Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZISelLowering.h"
     15 #include "SystemZCallingConv.h"
     16 #include "SystemZConstantPoolValue.h"
     17 #include "SystemZMachineFunctionInfo.h"
     18 #include "SystemZTargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 #include <cctype>
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "systemz-lower"
     29 
     30 namespace {
     31 // Represents a sequence for extracting a 0/1 value from an IPM result:
     32 // (((X ^ XORValue) + AddValue) >> Bit)
     33 struct IPMConversion {
     34   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
     35     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
     36 
     37   int64_t XORValue;
     38   int64_t AddValue;
     39   unsigned Bit;
     40 };
     41 
     42 // Represents information about a comparison.
     43 struct Comparison {
     44   Comparison(SDValue Op0In, SDValue Op1In)
     45     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
     46 
     47   // The operands to the comparison.
     48   SDValue Op0, Op1;
     49 
     50   // The opcode that should be used to compare Op0 and Op1.
     51   unsigned Opcode;
     52 
     53   // A SystemZICMP value.  Only used for integer comparisons.
     54   unsigned ICmpType;
     55 
     56   // The mask of CC values that Opcode can produce.
     57   unsigned CCValid;
     58 
     59   // The mask of CC values for which the original condition is true.
     60   unsigned CCMask;
     61 };
     62 } // end anonymous namespace
     63 
     64 // Classify VT as either 32 or 64 bit.
     65 static bool is32Bit(EVT VT) {
     66   switch (VT.getSimpleVT().SimpleTy) {
     67   case MVT::i32:
     68     return true;
     69   case MVT::i64:
     70     return false;
     71   default:
     72     llvm_unreachable("Unsupported type");
     73   }
     74 }
     75 
     76 // Return a version of MachineOperand that can be safely used before the
     77 // final use.
     78 static MachineOperand earlyUseOperand(MachineOperand Op) {
     79   if (Op.isReg())
     80     Op.setIsKill(false);
     81   return Op;
     82 }
     83 
     84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
     85                                              const SystemZSubtarget &STI)
     86     : TargetLowering(TM), Subtarget(STI) {
     87   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
     88 
     89   // Set up the register classes.
     90   if (Subtarget.hasHighWord())
     91     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
     92   else
     93     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
     94   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
     95   if (Subtarget.hasVector()) {
     96     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
     97     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
     98   } else {
     99     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
    100     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
    101   }
    102   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
    103 
    104   if (Subtarget.hasVector()) {
    105     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
    106     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
    107     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
    108     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
    109     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
    110     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
    111   }
    112 
    113   // Compute derived properties from the register classes
    114   computeRegisterProperties(Subtarget.getRegisterInfo());
    115 
    116   // Set up special registers.
    117   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
    118 
    119   // TODO: It may be better to default to latency-oriented scheduling, however
    120   // LLVM's current latency-oriented scheduler can't handle physreg definitions
    121   // such as SystemZ has with CC, so set this to the register-pressure
    122   // scheduler, because it can.
    123   setSchedulingPreference(Sched::RegPressure);
    124 
    125   setBooleanContents(ZeroOrOneBooleanContent);
    126   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    127 
    128   // Instructions are strings of 2-byte aligned 2-byte values.
    129   setMinFunctionAlignment(2);
    130 
    131   // Handle operations that are handled in a similar way for all types.
    132   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    133        I <= MVT::LAST_FP_VALUETYPE;
    134        ++I) {
    135     MVT VT = MVT::SimpleValueType(I);
    136     if (isTypeLegal(VT)) {
    137       // Lower SET_CC into an IPM-based sequence.
    138       setOperationAction(ISD::SETCC, VT, Custom);
    139 
    140       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
    141       setOperationAction(ISD::SELECT, VT, Expand);
    142 
    143       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
    144       setOperationAction(ISD::SELECT_CC, VT, Custom);
    145       setOperationAction(ISD::BR_CC,     VT, Custom);
    146     }
    147   }
    148 
    149   // Expand jump table branches as address arithmetic followed by an
    150   // indirect jump.
    151   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    152 
    153   // Expand BRCOND into a BR_CC (see above).
    154   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    155 
    156   // Handle integer types.
    157   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    158        I <= MVT::LAST_INTEGER_VALUETYPE;
    159        ++I) {
    160     MVT VT = MVT::SimpleValueType(I);
    161     if (isTypeLegal(VT)) {
    162       // Expand individual DIV and REMs into DIVREMs.
    163       setOperationAction(ISD::SDIV, VT, Expand);
    164       setOperationAction(ISD::UDIV, VT, Expand);
    165       setOperationAction(ISD::SREM, VT, Expand);
    166       setOperationAction(ISD::UREM, VT, Expand);
    167       setOperationAction(ISD::SDIVREM, VT, Custom);
    168       setOperationAction(ISD::UDIVREM, VT, Custom);
    169 
    170       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
    171       // stores, putting a serialization instruction after the stores.
    172       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
    173       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    174 
    175       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
    176       // available, or if the operand is constant.
    177       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    178 
    179       // Use POPCNT on z196 and above.
    180       if (Subtarget.hasPopulationCount())
    181         setOperationAction(ISD::CTPOP, VT, Custom);
    182       else
    183         setOperationAction(ISD::CTPOP, VT, Expand);
    184 
    185       // No special instructions for these.
    186       setOperationAction(ISD::CTTZ,            VT, Expand);
    187       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    188       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    189       setOperationAction(ISD::ROTR,            VT, Expand);
    190 
    191       // Use *MUL_LOHI where possible instead of MULH*.
    192       setOperationAction(ISD::MULHS, VT, Expand);
    193       setOperationAction(ISD::MULHU, VT, Expand);
    194       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
    195       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
    196 
    197       // Only z196 and above have native support for conversions to unsigned.
    198       if (!Subtarget.hasFPExtension())
    199         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    200     }
    201   }
    202 
    203   // Type legalization will convert 8- and 16-bit atomic operations into
    204   // forms that operate on i32s (but still keeping the original memory VT).
    205   // Lower them into full i32 operations.
    206   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
    207   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
    208   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
    209   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
    210   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
    211   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
    212   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
    213   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
    214   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
    215   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
    216   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
    217   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
    218 
    219   // z10 has instructions for signed but not unsigned FP conversion.
    220   // Handle unsigned 32-bit types as signed 64-bit types.
    221   if (!Subtarget.hasFPExtension()) {
    222     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
    223     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    224   }
    225 
    226   // We have native support for a 64-bit CTLZ, via FLOGR.
    227   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
    228   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
    229 
    230   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
    231   setOperationAction(ISD::OR, MVT::i64, Custom);
    232 
    233   // FIXME: Can we support these natively?
    234   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
    235   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
    236   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
    237 
    238   // We have native instructions for i8, i16 and i32 extensions, but not i1.
    239   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    240   for (MVT VT : MVT::integer_valuetypes()) {
    241     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    242     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    243     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
    244   }
    245 
    246   // Handle the various types of symbolic address.
    247   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
    248   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
    249   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
    250   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
    251   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
    252 
    253   // We need to handle dynamic allocations specially because of the
    254   // 160-byte area at the bottom of the stack.
    255   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
    256 
    257   // Use custom expanders so that we can force the function to use
    258   // a frame pointer.
    259   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
    260   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
    261 
    262   // Handle prefetches with PFD or PFDRL.
    263   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
    264 
    265   for (MVT VT : MVT::vector_valuetypes()) {
    266     // Assume by default that all vector operations need to be expanded.
    267     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
    268       if (getOperationAction(Opcode, VT) == Legal)
    269         setOperationAction(Opcode, VT, Expand);
    270 
    271     // Likewise all truncating stores and extending loads.
    272     for (MVT InnerVT : MVT::vector_valuetypes()) {
    273       setTruncStoreAction(VT, InnerVT, Expand);
    274       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    275       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    276       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    277     }
    278 
    279     if (isTypeLegal(VT)) {
    280       // These operations are legal for anything that can be stored in a
    281       // vector register, even if there is no native support for the format
    282       // as such.  In particular, we can do these for v4f32 even though there
    283       // are no specific instructions for that format.
    284       setOperationAction(ISD::LOAD, VT, Legal);
    285       setOperationAction(ISD::STORE, VT, Legal);
    286       setOperationAction(ISD::VSELECT, VT, Legal);
    287       setOperationAction(ISD::BITCAST, VT, Legal);
    288       setOperationAction(ISD::UNDEF, VT, Legal);
    289 
    290       // Likewise, except that we need to replace the nodes with something
    291       // more specific.
    292       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
    293       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
    294     }
    295   }
    296 
    297   // Handle integer vector types.
    298   for (MVT VT : MVT::integer_vector_valuetypes()) {
    299     if (isTypeLegal(VT)) {
    300       // These operations have direct equivalents.
    301       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
    302       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
    303       setOperationAction(ISD::ADD, VT, Legal);
    304       setOperationAction(ISD::SUB, VT, Legal);
    305       if (VT != MVT::v2i64)
    306         setOperationAction(ISD::MUL, VT, Legal);
    307       setOperationAction(ISD::AND, VT, Legal);
    308       setOperationAction(ISD::OR, VT, Legal);
    309       setOperationAction(ISD::XOR, VT, Legal);
    310       setOperationAction(ISD::CTPOP, VT, Custom);
    311       setOperationAction(ISD::CTTZ, VT, Legal);
    312       setOperationAction(ISD::CTLZ, VT, Legal);
    313       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
    314       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
    315 
    316       // Convert a GPR scalar to a vector by inserting it into element 0.
    317       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
    318 
    319       // Use a series of unpacks for extensions.
    320       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
    321       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
    322 
    323       // Detect shifts by a scalar amount and convert them into
    324       // V*_BY_SCALAR.
    325       setOperationAction(ISD::SHL, VT, Custom);
    326       setOperationAction(ISD::SRA, VT, Custom);
    327       setOperationAction(ISD::SRL, VT, Custom);
    328 
    329       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
    330       // converted into ROTL.
    331       setOperationAction(ISD::ROTL, VT, Expand);
    332       setOperationAction(ISD::ROTR, VT, Expand);
    333 
    334       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
    335       // and inverting the result as necessary.
    336       setOperationAction(ISD::SETCC, VT, Custom);
    337     }
    338   }
    339 
    340   if (Subtarget.hasVector()) {
    341     // There should be no need to check for float types other than v2f64
    342     // since <2 x f32> isn't a legal type.
    343     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
    344     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
    345     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
    346     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
    347   }
    348 
    349   // Handle floating-point types.
    350   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
    351        I <= MVT::LAST_FP_VALUETYPE;
    352        ++I) {
    353     MVT VT = MVT::SimpleValueType(I);
    354     if (isTypeLegal(VT)) {
    355       // We can use FI for FRINT.
    356       setOperationAction(ISD::FRINT, VT, Legal);
    357 
    358       // We can use the extended form of FI for other rounding operations.
    359       if (Subtarget.hasFPExtension()) {
    360         setOperationAction(ISD::FNEARBYINT, VT, Legal);
    361         setOperationAction(ISD::FFLOOR, VT, Legal);
    362         setOperationAction(ISD::FCEIL, VT, Legal);
    363         setOperationAction(ISD::FTRUNC, VT, Legal);
    364         setOperationAction(ISD::FROUND, VT, Legal);
    365       }
    366 
    367       // No special instructions for these.
    368       setOperationAction(ISD::FSIN, VT, Expand);
    369       setOperationAction(ISD::FCOS, VT, Expand);
    370       setOperationAction(ISD::FSINCOS, VT, Expand);
    371       setOperationAction(ISD::FREM, VT, Expand);
    372       setOperationAction(ISD::FPOW, VT, Expand);
    373     }
    374   }
    375 
    376   // Handle floating-point vector types.
    377   if (Subtarget.hasVector()) {
    378     // Scalar-to-vector conversion is just a subreg.
    379     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
    380     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
    381 
    382     // Some insertions and extractions can be done directly but others
    383     // need to go via integers.
    384     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
    385     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
    386     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    387     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    388 
    389     // These operations have direct equivalents.
    390     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
    391     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
    392     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
    393     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
    394     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
    395     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
    396     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
    397     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
    398     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
    399     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
    400     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
    401     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
    402     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
    403     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
    404   }
    405 
    406   // We have fused multiply-addition for f32 and f64 but not f128.
    407   setOperationAction(ISD::FMA, MVT::f32,  Legal);
    408   setOperationAction(ISD::FMA, MVT::f64,  Legal);
    409   setOperationAction(ISD::FMA, MVT::f128, Expand);
    410 
    411   // Needed so that we don't try to implement f128 constant loads using
    412   // a load-and-extend of a f80 constant (in cases where the constant
    413   // would fit in an f80).
    414   for (MVT VT : MVT::fp_valuetypes())
    415     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
    416 
    417   // Floating-point truncation and stores need to be done separately.
    418   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
    419   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    420   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    421 
    422   // We have 64-bit FPR<->GPR moves, but need special handling for
    423   // 32-bit forms.
    424   if (!Subtarget.hasVector()) {
    425     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    426     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
    427   }
    428 
    429   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
    430   // structure, but VAEND is a no-op.
    431   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    432   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
    433   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
    434 
    435   // Codes for which we want to perform some z-specific combinations.
    436   setTargetDAGCombine(ISD::SIGN_EXTEND);
    437   setTargetDAGCombine(ISD::STORE);
    438   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
    439   setTargetDAGCombine(ISD::FP_ROUND);
    440 
    441   // Handle intrinsics.
    442   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    443   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    444 
    445   // We want to use MVC in preference to even a single load/store pair.
    446   MaxStoresPerMemcpy = 0;
    447   MaxStoresPerMemcpyOptSize = 0;
    448 
    449   // The main memset sequence is a byte store followed by an MVC.
    450   // Two STC or MV..I stores win over that, but the kind of fused stores
    451   // generated by target-independent code don't when the byte value is
    452   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
    453   // than "STC;MVC".  Handle the choice in target-specific code instead.
    454   MaxStoresPerMemset = 0;
    455   MaxStoresPerMemsetOptSize = 0;
    456 }
    457 
    458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
    459                                               LLVMContext &, EVT VT) const {
    460   if (!VT.isVector())
    461     return MVT::i32;
    462   return VT.changeVectorElementTypeToInteger();
    463 }
    464 
    465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
    466   VT = VT.getScalarType();
    467 
    468   if (!VT.isSimple())
    469     return false;
    470 
    471   switch (VT.getSimpleVT().SimpleTy) {
    472   case MVT::f32:
    473   case MVT::f64:
    474     return true;
    475   case MVT::f128:
    476     return false;
    477   default:
    478     break;
    479   }
    480 
    481   return false;
    482 }
    483 
    484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    485   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
    486   return Imm.isZero() || Imm.isNegZero();
    487 }
    488 
    489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
    490   // We can use CGFI or CLGFI.
    491   return isInt<32>(Imm) || isUInt<32>(Imm);
    492 }
    493 
    494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
    495   // We can use ALGFI or SLGFI.
    496   return isUInt<32>(Imm) || isUInt<32>(-Imm);
    497 }
    498 
    499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    500                                                            unsigned,
    501                                                            unsigned,
    502                                                            bool *Fast) const {
    503   // Unaligned accesses should never be slower than the expanded version.
    504   // We check specifically for aligned accesses in the few cases where
    505   // they are required.
    506   if (Fast)
    507     *Fast = true;
    508   return true;
    509 }
    510 
    511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
    512                                                   const AddrMode &AM, Type *Ty,
    513                                                   unsigned AS) const {
    514   // Punt on globals for now, although they can be used in limited
    515   // RELATIVE LONG cases.
    516   if (AM.BaseGV)
    517     return false;
    518 
    519   // Require a 20-bit signed offset.
    520   if (!isInt<20>(AM.BaseOffs))
    521     return false;
    522 
    523   // Indexing is OK but no scale factor can be applied.
    524   return AM.Scale == 0 || AM.Scale == 1;
    525 }
    526 
    527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
    528   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
    529     return false;
    530   unsigned FromBits = FromType->getPrimitiveSizeInBits();
    531   unsigned ToBits = ToType->getPrimitiveSizeInBits();
    532   return FromBits > ToBits;
    533 }
    534 
    535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
    536   if (!FromVT.isInteger() || !ToVT.isInteger())
    537     return false;
    538   unsigned FromBits = FromVT.getSizeInBits();
    539   unsigned ToBits = ToVT.getSizeInBits();
    540   return FromBits > ToBits;
    541 }
    542 
    543 //===----------------------------------------------------------------------===//
    544 // Inline asm support
    545 //===----------------------------------------------------------------------===//
    546 
    547 TargetLowering::ConstraintType
    548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
    549   if (Constraint.size() == 1) {
    550     switch (Constraint[0]) {
    551     case 'a': // Address register
    552     case 'd': // Data register (equivalent to 'r')
    553     case 'f': // Floating-point register
    554     case 'h': // High-part register
    555     case 'r': // General-purpose register
    556       return C_RegisterClass;
    557 
    558     case 'Q': // Memory with base and unsigned 12-bit displacement
    559     case 'R': // Likewise, plus an index
    560     case 'S': // Memory with base and signed 20-bit displacement
    561     case 'T': // Likewise, plus an index
    562     case 'm': // Equivalent to 'T'.
    563       return C_Memory;
    564 
    565     case 'I': // Unsigned 8-bit constant
    566     case 'J': // Unsigned 12-bit constant
    567     case 'K': // Signed 16-bit constant
    568     case 'L': // Signed 20-bit displacement (on all targets we support)
    569     case 'M': // 0x7fffffff
    570       return C_Other;
    571 
    572     default:
    573       break;
    574     }
    575   }
    576   return TargetLowering::getConstraintType(Constraint);
    577 }
    578 
    579 TargetLowering::ConstraintWeight SystemZTargetLowering::
    580 getSingleConstraintMatchWeight(AsmOperandInfo &info,
    581                                const char *constraint) const {
    582   ConstraintWeight weight = CW_Invalid;
    583   Value *CallOperandVal = info.CallOperandVal;
    584   // If we don't have a value, we can't do a match,
    585   // but allow it at the lowest weight.
    586   if (!CallOperandVal)
    587     return CW_Default;
    588   Type *type = CallOperandVal->getType();
    589   // Look at the constraint type.
    590   switch (*constraint) {
    591   default:
    592     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    593     break;
    594 
    595   case 'a': // Address register
    596   case 'd': // Data register (equivalent to 'r')
    597   case 'h': // High-part register
    598   case 'r': // General-purpose register
    599     if (CallOperandVal->getType()->isIntegerTy())
    600       weight = CW_Register;
    601     break;
    602 
    603   case 'f': // Floating-point register
    604     if (type->isFloatingPointTy())
    605       weight = CW_Register;
    606     break;
    607 
    608   case 'I': // Unsigned 8-bit constant
    609     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    610       if (isUInt<8>(C->getZExtValue()))
    611         weight = CW_Constant;
    612     break;
    613 
    614   case 'J': // Unsigned 12-bit constant
    615     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    616       if (isUInt<12>(C->getZExtValue()))
    617         weight = CW_Constant;
    618     break;
    619 
    620   case 'K': // Signed 16-bit constant
    621     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    622       if (isInt<16>(C->getSExtValue()))
    623         weight = CW_Constant;
    624     break;
    625 
    626   case 'L': // Signed 20-bit displacement (on all targets we support)
    627     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    628       if (isInt<20>(C->getSExtValue()))
    629         weight = CW_Constant;
    630     break;
    631 
    632   case 'M': // 0x7fffffff
    633     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    634       if (C->getZExtValue() == 0x7fffffff)
    635         weight = CW_Constant;
    636     break;
    637   }
    638   return weight;
    639 }
    640 
    641 // Parse a "{tNNN}" register constraint for which the register type "t"
    642 // has already been verified.  MC is the class associated with "t" and
    643 // Map maps 0-based register numbers to LLVM register numbers.
    644 static std::pair<unsigned, const TargetRegisterClass *>
    645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
    646                     const unsigned *Map) {
    647   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
    648   if (isdigit(Constraint[2])) {
    649     unsigned Index;
    650     bool Failed =
    651         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
    652     if (!Failed && Index < 16 && Map[Index])
    653       return std::make_pair(Map[Index], RC);
    654   }
    655   return std::make_pair(0U, nullptr);
    656 }
    657 
    658 std::pair<unsigned, const TargetRegisterClass *>
    659 SystemZTargetLowering::getRegForInlineAsmConstraint(
    660     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
    661   if (Constraint.size() == 1) {
    662     // GCC Constraint Letters
    663     switch (Constraint[0]) {
    664     default: break;
    665     case 'd': // Data register (equivalent to 'r')
    666     case 'r': // General-purpose register
    667       if (VT == MVT::i64)
    668         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
    669       else if (VT == MVT::i128)
    670         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
    671       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
    672 
    673     case 'a': // Address register
    674       if (VT == MVT::i64)
    675         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
    676       else if (VT == MVT::i128)
    677         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
    678       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
    679 
    680     case 'h': // High-part register (an LLVM extension)
    681       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
    682 
    683     case 'f': // Floating-point register
    684       if (VT == MVT::f64)
    685         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
    686       else if (VT == MVT::f128)
    687         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
    688       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
    689     }
    690   }
    691   if (Constraint.size() > 0 && Constraint[0] == '{') {
    692     // We need to override the default register parsing for GPRs and FPRs
    693     // because the interpretation depends on VT.  The internal names of
    694     // the registers are also different from the external names
    695     // (F0D and F0S instead of F0, etc.).
    696     if (Constraint[1] == 'r') {
    697       if (VT == MVT::i32)
    698         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
    699                                    SystemZMC::GR32Regs);
    700       if (VT == MVT::i128)
    701         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
    702                                    SystemZMC::GR128Regs);
    703       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
    704                                  SystemZMC::GR64Regs);
    705     }
    706     if (Constraint[1] == 'f') {
    707       if (VT == MVT::f32)
    708         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
    709                                    SystemZMC::FP32Regs);
    710       if (VT == MVT::f128)
    711         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
    712                                    SystemZMC::FP128Regs);
    713       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
    714                                  SystemZMC::FP64Regs);
    715     }
    716   }
    717   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    718 }
    719 
    720 void SystemZTargetLowering::
    721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
    722                              std::vector<SDValue> &Ops,
    723                              SelectionDAG &DAG) const {
    724   // Only support length 1 constraints for now.
    725   if (Constraint.length() == 1) {
    726     switch (Constraint[0]) {
    727     case 'I': // Unsigned 8-bit constant
    728       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    729         if (isUInt<8>(C->getZExtValue()))
    730           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    731                                               Op.getValueType()));
    732       return;
    733 
    734     case 'J': // Unsigned 12-bit constant
    735       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    736         if (isUInt<12>(C->getZExtValue()))
    737           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    738                                               Op.getValueType()));
    739       return;
    740 
    741     case 'K': // Signed 16-bit constant
    742       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    743         if (isInt<16>(C->getSExtValue()))
    744           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
    745                                               Op.getValueType()));
    746       return;
    747 
    748     case 'L': // Signed 20-bit displacement (on all targets we support)
    749       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    750         if (isInt<20>(C->getSExtValue()))
    751           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
    752                                               Op.getValueType()));
    753       return;
    754 
    755     case 'M': // 0x7fffffff
    756       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    757         if (C->getZExtValue() == 0x7fffffff)
    758           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
    759                                               Op.getValueType()));
    760       return;
    761     }
    762   }
    763   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
    764 }
    765 
    766 //===----------------------------------------------------------------------===//
    767 // Calling conventions
    768 //===----------------------------------------------------------------------===//
    769 
    770 #include "SystemZGenCallingConv.inc"
    771 
    772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
    773                                                      Type *ToType) const {
    774   return isTruncateFree(FromType, ToType);
    775 }
    776 
    777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
    778   return CI->isTailCall();
    779 }
    780 
    781 // We do not yet support 128-bit single-element vector types.  If the user
    782 // attempts to use such types as function argument or return type, prefer
    783 // to error out instead of emitting code violating the ABI.
    784 static void VerifyVectorType(MVT VT, EVT ArgVT) {
    785   if (ArgVT.isVector() && !VT.isVector())
    786     report_fatal_error("Unsupported vector argument or return type");
    787 }
    788 
    789 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
    790   for (unsigned i = 0; i < Ins.size(); ++i)
    791     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
    792 }
    793 
    794 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
    795   for (unsigned i = 0; i < Outs.size(); ++i)
    796     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
    797 }
    798 
    799 // Value is a value that has been passed to us in the location described by VA
    800 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
    801 // any loads onto Chain.
    802 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
    803                                    CCValAssign &VA, SDValue Chain,
    804                                    SDValue Value) {
    805   // If the argument has been promoted from a smaller type, insert an
    806   // assertion to capture this.
    807   if (VA.getLocInfo() == CCValAssign::SExt)
    808     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
    809                         DAG.getValueType(VA.getValVT()));
    810   else if (VA.getLocInfo() == CCValAssign::ZExt)
    811     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
    812                         DAG.getValueType(VA.getValVT()));
    813 
    814   if (VA.isExtInLoc())
    815     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
    816   else if (VA.getLocInfo() == CCValAssign::Indirect)
    817     Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
    818                         MachinePointerInfo(), false, false, false, 0);
    819   else if (VA.getLocInfo() == CCValAssign::BCvt) {
    820     // If this is a short vector argument loaded from the stack,
    821     // extend from i64 to full vector size and then bitcast.
    822     assert(VA.getLocVT() == MVT::i64);
    823     assert(VA.getValVT().isVector());
    824     Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64,
    825                         Value, DAG.getUNDEF(MVT::i64));
    826     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
    827   } else
    828     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
    829   return Value;
    830 }
    831 
    832 // Value is a value of type VA.getValVT() that we need to copy into
    833 // the location described by VA.  Return a copy of Value converted to
    834 // VA.getValVT().  The caller is responsible for handling indirect values.
    835 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
    836                                    CCValAssign &VA, SDValue Value) {
    837   switch (VA.getLocInfo()) {
    838   case CCValAssign::SExt:
    839     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
    840   case CCValAssign::ZExt:
    841     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
    842   case CCValAssign::AExt:
    843     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
    844   case CCValAssign::BCvt:
    845     // If this is a short vector argument to be stored to the stack,
    846     // bitcast to v2i64 and then extract first element.
