1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 188 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 189 setOperationAction(ISD::ROTR, VT, Expand); 190 191 // Use *MUL_LOHI where possible instead of MULH*. 192 setOperationAction(ISD::MULHS, VT, Expand); 193 setOperationAction(ISD::MULHU, VT, Expand); 194 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 195 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 196 197 // Only z196 and above have native support for conversions to unsigned. 198 if (!Subtarget.hasFPExtension()) 199 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 200 } 201 } 202 203 // Type legalization will convert 8- and 16-bit atomic operations into 204 // forms that operate on i32s (but still keeping the original memory VT). 205 // Lower them into full i32 operations. 206 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 218 219 // z10 has instructions for signed but not unsigned FP conversion. 220 // Handle unsigned 32-bit types as signed 64-bit types. 221 if (!Subtarget.hasFPExtension()) { 222 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 224 } 225 226 // We have native support for a 64-bit CTLZ, via FLOGR. 227 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 228 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 229 230 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 231 setOperationAction(ISD::OR, MVT::i64, Custom); 232 233 // FIXME: Can we support these natively? 234 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 237 238 // We have native instructions for i8, i16 and i32 extensions, but not i1. 239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 240 for (MVT VT : MVT::integer_valuetypes()) { 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 243 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 244 } 245 246 // Handle the various types of symbolic address. 247 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 248 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 249 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 250 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 251 setOperationAction(ISD::JumpTable, PtrVT, Custom); 252 253 // We need to handle dynamic allocations specially because of the 254 // 160-byte area at the bottom of the stack. 255 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 256 257 // Use custom expanders so that we can force the function to use 258 // a frame pointer. 259 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 260 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 261 262 // Handle prefetches with PFD or PFDRL. 263 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 264 265 for (MVT VT : MVT::vector_valuetypes()) { 266 // Assume by default that all vector operations need to be expanded. 267 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 268 if (getOperationAction(Opcode, VT) == Legal) 269 setOperationAction(Opcode, VT, Expand); 270 271 // Likewise all truncating stores and extending loads. 272 for (MVT InnerVT : MVT::vector_valuetypes()) { 273 setTruncStoreAction(VT, InnerVT, Expand); 274 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 275 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 276 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 277 } 278 279 if (isTypeLegal(VT)) { 280 // These operations are legal for anything that can be stored in a 281 // vector register, even if there is no native support for the format 282 // as such. In particular, we can do these for v4f32 even though there 283 // are no specific instructions for that format. 284 setOperationAction(ISD::LOAD, VT, Legal); 285 setOperationAction(ISD::STORE, VT, Legal); 286 setOperationAction(ISD::VSELECT, VT, Legal); 287 setOperationAction(ISD::BITCAST, VT, Legal); 288 setOperationAction(ISD::UNDEF, VT, Legal); 289 290 // Likewise, except that we need to replace the nodes with something 291 // more specific. 292 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 293 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 294 } 295 } 296 297 // Handle integer vector types. 298 for (MVT VT : MVT::integer_vector_valuetypes()) { 299 if (isTypeLegal(VT)) { 300 // These operations have direct equivalents. 301 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 302 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 303 setOperationAction(ISD::ADD, VT, Legal); 304 setOperationAction(ISD::SUB, VT, Legal); 305 if (VT != MVT::v2i64) 306 setOperationAction(ISD::MUL, VT, Legal); 307 setOperationAction(ISD::AND, VT, Legal); 308 setOperationAction(ISD::OR, VT, Legal); 309 setOperationAction(ISD::XOR, VT, Legal); 310 setOperationAction(ISD::CTPOP, VT, Custom); 311 setOperationAction(ISD::CTTZ, VT, Legal); 312 setOperationAction(ISD::CTLZ, VT, Legal); 313 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 314 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 315 316 // Convert a GPR scalar to a vector by inserting it into element 0. 317 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 318 319 // Use a series of unpacks for extensions. 320 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 321 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 322 323 // Detect shifts by a scalar amount and convert them into 324 // V*_BY_SCALAR. 