2 = IRB.getInt32(Val2Int);
   2001   Value *Cond =
   2002       IRB.CreateICmpNE(PartialBits, Constant::getNullValue(IRB.getInt32Ty()));
   2003   Val2 = IRB.CreateSelect(Cond, shiftAllocaMagic(PartialBits, IRB, Shift),
   2004                           shiftAllocaMagic(Val2, IRB, Shift));
   2005   return IRB.CreateOr(Val1, Val2);
   2006 }
   2007 
   2008 void FunctionStackPoisoner::handleDynamicAllocaCall(
   2009     DynamicAllocaCall &AllocaCall) {
   2010   AllocaInst *AI = AllocaCall.AI;
   2011   if (!doesDominateAllExits(AI)) {
   2012     // We do not yet handle complex allocas
   2013     AllocaCall.Poison = false;
   2014     return;
   2015   }
   2016 
   2017   IRBuilder<> IRB(AI);
   2018 
   2019   PointerType *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
   2020   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
   2021   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
   2022 
   2023   Value *Zero = Constant::getNullValue(IntptrTy);
   2024   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
   2025   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
   2026   Value *NotAllocaRzMask = ConstantInt::get(IntptrTy, ~AllocaRedzoneMask);
   2027 
   2028   // Since we need to extend alloca with additional memory to locate
   2029   // redzones, and OldSize is number of allocated blocks with
   2030   // ElementSize size, get allocated memory size in bytes by
   2031   // OldSize * ElementSize.
   2032   unsigned ElementSize =
   2033       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
   2034   Value *OldSize = IRB.CreateMul(AI->getArraySize(),
   2035                                  ConstantInt::get(IntptrTy, ElementSize));
   2036 
   2037   // PartialSize = OldSize % 32
   2038   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
   2039 
   2040   // Misalign = kAllocaRzSize - PartialSize;
   2041   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
   2042 
   2043   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
   2044   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
   2045   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
   2046 
   2047   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
   2048   // Align is added to locate left redzone, PartialPadding for possible
   2049   // partial redzone and kAllocaRzSize for right redzone respectively.
   2050   Value *AdditionalChunkSize = IRB.CreateAdd(
   2051       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
   2052 
   2053   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
   2054 
   2055   // Insert new alloca with new NewSize and Align params.
   2056   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
   2057   NewAlloca->setAlignment(Align);
   2058 
   2059   // NewAddress = Address + Align
   2060   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
   2061                                     ConstantInt::get(IntptrTy, Align));
   2062 
   2063   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
   2064 
   2065   // LeftRzAddress = NewAddress - kAllocaRzSize
   2066   Value *LeftRzAddress = IRB.CreateSub(NewAddress, AllocaRzSize);
   2067 
   2068   // Poisoning left redzone.
   2069   AllocaCall.LeftRzAddr = ASan.memToShadow(LeftRzAddress, IRB);
   2070   IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaLeftMagic),
   2071                   IRB.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy));
   2072 
   2073   // PartialRzAligned = PartialRzAddr & ~AllocaRzMask
   2074   Value *PartialRzAddr = IRB.CreateAdd(NewAddress, OldSize);
   2075   Value *PartialRzAligned = IRB.CreateAnd(PartialRzAddr, NotAllocaRzMask);
   2076 
   2077   // Poisoning partial redzone.
   2078   Value *PartialRzMagic = computePartialRzMagic(PartialSize, IRB);
   2079   Value *PartialRzShadowAddr = ASan.memToShadow(PartialRzAligned, IRB);
   2080   IRB.CreateStore(PartialRzMagic,
   2081                   IRB.CreateIntToPtr(PartialRzShadowAddr, Int32PtrTy));
   2082 
   2083   // RightRzAddress
   2084   //   =  (PartialRzAddr + AllocaRzMask) & ~AllocaRzMask
   2085   Value *RightRzAddress = IRB.CreateAnd(
   2086       IRB.CreateAdd(PartialRzAddr, AllocaRzMask), NotAllocaRzMask);
   2087 
   2088   // Poisoning right redzone.
   2089   AllocaCall.RightRzAddr = ASan.memToShadow(RightRzAddress, IRB);
   2090   IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaRightMagic),
   2091                   IRB.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy));
   2092 
   2093   // Replace all uses of AddessReturnedByAlloca with NewAddress.
   2094   AI->replaceAllUsesWith(NewAddressPtr);
   2095 
   2096   // We are done. Erase old alloca and store left, partial and right redzones
   2097   // shadow addresses for future unpoisoning.
   2098   AI->eraseFromParent();
   2099   NumInstrumentedDynamicAllocas++;
   2100 }
   2101 
   2102 // isSafeAccess returns true if Addr is always inbounds with respect to its
   2103 // base object. For example, it is a field access or an array access with
   2104 // constant inbounds index.
   2105 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
   2106                                     Value *Addr, uint64_t TypeSize) const {
   2107   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
   2108   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
   2109   uint64_t Size = SizeOffset.first.getZExtValue();
   2110   int64_t Offset = SizeOffset.second.getSExtValue();
   2111   // Three checks are required to ensure safety:
   2112   // . Offset >= 0  (since the offset is given from the base ptr)
   2113   // . Size >= Offset  (unsigned)
   2114   // . Size - Offset >= NeededSize  (unsigned)
   2115   return Offset >= 0 && Size >= uint64_t(Offset) &&
   2116          Size - uint64_t(Offset) >= TypeSize / 8;
   2117 }
   2118