    847     assert(VA.getLocVT() == MVT::i64);
    848     assert(VA.getValVT().isVector());
    849     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
    850     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
    851                        DAG.getConstant(0, DL, MVT::i32));
    852   case CCValAssign::Full:
    853     return Value;
    854   default:
    855     llvm_unreachable("Unhandled getLocInfo()");
    856   }
    857 }
    858 
    859 SDValue SystemZTargetLowering::
    860 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    861                      const SmallVectorImpl<ISD::InputArg> &Ins,
    862                      SDLoc DL, SelectionDAG &DAG,
    863                      SmallVectorImpl<SDValue> &InVals) const {
    864   MachineFunction &MF = DAG.getMachineFunction();
    865   MachineFrameInfo *MFI = MF.getFrameInfo();
    866   MachineRegisterInfo &MRI = MF.getRegInfo();
    867   SystemZMachineFunctionInfo *FuncInfo =
    868       MF.getInfo<SystemZMachineFunctionInfo>();
    869   auto *TFL =
    870       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
    871 
    872   // Detect unsupported vector argument types.
    873   if (Subtarget.hasVector())
    874     VerifyVectorTypes(Ins);
    875 
    876   // Assign locations to all of the incoming arguments.
    877   SmallVector<CCValAssign, 16> ArgLocs;
    878   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    879   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
    880 
    881   unsigned NumFixedGPRs = 0;
    882   unsigned NumFixedFPRs = 0;
    883   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    884     SDValue ArgValue;
    885     CCValAssign &VA = ArgLocs[I];
    886     EVT LocVT = VA.getLocVT();
    887     if (VA.isRegLoc()) {
    888       // Arguments passed in registers
    889       const TargetRegisterClass *RC;
    890       switch (LocVT.getSimpleVT().SimpleTy) {
    891       default:
    892         // Integers smaller than i64 should be promoted to i64.
    893         llvm_unreachable("Unexpected argument type");
    894       case MVT::i32:
    895         NumFixedGPRs += 1;
    896         RC = &SystemZ::GR32BitRegClass;
    897         break;
    898       case MVT::i64:
    899         NumFixedGPRs += 1;
    900         RC = &SystemZ::GR64BitRegClass;
    901         break;
    902       case MVT::f32:
    903         NumFixedFPRs += 1;
    904         RC = &SystemZ::FP32BitRegClass;
    905         break;
    906       case MVT::f64:
    907         NumFixedFPRs += 1;
    908         RC = &SystemZ::FP64BitRegClass;
    909         break;
    910       case MVT::v16i8:
    911       case MVT::v8i16:
    912       case MVT::v4i32:
    913       case MVT::v2i64:
    914       case MVT::v4f32:
    915       case MVT::v2f64:
    916         RC = &SystemZ::VR128BitRegClass;
    917         break;
    918       }
    919 
    920       unsigned VReg = MRI.createVirtualRegister(RC);
    921       MRI.addLiveIn(VA.getLocReg(), VReg);
    922       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
    923     } else {
    924       assert(VA.isMemLoc() && "Argument not register or memory");
    925 
    926       // Create the frame index object for this incoming parameter.
    927       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
    928                                       VA.getLocMemOffset(), true);
    929 
    930       // Create the SelectionDAG nodes corresponding to a load
    931       // from this parameter.  Unpromoted ints and floats are
    932       // passed as right-justified 8-byte values.
    933       EVT PtrVT = getPointerTy(DAG.getDataLayout());
    934       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
    935       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
    936         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
    937                           DAG.getIntPtrConstant(4, DL));
    938       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
    939                              MachinePointerInfo::getFixedStack(MF, FI), false,
    940                              false, false, 0);
    941     }
    942 
    943     // Convert the value of the argument register into the value that's
    944     // being passed.
    945     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
    946   }
    947 
    948   if (IsVarArg) {
    949     // Save the number of non-varargs registers for later use by va_start, etc.
    950     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
    951     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
    952 
    953     // Likewise the address (in the form of a frame index) of where the
    954     // first stack vararg would be.  The 1-byte size here is arbitrary.
    955     int64_t StackSize = CCInfo.getNextStackOffset();
    956     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
    957 
    958     // ...and a similar frame index for the caller-allocated save area
    959     // that will be used to store the incoming registers.
    960     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
    961     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
    962     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
    963 
    964     // Store the FPR varargs in the reserved frame slots.  (We store the
    965     // GPRs as part of the prologue.)
    966     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
    967       SDValue MemOps[SystemZ::NumArgFPRs];
    968       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
    969         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
    970         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
    971         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    972         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
    973                                      &SystemZ::FP64BitRegClass);
    974         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
    975         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
    976                                  MachinePointerInfo::getFixedStack(MF, FI),
    977                                  false, false, 0);
    978       }
    979       // Join the stores, which are independent of one another.
    980       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
    981                           makeArrayRef(&MemOps[NumFixedFPRs],
    982                                        SystemZ::NumArgFPRs-NumFixedFPRs));
    983     }
    984   }
    985 
    986   return Chain;
    987 }
    988 
    989 static bool canUseSiblingCall(const CCState &ArgCCInfo,
    990                               SmallVectorImpl<CCValAssign> &ArgLocs) {
    991   // Punt if there are any indirect or stack arguments, or if the call
    992   // needs the call-saved argument register R6.
    993   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    994     CCValAssign &VA = ArgLocs[I];
    995     if (VA.getLocInfo() == CCValAssign::Indirect)
    996       return false;
    997     if (!VA.isRegLoc())
    998       return false;
    999     unsigned Reg = VA.getLocReg();
   1000     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
   1001       return false;
   1002   }
   1003   return true;
   1004 }
   1005 
   1006 SDValue
   1007 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
   1008                                  SmallVectorImpl<SDValue> &InVals) const {
   1009   SelectionDAG &DAG = CLI.DAG;
   1010   SDLoc &DL = CLI.DL;
   1011   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1012   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
   1013   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
   1014   SDValue Chain = CLI.Chain;
   1015   SDValue Callee = CLI.Callee;
   1016   bool &IsTailCall = CLI.IsTailCall;
   1017   CallingConv::ID CallConv = CLI.CallConv;
   1018   bool IsVarArg = CLI.IsVarArg;
   1019   MachineFunction &MF = DAG.getMachineFunction();
   1020   EVT PtrVT = getPointerTy(MF.getDataLayout());
   1021 
   1022   // Detect unsupported vector argument and return types.
   1023   if (Subtarget.hasVector()) {
   1024     VerifyVectorTypes(Outs);
   1025     VerifyVectorTypes(Ins);
   1026   }
   1027 
   1028   // Analyze the operands of the call, assigning locations to each operand.
   1029   SmallVector<CCValAssign, 16> ArgLocs;
   1030   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
   1031   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
   1032 
   1033   // We don't support GuaranteedTailCallOpt, only automatically-detected
   1034   // sibling calls.
   1035   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
   1036     IsTailCall = false;
   1037 
   1038   // Get a count of how many bytes are to be pushed on the stack.
   1039   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
   1040 
   1041   // Mark the start of the call.
   1042   if (!IsTailCall)
   1043     Chain = DAG.getCALLSEQ_START(Chain,
   1044                                  DAG.getConstant(NumBytes, DL, PtrVT, true),
   1045                                  DL);
   1046 
   1047   // Copy argument values to their designated locations.
   1048   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
   1049   SmallVector<SDValue, 8> MemOpChains;
   1050   SDValue StackPtr;
   1051   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
   1052     CCValAssign &VA = ArgLocs[I];
   1053     SDValue ArgValue = OutVals[I];
   1054 
   1055     if (VA.getLocInfo() == CCValAssign::Indirect) {
   1056       // Store the argument in a stack slot and pass its address.
   1057       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
   1058       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   1059       MemOpChains.push_back(DAG.getStore(
   1060           Chain, DL, ArgValue, SpillSlot,
   1061           MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
   1062       ArgValue = SpillSlot;
   1063     } else
   1064       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
   1065 
   1066     if (VA.isRegLoc())
   1067       // Queue up the argument copies and emit them at the end.
   1068       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
   1069     else {
   1070       assert(VA.isMemLoc() && "Argument not register or memory");
   1071 
   1072       // Work out the address of the stack slot.  Unpromoted ints and
   1073       // floats are passed as right-justified 8-byte values.
   1074       if (!StackPtr.getNode())
   1075         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
   1076       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
   1077       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
   1078         Offset += 4;
   1079       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
   1080                                     DAG.getIntPtrConstant(Offset, DL));
   1081 
   1082       // Emit the store.
   1083       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
   1084                                          MachinePointerInfo(),
   1085                                          false, false, 0));
   1086     }
   1087   }
   1088 
   1089   // Join the stores, which are independent of one another.
   1090   if (!MemOpChains.empty())
   1091     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   1092 
   1093   // Accept direct calls by converting symbolic call addresses to the
   1094   // associated Target* opcodes.  Force %r1 to be used for indirect
   1095   // tail calls.
   1096   SDValue Glue;
   1097   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1098     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
   1099     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
   1100   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1101     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
   1102     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
   1103   } else if (IsTailCall) {
   1104     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
   1105     Glue = Chain.getValue(1);
   1106     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
   1107   }
   1108 
   1109   // Build a sequence of copy-to-reg nodes, chained and glued together.
   1110   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
   1111     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
   1112                              RegsToPass[I].second, Glue);
   1113     Glue = Chain.getValue(1);
   1114   }
   1115 
   1116   // The first call operand is the chain and the second is the target address.
   1117   SmallVector<SDValue, 8> Ops;
   1118   Ops.push_back(Chain);
   1119   Ops.push_back(Callee);
   1120 
   1121   // Add argument registers to the end of the list so that they are
   1122   // known live into the call.
   1123   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
   1124     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
   1125                                   RegsToPass[I].second.getValueType()));
   1126 
   1127   // Add a register mask operand representing the call-preserved registers.
   1128   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1129   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
   1130   assert(Mask && "Missing call preserved mask for calling convention");
   1131   Ops.push_back(DAG.getRegisterMask(Mask));
   1132 
   1133   // Glue the call to the argument copies, if any.
   1134   if (Glue.getNode())
   1135     Ops.push_back(Glue);
   1136 
   1137   // Emit the call.
   1138   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1139   if (IsTailCall)
   1140     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
   1141   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
   1142   Glue = Chain.getValue(1);
   1143 
   1144   // Mark the end of the call, which is glued to the call itself.
   1145   Chain = DAG.getCALLSEQ_END(Chain,
   1146                              DAG.getConstant(NumBytes, DL, PtrVT, true),
   1147                              DAG.getConstant(0, DL, PtrVT, true),
   1148                              Glue, DL);
   1149   Glue = Chain.getValue(1);
   1150 
   1151   // Assign locations to each value returned by this call.
   1152   SmallVector<CCValAssign, 16> RetLocs;
   1153   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
   1154   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
   1155 
   1156   // Copy all of the result registers out of their specified physreg.
   1157   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1158     CCValAssign &VA = RetLocs[I];
   1159 
   1160     // Copy the value out, gluing the copy to the end of the call sequence.
   1161     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
   1162                                           VA.getLocVT(), Glue);
   1163     Chain = RetValue.getValue(1);
   1164     Glue = RetValue.getValue(2);
   1165 
   1166     // Convert the value of the return register into the value that's
   1167     // being returned.
   1168     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
   1169   }
   1170 
   1171   return Chain;
   1172 }
   1173 
   1174 bool SystemZTargetLowering::
   1175 CanLowerReturn(CallingConv::ID CallConv,
   1176                MachineFunction &MF, bool isVarArg,
   1177                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1178                LLVMContext &Context) const {
   1179   // Detect unsupported vector return types.
   1180   if (Subtarget.hasVector())
   1181     VerifyVectorTypes(Outs);
   1182 
   1183   SmallVector<CCValAssign, 16> RetLocs;
   1184   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
   1185   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
   1186 }
   1187 
   1188 SDValue
   1189 SystemZTargetLowering::LowerReturn(SDValue Chain,
   1190                                    CallingConv::ID CallConv, bool IsVarArg,
   1191                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
   1192                                    const SmallVectorImpl<SDValue> &OutVals,
   1193                                    SDLoc DL, SelectionDAG &DAG) const {
   1194   MachineFunction &MF = DAG.getMachineFunction();
   1195 
   1196   // Detect unsupported vector return types.
   1197   if (Subtarget.hasVector())
   1198     VerifyVectorTypes(Outs);
   1199 
   1200   // Assign locations to each returned value.
   1201   SmallVector<CCValAssign, 16> RetLocs;
   1202   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
   1203   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
   1204 
   1205   // Quick exit for void returns
   1206   if (RetLocs.empty())
   1207     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
   1208 
   1209   // Copy the result values into the output registers.
   1210   SDValue Glue;
   1211   SmallVector<SDValue, 4> RetOps;
   1212   RetOps.push_back(Chain);
   1213   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1214     CCValAssign &VA = RetLocs[I];
   1215     SDValue RetValue = OutVals[I];
   1216 
   1217     // Make the return register live on exit.
   1218     assert(VA.isRegLoc() && "Can only return in registers!");
   1219 
   1220     // Promote the value as required.
   1221     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
   1222 
   1223     // Chain and glue the copies together.
   1224     unsigned Reg = VA.getLocReg();
   1225     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
   1226     Glue = Chain.getValue(1);
   1227     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
   1228   }
   1229 
   1230   // Update chain and glue.
   1231   RetOps[0] = Chain;
   1232   if (Glue.getNode())
   1233     RetOps.push_back(Glue);
   1234 
   1235   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
   1236 }
   1237 
   1238 SDValue SystemZTargetLowering::
   1239 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
   1240   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
   1241 }
   1242 
   1243 // Return true if Op is an intrinsic node with chain that returns the CC value
   1244 // as its only (other) argument.  Provide the associated SystemZISD opcode and
   1245 // the mask of valid CC values if so.
   1246 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
   1247                                       unsigned &CCValid) {
   1248   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1249   switch (Id) {
   1250   case Intrinsic::s390_tbegin:
   1251     Opcode = SystemZISD::TBEGIN;
   1252     CCValid = SystemZ::CCMASK_TBEGIN;
   1253     return true;
   1254 
   1255   case Intrinsic::s390_tbegin_nofloat:
   1256     Opcode = SystemZISD::TBEGIN_NOFLOAT;
   1257     CCValid = SystemZ::CCMASK_TBEGIN;
   1258     return true;
   1259 
   1260   case Intrinsic::s390_tend:
   1261     Opcode = SystemZISD::TEND;
   1262     CCValid = SystemZ::CCMASK_TEND;
   1263     return true;
   1264 
   1265   default:
   1266     return false;
   1267   }
   1268 }
   1269 
   1270 // Return true if Op is an intrinsic node without chain that returns the
   1271 // CC value as its final argument.  Provide the associated SystemZISD
   1272 // opcode and the mask of valid CC values if so.
   1273 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
   1274   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1275   switch (Id) {
   1276   case Intrinsic::s390_vpkshs:
   1277   case Intrinsic::s390_vpksfs:
   1278   case Intrinsic::s390_vpksgs:
   1279     Opcode = SystemZISD::PACKS_CC;
   1280     CCValid = SystemZ::CCMASK_VCMP;
   1281     return true;
   1282 
   1283   case Intrinsic::s390_vpklshs:
   1284   case Intrinsic::s390_vpklsfs:
   1285   case Intrinsic::s390_vpklsgs:
   1286     Opcode = SystemZISD::PACKLS_CC;
   1287     CCValid = SystemZ::CCMASK_VCMP;
   1288     return true;
   1289 
   1290   case Intrinsic::s390_vceqbs:
   1291   case Intrinsic::s390_vceqhs:
   1292   case Intrinsic::s390_vceqfs:
   1293   case Intrinsic::s390_vceqgs:
   1294     Opcode = SystemZISD::VICMPES;
   1295     CCValid = SystemZ::CCMASK_VCMP;
   1296     return true;
   1297 
   1298   case Intrinsic::s390_vchbs:
   1299   case Intrinsic::s390_vchhs:
   1300   case Intrinsic::s390_vchfs:
   1301   case Intrinsic::s390_vchgs:
   1302     Opcode = SystemZISD::VICMPHS;
   1303     CCValid = SystemZ::CCMASK_VCMP;
   1304     return true;
   1305 
   1306   case Intrinsic::s390_vchlbs:
   1307   case Intrinsic::s390_vchlhs:
   1308   case Intrinsic::s390_vchlfs:
   1309   case Intrinsic::s390_vchlgs:
   1310     Opcode = SystemZISD::VICMPHLS;
   1311     CCValid = SystemZ::CCMASK_VCMP;
   1312     return true;
   1313 
   1314   case Intrinsic::s390_vtm:
   1315     Opcode = SystemZISD::VTM;
   1316     CCValid = SystemZ::CCMASK_VCMP;
   1317     return true;
   1318 
   1319   case Intrinsic::s390_vfaebs:
   1320   case Intrinsic::s390_vfaehs:
   1321   case Intrinsic::s390_vfaefs:
   1322     Opcode = SystemZISD::VFAE_CC;
   1323     CCValid = SystemZ::CCMASK_ANY;
   1324     return true;
   1325 
   1326   case Intrinsic::s390_vfaezbs:
   1327   case Intrinsic::s390_vfaezhs:
   1328   case Intrinsic::s390_vfaezfs:
   1329     Opcode = SystemZISD::VFAEZ_CC;
   1330     CCValid = SystemZ::CCMASK_ANY;
   1331     return true;
   1332 
   1333   case Intrinsic::s390_vfeebs:
   1334   case Intrinsic::s390_vfeehs:
   1335   case Intrinsic::s390_vfeefs:
   1336     Opcode = SystemZISD::VFEE_CC;
   1337     CCValid = SystemZ::CCMASK_ANY;
   1338     return true;
   1339 
   1340   case Intrinsic::s390_vfeezbs:
   1341   case Intrinsic::s390_vfeezhs:
   1342   case Intrinsic::s390_vfeezfs:
   1343     Opcode = SystemZISD::VFEEZ_CC;
   1344     CCValid = SystemZ::CCMASK_ANY;
   1345     return true;
   1346 
   1347   case Intrinsic::s390_vfenebs:
   1348   case Intrinsic::s390_vfenehs:
   1349   case Intrinsic::s390_vfenefs:
   1350     Opcode = SystemZISD::VFENE_CC;
   1351     CCValid = SystemZ::CCMASK_ANY;
   1352     return true;
   1353 
   1354   case Intrinsic::s390_vfenezbs:
   1355   case Intrinsic::s390_vfenezhs:
   1356   case Intrinsic::s390_vfenezfs:
   1357     Opcode = SystemZISD::VFENEZ_CC;
   1358     CCValid = SystemZ::CCMASK_ANY;
   1359     return true;
   1360 
   1361   case Intrinsic::s390_vistrbs:
   1362   case Intrinsic::s390_vistrhs:
   1363   case Intrinsic::s390_vistrfs:
   1364     Opcode = SystemZISD::VISTR_CC;
   1365     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
   1366     return true;
   1367 
   1368   case Intrinsic::s390_vstrcbs:
   1369   case Intrinsic::s390_vstrchs:
   1370   case Intrinsic::s390_vstrcfs:
   1371     Opcode = SystemZISD::VSTRC_CC;
   1372     CCValid = SystemZ::CCMASK_ANY;
   1373     return true;
   1374 
   1375   case Intrinsic::s390_vstrczbs:
   1376   case Intrinsic::s390_vstrczhs:
   1377   case Intrinsic::s390_vstrczfs:
   1378     Opcode = SystemZISD::VSTRCZ_CC;
   1379     CCValid = SystemZ::CCMASK_ANY;
   1380     return true;
   1381 
   1382   case Intrinsic::s390_vfcedbs:
   1383     Opcode = SystemZISD::VFCMPES;
   1384     CCValid = SystemZ::CCMASK_VCMP;
   1385     return true;
   1386 
   1387   case Intrinsic::s390_vfchdbs:
   1388     Opcode = SystemZISD::VFCMPHS;
   1389     CCValid = SystemZ::CCMASK_VCMP;
   1390     return true;
   1391 
   1392   case Intrinsic::s390_vfchedbs:
   1393     Opcode = SystemZISD::VFCMPHES;
   1394     CCValid = SystemZ::CCMASK_VCMP;
   1395     return true;
   1396 
   1397   case Intrinsic::s390_vftcidb:
   1398     Opcode = SystemZISD::VFTCI;
   1399     CCValid = SystemZ::CCMASK_VCMP;
   1400     return true;
   1401 
   1402   default:
   1403     return false;
   1404   }
   1405 }
   1406 
   1407 // Emit an intrinsic with chain with a glued value instead of its CC result.
   1408 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
   1409                                              unsigned Opcode) {
   1410   // Copy all operands except the intrinsic ID.
   1411   unsigned NumOps = Op.getNumOperands();
   1412   SmallVector<SDValue, 6> Ops;
   1413   Ops.reserve(NumOps - 1);
   1414   Ops.push_back(Op.getOperand(0));
   1415   for (unsigned I = 2; I < NumOps; ++I)
   1416     Ops.push_back(Op.getOperand(I));
   1417 
   1418   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   1419   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1420   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
   1421   SDValue OldChain = SDValue(Op.getNode(), 1);
   1422   SDValue NewChain = SDValue(Intr.getNode(), 0);
   1423   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
   1424   return Intr;
   1425 }
   1426 
   1427 // Emit an intrinsic with a glued value instead of its CC result.
   1428 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
   1429                                      unsigned Opcode) {
   1430   // Copy all operands except the intrinsic ID.
   1431   unsigned NumOps = Op.getNumOperands();
   1432   SmallVector<SDValue, 6> Ops;
   1433   Ops.reserve(NumOps - 1);
   1434   for (unsigned I = 1; I < NumOps; ++I)
   1435     Ops.push_back(Op.getOperand(I));
   1436 
   1437   if (Op->getNumValues() == 1)
   1438     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
   1439   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
   1440   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
   1441   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
   1442 }
   1443 
   1444 // CC is a comparison that will be implemented using an integer or
   1445 // floating-point comparison.  Return the condition code mask for
   1446 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
   1447 // unsigned comparisons and clear for signed ones.  In the floating-point
   1448 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
   1449 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
   1450 #define CONV(X) \
   1451   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
   1452   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
   1453   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
   1454 
   1455   switch (CC) {
   1456   default:
   1457     llvm_unreachable("Invalid integer condition!");
   1458 
   1459   CONV(EQ);
   1460   CONV(NE);
   1461   CONV(GT);
   1462   CONV(GE);
   1463   CONV(LT);
   1464   CONV(LE);
   1465 
   1466   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
   1467   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
   1468   }
   1469 #undef CONV
   1470 }
   1471 
   1472 // Return a sequence for getting a 1 from an IPM result when CC has a
   1473 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
   1474 // The handling of CC values outside CCValid doesn't matter.
   1475 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
   1476   // Deal with cases where the result can be taken directly from a bit
   1477   // of the IPM result.
   1478   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
   1479     return IPMConversion(0, 0, SystemZ::IPM_CC);
   1480   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
   1481     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
   1482 
   1483   // Deal with cases where we can add a value to force the sign bit
   1484   // to contain the right value.  Putting the bit in 31 means we can
   1485   // use SRL rather than RISBG(L), and also makes it easier to get a
   1486   // 0/-1 value, so it has priority over the other tests below.
   1487   //
   1488   // These sequences rely on the fact that the upper two bits of the
   1489   // IPM result are zero.
   1490   uint64_t TopBit = uint64_t(1) << 31;
   1491   if (CCMask == (CCValid & SystemZ::CCMASK_0))
   1492     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
   1493   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
   1494     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
   1495   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1496                             | SystemZ::CCMASK_1
   1497                             | SystemZ::CCMASK_2)))
   1498     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
   1499   if (CCMask == (CCValid & SystemZ::CCMASK_3))
   1500     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
   1501   if (CCMask == (CCValid & (SystemZ::CCMASK_1
   1502                             | SystemZ::CCMASK_2
   1503                             | SystemZ::CCMASK_3)))
   1504     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
   1505 
   1506   // Next try inverting the value and testing a bit.  0/1 could be
   1507   // handled this way too, but we dealt with that case above.
   1508   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
   1509     return IPMConversion(-1, 0, SystemZ::IPM_CC);
   1510 
   1511   // Handle cases where adding a value forces a non-sign bit to contain
   1512   // the right value.
   1513   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
   1514     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
   1515   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
   1516     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
   1517 
   1518   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
   1519   // can be done by inverting the low CC bit and applying one of the
   1520   // sign-based extractions above.
   1521   if (CCMask == (CCValid & SystemZ::CCMASK_1))
   1522     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
   1523   if (CCMask == (CCValid & SystemZ::CCMASK_2))
   1524     return IPMConversion(1 << SystemZ::IPM_CC,
   1525                          TopBit - (3 << SystemZ::IPM_CC), 31);
   1526   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1527                             | SystemZ::CCMASK_1
   1528                             | SystemZ::CCMASK_3)))
   1529     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
   1530   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1531                             | SystemZ::CCMASK_2
   1532                             | SystemZ::CCMASK_3)))
   1533     return IPMConversion(1 << SystemZ::IPM_CC,
   1534                          TopBit - (1 << SystemZ::IPM_CC), 31);
   1535 
   1536   llvm_unreachable("Unexpected CC combination");
   1537 }
   1538 
   1539 // If C can be converted to a comparison against zero, adjust the operands
   1540 // as necessary.
   1541 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   1542   if (C.ICmpType == SystemZICMP::UnsignedOnly)
   1543     return;
   1544 
   1545   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
   1546   if (!ConstOp1)
   1547     return;
   1548 
   1549   int64_t Value = ConstOp1->getSExtValue();
   1550   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
   1551       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
   1552       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
   1553       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
   1554     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   1555     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
   1556   }
   1557 }
   1558 
   1559 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
   1560 // adjust the operands as necessary.
   1561 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   1562   // For us to make any changes, it must a comparison between a single-use
   1563   // load and a constant.