325 setOperationAction(ISD::SHL, VT, Custom); 326 setOperationAction(ISD::SRA, VT, Custom); 327 setOperationAction(ISD::SRL, VT, Custom); 328 329 // At present ROTL isn't matched by DAGCombiner. ROTR should be 330 // converted into ROTL. 331 setOperationAction(ISD::ROTL, VT, Expand); 332 setOperationAction(ISD::ROTR, VT, Expand); 333 334 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 335 // and inverting the result as necessary. 336 setOperationAction(ISD::SETCC, VT, Custom); 337 } 338 } 339 340 if (Subtarget.hasVector()) { 341 // There should be no need to check for float types other than v2f64 342 // since <2 x f32> isn't a legal type. 343 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 344 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 345 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 346 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 347 } 348 349 // Handle floating-point types. 350 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 351 I <= MVT::LAST_FP_VALUETYPE; 352 ++I) { 353 MVT VT = MVT::SimpleValueType(I); 354 if (isTypeLegal(VT)) { 355 // We can use FI for FRINT. 356 setOperationAction(ISD::FRINT, VT, Legal); 357 358 // We can use the extended form of FI for other rounding operations. 359 if (Subtarget.hasFPExtension()) { 360 setOperationAction(ISD::FNEARBYINT, VT, Legal); 361 setOperationAction(ISD::FFLOOR, VT, Legal); 362 setOperationAction(ISD::FCEIL, VT, Legal); 363 setOperationAction(ISD::FTRUNC, VT, Legal); 364 setOperationAction(ISD::FROUND, VT, Legal); 365 } 366 367 // No special instructions for these. 368 setOperationAction(ISD::FSIN, VT, Expand); 369 setOperationAction(ISD::FCOS, VT, Expand); 370 setOperationAction(ISD::FSINCOS, VT, Expand); 371 setOperationAction(ISD::FREM, VT, Expand); 372 setOperationAction(ISD::FPOW, VT, Expand); 373 } 374 } 375 376 // Handle floating-point vector types. 377 if (Subtarget.hasVector()) { 378 // Scalar-to-vector conversion is just a subreg. 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 381 382 // Some insertions and extractions can be done directly but others 383 // need to go via integers. 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 388 389 // These operations have direct equivalents. 390 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 396 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 404 } 405 406 // We have fused multiply-addition for f32 and f64 but not f128. 407 setOperationAction(ISD::FMA, MVT::f32, Legal); 408 setOperationAction(ISD::FMA, MVT::f64, Legal); 409 setOperationAction(ISD::FMA, MVT::f128, Expand); 410 411 // Needed so that we don't try to implement f128 constant loads using 412 // a load-and-extend of a f80 constant (in cases where the constant 413 // would fit in an f80). 414 for (MVT VT : MVT::fp_valuetypes()) 415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 416 417 // Floating-point truncation and stores need to be done separately. 418 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 421 422 // We have 64-bit FPR<->GPR moves, but need special handling for 423 // 32-bit forms. 424 if (!Subtarget.hasVector()) { 425 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 426 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 427 } 428 429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 430 // structure, but VAEND is a no-op. 431 setOperationAction(ISD::VASTART, MVT::Other, Custom); 432 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 433 setOperationAction(ISD::VAEND, MVT::Other, Expand); 434 435 // Codes for which we want to perform some z-specific combinations. 436 setTargetDAGCombine(ISD::SIGN_EXTEND); 437 setTargetDAGCombine(ISD::STORE); 438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 439 setTargetDAGCombine(ISD::FP_ROUND); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 459 LLVMContext &, EVT VT) const { 460 if (!VT.isVector()) 461 return MVT::i32; 462 return VT.changeVectorElementTypeToInteger(); 463 } 464 465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 466 VT = VT.getScalarType(); 467 468 if (!VT.isSimple()) 469 return false; 470 471 switch (VT.getSimpleVT().SimpleTy) { 472 case MVT::f32: 473 case MVT::f64: 474 return true; 475 case MVT::f128: 476 return false; 477 default: 478 break; 479 } 480 481 return false; 482 } 483 484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 485 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 486 return Imm.isZero() || Imm.isNegZero(); 487 } 488 489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 490 // We can use CGFI or CLGFI. 491 return isInt<32>(Imm) || isUInt<32>(Imm); 492 } 493 494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 495 // We can use ALGFI or SLGFI. 496 return isUInt<32>(Imm) || isUInt<32>(-Imm); 497 } 498 499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 500 unsigned, 501 unsigned, 502 bool *Fast) const { 503 // Unaligned accesses should never be slower than the expanded version. 504 // We check specifically for aligned accesses in the few cases where 505 // they are required. 506 if (Fast) 507 *Fast = true; 508 return true; 509 } 510 511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 512 const AddrMode &AM, Type *Ty, 513 unsigned AS) const { 514 // Punt on globals for now, although they can be used in limited 515 // RELATIVE LONG cases. 