Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <limits.h>  // For LONG_MIN, LONG_MAX.
      6 
      7 #include "src/v8.h"
      8 
      9 #if V8_TARGET_ARCH_MIPS64
     10 
     11 #include "src/base/division-by-constant.h"
     12 #include "src/bootstrapper.h"
     13 #include "src/codegen.h"
     14 #include "src/cpu-profiler.h"
     15 #include "src/debug.h"
     16 #include "src/isolate-inl.h"
     17 #include "src/runtime.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
     23     : Assembler(arg_isolate, buffer, size),
     24       generating_stub_(false),
     25       has_frame_(false) {
     26   if (isolate() != NULL) {
     27     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
     28                                   isolate());
     29   }
     30 }
     31 
     32 
     33 void MacroAssembler::Load(Register dst,
     34                           const MemOperand& src,
     35                           Representation r) {
     36   DCHECK(!r.IsDouble());
     37   if (r.IsInteger8()) {
     38     lb(dst, src);
     39   } else if (r.IsUInteger8()) {
     40     lbu(dst, src);
     41   } else if (r.IsInteger16()) {
     42     lh(dst, src);
     43   } else if (r.IsUInteger16()) {
     44     lhu(dst, src);
     45   } else if (r.IsInteger32()) {
     46     lw(dst, src);
     47   } else {
     48     ld(dst, src);
     49   }
     50 }
     51 
     52 
     53 void MacroAssembler::Store(Register src,
     54                            const MemOperand& dst,
     55                            Representation r) {
     56   DCHECK(!r.IsDouble());
     57   if (r.IsInteger8() || r.IsUInteger8()) {
     58     sb(src, dst);
     59   } else if (r.IsInteger16() || r.IsUInteger16()) {
     60     sh(src, dst);
     61   } else if (r.IsInteger32()) {
     62     sw(src, dst);
     63   } else {
     64     if (r.IsHeapObject()) {
     65       AssertNotSmi(src);
     66     } else if (r.IsSmi()) {
     67       AssertSmi(src);
     68     }
     69     sd(src, dst);
     70   }
     71 }
     72 
     73 
     74 void MacroAssembler::LoadRoot(Register destination,
     75                               Heap::RootListIndex index) {
     76   ld(destination, MemOperand(s6, index << kPointerSizeLog2));
     77 }
     78 
     79 
     80 void MacroAssembler::LoadRoot(Register destination,
     81                               Heap::RootListIndex index,
     82                               Condition cond,
     83                               Register src1, const Operand& src2) {
     84   Branch(2, NegateCondition(cond), src1, src2);
     85   ld(destination, MemOperand(s6, index << kPointerSizeLog2));
     86 }
     87 
     88 
     89 void MacroAssembler::StoreRoot(Register source,
     90                                Heap::RootListIndex index) {
     91   sd(source, MemOperand(s6, index << kPointerSizeLog2));
     92 }
     93 
     94 
     95 void MacroAssembler::StoreRoot(Register source,
     96                                Heap::RootListIndex index,
     97                                Condition cond,
     98                                Register src1, const Operand& src2) {
     99   Branch(2, NegateCondition(cond), src1, src2);
    100   sd(source, MemOperand(s6, index << kPointerSizeLog2));
    101 }
    102 
    103 
    104 // Push and pop all registers that can hold pointers.
    105 void MacroAssembler::PushSafepointRegisters() {
    106   // Safepoints expect a block of kNumSafepointRegisters values on the
    107   // stack, so adjust the stack for unsaved registers.
    108   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    109   DCHECK(num_unsaved >= 0);
    110   if (num_unsaved > 0) {
    111     Dsubu(sp, sp, Operand(num_unsaved * kPointerSize));
    112   }
    113   MultiPush(kSafepointSavedRegisters);
    114 }
    115 
    116 
    117 void MacroAssembler::PopSafepointRegisters() {
    118   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    119   MultiPop(kSafepointSavedRegisters);
    120   if (num_unsaved > 0) {
    121     Daddu(sp, sp, Operand(num_unsaved * kPointerSize));
    122   }
    123 }
    124 
    125 
    126 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
    127   sd(src, SafepointRegisterSlot(dst));
    128 }
    129 
    130 
    131 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
    132   ld(dst, SafepointRegisterSlot(src));
    133 }
    134 
    135 
    136 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
    137   // The registers are pushed starting with the highest encoding,
    138   // which means that lowest encodings are closest to the stack pointer.
    139   return kSafepointRegisterStackIndexMap[reg_code];
    140 }
    141 
    142 
    143 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
    144   return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
    145 }
    146 
    147 
    148 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
    149   UNIMPLEMENTED_MIPS();
    150   // General purpose registers are pushed last on the stack.
    151   int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize;
    152   int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
    153   return MemOperand(sp, doubles_size + register_offset);
    154 }
    155 
    156 
    157 void MacroAssembler::InNewSpace(Register object,
    158                                 Register scratch,
    159                                 Condition cc,
    160                                 Label* branch) {
    161   DCHECK(cc == eq || cc == ne);
    162   And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
    163   Branch(branch, cc, scratch,
    164          Operand(ExternalReference::new_space_start(isolate())));
    165 }
    166 
    167 
    168 void MacroAssembler::RecordWriteField(
    169     Register object,
    170     int offset,
    171     Register value,
    172     Register dst,
    173     RAStatus ra_status,
    174     SaveFPRegsMode save_fp,
    175     RememberedSetAction remembered_set_action,
    176     SmiCheck smi_check,
    177     PointersToHereCheck pointers_to_here_check_for_value) {
    178   DCHECK(!AreAliased(value, dst, t8, object));
    179   // First, check if a write barrier is even needed. The tests below
    180   // catch stores of Smis.
    181   Label done;
    182 
    183   // Skip barrier if writing a smi.
    184   if (smi_check == INLINE_SMI_CHECK) {
    185     JumpIfSmi(value, &done);
    186   }
    187 
    188   // Although the object register is tagged, the offset is relative to the start
    189   // of the object, so so offset must be a multiple of kPointerSize.
    190   DCHECK(IsAligned(offset, kPointerSize));
    191 
    192   Daddu(dst, object, Operand(offset - kHeapObjectTag));
    193   if (emit_debug_code()) {
    194     Label ok;
    195     And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
    196     Branch(&ok, eq, t8, Operand(zero_reg));
    197     stop("Unaligned cell in write barrier");
    198     bind(&ok);
    199   }
    200 
    201   RecordWrite(object,
    202               dst,
    203               value,
    204               ra_status,
    205               save_fp,
    206               remembered_set_action,
    207               OMIT_SMI_CHECK,
    208               pointers_to_here_check_for_value);
    209 
    210   bind(&done);
    211 
    212   // Clobber clobbered input registers when running with the debug-code flag
    213   // turned on to provoke errors.
    214   if (emit_debug_code()) {
    215     li(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
    216     li(dst, Operand(bit_cast<int64_t>(kZapValue + 8)));
    217   }
    218 }
    219 
    220 
    221 // Will clobber 4 registers: object, map, dst, ip.  The
    222 // register 'object' contains a heap object pointer.
    223 void MacroAssembler::RecordWriteForMap(Register object,
    224                                        Register map,
    225                                        Register dst,
    226                                        RAStatus ra_status,
    227                                        SaveFPRegsMode fp_mode) {
    228   if (emit_debug_code()) {
    229     DCHECK(!dst.is(at));
    230     ld(dst, FieldMemOperand(map, HeapObject::kMapOffset));
    231     Check(eq,
    232           kWrongAddressOrValuePassedToRecordWrite,
    233           dst,
    234           Operand(isolate()->factory()->meta_map()));
    235   }
    236 
    237   if (!FLAG_incremental_marking) {
    238     return;
    239   }
    240 
    241   if (emit_debug_code()) {
    242     ld(at, FieldMemOperand(object, HeapObject::kMapOffset));
    243     Check(eq,
    244           kWrongAddressOrValuePassedToRecordWrite,
    245           map,
    246           Operand(at));
    247   }
    248 
    249   Label done;
    250 
    251   // A single check of the map's pages interesting flag suffices, since it is
    252   // only set during incremental collection, and then it's also guaranteed that
    253   // the from object's page's interesting flag is also set.  This optimization
    254   // relies on the fact that maps can never be in new space.
    255   CheckPageFlag(map,
    256                 map,  // Used as scratch.
    257                 MemoryChunk::kPointersToHereAreInterestingMask,
    258                 eq,
    259                 &done);
    260 
    261   Daddu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
    262   if (emit_debug_code()) {
    263     Label ok;
    264     And(at, dst, Operand((1 << kPointerSizeLog2) - 1));
    265     Branch(&ok, eq, at, Operand(zero_reg));
    266     stop("Unaligned cell in write barrier");
    267     bind(&ok);
    268   }
    269 
    270   // Record the actual write.
    271   if (ra_status == kRAHasNotBeenSaved) {
    272     push(ra);
    273   }
    274   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
    275                        fp_mode);
    276   CallStub(&stub);
    277   if (ra_status == kRAHasNotBeenSaved) {
    278     pop(ra);
    279   }
    280 
    281   bind(&done);
    282 
    283   // Count number of write barriers in generated code.
    284   isolate()->counters()->write_barriers_static()->Increment();
    285   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst);
    286 
    287   // Clobber clobbered registers when running with the debug-code flag
    288   // turned on to provoke errors.
    289   if (emit_debug_code()) {
    290     li(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
    291     li(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
    292   }
    293 }
    294 
    295 
    296 // Will clobber 4 registers: object, address, scratch, ip.  The
    297 // register 'object' contains a heap object pointer.  The heap object
    298 // tag is shifted away.
    299 void MacroAssembler::RecordWrite(
    300     Register object,
    301     Register address,
    302     Register value,
    303     RAStatus ra_status,
    304     SaveFPRegsMode fp_mode,
    305     RememberedSetAction remembered_set_action,
    306     SmiCheck smi_check,
    307     PointersToHereCheck pointers_to_here_check_for_value) {
    308   DCHECK(!AreAliased(object, address, value, t8));
    309   DCHECK(!AreAliased(object, address, value, t9));
    310 
    311   if (emit_debug_code()) {
    312     ld(at, MemOperand(address));
    313     Assert(
    314         eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value));
    315   }
    316 
    317   if (remembered_set_action == OMIT_REMEMBERED_SET &&
    318       !FLAG_incremental_marking) {
    319     return;
    320   }
    321 
    322   // First, check if a write barrier is even needed. The tests below
    323   // catch stores of smis and stores into the young generation.
    324   Label done;
    325 
    326   if (smi_check == INLINE_SMI_CHECK) {
    327     DCHECK_EQ(0, kSmiTag);
    328     JumpIfSmi(value, &done);
    329   }
    330 
    331   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
    332     CheckPageFlag(value,
    333                   value,  // Used as scratch.
    334                   MemoryChunk::kPointersToHereAreInterestingMask,
    335                   eq,
    336                   &done);
    337   }
    338   CheckPageFlag(object,
    339                 value,  // Used as scratch.
    340                 MemoryChunk::kPointersFromHereAreInterestingMask,
    341                 eq,
    342                 &done);
    343 
    344   // Record the actual write.
    345   if (ra_status == kRAHasNotBeenSaved) {
    346     push(ra);
    347   }
    348   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
    349                        fp_mode);
    350   CallStub(&stub);
    351   if (ra_status == kRAHasNotBeenSaved) {
    352     pop(ra);
    353   }
    354 
    355   bind(&done);
    356 
    357   // Count number of write barriers in generated code.
    358   isolate()->counters()->write_barriers_static()->Increment();
    359   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at,
    360                    value);
    361 
    362   // Clobber clobbered registers when running with the debug-code flag
    363   // turned on to provoke errors.
    364   if (emit_debug_code()) {
    365     li(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
    366     li(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
    367   }
    368 }
    369 
    370 
    371 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
    372                                          Register address,
    373                                          Register scratch,
    374                                          SaveFPRegsMode fp_mode,
    375                                          RememberedSetFinalAction and_then) {
    376   Label done;
    377   if (emit_debug_code()) {
    378     Label ok;
    379     JumpIfNotInNewSpace(object, scratch, &ok);
    380     stop("Remembered set pointer is in new space");
    381     bind(&ok);
    382   }
    383   // Load store buffer top.
    384   ExternalReference store_buffer =
    385       ExternalReference::store_buffer_top(isolate());
    386   li(t8, Operand(store_buffer));
    387   ld(scratch, MemOperand(t8));
    388   // Store pointer to buffer and increment buffer top.
    389   sd(address, MemOperand(scratch));
    390   Daddu(scratch, scratch, kPointerSize);
    391   // Write back new top of buffer.
    392   sd(scratch, MemOperand(t8));
    393   // Call stub on end of buffer.
    394   // Check for end of buffer.
    395   And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
    396   DCHECK(!scratch.is(t8));
    397   if (and_then == kFallThroughAtEnd) {
    398     Branch(&done, eq, t8, Operand(zero_reg));
    399   } else {
    400     DCHECK(and_then == kReturnAtEnd);
    401     Ret(eq, t8, Operand(zero_reg));
    402   }
    403   push(ra);
    404   StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
    405   CallStub(&store_buffer_overflow);
    406   pop(ra);
    407   bind(&done);
    408   if (and_then == kReturnAtEnd) {
    409     Ret();
    410   }
    411 }
    412 
    413 
    414 // -----------------------------------------------------------------------------
    415 // Allocation support.
    416 
    417 
    418 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
    419                                             Register scratch,
    420                                             Label* miss) {
    421   Label same_contexts;
    422 
    423   DCHECK(!holder_reg.is(scratch));
    424   DCHECK(!holder_reg.is(at));
    425   DCHECK(!scratch.is(at));
    426 
    427   // Load current lexical context from the stack frame.
    428   ld(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
    429   // In debug mode, make sure the lexical context is set.
    430 #ifdef DEBUG
    431   Check(ne, kWeShouldNotHaveAnEmptyLexicalContext,
    432       scratch, Operand(zero_reg));
    433 #endif
    434 
    435   // Load the native context of the current context.
    436   int offset =
    437       Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
    438   ld(scratch, FieldMemOperand(scratch, offset));
    439   ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
    440 
    441   // Check the context is a native context.
    442   if (emit_debug_code()) {
    443     push(holder_reg);  // Temporarily save holder on the stack.
    444     // Read the first word and compare to the native_context_map.
    445     ld(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
    446     LoadRoot(at, Heap::kNativeContextMapRootIndex);
    447     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
    448           holder_reg, Operand(at));
    449     pop(holder_reg);  // Restore holder.
    450   }
    451 
    452   // Check if both contexts are the same.
    453   ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
    454   Branch(&same_contexts, eq, scratch, Operand(at));
    455 
    456   // Check the context is a native context.
    457   if (emit_debug_code()) {
    458     push(holder_reg);  // Temporarily save holder on the stack.
    459     mov(holder_reg, at);  // Move at to its holding place.
    460     LoadRoot(at, Heap::kNullValueRootIndex);
    461     Check(ne, kJSGlobalProxyContextShouldNotBeNull,
    462           holder_reg, Operand(at));
    463 
    464     ld(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
    465     LoadRoot(at, Heap::kNativeContextMapRootIndex);
    466     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext,
    467           holder_reg, Operand(at));
    468     // Restore at is not needed. at is reloaded below.
    469     pop(holder_reg);  // Restore holder.
    470     // Restore at to holder's context.
    471     ld(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
    472   }
    473 
    474   // Check that the security token in the calling global object is
    475   // compatible with the security token in the receiving global
    476   // object.
    477   int token_offset = Context::kHeaderSize +
    478                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
    479 
    480   ld(scratch, FieldMemOperand(scratch, token_offset));
    481   ld(at, FieldMemOperand(at, token_offset));
    482   Branch(miss, ne, scratch, Operand(at));
    483 
    484   bind(&same_contexts);
    485 }
    486 
    487 
    488 // Compute the hash code from the untagged key.  This must be kept in sync with
    489 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
    490 // code-stub-hydrogen.cc
    491 void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
    492   // First of all we assign the hash seed to scratch.
    493   LoadRoot(scratch, Heap::kHashSeedRootIndex);
    494   SmiUntag(scratch);
    495 
    496   // Xor original key with a seed.
    497   xor_(reg0, reg0, scratch);
    498 
    499   // Compute the hash code from the untagged key.  This must be kept in sync
    500   // with ComputeIntegerHash in utils.h.
    501   //
    502   // hash = ~hash + (hash << 15);
    503   // The algorithm uses 32-bit integer values.
    504   nor(scratch, reg0, zero_reg);
    505   sll(at, reg0, 15);
    506   addu(reg0, scratch, at);
    507 
    508   // hash = hash ^ (hash >> 12);
    509   srl(at, reg0, 12);
    510   xor_(reg0, reg0, at);
    511 
    512   // hash = hash + (hash << 2);
    513   sll(at, reg0, 2);
    514   addu(reg0, reg0, at);
    515 
    516   // hash = hash ^ (hash >> 4);
    517   srl(at, reg0, 4);
    518   xor_(reg0, reg0, at);
    519 
    520   // hash = hash * 2057;
    521   sll(scratch, reg0, 11);
    522   sll(at, reg0, 3);
    523   addu(reg0, reg0, at);
    524   addu(reg0, reg0, scratch);
    525 
    526   // hash = hash ^ (hash >> 16);
    527   srl(at, reg0, 16);
    528   xor_(reg0, reg0, at);
    529 }
    530 
    531 
    532 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
    533                                               Register elements,
    534                                               Register key,
    535                                               Register result,
    536                                               Register reg0,
    537                                               Register reg1,
    538                                               Register reg2) {
    539   // Register use:
    540   //
    541   // elements - holds the slow-case elements of the receiver on entry.
    542   //            Unchanged unless 'result' is the same register.
    543   //
    544   // key      - holds the smi key on entry.
    545   //            Unchanged unless 'result' is the same register.
    546   //
    547   //
    548   // result   - holds the result on exit if the load succeeded.
    549   //            Allowed to be the same as 'key' or 'result'.
    550   //            Unchanged on bailout so 'key' or 'result' can be used
    551   //            in further computation.
    552   //
    553   // Scratch registers:
    554   //
    555   // reg0 - holds the untagged key on entry and holds the hash once computed.
    556   //
    557   // reg1 - Used to hold the capacity mask of the dictionary.
    558   //
    559   // reg2 - Used for the index into the dictionary.
    560   // at   - Temporary (avoid MacroAssembler instructions also using 'at').
    561   Label done;
    562 
    563   GetNumberHash(reg0, reg1);
    564 
    565   // Compute the capacity mask.
    566   ld(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
    567   SmiUntag(reg1, reg1);
    568   Dsubu(reg1, reg1, Operand(1));
    569 
    570   // Generate an unrolled loop that performs a few probes before giving up.
    571   for (int i = 0; i < kNumberDictionaryProbes; i++) {
    572     // Use reg2 for index calculations and keep the hash intact in reg0.
    573     mov(reg2, reg0);
    574     // Compute the masked index: (hash + i + i * i) & mask.
    575     if (i > 0) {
    576       Daddu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
    577     }
    578     and_(reg2, reg2, reg1);
    579 
    580     // Scale the index by multiplying by the element size.
    581     DCHECK(SeededNumberDictionary::kEntrySize == 3);
    582     dsll(at, reg2, 1);  // 2x.
    583     daddu(reg2, reg2, at);  // reg2 = reg2 * 3.
    584 
    585     // Check if the key is identical to the name.
    586     dsll(at, reg2, kPointerSizeLog2);
    587     daddu(reg2, elements, at);
    588 
    589     ld(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
    590     if (i != kNumberDictionaryProbes - 1) {
    591       Branch(&done, eq, key, Operand(at));
    592     } else {
    593       Branch(miss, ne, key, Operand(at));
    594     }
    595   }
    596 
    597   bind(&done);
    598   // Check that the value is a normal property.
    599   // reg2: elements + (index * kPointerSize).
    600   const int kDetailsOffset =
    601       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
    602   ld(reg1, FieldMemOperand(reg2, kDetailsOffset));
    603   And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
    604   Branch(miss, ne, at, Operand(zero_reg));
    605 
    606   // Get the value at the masked, scaled index and return.
    607   const int kValueOffset =
    608       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
    609   ld(result, FieldMemOperand(reg2, kValueOffset));
    610 }
    611 
    612 
    613 // ---------------------------------------------------------------------------
    614 // Instruction macros.
    615 
    616 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
    617   if (rt.is_reg()) {
    618     addu(rd, rs, rt.rm());
    619   } else {
    620     if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    621       addiu(rd, rs, rt.imm64_);
    622     } else {
    623       // li handles the relocation.
    624       DCHECK(!rs.is(at));
    625       li(at, rt);
    626       addu(rd, rs, at);
    627     }
    628   }
    629 }
    630 
    631 
    632 void MacroAssembler::Daddu(Register rd, Register rs, const Operand& rt) {
    633   if (rt.is_reg()) {
    634     daddu(rd, rs, rt.rm());
    635   } else {
    636     if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    637       daddiu(rd, rs, rt.imm64_);
    638     } else {
    639       // li handles the relocation.
    640       DCHECK(!rs.is(at));
    641       li(at, rt);
    642       daddu(rd, rs, at);
    643     }
    644   }
    645 }
    646 
    647 
    648 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
    649   if (rt.is_reg()) {
    650     subu(rd, rs, rt.rm());
    651   } else {
    652     if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    653       addiu(rd, rs, -rt.imm64_);  // No subiu instr, use addiu(x, y, -imm).
    654     } else {
    655       // li handles the relocation.
    656       DCHECK(!rs.is(at));
    657       li(at, rt);
    658       subu(rd, rs, at);
    659     }
    660   }
    661 }
    662 
    663 
    664 void MacroAssembler::Dsubu(Register rd, Register rs, const Operand& rt) {
    665   if (rt.is_reg()) {
    666     dsubu(rd, rs, rt.rm());
    667   } else {
    668     if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    669       daddiu(rd, rs, -rt.imm64_);  // No subiu instr, use addiu(x, y, -imm).
    670     } else {
    671       // li handles the relocation.
    672       DCHECK(!rs.is(at));
    673       li(at, rt);
    674       dsubu(rd, rs, at);
    675     }
    676   }
    677 }
    678 
    679 
    680 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
    681   if (rt.is_reg()) {
    682     mul(rd, rs, rt.rm());
    683   } else {
    684     // li handles the relocation.
    685     DCHECK(!rs.is(at));
    686     li(at, rt);
    687     mul(rd, rs, at);
    688   }
    689 }
    690 
    691 
    692 void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) {
    693   if (rt.is_reg()) {
    694     if (kArchVariant != kMips64r6) {
    695       mult(rs, rt.rm());
    696       mfhi(rd);
    697     } else {
    698       muh(rd, rs, rt.rm());
    699     }
    700   } else {
    701     // li handles the relocation.
    702     DCHECK(!rs.is(at));
    703     li(at, rt);
    704     if (kArchVariant != kMips64r6) {
    705       mult(rs, at);
    706       mfhi(rd);
    707     } else {
    708       muh(rd, rs, at);
    709     }
    710   }
    711 }
    712 
    713 
    714 void MacroAssembler::Dmul(Register rd, Register rs, const Operand& rt) {
    715   if (rt.is_reg()) {
    716     if (kArchVariant == kMips64r6) {
    717       dmul(rd, rs, rt.rm());
    718     } else {
    719       dmult(rs, rt.rm());
    720       mflo(rd);
    721     }
    722   } else {
    723     // li handles the relocation.
    724     DCHECK(!rs.is(at));
    725     li(at, rt);
    726     if (kArchVariant == kMips64r6) {
    727       dmul(rd, rs, at);
    728     } else {
    729       dmult(rs, at);
    730       mflo(rd);
    731     }
    732   }
    733 }
    734 
    735 
    736 void MacroAssembler::Dmulh(Register rd, Register rs, const Operand& rt) {
    737   if (rt.is_reg()) {
    738     if (kArchVariant == kMips64r6) {
    739       dmuh(rd, rs, rt.rm());
    740     } else {
    741       dmult(rs, rt.rm());
    742       mfhi(rd);
    743     }
    744   } else {
    745     // li handles the relocation.
    746     DCHECK(!rs.is(at));
    747     li(at, rt);
    748     if (kArchVariant == kMips64r6) {
    749       dmuh(rd, rs, at);
    750     } else {
    751       dmult(rs, at);
    752       mfhi(rd);
    753     }
    754   }
    755 }
    756 
    757 
    758 void MacroAssembler::Mult(Register rs, const Operand& rt) {
    759   if (rt.is_reg()) {
    760     mult(rs, rt.rm());
    761   } else {
    762     // li handles the relocation.
    763     DCHECK(!rs.is(at));
    764     li(at, rt);
    765     mult(rs, at);
    766   }
    767 }
    768 
    769 
    770 void MacroAssembler::Dmult(Register rs, const Operand& rt) {
    771   if (rt.is_reg()) {
    772     dmult(rs, rt.rm());
    773   } else {
    774     // li handles the relocation.
    775     DCHECK(!rs.is(at));
    776     li(at, rt);
    777     dmult(rs, at);
    778   }
    779 }
    780 
    781 
    782 void MacroAssembler::Multu(Register rs, const Operand& rt) {
    783   if (rt.is_reg()) {
    784     multu(rs, rt.rm());
    785   } else {
    786     // li handles the relocation.
    787     DCHECK(!rs.is(at));
    788     li(at, rt);
    789     multu(rs, at);
    790   }
    791 }
    792 
    793 
    794 void MacroAssembler::Dmultu(Register rs, const Operand& rt) {
    795   if (rt.is_reg()) {
    796     dmultu(rs, rt.rm());
    797   } else {
    798     // li handles the relocation.
    799     DCHECK(!rs.is(at));
    800     li(at, rt);
    801     dmultu(rs, at);
    802   }
    803 }
    804 
    805 
    806 void MacroAssembler::Div(Register rs, const Operand& rt) {
    807   if (rt.is_reg()) {
    808     div(rs, rt.rm());
    809   } else {
    810     // li handles the relocation.
    811     DCHECK(!rs.is(at));
    812     li(at, rt);
    813     div(rs, at);
    814   }
    815 }
    816 
    817 
    818 void MacroAssembler::Ddiv(Register rs, const Operand& rt) {
    819   if (rt.is_reg()) {
    820     ddiv(rs, rt.rm());
    821   } else {
    822     // li handles the relocation.
    823     DCHECK(!rs.is(at));
    824     li(at, rt);
    825     ddiv(rs, at);
    826   }
    827 }
    828 
    829 
    830 void MacroAssembler::Ddiv(Register rd, Register rs, const Operand& rt) {
    831   if (kArchVariant != kMips64r6) {
    832     if (rt.is_reg()) {
    833       ddiv(rs, rt.rm());
    834       mflo(rd);
    835     } else {
    836       // li handles the relocation.