   1564   if (!C.Op0.hasOneUse() ||
   1565       C.Op0.getOpcode() != ISD::LOAD ||
   1566       C.Op1.getOpcode() != ISD::Constant)
   1567     return;
   1568 
   1569   // We must have an 8- or 16-bit load.
   1570   auto *Load = cast<LoadSDNode>(C.Op0);
   1571   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
   1572   if (NumBits != 8 && NumBits != 16)
   1573     return;
   1574 
   1575   // The load must be an extending one and the constant must be within the
   1576   // range of the unextended value.
   1577   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
   1578   uint64_t Value = ConstOp1->getZExtValue();
   1579   uint64_t Mask = (1 << NumBits) - 1;
   1580   if (Load->getExtensionType() == ISD::SEXTLOAD) {
   1581     // Make sure that ConstOp1 is in range of C.Op0.
   1582     int64_t SignedValue = ConstOp1->getSExtValue();
   1583     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
   1584       return;
   1585     if (C.ICmpType != SystemZICMP::SignedOnly) {
   1586       // Unsigned comparison between two sign-extended values is equivalent
   1587       // to unsigned comparison between two zero-extended values.
   1588       Value &= Mask;
   1589     } else if (NumBits == 8) {
   1590       // Try to treat the comparison as unsigned, so that we can use CLI.
   1591       // Adjust CCMask and Value as necessary.
   1592       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
   1593         // Test whether the high bit of the byte is set.
   1594         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
   1595       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
   1596         // Test whether the high bit of the byte is clear.
   1597         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
   1598       else
   1599         // No instruction exists for this combination.
   1600         return;
   1601       C.ICmpType = SystemZICMP::UnsignedOnly;
   1602     }
   1603   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
   1604     if (Value > Mask)
   1605       return;
   1606     // If the constant is in range, we can use any comparison.
   1607     C.ICmpType = SystemZICMP::Any;
   1608   } else
   1609     return;
   1610 
   1611   // Make sure that the first operand is an i32 of the right extension type.
   1612   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
   1613                               ISD::SEXTLOAD :
   1614                               ISD::ZEXTLOAD);
   1615   if (C.Op0.getValueType() != MVT::i32 ||
   1616       Load->getExtensionType() != ExtType)
   1617     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
   1618                            Load->getChain(), Load->getBasePtr(),
   1619                            Load->getPointerInfo(), Load->getMemoryVT(),
   1620                            Load->isVolatile(), Load->isNonTemporal(),
   1621                            Load->isInvariant(), Load->getAlignment());
   1622 
   1623   // Make sure that the second operand is an i32 with the right value.
   1624   if (C.Op1.getValueType() != MVT::i32 ||
   1625       Value != ConstOp1->getZExtValue())
   1626     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
   1627 }
   1628 
   1629 // Return true if Op is either an unextended load, or a load suitable
   1630 // for integer register-memory comparisons of type ICmpType.
   1631 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
   1632   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
   1633   if (Load) {
   1634     // There are no instructions to compare a register with a memory byte.
   1635     if (Load->getMemoryVT() == MVT::i8)
   1636       return false;
   1637     // Otherwise decide on extension type.
   1638     switch (Load->getExtensionType()) {
   1639     case ISD::NON_EXTLOAD:
   1640       return true;
   1641     case ISD::SEXTLOAD:
   1642       return ICmpType != SystemZICMP::UnsignedOnly;
   1643     case ISD::ZEXTLOAD:
   1644       return ICmpType != SystemZICMP::SignedOnly;
   1645     default:
   1646       break;
   1647     }
   1648   }
   1649   return false;
   1650 }
   1651 
   1652 // Return true if it is better to swap the operands of C.
   1653 static bool shouldSwapCmpOperands(const Comparison &C) {
   1654   // Leave f128 comparisons alone, since they have no memory forms.
   1655   if (C.Op0.getValueType() == MVT::f128)
   1656     return false;
   1657 
   1658   // Always keep a floating-point constant second, since comparisons with
   1659   // zero can use LOAD TEST and comparisons with other constants make a
   1660   // natural memory operand.
   1661   if (isa<ConstantFPSDNode>(C.Op1))
   1662     return false;
   1663 
   1664   // Never swap comparisons with zero since there are many ways to optimize
   1665   // those later.
   1666   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1667   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
   1668     return false;
   1669 
   1670   // Also keep natural memory operands second if the loaded value is
   1671   // only used here.  Several comparisons have memory forms.
   1672   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
   1673     return false;
   1674 
   1675   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
   1676   // In that case we generally prefer the memory to be second.
   1677   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
   1678     // The only exceptions are when the second operand is a constant and
   1679     // we can use things like CHHSI.
   1680     if (!ConstOp1)
   1681       return true;
   1682     // The unsigned memory-immediate instructions can handle 16-bit
   1683     // unsigned integers.
   1684     if (C.ICmpType != SystemZICMP::SignedOnly &&
   1685         isUInt<16>(ConstOp1->getZExtValue()))
   1686       return false;
   1687     // The signed memory-immediate instructions can handle 16-bit
   1688     // signed integers.
   1689     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
   1690         isInt<16>(ConstOp1->getSExtValue()))
   1691       return false;
   1692     return true;
   1693   }
   1694 
   1695   // Try to promote the use of CGFR and CLGFR.
   1696   unsigned Opcode0 = C.Op0.getOpcode();
   1697   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
   1698     return true;
   1699   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
   1700     return true;
   1701   if (C.ICmpType != SystemZICMP::SignedOnly &&
   1702       Opcode0 == ISD::AND &&
   1703       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
   1704       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
   1705     return true;
   1706 
   1707   return false;
   1708 }
   1709 
   1710 // Return a version of comparison CC mask CCMask in which the LT and GT
   1711 // actions are swapped.
   1712 static unsigned reverseCCMask(unsigned CCMask) {
   1713   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
   1714           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
   1715           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
   1716           (CCMask & SystemZ::CCMASK_CMP_UO));
   1717 }
   1718 
   1719 // Check whether C tests for equality between X and Y and whether X - Y
   1720 // or Y - X is also computed.  In that case it's better to compare the
   1721 // result of the subtraction against zero.
   1722 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   1723   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1724       C.CCMask == SystemZ::CCMASK_CMP_NE) {
   1725     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1726       SDNode *N = *I;
   1727       if (N->getOpcode() == ISD::SUB &&
   1728           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
   1729            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
   1730         C.Op0 = SDValue(N, 0);
   1731         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
   1732         return;
   1733       }
   1734     }
   1735   }
   1736 }
   1737 
   1738 // Check whether C compares a floating-point value with zero and if that
   1739 // floating-point value is also negated.  In this case we can use the
   1740 // negation to set CC, so avoiding separate LOAD AND TEST and
   1741 // LOAD (NEGATIVE/COMPLEMENT) instructions.
   1742 static void adjustForFNeg(Comparison &C) {
   1743   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
   1744   if (C1 && C1->isZero()) {
   1745     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1746       SDNode *N = *I;
   1747       if (N->getOpcode() == ISD::FNEG) {
   1748         C.Op0 = SDValue(N, 0);
   1749         C.CCMask = reverseCCMask(C.CCMask);
   1750         return;
   1751       }
   1752     }
   1753   }
   1754 }
   1755 
   1756 // Check whether C compares (shl X, 32) with 0 and whether X is
   1757 // also sign-extended.  In that case it is better to test the result
   1758 // of the sign extension using LTGFR.
   1759 //
   1760 // This case is important because InstCombine transforms a comparison
   1761 // with (sext (trunc X)) into a comparison with (shl X, 32).
   1762 static void adjustForLTGFR(Comparison &C) {
   1763   // Check for a comparison between (shl X, 32) and 0.
   1764   if (C.Op0.getOpcode() == ISD::SHL &&
   1765       C.Op0.getValueType() == MVT::i64 &&
   1766       C.Op1.getOpcode() == ISD::Constant &&
   1767       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1768     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
   1769     if (C1 && C1->getZExtValue() == 32) {
   1770       SDValue ShlOp0 = C.Op0.getOperand(0);
   1771       // See whether X has any SIGN_EXTEND_INREG uses.
   1772       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
   1773         SDNode *N = *I;
   1774         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1775             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
   1776           C.Op0 = SDValue(N, 0);
   1777           return;
   1778         }
   1779       }
   1780     }
   1781   }
   1782 }
   1783 
   1784 // If C compares the truncation of an extending load, try to compare
   1785 // the untruncated value instead.  This exposes more opportunities to
   1786 // reuse CC.
   1787 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   1788   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
   1789       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
   1790       C.Op1.getOpcode() == ISD::Constant &&
   1791       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1792     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
   1793     if (L->getMemoryVT().getStoreSizeInBits()
   1794         <= C.Op0.getValueType().getSizeInBits()) {
   1795       unsigned Type = L->getExtensionType();
   1796       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
   1797           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
   1798         C.Op0 = C.Op0.getOperand(0);
   1799         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
   1800       }
   1801     }
   1802   }
   1803 }
   1804 
   1805 // Return true if shift operation N has an in-range constant shift value.
   1806 // Store it in ShiftVal if so.
   1807 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
   1808   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1809   if (!Shift)
   1810     return false;
   1811 
   1812   uint64_t Amount = Shift->getZExtValue();
   1813   if (Amount >= N.getValueType().getSizeInBits())
   1814     return false;
   1815 
   1816   ShiftVal = Amount;
   1817   return true;
   1818 }
   1819 
   1820 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
   1821 // instruction and whether the CC value is descriptive enough to handle
   1822 // a comparison of type Opcode between the AND result and CmpVal.
   1823 // CCMask says which comparison result is being tested and BitSize is
   1824 // the number of bits in the operands.  If TEST UNDER MASK can be used,
   1825 // return the corresponding CC mask, otherwise return 0.
   1826 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
   1827                                      uint64_t Mask, uint64_t CmpVal,
   1828                                      unsigned ICmpType) {
   1829   assert(Mask != 0 && "ANDs with zero should have been removed by now");
   1830 
   1831   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
   1832   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
   1833       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
   1834     return 0;
   1835 
   1836   // Work out the masks for the lowest and highest bits.
   1837   unsigned HighShift = 63 - countLeadingZeros(Mask);
   1838   uint64_t High = uint64_t(1) << HighShift;
   1839   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
   1840 
   1841   // Signed ordered comparisons are effectively unsigned if the sign
   1842   // bit is dropped.
   1843   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
   1844 
   1845   // Check for equality comparisons with 0, or the equivalent.
   1846   if (CmpVal == 0) {
   1847     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   1848       return SystemZ::CCMASK_TM_ALL_0;
   1849     if (CCMask == SystemZ::CCMASK_CMP_NE)
   1850       return SystemZ::CCMASK_TM_SOME_1;
   1851   }
   1852   if (EffectivelyUnsigned && CmpVal <= Low) {
   1853     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1854       return SystemZ::CCMASK_TM_ALL_0;
   1855     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1856       return SystemZ::CCMASK_TM_SOME_1;
   1857   }
   1858   if (EffectivelyUnsigned && CmpVal < Low) {
   1859     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1860       return SystemZ::CCMASK_TM_ALL_0;
   1861     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1862       return SystemZ::CCMASK_TM_SOME_1;
   1863   }
   1864 
   1865   // Check for equality comparisons with the mask, or the equivalent.
   1866   if (CmpVal == Mask) {
   1867     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   1868       return SystemZ::CCMASK_TM_ALL_1;
   1869     if (CCMask == SystemZ::CCMASK_CMP_NE)
   1870       return SystemZ::CCMASK_TM_SOME_0;
   1871   }
   1872   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
   1873     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1874       return SystemZ::CCMASK_TM_ALL_1;
   1875     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1876       return SystemZ::CCMASK_TM_SOME_0;
   1877   }
   1878   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
   1879     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1880       return SystemZ::CCMASK_TM_ALL_1;
   1881     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1882       return SystemZ::CCMASK_TM_SOME_0;
   1883   }
   1884 
   1885   // Check for ordered comparisons with the top bit.
   1886   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
   1887     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1888       return SystemZ::CCMASK_TM_MSB_0;
   1889     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1890       return SystemZ::CCMASK_TM_MSB_1;
   1891   }
   1892   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
   1893     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1894       return SystemZ::CCMASK_TM_MSB_0;
   1895     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1896       return SystemZ::CCMASK_TM_MSB_1;
   1897   }
   1898 
   1899   // If there are just two bits, we can do equality checks for Low and High
   1900   // as well.
   1901   if (Mask == Low + High) {
   1902     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
   1903       return SystemZ::CCMASK_TM_MIXED_MSB_0;
   1904     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
   1905       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
   1906     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
   1907       return SystemZ::CCMASK_TM_MIXED_MSB_1;
   1908     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
   1909       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
   1910   }
   1911 
   1912   // Looks like we've exhausted our options.
   1913   return 0;
   1914 }
   1915 
   1916 // See whether C can be implemented as a TEST UNDER MASK instruction.
   1917 // Update the arguments with the TM version if so.
   1918 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   1919   // Check that we have a comparison with a constant.
   1920   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1921   if (!ConstOp1)
   1922     return;
   1923   uint64_t CmpVal = ConstOp1->getZExtValue();
   1924 
   1925   // Check whether the nonconstant input is an AND with a constant mask.
   1926   Comparison NewC(C);
   1927   uint64_t MaskVal;
   1928   ConstantSDNode *Mask = nullptr;
   1929   if (C.Op0.getOpcode() == ISD::AND) {
   1930     NewC.Op0 = C.Op0.getOperand(0);
   1931     NewC.Op1 = C.Op0.getOperand(1);
   1932     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
   1933     if (!Mask)
   1934       return;
   1935     MaskVal = Mask->getZExtValue();
   1936   } else {
   1937     // There is no instruction to compare with a 64-bit immediate
   1938     // so use TMHH instead if possible.  We need an unsigned ordered
   1939     // comparison with an i64 immediate.
   1940     if (NewC.Op0.getValueType() != MVT::i64 ||
   1941         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1942         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
   1943         NewC.ICmpType == SystemZICMP::SignedOnly)
   1944       return;
   1945     // Convert LE and GT comparisons into LT and GE.
   1946     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
   1947         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
   1948       if (CmpVal == uint64_t(-1))
   1949         return;
   1950       CmpVal += 1;
   1951       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   1952     }
   1953     // If the low N bits of Op1 are zero than the low N bits of Op0 can
   1954     // be masked off without changing the result.
   1955     MaskVal = -(CmpVal & -CmpVal);
   1956     NewC.ICmpType = SystemZICMP::UnsignedOnly;
   1957   }
   1958   if (!MaskVal)
   1959     return;
   1960 
   1961   // Check whether the combination of mask, comparison value and comparison
   1962   // type are suitable.
   1963   unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
   1964   unsigned NewCCMask, ShiftVal;
   1965   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   1966       NewC.Op0.getOpcode() == ISD::SHL &&
   1967       isSimpleShift(NewC.Op0, ShiftVal) &&
   1968       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   1969                                         MaskVal >> ShiftVal,
   1970                                         CmpVal >> ShiftVal,
   1971                                         SystemZICMP::Any))) {
   1972     NewC.Op0 = NewC.Op0.getOperand(0);
   1973     MaskVal >>= ShiftVal;
   1974   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   1975              NewC.Op0.getOpcode() == ISD::SRL &&
   1976              isSimpleShift(NewC.Op0, ShiftVal) &&
   1977              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   1978                                                MaskVal << ShiftVal,
   1979                                                CmpVal << ShiftVal,
   1980                                                SystemZICMP::UnsignedOnly))) {
   1981     NewC.Op0 = NewC.Op0.getOperand(0);
   1982     MaskVal <<= ShiftVal;
   1983   } else {
   1984     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
   1985                                      NewC.ICmpType);
   1986     if (!NewCCMask)
   1987       return;
   1988   }
   1989 
   1990   // Go ahead and make the change.
   1991   C.Opcode = SystemZISD::TM;
   1992   C.Op0 = NewC.Op0;
   1993   if (Mask && Mask->getZExtValue() == MaskVal)
   1994     C.Op1 = SDValue(Mask, 0);
   1995   else
   1996     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
   1997   C.CCValid = SystemZ::CCMASK_TM;
   1998   C.CCMask = NewCCMask;
   1999 }
   2000 
   2001 // Return a Comparison that tests the condition-code result of intrinsic
   2002 // node Call against constant integer CC using comparison code Cond.
   2003 // Opcode is the opcode of the SystemZISD operation for the intrinsic
   2004 // and CCValid is the set of possible condition-code results.
   2005 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
   2006                                   SDValue Call, unsigned CCValid, uint64_t CC,
   2007                                   ISD::CondCode Cond) {
   2008   Comparison C(Call, SDValue());
   2009   C.Opcode = Opcode;
   2010   C.CCValid = CCValid;
   2011   if (Cond == ISD::SETEQ)
   2012     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
   2013     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
   2014   else if (Cond == ISD::SETNE)
   2015     // ...and the inverse of that.
   2016     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
   2017   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
   2018     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
   2019     // always true for CC>3.
   2020     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
   2021   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
   2022     // ...and the inverse of that.
   2023     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
   2024   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
   2025     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
   2026     // always true for CC>3.
   2027     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
   2028   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
   2029     // ...and the inverse of that.
   2030     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
   2031   else
   2032     llvm_unreachable("Unexpected integer comparison type");
   2033   C.CCMask &= CCValid;
   2034   return C;
   2035 }
   2036 
   2037 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
   2038 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
   2039                          ISD::CondCode Cond, SDLoc DL) {
   2040   if (CmpOp1.getOpcode() == ISD::Constant) {
   2041     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
   2042     unsigned Opcode, CCValid;
   2043     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   2044         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
   2045         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
   2046       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   2047     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
   2048         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
   2049         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
   2050       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   2051   }
   2052   Comparison C(CmpOp0, CmpOp1);
   2053   C.CCMask = CCMaskForCondCode(Cond);
   2054   if (C.Op0.getValueType().isFloatingPoint()) {
   2055     C.CCValid = SystemZ::CCMASK_FCMP;
   2056     C.Opcode = SystemZISD::FCMP;
   2057     adjustForFNeg(C);
   2058   } else {
   2059     C.CCValid = SystemZ::CCMASK_ICMP;
   2060     C.Opcode = SystemZISD::ICMP;
   2061     // Choose the type of comparison.  Equality and inequality tests can
   2062     // use either signed or unsigned comparisons.  The choice also doesn't
   2063     // matter if both sign bits are known to be clear.  In those cases we
   2064     // want to give the main isel code the freedom to choose whichever
   2065     // form fits best.
   2066     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   2067         C.CCMask == SystemZ::CCMASK_CMP_NE ||
   2068         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
   2069       C.ICmpType = SystemZICMP::Any;
   2070     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
   2071       C.ICmpType = SystemZICMP::UnsignedOnly;
   2072     else
   2073       C.ICmpType = SystemZICMP::SignedOnly;
   2074     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
   2075     adjustZeroCmp(DAG, DL, C);
   2076     adjustSubwordCmp(DAG, DL, C);
   2077     adjustForSubtraction(DAG, DL, C);
   2078     adjustForLTGFR(C);
   2079     adjustICmpTruncate(DAG, DL, C);
   2080   }
   2081 
   2082   if (shouldSwapCmpOperands(C)) {
   2083     std::swap(C.Op0, C.Op1);
   2084     C.CCMask = reverseCCMask(C.CCMask);
   2085   }
   2086 
   2087   adjustForTestUnderMask(DAG, DL, C);
   2088   return C;
   2089 }
   2090 
   2091 // Emit the comparison instruction described by C.
   2092 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   2093   if (!C.Op1.getNode()) {
   2094     SDValue Op;
   2095     switch (C.Op0.getOpcode()) {
   2096     case ISD::INTRINSIC_W_CHAIN:
   2097       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
   2098       break;
   2099     case ISD::INTRINSIC_WO_CHAIN:
   2100       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
   2101       break;
   2102     default:
   2103       llvm_unreachable("Invalid comparison operands");
   2104     }
   2105     return SDValue(Op.getNode(), Op->getNumValues() - 1);
   2106   }
   2107   if (C.Opcode == SystemZISD::ICMP)
   2108     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
   2109                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
   2110   if (C.Opcode == SystemZISD::TM) {
   2111     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
   2112                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
   2113     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
   2114                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
   2115   }
   2116   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
   2117 }
   2118 
   2119 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
   2120 // 64 bits.  Extend is the extension type to use.  Store the high part
   2121 // in Hi and the low part in Lo.
   2122 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
   2123                             unsigned Extend, SDValue Op0, SDValue Op1,
   2124                             SDValue &Hi, SDValue &Lo) {
   2125   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
   2126   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
   2127   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
   2128   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
   2129                    DAG.getConstant(32, DL, MVT::i64));
   2130   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
   2131   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
   2132 }
   2133 
   2134 // Lower a binary operation that produces two VT results, one in each
   2135 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
   2136 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
   2137 // on the extended Op0 and (unextended) Op1.  Store the even register result
   2138 // in Even and the odd register result in Odd.
   2139 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
   2140                              unsigned Extend, unsigned Opcode,
   2141                              SDValue Op0, SDValue Op1,
   2142                              SDValue &Even, SDValue &Odd) {
   2143   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
   2144   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
   2145                                SDValue(In128, 0), Op1);
   2146   bool Is32Bit = is32Bit(VT);
   2147   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
   2148   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
   2149 }
   2150 
   2151 // Return an i32 value that is 1 if the CC value produced by Glue is
   2152 // in the mask CCMask and 0 otherwise.  CC is known to have a value
   2153 // in CCValid, so other values can be ignored.
   2154 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
   2155                          unsigned CCValid, unsigned CCMask) {
   2156   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
   2157   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
   2158 
   2159   if (Conversion.XORValue)
   2160     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
   2161                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
   2162 
   2163   if (Conversion.AddValue)
   2164     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
   2165                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
   2166 
   2167   // The SHR/AND sequence should get optimized to an RISBG.
   2168   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
   2169                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
   2170   if (Conversion.Bit != 31)
   2171     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
   2172                          DAG.getConstant(1, DL, MVT::i32));
   2173   return Result;
   2174 }
   2175 
   2176 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
   2177 // be done directly.  IsFP is true if CC is for a floating-point rather than
   2178 // integer comparison.
   2179 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
   2180   switch (CC) {
   2181   case ISD::SETOEQ:
   2182   case ISD::SETEQ:
   2183     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
   2184 
   2185   case ISD::SETOGE:
   2186   case ISD::SETGE:
   2187     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
   2188 
   2189   case ISD::SETOGT:
   2190   case ISD::SETGT:
   2191     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
   2192 
   2193   case ISD::SETUGT:
   2194     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
   2195 
   2196   default:
   2197     return 0;
   2198   }
   2199 }
   2200 
   2201 // Return the SystemZISD vector comparison operation for CC or its inverse,
   2202 // or 0 if neither can be done directly.  Indicate in Invert whether the
   2203 // result is for the inverse of CC.  IsFP is true if CC is for a
   2204 // floating-point rather than integer comparison.
   2205 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
   2206                                             bool &Invert) {
   2207   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
   2208     Invert = false;
   2209     return Opcode;
   2210   }
   2211 
   2212   CC = ISD::getSetCCInverse(CC, !IsFP);
   2213   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
   2214     Invert = true;
   2215     return Opcode;
   2216   }
   2217 
   2218   return 0;
   2219 }
   2220 
   2221 // Return a v2f64 that contains the extended form of elements Start and Start+1
   2222 // of v4f32 value Op.
   2223 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL,
   2224                                   SDValue Op) {
   2225   int Mask[] = { Start, -1, Start + 1, -1 };
   2226   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
   2227   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
   2228 }
   2229 
   2230 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
   2231 // producing a result of type VT.
   2232 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL,
   2233                             EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
   2234   // There is no hardware support for v4f32, so extend the vector into
   2235   // two v2f64s and compare those.
   2236   if (CmpOp0.getValueType() == MVT::v4f32) {
   2237     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
   2238     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
   2239     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
   2240     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
   2241     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
   2242     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
   2243     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
   2244   }
   2245   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
   2246 }
   2247 
   2248 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
   2249 // an integer mask of type VT.
   2250 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT,
   2251                                 ISD::CondCode CC, SDValue CmpOp0,
   2252                                 SDValue CmpOp1) {
   2253   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
   2254   bool Invert = false;
   2255   SDValue Cmp;
   2256   switch (CC) {
   2257     // Handle tests for order using (or (ogt y x) (oge x y)).
   2258   case ISD::SETUO:
   2259     Invert = true;
   2260   case ISD::SETO: {
   2261     assert(IsFP && "Unexpected integer comparison");
   2262     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
   2263     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
   2264     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
   2265     break;
   2266   }
   2267 
   2268     // Handle <> tests using (or (ogt y x) (ogt x y)).
   2269   case ISD::SETUEQ:
   2270     Invert = true;
   2271   case ISD::SETONE: {
   2272     assert(IsFP && "Unexpected integer comparison");
   2273     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
   2274     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
   2275     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
   2276     break;
   2277   }
   2278 
   2279     // Otherwise a single comparison is enough.  It doesn't really
   2280     // matter whether we try the inversion or the swap first, since
   2281     // there are no cases where both work.
   2282   default:
   2283     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
   2284       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
   2285     else {
   2286       CC = ISD::getSetCCSwappedOperands(CC);
   2287       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
   2288         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
   2289       else
   2290         llvm_unreachable("Unhandled comparison");
   2291     }
   2292     break;
   2293   }
   2294   if (Invert) {
   2295     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   2296                                DAG.getConstant(65535, DL, MVT::i32));
   2297     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   2298     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
   2299   }
   2300   return Cmp;
   2301 }
   2302 
   2303 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
   2304                                           SelectionDAG &DAG) const {
   2305   SDValue CmpOp0   = Op.getOperand(0);
   2306   SDValue CmpOp1   = Op.getOperand(1);
   2307   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   2308   SDLoc DL(Op);
   2309   EVT VT = Op.getValueType();
   2310   if (VT.isVector())
   2311     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
   2312 
   2313   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2314   SDValue Glue = emitCmp(DAG, DL, C);
   2315   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
   2316 }
   2317 
   2318 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   2319   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   2320   SDValue CmpOp0   = Op.getOperand(2);
   2321   SDValue CmpOp1   = Op.getOperand(3);
   2322   SDValue Dest     = Op.getOperand(4);
   2323   SDLoc DL(Op);
   2324 
   2325   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2326   SDValue Glue = emitCmp(DAG, DL, C);
   2327   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
   2328                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
   2329                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
   2330 }
   2331 
   2332 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
   2333 // allowing Pos and Neg to be wider than CmpOp.