516 if (AM.BaseGV) 517 return false; 518 519 // Require a 20-bit signed offset. 520 if (!isInt<20>(AM.BaseOffs)) 521 return false; 522 523 // Indexing is OK but no scale factor can be applied. 524 return AM.Scale == 0 || AM.Scale == 1; 525 } 526 527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 528 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 529 return false; 530 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 531 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 532 return FromBits > ToBits; 533 } 534 535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 536 if (!FromVT.isInteger() || !ToVT.isInteger()) 537 return false; 538 unsigned FromBits = FromVT.getSizeInBits(); 539 unsigned ToBits = ToVT.getSizeInBits(); 540 return FromBits > ToBits; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Inline asm support 545 //===----------------------------------------------------------------------===// 546 547 TargetLowering::ConstraintType 548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 549 if (Constraint.size() == 1) { 550 switch (Constraint[0]) { 551 case 'a': // Address register 552 case 'd': // Data register (equivalent to 'r') 553 case 'f': // Floating-point register 554 case 'h': // High-part register 555 case 'r': // General-purpose register 556 return C_RegisterClass; 557 558 case 'Q': // Memory with base and unsigned 12-bit displacement 559 case 'R': // Likewise, plus an index 560 case 'S': // Memory with base and signed 20-bit displacement 561 case 'T': // Likewise, plus an index 562 case 'm': // Equivalent to 'T'. 563 return C_Memory; 564 565 case 'I': // Unsigned 8-bit constant 566 case 'J': // Unsigned 12-bit constant 567 case 'K': // Signed 16-bit constant 568 case 'L': // Signed 20-bit displacement (on all targets we support) 569 case 'M': // 0x7fffffff 570 return C_Other; 571 572 default: 573 break; 574 } 575 } 576 return TargetLowering::getConstraintType(Constraint); 577 } 578 579 TargetLowering::ConstraintWeight SystemZTargetLowering:: 580 getSingleConstraintMatchWeight(AsmOperandInfo &info, 581 const char *constraint) const { 582 ConstraintWeight weight = CW_Invalid; 583 Value *CallOperandVal = info.CallOperandVal; 584 // If we don't have a value, we can't do a match, 585 // but allow it at the lowest weight. 586 if (!CallOperandVal) 587 return CW_Default; 588 Type *type = CallOperandVal->getType(); 589 // Look at the constraint type. 590 switch (*constraint) { 591 default: 592 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 593 break; 594 595 case 'a': // Address register 596 case 'd': // Data register (equivalent to 'r') 597 case 'h': // High-part register 598 case 'r': // General-purpose register 599 if (CallOperandVal->getType()->isIntegerTy()) 600 weight = CW_Register; 601 break; 602 603 case 'f': // Floating-point register 604 if (type->isFloatingPointTy()) 605 weight = CW_Register; 606 break; 607 608 case 'I': // Unsigned 8-bit constant 609 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 610 if (isUInt<8>(C->getZExtValue())) 611 weight = CW_Constant; 612 break; 613 614 case 'J': // Unsigned 12-bit constant 615 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 616 if (isUInt<12>(C->getZExtValue())) 617 weight = CW_Constant; 618 break; 619 620 case 'K': // Signed 16-bit constant 621 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 622 if (isInt<16>(C->getSExtValue())) 623 weight = CW_Constant; 624 break; 625 626 case 'L': // Signed 20-bit displacement (on all targets we support) 627 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 628 if (isInt<20>(C->getSExtValue())) 629 weight = CW_Constant; 630 break; 631 632 case 'M': // 0x7fffffff 633 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 634 if (C->getZExtValue() == 0x7fffffff) 635 weight = CW_Constant; 636 break; 637 } 638 return weight; 639 } 640 641 // Parse a "{tNNN}" register constraint for which the register type "t" 642 // has already been verified. MC is the class associated with "t" and 643 // Map maps 0-based register numbers to LLVM register numbers. 644 static std::pair<unsigned, const TargetRegisterClass *> 645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 646 const unsigned *Map) { 647 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 648 if (isdigit(Constraint[2])) { 649 unsigned Index; 650 bool Failed = 651 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 652 if (!Failed && Index < 16 && Map[Index]) 653 return std::make_pair(Map[Index], RC); 654 } 655 return std::make_pair(0U, nullptr); 656 } 657 658 std::pair<unsigned, const TargetRegisterClass *> 659 SystemZTargetLowering::getRegForInlineAsmConstraint( 660 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 661 if (Constraint.size() == 1) { 662 // GCC Constraint Letters 663 switch (Constraint[0]) { 664 default: break; 665 case 'd': // Data register (equivalent to 'r') 666 case 'r': // General-purpose register 667 if (VT == MVT::i64) 668 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 669 else if (VT == MVT::i128) 670 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 671 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 672 673 case 'a': // Address register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 679 680 case 'h': // High-part register (an LLVM extension) 681 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 682 683 case 'f': // Floating-point register 684 if (VT == MVT::f64) 685 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 686 else if (VT == MVT::f128) 687 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 688 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 689 } 690 } 691 if (Constraint.size() > 0 && Constraint[0] == '{') { 692 // We need to override the default register parsing for GPRs and FPRs 693 // because the interpretation depends on VT. The internal names of 694 // the registers are also different from the external names 695 // (F0D and F0S instead of F0, etc.). 