    837       DCHECK(!rs.is(at));
    838       li(at, rt);
    839       ddiv(rs, at);
    840       mflo(rd);
    841     }
    842   } else {
    843     if (rt.is_reg()) {
    844       ddiv(rd, rs, rt.rm());
    845     } else {
    846       // li handles the relocation.
    847       DCHECK(!rs.is(at));
    848       li(at, rt);
    849       ddiv(rd, rs, at);
    850     }
    851   }
    852 }
    853 
    854 
    855 void MacroAssembler::Divu(Register rs, const Operand& rt) {
    856   if (rt.is_reg()) {
    857     divu(rs, rt.rm());
    858   } else {
    859     // li handles the relocation.
    860     DCHECK(!rs.is(at));
    861     li(at, rt);
    862     divu(rs, at);
    863   }
    864 }
    865 
    866 
    867 void MacroAssembler::Ddivu(Register rs, const Operand& rt) {
    868   if (rt.is_reg()) {
    869     ddivu(rs, rt.rm());
    870   } else {
    871     // li handles the relocation.
    872     DCHECK(!rs.is(at));
    873     li(at, rt);
    874     ddivu(rs, at);
    875   }
    876 }
    877 
    878 
    879 void MacroAssembler::Dmod(Register rd, Register rs, const Operand& rt) {
    880   if (kArchVariant != kMips64r6) {
    881     if (rt.is_reg()) {
    882       ddiv(rs, rt.rm());
    883       mfhi(rd);
    884     } else {
    885       // li handles the relocation.
    886       DCHECK(!rs.is(at));
    887       li(at, rt);
    888       ddiv(rs, at);
    889       mfhi(rd);
    890     }
    891   } else {
    892     if (rt.is_reg()) {
    893       dmod(rd, rs, rt.rm());
    894     } else {
    895       // li handles the relocation.
    896       DCHECK(!rs.is(at));
    897       li(at, rt);
    898       dmod(rd, rs, at);
    899     }
    900   }
    901 }
    902 
    903 
    904 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
    905   if (rt.is_reg()) {
    906     and_(rd, rs, rt.rm());
    907   } else {
    908     if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    909       andi(rd, rs, rt.imm64_);
    910     } else {
    911       // li handles the relocation.
    912       DCHECK(!rs.is(at));
    913       li(at, rt);
    914       and_(rd, rs, at);
    915     }
    916   }
    917 }
    918 
    919 
    920 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
    921   if (rt.is_reg()) {
    922     or_(rd, rs, rt.rm());
    923   } else {
    924     if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    925       ori(rd, rs, rt.imm64_);
    926     } else {
    927       // li handles the relocation.
    928       DCHECK(!rs.is(at));
    929       li(at, rt);
    930       or_(rd, rs, at);
    931     }
    932   }
    933 }
    934 
    935 
    936 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
    937   if (rt.is_reg()) {
    938     xor_(rd, rs, rt.rm());
    939   } else {
    940     if (is_uint16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    941       xori(rd, rs, rt.imm64_);
    942     } else {
    943       // li handles the relocation.
    944       DCHECK(!rs.is(at));
    945       li(at, rt);
    946       xor_(rd, rs, at);
    947     }
    948   }
    949 }
    950 
    951 
    952 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
    953   if (rt.is_reg()) {
    954     nor(rd, rs, rt.rm());
    955   } else {
    956     // li handles the relocation.
    957     DCHECK(!rs.is(at));
    958     li(at, rt);
    959     nor(rd, rs, at);
    960   }
    961 }
    962 
    963 
    964 void MacroAssembler::Neg(Register rs, const Operand& rt) {
    965   DCHECK(rt.is_reg());
    966   DCHECK(!at.is(rs));
    967   DCHECK(!at.is(rt.rm()));
    968   li(at, -1);
    969   xor_(rs, rt.rm(), at);
    970 }
    971 
    972 
    973 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
    974   if (rt.is_reg()) {
    975     slt(rd, rs, rt.rm());
    976   } else {
    977     if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    978       slti(rd, rs, rt.imm64_);
    979     } else {
    980       // li handles the relocation.
    981       DCHECK(!rs.is(at));
    982       li(at, rt);
    983       slt(rd, rs, at);
    984     }
    985   }
    986 }
    987 
    988 
    989 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
    990   if (rt.is_reg()) {
    991     sltu(rd, rs, rt.rm());
    992   } else {
    993     if (is_int16(rt.imm64_) && !MustUseReg(rt.rmode_)) {
    994       sltiu(rd, rs, rt.imm64_);
    995     } else {
    996       // li handles the relocation.
    997       DCHECK(!rs.is(at));
    998       li(at, rt);
    999       sltu(rd, rs, at);
   1000     }
   1001   }
   1002 }
   1003 
   1004 
   1005 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
   1006   if (kArchVariant == kMips64r2) {
   1007     if (rt.is_reg()) {
   1008       rotrv(rd, rs, rt.rm());
   1009     } else {
   1010       rotr(rd, rs, rt.imm64_);
   1011     }
   1012   } else {
   1013     if (rt.is_reg()) {
   1014       subu(at, zero_reg, rt.rm());
   1015       sllv(at, rs, at);
   1016       srlv(rd, rs, rt.rm());
   1017       or_(rd, rd, at);
   1018     } else {
   1019       if (rt.imm64_ == 0) {
   1020         srl(rd, rs, 0);
   1021       } else {
   1022         srl(at, rs, rt.imm64_);
   1023         sll(rd, rs, (0x20 - rt.imm64_) & 0x1f);
   1024         or_(rd, rd, at);
   1025       }
   1026     }
   1027   }
   1028 }
   1029 
   1030 
   1031 void MacroAssembler::Dror(Register rd, Register rs, const Operand& rt) {
   1032   if (rt.is_reg()) {
   1033     drotrv(rd, rs, rt.rm());
   1034   } else {
   1035     drotr(rd, rs, rt.imm64_);
   1036   }
   1037 }
   1038 
   1039 
   1040 void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) {
   1041     pref(hint, rs);
   1042 }
   1043 
   1044 
   1045 // ------------Pseudo-instructions-------------
   1046 
   1047 void MacroAssembler::Ulw(Register rd, const MemOperand& rs) {
   1048   lwr(rd, rs);
   1049   lwl(rd, MemOperand(rs.rm(), rs.offset() + 3));
   1050 }
   1051 
   1052 
   1053 void MacroAssembler::Usw(Register rd, const MemOperand& rs) {
   1054   swr(rd, rs);
   1055   swl(rd, MemOperand(rs.rm(), rs.offset() + 3));
   1056 }
   1057 
   1058 
   1059 // Do 64-bit load from unaligned address. Note this only handles
   1060 // the specific case of 32-bit aligned, but not 64-bit aligned.
   1061 void MacroAssembler::Uld(Register rd, const MemOperand& rs, Register scratch) {
   1062   // Assert fail if the offset from start of object IS actually aligned.
   1063   // ONLY use with known misalignment, since there is performance cost.
   1064   DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
   1065   // TODO(plind): endian dependency.
   1066   lwu(rd, rs);
   1067   lw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
   1068   dsll32(scratch, scratch, 0);
   1069   Daddu(rd, rd, scratch);
   1070 }
   1071 
   1072 
   1073 // Do 64-bit store to unaligned address. Note this only handles
   1074 // the specific case of 32-bit aligned, but not 64-bit aligned.
   1075 void MacroAssembler::Usd(Register rd, const MemOperand& rs, Register scratch) {
   1076   // Assert fail if the offset from start of object IS actually aligned.
   1077   // ONLY use with known misalignment, since there is performance cost.
   1078   DCHECK((rs.offset() + kHeapObjectTag) & (kPointerSize - 1));
   1079   // TODO(plind): endian dependency.
   1080   sw(rd, rs);
   1081   dsrl32(scratch, rd, 0);
   1082   sw(scratch, MemOperand(rs.rm(), rs.offset() + kPointerSize / 2));
   1083 }
   1084 
   1085 
   1086 void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) {
   1087   AllowDeferredHandleDereference smi_check;
   1088   if (value->IsSmi()) {
   1089     li(dst, Operand(value), mode);
   1090   } else {
   1091     DCHECK(value->IsHeapObject());
   1092     if (isolate()->heap()->InNewSpace(*value)) {
   1093       Handle<Cell> cell = isolate()->factory()->NewCell(value);
   1094       li(dst, Operand(cell));
   1095       ld(dst, FieldMemOperand(dst, Cell::kValueOffset));
   1096     } else {
   1097       li(dst, Operand(value));
   1098     }
   1099   }
   1100 }
   1101 
   1102 
   1103 void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
   1104   DCHECK(!j.is_reg());
   1105   BlockTrampolinePoolScope block_trampoline_pool(this);
   1106   if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
   1107     // Normal load of an immediate value which does not need Relocation Info.
   1108     if (is_int32(j.imm64_)) {
   1109       if (is_int16(j.imm64_)) {
   1110         daddiu(rd, zero_reg, (j.imm64_ & kImm16Mask));
   1111       } else if (!(j.imm64_ & kHiMask)) {
   1112         ori(rd, zero_reg, (j.imm64_ & kImm16Mask));
   1113       } else if (!(j.imm64_ & kImm16Mask)) {
   1114         lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
   1115       } else {
   1116         lui(rd, (j.imm64_ >> kLuiShift) & kImm16Mask);
   1117         ori(rd, rd, (j.imm64_ & kImm16Mask));
   1118       }
   1119     } else {
   1120       lui(rd, (j.imm64_ >> 48) & kImm16Mask);
   1121       ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
   1122       dsll(rd, rd, 16);
   1123       ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
   1124       dsll(rd, rd, 16);
   1125       ori(rd, rd, j.imm64_ & kImm16Mask);
   1126     }
   1127   } else if (MustUseReg(j.rmode_)) {
   1128     RecordRelocInfo(j.rmode_, j.imm64_);
   1129     lui(rd, (j.imm64_ >> 32) & kImm16Mask);
   1130     ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
   1131     dsll(rd, rd, 16);
   1132     ori(rd, rd, j.imm64_ & kImm16Mask);
   1133   } else if (mode == ADDRESS_LOAD)  {
   1134     // We always need the same number of instructions as we may need to patch
   1135     // this code to load another value which may need all 4 instructions.
   1136     lui(rd, (j.imm64_ >> 32) & kImm16Mask);
   1137     ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
   1138     dsll(rd, rd, 16);
   1139     ori(rd, rd, j.imm64_ & kImm16Mask);
   1140   } else {
   1141     lui(rd, (j.imm64_ >> 48) & kImm16Mask);
   1142     ori(rd, rd, (j.imm64_ >> 32) & kImm16Mask);
   1143     dsll(rd, rd, 16);
   1144     ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
   1145     dsll(rd, rd, 16);
   1146     ori(rd, rd, j.imm64_ & kImm16Mask);
   1147   }
   1148 }
   1149 
   1150 
   1151 void MacroAssembler::MultiPush(RegList regs) {
   1152   int16_t num_to_push = NumberOfBitsSet(regs);
   1153   int16_t stack_offset = num_to_push * kPointerSize;
   1154 
   1155   Dsubu(sp, sp, Operand(stack_offset));
   1156   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
   1157     if ((regs & (1 << i)) != 0) {
   1158       stack_offset -= kPointerSize;
   1159       sd(ToRegister(i), MemOperand(sp, stack_offset));
   1160     }
   1161   }
   1162 }
   1163 
   1164 
   1165 void MacroAssembler::MultiPushReversed(RegList regs) {
   1166   int16_t num_to_push = NumberOfBitsSet(regs);
   1167   int16_t stack_offset = num_to_push * kPointerSize;
   1168 
   1169   Dsubu(sp, sp, Operand(stack_offset));
   1170   for (int16_t i = 0; i < kNumRegisters; i++) {
   1171     if ((regs & (1 << i)) != 0) {
   1172       stack_offset -= kPointerSize;
   1173       sd(ToRegister(i), MemOperand(sp, stack_offset));
   1174     }
   1175   }
   1176 }
   1177 
   1178 
   1179 void MacroAssembler::MultiPop(RegList regs) {
   1180   int16_t stack_offset = 0;
   1181 
   1182   for (int16_t i = 0; i < kNumRegisters; i++) {
   1183     if ((regs & (1 << i)) != 0) {
   1184       ld(ToRegister(i), MemOperand(sp, stack_offset));
   1185       stack_offset += kPointerSize;
   1186     }
   1187   }
   1188   daddiu(sp, sp, stack_offset);
   1189 }
   1190 
   1191 
   1192 void MacroAssembler::MultiPopReversed(RegList regs) {
   1193   int16_t stack_offset = 0;
   1194 
   1195   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
   1196     if ((regs & (1 << i)) != 0) {
   1197       ld(ToRegister(i), MemOperand(sp, stack_offset));
   1198       stack_offset += kPointerSize;
   1199     }
   1200   }
   1201   daddiu(sp, sp, stack_offset);
   1202 }
   1203 
   1204 
   1205 void MacroAssembler::MultiPushFPU(RegList regs) {
   1206   int16_t num_to_push = NumberOfBitsSet(regs);
   1207   int16_t stack_offset = num_to_push * kDoubleSize;
   1208 
   1209   Dsubu(sp, sp, Operand(stack_offset));
   1210   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
   1211     if ((regs & (1 << i)) != 0) {
   1212       stack_offset -= kDoubleSize;
   1213       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
   1214     }
   1215   }
   1216 }
   1217 
   1218 
   1219 void MacroAssembler::MultiPushReversedFPU(RegList regs) {
   1220   int16_t num_to_push = NumberOfBitsSet(regs);
   1221   int16_t stack_offset = num_to_push * kDoubleSize;
   1222 
   1223   Dsubu(sp, sp, Operand(stack_offset));
   1224   for (int16_t i = 0; i < kNumRegisters; i++) {
   1225     if ((regs & (1 << i)) != 0) {
   1226       stack_offset -= kDoubleSize;
   1227       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
   1228     }
   1229   }
   1230 }
   1231 
   1232 
   1233 void MacroAssembler::MultiPopFPU(RegList regs) {
   1234   int16_t stack_offset = 0;
   1235 
   1236   for (int16_t i = 0; i < kNumRegisters; i++) {
   1237     if ((regs & (1 << i)) != 0) {
   1238       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
   1239       stack_offset += kDoubleSize;
   1240     }
   1241   }
   1242   daddiu(sp, sp, stack_offset);
   1243 }
   1244 
   1245 
   1246 void MacroAssembler::MultiPopReversedFPU(RegList regs) {
   1247   int16_t stack_offset = 0;
   1248 
   1249   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
   1250     if ((regs & (1 << i)) != 0) {
   1251       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
   1252       stack_offset += kDoubleSize;
   1253     }
   1254   }
   1255   daddiu(sp, sp, stack_offset);
   1256 }
   1257 
   1258 
   1259 void MacroAssembler::FlushICache(Register address, unsigned instructions) {
   1260   RegList saved_regs = kJSCallerSaved | ra.bit();
   1261   MultiPush(saved_regs);
   1262   AllowExternalCallThatCantCauseGC scope(this);
   1263 
   1264   // Save to a0 in case address == a4.
   1265   Move(a0, address);
   1266   PrepareCallCFunction(2, a4);
   1267 
   1268   li(a1, instructions * kInstrSize);
   1269   CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
   1270   MultiPop(saved_regs);
   1271 }
   1272 
   1273 
   1274 void MacroAssembler::Ext(Register rt,
   1275                          Register rs,
   1276                          uint16_t pos,
   1277                          uint16_t size) {
   1278   DCHECK(pos < 32);
   1279   DCHECK(pos + size < 33);
   1280   ext_(rt, rs, pos, size);
   1281 }
   1282 
   1283 
   1284 void MacroAssembler::Ins(Register rt,
   1285                          Register rs,
   1286                          uint16_t pos,
   1287                          uint16_t size) {
   1288   DCHECK(pos < 32);
   1289   DCHECK(pos + size <= 32);
   1290   DCHECK(size != 0);
   1291   ins_(rt, rs, pos, size);
   1292 }
   1293 
   1294 
   1295 void MacroAssembler::Cvt_d_uw(FPURegister fd,
   1296                               FPURegister fs,
   1297                               FPURegister scratch) {
   1298   // Move the data from fs to t8.
   1299   mfc1(t8, fs);
   1300   Cvt_d_uw(fd, t8, scratch);
   1301 }
   1302 
   1303 
   1304 void MacroAssembler::Cvt_d_uw(FPURegister fd,
   1305                               Register rs,
   1306                               FPURegister scratch) {
   1307   // Convert rs to a FP value in fd (and fd + 1).
   1308   // We do this by converting rs minus the MSB to avoid sign conversion,
   1309   // then adding 2^31 to the result (if needed).
   1310 
   1311   DCHECK(!fd.is(scratch));
   1312   DCHECK(!rs.is(t9));
   1313   DCHECK(!rs.is(at));
   1314 
   1315   // Save rs's MSB to t9.
   1316   Ext(t9, rs, 31, 1);
   1317   // Remove rs's MSB.
   1318   Ext(at, rs, 0, 31);
   1319   // Move the result to fd.
   1320   mtc1(at, fd);
   1321   mthc1(zero_reg, fd);
   1322 
   1323   // Convert fd to a real FP value.
   1324   cvt_d_w(fd, fd);
   1325 
   1326   Label conversion_done;
   1327 
   1328   // If rs's MSB was 0, it's done.
   1329   // Otherwise we need to add that to the FP register.
   1330   Branch(&conversion_done, eq, t9, Operand(zero_reg));
   1331 
   1332   // Load 2^31 into f20 as its float representation.
   1333   li(at, 0x41E00000);
   1334   mtc1(zero_reg, scratch);
   1335   mthc1(at, scratch);
   1336   // Add it to fd.
   1337   add_d(fd, fd, scratch);
   1338 
   1339   bind(&conversion_done);
   1340 }
   1341 
   1342 
   1343 void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) {
   1344   round_l_d(fd, fs);
   1345 }
   1346 
   1347 
   1348 void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) {
   1349   floor_l_d(fd, fs);
   1350 }
   1351 
   1352 
   1353 void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) {
   1354   ceil_l_d(fd, fs);
   1355 }
   1356 
   1357 
   1358 void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) {
   1359   trunc_l_d(fd, fs);
   1360 }
   1361 
   1362 
   1363 void MacroAssembler::Trunc_l_ud(FPURegister fd,
   1364                                 FPURegister fs,
   1365                                 FPURegister scratch) {
   1366   // Load to GPR.
   1367   dmfc1(t8, fs);
   1368   // Reset sign bit.
   1369   li(at, 0x7fffffffffffffff);
   1370   and_(t8, t8, at);
   1371   dmtc1(t8, fs);
   1372   trunc_l_d(fd, fs);
   1373 }
   1374 
   1375 
   1376 void MacroAssembler::Trunc_uw_d(FPURegister fd,
   1377                                 FPURegister fs,
   1378                                 FPURegister scratch) {
   1379   Trunc_uw_d(fs, t8, scratch);
   1380   mtc1(t8, fd);
   1381 }
   1382 
   1383 
   1384 void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
   1385   trunc_w_d(fd, fs);
   1386 }
   1387 
   1388 
   1389 void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
   1390   round_w_d(fd, fs);
   1391 }
   1392 
   1393 
   1394 void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
   1395   floor_w_d(fd, fs);
   1396 }
   1397 
   1398 
   1399 void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
   1400   ceil_w_d(fd, fs);
   1401 }
   1402 
   1403 
   1404 void MacroAssembler::Trunc_uw_d(FPURegister fd,
   1405                                 Register rs,
   1406                                 FPURegister scratch) {
   1407   DCHECK(!fd.is(scratch));
   1408   DCHECK(!rs.is(at));
   1409 
   1410   // Load 2^31 into scratch as its float representation.
   1411   li(at, 0x41E00000);
   1412   mtc1(zero_reg, scratch);
   1413   mthc1(at, scratch);
   1414   // Test if scratch > fd.
   1415   // If fd < 2^31 we can convert it normally.
   1416   Label simple_convert;
   1417   BranchF(&simple_convert, NULL, lt, fd, scratch);
   1418 
   1419   // First we subtract 2^31 from fd, then trunc it to rs
   1420   // and add 2^31 to rs.
   1421   sub_d(scratch, fd, scratch);
   1422   trunc_w_d(scratch, scratch);
   1423   mfc1(rs, scratch);
   1424   Or(rs, rs, 1 << 31);
   1425 
   1426   Label done;
   1427   Branch(&done);
   1428   // Simple conversion.
   1429   bind(&simple_convert);
   1430   trunc_w_d(scratch, fd);
   1431   mfc1(rs, scratch);
   1432 
   1433   bind(&done);
   1434 }
   1435 
   1436 
   1437 void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
   1438     FPURegister ft, FPURegister scratch) {
   1439   if (0) {  // TODO(plind): find reasonable arch-variant symbol names.
   1440     madd_d(fd, fr, fs, ft);
   1441   } else {
   1442     // Can not change source regs's value.
   1443     DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch));
   1444     mul_d(scratch, fs, ft);
   1445     add_d(fd, fr, scratch);
   1446   }
   1447 }
   1448 
   1449 
   1450 void MacroAssembler::BranchF(Label* target,
   1451                              Label* nan,
   1452                              Condition cc,
   1453                              FPURegister cmp1,
   1454                              FPURegister cmp2,
   1455                              BranchDelaySlot bd) {
   1456   BlockTrampolinePoolScope block_trampoline_pool(this);
   1457   if (cc == al) {
   1458     Branch(bd, target);
   1459     return;
   1460   }
   1461 
   1462   DCHECK(nan || target);
   1463   // Check for unordered (NaN) cases.
   1464   if (nan) {
   1465     if (kArchVariant != kMips64r6) {
   1466       c(UN, D, cmp1, cmp2);
   1467       bc1t(nan);
   1468     } else {
   1469       // Use f31 for comparison result. It has to be unavailable to lithium
   1470       // register allocator.
   1471       DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
   1472       cmp(UN, L, f31, cmp1, cmp2);
   1473       bc1nez(nan, f31);
   1474     }
   1475   }
   1476 
   1477   if (kArchVariant != kMips64r6) {
   1478     if (target) {
   1479       // Here NaN cases were either handled by this function or are assumed to
   1480       // have been handled by the caller.
   1481       switch (cc) {
   1482         case lt:
   1483           c(OLT, D, cmp1, cmp2);
   1484           bc1t(target);
   1485           break;
   1486         case gt:
   1487           c(ULE, D, cmp1, cmp2);
   1488           bc1f(target);
   1489           break;
   1490         case ge:
   1491           c(ULT, D, cmp1, cmp2);
   1492           bc1f(target);
   1493           break;
   1494         case le:
   1495           c(OLE, D, cmp1, cmp2);
   1496           bc1t(target);
   1497           break;
   1498         case eq:
   1499           c(EQ, D, cmp1, cmp2);
   1500           bc1t(target);
   1501           break;
   1502         case ueq:
   1503           c(UEQ, D, cmp1, cmp2);
   1504           bc1t(target);
   1505           break;
   1506         case ne:
   1507           c(EQ, D, cmp1, cmp2);
   1508           bc1f(target);
   1509           break;
   1510         case nue:
   1511           c(UEQ, D, cmp1, cmp2);
   1512           bc1f(target);
   1513           break;
   1514         default:
   1515           CHECK(0);
   1516       }
   1517     }
   1518   } else {
   1519     if (target) {
   1520       // Here NaN cases were either handled by this function or are assumed to
   1521       // have been handled by the caller.
   1522       // Unsigned conditions are treated as their signed counterpart.
   1523       // Use f31 for comparison result, it is valid in fp64 (FR = 1) mode.
   1524       DCHECK(!cmp1.is(f31) && !cmp2.is(f31));
   1525       switch (cc) {
   1526         case lt:
   1527           cmp(OLT, L, f31, cmp1, cmp2);
   1528           bc1nez(target, f31);
   1529           break;
   1530         case gt:
   1531           cmp(ULE, L, f31, cmp1, cmp2);
   1532           bc1eqz(target, f31);
   1533           break;
   1534         case ge:
   1535           cmp(ULT, L, f31, cmp1, cmp2);
   1536           bc1eqz(target, f31);
   1537           break;
   1538         case le:
   1539           cmp(OLE, L, f31, cmp1, cmp2);
   1540           bc1nez(target, f31);
   1541           break;
   1542         case eq:
   1543           cmp(EQ, L, f31, cmp1, cmp2);
   1544           bc1nez(target, f31);
   1545           break;
   1546         case ueq:
   1547           cmp(UEQ, L, f31, cmp1, cmp2);
   1548           bc1nez(target, f31);
   1549           break;
   1550         case ne:
   1551           cmp(EQ, L, f31, cmp1, cmp2);
   1552           bc1eqz(target, f31);
   1553           break;
   1554         case nue:
   1555           cmp(UEQ, L, f31, cmp1, cmp2);
   1556           bc1eqz(target, f31);
   1557           break;
   1558         default:
   1559           CHECK(0);
   1560       }
   1561     }
   1562   }
   1563 
   1564   if (bd == PROTECT) {
   1565     nop();
   1566   }
   1567 }
   1568 
   1569 
   1570 void MacroAssembler::Move(FPURegister dst, double imm) {
   1571   static const DoubleRepresentation minus_zero(-0.0);
   1572   static const DoubleRepresentation zero(0.0);
   1573   DoubleRepresentation value_rep(imm);
   1574   // Handle special values first.
   1575   bool force_load = dst.is(kDoubleRegZero);
   1576   if (value_rep == zero && !force_load) {
   1577     mov_d(dst, kDoubleRegZero);
   1578   } else if (value_rep == minus_zero && !force_load) {
   1579     neg_d(dst, kDoubleRegZero);
   1580   } else {
   1581     uint32_t lo, hi;
   1582     DoubleAsTwoUInt32(imm, &lo, &hi);
   1583     // Move the low part of the double into the lower bits of the corresponding
   1584     // FPU register.
   1585     if (lo != 0) {
   1586       li(at, Operand(lo));
   1587       mtc1(at, dst);
   1588     } else {
   1589       mtc1(zero_reg, dst);
   1590     }
   1591     // Move the high part of the double into the high bits of the corresponding
   1592     // FPU register.