   2334 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
   2335   return (Neg.getOpcode() == ISD::SUB &&
   2336           Neg.getOperand(0).getOpcode() == ISD::Constant &&
   2337           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
   2338           Neg.getOperand(1) == Pos &&
   2339           (Pos == CmpOp ||
   2340            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
   2341             Pos.getOperand(0) == CmpOp)));
   2342 }
   2343 
   2344 // Return the absolute or negative absolute of Op; IsNegative decides which.
   2345 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
   2346                            bool IsNegative) {
   2347   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
   2348   if (IsNegative)
   2349     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
   2350                      DAG.getConstant(0, DL, Op.getValueType()), Op);
   2351   return Op;
   2352 }
   2353 
   2354 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
   2355                                               SelectionDAG &DAG) const {
   2356   SDValue CmpOp0   = Op.getOperand(0);
   2357   SDValue CmpOp1   = Op.getOperand(1);
   2358   SDValue TrueOp   = Op.getOperand(2);
   2359   SDValue FalseOp  = Op.getOperand(3);
   2360   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   2361   SDLoc DL(Op);
   2362 
   2363   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
   2364 
   2365   // Check for absolute and negative-absolute selections, including those
   2366   // where the comparison value is sign-extended (for LPGFR and LNGFR).
   2367   // This check supplements the one in DAGCombiner.
   2368   if (C.Opcode == SystemZISD::ICMP &&
   2369       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
   2370       C.CCMask != SystemZ::CCMASK_CMP_NE &&
   2371       C.Op1.getOpcode() == ISD::Constant &&
   2372       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   2373     if (isAbsolute(C.Op0, TrueOp, FalseOp))
   2374       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
   2375     if (isAbsolute(C.Op0, FalseOp, TrueOp))
   2376       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
   2377   }
   2378 
   2379   SDValue Glue = emitCmp(DAG, DL, C);
   2380 
   2381   // Special case for handling -1/0 results.  The shifts we use here
   2382   // should get optimized with the IPM conversion sequence.
   2383   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
   2384   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
   2385   if (TrueC && FalseC) {
   2386     int64_t TrueVal = TrueC->getSExtValue();
   2387     int64_t FalseVal = FalseC->getSExtValue();
   2388     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
   2389       // Invert the condition if we want -1 on false.
   2390       if (TrueVal == 0)
   2391         C.CCMask ^= C.CCValid;
   2392       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
   2393       EVT VT = Op.getValueType();
   2394       // Extend the result to VT.  Upper bits are ignored.
   2395       if (!is32Bit(VT))
   2396         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
   2397       // Sign-extend from the low bit.
   2398       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
   2399       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
   2400       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
   2401     }
   2402   }
   2403 
   2404   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
   2405                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
   2406 
   2407   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   2408   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
   2409 }
   2410 
   2411 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
   2412                                                   SelectionDAG &DAG) const {
   2413   SDLoc DL(Node);
   2414   const GlobalValue *GV = Node->getGlobal();
   2415   int64_t Offset = Node->getOffset();
   2416   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2417   Reloc::Model RM = DAG.getTarget().getRelocationModel();
   2418   CodeModel::Model CM = DAG.getTarget().getCodeModel();
   2419 
   2420   SDValue Result;
   2421   if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
   2422     // Assign anchors at 1<<12 byte boundaries.
   2423     uint64_t Anchor = Offset & ~uint64_t(0xfff);
   2424     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
   2425     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2426 
   2427     // The offset can be folded into the address if it is aligned to a halfword.
   2428     Offset -= Anchor;
   2429     if (Offset != 0 && (Offset & 1) == 0) {
   2430       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
   2431       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
   2432       Offset = 0;
   2433     }
   2434   } else {
   2435     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
   2436     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2437     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2438                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2439                          false, false, false, 0);
   2440   }
   2441 
   2442   // If there was a non-zero offset that we didn't fold, create an explicit
   2443   // addition for it.
   2444   if (Offset != 0)
   2445     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
   2446                          DAG.getConstant(Offset, DL, PtrVT));
   2447 
   2448   return Result;
   2449 }
   2450 
   2451 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
   2452                                                  SelectionDAG &DAG,
   2453                                                  unsigned Opcode,
   2454                                                  SDValue GOTOffset) const {
   2455   SDLoc DL(Node);
   2456   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2457   SDValue Chain = DAG.getEntryNode();
   2458   SDValue Glue;
   2459 
   2460   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
   2461   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2462   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
   2463   Glue = Chain.getValue(1);
   2464   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
   2465   Glue = Chain.getValue(1);
   2466 
   2467   // The first call operand is the chain and the second is the TLS symbol.
   2468   SmallVector<SDValue, 8> Ops;
   2469   Ops.push_back(Chain);
   2470   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
   2471                                            Node->getValueType(0),
   2472                                            0, 0));
   2473 
   2474   // Add argument registers to the end of the list so that they are
   2475   // known live into the call.
   2476   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
   2477   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
   2478 
   2479   // Add a register mask operand representing the call-preserved registers.
   2480   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   2481   const uint32_t *Mask =
   2482       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
   2483   assert(Mask && "Missing call preserved mask for calling convention");
   2484   Ops.push_back(DAG.getRegisterMask(Mask));
   2485 
   2486   // Glue the call to the argument copies.
   2487   Ops.push_back(Glue);
   2488 
   2489   // Emit the call.
   2490   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2491   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
   2492   Glue = Chain.getValue(1);
   2493 
   2494   // Copy the return value from %r2.
   2495   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
   2496 }
   2497 
   2498 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
   2499                                                      SelectionDAG &DAG) const {
   2500   if (DAG.getTarget().Options.EmulatedTLS)
   2501     return LowerToTLSEmulatedModel(Node, DAG);
   2502   SDLoc DL(Node);
   2503   const GlobalValue *GV = Node->getGlobal();
   2504   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2505   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
   2506 
   2507   // The high part of the thread pointer is in access register 0.
   2508   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   2509                              DAG.getConstant(0, DL, MVT::i32));
   2510   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
   2511 
   2512   // The low part of the thread pointer is in access register 1.
   2513   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   2514                              DAG.getConstant(1, DL, MVT::i32));
   2515   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
   2516 
   2517   // Merge them into a single 64-bit address.
   2518   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
   2519                                     DAG.getConstant(32, DL, PtrVT));
   2520   SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
   2521 
   2522   // Get the offset of GA from the thread pointer, based on the TLS model.
   2523   SDValue Offset;
   2524   switch (model) {
   2525     case TLSModel::GeneralDynamic: {
   2526       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
   2527       SystemZConstantPoolValue *CPV =
   2528         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
   2529 
   2530       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2531       Offset = DAG.getLoad(
   2532           PtrVT, DL, DAG.getEntryNode(), Offset,
   2533           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2534           false, false, 0);
   2535 
   2536       // Call __tls_get_offset to retrieve the offset.
   2537       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
   2538       break;
   2539     }
   2540 
   2541     case TLSModel::LocalDynamic: {
   2542       // Load the GOT offset of the module ID.
   2543       SystemZConstantPoolValue *CPV =
   2544         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
   2545 
   2546       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2547       Offset = DAG.getLoad(
   2548           PtrVT, DL, DAG.getEntryNode(), Offset,
   2549           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2550           false, false, 0);
   2551 
   2552       // Call __tls_get_offset to retrieve the module base offset.
   2553       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
   2554 
   2555       // Note: The SystemZLDCleanupPass will remove redundant computations
   2556       // of the module base offset.  Count total number of local-dynamic
   2557       // accesses to trigger execution of that pass.
   2558       SystemZMachineFunctionInfo* MFI =
   2559         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
   2560       MFI->incNumLocalDynamicTLSAccesses();
   2561 
   2562       // Add the per-symbol offset.
   2563       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
   2564 
   2565       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
   2566       DTPOffset = DAG.getLoad(
   2567           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
   2568           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2569           false, false, 0);
   2570 
   2571       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
   2572       break;
   2573     }
   2574 
   2575     case TLSModel::InitialExec: {
   2576       // Load the offset from the GOT.
   2577       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   2578                                           SystemZII::MO_INDNTPOFF);
   2579       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
   2580       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
   2581                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2582                            false, false, false, 0);
   2583       break;
   2584     }
   2585 
   2586     case TLSModel::LocalExec: {
   2587       // Force the offset into the constant pool and load it from there.
   2588       SystemZConstantPoolValue *CPV =
   2589         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
   2590 
   2591       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2592       Offset = DAG.getLoad(
   2593           PtrVT, DL, DAG.getEntryNode(), Offset,
   2594           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2595           false, false, 0);
   2596       break;
   2597     }
   2598   }
   2599 
   2600   // Add the base and offset together.
   2601   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
   2602 }
   2603 
   2604 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
   2605                                                  SelectionDAG &DAG) const {
   2606   SDLoc DL(Node);
   2607   const BlockAddress *BA = Node->getBlockAddress();
   2608   int64_t Offset = Node->getOffset();
   2609   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2610 
   2611   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
   2612   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2613   return Result;
   2614 }
   2615 
   2616 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
   2617                                               SelectionDAG &DAG) const {
   2618   SDLoc DL(JT);
   2619   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2620   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2621 
   2622   // Use LARL to load the address of the table.
   2623   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2624 }
   2625 
   2626 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
   2627                                                  SelectionDAG &DAG) const {
   2628   SDLoc DL(CP);
   2629   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2630 
   2631   SDValue Result;
   2632   if (CP->isMachineConstantPoolEntry())
   2633     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2634                                        CP->getAlignment());
   2635   else
   2636     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2637                                        CP->getAlignment(), CP->getOffset());
   2638 
   2639   // Use LARL to load the address of the constant pool entry.
   2640   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2641 }
   2642 
   2643 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
   2644                                             SelectionDAG &DAG) const {
   2645   SDLoc DL(Op);
   2646   SDValue In = Op.getOperand(0);
   2647   EVT InVT = In.getValueType();
   2648   EVT ResVT = Op.getValueType();
   2649 
   2650   // Convert loads directly.  This is normally done by DAGCombiner,
   2651   // but we need this case for bitcasts that are created during lowering
   2652   // and which are then lowered themselves.
   2653   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
   2654     return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
   2655                        LoadN->getMemOperand());
   2656 
   2657   if (InVT == MVT::i32 && ResVT == MVT::f32) {
   2658     SDValue In64;
   2659     if (Subtarget.hasHighWord()) {
   2660       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
   2661                                        MVT::i64);
   2662       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
   2663                                        MVT::i64, SDValue(U64, 0), In);
   2664     } else {
   2665       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
   2666       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
   2667                          DAG.getConstant(32, DL, MVT::i64));
   2668     }
   2669     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
   2670     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
   2671                                       DL, MVT::f32, Out64);
   2672   }
   2673   if (InVT == MVT::f32 && ResVT == MVT::i32) {
   2674     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
   2675     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
   2676                                              MVT::f64, SDValue(U64, 0), In);
   2677     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
   2678     if (Subtarget.hasHighWord())
   2679       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
   2680                                         MVT::i32, Out64);
   2681     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
   2682                                 DAG.getConstant(32, DL, MVT::i64));
   2683     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
   2684   }
   2685   llvm_unreachable("Unexpected bitcast combination");
   2686 }
   2687 
   2688 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
   2689                                             SelectionDAG &DAG) const {
   2690   MachineFunction &MF = DAG.getMachineFunction();
   2691   SystemZMachineFunctionInfo *FuncInfo =
   2692     MF.getInfo<SystemZMachineFunctionInfo>();
   2693   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2694 
   2695   SDValue Chain   = Op.getOperand(0);
   2696   SDValue Addr    = Op.getOperand(1);
   2697   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2698   SDLoc DL(Op);
   2699 
   2700   // The initial values of each field.
   2701   const unsigned NumFields = 4;
   2702   SDValue Fields[NumFields] = {
   2703     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
   2704     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
   2705     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
   2706     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
   2707   };
   2708 
   2709   // Store each field into its respective slot.
   2710   SDValue MemOps[NumFields];
   2711   unsigned Offset = 0;
   2712   for (unsigned I = 0; I < NumFields; ++I) {
   2713     SDValue FieldAddr = Addr;
   2714     if (Offset != 0)
   2715       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
   2716                               DAG.getIntPtrConstant(Offset, DL));
   2717     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
   2718                              MachinePointerInfo(SV, Offset),
   2719                              false, false, 0);
   2720     Offset += 8;
   2721   }
   2722   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
   2723 }
   2724 
   2725 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
   2726                                            SelectionDAG &DAG) const {
   2727   SDValue Chain      = Op.getOperand(0);
   2728   SDValue DstPtr     = Op.getOperand(1);
   2729   SDValue SrcPtr     = Op.getOperand(2);
   2730   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   2731   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   2732   SDLoc DL(Op);
   2733 
   2734   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
   2735                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
   2736                        /*isTailCall*/false,
   2737                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   2738 }
   2739 
   2740 SDValue SystemZTargetLowering::
   2741 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   2742   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
   2743   bool RealignOpt = !DAG.getMachineFunction().getFunction()->
   2744     hasFnAttribute("no-realign-stack");
   2745 
   2746   SDValue Chain = Op.getOperand(0);
   2747   SDValue Size  = Op.getOperand(1);
   2748   SDValue Align = Op.getOperand(2);
   2749   SDLoc DL(Op);
   2750 
   2751   // If user has set the no alignment function attribute, ignore
   2752   // alloca alignments.
   2753   uint64_t AlignVal = (RealignOpt ?
   2754                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
   2755 
   2756   uint64_t StackAlign = TFI->getStackAlignment();
   2757   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
   2758   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
   2759 
   2760   unsigned SPReg = getStackPointerRegisterToSaveRestore();
   2761   SDValue NeededSpace = Size;
   2762 
   2763   // Get a reference to the stack pointer.
   2764   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
   2765 
   2766   // Add extra space for alignment if needed.
   2767   if (ExtraAlignSpace)
   2768     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
   2769                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
   2770 
   2771   // Get the new stack pointer value.
   2772   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
   2773 
   2774   // Copy the new stack pointer back.
   2775   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
   2776 
   2777   // The allocated data lives above the 160 bytes allocated for the standard
   2778   // frame, plus any outgoing stack arguments.  We don't know how much that
   2779   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
   2780   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   2781   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
   2782 
   2783   // Dynamically realign if needed.
   2784   if (RequiredAlign > StackAlign) {
   2785     Result =
   2786       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
   2787                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
   2788     Result =
   2789       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
   2790                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
   2791   }
   2792 
   2793   SDValue Ops[2] = { Result, Chain };
   2794   return DAG.getMergeValues(Ops, DL);
   2795 }
   2796 
   2797 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
   2798                                               SelectionDAG &DAG) const {
   2799   EVT VT = Op.getValueType();
   2800   SDLoc DL(Op);
   2801   SDValue Ops[2];
   2802   if (is32Bit(VT))
   2803     // Just do a normal 64-bit multiplication and extract the results.
   2804     // We define this so that it can be used for constant division.
   2805     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
   2806                     Op.getOperand(1), Ops[1], Ops[0]);
   2807   else {
   2808     // Do a full 128-bit multiplication based on UMUL_LOHI64:
   2809     //
   2810     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
   2811     //
   2812     // but using the fact that the upper halves are either all zeros
   2813     // or all ones:
   2814     //
   2815     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
   2816     //
   2817     // and grouping the right terms together since they are quicker than the
   2818     // multiplication:
   2819     //
   2820     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
   2821     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
   2822     SDValue LL = Op.getOperand(0);
   2823     SDValue RL = Op.getOperand(1);
   2824     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
   2825     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
   2826     // UMUL_LOHI64 returns the low result in the odd register and the high
   2827     // result in the even register.  SMUL_LOHI is defined to return the
   2828     // low half first, so the results are in reverse order.
   2829     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   2830                      LL, RL, Ops[1], Ops[0]);
   2831     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
   2832     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
   2833     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
   2834     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
   2835   }
   2836   return DAG.getMergeValues(Ops, DL);
   2837 }
   2838 
   2839 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
   2840                                               SelectionDAG &DAG) const {
   2841   EVT VT = Op.getValueType();
   2842   SDLoc DL(Op);
   2843   SDValue Ops[2];
   2844   if (is32Bit(VT))
   2845     // Just do a normal 64-bit multiplication and extract the results.
   2846     // We define this so that it can be used for constant division.
   2847     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
   2848                     Op.getOperand(1), Ops[1], Ops[0]);
   2849   else
   2850     // UMUL_LOHI64 returns the low result in the odd register and the high
   2851     // result in the even register.  UMUL_LOHI is defined to return the
   2852     // low half first, so the results are in reverse order.
   2853     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   2854                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2855   return DAG.getMergeValues(Ops, DL);
   2856 }
   2857 
   2858 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
   2859                                             SelectionDAG &DAG) const {
   2860   SDValue Op0 = Op.getOperand(0);
   2861   SDValue Op1 = Op.getOperand(1);
   2862   EVT VT = Op.getValueType();
   2863   SDLoc DL(Op);
   2864   unsigned Opcode;
   2865 
   2866   // We use DSGF for 32-bit division.
   2867   if (is32Bit(VT)) {
   2868     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
   2869     Opcode = SystemZISD::SDIVREM32;
   2870   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
   2871     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
   2872     Opcode = SystemZISD::SDIVREM32;
   2873   } else
   2874     Opcode = SystemZISD::SDIVREM64;
   2875 
   2876   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
   2877   // input is "don't care".  The instruction returns the remainder in
   2878   // the even register and the quotient in the odd register.
   2879   SDValue Ops[2];
   2880   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
   2881                    Op0, Op1, Ops[1], Ops[0]);
   2882   return DAG.getMergeValues(Ops, DL);
   2883 }
   2884 
   2885 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
   2886                                             SelectionDAG &DAG) const {
   2887   EVT VT = Op.getValueType();
   2888   SDLoc DL(Op);
   2889 
   2890   // DL(G) uses a double-width dividend, so we need to clear the even
   2891   // register in the GR128 input.  The instruction returns the remainder
   2892   // in the even register and the quotient in the odd register.
   2893   SDValue Ops[2];
   2894   if (is32Bit(VT))
   2895     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
   2896                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2897   else
   2898     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
   2899                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2900   return DAG.getMergeValues(Ops, DL);
   2901 }
   2902 
   2903 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
   2904   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
   2905 
   2906   // Get the known-zero masks for each operand.
   2907   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
   2908   APInt KnownZero[2], KnownOne[2];
   2909   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
   2910   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
   2911 
   2912   // See if the upper 32 bits of one operand and the lower 32 bits of the
   2913   // other are known zero.  They are the low and high operands respectively.
   2914   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
   2915                        KnownZero[1].getZExtValue() };
   2916   unsigned High, Low;
   2917   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
   2918     High = 1, Low = 0;
   2919   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
   2920     High = 0, Low = 1;
   2921   else
   2922     return Op;
   2923 
   2924   SDValue LowOp = Ops[Low];
   2925   SDValue HighOp = Ops[High];
   2926 
   2927   // If the high part is a constant, we're better off using IILH.
   2928   if (HighOp.getOpcode() == ISD::Constant)
   2929     return Op;
   2930 
   2931   // If the low part is a constant that is outside the range of LHI,
   2932   // then we're better off using IILF.
   2933   if (LowOp.getOpcode() == ISD::Constant) {
   2934     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
   2935     if (!isInt<16>(Value))
   2936       return Op;
   2937   }
   2938 
   2939   // Check whether the high part is an AND that doesn't change the
   2940   // high 32 bits and just masks out low bits.  We can skip it if so.
   2941   if (HighOp.getOpcode() == ISD::AND &&
   2942       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
   2943     SDValue HighOp0 = HighOp.getOperand(0);
   2944     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
   2945     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
   2946       HighOp = HighOp0;
   2947   }
   2948 
   2949   // Take advantage of the fact that all GR32 operations only change the
   2950   // low 32 bits by truncating Low to an i32 and inserting it directly
   2951   // using a subreg.  The interesting cases are those where the truncation
   2952   // can be folded.
   2953   SDLoc DL(Op);
   2954   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
   2955   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
   2956                                    MVT::i64, HighOp, Low32);
   2957 }
   2958 
   2959 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
   2960                                           SelectionDAG &DAG) const {
   2961   EVT VT = Op.getValueType();
   2962   SDLoc DL(Op);
   2963   Op = Op.getOperand(0);
   2964 
   2965   // Handle vector types via VPOPCT.
   2966   if (VT.isVector()) {
   2967     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
   2968     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
   2969     switch (VT.getVectorElementType().getSizeInBits()) {
   2970     case 8:
   2971       break;
   2972     case 16: {
   2973       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
   2974       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
   2975       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
   2976       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
   2977       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
   2978       break;
   2979     }
   2980     case 32: {
   2981       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   2982                                 DAG.getConstant(0, DL, MVT::i32));
   2983       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
   2984       break;
   2985     }
   2986     case 64: {
   2987       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   2988                                 DAG.getConstant(0, DL, MVT::i32));
   2989       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
   2990       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
   2991       break;
   2992     }
   2993     default:
   2994       llvm_unreachable("Unexpected type");
   2995     }
   2996     return Op;
   2997   }
   2998 
   2999   // Get the known-zero mask for the operand.
   3000   APInt KnownZero, KnownOne;
   3001   DAG.computeKnownBits(Op, KnownZero, KnownOne);
   3002   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
   3003   if (NumSignificantBits == 0)
   3004     return DAG.getConstant(0, DL, VT);
   3005 
   3006   // Skip known-zero high parts of the operand.
   3007   int64_t OrigBitSize = VT.getSizeInBits();
   3008   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
   3009   BitSize = std::min(BitSize, OrigBitSize);
   3010 
   3011   // The POPCNT instruction counts the number of bits in each byte.
   3012   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
   3013   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
   3014   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
   3015 
   3016   // Add up per-byte counts in a binary tree.  All bits of Op at
   3017   // position larger than BitSize remain zero throughout.
   3018   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
   3019     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
   3020     if (BitSize != OrigBitSize)
   3021       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
   3022                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
   3023     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
   3024   }
   3025 
   3026   // Extract overall result from high byte.
   3027   if (BitSize > 8)
   3028     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
   3029                      DAG.getConstant(BitSize - 8, DL, VT));
   3030 
   3031   return Op;
   3032 }
   3033 
   3034 // Op is an atomic load.  Lower it into a normal volatile load.
   3035 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
   3036                                                 SelectionDAG &DAG) const {
   3037   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3038   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
   3039                         Node->getChain(), Node->getBasePtr(),
   3040                         Node->getMemoryVT(), Node->getMemOperand());
   3041 }
   3042 
   3043 // Op is an atomic store.  Lower it into a normal volatile store followed
   3044 // by a serialization.
   3045 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
   3046                                                  SelectionDAG &DAG) const {
   3047   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3048   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
   3049                                     Node->getBasePtr(), Node->getMemoryVT(),
   3050                                     Node->getMemOperand());
   3051   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
   3052                                     Chain), 0);
   3053 }
   3054 
   3055 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
   3056 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
   3057 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
   3058                                                    SelectionDAG &DAG,
   3059                                                    unsigned Opcode) const {
   3060   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3061 
   3062   // 32-bit operations need no code outside the main loop.
   3063   EVT NarrowVT = Node->getMemoryVT();
   3064   EVT WideVT = MVT::i32;
   3065   if (NarrowVT == WideVT)
   3066     return Op;
   3067 
   3068   int64_t BitSize = NarrowVT.getSizeInBits();
   3069   SDValue ChainIn = Node->getChain();
   3070   SDValue Addr = Node->getBasePtr();
   3071   SDValue Src2 = Node->getVal();
   3072   MachineMemOperand *MMO = Node->getMemOperand();
   3073   SDLoc DL(Node);
   3074   EVT PtrVT = Addr.getValueType();
   3075 
   3076   // Convert atomic subtracts of constants into additions.
   3077   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
   3078     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
   3079       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
   3080       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
   3081     }
   3082 
   3083   // Get the address of the containing word.
   3084   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   3085                                     DAG.getConstant(-4, DL, PtrVT));
   3086 
   3087   // Get the number of bits that the word must be rotated left in order
   3088   // to bring the field to the top bits of a GR32.
   3089   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   3090                                  DAG.getConstant(3, DL, PtrVT));
   3091   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   3092 
   3093   // Get the complementing shift amount, for rotating a field in the top
   3094   // bits back to its proper position.
   3095   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   3096                                     DAG.getConstant(0, DL, WideVT), BitShift);
   3097 
   3098   // Extend the source operand to 32 bits and prepare it for the inner loop.
   3099   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
   3100   // operations require the source to be shifted in advance.  (This shift
   3101   // can be folded if the source is constant.)  For AND and NAND, the lower
   3102   // bits must be set, while for other opcodes they should be left clear.
   3103   if (Opcode != SystemZISD::ATOMIC_SWAPW)
   3104     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
   3105                        DAG.getConstant(32 - BitSize, DL, WideVT));
   3106   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
   3107       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
   3108     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
   3109                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
   3110 
   3111   // Construct the ATOMIC_LOADW_* node.
   3112   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   3113   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
   3114                     DAG.getConstant(BitSize, DL, WideVT) };
   3115   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
   3116                                              NarrowVT, MMO);
   3117 
   3118   // Rotate the result of the final CS so that the field is in the lower
   3119   // bits of a GR32, then truncate it.
   3120   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
   3121                                     DAG.getConstant(BitSize, DL, WideVT));
   3122   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
   3123 
   3124   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
   3125   return DAG.getMergeValues(RetOps, DL);
   3126 }
   3127 
   3128 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
   3129 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
   3130 // operations into additions.