696 if (Constraint[1] == 'r') { 697 if (VT == MVT::i32) 698 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 699 SystemZMC::GR32Regs); 700 if (VT == MVT::i128) 701 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 702 SystemZMC::GR128Regs); 703 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 704 SystemZMC::GR64Regs); 705 } 706 if (Constraint[1] == 'f') { 707 if (VT == MVT::f32) 708 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 709 SystemZMC::FP32Regs); 710 if (VT == MVT::f128) 711 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 712 SystemZMC::FP128Regs); 713 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 714 SystemZMC::FP64Regs); 715 } 716 } 717 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 718 } 719 720 void SystemZTargetLowering:: 721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 722 std::vector<SDValue> &Ops, 723 SelectionDAG &DAG) const { 724 // Only support length 1 constraints for now. 725 if (Constraint.length() == 1) { 726 switch (Constraint[0]) { 727 case 'I': // Unsigned 8-bit constant 728 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 729 if (isUInt<8>(C->getZExtValue())) 730 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 731 Op.getValueType())); 732 return; 733 734 case 'J': // Unsigned 12-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<12>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'K': // Signed 16-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isInt<16>(C->getSExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'L': // Signed 20-bit displacement (on all targets we support) 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<20>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'M': // 0x7fffffff 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (C->getZExtValue() == 0x7fffffff) 758 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 } 762 } 763 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // Calling conventions 768 //===----------------------------------------------------------------------===// 769 770 #include "SystemZGenCallingConv.inc" 771 772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 773 Type *ToType) const { 774 return isTruncateFree(FromType, ToType); 775 } 776 777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 778 return CI->isTailCall(); 779 } 780 781 // We do not yet support 128-bit single-element vector types. If the user 782 // attempts to use such types as function argument or return type, prefer 783 // to error out instead of emitting code violating the ABI. 784 static void VerifyVectorType(MVT VT, EVT ArgVT) { 785 if (ArgVT.isVector() && !VT.isVector()) 786 report_fatal_error("Unsupported vector argument or return type"); 787 } 788 789 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 790 for (unsigned i = 0; i < Ins.size(); ++i) 791 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 792 } 793 794 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 795 for (unsigned i = 0; i < Outs.size(); ++i) 796 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 797 } 798 799 // Value is a value that has been passed to us in the location described by VA 800 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 801 // any loads onto Chain. 802 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 803 CCValAssign &VA, SDValue Chain, 804 SDValue Value) { 805 // If the argument has been promoted from a smaller type, insert an 806 // assertion to capture this. 807 if (VA.getLocInfo() == CCValAssign::SExt) 808 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 809 DAG.getValueType(VA.getValVT())); 810 else if (VA.getLocInfo() == CCValAssign::ZExt) 811 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 814 if (VA.isExtInLoc()) 815 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 816 else if (VA.getLocInfo() == CCValAssign::Indirect) 817 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 818 MachinePointerInfo(), false, false, false, 0); 819 else if (VA.getLocInfo() == CCValAssign::BCvt) { 820 // If this is a short vector argument loaded from the stack, 821 // extend from i64 to full vector size and then bitcast. 822 assert(VA.getLocVT() == MVT::i64); 823 assert(VA.getValVT().isVector()); 824 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 825 Value, DAG.getUNDEF(MVT::i64)); 826 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 827 } else 828 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 829 return Value; 830 } 831 832 // Value is a value of type VA.getValVT() that we need to copy into 833 // the location described by VA. Return a copy of Value converted to 834 // VA.getValVT(). The caller is responsible for handling indirect values. 