   1593     if (hi != 0) {
   1594       li(at, Operand(hi));
   1595       mthc1(at, dst);
   1596     } else {
   1597       mthc1(zero_reg, dst);
   1598     }
   1599   }
   1600 }
   1601 
   1602 
   1603 void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
   1604   if (kArchVariant == kMips64r6) {
   1605     Label done;
   1606     Branch(&done, ne, rt, Operand(zero_reg));
   1607     mov(rd, rs);
   1608     bind(&done);
   1609   } else {
   1610     movz(rd, rs, rt);
   1611   }
   1612 }
   1613 
   1614 
   1615 void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
   1616   if (kArchVariant == kMips64r6) {
   1617     Label done;
   1618     Branch(&done, eq, rt, Operand(zero_reg));
   1619     mov(rd, rs);
   1620     bind(&done);
   1621   } else {
   1622     movn(rd, rs, rt);
   1623   }
   1624 }
   1625 
   1626 
   1627 void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
   1628   movt(rd, rs, cc);
   1629 }
   1630 
   1631 
   1632 void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
   1633   movf(rd, rs, cc);
   1634 }
   1635 
   1636 
   1637 void MacroAssembler::Clz(Register rd, Register rs) {
   1638   clz(rd, rs);
   1639 }
   1640 
   1641 
   1642 void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
   1643                                      Register result,
   1644                                      DoubleRegister double_input,
   1645                                      Register scratch,
   1646                                      DoubleRegister double_scratch,
   1647                                      Register except_flag,
   1648                                      CheckForInexactConversion check_inexact) {
   1649   DCHECK(!result.is(scratch));
   1650   DCHECK(!double_input.is(double_scratch));
   1651   DCHECK(!except_flag.is(scratch));
   1652 
   1653   Label done;
   1654 
   1655   // Clear the except flag (0 = no exception)
   1656   mov(except_flag, zero_reg);
   1657 
   1658   // Test for values that can be exactly represented as a signed 32-bit integer.
   1659   cvt_w_d(double_scratch, double_input);
   1660   mfc1(result, double_scratch);
   1661   cvt_d_w(double_scratch, double_scratch);
   1662   BranchF(&done, NULL, eq, double_input, double_scratch);
   1663 
   1664   int32_t except_mask = kFCSRFlagMask;  // Assume interested in all exceptions.
   1665 
   1666   if (check_inexact == kDontCheckForInexactConversion) {
   1667     // Ignore inexact exceptions.
   1668     except_mask &= ~kFCSRInexactFlagMask;
   1669   }
   1670 
   1671   // Save FCSR.
   1672   cfc1(scratch, FCSR);
   1673   // Disable FPU exceptions.
   1674   ctc1(zero_reg, FCSR);
   1675 
   1676   // Do operation based on rounding mode.
   1677   switch (rounding_mode) {
   1678     case kRoundToNearest:
   1679       Round_w_d(double_scratch, double_input);
   1680       break;
   1681     case kRoundToZero:
   1682       Trunc_w_d(double_scratch, double_input);
   1683       break;
   1684     case kRoundToPlusInf:
   1685       Ceil_w_d(double_scratch, double_input);
   1686       break;
   1687     case kRoundToMinusInf:
   1688       Floor_w_d(double_scratch, double_input);
   1689       break;
   1690   }  // End of switch-statement.
   1691 
   1692   // Retrieve FCSR.
   1693   cfc1(except_flag, FCSR);
   1694   // Restore FCSR.
   1695   ctc1(scratch, FCSR);
   1696   // Move the converted value into the result register.
   1697   mfc1(result, double_scratch);
   1698 
   1699   // Check for fpu exceptions.
   1700   And(except_flag, except_flag, Operand(except_mask));
   1701 
   1702   bind(&done);
   1703 }
   1704 
   1705 
   1706 void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
   1707                                                 DoubleRegister double_input,
   1708                                                 Label* done) {
   1709   DoubleRegister single_scratch = kLithiumScratchDouble.low();
   1710   Register scratch = at;
   1711   Register scratch2 = t9;
   1712 
   1713   // Clear cumulative exception flags and save the FCSR.
   1714   cfc1(scratch2, FCSR);
   1715   ctc1(zero_reg, FCSR);
   1716   // Try a conversion to a signed integer.
   1717   trunc_w_d(single_scratch, double_input);
   1718   mfc1(result, single_scratch);
   1719   // Retrieve and restore the FCSR.
   1720   cfc1(scratch, FCSR);
   1721   ctc1(scratch2, FCSR);
   1722   // Check for overflow and NaNs.
   1723   And(scratch,
   1724       scratch,
   1725       kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
   1726   // If we had no exceptions we are done.
   1727   Branch(done, eq, scratch, Operand(zero_reg));
   1728 }
   1729 
   1730 
   1731 void MacroAssembler::TruncateDoubleToI(Register result,
   1732                                        DoubleRegister double_input) {
   1733   Label done;
   1734 
   1735   TryInlineTruncateDoubleToI(result, double_input, &done);
   1736 
   1737   // If we fell through then inline version didn't succeed - call stub instead.
   1738   push(ra);
   1739   Dsubu(sp, sp, Operand(kDoubleSize));  // Put input on stack.
   1740   sdc1(double_input, MemOperand(sp, 0));
   1741 
   1742   DoubleToIStub stub(isolate(), sp, result, 0, true, true);
   1743   CallStub(&stub);
   1744 
   1745   Daddu(sp, sp, Operand(kDoubleSize));
   1746   pop(ra);
   1747 
   1748   bind(&done);
   1749 }
   1750 
   1751 
   1752 void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
   1753   Label done;
   1754   DoubleRegister double_scratch = f12;
   1755   DCHECK(!result.is(object));
   1756 
   1757   ldc1(double_scratch,
   1758        MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
   1759   TryInlineTruncateDoubleToI(result, double_scratch, &done);
   1760 
   1761   // If we fell through then inline version didn't succeed - call stub instead.
   1762   push(ra);
   1763   DoubleToIStub stub(isolate(),
   1764                      object,
   1765                      result,
   1766                      HeapNumber::kValueOffset - kHeapObjectTag,
   1767                      true,
   1768                      true);
   1769   CallStub(&stub);
   1770   pop(ra);
   1771 
   1772   bind(&done);
   1773 }
   1774 
   1775 
   1776 void MacroAssembler::TruncateNumberToI(Register object,
   1777                                        Register result,
   1778                                        Register heap_number_map,
   1779                                        Register scratch,
   1780                                        Label* not_number) {
   1781   Label done;
   1782   DCHECK(!result.is(object));
   1783 
   1784   UntagAndJumpIfSmi(result, object, &done);
   1785   JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number);
   1786   TruncateHeapNumberToI(result, object);
   1787 
   1788   bind(&done);
   1789 }
   1790 
   1791 
   1792 void MacroAssembler::GetLeastBitsFromSmi(Register dst,
   1793                                          Register src,
   1794                                          int num_least_bits) {
   1795   // Ext(dst, src, kSmiTagSize, num_least_bits);
   1796   SmiUntag(dst, src);
   1797   And(dst, dst, Operand((1 << num_least_bits) - 1));
   1798 }
   1799 
   1800 
   1801 void MacroAssembler::GetLeastBitsFromInt32(Register dst,
   1802                                            Register src,
   1803                                            int num_least_bits) {
   1804   DCHECK(!src.is(dst));
   1805   And(dst, src, Operand((1 << num_least_bits) - 1));
   1806 }
   1807 
   1808 
   1809 // Emulated condtional branches do not emit a nop in the branch delay slot.
   1810 //
   1811 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
   1812 #define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK(                                \
   1813     (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) ||          \
   1814     (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
   1815 
   1816 
   1817 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
   1818   BranchShort(offset, bdslot);
   1819 }
   1820 
   1821 
   1822 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
   1823                             const Operand& rt,
   1824                             BranchDelaySlot bdslot) {
   1825   BranchShort(offset, cond, rs, rt, bdslot);
   1826 }
   1827 
   1828 
   1829 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
   1830   if (L->is_bound()) {
   1831     if (is_near(L)) {
   1832       BranchShort(L, bdslot);
   1833     } else {
   1834       Jr(L, bdslot);
   1835     }
   1836   } else {
   1837     if (is_trampoline_emitted()) {
   1838       Jr(L, bdslot);
   1839     } else {
   1840       BranchShort(L, bdslot);
   1841     }
   1842   }
   1843 }
   1844 
   1845 
   1846 void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
   1847                             const Operand& rt,
   1848                             BranchDelaySlot bdslot) {
   1849   if (L->is_bound()) {
   1850     if (is_near(L)) {
   1851       BranchShort(L, cond, rs, rt, bdslot);
   1852     } else {
   1853       if (cond != cc_always) {
   1854         Label skip;
   1855         Condition neg_cond = NegateCondition(cond);
   1856         BranchShort(&skip, neg_cond, rs, rt);
   1857         Jr(L, bdslot);
   1858         bind(&skip);
   1859       } else {
   1860         Jr(L, bdslot);
   1861       }
   1862     }
   1863   } else {
   1864     if (is_trampoline_emitted()) {
   1865       if (cond != cc_always) {
   1866         Label skip;
   1867         Condition neg_cond = NegateCondition(cond);
   1868         BranchShort(&skip, neg_cond, rs, rt);
   1869         Jr(L, bdslot);
   1870         bind(&skip);
   1871       } else {
   1872         Jr(L, bdslot);
   1873       }
   1874     } else {
   1875       BranchShort(L, cond, rs, rt, bdslot);
   1876     }
   1877   }
   1878 }
   1879 
   1880 
   1881 void MacroAssembler::Branch(Label* L,
   1882                             Condition cond,
   1883                             Register rs,
   1884                             Heap::RootListIndex index,
   1885                             BranchDelaySlot bdslot) {
   1886   LoadRoot(at, index);
   1887   Branch(L, cond, rs, Operand(at), bdslot);
   1888 }
   1889 
   1890 
   1891 void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
   1892   b(offset);
   1893 
   1894   // Emit a nop in the branch delay slot if required.
   1895   if (bdslot == PROTECT)
   1896     nop();
   1897 }
   1898 
   1899 
   1900 void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
   1901                                  const Operand& rt,
   1902                                  BranchDelaySlot bdslot) {
   1903   BRANCH_ARGS_CHECK(cond, rs, rt);
   1904   DCHECK(!rs.is(zero_reg));
   1905   Register r2 = no_reg;
   1906   Register scratch = at;
   1907 
   1908   if (rt.is_reg()) {
   1909     // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
   1910     // rt.
   1911     BlockTrampolinePoolScope block_trampoline_pool(this);
   1912     r2 = rt.rm_;
   1913     switch (cond) {
   1914       case cc_always:
   1915         b(offset);
   1916         break;
   1917       case eq:
   1918         beq(rs, r2, offset);
   1919         break;
   1920       case ne:
   1921         bne(rs, r2, offset);
   1922         break;
   1923       // Signed comparison.
   1924       case greater:
   1925         if (r2.is(zero_reg)) {
   1926           bgtz(rs, offset);
   1927         } else {
   1928           slt(scratch, r2, rs);
   1929           bne(scratch, zero_reg, offset);
   1930         }
   1931         break;
   1932       case greater_equal:
   1933         if (r2.is(zero_reg)) {
   1934           bgez(rs, offset);
   1935         } else {
   1936           slt(scratch, rs, r2);
   1937           beq(scratch, zero_reg, offset);
   1938         }
   1939         break;
   1940       case less:
   1941         if (r2.is(zero_reg)) {
   1942           bltz(rs, offset);
   1943         } else {
   1944           slt(scratch, rs, r2);
   1945           bne(scratch, zero_reg, offset);
   1946         }
   1947         break;
   1948       case less_equal:
   1949         if (r2.is(zero_reg)) {
   1950           blez(rs, offset);
   1951         } else {
   1952           slt(scratch, r2, rs);
   1953           beq(scratch, zero_reg, offset);
   1954         }
   1955         break;
   1956       // Unsigned comparison.
   1957       case Ugreater:
   1958         if (r2.is(zero_reg)) {
   1959           bgtz(rs, offset);
   1960         } else {
   1961           sltu(scratch, r2, rs);
   1962           bne(scratch, zero_reg, offset);
   1963         }
   1964         break;
   1965       case Ugreater_equal:
   1966         if (r2.is(zero_reg)) {
   1967           bgez(rs, offset);
   1968         } else {
   1969           sltu(scratch, rs, r2);
   1970           beq(scratch, zero_reg, offset);
   1971         }
   1972         break;
   1973       case Uless:
   1974         if (r2.is(zero_reg)) {
   1975           // No code needs to be emitted.
   1976           return;
   1977         } else {
   1978           sltu(scratch, rs, r2);
   1979           bne(scratch, zero_reg, offset);
   1980         }
   1981         break;
   1982       case Uless_equal:
   1983         if (r2.is(zero_reg)) {
   1984           b(offset);
   1985         } else {
   1986           sltu(scratch, r2, rs);
   1987           beq(scratch, zero_reg, offset);
   1988         }
   1989         break;
   1990       default:
   1991         UNREACHABLE();
   1992     }
   1993   } else {
   1994     // Be careful to always use shifted_branch_offset only just before the
   1995     // branch instruction, as the location will be remember for patching the
   1996     // target.
   1997     BlockTrampolinePoolScope block_trampoline_pool(this);
   1998     switch (cond) {
   1999       case cc_always:
   2000         b(offset);
   2001         break;
   2002       case eq:
   2003         // We don't want any other register but scratch clobbered.
   2004         DCHECK(!scratch.is(rs));
   2005         r2 = scratch;
   2006         li(r2, rt);
   2007         beq(rs, r2, offset);
   2008         break;
   2009       case ne:
   2010         // We don't want any other register but scratch clobbered.
   2011         DCHECK(!scratch.is(rs));
   2012         r2 = scratch;
   2013         li(r2, rt);
   2014         bne(rs, r2, offset);
   2015         break;
   2016       // Signed comparison.
   2017       case greater:
   2018         if (rt.imm64_ == 0) {
   2019           bgtz(rs, offset);
   2020         } else {
   2021           r2 = scratch;
   2022           li(r2, rt);
   2023           slt(scratch, r2, rs);
   2024           bne(scratch, zero_reg, offset);
   2025         }
   2026         break;
   2027       case greater_equal:
   2028         if (rt.imm64_ == 0) {
   2029           bgez(rs, offset);
   2030         } else if (is_int16(rt.imm64_)) {
   2031           slti(scratch, rs, rt.imm64_);
   2032           beq(scratch, zero_reg, offset);
   2033         } else {
   2034           r2 = scratch;
   2035           li(r2, rt);
   2036           slt(scratch, rs, r2);
   2037           beq(scratch, zero_reg, offset);
   2038         }
   2039         break;
   2040       case less:
   2041         if (rt.imm64_ == 0) {
   2042           bltz(rs, offset);
   2043         } else if (is_int16(rt.imm64_)) {
   2044           slti(scratch, rs, rt.imm64_);
   2045           bne(scratch, zero_reg, offset);
   2046         } else {
   2047           r2 = scratch;
   2048           li(r2, rt);
   2049           slt(scratch, rs, r2);
   2050           bne(scratch, zero_reg, offset);
   2051         }
   2052         break;
   2053       case less_equal:
   2054         if (rt.imm64_ == 0) {
   2055           blez(rs, offset);
   2056         } else {
   2057           r2 = scratch;
   2058           li(r2, rt);
   2059           slt(scratch, r2, rs);
   2060           beq(scratch, zero_reg, offset);
   2061        }
   2062        break;
   2063       // Unsigned comparison.
   2064       case Ugreater:
   2065         if (rt.imm64_ == 0) {
   2066           bgtz(rs, offset);
   2067         } else {
   2068           r2 = scratch;
   2069           li(r2, rt);
   2070           sltu(scratch, r2, rs);
   2071           bne(scratch, zero_reg, offset);
   2072         }
   2073         break;
   2074       case Ugreater_equal:
   2075         if (rt.imm64_ == 0) {
   2076           bgez(rs, offset);
   2077         } else if (is_int16(rt.imm64_)) {
   2078           sltiu(scratch, rs, rt.imm64_);
   2079           beq(scratch, zero_reg, offset);
   2080         } else {
   2081           r2 = scratch;
   2082           li(r2, rt);
   2083           sltu(scratch, rs, r2);
   2084           beq(scratch, zero_reg, offset);
   2085         }
   2086         break;
   2087       case Uless:
   2088         if (rt.imm64_ == 0) {
   2089           // No code needs to be emitted.
   2090           return;
   2091         } else if (is_int16(rt.imm64_)) {
   2092           sltiu(scratch, rs, rt.imm64_);
   2093           bne(scratch, zero_reg, offset);
   2094         } else {
   2095           r2 = scratch;
   2096           li(r2, rt);
   2097           sltu(scratch, rs, r2);
   2098           bne(scratch, zero_reg, offset);
   2099         }
   2100         break;
   2101       case Uless_equal:
   2102         if (rt.imm64_ == 0) {
   2103           b(offset);
   2104         } else {
   2105           r2 = scratch;
   2106           li(r2, rt);
   2107           sltu(scratch, r2, rs);
   2108           beq(scratch, zero_reg, offset);
   2109         }
   2110         break;
   2111       default:
   2112         UNREACHABLE();
   2113     }
   2114   }
   2115   // Emit a nop in the branch delay slot if required.
   2116   if (bdslot == PROTECT)
   2117     nop();
   2118 }
   2119 
   2120 
   2121 void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
   2122   // We use branch_offset as an argument for the branch instructions to be sure
   2123   // it is called just before generating the branch instruction, as needed.
   2124 
   2125   b(shifted_branch_offset(L, false));
   2126 
   2127   // Emit a nop in the branch delay slot if required.
   2128   if (bdslot == PROTECT)
   2129     nop();
   2130 }
   2131 
   2132 
   2133 void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
   2134                                  const Operand& rt,
   2135                                  BranchDelaySlot bdslot) {
   2136   BRANCH_ARGS_CHECK(cond, rs, rt);
   2137 
   2138   int32_t offset = 0;
   2139   Register r2 = no_reg;
   2140   Register scratch = at;
   2141   if (rt.is_reg()) {
   2142     BlockTrampolinePoolScope block_trampoline_pool(this);
   2143     r2 = rt.rm_;
   2144     // Be careful to always use shifted_branch_offset only just before the
   2145     // branch instruction, as the location will be remember for patching the
   2146     // target.
   2147     switch (cond) {
   2148       case cc_always:
   2149         offset = shifted_branch_offset(L, false);
   2150         b(offset);
   2151         break;
   2152       case eq:
   2153         offset = shifted_branch_offset(L, false);
   2154         beq(rs, r2, offset);
   2155         break;
   2156       case ne:
   2157         offset = shifted_branch_offset(L, false);
   2158         bne(rs, r2, offset);
   2159         break;
   2160       // Signed comparison.
   2161       case greater:
   2162         if (r2.is(zero_reg)) {
   2163           offset = shifted_branch_offset(L, false);
   2164           bgtz(rs, offset);
   2165         } else {
   2166           slt(scratch, r2, rs);
   2167           offset = shifted_branch_offset(L, false);
   2168           bne(scratch, zero_reg, offset);
   2169         }
   2170         break;
   2171       case greater_equal:
   2172         if (r2.is(zero_reg)) {
   2173           offset = shifted_branch_offset(L, false);
   2174           bgez(rs, offset);
   2175         } else {
   2176           slt(scratch, rs, r2);
   2177           offset = shifted_branch_offset(L, false);
   2178           beq(scratch, zero_reg, offset);
   2179         }
   2180         break;
   2181       case less:
   2182         if (r2.is(zero_reg)) {
   2183           offset = shifted_branch_offset(L, false);
   2184           bltz(rs, offset);
   2185         } else {
   2186           slt(scratch, rs, r2);
   2187           offset = shifted_branch_offset(L, false);
   2188           bne(scratch, zero_reg, offset);
   2189         }
   2190         break;
   2191       case less_equal:
   2192         if (r2.is(zero_reg)) {
   2193           offset = shifted_branch_offset(L, false);
   2194           blez(rs, offset);
   2195         } else {
   2196           slt(scratch, r2, rs);
   2197           offset = shifted_branch_offset(L, false);
   2198           beq(scratch, zero_reg, offset);
   2199         }
   2200         break;
   2201       // Unsigned comparison.
   2202       case Ugreater:
   2203         if (r2.is(zero_reg)) {
   2204           offset = shifted_branch_offset(L, false);
   2205            bgtz(rs, offset);
   2206         } else {
   2207           sltu(scratch, r2, rs);
   2208           offset = shifted_branch_offset(L, false);
   2209           bne(scratch, zero_reg, offset);
   2210         }
   2211         break;
   2212       case Ugreater_equal:
   2213         if (r2.is(zero_reg)) {
   2214           offset = shifted_branch_offset(L, false);
   2215           bgez(rs, offset);
   2216         } else {
   2217           sltu(scratch, rs, r2);
   2218           offset = shifted_branch_offset(L, false);
   2219           beq(scratch, zero_reg, offset);
   2220         }
   2221         break;
   2222       case Uless:
   2223         if (r2.is(zero_reg)) {
   2224           // No code needs to be emitted.
   2225           return;
   2226         } else {
   2227           sltu(scratch, rs, r2);
   2228           offset = shifted_branch_offset(L, false);
   2229           bne(scratch, zero_reg, offset);
   2230         }
   2231         break;
   2232       case Uless_equal:
   2233         if (r2.is(zero_reg)) {
   2234           offset = shifted_branch_offset(L, false);
   2235           b(offset);
   2236         } else {
   2237           sltu(scratch, r2, rs);
   2238           offset = shifted_branch_offset(L, false);
   2239           beq(scratch, zero_reg, offset);
   2240         }
   2241         break;
   2242       default:
   2243         UNREACHABLE();
   2244     }
   2245   } else {
   2246     // Be careful to always use shifted_branch_offset only just before the
   2247     // branch instruction, as the location will be remember for patching the
   2248     // target.
   2249     BlockTrampolinePoolScope block_trampoline_pool(this);
   2250     switch (cond) {
   2251       case cc_always:
   2252         offset = shifted_branch_offset(L, false);
   2253         b(offset);
   2254         break;
   2255       case eq:
   2256         DCHECK(!scratch.is(rs));
   2257         r2 = scratch;
   2258         li(r2, rt);
   2259         offset = shifted_branch_offset(L, false);
   2260         beq(rs, r2, offset);
   2261         break;
   2262       case ne:
   2263         DCHECK(!scratch.is(rs));
   2264         r2 = scratch;
   2265         li(r2, rt);
   2266         offset = shifted_branch_offset(L, false);
   2267         bne(rs, r2, offset);
   2268         break;
   2269       // Signed comparison.
   2270       case greater:
   2271         if (rt.imm64_ == 0) {
   2272           offset = shifted_branch_offset(L, false);
   2273           bgtz(rs, offset);
   2274         } else {
   2275           DCHECK(!scratch.is(rs));
   2276           r2 = scratch;
   2277           li(r2, rt);
   2278           slt(scratch, r2, rs);
   2279           offset = shifted_branch_offset(L, false);
   2280           bne(scratch, zero_reg, offset);
   2281         }
   2282         break;
   2283       case greater_equal:
   2284         if (rt.imm64_ == 0) {
   2285           offset = shifted_branch_offset(L, false);
   2286           bgez(rs, offset);
   2287         } else if (is_int16(rt.imm64_)) {
   2288           slti(scratch, rs, rt.imm64_);
   2289           offset = shifted_branch_offset(L, false);
   2290           beq(scratch, zero_reg, offset);
   2291         } else {
   2292           DCHECK(!scratch.is(rs));
   2293           r2 = scratch;
   2294           li(r2, rt);
   2295           slt(scratch, rs, r2);
   2296           offset = shifted_branch_offset(L, false);
   2297           beq(scratch, zero_reg, offset);
   2298         }
   2299         break;
   2300       case less:
   2301         if (rt.imm64_ == 0) {
   2302           offset = shifted_branch_offset(L, false);
   2303           bltz(rs, offset);
   2304         } else if (is_int16(rt.imm64_)) {
   2305           slti(scratch, rs, rt.imm64_);
   2306           offset = shifted_branch_offset(L, false);
   2307           bne(scratch, zero_reg, offset);
   2308         } else {
   2309           DCHECK(!scratch.is(rs));
   2310           r2 = scratch;
   2311           li(r2, rt);
   2312           slt(scratch, rs, r2);
   2313           offset = shifted_branch_offset(L, false);
   2314           bne(scratch, zero_reg, offset);
   2315         }
   2316         break;
   2317       case less_equal:
   2318         if (rt.imm64_ == 0) {
   2319           offset = shifted_branch_offset(L, false);
   2320           blez(rs, offset);
   2321         } else {
   2322           DCHECK(!scratch.is(rs));
   2323           r2 = scratch;
   2324           li(r2, rt);
   2325           slt(scratch, r2, rs);
   2326           offset = shifted_branch_offset(L, false);
   2327           beq(scratch, zero_reg, offset);
   2328         }
   2329         break;
   2330       // Unsigned comparison.
   2331       case Ugreater:
   2332         if (rt.imm64_ == 0) {
   2333           offset = shifted_branch_offset(L, false);
   2334           bne(rs, zero_reg, offset);
   2335         } else {
   2336           DCHECK(!scratch.is(rs));
   2337           r2 = scratch;
   2338           li(r2, rt);
   2339           sltu(scratch, r2, rs);
   2340           offset = shifted_branch_offset(L, false);
   2341           bne(scratch, zero_reg, offset);
   2342         }
   2343         break;
   2344       case Ugreater_equal:
   2345         if (rt.imm64_ == 0) {
   2346           offset = shifted_branch_offset(L, false);
   2347           bgez(rs, offset);
   2348         } else if (is_int16(rt.imm64_)) {
   2349           sltiu(scratch, rs, rt.imm64_);
   2350           offset = shifted_branch_offset(L, false);
   2351           beq(scratch, zero_reg, offset);
   2352         } else {
   2353           DCHECK(!scratch.is(rs));
   2354           r2 = scratch;
   2355           li(r2, rt);
   2356           sltu(scratch, rs, r2);
   2357           offset = shifted_branch_offset(L, false);
   2358           beq(scratch, zero_reg, offset);
   2359         }
   2360         break;
   2361      case Uless:
   2362         if (rt.imm64_ == 0) {
   2363           // No code needs to be emitted.
   2364           return;
   2365         } else if (is_int16(rt.imm64_)) {
   2366           sltiu(scratch, rs, rt.imm64_);
   2367           offset = shifted_branch_offset(L, false);
   2368           bne(scratch, zero_reg, offset);
   2369         } else {
   2370           DCHECK(!scratch.is(rs));
   2371           r2 = scratch;
   2372           li(r2, rt);
   2373           sltu(scratch, rs, r2);
   2374           offset = shifted_branch_offset(L, false);
   2375           bne(scratch, zero_reg, offset);
   2376         }
   2377         break;
   2378       case Uless_equal:
   2379         if (rt.imm64_ == 0) {
   2380           offset = shifted_branch_offset(L, false);
   2381           beq(rs, zero_reg, offset);
   2382         } else {
   2383           DCHECK(!scratch.is(rs));
   2384           r2 = scratch;
   2385           li(r2, rt);
   2386           sltu(scratch, r2, rs);
   2387           offset = shifted_branch_offset(L, false);
   2388           beq(scratch, zero_reg, offset);
   2389         }
   2390         break;
   2391       default:
   2392         UNREACHABLE();
   2393     }
   2394   }
   2395   // Check that offset could actually hold on an int16_t.