   3131 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
   3132                                                     SelectionDAG &DAG) const {
   3133   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3134   EVT MemVT = Node->getMemoryVT();
   3135   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
   3136     // A full-width operation.
   3137     assert(Op.getValueType() == MemVT && "Mismatched VTs");
   3138     SDValue Src2 = Node->getVal();
   3139     SDValue NegSrc2;
   3140     SDLoc DL(Src2);
   3141 
   3142     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
   3143       // Use an addition if the operand is constant and either LAA(G) is
   3144       // available or the negative value is in the range of A(G)FHI.
   3145       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
   3146       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
   3147         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
   3148     } else if (Subtarget.hasInterlockedAccess1())
   3149       // Use LAA(G) if available.
   3150       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
   3151                             Src2);
   3152 
   3153     if (NegSrc2.getNode())
   3154       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
   3155                            Node->getChain(), Node->getBasePtr(), NegSrc2,
   3156                            Node->getMemOperand(), Node->getOrdering(),
   3157                            Node->getSynchScope());
   3158 
   3159     // Use the node as-is.
   3160     return Op;
   3161   }
   3162 
   3163   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
   3164 }
   3165 
   3166 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
   3167 // into a fullword ATOMIC_CMP_SWAPW operation.
   3168 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
   3169                                                     SelectionDAG &DAG) const {
   3170   auto *Node = cast<AtomicSDNode>(Op.getNode());
   3171 
   3172   // We have native support for 32-bit compare and swap.
   3173   EVT NarrowVT = Node->getMemoryVT();
   3174   EVT WideVT = MVT::i32;
   3175   if (NarrowVT == WideVT)
   3176     return Op;
   3177 
   3178   int64_t BitSize = NarrowVT.getSizeInBits();
   3179   SDValue ChainIn = Node->getOperand(0);
   3180   SDValue Addr = Node->getOperand(1);
   3181   SDValue CmpVal = Node->getOperand(2);
   3182   SDValue SwapVal = Node->getOperand(3);
   3183   MachineMemOperand *MMO = Node->getMemOperand();
   3184   SDLoc DL(Node);
   3185   EVT PtrVT = Addr.getValueType();
   3186 
   3187   // Get the address of the containing word.
   3188   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   3189                                     DAG.getConstant(-4, DL, PtrVT));
   3190 
   3191   // Get the number of bits that the word must be rotated left in order
   3192   // to bring the field to the top bits of a GR32.
   3193   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   3194                                  DAG.getConstant(3, DL, PtrVT));
   3195   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   3196 
   3197   // Get the complementing shift amount, for rotating a field in the top
   3198   // bits back to its proper position.
   3199   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   3200                                     DAG.getConstant(0, DL, WideVT), BitShift);
   3201 
   3202   // Construct the ATOMIC_CMP_SWAPW node.
   3203   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   3204   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
   3205                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
   3206   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
   3207                                              VTList, Ops, NarrowVT, MMO);
   3208   return AtomicOp;
   3209 }
   3210 
   3211 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
   3212                                               SelectionDAG &DAG) const {
   3213   MachineFunction &MF = DAG.getMachineFunction();
   3214   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   3215   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
   3216                             SystemZ::R15D, Op.getValueType());
   3217 }
   3218 
   3219 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
   3220                                                  SelectionDAG &DAG) const {
   3221   MachineFunction &MF = DAG.getMachineFunction();
   3222   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   3223   return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
   3224                           SystemZ::R15D, Op.getOperand(1));
   3225 }
   3226 
   3227 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
   3228                                              SelectionDAG &DAG) const {
   3229   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   3230   if (!IsData)
   3231     // Just preserve the chain.
   3232     return Op.getOperand(0);
   3233 
   3234   SDLoc DL(Op);
   3235   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   3236   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
   3237   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
   3238   SDValue Ops[] = {
   3239     Op.getOperand(0),
   3240     DAG.getConstant(Code, DL, MVT::i32),
   3241     Op.getOperand(1)
   3242   };
   3243   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
   3244                                  Node->getVTList(), Ops,
   3245                                  Node->getMemoryVT(), Node->getMemOperand());
   3246 }
   3247 
   3248 // Return an i32 that contains the value of CC immediately after After,
   3249 // whose final operand must be MVT::Glue.
   3250 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
   3251   SDLoc DL(After);
   3252   SDValue Glue = SDValue(After, After->getNumValues() - 1);
   3253   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
   3254   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
   3255                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
   3256 }
   3257 
   3258 SDValue
   3259 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   3260                                               SelectionDAG &DAG) const {
   3261   unsigned Opcode, CCValid;
   3262   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
   3263     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   3264     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
   3265     SDValue CC = getCCResult(DAG, Glued.getNode());
   3266     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
   3267     return SDValue();
   3268   }
   3269 
   3270   return SDValue();
   3271 }
   3272 
   3273 SDValue
   3274 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
   3275                                                SelectionDAG &DAG) const {
   3276   unsigned Opcode, CCValid;
   3277   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
   3278     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
   3279     SDValue CC = getCCResult(DAG, Glued.getNode());
   3280     if (Op->getNumValues() == 1)
   3281       return CC;
   3282     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
   3283     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
   3284                        CC);
   3285   }
   3286 
   3287   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3288   switch (Id) {
   3289   case Intrinsic::s390_vpdi:
   3290     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
   3291                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   3292 
   3293   case Intrinsic::s390_vperm:
   3294     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
   3295                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   3296 
   3297   case Intrinsic::s390_vuphb:
   3298   case Intrinsic::s390_vuphh:
   3299   case Intrinsic::s390_vuphf:
   3300     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
   3301                        Op.getOperand(1));
   3302 
   3303   case Intrinsic::s390_vuplhb:
   3304   case Intrinsic::s390_vuplhh:
   3305   case Intrinsic::s390_vuplhf:
   3306     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
   3307                        Op.getOperand(1));
   3308 
   3309   case Intrinsic::s390_vuplb:
   3310   case Intrinsic::s390_vuplhw:
   3311   case Intrinsic::s390_vuplf:
   3312     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
   3313                        Op.getOperand(1));
   3314 
   3315   case Intrinsic::s390_vupllb:
   3316   case Intrinsic::s390_vupllh:
   3317   case Intrinsic::s390_vupllf:
   3318     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
   3319                        Op.getOperand(1));
   3320 
   3321   case Intrinsic::s390_vsumb:
   3322   case Intrinsic::s390_vsumh:
   3323   case Intrinsic::s390_vsumgh:
   3324   case Intrinsic::s390_vsumgf:
   3325   case Intrinsic::s390_vsumqf:
   3326   case Intrinsic::s390_vsumqg:
   3327     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
   3328                        Op.getOperand(1), Op.getOperand(2));
   3329   }
   3330 
   3331   return SDValue();
   3332 }
   3333 
   3334 namespace {
   3335 // Says that SystemZISD operation Opcode can be used to perform the equivalent
   3336 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
   3337 // Operand is the constant third operand, otherwise it is the number of
   3338 // bytes in each element of the result.
   3339 struct Permute {
   3340   unsigned Opcode;
   3341   unsigned Operand;
   3342   unsigned char Bytes[SystemZ::VectorBytes];
   3343 };
   3344 }
   3345 
   3346 static const Permute PermuteForms[] = {
   3347   // VMRHG
   3348   { SystemZISD::MERGE_HIGH, 8,
   3349     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
   3350   // VMRHF
   3351   { SystemZISD::MERGE_HIGH, 4,
   3352     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
   3353   // VMRHH
   3354   { SystemZISD::MERGE_HIGH, 2,
   3355     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
   3356   // VMRHB
   3357   { SystemZISD::MERGE_HIGH, 1,
   3358     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
   3359   // VMRLG
   3360   { SystemZISD::MERGE_LOW, 8,
   3361     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
   3362   // VMRLF
   3363   { SystemZISD::MERGE_LOW, 4,
   3364     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
   3365   // VMRLH
   3366   { SystemZISD::MERGE_LOW, 2,
   3367     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
   3368   // VMRLB
   3369   { SystemZISD::MERGE_LOW, 1,
   3370     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
   3371   // VPKG
   3372   { SystemZISD::PACK, 4,
   3373     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
   3374   // VPKF
   3375   { SystemZISD::PACK, 2,
   3376     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
   3377   // VPKH
   3378   { SystemZISD::PACK, 1,
   3379     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
   3380   // VPDI V1, V2, 4  (low half of V1, high half of V2)
   3381   { SystemZISD::PERMUTE_DWORDS, 4,
   3382     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
   3383   // VPDI V1, V2, 1  (high half of V1, low half of V2)
   3384   { SystemZISD::PERMUTE_DWORDS, 1,
   3385     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
   3386 };
   3387 
   3388 // Called after matching a vector shuffle against a particular pattern.
   3389 // Both the original shuffle and the pattern have two vector operands.
   3390 // OpNos[0] is the operand of the original shuffle that should be used for
   3391 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
   3392 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
   3393 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
   3394 // for operands 0 and 1 of the pattern.
   3395 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
   3396   if (OpNos[0] < 0) {
   3397     if (OpNos[1] < 0)
   3398       return false;
   3399     OpNo0 = OpNo1 = OpNos[1];
   3400   } else if (OpNos[1] < 0) {
   3401     OpNo0 = OpNo1 = OpNos[0];
   3402   } else {
   3403     OpNo0 = OpNos[0];
   3404     OpNo1 = OpNos[1];
   3405   }
   3406   return true;
   3407 }
   3408 
   3409 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3410 // undefined bytes.  Return true if the VPERM can be implemented using P.
   3411 // When returning true set OpNo0 to the VPERM operand that should be
   3412 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
   3413 //
   3414 // For example, if swapping the VPERM operands allows P to match, OpNo0
   3415 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
   3416 // operand, but rewriting it to use two duplicated operands allows it to
   3417 // match P, then OpNo0 and OpNo1 will be the same.
   3418 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
   3419                          unsigned &OpNo0, unsigned &OpNo1) {
   3420   int OpNos[] = { -1, -1 };
   3421   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
   3422     int Elt = Bytes[I];
   3423     if (Elt >= 0) {
   3424       // Make sure that the two permute vectors use the same suboperand
   3425       // byte number.  Only the operand numbers (the high bits) are
   3426       // allowed to differ.
   3427       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
   3428         return false;
   3429       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
   3430       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
   3431       // Make sure that the operand mappings are consistent with previous
   3432       // elements.
   3433       if (OpNos[ModelOpNo] == 1 - RealOpNo)
   3434         return false;
   3435       OpNos[ModelOpNo] = RealOpNo;
   3436     }
   3437   }
   3438   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
   3439 }
   3440 
   3441 // As above, but search for a matching permute.
   3442 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
   3443                                    unsigned &OpNo0, unsigned &OpNo1) {
   3444   for (auto &P : PermuteForms)
   3445     if (matchPermute(Bytes, P, OpNo0, OpNo1))
   3446       return &P;
   3447   return nullptr;
   3448 }
   3449 
   3450 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3451 // undefined bytes.  This permute is an operand of an outer permute.
   3452 // See whether redistributing the -1 bytes gives a shuffle that can be
   3453 // implemented using P.  If so, set Transform to a VPERM-like permute vector
   3454 // that, when applied to the result of P, gives the original permute in Bytes.
   3455 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
   3456                                const Permute &P,
   3457                                SmallVectorImpl<int> &Transform) {
   3458   unsigned To = 0;
   3459   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
   3460     int Elt = Bytes[From];
   3461     if (Elt < 0)
   3462       // Byte number From of the result is undefined.
   3463       Transform[From] = -1;
   3464     else {
   3465       while (P.Bytes[To] != Elt) {
   3466         To += 1;
   3467         if (To == SystemZ::VectorBytes)
   3468           return false;
   3469       }
   3470       Transform[From] = To;
   3471     }
   3472   }
   3473   return true;
   3474 }
   3475 
   3476 // As above, but search for a matching permute.
   3477 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
   3478                                          SmallVectorImpl<int> &Transform) {
   3479   for (auto &P : PermuteForms)
   3480     if (matchDoublePermute(Bytes, P, Transform))
   3481       return &P;
   3482   return nullptr;
   3483 }
   3484 
   3485 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
   3486 // as if it had type vNi8.
   3487 static void getVPermMask(ShuffleVectorSDNode *VSN,
   3488                          SmallVectorImpl<int> &Bytes) {
   3489   EVT VT = VSN->getValueType(0);
   3490   unsigned NumElements = VT.getVectorNumElements();
   3491   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
   3492   Bytes.resize(NumElements * BytesPerElement, -1);
   3493   for (unsigned I = 0; I < NumElements; ++I) {
   3494     int Index = VSN->getMaskElt(I);
   3495     if (Index >= 0)
   3496       for (unsigned J = 0; J < BytesPerElement; ++J)
   3497         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
   3498   }
   3499 }
   3500 
   3501 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3502 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
   3503 // the result come from a contiguous sequence of bytes from one input.
   3504 // Set Base to the selector for the first byte if so.
   3505 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
   3506                             unsigned BytesPerElement, int &Base) {
   3507   Base = -1;
   3508   for (unsigned I = 0; I < BytesPerElement; ++I) {
   3509     if (Bytes[Start + I] >= 0) {
   3510       unsigned Elem = Bytes[Start + I];
   3511       if (Base < 0) {
   3512         Base = Elem - I;
   3513         // Make sure the bytes would come from one input operand.
   3514         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
   3515           return false;
   3516       } else if (unsigned(Base) != Elem - I)
   3517         return false;
   3518     }
   3519   }
   3520   return true;
   3521 }
   3522 
   3523 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3524 // undefined bytes.  Return true if it can be performed using VSLDI.
   3525 // When returning true, set StartIndex to the shift amount and OpNo0
   3526 // and OpNo1 to the VPERM operands that should be used as the first
   3527 // and second shift operand respectively.
   3528 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
   3529                                unsigned &StartIndex, unsigned &OpNo0,
   3530                                unsigned &OpNo1) {
   3531   int OpNos[] = { -1, -1 };
   3532   int Shift = -1;
   3533   for (unsigned I = 0; I < 16; ++I) {
   3534     int Index = Bytes[I];
   3535     if (Index >= 0) {
   3536       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
   3537       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
   3538       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
   3539       if (Shift < 0)
   3540         Shift = ExpectedShift;
   3541       else if (Shift != ExpectedShift)
   3542         return false;
   3543       // Make sure that the operand mappings are consistent with previous
   3544       // elements.
   3545       if (OpNos[ModelOpNo] == 1 - RealOpNo)
   3546         return false;
   3547       OpNos[ModelOpNo] = RealOpNo;
   3548     }
   3549   }
   3550   StartIndex = Shift;
   3551   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
   3552 }
   3553 
   3554 // Create a node that performs P on operands Op0 and Op1, casting the
   3555 // operands to the appropriate type.  The type of the result is determined by P.
   3556 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL,
   3557                               const Permute &P, SDValue Op0, SDValue Op1) {
   3558   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
   3559   // elements of a PACK are twice as wide as the outputs.
   3560   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
   3561                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
   3562                       P.Operand);
   3563   // Cast both operands to the appropriate type.
   3564   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
   3565                               SystemZ::VectorBytes / InBytes);
   3566   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
   3567   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
   3568   SDValue Op;
   3569   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
   3570     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
   3571     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
   3572   } else if (P.Opcode == SystemZISD::PACK) {
   3573     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
   3574                                  SystemZ::VectorBytes / P.Operand);
   3575     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
   3576   } else {
   3577     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
   3578   }
   3579   return Op;
   3580 }
   3581 
   3582 // Bytes is a VPERM-like permute vector, except that -1 is used for
   3583 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
   3584 // VSLDI or VPERM.
   3585 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops,
   3586                                      const SmallVectorImpl<int> &Bytes) {
   3587   for (unsigned I = 0; I < 2; ++I)
   3588     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
   3589 
   3590   // First see whether VSLDI can be used.
   3591   unsigned StartIndex, OpNo0, OpNo1;
   3592   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
   3593     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
   3594                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
   3595 
   3596   // Fall back on VPERM.  Construct an SDNode for the permute vector.
   3597   SDValue IndexNodes[SystemZ::VectorBytes];
   3598   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
   3599     if (Bytes[I] >= 0)
   3600       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
   3601     else
   3602       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
   3603   SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes);
   3604   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
   3605 }
   3606 
   3607 namespace {
   3608 // Describes a general N-operand vector shuffle.
   3609 struct GeneralShuffle {
   3610   GeneralShuffle(EVT vt) : VT(vt) {}
   3611   void addUndef();
   3612   void add(SDValue, unsigned);
   3613   SDValue getNode(SelectionDAG &, SDLoc);
   3614 
   3615   // The operands of the shuffle.
   3616   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
   3617 
   3618   // Index I is -1 if byte I of the result is undefined.  Otherwise the
   3619   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
   3620   // Bytes[I] / SystemZ::VectorBytes.
   3621   SmallVector<int, SystemZ::VectorBytes> Bytes;
   3622 
   3623   // The type of the shuffle result.
   3624   EVT VT;
   3625 };
   3626 }
   3627 
   3628 // Add an extra undefined element to the shuffle.
   3629 void GeneralShuffle::addUndef() {
   3630   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
   3631   for (unsigned I = 0; I < BytesPerElement; ++I)
   3632     Bytes.push_back(-1);
   3633 }
   3634 
   3635 // Add an extra element to the shuffle, taking it from element Elem of Op.
   3636 // A null Op indicates a vector input whose value will be calculated later;
   3637 // there is at most one such input per shuffle and it always has the same
   3638 // type as the result.
   3639 void GeneralShuffle::add(SDValue Op, unsigned Elem) {
   3640   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
   3641 
   3642   // The source vector can have wider elements than the result,
   3643   // either through an explicit TRUNCATE or because of type legalization.
   3644   // We want the least significant part.
   3645   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
   3646   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
   3647   assert(FromBytesPerElement >= BytesPerElement &&
   3648          "Invalid EXTRACT_VECTOR_ELT");
   3649   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
   3650                    (FromBytesPerElement - BytesPerElement));
   3651 
   3652   // Look through things like shuffles and bitcasts.
   3653   while (Op.getNode()) {
   3654     if (Op.getOpcode() == ISD::BITCAST)
   3655       Op = Op.getOperand(0);
   3656     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
   3657       // See whether the bytes we need come from a contiguous part of one
   3658       // operand.
   3659       SmallVector<int, SystemZ::VectorBytes> OpBytes;
   3660       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
   3661       int NewByte;
   3662       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
   3663         break;
   3664       if (NewByte < 0) {
   3665         addUndef();
   3666         return;
   3667       }
   3668       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
   3669       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
   3670     } else if (Op.getOpcode() == ISD::UNDEF) {
   3671       addUndef();
   3672       return;
   3673     } else
   3674       break;
   3675   }
   3676 
   3677   // Make sure that the source of the extraction is in Ops.
   3678   unsigned OpNo = 0;
   3679   for (; OpNo < Ops.size(); ++OpNo)
   3680     if (Ops[OpNo] == Op)
   3681       break;
   3682   if (OpNo == Ops.size())
   3683     Ops.push_back(Op);
   3684 
   3685   // Add the element to Bytes.
   3686   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
   3687   for (unsigned I = 0; I < BytesPerElement; ++I)
   3688     Bytes.push_back(Base + I);
   3689 }
   3690 
   3691 // Return SDNodes for the completed shuffle.
   3692 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) {
   3693   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
   3694 
   3695   if (Ops.size() == 0)
   3696     return DAG.getUNDEF(VT);
   3697 
   3698   // Make sure that there are at least two shuffle operands.
   3699   if (Ops.size() == 1)
   3700     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
   3701 
   3702   // Create a tree of shuffles, deferring root node until after the loop.
   3703   // Try to redistribute the undefined elements of non-root nodes so that
   3704   // the non-root shuffles match something like a pack or merge, then adjust
   3705   // the parent node's permute vector to compensate for the new order.
   3706   // Among other things, this copes with vectors like <2 x i16> that were
   3707   // padded with undefined elements during type legalization.
   3708   //
   3709   // In the best case this redistribution will lead to the whole tree
   3710   // using packs and merges.  It should rarely be a loss in other cases.
   3711   unsigned Stride = 1;
   3712   for (; Stride * 2 < Ops.size(); Stride *= 2) {
   3713     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
   3714       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
   3715 
   3716       // Create a mask for just these two operands.
   3717       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
   3718       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
   3719         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
   3720         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
   3721         if (OpNo == I)
   3722           NewBytes[J] = Byte;
   3723         else if (OpNo == I + Stride)
   3724           NewBytes[J] = SystemZ::VectorBytes + Byte;
   3725         else
   3726           NewBytes[J] = -1;
   3727       }
   3728       // See if it would be better to reorganize NewMask to avoid using VPERM.
   3729       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
   3730       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
   3731         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
   3732         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
   3733         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
   3734           if (NewBytes[J] >= 0) {
   3735             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
   3736                    "Invalid double permute");
   3737             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
   3738           } else
   3739             assert(NewBytesMap[J] < 0 && "Invalid double permute");
   3740         }
   3741       } else {
   3742         // Just use NewBytes on the operands.
   3743         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
   3744         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
   3745           if (NewBytes[J] >= 0)
   3746             Bytes[J] = I * SystemZ::VectorBytes + J;
   3747       }
   3748     }
   3749   }
   3750 
   3751   // Now we just have 2 inputs.  Put the second operand in Ops[1].
   3752   if (Stride > 1) {
   3753     Ops[1] = Ops[Stride];
   3754     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
   3755       if (Bytes[I] >= int(SystemZ::VectorBytes))
   3756         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
   3757   }
   3758 
   3759   // Look for an instruction that can do the permute without resorting
   3760   // to VPERM.
   3761   unsigned OpNo0, OpNo1;
   3762   SDValue Op;
   3763   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
   3764     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
   3765   else
   3766     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
   3767   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   3768 }
   3769 
   3770 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
   3771 static bool isScalarToVector(SDValue Op) {
   3772   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
   3773     if (Op.getOperand(I).getOpcode() != ISD::UNDEF)
   3774       return false;
   3775   return true;
   3776 }
   3777 
   3778 // Return a vector of type VT that contains Value in the first element.
   3779 // The other elements don't matter.
   3780 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
   3781                                    SDValue Value) {
   3782   // If we have a constant, replicate it to all elements and let the
   3783   // BUILD_VECTOR lowering take care of it.
   3784   if (Value.getOpcode() == ISD::Constant ||
   3785       Value.getOpcode() == ISD::ConstantFP) {
   3786     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
   3787     return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
   3788   }
   3789   if (Value.getOpcode() == ISD::UNDEF)
   3790     return DAG.getUNDEF(VT);
   3791   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
   3792 }
   3793 
   3794 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
   3795 // element 1.  Used for cases in which replication is cheap.
   3796 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT,
   3797                                  SDValue Op0, SDValue Op1) {
   3798   if (Op0.getOpcode() == ISD::UNDEF) {
   3799     if (Op1.getOpcode() == ISD::UNDEF)
   3800       return DAG.getUNDEF(VT);
   3801     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
   3802   }
   3803   if (Op1.getOpcode() == ISD::UNDEF)
   3804     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
   3805   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
   3806                      buildScalarToVector(DAG, DL, VT, Op0),
   3807                      buildScalarToVector(DAG, DL, VT, Op1));
   3808 }
   3809 
   3810 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
   3811 // vector for them.
   3812 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0,
   3813                           SDValue Op1) {
   3814   if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF)
   3815     return DAG.getUNDEF(MVT::v2i64);
   3816   // If one of the two inputs is undefined then replicate the other one,
   3817   // in order to avoid using another register unnecessarily.
   3818   if (Op0.getOpcode() == ISD::UNDEF)
   3819     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
   3820   else if (Op1.getOpcode() == ISD::UNDEF)
   3821     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
   3822   else {
   3823     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
   3824     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
   3825   }
   3826   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
   3827 }
   3828 
   3829 // Try to represent constant BUILD_VECTOR node BVN using a
   3830 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
   3831 // on success.
   3832 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
   3833   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
   3834   unsigned BytesPerElement = ElemVT.getStoreSize();
   3835   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
   3836     SDValue Op = BVN->getOperand(I);
   3837     if (Op.getOpcode() != ISD::UNDEF) {
   3838       uint64_t Value;
   3839       if (Op.getOpcode() == ISD::Constant)
   3840         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
   3841       else if (Op.getOpcode() == ISD::ConstantFP)
   3842         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
   3843                  .getZExtValue());
   3844       else
   3845         return false;
   3846       for (unsigned J = 0; J < BytesPerElement; ++J) {
   3847         uint64_t Byte = (Value >> (J * 8)) & 0xff;
   3848         if (Byte == 0xff)
   3849           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
   3850         else if (Byte != 0)
   3851           return false;
   3852       }
   3853     }
   3854   }
   3855   return true;
   3856 }
   3857 
   3858 // Try to load a vector constant in which BitsPerElement-bit value Value
   3859 // is replicated to fill the vector.  VT is the type of the resulting
   3860 // constant, which may have elements of a different size from BitsPerElement.
   3861 // Return the SDValue of the constant on success, otherwise return
   3862 // an empty value.
   3863 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
   3864                                        const SystemZInstrInfo *TII,
   3865                                        SDLoc DL, EVT VT, uint64_t Value,
   3866                                        unsigned BitsPerElement) {
   3867   // Signed 16-bit values can be replicated using VREPI.
   3868   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
   3869   if (isInt<16>(SignedValue)) {
   3870     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
   3871                                  SystemZ::VectorBits / BitsPerElement);
   3872     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
   3873                              DAG.getConstant(SignedValue, DL, MVT::i32));
   3874     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   3875   }
   3876   // See whether rotating the constant left some N places gives a value that
   3877   // is one less than a power of 2 (i.e. all zeros followed by all ones).
   3878   // If so we can use VGM.
   3879   unsigned Start, End;
   3880   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
   3881     // isRxSBGMask returns the bit numbers for a full 64-bit value,
   3882     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
   3883     // bit numbers for an BitsPerElement value, so that 0 denotes
   3884     // 1 << (BitsPerElement-1).