835 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 836 CCValAssign &VA, SDValue Value) { 837 switch (VA.getLocInfo()) { 838 case CCValAssign::SExt: 839 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 840 case CCValAssign::ZExt: 841 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 842 case CCValAssign::AExt: 843 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 844 case CCValAssign::BCvt: 845 // If this is a short vector argument to be stored to the stack, 846 // bitcast to v2i64 and then extract first element. 847 assert(VA.getLocVT() == MVT::i64); 848 assert(VA.getValVT().isVector()); 849 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 850 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 851 DAG.getConstant(0, DL, MVT::i32)); 852 case CCValAssign::Full: 853 return Value; 854 default: 855 llvm_unreachable("Unhandled getLocInfo()"); 856 } 857 } 858 859 SDValue SystemZTargetLowering:: 860 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 861 const SmallVectorImpl<ISD::InputArg> &Ins, 862 SDLoc DL, SelectionDAG &DAG, 863 SmallVectorImpl<SDValue> &InVals) const { 864 MachineFunction &MF = DAG.getMachineFunction(); 865 MachineFrameInfo *MFI = MF.getFrameInfo(); 866 MachineRegisterInfo &MRI = MF.getRegInfo(); 867 SystemZMachineFunctionInfo *FuncInfo = 868 MF.getInfo<SystemZMachineFunctionInfo>(); 869 auto *TFL = 870 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 871 872 // Detect unsupported vector argument types. 873 if (Subtarget.hasVector()) 874 VerifyVectorTypes(Ins); 875 876 // Assign locations to all of the incoming arguments. 877 SmallVector<CCValAssign, 16> ArgLocs; 878 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 879 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 880 881 unsigned NumFixedGPRs = 0; 882 unsigned NumFixedFPRs = 0; 883 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 884 SDValue ArgValue; 885 CCValAssign &VA = ArgLocs[I]; 886 EVT LocVT = VA.getLocVT(); 887 if (VA.isRegLoc()) { 888 // Arguments passed in registers 889 const TargetRegisterClass *RC; 890 switch (LocVT.getSimpleVT().SimpleTy) { 891 default: 892 // Integers smaller than i64 should be promoted to i64. 893 llvm_unreachable("Unexpected argument type"); 894 case MVT::i32: 895 NumFixedGPRs += 1; 896 RC = &SystemZ::GR32BitRegClass; 897 break; 898 case MVT::i64: 899 NumFixedGPRs += 1; 900 RC = &SystemZ::GR64BitRegClass; 901 break; 902 case MVT::f32: 903 NumFixedFPRs += 1; 904 RC = &SystemZ::FP32BitRegClass; 905 break; 906 case MVT::f64: 907 NumFixedFPRs += 1; 908 RC = &SystemZ::FP64BitRegClass; 909 break; 910 case MVT::v16i8: 911 case MVT::v8i16: 912 case MVT::v4i32: 913 case MVT::v2i64: 914 case MVT::v4f32: 915 case MVT::v2f64: 916 RC = &SystemZ::VR128BitRegClass; 917 break; 918 } 919 920 unsigned VReg = MRI.createVirtualRegister(RC); 921 MRI.addLiveIn(VA.getLocReg(), VReg); 922 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 923 } else { 924 assert(VA.isMemLoc() && "Argument not register or memory"); 925 926 // Create the frame index object for this incoming parameter. 927 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 928 VA.getLocMemOffset(), true); 929 930 // Create the SelectionDAG nodes corresponding to a load 931 // from this parameter. Unpromoted ints and floats are 932 // passed as right-justified 8-byte values. 933 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 934 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 935 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 936 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 937 DAG.getIntPtrConstant(4, DL)); 938 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 939 MachinePointerInfo::getFixedStack(MF, FI), false, 940 false, false, 0); 941 } 942 943 // Convert the value of the argument register into the value that's 944 // being passed. 945 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 946 } 947 948 if (IsVarArg) { 949 // Save the number of non-varargs registers for later use by va_start, etc. 950 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 951 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 952 953 // Likewise the address (in the form of a frame index) of where the 954 // first stack vararg would be. The 1-byte size here is arbitrary. 955 int64_t StackSize = CCInfo.getNextStackOffset(); 956 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 957 958 // ...and a similar frame index for the caller-allocated save area 959 // that will be used to store the incoming registers. 960 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 961 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 962 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 963 964 // Store the FPR varargs in the reserved frame slots. (We store the 965 // GPRs as part of the prologue.) 966 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 967 SDValue MemOps[SystemZ::NumArgFPRs]; 968 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 969 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 970 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 971 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 972 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 973 &SystemZ::FP64BitRegClass); 974 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 975 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 976 MachinePointerInfo::getFixedStack(MF, FI), 977 false, false, 0); 978 } 979 // Join the stores, which are independent of one another. 