   2396   DCHECK(is_int16(offset));
   2397   // Emit a nop in the branch delay slot if required.
   2398   if (bdslot == PROTECT)
   2399     nop();
   2400 }
   2401 
   2402 
   2403 void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
   2404   BranchAndLinkShort(offset, bdslot);
   2405 }
   2406 
   2407 
   2408 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
   2409                                    const Operand& rt,
   2410                                    BranchDelaySlot bdslot) {
   2411   BranchAndLinkShort(offset, cond, rs, rt, bdslot);
   2412 }
   2413 
   2414 
   2415 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
   2416   if (L->is_bound()) {
   2417     if (is_near(L)) {
   2418       BranchAndLinkShort(L, bdslot);
   2419     } else {
   2420       Jalr(L, bdslot);
   2421     }
   2422   } else {
   2423     if (is_trampoline_emitted()) {
   2424       Jalr(L, bdslot);
   2425     } else {
   2426       BranchAndLinkShort(L, bdslot);
   2427     }
   2428   }
   2429 }
   2430 
   2431 
   2432 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
   2433                                    const Operand& rt,
   2434                                    BranchDelaySlot bdslot) {
   2435   if (L->is_bound()) {
   2436     if (is_near(L)) {
   2437       BranchAndLinkShort(L, cond, rs, rt, bdslot);
   2438     } else {
   2439       Label skip;
   2440       Condition neg_cond = NegateCondition(cond);
   2441       BranchShort(&skip, neg_cond, rs, rt);
   2442       Jalr(L, bdslot);
   2443       bind(&skip);
   2444     }
   2445   } else {
   2446     if (is_trampoline_emitted()) {
   2447       Label skip;
   2448       Condition neg_cond = NegateCondition(cond);
   2449       BranchShort(&skip, neg_cond, rs, rt);
   2450       Jalr(L, bdslot);
   2451       bind(&skip);
   2452     } else {
   2453       BranchAndLinkShort(L, cond, rs, rt, bdslot);
   2454     }
   2455   }
   2456 }
   2457 
   2458 
   2459 // We need to use a bgezal or bltzal, but they can't be used directly with the
   2460 // slt instructions. We could use sub or add instead but we would miss overflow
   2461 // cases, so we keep slt and add an intermediate third instruction.
   2462 void MacroAssembler::BranchAndLinkShort(int16_t offset,
   2463                                         BranchDelaySlot bdslot) {
   2464   bal(offset);
   2465 
   2466   // Emit a nop in the branch delay slot if required.
   2467   if (bdslot == PROTECT)
   2468     nop();
   2469 }
   2470 
   2471 
   2472 void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
   2473                                         Register rs, const Operand& rt,
   2474                                         BranchDelaySlot bdslot) {
   2475   BRANCH_ARGS_CHECK(cond, rs, rt);
   2476   Register r2 = no_reg;
   2477   Register scratch = at;
   2478 
   2479   if (rt.is_reg()) {
   2480     r2 = rt.rm_;
   2481   } else if (cond != cc_always) {
   2482     r2 = scratch;
   2483     li(r2, rt);
   2484   }
   2485 
   2486   {
   2487     BlockTrampolinePoolScope block_trampoline_pool(this);
   2488     switch (cond) {
   2489       case cc_always:
   2490         bal(offset);
   2491         break;
   2492       case eq:
   2493         bne(rs, r2, 2);
   2494         nop();
   2495         bal(offset);
   2496         break;
   2497       case ne:
   2498         beq(rs, r2, 2);
   2499         nop();
   2500         bal(offset);
   2501         break;
   2502 
   2503       // Signed comparison.
   2504       case greater:
   2505         // rs > rt
   2506         slt(scratch, r2, rs);
   2507         beq(scratch, zero_reg, 2);
   2508         nop();
   2509         bal(offset);
   2510         break;
   2511       case greater_equal:
   2512         // rs >= rt
   2513         slt(scratch, rs, r2);
   2514         bne(scratch, zero_reg, 2);
   2515         nop();
   2516         bal(offset);
   2517         break;
   2518       case less:
   2519         // rs < r2
   2520         slt(scratch, rs, r2);
   2521         bne(scratch, zero_reg, 2);
   2522         nop();
   2523         bal(offset);
   2524         break;
   2525       case less_equal:
   2526         // rs <= r2
   2527         slt(scratch, r2, rs);
   2528         bne(scratch, zero_reg, 2);
   2529         nop();
   2530         bal(offset);
   2531         break;
   2532 
   2533 
   2534       // Unsigned comparison.
   2535       case Ugreater:
   2536         // rs > rt
   2537         sltu(scratch, r2, rs);
   2538         beq(scratch, zero_reg, 2);
   2539         nop();
   2540         bal(offset);
   2541         break;
   2542       case Ugreater_equal:
   2543         // rs >= rt
   2544         sltu(scratch, rs, r2);
   2545         bne(scratch, zero_reg, 2);
   2546         nop();
   2547         bal(offset);
   2548         break;
   2549       case Uless:
   2550         // rs < r2
   2551         sltu(scratch, rs, r2);
   2552         bne(scratch, zero_reg, 2);
   2553         nop();
   2554         bal(offset);
   2555         break;
   2556       case Uless_equal:
   2557         // rs <= r2
   2558         sltu(scratch, r2, rs);
   2559         bne(scratch, zero_reg, 2);
   2560         nop();
   2561         bal(offset);
   2562         break;
   2563       default:
   2564         UNREACHABLE();
   2565     }
   2566   }
   2567   // Emit a nop in the branch delay slot if required.
   2568   if (bdslot == PROTECT)
   2569     nop();
   2570 }
   2571 
   2572 
   2573 void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
   2574   bal(shifted_branch_offset(L, false));
   2575 
   2576   // Emit a nop in the branch delay slot if required.
   2577   if (bdslot == PROTECT)
   2578     nop();
   2579 }
   2580 
   2581 
   2582 void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
   2583                                         const Operand& rt,
   2584                                         BranchDelaySlot bdslot) {
   2585   BRANCH_ARGS_CHECK(cond, rs, rt);
   2586 
   2587   int32_t offset = 0;
   2588   Register r2 = no_reg;
   2589   Register scratch = at;
   2590   if (rt.is_reg()) {
   2591     r2 = rt.rm_;
   2592   } else if (cond != cc_always) {
   2593     r2 = scratch;
   2594     li(r2, rt);
   2595   }
   2596 
   2597   {
   2598     BlockTrampolinePoolScope block_trampoline_pool(this);
   2599     switch (cond) {
   2600       case cc_always:
   2601         offset = shifted_branch_offset(L, false);
   2602         bal(offset);
   2603         break;
   2604       case eq:
   2605         bne(rs, r2, 2);
   2606         nop();
   2607         offset = shifted_branch_offset(L, false);
   2608         bal(offset);
   2609         break;
   2610       case ne:
   2611         beq(rs, r2, 2);
   2612         nop();
   2613         offset = shifted_branch_offset(L, false);
   2614         bal(offset);
   2615         break;
   2616 
   2617       // Signed comparison.
   2618       case greater:
   2619         // rs > rt
   2620         slt(scratch, r2, rs);
   2621         beq(scratch, zero_reg, 2);
   2622         nop();
   2623         offset = shifted_branch_offset(L, false);
   2624         bal(offset);
   2625         break;
   2626       case greater_equal:
   2627         // rs >= rt
   2628         slt(scratch, rs, r2);
   2629         bne(scratch, zero_reg, 2);
   2630         nop();
   2631         offset = shifted_branch_offset(L, false);
   2632         bal(offset);
   2633         break;
   2634       case less:
   2635         // rs < r2
   2636         slt(scratch, rs, r2);
   2637         bne(scratch, zero_reg, 2);
   2638         nop();
   2639         offset = shifted_branch_offset(L, false);
   2640         bal(offset);
   2641         break;
   2642       case less_equal:
   2643         // rs <= r2
   2644         slt(scratch, r2, rs);
   2645         bne(scratch, zero_reg, 2);
   2646         nop();
   2647         offset = shifted_branch_offset(L, false);
   2648         bal(offset);
   2649         break;
   2650 
   2651 
   2652       // Unsigned comparison.
   2653       case Ugreater:
   2654         // rs > rt
   2655         sltu(scratch, r2, rs);
   2656         beq(scratch, zero_reg, 2);
   2657         nop();
   2658         offset = shifted_branch_offset(L, false);
   2659         bal(offset);
   2660         break;
   2661       case Ugreater_equal:
   2662         // rs >= rt
   2663         sltu(scratch, rs, r2);
   2664         bne(scratch, zero_reg, 2);
   2665         nop();
   2666         offset = shifted_branch_offset(L, false);
   2667         bal(offset);
   2668         break;
   2669       case Uless:
   2670         // rs < r2
   2671         sltu(scratch, rs, r2);
   2672         bne(scratch, zero_reg, 2);
   2673         nop();
   2674         offset = shifted_branch_offset(L, false);
   2675         bal(offset);
   2676         break;
   2677       case Uless_equal:
   2678         // rs <= r2
   2679         sltu(scratch, r2, rs);
   2680         bne(scratch, zero_reg, 2);
   2681         nop();
   2682         offset = shifted_branch_offset(L, false);
   2683         bal(offset);
   2684         break;
   2685 
   2686       default:
   2687         UNREACHABLE();
   2688     }
   2689   }
   2690   // Check that offset could actually hold on an int16_t.
   2691   DCHECK(is_int16(offset));
   2692 
   2693   // Emit a nop in the branch delay slot if required.
   2694   if (bdslot == PROTECT)
   2695     nop();
   2696 }
   2697 
   2698 
   2699 void MacroAssembler::Jump(Register target,
   2700                           Condition cond,
   2701                           Register rs,
   2702                           const Operand& rt,
   2703                           BranchDelaySlot bd) {
   2704   BlockTrampolinePoolScope block_trampoline_pool(this);
   2705   if (cond == cc_always) {
   2706     jr(target);
   2707   } else {
   2708     BRANCH_ARGS_CHECK(cond, rs, rt);
   2709     Branch(2, NegateCondition(cond), rs, rt);
   2710     jr(target);
   2711   }
   2712   // Emit a nop in the branch delay slot if required.
   2713   if (bd == PROTECT)
   2714     nop();
   2715 }
   2716 
   2717 
   2718 void MacroAssembler::Jump(intptr_t target,
   2719                           RelocInfo::Mode rmode,
   2720                           Condition cond,
   2721                           Register rs,
   2722                           const Operand& rt,
   2723                           BranchDelaySlot bd) {
   2724   Label skip;
   2725   if (cond != cc_always) {
   2726     Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
   2727   }
   2728   // The first instruction of 'li' may be placed in the delay slot.
   2729   // This is not an issue, t9 is expected to be clobbered anyway.
   2730   li(t9, Operand(target, rmode));
   2731   Jump(t9, al, zero_reg, Operand(zero_reg), bd);
   2732   bind(&skip);
   2733 }
   2734 
   2735 
   2736 void MacroAssembler::Jump(Address target,
   2737                           RelocInfo::Mode rmode,
   2738                           Condition cond,
   2739                           Register rs,
   2740                           const Operand& rt,
   2741                           BranchDelaySlot bd) {
   2742   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   2743   Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
   2744 }
   2745 
   2746 
   2747 void MacroAssembler::Jump(Handle<Code> code,
   2748                           RelocInfo::Mode rmode,
   2749                           Condition cond,
   2750                           Register rs,
   2751                           const Operand& rt,
   2752                           BranchDelaySlot bd) {
   2753   DCHECK(RelocInfo::IsCodeTarget(rmode));
   2754   AllowDeferredHandleDereference embedding_raw_address;
   2755   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
   2756 }
   2757 
   2758 
   2759 int MacroAssembler::CallSize(Register target,
   2760                              Condition cond,
   2761                              Register rs,
   2762                              const Operand& rt,
   2763                              BranchDelaySlot bd) {
   2764   int size = 0;
   2765 
   2766   if (cond == cc_always) {
   2767     size += 1;
   2768   } else {
   2769     size += 3;
   2770   }
   2771 
   2772   if (bd == PROTECT)
   2773     size += 1;
   2774 
   2775   return size * kInstrSize;
   2776 }
   2777 
   2778 
   2779 // Note: To call gcc-compiled C code on mips, you must call thru t9.
   2780 void MacroAssembler::Call(Register target,
   2781                           Condition cond,
   2782                           Register rs,
   2783                           const Operand& rt,
   2784                           BranchDelaySlot bd) {
   2785   BlockTrampolinePoolScope block_trampoline_pool(this);
   2786   Label start;
   2787   bind(&start);
   2788   if (cond == cc_always) {
   2789     jalr(target);
   2790   } else {
   2791     BRANCH_ARGS_CHECK(cond, rs, rt);
   2792     Branch(2, NegateCondition(cond), rs, rt);
   2793     jalr(target);
   2794   }
   2795   // Emit a nop in the branch delay slot if required.
   2796   if (bd == PROTECT)
   2797     nop();
   2798 
   2799   DCHECK_EQ(CallSize(target, cond, rs, rt, bd),
   2800             SizeOfCodeGeneratedSince(&start));
   2801 }
   2802 
   2803 
   2804 int MacroAssembler::CallSize(Address target,
   2805                              RelocInfo::Mode rmode,
   2806                              Condition cond,
   2807                              Register rs,
   2808                              const Operand& rt,
   2809                              BranchDelaySlot bd) {
   2810   int size = CallSize(t9, cond, rs, rt, bd);
   2811   return size + 4 * kInstrSize;
   2812 }
   2813 
   2814 
   2815 void MacroAssembler::Call(Address target,
   2816                           RelocInfo::Mode rmode,
   2817                           Condition cond,
   2818                           Register rs,
   2819                           const Operand& rt,
   2820                           BranchDelaySlot bd) {
   2821   BlockTrampolinePoolScope block_trampoline_pool(this);
   2822   Label start;
   2823   bind(&start);
   2824   int64_t target_int = reinterpret_cast<int64_t>(target);
   2825   // Must record previous source positions before the
   2826   // li() generates a new code target.
   2827   positions_recorder()->WriteRecordedPositions();
   2828   li(t9, Operand(target_int, rmode), ADDRESS_LOAD);
   2829   Call(t9, cond, rs, rt, bd);
   2830   DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd),
   2831             SizeOfCodeGeneratedSince(&start));
   2832 }
   2833 
   2834 
   2835 int MacroAssembler::CallSize(Handle<Code> code,
   2836                              RelocInfo::Mode rmode,
   2837                              TypeFeedbackId ast_id,
   2838                              Condition cond,
   2839                              Register rs,
   2840                              const Operand& rt,
   2841                              BranchDelaySlot bd) {
   2842   AllowDeferredHandleDereference using_raw_address;
   2843   return CallSize(reinterpret_cast<Address>(code.location()),
   2844       rmode, cond, rs, rt, bd);
   2845 }
   2846 
   2847 
   2848 void MacroAssembler::Call(Handle<Code> code,
   2849                           RelocInfo::Mode rmode,
   2850                           TypeFeedbackId ast_id,
   2851                           Condition cond,
   2852                           Register rs,
   2853                           const Operand& rt,
   2854                           BranchDelaySlot bd) {
   2855   BlockTrampolinePoolScope block_trampoline_pool(this);
   2856   Label start;
   2857   bind(&start);
   2858   DCHECK(RelocInfo::IsCodeTarget(rmode));
   2859   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
   2860     SetRecordedAstId(ast_id);
   2861     rmode = RelocInfo::CODE_TARGET_WITH_ID;
   2862   }
   2863   AllowDeferredHandleDereference embedding_raw_address;
   2864   Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
   2865   DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
   2866             SizeOfCodeGeneratedSince(&start));
   2867 }
   2868 
   2869 
   2870 void MacroAssembler::Ret(Condition cond,
   2871                          Register rs,
   2872                          const Operand& rt,
   2873                          BranchDelaySlot bd) {
   2874   Jump(ra, cond, rs, rt, bd);
   2875 }
   2876 
   2877 
   2878 void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
   2879   BlockTrampolinePoolScope block_trampoline_pool(this);
   2880 
   2881   uint64_t imm28;
   2882   imm28 = jump_address(L);
   2883   imm28 &= kImm28Mask;
   2884   { BlockGrowBufferScope block_buf_growth(this);
   2885     // Buffer growth (and relocation) must be blocked for internal references
   2886     // until associated instructions are emitted and available to be patched.
   2887     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2888     j(imm28);
   2889   }
   2890   // Emit a nop in the branch delay slot if required.
   2891   if (bdslot == PROTECT)
   2892     nop();
   2893 }
   2894 
   2895 
   2896 void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
   2897   BlockTrampolinePoolScope block_trampoline_pool(this);
   2898 
   2899   uint64_t imm64;
   2900   imm64 = jump_address(L);
   2901   { BlockGrowBufferScope block_buf_growth(this);
   2902     // Buffer growth (and relocation) must be blocked for internal references
   2903     // until associated instructions are emitted and available to be patched.
   2904     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2905     li(at, Operand(imm64), ADDRESS_LOAD);
   2906   }
   2907   jr(at);
   2908 
   2909   // Emit a nop in the branch delay slot if required.
   2910   if (bdslot == PROTECT)
   2911     nop();
   2912 }
   2913 
   2914 
   2915 void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
   2916   BlockTrampolinePoolScope block_trampoline_pool(this);
   2917 
   2918   uint64_t imm64;
   2919   imm64 = jump_address(L);
   2920   { BlockGrowBufferScope block_buf_growth(this);
   2921     // Buffer growth (and relocation) must be blocked for internal references
   2922     // until associated instructions are emitted and available to be patched.
   2923     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2924     li(at, Operand(imm64), ADDRESS_LOAD);
   2925   }
   2926   jalr(at);
   2927 
   2928   // Emit a nop in the branch delay slot if required.
   2929   if (bdslot == PROTECT)
   2930     nop();
   2931 }
   2932 
   2933 
   2934 void MacroAssembler::DropAndRet(int drop) {
   2935   Ret(USE_DELAY_SLOT);
   2936   daddiu(sp, sp, drop * kPointerSize);
   2937 }
   2938 
   2939 void MacroAssembler::DropAndRet(int drop,
   2940                                 Condition cond,
   2941                                 Register r1,
   2942                                 const Operand& r2) {
   2943   // Both Drop and Ret need to be conditional.
   2944   Label skip;
   2945   if (cond != cc_always) {
   2946     Branch(&skip, NegateCondition(cond), r1, r2);
   2947   }
   2948 
   2949   Drop(drop);
   2950   Ret();
   2951 
   2952   if (cond != cc_always) {
   2953     bind(&skip);
   2954   }
   2955 }
   2956 
   2957 
   2958 void MacroAssembler::Drop(int count,
   2959                           Condition cond,
   2960                           Register reg,
   2961                           const Operand& op) {
   2962   if (count <= 0) {
   2963     return;
   2964   }
   2965 
   2966   Label skip;
   2967 
   2968   if (cond != al) {
   2969      Branch(&skip, NegateCondition(cond), reg, op);
   2970   }
   2971 
   2972   daddiu(sp, sp, count * kPointerSize);
   2973 
   2974   if (cond != al) {
   2975     bind(&skip);
   2976   }
   2977 }
   2978 
   2979 
   2980 
   2981 void MacroAssembler::Swap(Register reg1,
   2982                           Register reg2,
   2983                           Register scratch) {
   2984   if (scratch.is(no_reg)) {
   2985     Xor(reg1, reg1, Operand(reg2));
   2986     Xor(reg2, reg2, Operand(reg1));
   2987     Xor(reg1, reg1, Operand(reg2));
   2988   } else {
   2989     mov(scratch, reg1);
   2990     mov(reg1, reg2);
   2991     mov(reg2, scratch);
   2992   }
   2993 }
   2994 
   2995 
   2996 void MacroAssembler::Call(Label* target) {
   2997   BranchAndLink(target);
   2998 }
   2999 
   3000 
   3001 void MacroAssembler::Push(Handle<Object> handle) {
   3002   li(at, Operand(handle));
   3003   push(at);
   3004 }
   3005 
   3006 
   3007 void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
   3008   DCHECK(!src.is(scratch));
   3009   mov(scratch, src);
   3010   dsrl32(src, src, 0);
   3011   dsll32(src, src, 0);
   3012   push(src);
   3013   dsll32(scratch, scratch, 0);
   3014   push(scratch);
   3015 }
   3016 
   3017 
   3018 void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
   3019   DCHECK(!dst.is(scratch));
   3020   pop(scratch);
   3021   dsrl32(scratch, scratch, 0);
   3022   pop(dst);
   3023   dsrl32(dst, dst, 0);
   3024   dsll32(dst, dst, 0);
   3025   or_(dst, dst, scratch);
   3026 }
   3027 
   3028 
   3029 void MacroAssembler::DebugBreak() {
   3030   PrepareCEntryArgs(0);
   3031   PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
   3032   CEntryStub ces(isolate(), 1);
   3033   DCHECK(AllowThisStubCall(&ces));
   3034   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
   3035 }
   3036 
   3037 
   3038 // ---------------------------------------------------------------------------
   3039 // Exception handling.
   3040 
   3041 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
   3042                                     int handler_index) {
   3043   // Adjust this code if not the case.
   3044   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   3045   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   3046   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   3047   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   3048   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   3049   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   3050 
   3051   // For the JSEntry handler, we must preserve a0-a3 and s0.
   3052   // a5-a7 are available. We will build up the handler from the bottom by
   3053   // pushing on the stack.
   3054   // Set up the code object (a5) and the state (a6) for pushing.
   3055   unsigned state =
   3056       StackHandler::IndexField::encode(handler_index) |
   3057       StackHandler::KindField::encode(kind);
   3058   li(a5, Operand(CodeObject()), CONSTANT_SIZE);
   3059   li(a6, Operand(state));
   3060 
   3061   // Push the frame pointer, context, state, and code object.
   3062   if (kind == StackHandler::JS_ENTRY) {
   3063     DCHECK_EQ(Smi::FromInt(0), 0);
   3064     // The second zero_reg indicates no context.
   3065     // The first zero_reg is the NULL frame pointer.
   3066     // The operands are reversed to match the order of MultiPush/Pop.
   3067     Push(zero_reg, zero_reg, a6, a5);
   3068   } else {
   3069     MultiPush(a5.bit() | a6.bit() | cp.bit() | fp.bit());
   3070   }
   3071 
   3072   // Link the current handler as the next handler.
   3073   li(a6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   3074   ld(a5, MemOperand(a6));
   3075   push(a5);
   3076   // Set this new handler as the current one.
   3077   sd(sp, MemOperand(a6));
   3078 }
   3079 
   3080 
   3081 void MacroAssembler::PopTryHandler() {
   3082   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   3083   pop(a1);
   3084   Daddu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
   3085   li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   3086   sd(a1, MemOperand(at));
   3087 }
   3088 
   3089 
   3090 void MacroAssembler::JumpToHandlerEntry() {
   3091   // Compute the handler entry address and jump to it.  The handler table is
   3092   // a fixed array of (smi-tagged) code offsets.
   3093   // v0 = exception, a1 = code object, a2 = state.
   3094   Uld(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));
   3095   Daddu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   3096   dsrl(a2, a2, StackHandler::kKindWidth);  // Handler index.
   3097   dsll(a2, a2, kPointerSizeLog2);
   3098   Daddu(a2, a3, a2);
   3099   ld(a2, MemOperand(a2));  // Smi-tagged offset.
   3100   Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start.
   3101   dsra32(t9, a2, 0);
   3102   Daddu(t9, t9, a1);
   3103   Jump(t9);  // Jump.
   3104 }
   3105 
   3106 
   3107 void MacroAssembler::Throw(Register value) {
   3108   // Adjust this code if not the case.
   3109   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   3110   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   3111   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   3112   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   3113   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   3114   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   3115 
   3116   // The exception is expected in v0.
   3117   Move(v0, value);
   3118 
   3119   // Drop the stack pointer to the top of the top handler.
   3120   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
   3121                                    isolate())));
   3122   ld(sp, MemOperand(a3));
   3123 
   3124   // Restore the next handler.
   3125   pop(a2);
   3126   sd(a2, MemOperand(a3));
   3127 
   3128   // Get the code object (a1) and state (a2).  Restore the context and frame
   3129   // pointer.
   3130   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
   3131 
   3132   // If the handler is a JS frame, restore the context to the frame.
   3133   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
   3134   // or cp.
   3135   Label done;
   3136   Branch(&done, eq, cp, Operand(zero_reg));
   3137   sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   3138   bind(&done);
   3139 
   3140   JumpToHandlerEntry();
   3141 }
   3142 
   3143 
   3144 void MacroAssembler::ThrowUncatchable(Register value) {
   3145   // Adjust this code if not the case.
   3146   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   3147   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   3148   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   3149   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   3150   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   3151   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   3152 
   3153   // The exception is expected in v0.
   3154   if (!value.is(v0)) {
   3155     mov(v0, value);
   3156   }
   3157   // Drop the stack pointer to the top of the top stack handler.
   3158   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   3159   ld(sp, MemOperand(a3));
   3160 
   3161   // Unwind the handlers until the ENTRY handler is found.
   3162   Label fetch_next, check_kind;
   3163   jmp(&check_kind);
   3164   bind(&fetch_next);
   3165   ld(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
   3166 
   3167   bind(&check_kind);
   3168   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
   3169   ld(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
   3170   And(a2, a2, Operand(StackHandler::KindField::kMask));
   3171   Branch(&fetch_next, ne, a2, Operand(zero_reg));
   3172 
   3173   // Set the top handler address to next handler past the top ENTRY handler.
   3174   pop(a2);
   3175   sd(a2, MemOperand(a3));
   3176 
   3177   // Get the code object (a1) and state (a2).  Clear the context and frame
   3178   // pointer (0 was saved in the handler).
   3179   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
   3180 
   3181   JumpToHandlerEntry();
   3182 }
   3183 
   3184 
   3185 void MacroAssembler::Allocate(int object_size,
   3186                               Register result,
   3187                               Register scratch1,
   3188                               Register scratch2,
   3189                               Label* gc_required,
   3190                               AllocationFlags flags) {
   3191   DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
   3192   if (!FLAG_inline_new) {
   3193     if (emit_debug_code()) {
   3194       // Trash the registers to simulate an allocation failure.
   3195       li(result, 0x7091);
   3196       li(scratch1, 0x7191);
   3197       li(scratch2, 0x7291);
   3198     }
   3199     jmp(gc_required);
   3200     return;
   3201   }
   3202 
   3203   DCHECK(!result.is(scratch1));
   3204   DCHECK(!result.is(scratch2));
   3205   DCHECK(!scratch1.is(scratch2));
   3206   DCHECK(!scratch1.is(t9));
   3207   DCHECK(!scratch2.is(t9));
   3208   DCHECK(!result.is(t9));
   3209 
   3210   // Make object size into bytes.