   3885     Start -= 64 - BitsPerElement;
   3886     End -= 64 - BitsPerElement;
   3887     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
   3888                                  SystemZ::VectorBits / BitsPerElement);
   3889     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
   3890                              DAG.getConstant(Start, DL, MVT::i32),
   3891                              DAG.getConstant(End, DL, MVT::i32));
   3892     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   3893   }
   3894   return SDValue();
   3895 }
   3896 
   3897 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
   3898 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
   3899 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
   3900 // would benefit from this representation and return it if so.
   3901 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
   3902                                      BuildVectorSDNode *BVN) {
   3903   EVT VT = BVN->getValueType(0);
   3904   unsigned NumElements = VT.getVectorNumElements();
   3905 
   3906   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
   3907   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
   3908   // need a BUILD_VECTOR, add an additional placeholder operand for that
   3909   // BUILD_VECTOR and store its operands in ResidueOps.
   3910   GeneralShuffle GS(VT);
   3911   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
   3912   bool FoundOne = false;
   3913   for (unsigned I = 0; I < NumElements; ++I) {
   3914     SDValue Op = BVN->getOperand(I);
   3915     if (Op.getOpcode() == ISD::TRUNCATE)
   3916       Op = Op.getOperand(0);
   3917     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   3918         Op.getOperand(1).getOpcode() == ISD::Constant) {
   3919       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   3920       GS.add(Op.getOperand(0), Elem);
   3921       FoundOne = true;
   3922     } else if (Op.getOpcode() == ISD::UNDEF) {
   3923       GS.addUndef();
   3924     } else {
   3925       GS.add(SDValue(), ResidueOps.size());
   3926       ResidueOps.push_back(BVN->getOperand(I));
   3927     }
   3928   }
   3929 
   3930   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
   3931   if (!FoundOne)
   3932     return SDValue();
   3933 
   3934   // Create the BUILD_VECTOR for the remaining elements, if any.
   3935   if (!ResidueOps.empty()) {
   3936     while (ResidueOps.size() < NumElements)
   3937       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
   3938     for (auto &Op : GS.Ops) {
   3939       if (!Op.getNode()) {
   3940         Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps);
   3941         break;
   3942       }
   3943     }
   3944   }
   3945   return GS.getNode(DAG, SDLoc(BVN));
   3946 }
   3947 
   3948 // Combine GPR scalar values Elems into a vector of type VT.
   3949 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
   3950                            SmallVectorImpl<SDValue> &Elems) {
   3951   // See whether there is a single replicated value.
   3952   SDValue Single;
   3953   unsigned int NumElements = Elems.size();
   3954   unsigned int Count = 0;
   3955   for (auto Elem : Elems) {
   3956     if (Elem.getOpcode() != ISD::UNDEF) {
   3957       if (!Single.getNode())
   3958         Single = Elem;
   3959       else if (Elem != Single) {
   3960         Single = SDValue();
   3961         break;
   3962       }
   3963       Count += 1;
   3964     }
   3965   }
   3966   // There are three cases here:
   3967   //
   3968   // - if the only defined element is a loaded one, the best sequence
   3969   //   is a replicating load.
   3970   //
   3971   // - otherwise, if the only defined element is an i64 value, we will
   3972   //   end up with the same VLVGP sequence regardless of whether we short-cut
   3973   //   for replication or fall through to the later code.
   3974   //
   3975   // - otherwise, if the only defined element is an i32 or smaller value,
   3976   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
   3977   //   This is only a win if the single defined element is used more than once.
   3978   //   In other cases we're better off using a single VLVGx.
   3979   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
   3980     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
   3981 
   3982   // The best way of building a v2i64 from two i64s is to use VLVGP.
   3983   if (VT == MVT::v2i64)
   3984     return joinDwords(DAG, DL, Elems[0], Elems[1]);
   3985 
   3986   // Use a 64-bit merge high to combine two doubles.
   3987   if (VT == MVT::v2f64)
   3988     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
   3989 
   3990   // Build v4f32 values directly from the FPRs:
   3991   //
   3992   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
   3993   //         V              V         VMRHF
   3994   //      <ABxx>         <CDxx>
   3995   //                V                 VMRHG
   3996   //              <ABCD>
   3997   if (VT == MVT::v4f32) {
   3998     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
   3999     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
   4000     // Avoid unnecessary undefs by reusing the other operand.
   4001     if (Op01.getOpcode() == ISD::UNDEF)
   4002       Op01 = Op23;
   4003     else if (Op23.getOpcode() == ISD::UNDEF)
   4004       Op23 = Op01;
   4005     // Merging identical replications is a no-op.
   4006     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
   4007       return Op01;
   4008     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
   4009     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
   4010     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
   4011                              DL, MVT::v2i64, Op01, Op23);
   4012     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4013   }
   4014 
   4015   // Collect the constant terms.
   4016   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
   4017   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
   4018 
   4019   unsigned NumConstants = 0;
   4020   for (unsigned I = 0; I < NumElements; ++I) {
   4021     SDValue Elem = Elems[I];
   4022     if (Elem.getOpcode() == ISD::Constant ||
   4023         Elem.getOpcode() == ISD::ConstantFP) {
   4024       NumConstants += 1;
   4025       Constants[I] = Elem;
   4026       Done[I] = true;
   4027     }
   4028   }
   4029   // If there was at least one constant, fill in the other elements of
   4030   // Constants with undefs to get a full vector constant and use that
   4031   // as the starting point.
   4032   SDValue Result;
   4033   if (NumConstants > 0) {
   4034     for (unsigned I = 0; I < NumElements; ++I)
   4035       if (!Constants[I].getNode())
   4036         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
   4037     Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants);
   4038   } else {
   4039     // Otherwise try to use VLVGP to start the sequence in order to
   4040     // avoid a false dependency on any previous contents of the vector
   4041     // register.  This only makes sense if one of the associated elements
   4042     // is defined.
   4043     unsigned I1 = NumElements / 2 - 1;
   4044     unsigned I2 = NumElements - 1;
   4045     bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF);
   4046     bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF);
   4047     if (Def1 || Def2) {
   4048       SDValue Elem1 = Elems[Def1 ? I1 : I2];
   4049       SDValue Elem2 = Elems[Def2 ? I2 : I1];
   4050       Result = DAG.getNode(ISD::BITCAST, DL, VT,
   4051                            joinDwords(DAG, DL, Elem1, Elem2));
   4052       Done[I1] = true;
   4053       Done[I2] = true;
   4054     } else
   4055       Result = DAG.getUNDEF(VT);
   4056   }
   4057 
   4058   // Use VLVGx to insert the other elements.
   4059   for (unsigned I = 0; I < NumElements; ++I)
   4060     if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF)
   4061       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
   4062                            DAG.getConstant(I, DL, MVT::i32));
   4063   return Result;
   4064 }
   4065 
   4066 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
   4067                                                  SelectionDAG &DAG) const {
   4068   const SystemZInstrInfo *TII =
   4069     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   4070   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
   4071   SDLoc DL(Op);
   4072   EVT VT = Op.getValueType();
   4073 
   4074   if (BVN->isConstant()) {
   4075     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
   4076     // preferred way of creating all-zero and all-one vectors so give it
   4077     // priority over other methods below.
   4078     uint64_t Mask = 0;
   4079     if (tryBuildVectorByteMask(BVN, Mask)) {
   4080       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
   4081                                DAG.getConstant(Mask, DL, MVT::i32));
   4082       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4083     }
   4084 
   4085     // Try using some form of replication.
   4086     APInt SplatBits, SplatUndef;
   4087     unsigned SplatBitSize;
   4088     bool HasAnyUndefs;
   4089     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
   4090                              8, true) &&
   4091         SplatBitSize <= 64) {
   4092       // First try assuming that any undefined bits above the highest set bit
   4093       // and below the lowest set bit are 1s.  This increases the likelihood of
   4094       // being able to use a sign-extended element value in VECTOR REPLICATE
   4095       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
   4096       uint64_t SplatBitsZ = SplatBits.getZExtValue();
   4097       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
   4098       uint64_t Lower = (SplatUndefZ
   4099                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
   4100       uint64_t Upper = (SplatUndefZ
   4101                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
   4102       uint64_t Value = SplatBitsZ | Upper | Lower;
   4103       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
   4104                                            SplatBitSize);
   4105       if (Op.getNode())
   4106         return Op;
   4107 
   4108       // Now try assuming that any undefined bits between the first and
   4109       // last defined set bits are set.  This increases the chances of
   4110       // using a non-wraparound mask.
   4111       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
   4112       Value = SplatBitsZ | Middle;
   4113       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
   4114       if (Op.getNode())
   4115         return Op;
   4116     }
   4117 
   4118     // Fall back to loading it from memory.
   4119     return SDValue();
   4120   }
   4121 
   4122   // See if we should use shuffles to construct the vector from other vectors.
   4123   SDValue Res = tryBuildVectorShuffle(DAG, BVN);
   4124   if (Res.getNode())
   4125     return Res;
   4126 
   4127   // Detect SCALAR_TO_VECTOR conversions.
   4128   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
   4129     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
   4130 
   4131   // Otherwise use buildVector to build the vector up from GPRs.
   4132   unsigned NumElements = Op.getNumOperands();
   4133   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
   4134   for (unsigned I = 0; I < NumElements; ++I)
   4135     Ops[I] = Op.getOperand(I);
   4136   return buildVector(DAG, DL, VT, Ops);
   4137 }
   4138 
   4139 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
   4140                                                    SelectionDAG &DAG) const {
   4141   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
   4142   SDLoc DL(Op);
   4143   EVT VT = Op.getValueType();
   4144   unsigned NumElements = VT.getVectorNumElements();
   4145 
   4146   if (VSN->isSplat()) {
   4147     SDValue Op0 = Op.getOperand(0);
   4148     unsigned Index = VSN->getSplatIndex();
   4149     assert(Index < VT.getVectorNumElements() &&
   4150            "Splat index should be defined and in first operand");
   4151     // See whether the value we're splatting is directly available as a scalar.
   4152     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
   4153         Op0.getOpcode() == ISD::BUILD_VECTOR)
   4154       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
   4155     // Otherwise keep it as a vector-to-vector operation.
   4156     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
   4157                        DAG.getConstant(Index, DL, MVT::i32));
   4158   }
   4159 
   4160   GeneralShuffle GS(VT);
   4161   for (unsigned I = 0; I < NumElements; ++I) {
   4162     int Elt = VSN->getMaskElt(I);
   4163     if (Elt < 0)
   4164       GS.addUndef();
   4165     else
   4166       GS.add(Op.getOperand(unsigned(Elt) / NumElements),
   4167              unsigned(Elt) % NumElements);
   4168   }
   4169   return GS.getNode(DAG, SDLoc(VSN));
   4170 }
   4171 
   4172 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
   4173                                                      SelectionDAG &DAG) const {
   4174   SDLoc DL(Op);
   4175   // Just insert the scalar into element 0 of an undefined vector.
   4176   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
   4177                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
   4178                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
   4179 }
   4180 
   4181 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
   4182                                                       SelectionDAG &DAG) const {
   4183   // Handle insertions of floating-point values.
   4184   SDLoc DL(Op);
   4185   SDValue Op0 = Op.getOperand(0);
   4186   SDValue Op1 = Op.getOperand(1);
   4187   SDValue Op2 = Op.getOperand(2);
   4188   EVT VT = Op.getValueType();
   4189 
   4190   // Insertions into constant indices of a v2f64 can be done using VPDI.
   4191   // However, if the inserted value is a bitcast or a constant then it's
   4192   // better to use GPRs, as below.
   4193   if (VT == MVT::v2f64 &&
   4194       Op1.getOpcode() != ISD::BITCAST &&
   4195       Op1.getOpcode() != ISD::ConstantFP &&
   4196       Op2.getOpcode() == ISD::Constant) {
   4197     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
   4198     unsigned Mask = VT.getVectorNumElements() - 1;
   4199     if (Index <= Mask)
   4200       return Op;
   4201   }
   4202 
   4203   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
   4204   MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
   4205   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
   4206   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
   4207                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
   4208                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
   4209   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
   4210 }
   4211 
   4212 SDValue
   4213 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
   4214                                                SelectionDAG &DAG) const {
   4215   // Handle extractions of floating-point values.
   4216   SDLoc DL(Op);
   4217   SDValue Op0 = Op.getOperand(0);
   4218   SDValue Op1 = Op.getOperand(1);
   4219   EVT VT = Op.getValueType();
   4220   EVT VecVT = Op0.getValueType();
   4221 
   4222   // Extractions of constant indices can be done directly.
   4223   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
   4224     uint64_t Index = CIndexN->getZExtValue();
   4225     unsigned Mask = VecVT.getVectorNumElements() - 1;
   4226     if (Index <= Mask)
   4227       return Op;
   4228   }
   4229 
   4230   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
   4231   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
   4232   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
   4233   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
   4234                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
   4235   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
   4236 }
   4237 
   4238 SDValue
   4239 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
   4240                                               unsigned UnpackHigh) const {
   4241   SDValue PackedOp = Op.getOperand(0);
   4242   EVT OutVT = Op.getValueType();
   4243   EVT InVT = PackedOp.getValueType();
   4244   unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
   4245   unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
   4246   do {
   4247     FromBits *= 2;
   4248     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
   4249                                  SystemZ::VectorBits / FromBits);
   4250     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
   4251   } while (FromBits != ToBits);
   4252   return PackedOp;
   4253 }
   4254 
   4255 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
   4256                                           unsigned ByScalar) const {
   4257   // Look for cases where a vector shift can use the *_BY_SCALAR form.
   4258   SDValue Op0 = Op.getOperand(0);
   4259   SDValue Op1 = Op.getOperand(1);
   4260   SDLoc DL(Op);
   4261   EVT VT = Op.getValueType();
   4262   unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
   4263 
   4264   // See whether the shift vector is a splat represented as BUILD_VECTOR.
   4265   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
   4266     APInt SplatBits, SplatUndef;
   4267     unsigned SplatBitSize;
   4268     bool HasAnyUndefs;
   4269     // Check for constant splats.  Use ElemBitSize as the minimum element
   4270     // width and reject splats that need wider elements.
   4271     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
   4272                              ElemBitSize, true) &&
   4273         SplatBitSize == ElemBitSize) {
   4274       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
   4275                                       DL, MVT::i32);
   4276       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
   4277     }
   4278     // Check for variable splats.
   4279     BitVector UndefElements;
   4280     SDValue Splat = BVN->getSplatValue(&UndefElements);
   4281     if (Splat) {
   4282       // Since i32 is the smallest legal type, we either need a no-op
   4283       // or a truncation.
   4284       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
   4285       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
   4286     }
   4287   }
   4288 
   4289   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
   4290   // and the shift amount is directly available in a GPR.
   4291   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
   4292     if (VSN->isSplat()) {
   4293       SDValue VSNOp0 = VSN->getOperand(0);
   4294       unsigned Index = VSN->getSplatIndex();
   4295       assert(Index < VT.getVectorNumElements() &&
   4296              "Splat index should be defined and in first operand");
   4297       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
   4298           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
   4299         // Since i32 is the smallest legal type, we either need a no-op
   4300         // or a truncation.
   4301         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
   4302                                     VSNOp0.getOperand(Index));
   4303         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
   4304       }
   4305     }
   4306   }
   4307 
   4308   // Otherwise just treat the current form as legal.
   4309   return Op;
   4310 }
   4311 
   4312 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
   4313                                               SelectionDAG &DAG) const {
   4314   switch (Op.getOpcode()) {
   4315   case ISD::BR_CC:
   4316     return lowerBR_CC(Op, DAG);
   4317   case ISD::SELECT_CC:
   4318     return lowerSELECT_CC(Op, DAG);
   4319   case ISD::SETCC:
   4320     return lowerSETCC(Op, DAG);
   4321   case ISD::GlobalAddress:
   4322     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
   4323   case ISD::GlobalTLSAddress:
   4324     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
   4325   case ISD::BlockAddress:
   4326     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
   4327   case ISD::JumpTable:
   4328     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
   4329   case ISD::ConstantPool:
   4330     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
   4331   case ISD::BITCAST:
   4332     return lowerBITCAST(Op, DAG);
   4333   case ISD::VASTART:
   4334     return lowerVASTART(Op, DAG);
   4335   case ISD::VACOPY:
   4336     return lowerVACOPY(Op, DAG);
   4337   case ISD::DYNAMIC_STACKALLOC:
   4338     return lowerDYNAMIC_STACKALLOC(Op, DAG);
   4339   case ISD::SMUL_LOHI:
   4340     return lowerSMUL_LOHI(Op, DAG);
   4341   case ISD::UMUL_LOHI:
   4342     return lowerUMUL_LOHI(Op, DAG);
   4343   case ISD::SDIVREM:
   4344     return lowerSDIVREM(Op, DAG);
   4345   case ISD::UDIVREM:
   4346     return lowerUDIVREM(Op, DAG);
   4347   case ISD::OR:
   4348     return lowerOR(Op, DAG);
   4349   case ISD::CTPOP:
   4350     return lowerCTPOP(Op, DAG);
   4351   case ISD::CTLZ_ZERO_UNDEF:
   4352     return DAG.getNode(ISD::CTLZ, SDLoc(Op),
   4353                        Op.getValueType(), Op.getOperand(0));
   4354   case ISD::CTTZ_ZERO_UNDEF:
   4355     return DAG.getNode(ISD::CTTZ, SDLoc(Op),
   4356                        Op.getValueType(), Op.getOperand(0));
   4357   case ISD::ATOMIC_SWAP:
   4358     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
   4359   case ISD::ATOMIC_STORE:
   4360     return lowerATOMIC_STORE(Op, DAG);
   4361   case ISD::ATOMIC_LOAD:
   4362     return lowerATOMIC_LOAD(Op, DAG);
   4363   case ISD::ATOMIC_LOAD_ADD:
   4364     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
   4365   case ISD::ATOMIC_LOAD_SUB:
   4366     return lowerATOMIC_LOAD_SUB(Op, DAG);
   4367   case ISD::ATOMIC_LOAD_AND:
   4368     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
   4369   case ISD::ATOMIC_LOAD_OR:
   4370     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
   4371   case ISD::ATOMIC_LOAD_XOR:
   4372     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
   4373   case ISD::ATOMIC_LOAD_NAND:
   4374     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
   4375   case ISD::ATOMIC_LOAD_MIN:
   4376     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
   4377   case ISD::ATOMIC_LOAD_MAX:
   4378     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
   4379   case ISD::ATOMIC_LOAD_UMIN:
   4380     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
   4381   case ISD::ATOMIC_LOAD_UMAX:
   4382     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
   4383   case ISD::ATOMIC_CMP_SWAP:
   4384     return lowerATOMIC_CMP_SWAP(Op, DAG);
   4385   case ISD::STACKSAVE:
   4386     return lowerSTACKSAVE(Op, DAG);
   4387   case ISD::STACKRESTORE:
   4388     return lowerSTACKRESTORE(Op, DAG);
   4389   case ISD::PREFETCH:
   4390     return lowerPREFETCH(Op, DAG);
   4391   case ISD::INTRINSIC_W_CHAIN:
   4392     return lowerINTRINSIC_W_CHAIN(Op, DAG);
   4393   case ISD::INTRINSIC_WO_CHAIN:
   4394     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
   4395   case ISD::BUILD_VECTOR:
   4396     return lowerBUILD_VECTOR(Op, DAG);
   4397   case ISD::VECTOR_SHUFFLE:
   4398     return lowerVECTOR_SHUFFLE(Op, DAG);
   4399   case ISD::SCALAR_TO_VECTOR:
   4400     return lowerSCALAR_TO_VECTOR(Op, DAG);
   4401   case ISD::INSERT_VECTOR_ELT:
   4402     return lowerINSERT_VECTOR_ELT(Op, DAG);
   4403   case ISD::EXTRACT_VECTOR_ELT:
   4404     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
   4405   case ISD::SIGN_EXTEND_VECTOR_INREG:
   4406     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
   4407   case ISD::ZERO_EXTEND_VECTOR_INREG:
   4408     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
   4409   case ISD::SHL:
   4410     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
   4411   case ISD::SRL:
   4412     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
   4413   case ISD::SRA:
   4414     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
   4415   default:
   4416     llvm_unreachable("Unexpected node to lower");
   4417   }
   4418 }
   4419 
   4420 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
   4421 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
   4422   switch ((SystemZISD::NodeType)Opcode) {
   4423     case SystemZISD::FIRST_NUMBER: break;
   4424     OPCODE(RET_FLAG);
   4425     OPCODE(CALL);
   4426     OPCODE(SIBCALL);
   4427     OPCODE(TLS_GDCALL);
   4428     OPCODE(TLS_LDCALL);
   4429     OPCODE(PCREL_WRAPPER);
   4430     OPCODE(PCREL_OFFSET);
   4431     OPCODE(IABS);
   4432     OPCODE(ICMP);
   4433     OPCODE(FCMP);
   4434     OPCODE(TM);
   4435     OPCODE(BR_CCMASK);
   4436     OPCODE(SELECT_CCMASK);
   4437     OPCODE(ADJDYNALLOC);
   4438     OPCODE(EXTRACT_ACCESS);
   4439     OPCODE(POPCNT);
   4440     OPCODE(UMUL_LOHI64);
   4441     OPCODE(SDIVREM32);
   4442     OPCODE(SDIVREM64);
   4443     OPCODE(UDIVREM32);
   4444     OPCODE(UDIVREM64);
   4445     OPCODE(MVC);
   4446     OPCODE(MVC_LOOP);
   4447     OPCODE(NC);
   4448     OPCODE(NC_LOOP);
   4449     OPCODE(OC);
   4450     OPCODE(OC_LOOP);
   4451     OPCODE(XC);
   4452     OPCODE(XC_LOOP);
   4453     OPCODE(CLC);
   4454     OPCODE(CLC_LOOP);
   4455     OPCODE(STPCPY);
   4456     OPCODE(STRCMP);
   4457     OPCODE(SEARCH_STRING);
   4458     OPCODE(IPM);
   4459     OPCODE(SERIALIZE);
   4460     OPCODE(TBEGIN);
   4461     OPCODE(TBEGIN_NOFLOAT);
   4462     OPCODE(TEND);
   4463     OPCODE(BYTE_MASK);
   4464     OPCODE(ROTATE_MASK);
   4465     OPCODE(REPLICATE);
   4466     OPCODE(JOIN_DWORDS);
   4467     OPCODE(SPLAT);
   4468     OPCODE(MERGE_HIGH);
   4469     OPCODE(MERGE_LOW);
   4470     OPCODE(SHL_DOUBLE);
   4471     OPCODE(PERMUTE_DWORDS);
   4472     OPCODE(PERMUTE);
   4473     OPCODE(PACK);
   4474     OPCODE(PACKS_CC);
   4475     OPCODE(PACKLS_CC);
   4476     OPCODE(UNPACK_HIGH);
   4477     OPCODE(UNPACKL_HIGH);
   4478     OPCODE(UNPACK_LOW);
   4479     OPCODE(UNPACKL_LOW);
   4480     OPCODE(VSHL_BY_SCALAR);
   4481     OPCODE(VSRL_BY_SCALAR);
   4482     OPCODE(VSRA_BY_SCALAR);
   4483     OPCODE(VSUM);
   4484     OPCODE(VICMPE);
   4485     OPCODE(VICMPH);
   4486     OPCODE(VICMPHL);
   4487     OPCODE(VICMPES);
   4488     OPCODE(VICMPHS);
   4489     OPCODE(VICMPHLS);
   4490     OPCODE(VFCMPE);
   4491     OPCODE(VFCMPH);
   4492     OPCODE(VFCMPHE);
   4493     OPCODE(VFCMPES);
   4494     OPCODE(VFCMPHS);
   4495     OPCODE(VFCMPHES);
   4496     OPCODE(VFTCI);
   4497     OPCODE(VEXTEND);
   4498     OPCODE(VROUND);
   4499     OPCODE(VTM);
   4500     OPCODE(VFAE_CC);
   4501     OPCODE(VFAEZ_CC);
   4502     OPCODE(VFEE_CC);
   4503     OPCODE(VFEEZ_CC);
   4504     OPCODE(VFENE_CC);
   4505     OPCODE(VFENEZ_CC);
   4506     OPCODE(VISTR_CC);
   4507     OPCODE(VSTRC_CC);
   4508     OPCODE(VSTRCZ_CC);
   4509     OPCODE(ATOMIC_SWAPW);
   4510     OPCODE(ATOMIC_LOADW_ADD);
   4511     OPCODE(ATOMIC_LOADW_SUB);
   4512     OPCODE(ATOMIC_LOADW_AND);
   4513     OPCODE(ATOMIC_LOADW_OR);
   4514     OPCODE(ATOMIC_LOADW_XOR);
   4515     OPCODE(ATOMIC_LOADW_NAND);
   4516     OPCODE(ATOMIC_LOADW_MIN);
   4517     OPCODE(ATOMIC_LOADW_MAX);
   4518     OPCODE(ATOMIC_LOADW_UMIN);
   4519     OPCODE(ATOMIC_LOADW_UMAX);
   4520     OPCODE(ATOMIC_CMP_SWAPW);
   4521     OPCODE(PREFETCH);
   4522   }
   4523   return nullptr;
   4524 #undef OPCODE
   4525 }
   4526 
   4527 // Return true if VT is a vector whose elements are a whole number of bytes
   4528 // in width.
   4529 static bool canTreatAsByteVector(EVT VT) {
   4530   return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
   4531 }
   4532 
   4533 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
   4534 // producing a result of type ResVT.  Op is a possibly bitcast version
   4535 // of the input vector and Index is the index (based on type VecVT) that
   4536 // should be extracted.  Return the new extraction if a simplification
   4537 // was possible or if Force is true.
   4538 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT,
   4539                                               SDValue Op, unsigned Index,
   4540                                               DAGCombinerInfo &DCI,
   4541                                               bool Force) const {
   4542   SelectionDAG &DAG = DCI.DAG;
   4543 
   4544   // The number of bytes being extracted.
   4545   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
   4546 
   4547   for (;;) {
   4548     unsigned Opcode = Op.getOpcode();
   4549     if (Opcode == ISD::BITCAST)
   4550       // Look through bitcasts.