980 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 981 makeArrayRef(&MemOps[NumFixedFPRs], 982 SystemZ::NumArgFPRs-NumFixedFPRs)); 983 } 984 } 985 986 return Chain; 987 } 988 989 static bool canUseSiblingCall(const CCState &ArgCCInfo, 990 SmallVectorImpl<CCValAssign> &ArgLocs) { 991 // Punt if there are any indirect or stack arguments, or if the call 992 // needs the call-saved argument register R6. 993 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 994 CCValAssign &VA = ArgLocs[I]; 995 if (VA.getLocInfo() == CCValAssign::Indirect) 996 return false; 997 if (!VA.isRegLoc()) 998 return false; 999 unsigned Reg = VA.getLocReg(); 1000 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1001 return false; 1002 } 1003 return true; 1004 } 1005 1006 SDValue 1007 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1008 SmallVectorImpl<SDValue> &InVals) const { 1009 SelectionDAG &DAG = CLI.DAG; 1010 SDLoc &DL = CLI.DL; 1011 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1012 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1013 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1014 SDValue Chain = CLI.Chain; 1015 SDValue Callee = CLI.Callee; 1016 bool &IsTailCall = CLI.IsTailCall; 1017 CallingConv::ID CallConv = CLI.CallConv; 1018 bool IsVarArg = CLI.IsVarArg; 1019 MachineFunction &MF = DAG.getMachineFunction(); 1020 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1021 1022 // Detect unsupported vector argument and return types. 1023 if (Subtarget.hasVector()) { 1024 VerifyVectorTypes(Outs); 1025 VerifyVectorTypes(Ins); 1026 } 1027 1028 // Analyze the operands of the call, assigning locations to each operand. 1029 SmallVector<CCValAssign, 16> ArgLocs; 1030 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1031 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1032 1033 // We don't support GuaranteedTailCallOpt, only automatically-detected 1034 // sibling calls. 1035 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1036 IsTailCall = false; 1037 1038 // Get a count of how many bytes are to be pushed on the stack. 1039 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1040 1041 // Mark the start of the call. 1042 if (!IsTailCall) 1043 Chain = DAG.getCALLSEQ_START(Chain, 1044 DAG.getConstant(NumBytes, DL, PtrVT, true), 1045 DL); 1046 1047 // Copy argument values to their designated locations. 1048 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1049 SmallVector<SDValue, 8> MemOpChains; 1050 SDValue StackPtr; 1051 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1052 CCValAssign &VA = ArgLocs[I]; 1053 SDValue ArgValue = OutVals[I]; 1054 1055 if (VA.getLocInfo() == CCValAssign::Indirect) { 1056 // Store the argument in a stack slot and pass its address. 1057 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1058 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1059 MemOpChains.push_back(DAG.getStore( 1060 Chain, DL, ArgValue, SpillSlot, 1061 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1062 ArgValue = SpillSlot; 1063 } else 1064 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1065 1066 if (VA.isRegLoc()) 1067 // Queue up the argument copies and emit them at the end. 1068 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1069 else { 1070 assert(VA.isMemLoc() && "Argument not register or memory"); 1071 1072 // Work out the address of the stack slot. Unpromoted ints and 1073 // floats are passed as right-justified 8-byte values. 1074 if (!StackPtr.getNode()) 1075 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1076 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1077 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1078 Offset += 4; 1079 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1080 DAG.getIntPtrConstant(Offset, DL)); 1081 1082 // Emit the store. 1083 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1084 MachinePointerInfo(), 1085 false, false, 0)); 1086 } 1087 } 1088 1089 // Join the stores, which are independent of one another. 1090 if (!MemOpChains.empty()) 1091 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1092 1093 // Accept direct calls by converting symbolic call addresses to the 1094 // associated Target* opcodes. Force %r1 to be used for indirect 1095 // tail calls. 1096 SDValue Glue; 1097 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1098 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1099 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1100 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1101 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1102 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1103 } else if (IsTailCall) { 1104 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1105 Glue = Chain.getValue(1); 1106 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1107 } 1108 1109 // Build a sequence of copy-to-reg nodes, chained and glued together. 