   3211   if ((flags & SIZE_IN_WORDS) != 0) {
   3212     object_size *= kPointerSize;
   3213   }
   3214   DCHECK(0 == (object_size & kObjectAlignmentMask));
   3215 
   3216   // Check relative positions of allocation top and limit addresses.
   3217   // ARM adds additional checks to make sure the ldm instruction can be
   3218   // used. On MIPS we don't have ldm so we don't need additional checks either.
   3219   ExternalReference allocation_top =
   3220       AllocationUtils::GetAllocationTopReference(isolate(), flags);
   3221   ExternalReference allocation_limit =
   3222       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
   3223 
   3224   intptr_t top   =
   3225       reinterpret_cast<intptr_t>(allocation_top.address());
   3226   intptr_t limit =
   3227       reinterpret_cast<intptr_t>(allocation_limit.address());
   3228   DCHECK((limit - top) == kPointerSize);
   3229 
   3230   // Set up allocation top address and object size registers.
   3231   Register topaddr = scratch1;
   3232   li(topaddr, Operand(allocation_top));
   3233 
   3234   // This code stores a temporary value in t9.
   3235   if ((flags & RESULT_CONTAINS_TOP) == 0) {
   3236     // Load allocation top into result and allocation limit into t9.
   3237     ld(result, MemOperand(topaddr));
   3238     ld(t9, MemOperand(topaddr, kPointerSize));
   3239   } else {
   3240     if (emit_debug_code()) {
   3241       // Assert that result actually contains top on entry. t9 is used
   3242       // immediately below so this use of t9 does not cause difference with
   3243       // respect to register content between debug and release mode.
   3244       ld(t9, MemOperand(topaddr));
   3245       Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
   3246     }
   3247     // Load allocation limit into t9. Result already contains allocation top.
   3248     ld(t9, MemOperand(topaddr, limit - top));
   3249   }
   3250 
   3251   DCHECK(kPointerSize == kDoubleSize);
   3252   if (emit_debug_code()) {
   3253     And(at, result, Operand(kDoubleAlignmentMask));
   3254     Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
   3255   }
   3256 
   3257   // Calculate new top and bail out if new space is exhausted. Use result
   3258   // to calculate the new top.
   3259   Daddu(scratch2, result, Operand(object_size));
   3260   Branch(gc_required, Ugreater, scratch2, Operand(t9));
   3261   sd(scratch2, MemOperand(topaddr));
   3262 
   3263   // Tag object if requested.
   3264   if ((flags & TAG_OBJECT) != 0) {
   3265     Daddu(result, result, Operand(kHeapObjectTag));
   3266   }
   3267 }
   3268 
   3269 
   3270 void MacroAssembler::Allocate(Register object_size,
   3271                               Register result,
   3272                               Register scratch1,
   3273                               Register scratch2,
   3274                               Label* gc_required,
   3275                               AllocationFlags flags) {
   3276   if (!FLAG_inline_new) {
   3277     if (emit_debug_code()) {
   3278       // Trash the registers to simulate an allocation failure.
   3279       li(result, 0x7091);
   3280       li(scratch1, 0x7191);
   3281       li(scratch2, 0x7291);
   3282     }
   3283     jmp(gc_required);
   3284     return;
   3285   }
   3286 
   3287   DCHECK(!result.is(scratch1));
   3288   DCHECK(!result.is(scratch2));
   3289   DCHECK(!scratch1.is(scratch2));
   3290   DCHECK(!object_size.is(t9));
   3291   DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
   3292 
   3293   // Check relative positions of allocation top and limit addresses.
   3294   // ARM adds additional checks to make sure the ldm instruction can be
   3295   // used. On MIPS we don't have ldm so we don't need additional checks either.
   3296   ExternalReference allocation_top =
   3297       AllocationUtils::GetAllocationTopReference(isolate(), flags);
   3298   ExternalReference allocation_limit =
   3299       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
   3300   intptr_t top   =
   3301       reinterpret_cast<intptr_t>(allocation_top.address());
   3302   intptr_t limit =
   3303       reinterpret_cast<intptr_t>(allocation_limit.address());
   3304   DCHECK((limit - top) == kPointerSize);
   3305 
   3306   // Set up allocation top address and object size registers.
   3307   Register topaddr = scratch1;
   3308   li(topaddr, Operand(allocation_top));
   3309 
   3310   // This code stores a temporary value in t9.
   3311   if ((flags & RESULT_CONTAINS_TOP) == 0) {
   3312     // Load allocation top into result and allocation limit into t9.
   3313     ld(result, MemOperand(topaddr));
   3314     ld(t9, MemOperand(topaddr, kPointerSize));
   3315   } else {
   3316     if (emit_debug_code()) {
   3317       // Assert that result actually contains top on entry. t9 is used
   3318       // immediately below so this use of t9 does not cause difference with
   3319       // respect to register content between debug and release mode.
   3320       ld(t9, MemOperand(topaddr));
   3321       Check(eq, kUnexpectedAllocationTop, result, Operand(t9));
   3322     }
   3323     // Load allocation limit into t9. Result already contains allocation top.
   3324     ld(t9, MemOperand(topaddr, limit - top));
   3325   }
   3326 
   3327   DCHECK(kPointerSize == kDoubleSize);
   3328   if (emit_debug_code()) {
   3329     And(at, result, Operand(kDoubleAlignmentMask));
   3330     Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg));
   3331   }
   3332 
   3333   // Calculate new top and bail out if new space is exhausted. Use result
   3334   // to calculate the new top. Object size may be in words so a shift is
   3335   // required to get the number of bytes.
   3336   if ((flags & SIZE_IN_WORDS) != 0) {
   3337     dsll(scratch2, object_size, kPointerSizeLog2);
   3338     Daddu(scratch2, result, scratch2);
   3339   } else {
   3340     Daddu(scratch2, result, Operand(object_size));
   3341   }
   3342   Branch(gc_required, Ugreater, scratch2, Operand(t9));
   3343 
   3344   // Update allocation top. result temporarily holds the new top.
   3345   if (emit_debug_code()) {
   3346     And(t9, scratch2, Operand(kObjectAlignmentMask));
   3347     Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg));
   3348   }
   3349   sd(scratch2, MemOperand(topaddr));
   3350 
   3351   // Tag object if requested.
   3352   if ((flags & TAG_OBJECT) != 0) {
   3353     Daddu(result, result, Operand(kHeapObjectTag));
   3354   }
   3355 }
   3356 
   3357 
   3358 void MacroAssembler::UndoAllocationInNewSpace(Register object,
   3359                                               Register scratch) {
   3360   ExternalReference new_space_allocation_top =
   3361       ExternalReference::new_space_allocation_top_address(isolate());
   3362 
   3363   // Make sure the object has no tag before resetting top.
   3364   And(object, object, Operand(~kHeapObjectTagMask));
   3365 #ifdef DEBUG
   3366   // Check that the object un-allocated is below the current top.
   3367   li(scratch, Operand(new_space_allocation_top));
   3368   ld(scratch, MemOperand(scratch));
   3369   Check(less, kUndoAllocationOfNonAllocatedMemory,
   3370       object, Operand(scratch));
   3371 #endif
   3372   // Write the address of the object to un-allocate as the current top.
   3373   li(scratch, Operand(new_space_allocation_top));
   3374   sd(object, MemOperand(scratch));
   3375 }
   3376 
   3377 
   3378 void MacroAssembler::AllocateTwoByteString(Register result,
   3379                                            Register length,
   3380                                            Register scratch1,
   3381                                            Register scratch2,
   3382                                            Register scratch3,
   3383                                            Label* gc_required) {
   3384   // Calculate the number of bytes needed for the characters in the string while
   3385   // observing object alignment.
   3386   DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3387   dsll(scratch1, length, 1);  // Length in bytes, not chars.
   3388   daddiu(scratch1, scratch1,
   3389        kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
   3390   And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
   3391 
   3392   // Allocate two-byte string in new space.
   3393   Allocate(scratch1,
   3394            result,
   3395            scratch2,
   3396            scratch3,
   3397            gc_required,
   3398            TAG_OBJECT);
   3399 
   3400   // Set the map, length and hash field.
   3401   InitializeNewString(result,
   3402                       length,
   3403                       Heap::kStringMapRootIndex,
   3404                       scratch1,
   3405                       scratch2);
   3406 }
   3407 
   3408 
   3409 void MacroAssembler::AllocateOneByteString(Register result, Register length,
   3410                                            Register scratch1, Register scratch2,
   3411                                            Register scratch3,
   3412                                            Label* gc_required) {
   3413   // Calculate the number of bytes needed for the characters in the string
   3414   // while observing object alignment.
   3415   DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3416   DCHECK(kCharSize == 1);
   3417   daddiu(scratch1, length,
   3418       kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
   3419   And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
   3420 
   3421   // Allocate one-byte string in new space.
   3422   Allocate(scratch1,
   3423            result,
   3424            scratch2,
   3425            scratch3,
   3426            gc_required,
   3427            TAG_OBJECT);
   3428 
   3429   // Set the map, length and hash field.
   3430   InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
   3431                       scratch1, scratch2);
   3432 }
   3433 
   3434 
   3435 void MacroAssembler::AllocateTwoByteConsString(Register result,
   3436                                                Register length,
   3437                                                Register scratch1,
   3438                                                Register scratch2,
   3439                                                Label* gc_required) {
   3440   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
   3441            TAG_OBJECT);
   3442   InitializeNewString(result,
   3443                       length,
   3444                       Heap::kConsStringMapRootIndex,
   3445                       scratch1,
   3446                       scratch2);
   3447 }
   3448 
   3449 
   3450 void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
   3451                                                Register scratch1,
   3452                                                Register scratch2,
   3453                                                Label* gc_required) {
   3454   Allocate(ConsString::kSize,
   3455            result,
   3456            scratch1,
   3457            scratch2,
   3458            gc_required,
   3459            TAG_OBJECT);
   3460 
   3461   InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
   3462                       scratch1, scratch2);
   3463 }
   3464 
   3465 
   3466 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
   3467                                                  Register length,
   3468                                                  Register scratch1,
   3469                                                  Register scratch2,
   3470                                                  Label* gc_required) {
   3471   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
   3472            TAG_OBJECT);
   3473 
   3474   InitializeNewString(result,
   3475                       length,
   3476                       Heap::kSlicedStringMapRootIndex,
   3477                       scratch1,
   3478                       scratch2);
   3479 }
   3480 
   3481 
   3482 void MacroAssembler::AllocateOneByteSlicedString(Register result,
   3483                                                  Register length,
   3484                                                  Register scratch1,
   3485                                                  Register scratch2,
   3486                                                  Label* gc_required) {
   3487   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
   3488            TAG_OBJECT);
   3489 
   3490   InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
   3491                       scratch1, scratch2);
   3492 }
   3493 
   3494 
   3495 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
   3496                                                      Label* not_unique_name) {
   3497   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3498   Label succeed;
   3499   And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   3500   Branch(&succeed, eq, at, Operand(zero_reg));
   3501   Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE));
   3502 
   3503   bind(&succeed);
   3504 }
   3505 
   3506 
   3507 // Allocates a heap number or jumps to the label if the young space is full and
   3508 // a scavenge is needed.
   3509 void MacroAssembler::AllocateHeapNumber(Register result,
   3510                                         Register scratch1,
   3511                                         Register scratch2,
   3512                                         Register heap_number_map,
   3513                                         Label* need_gc,
   3514                                         TaggingMode tagging_mode,
   3515                                         MutableMode mode) {
   3516   // Allocate an object in the heap for the heap number and tag it as a heap
   3517   // object.
   3518   Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc,
   3519            tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
   3520 
   3521   Heap::RootListIndex map_index = mode == MUTABLE
   3522       ? Heap::kMutableHeapNumberMapRootIndex
   3523       : Heap::kHeapNumberMapRootIndex;
   3524   AssertIsRoot(heap_number_map, map_index);
   3525 
   3526   // Store heap number map in the allocated object.
   3527   if (tagging_mode == TAG_RESULT) {
   3528     sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
   3529   } else {
   3530     sd(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
   3531   }
   3532 }
   3533 
   3534 
   3535 void MacroAssembler::AllocateHeapNumberWithValue(Register result,
   3536                                                  FPURegister value,
   3537                                                  Register scratch1,
   3538                                                  Register scratch2,
   3539                                                  Label* gc_required) {
   3540   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
   3541   AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
   3542   sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
   3543 }
   3544 
   3545 
   3546 // Copies a fixed number of fields of heap objects from src to dst.
   3547 void MacroAssembler::CopyFields(Register dst,
   3548                                 Register src,
   3549                                 RegList temps,
   3550                                 int field_count) {
   3551   DCHECK((temps & dst.bit()) == 0);
   3552   DCHECK((temps & src.bit()) == 0);
   3553   // Primitive implementation using only one temporary register.
   3554 
   3555   Register tmp = no_reg;
   3556   // Find a temp register in temps list.
   3557   for (int i = 0; i < kNumRegisters; i++) {
   3558     if ((temps & (1 << i)) != 0) {
   3559       tmp.code_ = i;
   3560       break;
   3561     }
   3562   }
   3563   DCHECK(!tmp.is(no_reg));
   3564 
   3565   for (int i = 0; i < field_count; i++) {
   3566     ld(tmp, FieldMemOperand(src, i * kPointerSize));
   3567     sd(tmp, FieldMemOperand(dst, i * kPointerSize));
   3568   }
   3569 }
   3570 
   3571 
   3572 void MacroAssembler::CopyBytes(Register src,
   3573                                Register dst,
   3574                                Register length,
   3575                                Register scratch) {
   3576   Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
   3577 
   3578   // Align src before copying in word size chunks.
   3579   Branch(&byte_loop, le, length, Operand(kPointerSize));
   3580   bind(&align_loop_1);
   3581   And(scratch, src, kPointerSize - 1);
   3582   Branch(&word_loop, eq, scratch, Operand(zero_reg));
   3583   lbu(scratch, MemOperand(src));
   3584   Daddu(src, src, 1);
   3585   sb(scratch, MemOperand(dst));
   3586   Daddu(dst, dst, 1);
   3587   Dsubu(length, length, Operand(1));
   3588   Branch(&align_loop_1, ne, length, Operand(zero_reg));
   3589 
   3590   // Copy bytes in word size chunks.
   3591   bind(&word_loop);
   3592   if (emit_debug_code()) {
   3593     And(scratch, src, kPointerSize - 1);
   3594     Assert(eq, kExpectingAlignmentForCopyBytes,
   3595         scratch, Operand(zero_reg));
   3596   }
   3597   Branch(&byte_loop, lt, length, Operand(kPointerSize));
   3598   ld(scratch, MemOperand(src));
   3599   Daddu(src, src, kPointerSize);
   3600 
   3601   // TODO(kalmard) check if this can be optimized to use sw in most cases.
   3602   // Can't use unaligned access - copy byte by byte.
   3603   sb(scratch, MemOperand(dst, 0));
   3604   dsrl(scratch, scratch, 8);
   3605   sb(scratch, MemOperand(dst, 1));
   3606   dsrl(scratch, scratch, 8);
   3607   sb(scratch, MemOperand(dst, 2));
   3608   dsrl(scratch, scratch, 8);
   3609   sb(scratch, MemOperand(dst, 3));
   3610   dsrl(scratch, scratch, 8);
   3611   sb(scratch, MemOperand(dst, 4));
   3612   dsrl(scratch, scratch, 8);
   3613   sb(scratch, MemOperand(dst, 5));
   3614   dsrl(scratch, scratch, 8);
   3615   sb(scratch, MemOperand(dst, 6));
   3616   dsrl(scratch, scratch, 8);
   3617   sb(scratch, MemOperand(dst, 7));
   3618   Daddu(dst, dst, 8);
   3619 
   3620   Dsubu(length, length, Operand(kPointerSize));
   3621   Branch(&word_loop);
   3622 
   3623   // Copy the last bytes if any left.
   3624   bind(&byte_loop);
   3625   Branch(&done, eq, length, Operand(zero_reg));
   3626   bind(&byte_loop_1);
   3627   lbu(scratch, MemOperand(src));
   3628   Daddu(src, src, 1);
   3629   sb(scratch, MemOperand(dst));
   3630   Daddu(dst, dst, 1);
   3631   Dsubu(length, length, Operand(1));
   3632   Branch(&byte_loop_1, ne, length, Operand(zero_reg));
   3633   bind(&done);
   3634 }
   3635 
   3636 
   3637 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
   3638                                                 Register end_offset,
   3639                                                 Register filler) {
   3640   Label loop, entry;
   3641   Branch(&entry);
   3642   bind(&loop);
   3643   sd(filler, MemOperand(start_offset));
   3644   Daddu(start_offset, start_offset, kPointerSize);
   3645   bind(&entry);
   3646   Branch(&loop, lt, start_offset, Operand(end_offset));
   3647 }
   3648 
   3649 
   3650 void MacroAssembler::CheckFastElements(Register map,
   3651                                        Register scratch,
   3652                                        Label* fail) {
   3653   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   3654   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   3655   STATIC_ASSERT(FAST_ELEMENTS == 2);
   3656   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   3657   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   3658   Branch(fail, hi, scratch,
   3659          Operand(Map::kMaximumBitField2FastHoleyElementValue));
   3660 }
   3661 
   3662 
   3663 void MacroAssembler::CheckFastObjectElements(Register map,
   3664                                              Register scratch,
   3665                                              Label* fail) {
   3666   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   3667   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   3668   STATIC_ASSERT(FAST_ELEMENTS == 2);
   3669   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   3670   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   3671   Branch(fail, ls, scratch,
   3672          Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
   3673   Branch(fail, hi, scratch,
   3674          Operand(Map::kMaximumBitField2FastHoleyElementValue));
   3675 }
   3676 
   3677 
   3678 void MacroAssembler::CheckFastSmiElements(Register map,
   3679                                           Register scratch,
   3680                                           Label* fail) {
   3681   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   3682   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   3683   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   3684   Branch(fail, hi, scratch,
   3685          Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
   3686 }
   3687 
   3688 
   3689 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
   3690                                                  Register key_reg,
   3691                                                  Register elements_reg,
   3692                                                  Register scratch1,
   3693                                                  Register scratch2,
   3694                                                  Register scratch3,
   3695                                                  Label* fail,
   3696                                                  int elements_offset) {
   3697   Label smi_value, maybe_nan, have_double_value, is_nan, done;
   3698   Register mantissa_reg = scratch2;
   3699   Register exponent_reg = scratch3;
   3700 
   3701   // Handle smi values specially.
   3702   JumpIfSmi(value_reg, &smi_value);
   3703 
   3704   // Ensure that the object is a heap number
   3705   CheckMap(value_reg,
   3706            scratch1,
   3707            Heap::kHeapNumberMapRootIndex,
   3708            fail,
   3709            DONT_DO_SMI_CHECK);
   3710 
   3711   // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
   3712   // in the exponent.
   3713   li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
   3714   lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
   3715   Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
   3716 
   3717   lwu(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
   3718 
   3719   bind(&have_double_value);
   3720   // dsll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
   3721   dsra(scratch1, key_reg, 32 - kDoubleSizeLog2);
   3722   Daddu(scratch1, scratch1, elements_reg);
   3723   sw(mantissa_reg, FieldMemOperand(
   3724      scratch1, FixedDoubleArray::kHeaderSize - elements_offset));
   3725   uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset +
   3726       sizeof(kHoleNanLower32);
   3727   sw(exponent_reg, FieldMemOperand(scratch1, offset));
   3728   jmp(&done);
   3729 
   3730   bind(&maybe_nan);
   3731   // Could be NaN, Infinity or -Infinity. If fraction is not zero, it's NaN,
   3732   // otherwise it's Infinity or -Infinity, and the non-NaN code path applies.
   3733   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
   3734   Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
   3735   bind(&is_nan);
   3736   // Load canonical NaN for storing into the double array.
   3737   LoadRoot(at, Heap::kNanValueRootIndex);
   3738   lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset));
   3739   lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset));
   3740   jmp(&have_double_value);
   3741 
   3742   bind(&smi_value);
   3743   Daddu(scratch1, elements_reg,
   3744       Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag -
   3745               elements_offset));
   3746   // dsll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
   3747   dsra(scratch2, key_reg, 32 - kDoubleSizeLog2);
   3748   Daddu(scratch1, scratch1, scratch2);
   3749   // scratch1 is now effective address of the double element
   3750 
   3751   Register untagged_value = elements_reg;
   3752   SmiUntag(untagged_value, value_reg);
   3753   mtc1(untagged_value, f2);
   3754   cvt_d_w(f0, f2);
   3755   sdc1(f0, MemOperand(scratch1, 0));
   3756   bind(&done);
   3757 }
   3758 
   3759 
   3760 void MacroAssembler::CompareMapAndBranch(Register obj,
   3761                                          Register scratch,
   3762                                          Handle<Map> map,
   3763                                          Label* early_success,
   3764                                          Condition cond,
   3765                                          Label* branch_to) {
   3766   ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   3767   CompareMapAndBranch(scratch, map, early_success, cond, branch_to);
   3768 }
   3769 
   3770 
   3771 void MacroAssembler::CompareMapAndBranch(Register obj_map,
   3772                                          Handle<Map> map,
   3773                                          Label* early_success,
   3774                                          Condition cond,
   3775                                          Label* branch_to) {
   3776   Branch(branch_to, cond, obj_map, Operand(map));
   3777 }
   3778 
   3779 
   3780 void MacroAssembler::CheckMap(Register obj,
   3781                               Register scratch,
   3782                               Handle<Map> map,
   3783                               Label* fail,
   3784                               SmiCheckType smi_check_type) {
   3785   if (smi_check_type == DO_SMI_CHECK) {
   3786     JumpIfSmi(obj, fail);
   3787   }
   3788   Label success;
   3789   CompareMapAndBranch(obj, scratch, map, &success, ne, fail);
   3790   bind(&success);
   3791 }
   3792 
   3793 
   3794 void MacroAssembler::DispatchMap(Register obj,
   3795                                  Register scratch,
   3796                                  Handle<Map> map,
   3797                                  Handle<Code> success,
   3798                                  SmiCheckType smi_check_type) {
   3799   Label fail;
   3800   if (smi_check_type == DO_SMI_CHECK) {
   3801     JumpIfSmi(obj, &fail);
   3802   }
   3803   ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   3804   Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map));
   3805   bind(&fail);
   3806 }
   3807 
   3808 
   3809 void MacroAssembler::CheckMap(Register obj,
   3810                               Register scratch,
   3811                               Heap::RootListIndex index,
   3812                               Label* fail,
   3813                               SmiCheckType smi_check_type) {
   3814   if (smi_check_type == DO_SMI_CHECK) {
   3815     JumpIfSmi(obj, fail);
   3816   }
   3817   ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   3818   LoadRoot(at, index);
   3819   Branch(fail, ne, scratch, Operand(at));
   3820 }
   3821 
   3822 
   3823 void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
   3824   if (IsMipsSoftFloatABI) {
   3825     Move(dst, v0, v1);
   3826   } else {
   3827     Move(dst, f0);  // Reg f0 is o32 ABI FP return value.
   3828   }
   3829 }
   3830 
   3831 
   3832 void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
   3833   if (IsMipsSoftFloatABI) {
   3834     Move(dst, a0, a1);
   3835   } else {
   3836     Move(dst, f12);  // Reg f12 is o32 ABI FP first argument value.
   3837   }
   3838 }
   3839 
   3840 
   3841 void MacroAssembler::MovToFloatParameter(DoubleRegister src) {
   3842   if (!IsMipsSoftFloatABI) {
   3843     Move(f12, src);
   3844   } else {
   3845     Move(a0, a1, src);
   3846   }
   3847 }
   3848 
   3849 
   3850 void MacroAssembler::MovToFloatResult(DoubleRegister src) {
   3851   if (!IsMipsSoftFloatABI) {
   3852     Move(f0, src);
   3853   } else {
   3854     Move(v0, v1, src);
   3855   }
   3856 }
   3857 
   3858 
   3859 void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
   3860                                           DoubleRegister src2) {
   3861   if (!IsMipsSoftFloatABI) {
   3862     const DoubleRegister fparg2 = (kMipsAbi == kN64) ? f13 : f14;
   3863     if (src2.is(f12)) {
   3864       DCHECK(!src1.is(fparg2));
   3865       Move(fparg2, src2);
   3866       Move(f12, src1);
   3867     } else {
   3868       Move(f12, src1);
   3869       Move(fparg2, src2);
   3870     }
   3871   } else {
   3872     Move(a0, a1, src1);
   3873     Move(a2, a3, src2);
   3874   }
   3875 }
   3876 
   3877 
   3878 // -----------------------------------------------------------------------------
   3879 // JavaScript invokes.
   3880 
   3881 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
   3882                                     const ParameterCount& actual,
   3883                                     Handle<Code> code_constant,
   3884                                     Register code_reg,
   3885                                     Label* done,
   3886                                     bool* definitely_mismatches,
   3887                                     InvokeFlag flag,
   3888                                     const CallWrapper& call_wrapper) {
   3889   bool definitely_matches = false;
   3890   *definitely_mismatches = false;
   3891   Label regular_invoke;
   3892 
   3893   // Check whether the expected and actual arguments count match. If not,
   3894   // setup registers according to contract with ArgumentsAdaptorTrampoline:
   3895   //  a0: actual arguments count
   3896   //  a1: function (passed through to callee)
   3897   //  a2: expected arguments count
   3898 
   3899   // The code below is made a lot easier because the calling code already sets
   3900   // up actual and expected registers according to the contract if values are
   3901   // passed in registers.
   3902   DCHECK(actual.is_immediate() || actual.reg().is(a0));
   3903   DCHECK(expected.is_immediate() || expected.reg().is(a2));
   3904   DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
   3905 
   3906   if (expected.is_immediate()) {
   3907     DCHECK(actual.is_immediate());
   3908     if (expected.immediate() == actual.immediate()) {
   3909       definitely_matches = true;
   3910     } else {
   3911       li(a0, Operand(actual.immediate()));
   3912       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3913       if (expected.immediate() == sentinel) {
   3914         // Don't worry about adapting arguments for builtins that
   3915         // don't want that done. Skip adaption code by making it look
   3916         // like we have a match between expected and actual number of
   3917         // arguments.