   4551       Op = Op.getOperand(0);
   4552     else if (Opcode == ISD::VECTOR_SHUFFLE &&
   4553              canTreatAsByteVector(Op.getValueType())) {
   4554       // Get a VPERM-like permute mask and see whether the bytes covered
   4555       // by the extracted element are a contiguous sequence from one
   4556       // source operand.
   4557       SmallVector<int, SystemZ::VectorBytes> Bytes;
   4558       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
   4559       int First;
   4560       if (!getShuffleInput(Bytes, Index * BytesPerElement,
   4561                            BytesPerElement, First))
   4562         break;
   4563       if (First < 0)
   4564         return DAG.getUNDEF(ResVT);
   4565       // Make sure the contiguous sequence starts at a multiple of the
   4566       // original element size.
   4567       unsigned Byte = unsigned(First) % Bytes.size();
   4568       if (Byte % BytesPerElement != 0)
   4569         break;
   4570       // We can get the extracted value directly from an input.
   4571       Index = Byte / BytesPerElement;
   4572       Op = Op.getOperand(unsigned(First) / Bytes.size());
   4573       Force = true;
   4574     } else if (Opcode == ISD::BUILD_VECTOR &&
   4575                canTreatAsByteVector(Op.getValueType())) {
   4576       // We can only optimize this case if the BUILD_VECTOR elements are
   4577       // at least as wide as the extracted value.
   4578       EVT OpVT = Op.getValueType();
   4579       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
   4580       if (OpBytesPerElement < BytesPerElement)
   4581         break;
   4582       // Make sure that the least-significant bit of the extracted value
   4583       // is the least significant bit of an input.
   4584       unsigned End = (Index + 1) * BytesPerElement;
   4585       if (End % OpBytesPerElement != 0)
   4586         break;
   4587       // We're extracting the low part of one operand of the BUILD_VECTOR.
   4588       Op = Op.getOperand(End / OpBytesPerElement - 1);
   4589       if (!Op.getValueType().isInteger()) {
   4590         EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
   4591         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
   4592         DCI.AddToWorklist(Op.getNode());
   4593       }
   4594       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
   4595       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
   4596       if (VT != ResVT) {
   4597         DCI.AddToWorklist(Op.getNode());
   4598         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
   4599       }
   4600       return Op;
   4601     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
   4602                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
   4603                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
   4604                canTreatAsByteVector(Op.getValueType()) &&
   4605                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
   4606       // Make sure that only the unextended bits are significant.
   4607       EVT ExtVT = Op.getValueType();
   4608       EVT OpVT = Op.getOperand(0).getValueType();
   4609       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
   4610       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
   4611       unsigned Byte = Index * BytesPerElement;
   4612       unsigned SubByte = Byte % ExtBytesPerElement;
   4613       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
   4614       if (SubByte < MinSubByte ||
   4615           SubByte + BytesPerElement > ExtBytesPerElement)
   4616         break;
   4617       // Get the byte offset of the unextended element
   4618       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
   4619       // ...then add the byte offset relative to that element.
   4620       Byte += SubByte - MinSubByte;
   4621       if (Byte % BytesPerElement != 0)
   4622         break;
   4623       Op = Op.getOperand(0);
   4624       Index = Byte / BytesPerElement;
   4625       Force = true;
   4626     } else
   4627       break;
   4628   }
   4629   if (Force) {
   4630     if (Op.getValueType() != VecVT) {
   4631       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
   4632       DCI.AddToWorklist(Op.getNode());
   4633     }
   4634     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
   4635                        DAG.getConstant(Index, DL, MVT::i32));
   4636   }
   4637   return SDValue();
   4638 }
   4639 
   4640 // Optimize vector operations in scalar value Op on the basis that Op
   4641 // is truncated to TruncVT.
   4642 SDValue
   4643 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op,
   4644                                               DAGCombinerInfo &DCI) const {
   4645   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
   4646   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
   4647   // of type TruncVT.
   4648   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   4649       TruncVT.getSizeInBits() % 8 == 0) {
   4650     SDValue Vec = Op.getOperand(0);
   4651     EVT VecVT = Vec.getValueType();
   4652     if (canTreatAsByteVector(VecVT)) {
   4653       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   4654         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
   4655         unsigned TruncBytes = TruncVT.getStoreSize();
   4656         if (BytesPerElement % TruncBytes == 0) {
   4657           // Calculate the value of Y' in the above description.  We are
   4658           // splitting the original elements into Scale equal-sized pieces
   4659           // and for truncation purposes want the last (least-significant)
   4660           // of these pieces for IndexN.  This is easiest to do by calculating
   4661           // the start index of the following element and then subtracting 1.
   4662           unsigned Scale = BytesPerElement / TruncBytes;
   4663           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
   4664 
   4665           // Defer the creation of the bitcast from X to combineExtract,
   4666           // which might be able to optimize the extraction.
   4667           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
   4668                                    VecVT.getStoreSize() / TruncBytes);
   4669           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
   4670           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
   4671         }
   4672       }
   4673     }
   4674   }
   4675   return SDValue();
   4676 }
   4677 
   4678 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
   4679                                                  DAGCombinerInfo &DCI) const {
   4680   SelectionDAG &DAG = DCI.DAG;
   4681   unsigned Opcode = N->getOpcode();
   4682   if (Opcode == ISD::SIGN_EXTEND) {
   4683     // Convert (sext (ashr (shl X, C1), C2)) to
   4684     // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
   4685     // cheap as narrower ones.
   4686     SDValue N0 = N->getOperand(0);
   4687     EVT VT = N->getValueType(0);
   4688     if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
   4689       auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   4690       SDValue Inner = N0.getOperand(0);
   4691       if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
   4692         if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
   4693           unsigned Extra = (VT.getSizeInBits() -
   4694                             N0.getValueType().getSizeInBits());
   4695           unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
   4696           unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
   4697           EVT ShiftVT = N0.getOperand(1).getValueType();
   4698           SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
   4699                                     Inner.getOperand(0));
   4700           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
   4701                                     DAG.getConstant(NewShlAmt, SDLoc(Inner),
   4702                                                     ShiftVT));
   4703           return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
   4704                              DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
   4705         }
   4706       }
   4707     }
   4708   }
   4709   if (Opcode == SystemZISD::MERGE_HIGH ||
   4710       Opcode == SystemZISD::MERGE_LOW) {
   4711     SDValue Op0 = N->getOperand(0);
   4712     SDValue Op1 = N->getOperand(1);
   4713     if (Op0.getOpcode() == ISD::BITCAST)
   4714       Op0 = Op0.getOperand(0);
   4715     if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
   4716         cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
   4717       // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
   4718       // for v4f32.
   4719       if (Op1 == N->getOperand(0))
   4720         return Op1;
   4721       // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
   4722       EVT VT = Op1.getValueType();
   4723       unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
   4724       if (ElemBytes <= 4) {
   4725         Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
   4726                   SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
   4727         EVT InVT = VT.changeVectorElementTypeToInteger();
   4728         EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
   4729                                      SystemZ::VectorBytes / ElemBytes / 2);
   4730         if (VT != InVT) {
   4731           Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
   4732           DCI.AddToWorklist(Op1.getNode());
   4733         }
   4734         SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
   4735         DCI.AddToWorklist(Op.getNode());
   4736         return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   4737       }
   4738     }
   4739   }
   4740   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
   4741   // for the extraction to be done on a vMiN value, so that we can use VSTE.
   4742   // If X has wider elements then convert it to:
   4743   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
   4744   if (Opcode == ISD::STORE) {
   4745     auto *SN = cast<StoreSDNode>(N);
   4746     EVT MemVT = SN->getMemoryVT();
   4747     if (MemVT.isInteger()) {
   4748       SDValue Value = combineTruncateExtract(SDLoc(N), MemVT,
   4749                                              SN->getValue(), DCI);
   4750       if (Value.getNode()) {
   4751         DCI.AddToWorklist(Value.getNode());
   4752 
   4753         // Rewrite the store with the new form of stored value.
   4754         return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
   4755                                  SN->getBasePtr(), SN->getMemoryVT(),
   4756                                  SN->getMemOperand());
   4757       }
   4758     }
   4759   }
   4760   // Try to simplify a vector extraction.
   4761   if (Opcode == ISD::EXTRACT_VECTOR_ELT) {
   4762     if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
   4763       SDValue Op0 = N->getOperand(0);
   4764       EVT VecVT = Op0.getValueType();
   4765       return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
   4766                             IndexN->getZExtValue(), DCI, false);
   4767     }
   4768   }
   4769   // (join_dwords X, X) == (replicate X)
   4770   if (Opcode == SystemZISD::JOIN_DWORDS &&
   4771       N->getOperand(0) == N->getOperand(1))
   4772     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
   4773                        N->getOperand(0));
   4774   // (fround (extract_vector_elt X 0))
   4775   // (fround (extract_vector_elt X 1)) ->
   4776   // (extract_vector_elt (VROUND X) 0)
   4777   // (extract_vector_elt (VROUND X) 1)
   4778   //
   4779   // This is a special case since the target doesn't really support v2f32s.
   4780   if (Opcode == ISD::FP_ROUND) {
   4781     SDValue Op0 = N->getOperand(0);
   4782     if (N->getValueType(0) == MVT::f32 &&
   4783         Op0.hasOneUse() &&
   4784         Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   4785         Op0.getOperand(0).getValueType() == MVT::v2f64 &&
   4786         Op0.getOperand(1).getOpcode() == ISD::Constant &&
   4787         cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
   4788       SDValue Vec = Op0.getOperand(0);
   4789       for (auto *U : Vec->uses()) {
   4790         if (U != Op0.getNode() &&
   4791             U->hasOneUse() &&
   4792             U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   4793             U->getOperand(0) == Vec &&
   4794             U->getOperand(1).getOpcode() == ISD::Constant &&
   4795             cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
   4796           SDValue OtherRound = SDValue(*U->use_begin(), 0);
   4797           if (OtherRound.getOpcode() == ISD::FP_ROUND &&
   4798               OtherRound.getOperand(0) == SDValue(U, 0) &&
   4799               OtherRound.getValueType() == MVT::f32) {
   4800             SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
   4801                                          MVT::v4f32, Vec);
   4802             DCI.AddToWorklist(VRound.getNode());
   4803             SDValue Extract1 =
   4804               DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
   4805                           VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
   4806             DCI.AddToWorklist(Extract1.getNode());
   4807             DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
   4808             SDValue Extract0 =
   4809               DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
   4810                           VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
   4811             return Extract0;
   4812           }
   4813         }
   4814       }
   4815     }
   4816   }
   4817   return SDValue();
   4818 }
   4819 
   4820 //===----------------------------------------------------------------------===//
   4821 // Custom insertion
   4822 //===----------------------------------------------------------------------===//
   4823 
   4824 // Create a new basic block after MBB.
   4825 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
   4826   MachineFunction &MF = *MBB->getParent();
   4827   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
   4828   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
   4829   return NewMBB;
   4830 }
   4831 
   4832 // Split MBB after MI and return the new block (the one that contains
   4833 // instructions after MI).
   4834 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
   4835                                           MachineBasicBlock *MBB) {
   4836   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   4837   NewMBB->splice(NewMBB->begin(), MBB,
   4838                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   4839   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   4840   return NewMBB;
   4841 }
   4842 
   4843 // Split MBB before MI and return the new block (the one that contains MI).
   4844 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
   4845                                            MachineBasicBlock *MBB) {
   4846   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   4847   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
   4848   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   4849   return NewMBB;
   4850 }
   4851 
   4852 // Force base value Base into a register before MI.  Return the register.
   4853 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
   4854                          const SystemZInstrInfo *TII) {
   4855   if (Base.isReg())
   4856     return Base.getReg();
   4857 
   4858   MachineBasicBlock *MBB = MI->getParent();
   4859   MachineFunction &MF = *MBB->getParent();
   4860   MachineRegisterInfo &MRI = MF.getRegInfo();
   4861 
   4862   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   4863   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
   4864     .addOperand(Base).addImm(0).addReg(0);
   4865   return Reg;
   4866 }
   4867 
   4868 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
   4869 MachineBasicBlock *
   4870 SystemZTargetLowering::emitSelect(MachineInstr *MI,
   4871                                   MachineBasicBlock *MBB) const {
   4872   const SystemZInstrInfo *TII =
   4873       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   4874 
   4875   unsigned DestReg  = MI->getOperand(0).getReg();
   4876   unsigned TrueReg  = MI->getOperand(1).getReg();
   4877   unsigned FalseReg = MI->getOperand(2).getReg();
   4878   unsigned CCValid  = MI->getOperand(3).getImm();
   4879   unsigned CCMask   = MI->getOperand(4).getImm();
   4880   DebugLoc DL       = MI->getDebugLoc();
   4881 
   4882   MachineBasicBlock *StartMBB = MBB;
   4883   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
   4884   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   4885 
   4886   //  StartMBB:
   4887   //   BRC CCMask, JoinMBB
   4888   //   # fallthrough to FalseMBB
   4889   MBB = StartMBB;
   4890   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   4891     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   4892   MBB->addSuccessor(JoinMBB);
   4893   MBB->addSuccessor(FalseMBB);
   4894 
   4895   //  FalseMBB:
   4896   //   # fallthrough to JoinMBB
   4897   MBB = FalseMBB;
   4898   MBB->addSuccessor(JoinMBB);
   4899 
   4900   //  JoinMBB:
   4901   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
   4902   //  ...
   4903   MBB = JoinMBB;
   4904   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
   4905     .addReg(TrueReg).addMBB(StartMBB)
   4906     .addReg(FalseReg).addMBB(FalseMBB);
   4907 
   4908   MI->eraseFromParent();
   4909   return JoinMBB;
   4910 }
   4911 
   4912 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
   4913 // StoreOpcode is the store to use and Invert says whether the store should
   4914 // happen when the condition is false rather than true.  If a STORE ON
   4915 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
   4916 MachineBasicBlock *
   4917 SystemZTargetLowering::emitCondStore(MachineInstr *MI,
   4918                                      MachineBasicBlock *MBB,
   4919                                      unsigned StoreOpcode, unsigned STOCOpcode,
   4920                                      bool Invert) const {
   4921   const SystemZInstrInfo *TII =
   4922       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   4923 
   4924   unsigned SrcReg     = MI->getOperand(0).getReg();
   4925   MachineOperand Base = MI->getOperand(1);
   4926   int64_t Disp        = MI->getOperand(2).getImm();
   4927   unsigned IndexReg   = MI->getOperand(3).getReg();
   4928   unsigned CCValid    = MI->getOperand(4).getImm();
   4929   unsigned CCMask     = MI->getOperand(5).getImm();
   4930   DebugLoc DL         = MI->getDebugLoc();
   4931 
   4932   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
   4933 
   4934   // Use STOCOpcode if possible.  We could use different store patterns in
   4935   // order to avoid matching the index register, but the performance trade-offs
   4936   // might be more complicated in that case.
   4937   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
   4938     if (Invert)
   4939       CCMask ^= CCValid;
   4940     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
   4941       .addReg(SrcReg).addOperand(Base).addImm(Disp)
   4942       .addImm(CCValid).addImm(CCMask);
   4943     MI->eraseFromParent();
   4944     return MBB;
   4945   }
   4946 
   4947   // Get the condition needed to branch around the store.
   4948   if (!Invert)
   4949     CCMask ^= CCValid;
   4950 
   4951   MachineBasicBlock *StartMBB = MBB;
   4952   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
   4953   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   4954 
   4955   //  StartMBB:
   4956   //   BRC CCMask, JoinMBB
   4957   //   # fallthrough to FalseMBB
   4958   MBB = StartMBB;
   4959   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   4960     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   4961   MBB->addSuccessor(JoinMBB);
   4962   MBB->addSuccessor(FalseMBB);
   4963 
   4964   //  FalseMBB:
   4965   //   store %SrcReg, %Disp(%Index,%Base)
   4966   //   # fallthrough to JoinMBB
   4967   MBB = FalseMBB;
   4968   BuildMI(MBB, DL, TII->get(StoreOpcode))
   4969     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
   4970   MBB->addSuccessor(JoinMBB);
   4971 
   4972   MI->eraseFromParent();
   4973   return JoinMBB;
   4974 }
   4975 
   4976 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
   4977 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
   4978 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
   4979 // BitSize is the width of the field in bits, or 0 if this is a partword
   4980 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
   4981 // is one of the operands.  Invert says whether the field should be
   4982 // inverted after performing BinOpcode (e.g. for NAND).
   4983 MachineBasicBlock *
   4984 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
   4985                                             MachineBasicBlock *MBB,
   4986                                             unsigned BinOpcode,
   4987                                             unsigned BitSize,
   4988                                             bool Invert) const {
   4989   MachineFunction &MF = *MBB->getParent();
   4990   const SystemZInstrInfo *TII =
   4991       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   4992   MachineRegisterInfo &MRI = MF.getRegInfo();
   4993   bool IsSubWord = (BitSize < 32);
   4994 
   4995   // Extract the operands.  Base can be a register or a frame index.
   4996   // Src2 can be a register or immediate.
   4997   unsigned Dest        = MI->getOperand(0).getReg();
   4998   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   4999   int64_t Disp         = MI->getOperand(2).getImm();
   5000   MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
   5001   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
   5002   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
   5003   DebugLoc DL          = MI->getDebugLoc();
   5004   if (IsSubWord)
   5005     BitSize = MI->getOperand(6).getImm();
   5006 
   5007   // Subword operations use 32-bit registers.
   5008   const TargetRegisterClass *RC = (BitSize <= 32 ?
   5009                                    &SystemZ::GR32BitRegClass :
   5010                                    &SystemZ::GR64BitRegClass);
   5011   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   5012   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   5013 
   5014   // Get the right opcodes for the displacement.
   5015   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   5016   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   5017   assert(LOpcode && CSOpcode && "Displacement out of range");
   5018 
   5019   // Create virtual registers for temporary results.
   5020   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   5021   unsigned OldVal        = MRI.createVirtualRegister(RC);
   5022   unsigned NewVal        = (BinOpcode || IsSubWord ?
   5023                             MRI.createVirtualRegister(RC) : Src2.getReg());
   5024   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   5025   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   5026 
   5027   // Insert a basic block for the main loop.
   5028   MachineBasicBlock *StartMBB = MBB;
   5029   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
   5030   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   5031 
   5032   //  StartMBB:
   5033   //   ...
   5034   //   %OrigVal = L Disp(%Base)
   5035   //   # fall through to LoopMMB
   5036   MBB = StartMBB;
   5037   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   5038     .addOperand(Base).addImm(Disp).addReg(0);
   5039   MBB->addSuccessor(LoopMBB);
   5040 
   5041   //  LoopMBB:
   5042   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
   5043   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   5044   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
   5045   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   5046   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   5047   //   JNE LoopMBB
   5048   //   # fall through to DoneMMB
   5049   MBB = LoopMBB;
   5050   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   5051     .addReg(OrigVal).addMBB(StartMBB)
   5052     .addReg(Dest).addMBB(LoopMBB);
   5053   if (IsSubWord)
   5054     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   5055       .addReg(OldVal).addReg(BitShift).addImm(0);
   5056   if (Invert) {
   5057     // Perform the operation normally and then invert every bit of the field.
   5058     unsigned Tmp = MRI.createVirtualRegister(RC);
   5059     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
   5060       .addReg(RotatedOldVal).addOperand(Src2);
   5061     if (BitSize <= 32)
   5062       // XILF with the upper BitSize bits set.
   5063       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
   5064         .addReg(Tmp).addImm(-1U << (32 - BitSize));
   5065     else {
   5066       // Use LCGR and add -1 to the result, which is more compact than
   5067       // an XILF, XILH pair.
   5068       unsigned Tmp2 = MRI.createVirtualRegister(RC);
   5069       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
   5070       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
   5071         .addReg(Tmp2).addImm(-1);
   5072     }
   5073   } else if (BinOpcode)
   5074     // A simply binary operation.
   5075     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
   5076       .addReg(RotatedOldVal).addOperand(Src2);
   5077   else if (IsSubWord)
   5078     // Use RISBG to rotate Src2 into position and use it to replace the
   5079     // field in RotatedOldVal.
   5080     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
   5081       .addReg(RotatedOldVal).addReg(Src2.getReg())
   5082       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
   5083   if (IsSubWord)
   5084     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   5085       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   5086   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   5087     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   5088   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5089     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   5090   MBB->addSuccessor(LoopMBB);
   5091   MBB->addSuccessor(DoneMBB);
   5092 
   5093   MI->eraseFromParent();
   5094   return DoneMBB;
   5095 }
   5096 
   5097 // Implement EmitInstrWithCustomInserter for pseudo
   5098 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
   5099 // instruction that should be used to compare the current field with the
   5100 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
   5101 // for when the current field should be kept.  BitSize is the width of
   5102 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
   5103 MachineBasicBlock *
   5104 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
   5105                                             MachineBasicBlock *MBB,
   5106                                             unsigned CompareOpcode,
   5107                                             unsigned KeepOldMask,
   5108                                             unsigned BitSize) const {
   5109   MachineFunction &MF = *MBB->getParent();
   5110   const SystemZInstrInfo *TII =
   5111       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5112   MachineRegisterInfo &MRI = MF.getRegInfo();
   5113   bool IsSubWord = (BitSize < 32);
   5114 
   5115   // Extract the operands.  Base can be a register or a frame index.
   5116   unsigned Dest        = MI->getOperand(0).getReg();
   5117   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   5118   int64_t  Disp        = MI->getOperand(2).getImm();
   5119   unsigned Src2        = MI->getOperand(3).getReg();
   5120   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
   5121   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
   5122   DebugLoc DL          = MI->getDebugLoc();
   5123   if (IsSubWord)
   5124     BitSize = MI->getOperand(6).getImm();
   5125 
   5126   // Subword operations use 32-bit registers.
   5127   const TargetRegisterClass *RC = (BitSize <= 32 ?
   5128                                    &SystemZ::GR32BitRegClass :
   5129                                    &SystemZ::GR64BitRegClass);
   5130   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   5131   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   5132 
   5133   // Get the right opcodes for the displacement.
   5134   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   5135   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   5136   assert(LOpcode && CSOpcode && "Displacement out of range");
   5137 
   5138   // Create virtual registers for temporary results.
   5139   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   5140   unsigned OldVal        = MRI.createVirtualRegister(RC);
   5141   unsigned NewVal        = MRI.createVirtualRegister(RC);
   5142   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   5143   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
   5144   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   5145 
   5146   // Insert 3 basic blocks for the loop.
   5147   MachineBasicBlock *StartMBB  = MBB;
   5148   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
   5149   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
   5150   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
   5151   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
   5152 
   5153   //  StartMBB:
   5154   //   ...
   5155   //   %OrigVal     = L Disp(%Base)
   5156   //   # fall through to LoopMMB
   5157   MBB = StartMBB;
   5158   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   5159     .addOperand(Base).addImm(Disp).addReg(0);
   5160   MBB->addSuccessor(LoopMBB);
   5161 
   5162   //  LoopMBB:
   5163   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
   5164   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   5165   //   CompareOpcode %RotatedOldVal, %Src2
   5166   //   BRC KeepOldMask, UpdateMBB
   5167   MBB = LoopMBB;
   5168   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   5169     .addReg(OrigVal).addMBB(StartMBB)
   5170     .addReg(Dest).addMBB(UpdateMBB);
   5171   if (IsSubWord)
   5172     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   5173       .addReg(OldVal).addReg(BitShift).addImm(0);
   5174   BuildMI(MBB, DL, TII->get(CompareOpcode))
   5175     .addReg(RotatedOldVal).addReg(Src2);
   5176   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5177     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
   5178   MBB->addSuccessor(UpdateMBB);
   5179   MBB->addSuccessor(UseAltMBB);
   5180 
   5181   //  UseAltMBB:
   5182   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
   5183   //   # fall through to UpdateMMB
   5184   MBB = UseAltMBB;
   5185   if (IsSubWord)
   5186     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
   5187       .addReg(RotatedOldVal).addReg(Src2)
   5188       .addImm(32).addImm(31 + BitSize).addImm(0);
   5189   MBB->addSuccessor(UpdateMBB);
   5190 
   5191   //  UpdateMBB:
   5192   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
   5193   //                        [ %RotatedAltVal, UseAltMBB ]
   5194   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   5195   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   5196   //   JNE LoopMBB
   5197   //   # fall through to DoneMMB
   5198   MBB = UpdateMBB;
   5199   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
   5200     .addReg(RotatedOldVal).addMBB(LoopMBB)
   5201     .addReg(RotatedAltVal).addMBB(UseAltMBB);
   5202   if (IsSubWord)
   5203     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   5204       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   5205   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   5206     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   5207   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5208     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   5209   MBB->addSuccessor(LoopMBB);
   5210   MBB->addSuccessor(DoneMBB);
   5211 
   5212   MI->eraseFromParent();
   5213   return DoneMBB;
   5214 }
   5215 
   5216 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
   5217 // instruction MI.
   5218 MachineBasicBlock *
   5219 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
   5220                                           MachineBasicBlock *MBB) const {
   5221   MachineFunction &MF = *MBB->getParent();
   5222   const SystemZInstrInfo *TII =
   5223       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5224   MachineRegisterInfo &MRI = MF.getRegInfo();
   5225 
   5226   // Extract the operands.  Base can be a register or a frame index.
   5227   unsigned Dest        = MI->getOperand(0).getReg();
   5228   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   5229   int64_t  Disp        = MI->getOperand(2).getImm();
   5230   unsigned OrigCmpVal  = MI->getOperand(3).getReg();
   5231   unsigned OrigSwapVal = MI->getOperand(4).getReg();
   5232   unsigned BitShift    = MI->getOperand(5).getReg();
   5233   unsigned NegBitShift = MI->getOperand(6).getReg();
   5234   int64_t  BitSize     = MI->getOperand(7).getImm();
   5235   DebugLoc DL          = MI->getDebugLoc();
   5236 
   5237   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
   5238 
   5239   // Get the right opcodes for the displacement.
   5240   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
   5241   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
   5242   assert(LOpcode && CSOpcode && "Displacement out of range");
   5243 
   5244   // Create virtual registers for temporary results.
   5245   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
   5246   unsigned OldVal       = MRI.createVirtualRegister(RC);
   5247   unsigned CmpVal       = MRI.createVirtualRegister(RC);
   5248   unsigned SwapVal      = MRI.createVirtualRegister(RC);
   5249   unsigned StoreVal     = MRI.createVirtualRegister(RC);
   5250   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
   5251   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
   5252   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
   5253 
   5254   // Insert 2 basic blocks for the loop.
   5255   MachineBasicBlock *StartMBB = MBB;
   5256   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
   5257   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   5258   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
   5259 
   5260   //  StartMBB:
   5261   //   ...
   5262   //   %OrigOldVal     = L Disp(%Base)
   5263   //   # fall through to LoopMMB
   5264   MBB = StartMBB;
   5265   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
   5266     .addOperand(Base).addImm(Disp).addReg(0);
   5267   MBB->addSuccessor(LoopMBB);
   5268 
   5269   //  LoopMBB:
   5270   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
   5271   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
   5272   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
   5273   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
   5274   //                      ^^ The low BitSize bits contain the field
   5275   //                         of interest.
   5276   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
   5277   //                      ^^ Replace the upper 32-BitSize bits of the
   5278   //                         comparison value with those that we loaded,
   5279   //                         so that we can use a full word comparison.
   5280   //   CR %Dest, %RetryCmpVal
   5281   //   JNE DoneMBB
   5282   //   # Fall through to SetMBB
   5283   MBB = LoopMBB;
   5284   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   5285     .addReg(OrigOldVal).addMBB(StartMBB)
   5286     .addReg(RetryOldVal).addMBB(SetMBB);
   5287   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
   5288     .addReg(OrigCmpVal).addMBB(StartMBB)
   5289     .addReg(RetryCmpVal).addMBB(SetMBB);
   5290   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
   5291     .addReg(OrigSwapVal).addMBB(StartMBB)
   5292     .addReg(RetrySwapVal).addMBB(SetMBB);
   5293   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
   5294     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
   5295   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
   5296     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   5297   BuildMI(MBB, DL, TII->get(SystemZ::CR))
   5298     .addReg(Dest).addReg(RetryCmpVal);
   5299   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5300     .addImm(SystemZ::CCMASK_ICMP)
   5301     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
   5302   MBB->addSuccessor(DoneMBB);
   5303   MBB->addSuccessor(SetMBB);
   5304 
   5305   //  SetMBB:
   5306   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
   5307   //                      ^^ Replace the upper 32-BitSize bits of the new
   5308   //                         value with those that we loaded.
   5309   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
   5310   //                      ^^ Rotate the new field to its proper position.
   5311   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
   5312   //   JNE LoopMBB
   5313   //   # fall through to ExitMMB
   5314   MBB = SetMBB;
   5315   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
   5316     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   5317   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
   5318     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
   5319   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
   5320     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
   5321   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5322     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   5323   MBB->addSuccessor(LoopMBB);
   5324   MBB->addSuccessor(DoneMBB);
   5325 
   5326   MI->eraseFromParent();
   5327   return DoneMBB;
   5328 }
   5329 
   5330 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
   5331 // if the high register of the GR128 value must be cleared or false if
   5332 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
   5333 // and subreg_l64 when extending a GR64.
   5334 MachineBasicBlock *
   5335 SystemZTargetLowering::emitExt128(MachineInstr *MI,
   5336                                   MachineBasicBlock *MBB,
   5337                                   bool ClearEven, unsigned SubReg) const {
   5338   MachineFunction &MF = *MBB->getParent();
   5339   const SystemZInstrInfo *TII =
   5340       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5341   MachineRegisterInfo &MRI = MF.getRegInfo();
   5342   DebugLoc DL = MI->getDebugLoc();
   5343 
   5344   unsigned Dest  = MI->getOperand(0).getReg();
   5345   unsigned Src   = MI->getOperand(1).getReg();
   5346   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   5347 
   5348   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
   5349   if (ClearEven) {
   5350     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   5351     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
   5352 
   5353     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
   5354       .addImm(0);
   5355     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
   5356       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
   5357     In128 = NewIn128;
   5358   }
   5359   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
   5360     .addReg(In128).addReg(Src).addImm(SubReg);
   5361 
   5362   MI->eraseFromParent();
   5363   return MBB;
   5364 }
   5365 
   5366 MachineBasicBlock *
   5367 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
   5368                                          MachineBasicBlock *MBB,
   5369                                          unsigned Opcode) const {
   5370   MachineFunction &MF = *MBB->getParent();
   5371   const SystemZInstrInfo *TII =
   5372       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5373   MachineRegisterInfo &MRI = MF.getRegInfo();
   5374   DebugLoc DL = MI->getDebugLoc();
   5375 
   5376   MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
   5377   uint64_t       DestDisp = MI->getOperand(1).getImm();
   5378   MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
   5379   uint64_t       SrcDisp  = MI->getOperand(3).getImm();
   5380   uint64_t       Length   = MI->getOperand(4).getImm();
   5381 
   5382   // When generating more than one CLC, all but the last will need to
   5383   // branch to the end when a difference is found.
   5384   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
   5385                                splitBlockAfter(MI, MBB) : nullptr);
   5386 
   5387   // Check for the loop form, in which operand 5 is the trip count.
   5388   if (MI->getNumExplicitOperands() > 5) {
   5389     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
   5390 
   5391     uint64_t StartCountReg = MI->getOperand(5).getReg();
   5392     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
   5393     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
   5394                               forceReg(MI, DestBase, TII));
   5395 
   5396     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
   5397     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
   5398     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
   5399                             MRI.createVirtualRegister(RC));
   5400     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
   5401     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
   5402                             MRI.createVirtualRegister(RC));
   5403 
   5404     RC = &SystemZ::GR64BitRegClass;
   5405     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
   5406     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
   5407 
   5408     MachineBasicBlock *StartMBB = MBB;
   5409     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
   5410     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
   5411     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
   5412 
   5413     //  StartMBB:
   5414     //   # fall through to LoopMMB
   5415     MBB->addSuccessor(LoopMBB);
   5416 
   5417     //  LoopMBB:
   5418     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
   5419     //                      [ %NextDestReg, NextMBB ]
   5420     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
   5421     //                     [ %NextSrcReg, NextMBB ]
   5422     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
   5423     //                       [ %NextCountReg, NextMBB ]
   5424     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
   5425     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
   5426     //   ( JLH EndMBB )
   5427     //
   5428     // The prefetch is used only for MVC.  The JLH is used only for CLC.
   5429     MBB = LoopMBB;
   5430 
   5431     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
   5432       .addReg(StartDestReg).addMBB(StartMBB)
   5433       .addReg(NextDestReg).addMBB(NextMBB);
   5434     if (!HaveSingleBase)
   5435       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
   5436         .addReg(StartSrcReg).addMBB(StartMBB)
   5437         .addReg(NextSrcReg).addMBB(NextMBB);
   5438     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
   5439       .addReg(StartCountReg).addMBB(StartMBB)
   5440       .addReg(NextCountReg).addMBB(NextMBB);
   5441     if (Opcode == SystemZ::MVC)
   5442       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
   5443         .addImm(SystemZ::PFD_WRITE)
   5444         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
   5445     BuildMI(MBB, DL, TII->get(Opcode))
   5446       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
   5447       .addReg(ThisSrcReg).addImm(SrcDisp);
   5448     if (EndMBB) {
   5449       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5450         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   5451         .addMBB(EndMBB);
   5452       MBB->addSuccessor(EndMBB);
   5453       MBB->addSuccessor(NextMBB);
   5454     }
   5455 
   5456     // NextMBB:
   5457     //   %NextDestReg = LA 256(%ThisDestReg)
   5458     //   %NextSrcReg = LA 256(%ThisSrcReg)
   5459     //   %NextCountReg = AGHI %ThisCountReg, -1
   5460     //   CGHI %NextCountReg, 0
   5461     //   JLH LoopMBB
   5462     //   # fall through to DoneMMB
   5463     //
   5464     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
   5465     MBB = NextMBB;
   5466 
   5467     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
   5468       .addReg(ThisDestReg).addImm(256).addReg(0);
   5469     if (!HaveSingleBase)
   5470       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
   5471         .addReg(ThisSrcReg).addImm(256).addReg(0);
   5472     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
   5473       .addReg(ThisCountReg).addImm(-1);
   5474     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
   5475       .addReg(NextCountReg).addImm(0);
   5476     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5477       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   5478       .addMBB(LoopMBB);
   5479     MBB->addSuccessor(LoopMBB);
   5480     MBB->addSuccessor(DoneMBB);
   5481 
   5482     DestBase = MachineOperand::CreateReg(NextDestReg, false);
   5483     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
   5484     Length &= 255;
   5485     MBB = DoneMBB;
   5486   }
   5487   // Handle any remaining bytes with straight-line code.
   5488   while (Length > 0) {
   5489     uint64_t ThisLength = std::min(Length, uint64_t(256));
   5490     // The previous iteration might have created out-of-range displacements.
   5491     // Apply them using LAY if so.
   5492     if (!isUInt<12>(DestDisp)) {
   5493       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   5494       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
   5495         .addOperand(DestBase).addImm(DestDisp).addReg(0);
   5496       DestBase = MachineOperand::CreateReg(Reg, false);
   5497       DestDisp = 0;
   5498     }
   5499     if (!isUInt<12>(SrcDisp)) {
   5500       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   5501       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
   5502         .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
   5503       SrcBase = MachineOperand::CreateReg(Reg, false);
   5504       SrcDisp = 0;
   5505     }
   5506     BuildMI(*MBB, MI, DL, TII->get(Opcode))
   5507       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
   5508       .addOperand(SrcBase).addImm(SrcDisp);
   5509     DestDisp += ThisLength;
   5510     SrcDisp += ThisLength;
   5511     Length -= ThisLength;
   5512     // If there's another CLC to go, branch to the end if a difference
   5513     // was found.
   5514     if (EndMBB && Length > 0) {
   5515       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
   5516       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5517         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   5518         .addMBB(EndMBB);
   5519       MBB->addSuccessor(EndMBB);
   5520       MBB->addSuccessor(NextMBB);
   5521       MBB = NextMBB;
   5522     }
   5523   }
   5524   if (EndMBB) {
   5525     MBB->addSuccessor(EndMBB);
   5526     MBB = EndMBB;
   5527     MBB->addLiveIn(SystemZ::CC);
   5528   }
   5529 
   5530   MI->eraseFromParent();
   5531   return MBB;
   5532 }
   5533 
   5534 // Decompose string pseudo-instruction MI into a loop that continually performs
   5535 // Opcode until CC != 3.
   5536 MachineBasicBlock *
   5537 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
   5538                                          MachineBasicBlock *MBB,
   5539                                          unsigned Opcode) const {
   5540   MachineFunction &MF = *MBB->getParent();
   5541   const SystemZInstrInfo *TII =
   5542       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5543   MachineRegisterInfo &MRI = MF.getRegInfo();
   5544   DebugLoc DL = MI->getDebugLoc();
   5545 
   5546   uint64_t End1Reg   = MI->getOperand(0).getReg();
   5547   uint64_t Start1Reg = MI->getOperand(1).getReg();
   5548   uint64_t Start2Reg = MI->getOperand(2).getReg();
   5549   uint64_t CharReg   = MI->getOperand(3).getReg();
   5550 
   5551   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
   5552   uint64_t This1Reg = MRI.createVirtualRegister(RC);
   5553   uint64_t This2Reg = MRI.createVirtualRegister(RC);
   5554   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
   5555 
   5556   MachineBasicBlock *StartMBB = MBB;
   5557   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
   5558   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
   5559 
   5560   //  StartMBB:
   5561   //   # fall through to LoopMMB
   5562   MBB->addSuccessor(LoopMBB);
   5563 
   5564   //  LoopMBB:
   5565   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
   5566   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
   5567   //   R0L = %CharReg
   5568   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
   5569   //   JO LoopMBB
   5570   //   # fall through to DoneMMB
   5571   //
   5572   // The load of R0L can be hoisted by post-RA LICM.
   5573   MBB = LoopMBB;
   5574 
   5575   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
   5576     .addReg(Start1Reg).addMBB(StartMBB)
   5577     .addReg(End1Reg).addMBB(LoopMBB);
   5578   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
   5579     .addReg(Start2Reg).addMBB(StartMBB)
   5580     .addReg(End2Reg).addMBB(LoopMBB);
   5581   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
   5582   BuildMI(MBB, DL, TII->get(Opcode))
   5583     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
   5584     .addReg(This1Reg).addReg(This2Reg);
   5585   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   5586     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
   5587   MBB->addSuccessor(LoopMBB);
   5588   MBB->addSuccessor(DoneMBB);
   5589 
   5590   DoneMBB->addLiveIn(SystemZ::CC);
   5591 
   5592   MI->eraseFromParent();
   5593   return DoneMBB;
   5594 }
   5595 
   5596 // Update TBEGIN instruction with final opcode and register clobbers.
   5597 MachineBasicBlock *
   5598 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI,
   5599                                             MachineBasicBlock *MBB,
   5600                                             unsigned Opcode,
   5601                                             bool NoFloat) const {
   5602   MachineFunction &MF = *MBB->getParent();
   5603   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
   5604   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
   5605 
   5606   // Update opcode.
   5607   MI->setDesc(TII->get(Opcode));
   5608 
   5609   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
   5610   // Make sure to add the corresponding GRSM bits if they are missing.
   5611   uint64_t Control = MI->getOperand(2).getImm();
   5612   static const unsigned GPRControlBit[16] = {
   5613     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
   5614     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
   5615   };
   5616   Control |= GPRControlBit[15];
   5617   if (TFI->hasFP(MF))
   5618     Control |= GPRControlBit[11];
   5619   MI->getOperand(2).setImm(Control);
   5620 
   5621   // Add GPR clobbers.
   5622   for (int I = 0; I < 16; I++) {
   5623     if ((Control & GPRControlBit[I]) == 0) {
   5624       unsigned Reg = SystemZMC::GR64Regs[I];
   5625       MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
   5626     }
   5627   }
   5628 
   5629   // Add FPR/VR clobbers.
   5630   if (!NoFloat && (Control & 4) != 0) {
   5631     if (Subtarget.hasVector()) {
   5632       for (int I = 0; I < 32; I++) {
   5633         unsigned Reg = SystemZMC::VR128Regs[I];
   5634         MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
   5635       }
   5636     } else {
   5637       for (int I = 0; I < 16; I++) {
   5638         unsigned Reg = SystemZMC::FP64Regs[I];
   5639         MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
   5640       }
   5641     }
   5642   }
   5643 
   5644   return MBB;
   5645 }
   5646 
   5647 MachineBasicBlock *
   5648 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI,
   5649                                           MachineBasicBlock *MBB,
   5650                                           unsigned Opcode) const {
   5651   MachineFunction &MF = *MBB->getParent();
   5652   MachineRegisterInfo *MRI = &MF.getRegInfo();
   5653   const SystemZInstrInfo *TII =
   5654       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   5655   DebugLoc DL = MI->getDebugLoc();
   5656 
   5657   unsigned SrcReg = MI->getOperand(0).getReg();
   5658 
   5659   // Create new virtual register of the same class as source.
   5660   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
   5661   unsigned DstReg = MRI->createVirtualRegister(RC);
   5662 
   5663   // Replace pseudo with a normal load-and-test that models the def as
   5664   // well.
   5665   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
   5666     .addReg(SrcReg);
   5667   MI->eraseFromParent();
   5668 
   5669   return MBB;
   5670 }
   5671 
   5672 MachineBasicBlock *SystemZTargetLowering::
   5673 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
   5674   switch (MI->getOpcode()) {
   5675   case SystemZ::Select32Mux:
   5676   case SystemZ::Select32:
   5677   case SystemZ::SelectF32:
   5678   case SystemZ::Select64:
   5679   case SystemZ::SelectF64:
   5680   case SystemZ::SelectF128:
   5681     return emitSelect(MI, MBB);
   5682 
   5683   case SystemZ::CondStore8Mux:
   5684     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
   5685   case SystemZ::CondStore8MuxInv:
   5686     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
   5687   case SystemZ::CondStore16Mux:
   5688     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
   5689   case SystemZ::CondStore16MuxInv:
   5690     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
   5691   case SystemZ::CondStore8:
   5692     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
   5693   case SystemZ::CondStore8Inv:
   5694     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
   5695   case SystemZ::CondStore16:
   5696     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
   5697   case SystemZ::CondStore16Inv:
   5698     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
   5699   case SystemZ::CondStore32:
   5700     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
   5701   case SystemZ::CondStore32Inv:
   5702     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
   5703   case SystemZ::CondStore64:
   5704     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
   5705   case SystemZ::CondStore64Inv:
   5706     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
   5707   case SystemZ::CondStoreF32:
   5708     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
   5709   case SystemZ::CondStoreF32Inv:
   5710     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
   5711   case SystemZ::CondStoreF64:
   5712     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
   5713   case SystemZ::CondStoreF64Inv:
   5714     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
   5715 
   5716   case SystemZ::AEXT128_64:
   5717     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
   5718   case SystemZ::ZEXT128_32:
   5719     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
   5720   case SystemZ::ZEXT128_64:
   5721     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
   5722 
   5723   case SystemZ::ATOMIC_SWAPW:
   5724     return emitAtomicLoadBinary(MI, MBB, 0, 0);
   5725   case SystemZ::ATOMIC_SWAP_32:
   5726     return emitAtomicLoadBinary(MI, MBB, 0, 32);
   5727   case SystemZ::ATOMIC_SWAP_64:
   5728     return emitAtomicLoadBinary(MI, MBB, 0, 64);
   5729 
   5730   case SystemZ::ATOMIC_LOADW_AR:
   5731     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
   5732   case SystemZ::ATOMIC_LOADW_AFI:
   5733     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
   5734   case SystemZ::ATOMIC_LOAD_AR:
   5735     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
   5736   case SystemZ::ATOMIC_LOAD_AHI:
   5737     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
   5738   case SystemZ::ATOMIC_LOAD_AFI:
   5739     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
   5740   case SystemZ::ATOMIC_LOAD_AGR:
   5741     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
   5742   case SystemZ::ATOMIC_LOAD_AGHI:
   5743     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
   5744   case SystemZ::ATOMIC_LOAD_AGFI:
   5745     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
   5746 
   5747   case SystemZ::ATOMIC_LOADW_SR:
   5748     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
   5749   case SystemZ::ATOMIC_LOAD_SR:
   5750     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
   5751   case SystemZ::ATOMIC_LOAD_SGR:
   5752     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
   5753 
   5754   case SystemZ::ATOMIC_LOADW_NR:
   5755     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
   5756   case SystemZ::ATOMIC_LOADW_NILH:
   5757     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
   5758   case SystemZ::ATOMIC_LOAD_NR:
   5759     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
   5760   case SystemZ::ATOMIC_LOAD_NILL:
   5761     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
   5762   case SystemZ::ATOMIC_LOAD_NILH:
   5763     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
   5764   case SystemZ::ATOMIC_LOAD_NILF:
   5765     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
   5766   case SystemZ::ATOMIC_LOAD_NGR:
   5767     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
   5768   case SystemZ::ATOMIC_LOAD_NILL64:
   5769     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
   5770   case SystemZ::ATOMIC_LOAD_NILH64:
   5771     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
   5772   case SystemZ::ATOMIC_LOAD_NIHL64:
   5773     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
   5774   case SystemZ::ATOMIC_LOAD_NIHH64:
   5775     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
   5776   case SystemZ::ATOMIC_LOAD_NILF64:
   5777     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
   5778   case SystemZ::ATOMIC_LOAD_NIHF64:
   5779     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
   5780 
   5781   case SystemZ::ATOMIC_LOADW_OR:
   5782     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
   5783   case SystemZ::ATOMIC_LOADW_OILH:
   5784     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
   5785   case SystemZ::ATOMIC_LOAD_OR:
   5786     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
   5787   case SystemZ::ATOMIC_LOAD_OILL:
   5788     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
   5789   case SystemZ::ATOMIC_LOAD_OILH:
   5790     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
   5791   case SystemZ::ATOMIC_LOAD_OILF:
   5792     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
   5793   case SystemZ::ATOMIC_LOAD_OGR:
   5794     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
   5795   case SystemZ::ATOMIC_LOAD_OILL64:
   5796     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
   5797   case SystemZ::ATOMIC_LOAD_OILH64:
   5798     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
   5799   case SystemZ::ATOMIC_LOAD_OIHL64:
   5800     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
   5801   case SystemZ::ATOMIC_LOAD_OIHH64:
   5802     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
   5803   case SystemZ::ATOMIC_LOAD_OILF64:
   5804     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
   5805   case SystemZ::ATOMIC_LOAD_OIHF64:
   5806     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
   5807 
   5808   case SystemZ::ATOMIC_LOADW_XR:
   5809     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
   5810   case SystemZ::ATOMIC_LOADW_XILF:
   5811     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
   5812   case SystemZ::ATOMIC_LOAD_XR:
   5813     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
   5814   case SystemZ::ATOMIC_LOAD_XILF:
   5815     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
   5816   case SystemZ::ATOMIC_LOAD_XGR:
   5817     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
   5818   case SystemZ::ATOMIC_LOAD_XILF64:
   5819     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
   5820   case SystemZ::ATOMIC_LOAD_XIHF64:
   5821     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
   5822 
   5823   case SystemZ::ATOMIC_LOADW_NRi:
   5824     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
   5825   case SystemZ::ATOMIC_LOADW_NILHi:
   5826     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
   5827   case SystemZ::ATOMIC_LOAD_NRi:
   5828     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
   5829   case SystemZ::ATOMIC_LOAD_NILLi:
   5830     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
   5831   case SystemZ::ATOMIC_LOAD_NILHi:
   5832     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
   5833   case SystemZ::ATOMIC_LOAD_NILFi:
   5834     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
   5835   case SystemZ::ATOMIC_LOAD_NGRi:
   5836     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
   5837   case SystemZ::ATOMIC_LOAD_NILL64i:
   5838     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
   5839   case SystemZ::ATOMIC_LOAD_NILH64i:
   5840     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
   5841   case SystemZ::ATOMIC_LOAD_NIHL64i:
   5842     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
   5843   case SystemZ::ATOMIC_LOAD_NIHH64i:
   5844     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
   5845   case SystemZ::ATOMIC_LOAD_NILF64i:
   5846     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
   5847   case SystemZ::ATOMIC_LOAD_NIHF64i:
   5848     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
   5849 
   5850   case SystemZ::ATOMIC_LOADW_MIN:
   5851     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   5852                                 SystemZ::CCMASK_CMP_LE, 0);
   5853   case SystemZ::ATOMIC_LOAD_MIN_32:
   5854     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   5855                                 SystemZ::CCMASK_CMP_LE, 32);
   5856   case SystemZ::ATOMIC_LOAD_MIN_64:
   5857     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   5858                                 SystemZ::CCMASK_CMP_LE, 64);
   5859 
   5860   case SystemZ::ATOMIC_LOADW_MAX:
   5861     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   5862                                 SystemZ::CCMASK_CMP_GE, 0);
   5863   case SystemZ::ATOMIC_LOAD_MAX_32:
   5864     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   5865                                 SystemZ::CCMASK_CMP_GE, 32);
   5866   case SystemZ::ATOMIC_LOAD_MAX_64:
   5867     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   5868                                 SystemZ::CCMASK_CMP_GE, 64);
   5869 
   5870   case SystemZ::ATOMIC_LOADW_UMIN:
   5871     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   5872                                 SystemZ::CCMASK_CMP_LE, 0);
   5873   case SystemZ::ATOMIC_LOAD_UMIN_32:
   5874     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   5875                                 SystemZ::CCMASK_CMP_LE, 32);
   5876   case SystemZ::ATOMIC_LOAD_UMIN_64:
   5877     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   5878                                 SystemZ::CCMASK_CMP_LE, 64);
   5879 
   5880   case SystemZ::ATOMIC_LOADW_UMAX:
   5881     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   5882                                 SystemZ::CCMASK_CMP_GE, 0);
   5883   case SystemZ::ATOMIC_LOAD_UMAX_32:
   5884     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   5885                                 SystemZ::CCMASK_CMP_GE, 32);
   5886   case SystemZ::ATOMIC_LOAD_UMAX_64:
   5887     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   5888                                 SystemZ::CCMASK_CMP_GE, 64);
   5889 
   5890   case SystemZ::ATOMIC_CMP_SWAPW:
   5891     return emitAtomicCmpSwapW(MI, MBB);
   5892   case SystemZ::MVCSequence:
   5893   case SystemZ::MVCLoop:
   5894     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
   5895   case SystemZ::NCSequence:
   5896   case SystemZ::NCLoop:
   5897     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
   5898   case SystemZ::OCSequence:
   5899   case SystemZ::OCLoop:
   5900     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
   5901   case SystemZ::XCSequence:
   5902   case SystemZ::XCLoop:
   5903     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
   5904   case SystemZ::CLCSequence:
   5905   case SystemZ::CLCLoop:
   5906     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
   5907   case SystemZ::CLSTLoop:
   5908     return emitStringWrapper(MI, MBB, SystemZ::CLST);
   5909   case SystemZ::MVSTLoop:
   5910     return emitStringWrapper(MI, MBB, SystemZ::MVST);
   5911   case SystemZ::SRSTLoop:
   5912     return emitStringWrapper(MI, MBB, SystemZ::SRST);
   5913   case SystemZ::TBEGIN:
   5914     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
   5915   case SystemZ::TBEGIN_nofloat:
   5916     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
   5917   case SystemZ::TBEGINC:
   5918     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
   5919   case SystemZ::LTEBRCompare_VecPseudo:
   5920     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
   5921   case SystemZ::LTDBRCompare_VecPseudo:
   5922     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
   5923   case SystemZ::LTXBRCompare_VecPseudo:
   5924     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
   5925 
   5926   default:
   5927     llvm_unreachable("Unexpected instr type to insert");
   5928   }
   5929 }
   5930