   3918         definitely_matches = true;
   3919       } else {
   3920         *definitely_mismatches = true;
   3921         li(a2, Operand(expected.immediate()));
   3922       }
   3923     }
   3924   } else if (actual.is_immediate()) {
   3925     Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
   3926     li(a0, Operand(actual.immediate()));
   3927   } else {
   3928     Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
   3929   }
   3930 
   3931   if (!definitely_matches) {
   3932     if (!code_constant.is_null()) {
   3933       li(a3, Operand(code_constant));
   3934       daddiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
   3935     }
   3936 
   3937     Handle<Code> adaptor =
   3938         isolate()->builtins()->ArgumentsAdaptorTrampoline();
   3939     if (flag == CALL_FUNCTION) {
   3940       call_wrapper.BeforeCall(CallSize(adaptor));
   3941       Call(adaptor);
   3942       call_wrapper.AfterCall();
   3943       if (!*definitely_mismatches) {
   3944         Branch(done);
   3945       }
   3946     } else {
   3947       Jump(adaptor, RelocInfo::CODE_TARGET);
   3948     }
   3949     bind(&regular_invoke);
   3950   }
   3951 }
   3952 
   3953 
   3954 void MacroAssembler::InvokeCode(Register code,
   3955                                 const ParameterCount& expected,
   3956                                 const ParameterCount& actual,
   3957                                 InvokeFlag flag,
   3958                                 const CallWrapper& call_wrapper) {
   3959   // You can't call a function without a valid frame.
   3960   DCHECK(flag == JUMP_FUNCTION || has_frame());
   3961 
   3962   Label done;
   3963 
   3964   bool definitely_mismatches = false;
   3965   InvokePrologue(expected, actual, Handle<Code>::null(), code,
   3966                  &done, &definitely_mismatches, flag,
   3967                  call_wrapper);
   3968   if (!definitely_mismatches) {
   3969     if (flag == CALL_FUNCTION) {
   3970       call_wrapper.BeforeCall(CallSize(code));
   3971       Call(code);
   3972       call_wrapper.AfterCall();
   3973     } else {
   3974       DCHECK(flag == JUMP_FUNCTION);
   3975       Jump(code);
   3976     }
   3977     // Continue here if InvokePrologue does handle the invocation due to
   3978     // mismatched parameter counts.
   3979     bind(&done);
   3980   }
   3981 }
   3982 
   3983 
   3984 void MacroAssembler::InvokeFunction(Register function,
   3985                                     const ParameterCount& actual,
   3986                                     InvokeFlag flag,
   3987                                     const CallWrapper& call_wrapper) {
   3988   // You can't call a function without a valid frame.
   3989   DCHECK(flag == JUMP_FUNCTION || has_frame());
   3990 
   3991   // Contract with called JS functions requires that function is passed in a1.
   3992   DCHECK(function.is(a1));
   3993   Register expected_reg = a2;
   3994   Register code_reg = a3;
   3995   ld(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   3996   ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   3997   // The argument count is stored as int32_t on 64-bit platforms.
   3998   // TODO(plind): Smi on 32-bit platforms.
   3999   lw(expected_reg,
   4000       FieldMemOperand(code_reg,
   4001                       SharedFunctionInfo::kFormalParameterCountOffset));
   4002   ld(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   4003   ParameterCount expected(expected_reg);
   4004   InvokeCode(code_reg, expected, actual, flag, call_wrapper);
   4005 }
   4006 
   4007 
   4008 void MacroAssembler::InvokeFunction(Register function,
   4009                                     const ParameterCount& expected,
   4010                                     const ParameterCount& actual,
   4011                                     InvokeFlag flag,
   4012                                     const CallWrapper& call_wrapper) {
   4013   // You can't call a function without a valid frame.
   4014   DCHECK(flag == JUMP_FUNCTION || has_frame());
   4015 
   4016   // Contract with called JS functions requires that function is passed in a1.
   4017   DCHECK(function.is(a1));
   4018 
   4019   // Get the function and setup the context.
   4020   ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   4021 
   4022   // We call indirectly through the code field in the function to
   4023   // allow recompilation to take effect without changing any of the
   4024   // call sites.
   4025   ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   4026   InvokeCode(a3, expected, actual, flag, call_wrapper);
   4027 }
   4028 
   4029 
   4030 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
   4031                                     const ParameterCount& expected,
   4032                                     const ParameterCount& actual,
   4033                                     InvokeFlag flag,
   4034                                     const CallWrapper& call_wrapper) {
   4035   li(a1, function);
   4036   InvokeFunction(a1, expected, actual, flag, call_wrapper);
   4037 }
   4038 
   4039 
   4040 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
   4041                                           Register map,
   4042                                           Register scratch,
   4043                                           Label* fail) {
   4044   ld(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
   4045   IsInstanceJSObjectType(map, scratch, fail);
   4046 }
   4047 
   4048 
   4049 void MacroAssembler::IsInstanceJSObjectType(Register map,
   4050                                             Register scratch,
   4051                                             Label* fail) {
   4052   lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
   4053   Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   4054   Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   4055 }
   4056 
   4057 
   4058 void MacroAssembler::IsObjectJSStringType(Register object,
   4059                                           Register scratch,
   4060                                           Label* fail) {
   4061   DCHECK(kNotStringTag != 0);
   4062 
   4063   ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   4064   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   4065   And(scratch, scratch, Operand(kIsNotStringMask));
   4066   Branch(fail, ne, scratch, Operand(zero_reg));
   4067 }
   4068 
   4069 
   4070 void MacroAssembler::IsObjectNameType(Register object,
   4071                                       Register scratch,
   4072                                       Label* fail) {
   4073   ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   4074   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   4075   Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE));
   4076 }
   4077 
   4078 
   4079 // ---------------------------------------------------------------------------
   4080 // Support functions.
   4081 
   4082 
   4083 void MacroAssembler::TryGetFunctionPrototype(Register function,
   4084                                              Register result,
   4085                                              Register scratch,
   4086                                              Label* miss,
   4087                                              bool miss_on_bound_function) {
   4088   Label non_instance;
   4089   if (miss_on_bound_function) {
   4090     // Check that the receiver isn't a smi.
   4091     JumpIfSmi(function, miss);
   4092 
   4093     // Check that the function really is a function.  Load map into result reg.
   4094     GetObjectType(function, result, scratch);
   4095     Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
   4096 
   4097     ld(scratch,
   4098        FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
   4099     lwu(scratch,
   4100         FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
   4101     And(scratch, scratch,
   4102         Operand(1 << SharedFunctionInfo::kBoundFunction));
   4103     Branch(miss, ne, scratch, Operand(zero_reg));
   4104 
   4105     // Make sure that the function has an instance prototype.
   4106     lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
   4107     And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
   4108     Branch(&non_instance, ne, scratch, Operand(zero_reg));
   4109   }
   4110 
   4111   // Get the prototype or initial map from the function.
   4112   ld(result,
   4113      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   4114 
   4115   // If the prototype or initial map is the hole, don't return it and
   4116   // simply miss the cache instead. This will allow us to allocate a
   4117   // prototype object on-demand in the runtime system.
   4118   LoadRoot(t8, Heap::kTheHoleValueRootIndex);
   4119   Branch(miss, eq, result, Operand(t8));
   4120 
   4121   // If the function does not have an initial map, we're done.
   4122   Label done;
   4123   GetObjectType(result, scratch, scratch);
   4124   Branch(&done, ne, scratch, Operand(MAP_TYPE));
   4125 
   4126   // Get the prototype from the initial map.
   4127   ld(result, FieldMemOperand(result, Map::kPrototypeOffset));
   4128 
   4129   if (miss_on_bound_function) {
   4130     jmp(&done);
   4131 
   4132     // Non-instance prototype: Fetch prototype from constructor field
   4133     // in initial map.
   4134     bind(&non_instance);
   4135     ld(result, FieldMemOperand(result, Map::kConstructorOffset));
   4136   }
   4137 
   4138   // All done.
   4139   bind(&done);
   4140 }
   4141 
   4142 
   4143 void MacroAssembler::GetObjectType(Register object,
   4144                                    Register map,
   4145                                    Register type_reg) {
   4146   ld(map, FieldMemOperand(object, HeapObject::kMapOffset));
   4147   lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
   4148 }
   4149 
   4150 
   4151 // -----------------------------------------------------------------------------
   4152 // Runtime calls.
   4153 
   4154 void MacroAssembler::CallStub(CodeStub* stub,
   4155                               TypeFeedbackId ast_id,
   4156                               Condition cond,
   4157                               Register r1,
   4158                               const Operand& r2,
   4159                               BranchDelaySlot bd) {
   4160   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
   4161   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id,
   4162        cond, r1, r2, bd);
   4163 }
   4164 
   4165 
   4166 void MacroAssembler::TailCallStub(CodeStub* stub,
   4167                                   Condition cond,
   4168                                   Register r1,
   4169                                   const Operand& r2,
   4170                                   BranchDelaySlot bd) {
   4171   Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd);
   4172 }
   4173 
   4174 
   4175 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   4176   int64_t offset = (ref0.address() - ref1.address());
   4177   DCHECK(static_cast<int>(offset) == offset);
   4178   return static_cast<int>(offset);
   4179 }
   4180 
   4181 
   4182 void MacroAssembler::CallApiFunctionAndReturn(
   4183     Register function_address,
   4184     ExternalReference thunk_ref,
   4185     int stack_space,
   4186     MemOperand return_value_operand,
   4187     MemOperand* context_restore_operand) {
   4188   ExternalReference next_address =
   4189       ExternalReference::handle_scope_next_address(isolate());
   4190   const int kNextOffset = 0;
   4191   const int kLimitOffset = AddressOffset(
   4192       ExternalReference::handle_scope_limit_address(isolate()),
   4193       next_address);
   4194   const int kLevelOffset = AddressOffset(
   4195       ExternalReference::handle_scope_level_address(isolate()),
   4196       next_address);
   4197 
   4198   DCHECK(function_address.is(a1) || function_address.is(a2));
   4199 
   4200   Label profiler_disabled;
   4201   Label end_profiler_check;
   4202   li(t9, Operand(ExternalReference::is_profiling_address(isolate())));
   4203   lb(t9, MemOperand(t9, 0));
   4204   Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
   4205 
   4206   // Additional parameter is the address of the actual callback.
   4207   li(t9, Operand(thunk_ref));
   4208   jmp(&end_profiler_check);
   4209 
   4210   bind(&profiler_disabled);
   4211   mov(t9, function_address);
   4212   bind(&end_profiler_check);
   4213 
   4214   // Allocate HandleScope in callee-save registers.
   4215   li(s3, Operand(next_address));
   4216   ld(s0, MemOperand(s3, kNextOffset));
   4217   ld(s1, MemOperand(s3, kLimitOffset));
   4218   ld(s2, MemOperand(s3, kLevelOffset));
   4219   Daddu(s2, s2, Operand(1));
   4220   sd(s2, MemOperand(s3, kLevelOffset));
   4221 
   4222   if (FLAG_log_timer_events) {
   4223     FrameScope frame(this, StackFrame::MANUAL);
   4224     PushSafepointRegisters();
   4225     PrepareCallCFunction(1, a0);
   4226     li(a0, Operand(ExternalReference::isolate_address(isolate())));
   4227     CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
   4228     PopSafepointRegisters();
   4229   }
   4230 
   4231   // Native call returns to the DirectCEntry stub which redirects to the
   4232   // return address pushed on stack (could have moved after GC).
   4233   // DirectCEntry stub itself is generated early and never moves.
   4234   DirectCEntryStub stub(isolate());
   4235   stub.GenerateCall(this, t9);
   4236 
   4237   if (FLAG_log_timer_events) {
   4238     FrameScope frame(this, StackFrame::MANUAL);
   4239     PushSafepointRegisters();
   4240     PrepareCallCFunction(1, a0);
   4241     li(a0, Operand(ExternalReference::isolate_address(isolate())));
   4242     CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
   4243     PopSafepointRegisters();
   4244   }
   4245 
   4246   Label promote_scheduled_exception;
   4247   Label exception_handled;
   4248   Label delete_allocated_handles;
   4249   Label leave_exit_frame;
   4250   Label return_value_loaded;
   4251 
   4252   // Load value from ReturnValue.
   4253   ld(v0, return_value_operand);
   4254   bind(&return_value_loaded);
   4255 
   4256   // No more valid handles (the result handle was the last one). Restore
   4257   // previous handle scope.
   4258   sd(s0, MemOperand(s3, kNextOffset));
   4259   if (emit_debug_code()) {
   4260     ld(a1, MemOperand(s3, kLevelOffset));
   4261     Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
   4262   }
   4263   Dsubu(s2, s2, Operand(1));
   4264   sd(s2, MemOperand(s3, kLevelOffset));
   4265   ld(at, MemOperand(s3, kLimitOffset));
   4266   Branch(&delete_allocated_handles, ne, s1, Operand(at));
   4267 
   4268   // Check if the function scheduled an exception.
   4269   bind(&leave_exit_frame);
   4270   LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   4271   li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
   4272   ld(a5, MemOperand(at));
   4273   Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
   4274   bind(&exception_handled);
   4275 
   4276   bool restore_context = context_restore_operand != NULL;
   4277   if (restore_context) {
   4278     ld(cp, *context_restore_operand);
   4279   }
   4280   li(s0, Operand(stack_space));
   4281   LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN);
   4282 
   4283   bind(&promote_scheduled_exception);
   4284   {
   4285     FrameScope frame(this, StackFrame::INTERNAL);
   4286     CallExternalReference(
   4287         ExternalReference(Runtime::kPromoteScheduledException, isolate()),
   4288         0);
   4289   }
   4290   jmp(&exception_handled);
   4291 
   4292   // HandleScope limit has changed. Delete allocated extensions.
   4293   bind(&delete_allocated_handles);
   4294   sd(s1, MemOperand(s3, kLimitOffset));
   4295   mov(s0, v0);
   4296   mov(a0, v0);
   4297   PrepareCallCFunction(1, s1);
   4298   li(a0, Operand(ExternalReference::isolate_address(isolate())));
   4299   CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
   4300       1);
   4301   mov(v0, s0);
   4302   jmp(&leave_exit_frame);
   4303 }
   4304 
   4305 
   4306 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
   4307   return has_frame_ || !stub->SometimesSetsUpAFrame();
   4308 }
   4309 
   4310 
   4311 void MacroAssembler::IndexFromHash(Register hash, Register index) {
   4312   // If the hash field contains an array index pick it out. The assert checks
   4313   // that the constants for the maximum number of digits for an array index
   4314   // cached in the hash field and the number of bits reserved for it does not
   4315   // conflict.
   4316   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
   4317          (1 << String::kArrayIndexValueBits));
   4318   DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
   4319 }
   4320 
   4321 
   4322 void MacroAssembler::ObjectToDoubleFPURegister(Register object,
   4323                                                FPURegister result,
   4324                                                Register scratch1,
   4325                                                Register scratch2,
   4326                                                Register heap_number_map,
   4327                                                Label* not_number,
   4328                                                ObjectToDoubleFlags flags) {
   4329   Label done;
   4330   if ((flags & OBJECT_NOT_SMI) == 0) {
   4331     Label not_smi;
   4332     JumpIfNotSmi(object, &not_smi);
   4333     // Remove smi tag and convert to double.
   4334     // dsra(scratch1, object, kSmiTagSize);
   4335     dsra32(scratch1, object, 0);
   4336     mtc1(scratch1, result);
   4337     cvt_d_w(result, result);
   4338     Branch(&done);
   4339     bind(&not_smi);
   4340   }
   4341   // Check for heap number and load double value from it.
   4342   ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
   4343   Branch(not_number, ne, scratch1, Operand(heap_number_map));
   4344 
   4345   if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
   4346     // If exponent is all ones the number is either a NaN or +/-Infinity.
   4347     Register exponent = scratch1;
   4348     Register mask_reg = scratch2;
   4349     lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
   4350     li(mask_reg, HeapNumber::kExponentMask);
   4351 
   4352     And(exponent, exponent, mask_reg);
   4353     Branch(not_number, eq, exponent, Operand(mask_reg));
   4354   }
   4355   ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
   4356   bind(&done);
   4357 }
   4358 
   4359 
   4360 void MacroAssembler::SmiToDoubleFPURegister(Register smi,
   4361                                             FPURegister value,
   4362                                             Register scratch1) {
   4363   // dsra(scratch1, smi, kSmiTagSize);
   4364   dsra32(scratch1, smi, 0);
   4365   mtc1(scratch1, value);
   4366   cvt_d_w(value, value);
   4367 }
   4368 
   4369 
   4370 void MacroAssembler::AdduAndCheckForOverflow(Register dst,
   4371                                              Register left,
   4372                                              Register right,
   4373                                              Register overflow_dst,
   4374                                              Register scratch) {
   4375   DCHECK(!dst.is(overflow_dst));
   4376   DCHECK(!dst.is(scratch));
   4377   DCHECK(!overflow_dst.is(scratch));
   4378   DCHECK(!overflow_dst.is(left));
   4379   DCHECK(!overflow_dst.is(right));
   4380 
   4381   if (left.is(right) && dst.is(left)) {
   4382     DCHECK(!dst.is(t9));
   4383     DCHECK(!scratch.is(t9));
   4384     DCHECK(!left.is(t9));
   4385     DCHECK(!right.is(t9));
   4386     DCHECK(!overflow_dst.is(t9));
   4387     mov(t9, right);
   4388     right = t9;
   4389   }
   4390 
   4391   if (dst.is(left)) {
   4392     mov(scratch, left);  // Preserve left.
   4393     daddu(dst, left, right);  // Left is overwritten.
   4394     xor_(scratch, dst, scratch);  // Original left.
   4395     xor_(overflow_dst, dst, right);
   4396     and_(overflow_dst, overflow_dst, scratch);
   4397   } else if (dst.is(right)) {
   4398     mov(scratch, right);  // Preserve right.
   4399     daddu(dst, left, right);  // Right is overwritten.
   4400     xor_(scratch, dst, scratch);  // Original right.
   4401     xor_(overflow_dst, dst, left);
   4402     and_(overflow_dst, overflow_dst, scratch);
   4403   } else {
   4404     daddu(dst, left, right);
   4405     xor_(overflow_dst, dst, left);
   4406     xor_(scratch, dst, right);
   4407     and_(overflow_dst, scratch, overflow_dst);
   4408   }
   4409 }
   4410 
   4411 
   4412 void MacroAssembler::SubuAndCheckForOverflow(Register dst,
   4413                                              Register left,
   4414                                              Register right,
   4415                                              Register overflow_dst,
   4416                                              Register scratch) {
   4417   DCHECK(!dst.is(overflow_dst));
   4418   DCHECK(!dst.is(scratch));
   4419   DCHECK(!overflow_dst.is(scratch));
   4420   DCHECK(!overflow_dst.is(left));
   4421   DCHECK(!overflow_dst.is(right));
   4422   DCHECK(!scratch.is(left));
   4423   DCHECK(!scratch.is(right));
   4424 
   4425   // This happens with some crankshaft code. Since Subu works fine if
   4426   // left == right, let's not make that restriction here.
   4427   if (left.is(right)) {
   4428     mov(dst, zero_reg);
   4429     mov(overflow_dst, zero_reg);
   4430     return;
   4431   }
   4432 
   4433   if (dst.is(left)) {
   4434     mov(scratch, left);  // Preserve left.
   4435     dsubu(dst, left, right);  // Left is overwritten.
   4436     xor_(overflow_dst, dst, scratch);  // scratch is original left.
   4437     xor_(scratch, scratch, right);  // scratch is original left.
   4438     and_(overflow_dst, scratch, overflow_dst);
   4439   } else if (dst.is(right)) {
   4440     mov(scratch, right);  // Preserve right.
   4441     dsubu(dst, left, right);  // Right is overwritten.
   4442     xor_(overflow_dst, dst, left);
   4443     xor_(scratch, left, scratch);  // Original right.
   4444     and_(overflow_dst, scratch, overflow_dst);
   4445   } else {
   4446     dsubu(dst, left, right);
   4447     xor_(overflow_dst, dst, left);
   4448     xor_(scratch, left, right);
   4449     and_(overflow_dst, scratch, overflow_dst);
   4450   }
   4451 }
   4452 
   4453 
   4454 void MacroAssembler::CallRuntime(const Runtime::Function* f,
   4455                                  int num_arguments,
   4456                                  SaveFPRegsMode save_doubles) {
   4457   // All parameters are on the stack. v0 has the return value after call.
   4458 
   4459   // If the expected number of arguments of the runtime function is
   4460   // constant, we check that the actual number of arguments match the
   4461   // expectation.
   4462   CHECK(f->nargs < 0 || f->nargs == num_arguments);
   4463 
   4464   // TODO(1236192): Most runtime routines don't need the number of
   4465   // arguments passed in because it is constant. At some point we
   4466   // should remove this need and make the runtime routine entry code
   4467   // smarter.
   4468   PrepareCEntryArgs(num_arguments);
   4469   PrepareCEntryFunction(ExternalReference(f, isolate()));
   4470   CEntryStub stub(isolate(), 1, save_doubles);
   4471   CallStub(&stub);
   4472 }
   4473 
   4474 
   4475 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
   4476                                            int num_arguments,
   4477                                            BranchDelaySlot bd) {
   4478   PrepareCEntryArgs(num_arguments);
   4479   PrepareCEntryFunction(ext);
   4480 
   4481   CEntryStub stub(isolate(), 1);
   4482   CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd);
   4483 }
   4484 
   4485 
   4486 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
   4487                                                int num_arguments,
   4488                                                int result_size) {
   4489   // TODO(1236192): Most runtime routines don't need the number of
   4490   // arguments passed in because it is constant. At some point we
   4491   // should remove this need and make the runtime routine entry code
   4492   // smarter.
   4493   PrepareCEntryArgs(num_arguments);
   4494   JumpToExternalReference(ext);
   4495 }
   4496 
   4497 
   4498 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
   4499                                      int num_arguments,
   4500                                      int result_size) {
   4501   TailCallExternalReference(ExternalReference(fid, isolate()),
   4502                             num_arguments,
   4503                             result_size);
   4504 }
   4505 
   4506 
   4507 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
   4508                                              BranchDelaySlot bd) {
   4509   PrepareCEntryFunction(builtin);
   4510   CEntryStub stub(isolate(), 1);
   4511   Jump(stub.GetCode(),
   4512        RelocInfo::CODE_TARGET,
   4513        al,
   4514        zero_reg,
   4515        Operand(zero_reg),
   4516        bd);
   4517 }
   4518 
   4519 
   4520 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
   4521                                    InvokeFlag flag,
   4522                                    const CallWrapper& call_wrapper) {
   4523   // You can't call a builtin without a valid frame.
   4524   DCHECK(flag == JUMP_FUNCTION || has_frame());
   4525 
   4526   GetBuiltinEntry(t9, id);
   4527   if (flag == CALL_FUNCTION) {
   4528     call_wrapper.BeforeCall(CallSize(t9));
   4529     Call(t9);
   4530     call_wrapper.AfterCall();
   4531   } else {
   4532     DCHECK(flag == JUMP_FUNCTION);
   4533     Jump(t9);
   4534   }
   4535 }
   4536 
   4537 
   4538 void MacroAssembler::GetBuiltinFunction(Register target,
   4539                                         Builtins::JavaScript id) {
   4540   // Load the builtins object into target register.
   4541   ld(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   4542   ld(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
   4543   // Load the JavaScript builtin function from the builtins object.
   4544   ld(target, FieldMemOperand(target,
   4545                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
   4546 }
   4547 
   4548 
   4549 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
   4550   DCHECK(!target.is(a1));
   4551   GetBuiltinFunction(a1, id);
   4552   // Load the code entry point from the builtins object.
   4553   ld(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   4554 }
   4555 
   4556 
   4557 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
   4558                                 Register scratch1, Register scratch2) {
   4559   if (FLAG_native_code_counters && counter->Enabled()) {
   4560     li(scratch1, Operand(value));
   4561     li(scratch2, Operand(ExternalReference(counter)));
   4562     sd(scratch1, MemOperand(scratch2));
   4563   }
   4564 }
   4565 
   4566 
   4567 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
   4568                                       Register scratch1, Register scratch2) {
   4569   DCHECK(value > 0);
   4570   if (FLAG_native_code_counters && counter->Enabled()) {
   4571     li(scratch2, Operand(ExternalReference(counter)));
   4572     ld(scratch1, MemOperand(scratch2));
   4573     Daddu(scratch1, scratch1, Operand(value));
   4574     sd(scratch1, MemOperand(scratch2));
   4575   }
   4576 }
   4577 
   4578 
   4579 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
   4580                                       Register scratch1, Register scratch2) {
   4581   DCHECK(value > 0);
   4582   if (FLAG_native_code_counters && counter->Enabled()) {
   4583     li(scratch2, Operand(ExternalReference(counter)));
   4584     ld(scratch1, MemOperand(scratch2));
   4585     Dsubu(scratch1, scratch1, Operand(value));
   4586     sd(scratch1, MemOperand(scratch2));
   4587   }
   4588 }
   4589 
   4590 
   4591 // -----------------------------------------------------------------------------
   4592 // Debugging.
   4593 
   4594 void MacroAssembler::Assert(Condition cc, BailoutReason reason,
   4595                             Register rs, Operand rt) {
   4596   if (emit_debug_code())
   4597     Check(cc, reason, rs, rt);
   4598 }
   4599 
   4600 
   4601 void MacroAssembler::AssertFastElements(Register elements) {
   4602   if (emit_debug_code()) {
   4603     DCHECK(!elements.is(at));
   4604     Label ok;
   4605     push(elements);
   4606     ld(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
   4607     LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4608     Branch(&ok, eq, elements, Operand(at));
   4609     LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
   4610     Branch(&ok, eq, elements, Operand(at));
   4611     LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
   4612     Branch(&ok, eq, elements, Operand(at));
   4613     Abort(kJSObjectWithFastElementsMapHasSlowElements);
   4614     bind(&ok);
   4615     pop(elements);
   4616   }
   4617 }
   4618 
   4619 
   4620 void MacroAssembler::Check(Condition cc, BailoutReason reason,
   4621                            Register rs, Operand rt) {
   4622   Label L;
   4623   Branch(&L, cc, rs, rt);
   4624   Abort(reason);
   4625   // Will not return here.
   4626   bind(&L);
   4627 }
   4628 
   4629 
   4630 void MacroAssembler::Abort(BailoutReason reason) {
   4631   Label abort_start;
   4632   bind(&abort_start);
   4633 #ifdef DEBUG
   4634   const char* msg = GetBailoutReason(reason);
   4635   if (msg != NULL) {
   4636     RecordComment("Abort message: ");
   4637     RecordComment(msg);
   4638   }
   4639 
   4640   if (FLAG_trap_on_abort) {
   4641     stop(msg);
   4642     return;
   4643   }
   4644 #endif
   4645 
   4646   li(a0, Operand(Smi::FromInt(reason)));
   4647   push(a0);
   4648   // Disable stub call restrictions to always allow calls to abort.
   4649   if (!has_frame_) {
   4650     // We don't actually want to generate a pile of code for this, so just
   4651     // claim there is a stack frame, without generating one.
   4652     FrameScope scope(this, StackFrame::NONE);
   4653     CallRuntime(Runtime::kAbort, 1);
   4654   } else {
   4655     CallRuntime(Runtime::kAbort, 1);
   4656   }
   4657   // Will not return here.
   4658   if (is_trampoline_pool_blocked()) {
   4659     // If the calling code cares about the exact number of
   4660     // instructions generated, we insert padding here to keep the size
   4661     // of the Abort macro constant.
   4662     // Currently in debug mode with debug_code enabled the number of
   4663     // generated instructions is 10, so we use this as a maximum value.
   4664     static const int kExpectedAbortInstructions = 10;
   4665     int abort_instructions = InstructionsGeneratedSince(&abort_start);
   4666     DCHECK(abort_instructions <= kExpectedAbortInstructions);
   4667     while (abort_instructions++ < kExpectedAbortInstructions) {
   4668       nop();
   4669     }
   4670   }
   4671 }
   4672 
   4673 
   4674 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
   4675   if (context_chain_length > 0) {
   4676     // Move up the chain of contexts to the context containing the slot.
   4677     ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
   4678     for (int i = 1; i < context_chain_length; i++) {
   4679       ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
   4680     }
   4681   } else {
   4682     // Slot is in the current function context.  Move it into the
   4683     // destination register in case we store into it (the write barrier
   4684     // cannot be allowed to destroy the context in esi).
   4685     Move(dst, cp);
   4686   }
   4687 }
   4688 
   4689 
   4690 void MacroAssembler::LoadTransitionedArrayMapConditional(
   4691     ElementsKind expected_kind,
   4692     ElementsKind transitioned_kind,
   4693     Register map_in_out,
   4694     Register scratch,
   4695     Label* no_map_match) {
   4696   // Load the global or builtins object from the current context.
   4697   ld(scratch,
   4698      MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   4699   ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
   4700 
   4701   // Check that the function's map is the same as the expected cached map.
   4702   ld(scratch,
   4703      MemOperand(scratch,
   4704                 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
   4705   size_t offset = expected_kind * kPointerSize +
   4706       FixedArrayBase::kHeaderSize;
   4707   ld(at, FieldMemOperand(scratch, offset));
   4708   Branch(no_map_match, ne, map_in_out, Operand(at));
   4709 
   4710   // Use the transitioned cached map.
   4711   offset = transitioned_kind * kPointerSize +
   4712       FixedArrayBase::kHeaderSize;
   4713   ld(map_in_out, FieldMemOperand(scratch, offset));
   4714 }
   4715 
   4716 
   4717 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
   4718   // Load the global or builtins object from the current context.
   4719   ld(function,
   4720      MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   4721   // Load the native context from the global or builtins object.
   4722   ld(function, FieldMemOperand(function,
   4723                                GlobalObject::kNativeContextOffset));
   4724   // Load the function from the native context.
   4725   ld(function, MemOperand(function, Context::SlotOffset(index)));
   4726 }
   4727 
   4728 
   4729 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
   4730                                                   Register map,
   4731                                                   Register scratch) {
   4732   // Load the initial map. The global functions all have initial maps.
   4733   ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   4734   if (emit_debug_code()) {
   4735     Label ok, fail;
   4736     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
   4737     Branch(&ok);
   4738     bind(&fail);
   4739     Abort(kGlobalFunctionsMustHaveInitialMap);
   4740     bind(&ok);
   4741   }
   4742 }
   4743 
   4744 
   4745 void MacroAssembler::StubPrologue() {
   4746     Push(ra, fp, cp);
   4747     Push(Smi::FromInt(StackFrame::STUB));
   4748     // Adjust FP to point to saved FP.
   4749     Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
   4750 }
   4751 
   4752 
   4753 void MacroAssembler::Prologue(bool code_pre_aging) {
   4754   PredictableCodeSizeScope predictible_code_size_scope(
   4755       this, kNoCodeAgeSequenceLength);
   4756   // The following three instructions must remain together and unmodified
   4757   // for code aging to work properly.
   4758   if (code_pre_aging) {
   4759     // Pre-age the code.
   4760     Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
   4761     nop(Assembler::CODE_AGE_MARKER_NOP);
   4762     // Load the stub address to t9 and call it,
   4763     // GetCodeAgeAndParity() extracts the stub address from this instruction.
   4764     li(t9,
   4765        Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
   4766        ADDRESS_LOAD);
   4767     nop();  // Prevent jalr to jal optimization.
   4768     jalr(t9, a0);
   4769     nop();  // Branch delay slot nop.
   4770     nop();  // Pad the empty space.
   4771   } else {
   4772     Push(ra, fp, cp, a1);
   4773     nop(Assembler::CODE_AGE_SEQUENCE_NOP);
   4774     nop(Assembler::CODE_AGE_SEQUENCE_NOP);
   4775     nop(Assembler::CODE_AGE_SEQUENCE_NOP);
   4776     // Adjust fp to point to caller's fp.
   4777     Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
   4778   }
   4779 }
   4780 
   4781 
   4782 void MacroAssembler::EnterFrame(StackFrame::Type type) {
   4783   daddiu(sp, sp, -5 * kPointerSize);
   4784   li(t8, Operand(Smi::FromInt(type)));
   4785   li(t9, Operand(CodeObject()), CONSTANT_SIZE);
   4786   sd(ra, MemOperand(sp, 4 * kPointerSize));
   4787   sd(fp, MemOperand(sp, 3 * kPointerSize));
   4788   sd(cp, MemOperand(sp, 2 * kPointerSize));
   4789   sd(t8, MemOperand(sp, 1 * kPointerSize));
   4790   sd(t9, MemOperand(sp, 0 * kPointerSize));
   4791   // Adjust FP to point to saved FP.
   4792   Daddu(fp, sp,
   4793        Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
   4794 }
   4795 
   4796 
   4797 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
   4798   mov(sp, fp);
   4799   ld(fp, MemOperand(sp, 0 * kPointerSize));
   4800   ld(ra, MemOperand(sp, 1 * kPointerSize));
   4801   daddiu(sp, sp, 2 * kPointerSize);
   4802 }
   4803 
   4804 
   4805 void MacroAssembler::EnterExitFrame(bool save_doubles,
   4806                                     int stack_space) {
   4807   // Set up the frame structure on the stack.
   4808   STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
   4809   STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
   4810   STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
   4811 
   4812   // This is how the stack will look:
   4813   // fp + 2 (==kCallerSPDisplacement) - old stack's end
   4814   // [fp + 1 (==kCallerPCOffset)] - saved old ra
   4815   // [fp + 0 (==kCallerFPOffset)] - saved old fp
   4816   // [fp - 1 (==kSPOffset)] - sp of the called function
   4817   // [fp - 2 (==kCodeOffset)] - CodeObject
   4818   // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
   4819   //   new stack (will contain saved ra)
   4820 
   4821   // Save registers.
   4822   daddiu(sp, sp, -4 * kPointerSize);
   4823   sd(ra, MemOperand(sp, 3 * kPointerSize));
   4824   sd(fp, MemOperand(sp, 2 * kPointerSize));
   4825   daddiu(fp, sp, 2 * kPointerSize);  // Set up new frame pointer.
   4826 
   4827   if (emit_debug_code()) {
   4828     sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
   4829   }
   4830 
   4831   // Accessed from ExitFrame::code_slot.
   4832   li(t8, Operand(CodeObject()), CONSTANT_SIZE);
   4833   sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
   4834 
   4835   // Save the frame pointer and the context in top.
   4836   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   4837   sd(fp, MemOperand(t8));
   4838   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   4839   sd(cp, MemOperand(t8));
   4840 
   4841   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   4842   if (save_doubles) {
   4843     // The stack is already aligned to 0 modulo 8 for stores with sdc1.
   4844     int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
   4845     int space = kNumOfSavedRegisters * kDoubleSize ;
   4846     Dsubu(sp, sp, Operand(space));
   4847     // Remember: we only need to save every 2nd double FPU value.
   4848     for (int i = 0; i < kNumOfSavedRegisters; i++) {
   4849       FPURegister reg = FPURegister::from_code(2 * i);
   4850       sdc1(reg, MemOperand(sp, i * kDoubleSize));
   4851     }
   4852   }
   4853 
   4854   // Reserve place for the return address, stack space and an optional slot
   4855   // (used by the DirectCEntryStub to hold the return value if a struct is
   4856   // returned) and align the frame preparing for calling the runtime function.
   4857   DCHECK(stack_space >= 0);
   4858   Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize));
   4859   if (frame_alignment > 0) {
   4860     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   4861     And(sp, sp, Operand(-frame_alignment));  // Align stack.
   4862   }
   4863 
   4864   // Set the exit frame sp value to point just before the return address
   4865   // location.
   4866   daddiu(at, sp, kPointerSize);
   4867   sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
   4868 }
   4869 
   4870 
   4871 void MacroAssembler::LeaveExitFrame(bool save_doubles,
   4872                                     Register argument_count,
   4873                                     bool restore_context,
   4874                                     bool do_return) {
   4875   // Optionally restore all double registers.
   4876   if (save_doubles) {
   4877     // Remember: we only need to restore every 2nd double FPU value.
   4878     int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2;
   4879     Dsubu(t8, fp, Operand(ExitFrameConstants::kFrameSize +
   4880         kNumOfSavedRegisters * kDoubleSize));
   4881     for (int i = 0; i < kNumOfSavedRegisters; i++) {
   4882       FPURegister reg = FPURegister::from_code(2 * i);
   4883       ldc1(reg, MemOperand(t8, i  * kDoubleSize));
   4884     }
   4885   }
   4886 
   4887   // Clear top frame.
   4888   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   4889   sd(zero_reg, MemOperand(t8));
   4890 
   4891   // Restore current context from top and clear it in debug mode.
   4892   if (restore_context) {
   4893     li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   4894     ld(cp, MemOperand(t8));
   4895   }
   4896 #ifdef DEBUG
   4897   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   4898   sd(a3, MemOperand(t8));
   4899 #endif
   4900 
   4901   // Pop the arguments, restore registers, and return.
   4902   mov(sp, fp);  // Respect ABI stack constraint.
   4903   ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
   4904   ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
   4905 
   4906   if (argument_count.is_valid()) {
   4907     dsll(t8, argument_count, kPointerSizeLog2);
   4908     daddu(sp, sp, t8);
   4909   }
   4910 
   4911   if (do_return) {
   4912     Ret(USE_DELAY_SLOT);
   4913     // If returning, the instruction in the delay slot will be the addiu below.
   4914   }
   4915   daddiu(sp, sp, 2 * kPointerSize);
   4916 }
   4917 
   4918 
   4919 void MacroAssembler::InitializeNewString(Register string,
   4920                                          Register length,
   4921                                          Heap::RootListIndex map_index,
   4922                                          Register scratch1,
   4923                                          Register scratch2) {
   4924   // dsll(scratch1, length, kSmiTagSize);
   4925   dsll32(scratch1, length, 0);
   4926   LoadRoot(scratch2, map_index);
   4927   sd(scratch1, FieldMemOperand(string, String::kLengthOffset));
   4928   li(scratch1, Operand(String::kEmptyHashField));
   4929   sd(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
   4930   sd(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
   4931 }
   4932 
   4933 
   4934 int MacroAssembler::ActivationFrameAlignment() {
   4935 #if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
   4936   // Running on the real platform. Use the alignment as mandated by the local
   4937   // environment.
   4938   // Note: This will break if we ever start generating snapshots on one Mips
   4939   // platform for another Mips platform with a different alignment.
   4940   return base::OS::ActivationFrameAlignment();
   4941 #else  // V8_HOST_ARCH_MIPS
   4942   // If we are using the simulator then we should always align to the expected
   4943   // alignment. As the simulator is used to generate snapshots we do not know
   4944   // if the target platform will need alignment, so this is controlled from a
   4945   // flag.
   4946   return FLAG_sim_stack_alignment;
   4947 #endif  // V8_HOST_ARCH_MIPS
   4948 }
   4949 
   4950 
   4951 void MacroAssembler::AssertStackIsAligned() {
   4952   if (emit_debug_code()) {
   4953       const int frame_alignment = ActivationFrameAlignment();
   4954       const int frame_alignment_mask = frame_alignment - 1;
   4955 
   4956       if (frame_alignment > kPointerSize) {
   4957         Label alignment_as_expected;
   4958         DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   4959         andi(at, sp, frame_alignment_mask);
   4960         Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
   4961         // Don't use Check here, as it will call Runtime_Abort re-entering here.
   4962         stop("Unexpected stack alignment");
   4963         bind(&alignment_as_expected);
   4964       }
   4965     }
   4966 }
   4967 
   4968 
   4969 void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
   4970     Register reg,
   4971     Register scratch,
   4972     Label* not_power_of_two_or_zero) {
   4973   Dsubu(scratch, reg, Operand(1));
   4974   Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
   4975          scratch, Operand(zero_reg));
   4976   and_(at, scratch, reg);  // In the delay slot.
   4977   Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
   4978 }
   4979 
   4980 
   4981 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
   4982   DCHECK(!reg.is(overflow));
   4983   mov(overflow, reg);  // Save original value.
   4984   SmiTag(reg);
   4985   xor_(overflow, overflow, reg);  // Overflow if (value ^ 2 * value) < 0.
   4986 }
   4987 
   4988 
   4989 void MacroAssembler::SmiTagCheckOverflow(Register dst,
   4990                                          Register src,
   4991                                          Register overflow) {
   4992   if (dst.is(src)) {
   4993     // Fall back to slower case.
   4994     SmiTagCheckOverflow(dst, overflow);
   4995   } else {
   4996     DCHECK(!dst.is(src));
   4997     DCHECK(!dst.is(overflow));
   4998     DCHECK(!src.is(overflow));
   4999     SmiTag(dst, src);
   5000     xor_(overflow, dst, src);  // Overflow if (value ^ 2 * value) < 0.
   5001   }
   5002 }
   5003 
   5004 
   5005 void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) {
   5006   if (SmiValuesAre32Bits()) {
   5007     lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
   5008   } else {
   5009     lw(dst, src);
   5010     SmiUntag(dst);
   5011   }
   5012 }
   5013 
   5014 
   5015 void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) {
   5016   if (SmiValuesAre32Bits()) {
   5017     // TODO(plind): not clear if lw or ld faster here, need micro-benchmark.
   5018     lw(dst, UntagSmiMemOperand(src.rm(), src.offset()));
   5019     dsll(dst, dst, scale);
   5020   } else {
   5021     lw(dst, src);
   5022     DCHECK(scale >= kSmiTagSize);
   5023     sll(dst, dst, scale - kSmiTagSize);
   5024   }
   5025 }
   5026 
   5027 
   5028 // Returns 2 values: the Smi and a scaled version of the int within the Smi.
   5029 void MacroAssembler::SmiLoadWithScale(Register d_smi,
   5030                                       Register d_scaled,
   5031                                       MemOperand src,
   5032                                       int scale) {
   5033   if (SmiValuesAre32Bits()) {
   5034     ld(d_smi, src);
   5035     dsra(d_scaled, d_smi, kSmiShift - scale);
   5036   } else {
   5037     lw(d_smi, src);
   5038     DCHECK(scale >= kSmiTagSize);
   5039     sll(d_scaled, d_smi, scale - kSmiTagSize);
   5040   }
   5041 }
   5042 
   5043 
   5044 // Returns 2 values: the untagged Smi (int32) and scaled version of that int.
   5045 void MacroAssembler::SmiLoadUntagWithScale(Register d_int,
   5046                                            Register d_scaled,
   5047                                            MemOperand src,
   5048                                            int scale) {
   5049   if (SmiValuesAre32Bits()) {
   5050     lw(d_int, UntagSmiMemOperand(src.rm(), src.offset()));
   5051     dsll(d_scaled, d_int, scale);
   5052   } else {
   5053     lw(d_int, src);
   5054     // Need both the int and the scaled in, so use two instructions.
   5055     SmiUntag(d_int);
   5056     sll(d_scaled, d_int, scale);
   5057   }
   5058 }
   5059 
   5060 
   5061 void MacroAssembler::UntagAndJumpIfSmi(Register dst,
   5062                                        Register src,
   5063                                        Label* smi_case) {
   5064   // DCHECK(!dst.is(src));
   5065   JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
   5066   SmiUntag(dst, src);
   5067 }
   5068 
   5069 
   5070 void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
   5071                                           Register src,
   5072                                           Label* non_smi_case) {
   5073   // DCHECK(!dst.is(src));
   5074   JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
   5075   SmiUntag(dst, src);
   5076 }
   5077 
   5078 void MacroAssembler::JumpIfSmi(Register value,
   5079                                Label* smi_label,
   5080                                Register scratch,
   5081                                BranchDelaySlot bd) {
   5082   DCHECK_EQ(0, kSmiTag);
   5083   andi(scratch, value, kSmiTagMask);
   5084   Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
   5085 }
   5086 
   5087 void MacroAssembler::JumpIfNotSmi(Register value,
   5088                                   Label* not_smi_label,
   5089                                   Register scratch,
   5090                                   BranchDelaySlot bd) {
   5091   DCHECK_EQ(0, kSmiTag);
   5092   andi(scratch, value, kSmiTagMask);
   5093   Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
   5094 }
   5095 
   5096 
   5097 void MacroAssembler::JumpIfNotBothSmi(Register reg1,
   5098                                       Register reg2,
   5099                                       Label* on_not_both_smi) {
   5100   STATIC_ASSERT(kSmiTag == 0);
   5101   // TODO(plind): Find some better to fix this assert issue.
   5102 #if defined(__APPLE__)
   5103   DCHECK_EQ(1, kSmiTagMask);
   5104 #else
   5105   DCHECK_EQ((uint64_t)1, kSmiTagMask);
   5106 #endif
   5107   or_(at, reg1, reg2);
   5108   JumpIfNotSmi(at, on_not_both_smi);
   5109 }
   5110 
   5111 
   5112 void MacroAssembler::JumpIfEitherSmi(Register reg1,
   5113                                      Register reg2,
   5114                                      Label* on_either_smi) {
   5115   STATIC_ASSERT(kSmiTag == 0);
   5116   // TODO(plind): Find some better to fix this assert issue.
   5117 #if defined(__APPLE__)
   5118   DCHECK_EQ(1, kSmiTagMask);
   5119 #else
   5120   DCHECK_EQ((uint64_t)1, kSmiTagMask);
   5121 #endif
   5122   // Both Smi tags must be 1 (not Smi).
   5123   and_(at, reg1, reg2);
   5124   JumpIfSmi(at, on_either_smi);
   5125 }
   5126 
   5127 
   5128 void MacroAssembler::AssertNotSmi(Register object) {
   5129   if (emit_debug_code()) {
   5130     STATIC_ASSERT(kSmiTag == 0);
   5131     andi(at, object, kSmiTagMask);
   5132     Check(ne, kOperandIsASmi, at, Operand(zero_reg));
   5133   }
   5134 }
   5135 
   5136 
   5137 void MacroAssembler::AssertSmi(Register object) {
   5138   if (emit_debug_code()) {
   5139     STATIC_ASSERT(kSmiTag == 0);
   5140     andi(at, object, kSmiTagMask);
   5141     Check(eq, kOperandIsASmi, at, Operand(zero_reg));
   5142   }
   5143 }
   5144 
   5145 
   5146 void MacroAssembler::AssertString(Register object) {
   5147   if (emit_debug_code()) {
   5148     STATIC_ASSERT(kSmiTag == 0);
   5149     SmiTst(object, a4);
   5150     Check(ne, kOperandIsASmiAndNotAString, a4, Operand(zero_reg));
   5151     push(object);
   5152     ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
   5153     lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
   5154     Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE));
   5155     pop(object);
   5156   }
   5157 }
   5158 
   5159 
   5160 void MacroAssembler::AssertName(Register object) {
   5161   if (emit_debug_code()) {
   5162     STATIC_ASSERT(kSmiTag == 0);
   5163     SmiTst(object, a4);
   5164     Check(ne, kOperandIsASmiAndNotAName, a4, Operand(zero_reg));
   5165     push(object);
   5166     ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
   5167     lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
   5168     Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE));
   5169     pop(object);
   5170   }
   5171 }
   5172 
   5173 
   5174 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
   5175                                                      Register scratch) {
   5176   if (emit_debug_code()) {
   5177     Label done_checking;
   5178     AssertNotSmi(object);
   5179     LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   5180     Branch(&done_checking, eq, object, Operand(scratch));
   5181     push(object);
   5182     ld(object, FieldMemOperand(object, HeapObject::kMapOffset));
   5183     LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex);
   5184     Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch));
   5185     pop(object);
   5186     bind(&done_checking);
   5187   }
   5188 }
   5189 
   5190 
   5191 void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
   5192   if (emit_debug_code()) {
   5193     DCHECK(!reg.is(at));
   5194     LoadRoot(at, index);
   5195     Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at));
   5196   }
   5197 }
   5198 
   5199 
   5200 void MacroAssembler::JumpIfNotHeapNumber(Register object,
   5201                                          Register heap_number_map,
   5202                                          Register scratch,
   5203                                          Label* on_not_heap_number) {
   5204   ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   5205   AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
   5206   Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
   5207 }
   5208 
   5209 
   5210 void MacroAssembler::LookupNumberStringCache(Register object,
   5211                                              Register result,
   5212                                              Register scratch1,
   5213                                              Register scratch2,
   5214                                              Register scratch3,
   5215                                              Label* not_found) {
   5216   // Use of registers. Register result is used as a temporary.
   5217   Register number_string_cache = result;
   5218   Register mask = scratch3;
   5219 
   5220   // Load the number string cache.
   5221   LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
   5222 
   5223   // Make the hash mask from the length of the number string cache. It
   5224   // contains two elements (number and string) for each cache entry.
   5225   ld(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
   5226   // Divide length by two (length is a smi).
   5227   // dsra(mask, mask, kSmiTagSize + 1);
   5228   dsra32(mask, mask, 1);
   5229   Daddu(mask, mask, -1);  // Make mask.
   5230 
   5231   // Calculate the entry in the number string cache. The hash value in the
   5232   // number string cache for smis is just the smi value, and the hash for
   5233   // doubles is the xor of the upper and lower words. See
   5234   // Heap::GetNumberStringCache.
   5235   Label is_smi;
   5236   Label load_result_from_cache;
   5237   JumpIfSmi(object, &is_smi);
   5238   CheckMap(object,
   5239            scratch1,
   5240            Heap::kHeapNumberMapRootIndex,
   5241            not_found,
   5242            DONT_DO_SMI_CHECK);
   5243 
   5244   STATIC_ASSERT(8 == kDoubleSize);
   5245   Daddu(scratch1,
   5246        object,
   5247        Operand(HeapNumber::kValueOffset - kHeapObjectTag));
   5248   ld(scratch2, MemOperand(scratch1, kPointerSize));
   5249   ld(scratch1, MemOperand(scratch1, 0));
   5250   Xor(scratch1, scratch1, Operand(scratch2));
   5251   And(scratch1, scratch1, Operand(mask));
   5252 
   5253   // Calculate address of entry in string cache: each entry consists
   5254   // of two pointer sized fields.
   5255   dsll(scratch1, scratch1, kPointerSizeLog2 + 1);
   5256   Daddu(scratch1, number_string_cache, scratch1);
   5257 
   5258   Register probe = mask;
   5259   ld(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
   5260   JumpIfSmi(probe, not_found);
   5261   ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
   5262   ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
   5263   BranchF(&load_result_from_cache, NULL, eq, f12, f14);
   5264   Branch(not_found);
   5265 
   5266   bind(&is_smi);
   5267   Register scratch = scratch1;
   5268   // dsra(scratch, object, 1);   // Shift away the tag.
   5269   dsra32(scratch, scratch, 0);
   5270   And(scratch, mask, Operand(scratch));
   5271 
   5272   // Calculate address of entry in string cache: each entry consists
   5273   // of two pointer sized fields.
   5274   dsll(scratch, scratch, kPointerSizeLog2 + 1);
   5275   Daddu(scratch, number_string_cache, scratch);
   5276 
   5277   // Check if the entry is the smi we are looking for.
   5278   ld(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
   5279   Branch(not_found, ne, object, Operand(probe));
   5280 
   5281   // Get the result from the cache.
   5282   bind(&load_result_from_cache);
   5283   ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
   5284 
   5285   IncrementCounter(isolate()->counters()->number_to_string_native(),
   5286                    1,
   5287                    scratch1,
   5288                    scratch2);
   5289 }
   5290 
   5291 
   5292 void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
   5293     Register first, Register second, Register scratch1, Register scratch2,
   5294     Label* failure) {
   5295   // Test that both first and second are sequential one-byte strings.
   5296   // Assume that they are non-smis.
   5297   ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
   5298   ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
   5299   lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
   5300   lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
   5301 
   5302   JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
   5303                                                  scratch2, failure);
   5304 }
   5305 
   5306 
   5307 void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
   5308                                                            Register second,
   5309                                                            Register scratch1,
   5310                                                            Register scratch2,
   5311                                                            Label* failure) {
   5312   // Check that neither is a smi.
   5313   STATIC_ASSERT(kSmiTag == 0);
   5314   And(scratch1, first, Operand(second));
   5315   JumpIfSmi(scratch1, failure);
   5316   JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
   5317                                                scratch2, failure);
   5318 }
   5319 
   5320 
   5321 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
   5322     Register first, Register second, Register scratch1, Register scratch2,
   5323     Label* failure) {
   5324   const int kFlatOneByteStringMask =
   5325       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
   5326   const int kFlatOneByteStringTag =
   5327       kStringTag | kOneByteStringTag | kSeqStringTag;
   5328   DCHECK(kFlatOneByteStringTag <= 0xffff);  // Ensure this fits 16-bit immed.
   5329   andi(scratch1, first, kFlatOneByteStringMask);
   5330   Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag));
   5331   andi(scratch2, second, kFlatOneByteStringMask);
   5332   Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag));
   5333 }
   5334 
   5335 
   5336 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
   5337                                                               Register scratch,
   5338                                                               Label* failure) {
   5339   const int kFlatOneByteStringMask =
   5340       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
   5341   const int kFlatOneByteStringTag =
   5342       kStringTag | kOneByteStringTag | kSeqStringTag;
   5343   And(scratch, type, Operand(kFlatOneByteStringMask));
   5344   Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag));
   5345 }
   5346 
   5347 
   5348 static const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4;
   5349 
   5350 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
   5351                                               int num_double_arguments) {
   5352   int stack_passed_words = 0;
   5353   num_reg_arguments += 2 * num_double_arguments;
   5354 
   5355   // O32: Up to four simple arguments are passed in registers a0..a3.
   5356   // N64: Up to eight simple arguments are passed in registers a0..a7.
   5357   if (num_reg_arguments > kRegisterPassedArguments) {
   5358     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
   5359   }
   5360   stack_passed_words += kCArgSlotCount;
   5361   return stack_passed_words;
   5362 }
   5363 
   5364 
   5365 void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
   5366                                                Register index,
   5367                                                Register value,
   5368                                                Register scratch,
   5369                                                uint32_t encoding_mask) {
   5370   Label is_object;
   5371   SmiTst(string, at);
   5372   Check(ne, kNonObject, at, Operand(zero_reg));
   5373 
   5374   ld(at, FieldMemOperand(string, HeapObject::kMapOffset));
   5375   lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset));
   5376 
   5377   andi(at, at, kStringRepresentationMask | kStringEncodingMask);
   5378   li(scratch, Operand(encoding_mask));
   5379   Check(eq, kUnexpectedStringType, at, Operand(scratch));
   5380 
   5381   // TODO(plind): requires Smi size check code for mips32.
   5382 
   5383   ld(at, FieldMemOperand(string, String::kLengthOffset));
   5384   Check(lt, kIndexIsTooLarge, index, Operand(at));
   5385 
   5386   DCHECK(Smi::FromInt(0) == 0);
   5387   Check(ge, kIndexIsNegative, index, Operand(zero_reg));
   5388 }
   5389 
   5390 
   5391 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
   5392                                           int num_double_arguments,
   5393                                           Register scratch) {
   5394   int frame_alignment = ActivationFrameAlignment();
   5395 
   5396   // n64: Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
   5397   // O32: Up to four simple arguments are passed in registers a0..a3.
   5398   // Those four arguments must have reserved argument slots on the stack for
   5399   // mips, even though those argument slots are not normally used.
   5400   // Both ABIs: Remaining arguments are pushed on the stack, above (higher
   5401   // address than) the (O32) argument slots. (arg slot calculation handled by
   5402   // CalculateStackPassedWords()).
   5403   int stack_passed_arguments = CalculateStackPassedWords(
   5404       num_reg_arguments, num_double_arguments);
   5405   if (frame_alignment > kPointerSize) {
   5406     // Make stack end at alignment and make room for num_arguments - 4 words
   5407     // and the original value of sp.
   5408     mov(scratch, sp);
   5409     Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
   5410     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   5411     And(sp, sp, Operand(-frame_alignment));
   5412     sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
   5413   } else {
   5414     Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
   5415   }
   5416 }
   5417 
   5418 
   5419 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
   5420                                           Register scratch) {
   5421   PrepareCallCFunction(num_reg_arguments, 0, scratch);
   5422 }
   5423 
   5424 
   5425 void MacroAssembler::CallCFunction(ExternalReference function,
   5426                                    int num_reg_arguments,
   5427                                    int num_double_arguments) {
   5428   li(t8, Operand(function));
   5429   CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
   5430 }
   5431 
   5432 
   5433 void MacroAssembler::CallCFunction(Register function,
   5434                                    int num_reg_arguments,
   5435                                    int num_double_arguments) {
   5436   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
   5437 }
   5438 
   5439 
   5440 void MacroAssembler::CallCFunction(ExternalReference function,
   5441                                    int num_arguments) {
   5442   CallCFunction(function, num_arguments, 0);
   5443 }
   5444 
   5445 
   5446 void MacroAssembler::CallCFunction(Register function,
   5447                                    int num_arguments) {
   5448   CallCFunction(function, num_arguments, 0);
   5449 }
   5450 
   5451 
   5452 void MacroAssembler::CallCFunctionHelper(Register function,
   5453                                          int num_reg_arguments,
   5454                                          int num_double_arguments) {
   5455   DCHECK(has_frame());
   5456   // Make sure that the stack is aligned before calling a C function unless
   5457   // running in the simulator. The simulator has its own alignment check which
   5458   // provides more information.
   5459   // The argument stots are presumed to have been set up by
   5460   // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
   5461 
   5462 #if V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
   5463   if (emit_debug_code()) {
   5464     int frame_alignment = base::OS::ActivationFrameAlignment();
   5465     int frame_alignment_mask = frame_alignment - 1;
   5466     if (frame_alignment > kPointerSize) {
   5467       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   5468       Label alignment_as_expected;
   5469       And(at, sp, Operand(frame_alignment_mask));
   5470       Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
   5471       // Don't use Check here, as it will call Runtime_Abort possibly
   5472       // re-entering here.
   5473       stop("Unexpected alignment in CallCFunction");
   5474       bind(&alignment_as_expected);
   5475     }
   5476   }
   5477 #endif  // V8_HOST_ARCH_MIPS
   5478 
   5479   // Just call directly. The function called cannot cause a GC, or
   5480   // allow preemption, so the return address in the link register
   5481   // stays correct.
   5482 
   5483   if (!function.is(t9)) {
   5484     mov(t9, function);
   5485     function = t9;
   5486   }
   5487 
   5488   Call(function);
   5489 
   5490   int stack_passed_arguments = CalculateStackPassedWords(
   5491       num_reg_arguments, num_double_arguments);
   5492 
   5493   if (base::OS::ActivationFrameAlignment() > kPointerSize) {
   5494     ld(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
   5495   } else {
   5496     Daddu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
   5497   }
   5498 }
   5499 
   5500 
   5501 #undef BRANCH_ARGS_CHECK
   5502 
   5503 
   5504 void MacroAssembler::PatchRelocatedValue(Register li_location,
   5505                                          Register scratch,
   5506                                          Register new_value) {
   5507   lwu(scratch, MemOperand(li_location));
   5508   // At this point scratch is a lui(at, ...) instruction.
   5509   if (emit_debug_code()) {
   5510     And(scratch, scratch, kOpcodeMask);
   5511     Check(eq, kTheInstructionToPatchShouldBeALui,
   5512         scratch, Operand(LUI));
   5513     lwu(scratch, MemOperand(li_location));
   5514   }
   5515   dsrl32(t9, new_value, 0);
   5516   Ins(scratch, t9, 0, kImm16Bits);
   5517   sw(scratch, MemOperand(li_location));
   5518 
   5519   lwu(scratch, MemOperand(li_location, kInstrSize));
   5520   // scratch is now ori(at, ...).
   5521   if (emit_debug_code()) {
   5522     And(scratch, scratch, kOpcodeMask);
   5523     Check(eq, kTheInstructionToPatchShouldBeAnOri,
   5524         scratch, Operand(ORI));
   5525     lwu(scratch, MemOperand(li_location, kInstrSize));
   5526   }
   5527   dsrl(t9, new_value, kImm16Bits);
   5528   Ins(scratch, t9, 0, kImm16Bits);
   5529   sw(scratch, MemOperand(li_location, kInstrSize));
   5530 
   5531   lwu(scratch, MemOperand(li_location, kInstrSize * 3));
   5532   // scratch is now ori(at, ...).
   5533   if (emit_debug_code()) {
   5534     And(scratch, scratch, kOpcodeMask);
   5535     Check(eq, kTheInstructionToPatchShouldBeAnOri,
   5536         scratch, Operand(ORI));
   5537     lwu(scratch, MemOperand(li_location, kInstrSize * 3));
   5538   }
   5539 
   5540   Ins(scratch, new_value, 0, kImm16Bits);
   5541   sw(scratch, MemOperand(li_location, kInstrSize * 3));
   5542 
   5543   // Update the I-cache so the new lui and ori can be executed.
   5544   FlushICache(li_location, 4);
   5545 }
   5546 
   5547 void MacroAssembler::GetRelocatedValue(Register li_location,
   5548                                        Register value,
   5549                                        Register scratch) {
   5550   lwu(value, MemOperand(li_location));
   5551   if (emit_debug_code()) {
   5552     And(value, value, kOpcodeMask);
   5553     Check(eq, kTheInstructionShouldBeALui,
   5554         value, Operand(LUI));
   5555     lwu(value, MemOperand(li_location));
   5556   }
   5557 
   5558   // value now holds a lui instruction. Extract the immediate.
   5559   andi(value, value, kImm16Mask);
   5560   dsll32(value, value, kImm16Bits);
   5561 
   5562   lwu(scratch, MemOperand(li_location, kInstrSize));
   5563   if (emit_debug_code()) {
   5564     And(scratch, scratch, kOpcodeMask);
   5565     Check(eq, kTheInstructionShouldBeAnOri,
   5566         scratch, Operand(ORI));
   5567     lwu(scratch, MemOperand(li_location, kInstrSize));
   5568   }
   5569   // "scratch" now holds an ori instruction. Extract the immediate.
   5570   andi(scratch, scratch, kImm16Mask);
   5571   dsll32(scratch, scratch, 0);
   5572 
   5573   or_(value, value, scratch);
   5574 
   5575   lwu(scratch, MemOperand(li_location, kInstrSize * 3));
   5576   if (emit_debug_code()) {
   5577     And(scratch, scratch, kOpcodeMask);
   5578     Check(eq, kTheInstructionShouldBeAnOri,
   5579         scratch, Operand(ORI));
   5580     lwu(scratch, MemOperand(li_location, kInstrSize * 3));
   5581   }
   5582   // "scratch" now holds an ori instruction. Extract the immediate.
   5583   andi(scratch, scratch, kImm16Mask);
   5584   dsll(scratch, scratch, kImm16Bits);
   5585 
   5586   or_(value, value, scratch);
   5587   // Sign extend extracted address.
   5588   dsra(value, value, kImm16Bits);
   5589 }
   5590 
   5591 
   5592 void MacroAssembler::CheckPageFlag(
   5593     Register object,
   5594     Register scratch,
   5595     int mask,
   5596     Condition cc,
   5597     Label* condition_met) {
   5598   And(scratch, object, Operand(~Page::kPageAlignmentMask));
   5599   ld(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
   5600   And(scratch, scratch, Operand(mask));
   5601   Branch(condition_met, cc, scratch, Operand(zero_reg));
   5602 }
   5603 
   5604 
   5605 void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
   5606                                         Register scratch,
   5607                                         Label* if_deprecated) {
   5608   if (map->CanBeDeprecated()) {
   5609     li(scratch, Operand(map));
   5610     ld(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
   5611     And(scratch, scratch, Operand(Map::Deprecated::kMask));
   5612     Branch(if_deprecated, ne, scratch, Operand(zero_reg));
   5613   }
   5614 }
   5615 
   5616 
   5617 void MacroAssembler::JumpIfBlack(Register object,
   5618                                  Register scratch0,
   5619                                  Register scratch1,
   5620                                  Label* on_black) {
   5621   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
   5622   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
   5623 }
   5624 
   5625 
   5626 void MacroAssembler::HasColor(Register object,
   5627                               Register bitmap_scratch,
   5628                               Register mask_scratch,
   5629                               Label* has_color,
   5630                               int first_bit,
   5631                               int second_bit) {
   5632   DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
   5633   DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
   5634 
   5635   GetMarkBits(object, bitmap_scratch, mask_scratch);
   5636 
   5637   Label other_color;
   5638   // Note that we are using a 4-byte aligned 8-byte load.
   5639   Uld(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5640   And(t8, t9, Operand(mask_scratch));
   5641   Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
   5642   // Shift left 1 by adding.
   5643   Daddu(mask_scratch, mask_scratch, Operand(mask_scratch));
   5644   And(t8, t9, Operand(mask_scratch));
   5645   Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
   5646 
   5647   bind(&other_color);
   5648 }
   5649 
   5650 
   5651 // Detect some, but not all, common pointer-free objects.  This is used by the
   5652 // incremental write barrier which doesn't care about oddballs (they are always
   5653 // marked black immediately so this code is not hit).
   5654 void MacroAssembler::JumpIfDataObject(Register value,
   5655                                       Register scratch,
   5656                                       Label* not_data_object) {
   5657   DCHECK(!AreAliased(value, scratch, t8, no_reg));
   5658   Label is_data_object;
   5659   ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   5660   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
   5661   Branch(&is_data_object, eq, t8, Operand(scratch));
   5662   DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
   5663   DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
   5664   // If it's a string and it's not a cons string then it's an object containing
   5665   // no GC pointers.
   5666   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   5667   And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
   5668   Branch(not_data_object, ne, t8, Operand(zero_reg));
   5669   bind(&is_data_object);
   5670 }
   5671 
   5672 
   5673 void MacroAssembler::GetMarkBits(Register addr_reg,
   5674                                  Register bitmap_reg,
   5675                                  Register mask_reg) {
   5676   DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
   5677   // addr_reg is divided into fields:
   5678   // |63        page base        20|19    high      8|7   shift   3|2  0|
   5679   // 'high' gives the index of the cell holding color bits for the object.
   5680   // 'shift' gives the offset in the cell for this object's color.
   5681   And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
   5682   Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
   5683   const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
   5684   Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
   5685   dsll(t8, t8, Bitmap::kBytesPerCellLog2);
   5686   Daddu(bitmap_reg, bitmap_reg, t8);
   5687   li(t8, Operand(1));
   5688   dsllv(mask_reg, t8, mask_reg);
   5689 }
   5690 
   5691 
   5692 void MacroAssembler::EnsureNotWhite(
   5693     Register value,
   5694     Register bitmap_scratch,
   5695     Register mask_scratch,
   5696     Register load_scratch,
   5697     Label* value_is_white_and_not_data) {
   5698   DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
   5699   GetMarkBits(value, bitmap_scratch, mask_scratch);
   5700 
   5701   // If the value is black or grey we don't need to do anything.
   5702   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
   5703   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
   5704   DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
   5705   DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
   5706 
   5707   Label done;
   5708 
   5709   // Since both black and grey have a 1 in the first position and white does
   5710   // not have a 1 there we only need to check one bit.
   5711   // Note that we are using a 4-byte aligned 8-byte load.
   5712   Uld(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5713   And(t8, mask_scratch, load_scratch);
   5714   Branch(&done, ne, t8, Operand(zero_reg));
   5715 
   5716   if (emit_debug_code()) {
   5717     // Check for impossible bit pattern.
   5718     Label ok;
   5719     // sll may overflow, making the check conservative.
   5720     dsll(t8, mask_scratch, 1);
   5721     And(t8, load_scratch, t8);
   5722     Branch(&ok, eq, t8, Operand(zero_reg));
   5723     stop("Impossible marking bit pattern");
   5724     bind(&ok);
   5725   }
   5726 
   5727   // Value is white.  We check whether it is data that doesn't need scanning.
   5728   // Currently only checks for HeapNumber and non-cons strings.
   5729   Register map = load_scratch;  // Holds map while checking type.
   5730   Register length = load_scratch;  // Holds length of object after testing type.
   5731   Label is_data_object;
   5732 
   5733   // Check for heap-number
   5734   ld(map, FieldMemOperand(value, HeapObject::kMapOffset));
   5735   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
   5736   {
   5737     Label skip;
   5738     Branch(&skip, ne, t8, Operand(map));
   5739     li(length, HeapNumber::kSize);
   5740     Branch(&is_data_object);
   5741     bind(&skip);
   5742   }
   5743 
   5744   // Check for strings.
   5745   DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
   5746   DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
   5747   // If it's a string and it's not a cons string then it's an object containing
   5748   // no GC pointers.
   5749   Register instance_type = load_scratch;
   5750   lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
   5751   And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
   5752   Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
   5753   // It's a non-indirect (non-cons and non-slice) string.
   5754   // If it's external, the length is just ExternalString::kSize.
   5755   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
   5756   // External strings are the only ones with the kExternalStringTag bit
   5757   // set.
   5758   DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
   5759   DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
   5760   And(t8, instance_type, Operand(kExternalStringTag));
   5761   {
   5762     Label skip;
   5763     Branch(&skip, eq, t8, Operand(zero_reg));
   5764     li(length, ExternalString::kSize);
   5765     Branch(&is_data_object);
   5766     bind(&skip);
   5767   }
   5768 
   5769   // Sequential string, either Latin1 or UC16.
   5770   // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
   5771   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
   5772   // getting the length multiplied by 2.
   5773   DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
   5774   DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
   5775   lw(t9, UntagSmiFieldMemOperand(value, String::kLengthOffset));
   5776   And(t8, instance_type, Operand(kStringEncodingMask));
   5777   {
   5778     Label skip;
   5779     Branch(&skip, ne, t8, Operand(zero_reg));
   5780     // Adjust length for UC16.
   5781     dsll(t9, t9, 1);
   5782     bind(&skip);
   5783   }
   5784   Daddu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
   5785   DCHECK(!length.is(t8));
   5786   And(length, length, Operand(~kObjectAlignmentMask));
   5787 
   5788   bind(&is_data_object);
   5789   // Value is a data object, and it is white.  Mark it black.  Since we know
   5790   // that the object is white we can make it black by flipping one bit.
   5791   Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5792   Or(t8, t8, Operand(mask_scratch));
   5793   Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5794 
   5795   And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
   5796   Uld(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
   5797   Daddu(t8, t8, Operand(length));
   5798   Usd(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
   5799 
   5800   bind(&done);
   5801 }
   5802 
   5803 
   5804 void MacroAssembler::LoadInstanceDescriptors(Register map,
   5805                                              Register descriptors) {
   5806   ld(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
   5807 }
   5808 
   5809 
   5810 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
   5811   ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
   5812   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
   5813 }
   5814 
   5815 
   5816 void MacroAssembler::EnumLength(Register dst, Register map) {
   5817   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
   5818   ld(dst, FieldMemOperand(map, Map::kBitField3Offset));
   5819   And(dst, dst, Operand(Map::EnumLengthBits::kMask));
   5820   SmiTag(dst);
   5821 }
   5822 
   5823 
   5824 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
   5825   Register  empty_fixed_array_value = a6;
   5826   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
   5827   Label next, start;
   5828   mov(a2, a0);
   5829 
   5830   // Check if the enum length field is properly initialized, indicating that
   5831   // there is an enum cache.
   5832   ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
   5833 
   5834   EnumLength(a3, a1);
   5835   Branch(
   5836       call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
   5837 
   5838   jmp(&start);
   5839 
   5840   bind(&next);
   5841   ld(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
   5842 
   5843   // For all objects but the receiver, check that the cache is empty.
   5844   EnumLength(a3, a1);
   5845   Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0)));
   5846 
   5847   bind(&start);
   5848 
   5849   // Check that there are no elements. Register a2 contains the current JS
   5850   // object we've reached through the prototype chain.
   5851   Label no_elements;
   5852   ld(a2, FieldMemOperand(a2, JSObject::kElementsOffset));
   5853   Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value));
   5854 
   5855   // Second chance, the object may be using the empty slow element dictionary.
   5856   LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex);
   5857   Branch(call_runtime, ne, a2, Operand(at));
   5858 
   5859   bind(&no_elements);
   5860   ld(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
   5861   Branch(&next, ne, a2, Operand(null_value));
   5862 }
   5863 
   5864 
   5865 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
   5866   DCHECK(!output_reg.is(input_reg));
   5867   Label done;
   5868   li(output_reg, Operand(255));
   5869   // Normal branch: nop in delay slot.
   5870   Branch(&done, gt, input_reg, Operand(output_reg));
   5871   // Use delay slot in this branch.
   5872   Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
   5873   mov(output_reg, zero_reg);  // In delay slot.
   5874   mov(output_reg, input_reg);  // Value is in range 0..255.
   5875   bind(&done);
   5876 }
   5877 
   5878 
   5879 void MacroAssembler::ClampDoubleToUint8(Register result_reg,
   5880                                         DoubleRegister input_reg,
   5881                                         DoubleRegister temp_double_reg) {
   5882   Label above_zero;
   5883   Label done;
   5884   Label in_bounds;
   5885 
   5886   Move(temp_double_reg, 0.0);
   5887   BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
   5888 
   5889   // Double value is less than zero, NaN or Inf, return 0.
   5890   mov(result_reg, zero_reg);
   5891   Branch(&done);
   5892 
   5893   // Double value is >= 255, return 255.
   5894   bind(&above_zero);
   5895   Move(temp_double_reg, 255.0);
   5896   BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
   5897   li(result_reg, Operand(255));
   5898   Branch(&done);
   5899 
   5900   // In 0-255 range, round and truncate.
   5901   bind(&in_bounds);
   5902   cvt_w_d(temp_double_reg, input_reg);
   5903   mfc1(result_reg, temp_double_reg);
   5904   bind(&done);
   5905 }
   5906 
   5907 
   5908 void MacroAssembler::TestJSArrayForAllocationMemento(
   5909     Register receiver_reg,
   5910     Register scratch_reg,
   5911     Label* no_memento_found,
   5912     Condition cond,
   5913     Label* allocation_memento_present) {
   5914   ExternalReference new_space_start =
   5915       ExternalReference::new_space_start(isolate());
   5916   ExternalReference new_space_allocation_top =
   5917       ExternalReference::new_space_allocation_top_address(isolate());
   5918   Daddu(scratch_reg, receiver_reg,
   5919        Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
   5920   Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start));
   5921   li(at, Operand(new_space_allocation_top));
   5922   ld(at, MemOperand(at));
   5923   Branch(no_memento_found, gt, scratch_reg, Operand(at));
   5924   ld(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
   5925   if (allocation_memento_present) {
   5926     Branch(allocation_memento_present, cond, scratch_reg,
   5927            Operand(isolate()->factory()->allocation_memento_map()));
   5928   }
   5929 }
   5930 
   5931 
   5932 Register GetRegisterThatIsNotOneOf(Register reg1,
   5933                                    Register reg2,
   5934                                    Register reg3,
   5935                                    Register reg4,
   5936                                    Register reg5,
   5937                                    Register reg6) {
   5938   RegList regs = 0;
   5939   if (reg1.is_valid()) regs |= reg1.bit();
   5940   if (reg2.is_valid()) regs |= reg2.bit();
   5941   if (reg3.is_valid()) regs |= reg3.bit();
   5942   if (reg4.is_valid()) regs |= reg4.bit();
   5943   if (reg5.is_valid()) regs |= reg5.bit();
   5944   if (reg6.is_valid()) regs |= reg6.bit();
   5945 
   5946   for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
   5947     Register candidate = Register::FromAllocationIndex(i);
   5948     if (regs & candidate.bit()) continue;
   5949     return candidate;
   5950   }
   5951   UNREACHABLE();
   5952   return no_reg;
   5953 }
   5954 
   5955 
   5956 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
   5957     Register object,
   5958     Register scratch0,
   5959     Register scratch1,
   5960     Label* found) {
   5961   DCHECK(!scratch1.is(scratch0));
   5962   Factory* factory = isolate()->factory();
   5963   Register current = scratch0;
   5964   Label loop_again;
   5965 
   5966   // Scratch contained elements pointer.
   5967   Move(current, object);
   5968 
   5969   // Loop based on the map going up the prototype chain.
   5970   bind(&loop_again);
   5971   ld(current, FieldMemOperand(current, HeapObject::kMapOffset));
   5972   lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
   5973   DecodeField<Map::ElementsKindBits>(scratch1);
   5974   Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS));
   5975   ld(current, FieldMemOperand(current, Map::kPrototypeOffset));
   5976   Branch(&loop_again, ne, current, Operand(factory->null_value()));
   5977 }
   5978 
   5979 
   5980 bool AreAliased(Register reg1,
   5981                 Register reg2,
   5982                 Register reg3,
   5983                 Register reg4,
   5984                 Register reg5,
   5985                 Register reg6,
   5986                 Register reg7,
   5987                 Register reg8) {
   5988   int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
   5989       reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
   5990       reg7.is_valid() + reg8.is_valid();
   5991 
   5992   RegList regs = 0;
   5993   if (reg1.is_valid()) regs |= reg1.bit();
   5994   if (reg2.is_valid()) regs |= reg2.bit();
   5995   if (reg3.is_valid()) regs |= reg3.bit();
   5996   if (reg4.is_valid()) regs |= reg4.bit();
   5997   if (reg5.is_valid()) regs |= reg5.bit();
   5998   if (reg6.is_valid()) regs |= reg6.bit();
   5999   if (reg7.is_valid()) regs |= reg7.bit();
   6000   if (reg8.is_valid()) regs |= reg8.bit();
   6001   int n_of_non_aliasing_regs = NumRegs(regs);
   6002 
   6003   return n_of_valid_regs != n_of_non_aliasing_regs;
   6004 }
   6005 
   6006 
   6007 CodePatcher::CodePatcher(byte* address,
   6008                          int instructions,
   6009                          FlushICache flush_cache)
   6010     : address_(address),
   6011       size_(instructions * Assembler::kInstrSize),
   6012       masm_(NULL, address, size_ + Assembler::kGap),
   6013       flush_cache_(flush_cache) {
   6014   // Create a new macro assembler pointing to the address of the code to patch.
   6015   // The size is adjusted with kGap on order for the assembler to generate size
   6016   // bytes of instructions without failing with buffer size constraints.
   6017   DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
   6018 }
   6019 
   6020 
   6021 CodePatcher::~CodePatcher() {
   6022   // Indicate that code has changed.
   6023   if (flush_cache_ == FLUSH) {
   6024     CpuFeatures::FlushICache(address_, size_);
   6025   }
   6026   // Check that the code was patched as expected.
   6027   DCHECK(masm_.pc_ == address_ + size_);
   6028   DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
   6029 }
   6030 
   6031 
   6032 void CodePatcher::Emit(Instr instr) {
   6033   masm()->emit(instr);
   6034 }
   6035 
   6036 
   6037 void CodePatcher::Emit(Address addr) {
   6038   // masm()->emit(reinterpret_cast<Instr>(addr));
   6039 }
   6040 
   6041 
   6042 void CodePatcher::ChangeBranchCondition(Condition cond) {
   6043   Instr instr = Assembler::instr_at(masm_.pc_);
   6044   DCHECK(Assembler::IsBranch(instr));
   6045   uint32_t opcode = Assembler::GetOpcodeField(instr);
   6046   // Currently only the 'eq' and 'ne' cond values are supported and the simple
   6047   // branch instructions (with opcode being the branch type).
   6048   // There are some special cases (see Assembler::IsBranch()) so extending this
   6049   // would be tricky.
   6050   DCHECK(opcode == BEQ ||
   6051          opcode == BNE ||
   6052         opcode == BLEZ ||
   6053         opcode == BGTZ ||
   6054         opcode == BEQL ||
   6055         opcode == BNEL ||
   6056        opcode == BLEZL ||
   6057        opcode == BGTZL);
   6058   opcode = (cond == eq) ? BEQ : BNE;
   6059   instr = (instr & ~kOpcodeMask) | opcode;
   6060   masm_.emit(instr);
   6061 }
   6062 
   6063 
   6064 void MacroAssembler::TruncatingDiv(Register result,
   6065                                    Register dividend,
   6066                                    int32_t divisor) {
   6067   DCHECK(!dividend.is(result));
   6068   DCHECK(!dividend.is(at));
   6069   DCHECK(!result.is(at));
   6070   base::MagicNumbersForDivision<uint32_t> mag =
   6071   base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
   6072   li(at, Operand(mag.multiplier));
   6073   Mulh(result, dividend, Operand(at));
   6074   bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
   6075   if (divisor > 0 && neg) {
   6076     Addu(result, result, Operand(dividend));
   6077   }
   6078   if (divisor < 0 && !neg && mag.multiplier > 0) {
   6079     Subu(result, result, Operand(dividend));
   6080   }
   6081   if (mag.shift > 0) sra(result, result, mag.shift);
   6082   srl(at, dividend, 31);
   6083   Addu(result, result, Operand(at));
   6084 }
   6085 
   6086 
   6087 } }  // namespace v8::internal
   6088 
   6089 #endif  // V8_TARGET_ARCH_MIPS64
   6090