1110 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1111 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1112 RegsToPass[I].second, Glue); 1113 Glue = Chain.getValue(1); 1114 } 1115 1116 // The first call operand is the chain and the second is the target address. 1117 SmallVector<SDValue, 8> Ops; 1118 Ops.push_back(Chain); 1119 Ops.push_back(Callee); 1120 1121 // Add argument registers to the end of the list so that they are 1122 // known live into the call. 1123 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1124 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1125 RegsToPass[I].second.getValueType())); 1126 1127 // Add a register mask operand representing the call-preserved registers. 1128 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1129 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1130 assert(Mask && "Missing call preserved mask for calling convention"); 1131 Ops.push_back(DAG.getRegisterMask(Mask)); 1132 1133 // Glue the call to the argument copies, if any. 1134 if (Glue.getNode()) 1135 Ops.push_back(Glue); 1136 1137 // Emit the call. 1138 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1139 if (IsTailCall) 1140 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1141 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1142 Glue = Chain.getValue(1); 1143 1144 // Mark the end of the call, which is glued to the call itself. 1145 Chain = DAG.getCALLSEQ_END(Chain, 1146 DAG.getConstant(NumBytes, DL, PtrVT, true), 1147 DAG.getConstant(0, DL, PtrVT, true), 1148 Glue, DL); 1149 Glue = Chain.getValue(1); 1150 1151 // Assign locations to each value returned by this call. 1152 SmallVector<CCValAssign, 16> RetLocs; 1153 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1154 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1155 1156 // Copy all of the result registers out of their specified physreg. 1157 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1158 CCValAssign &VA = RetLocs[I]; 1159 1160 // Copy the value out, gluing the copy to the end of the call sequence. 1161 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1162 VA.getLocVT(), Glue); 1163 Chain = RetValue.getValue(1); 1164 Glue = RetValue.getValue(2); 1165 1166 // Convert the value of the return register into the value that's 1167 // being returned. 1168 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1169 } 1170 1171 return Chain; 1172 } 1173 1174 bool SystemZTargetLowering:: 1175 CanLowerReturn(CallingConv::ID CallConv, 1176 MachineFunction &MF, bool isVarArg, 1177 const SmallVectorImpl<ISD::OutputArg> &Outs, 1178 LLVMContext &Context) const { 1179 // Detect unsupported vector return types. 1180 if (Subtarget.hasVector()) 1181 VerifyVectorTypes(Outs); 1182 1183 SmallVector<CCValAssign, 16> RetLocs; 1184 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1185 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1186 } 1187 1188 SDValue 1189 SystemZTargetLowering::LowerReturn(SDValue Chain, 1190 CallingConv::ID CallConv, bool IsVarArg, 1191 const SmallVectorImpl<ISD::OutputArg> &Outs, 1192 const SmallVectorImpl<SDValue> &OutVals, 1193 SDLoc DL, SelectionDAG &DAG) const { 1194 MachineFunction &MF = DAG.getMachineFunction(); 1195 1196 // Detect unsupported vector return types. 1197 if (Subtarget.hasVector()) 1198 VerifyVectorTypes(Outs); 1199 1200 // Assign locations to each returned value. 1201 SmallVector<CCValAssign, 16> RetLocs; 1202 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1203 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1204 1205 // Quick exit for void returns 1206 if (RetLocs.empty()) 1207 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1208 1209 // Copy the result values into the output registers. 1210 SDValue Glue; 1211 SmallVector<SDValue, 4> RetOps; 1212 RetOps.push_back(Chain); 1213 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1214 CCValAssign &VA = RetLocs[I]; 1215 SDValue RetValue = OutVals[I]; 1216 1217 // Make the return register live on exit. 1218 assert(VA.isRegLoc() && "Can only return in registers!"); 1219 1220 // Promote the value as required. 1221 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1222 1223 // Chain and glue the copies together. 1224 unsigned Reg = VA.getLocReg(); 1225 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1226 Glue = Chain.getValue(1); 1227 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1228 } 1229 1230 // Update chain and glue. 1231 RetOps[0] = Chain; 1232 if (Glue.getNode()) 1233 RetOps.push_back(Glue); 1234 1235 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1236 } 1237 1238 SDValue SystemZTargetLowering:: 1239 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1240 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1241 } 1242 1243 // Return true if Op is an intrinsic node with chain that returns the CC value 1244 // as its only (other) argument. Provide the associated SystemZISD opcode and 1245 // the mask of valid CC values if so. 1246 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1247 unsigned &CCValid) { 1248 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1249 switch (Id) { 1250 case Intrinsic::s390_tbegin: 1251 Opcode = SystemZISD::TBEGIN; 1252 CCValid = SystemZ::CCMASK_TBEGIN; 1253 return true; 1254 1255 case Intrinsic::s390_tbegin_nofloat: 1256 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1257 CCValid = SystemZ::CCMASK_TBEGIN; 1258 return true; 1259 1260 case Intrinsic::s390_tend: 1261 Opcode = SystemZISD::TEND; 1262 CCValid = SystemZ::CCMASK_TEND; 1263 return true; 1264 1265 default: 1266 return false; 1267 } 1268 } 1269 1270 // Return true if Op is an intrinsic node without chain that returns the 1271 // CC value as its final argument. Provide the associated SystemZISD 1272 // opcode and the mask of valid CC values if so. 1273 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1274 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1275 switch (Id) { 1276 case Intrinsic::s390_vpkshs: 1277 case Intrinsic::s390_vpksfs: 1278 case Intrinsic::s390_vpksgs: 1279 Opcode = SystemZISD::PACKS_CC; 1280 CCValid = SystemZ::CCMASK_VCMP; 1281 return true; 1282 1283 case Intrinsic::s390_vpklshs: 1284 case Intrinsic::s390_vpklsfs: 1285 case Intrinsic::s390_vpklsgs: 1286 Opcode = SystemZISD::PACKLS_CC; 1287 CCValid = SystemZ::CCMASK_VCMP; 1288 return true; 1289 1290 case Intrinsic::s390_vceqbs: 1291 case Intrinsic::s390_vceqhs: 1292 case Intrinsic::s390_vceqfs: 1293 case Intrinsic::s390_vceqgs: 1294 Opcode = SystemZISD::VICMPES; 1295 CCValid = SystemZ::CCMASK_VCMP; 1296 return true; 1297 1298 case Intrinsic::s390_vchbs: 1299 case Intrinsic::s390_vchhs: 1300 case Intrinsic::s390_vchfs: 1301 case Intrinsic::s390_vchgs: 1302 Opcode = SystemZISD::VICMPHS; 1303 CCValid = SystemZ::CCMASK_VCMP; 1304 return true; 1305 1306 case Intrinsic::s390_vchlbs: 1307 case Intrinsic::s390_vchlhs: 1308 case Intrinsic::s390_vchlfs: 1309 case Intrinsic::s390_vchlgs: 1310 Opcode = SystemZISD::VICMPHLS; 1311 CCValid = SystemZ::CCMASK_VCMP; 1312 return true; 1313 1314 case Intrinsic::s390_vtm: 1315 Opcode = SystemZISD::VTM; 1316 CCValid = SystemZ::CCMASK_VCMP; 1317 return true; 1318 1319 case Intrinsic::s390_vfaebs: 1320 case Intrinsic::s390_vfaehs: 1321 case Intrinsic::s390_vfaefs: 1322 Opcode = SystemZISD::VFAE_CC; 1323 CCValid = SystemZ::CCMASK_ANY; 1324 return true; 1325 1326 case Intrinsic::s390_vfaezbs: 1327 case Intrinsic::s390_vfaezhs: 1328 case Intrinsic::s390_vfaezfs: 1329 Opcode = SystemZISD::VFAEZ_CC; 1330 CCValid = SystemZ::CCMASK_ANY; 1331 return true; 1332 1333 case Intrinsic::s390_vfeebs: 1334 case Intrinsic::s390_vfeehs: 1335 case Intrinsic::s390_vfeefs: 1336 Opcode = SystemZISD::VFEE_CC; 1337 CCValid = SystemZ::CCMASK_ANY; 1338 return true; 1339 1340 case Intrinsic::s390_vfeezbs: 1341 case Intrinsic::s390_vfeezhs: 1342 case Intrinsic::s390_vfeezfs: 1343 Opcode = SystemZISD::VFEEZ_CC; 1344 CCValid = SystemZ::CCMASK_ANY; 1345 return true; 1346 1347 case Intrinsic::s390_vfenebs: 1348 case Intrinsic::s390_vfenehs: 1349 case Intrinsic::s390_vfenefs: 1350 Opcode = SystemZISD::VFENE_CC; 1351 CCValid = SystemZ::CCMASK_ANY; 1352 return true; 1353 1354 case Intrinsic::s390_vfenezbs: 1355 case Intrinsic::s390_vfenezhs: 1356 case Intrinsic::s390_vfenezfs: 1357 Opcode = SystemZISD::VFENEZ_CC; 1358 CCValid = SystemZ::CCMASK_ANY; 1359 return true; 1360 1361 case Intrinsic::s390_vistrbs: 1362 case Intrinsic::s390_vistrhs: 1363 case Intrinsic::s390_vistrfs: 1364 Opcode = SystemZISD::VISTR_CC; 1365 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1366 return true; 1367 1368 case Intrinsic::s390_vstrcbs: 1369 case Intrinsic::s390_vstrchs: 1370 case Intrinsic::s390_vstrcfs: 1371 Opcode = SystemZISD::VSTRC_CC; 1372 CCValid = SystemZ::CCMASK_ANY; 1373 return true; 1374 1375 case Intrinsic::s390_vstrczbs: 1376 case Intrinsic::s390_vstrczhs: 1377 case Intrinsic::s390_vstrczfs: 1378 Opcode = SystemZISD::VSTRCZ_CC; 1379 CCValid = SystemZ::CCMASK_ANY; 1380 return true; 1381 1382 case Intrinsic::s390_vfcedbs: 1383 Opcode = SystemZISD::VFCMPES; 1384 CCValid = SystemZ::CCMASK_VCMP; 1385 return true; 1386 1387 case Intrinsic::s390_vfchdbs: 1388 Opcode = SystemZISD::VFCMPHS; 1389 CCValid = SystemZ::CCMASK_VCMP; 1390 return true; 1391 1392 case Intrinsic::s390_vfchedbs: 1393 Opcode = SystemZISD::VFCMPHES; 1394 CCValid = SystemZ::CCMASK_VCMP; 1395 return true; 1396 1397 case Intrinsic::s390_vftcidb: 1398 Opcode = SystemZISD::VFTCI; 1399 CCValid = SystemZ::CCMASK_VCMP; 1400 return true; 1401 1402 default: 1403 return false; 1404 } 1405 } 1406 1407 // Emit an intrinsic with chain with a glued value instead of its CC result. 1408 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1409 unsigned Opcode) { 1410 // Copy all operands except the intrinsic ID. 1411 unsigned NumOps = Op.getNumOperands(); 1412 SmallVector<SDValue, 6> Ops; 1413 Ops.reserve(NumOps - 1); 1414 Ops.push_back(Op.getOperand(0)); 1415 for (unsigned I = 2; I < NumOps; ++I) 1416 Ops.push_back(Op.getOperand(I)); 1417 1418 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1419 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1420 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1421 SDValue OldChain = SDValue(Op.getNode(), 1); 1422 SDValue NewChain = SDValue(Intr.getNode(), 0); 1423 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1424 return Intr; 1425 } 1426 1427 // Emit an intrinsic with a glued value instead of its CC result. 1428 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1429 unsigned Opcode) { 1430 // Copy all operands except the intrinsic ID. 1431 unsigned NumOps = Op.getNumOperands(); 1432 SmallVector<SDValue, 6> Ops; 1433 Ops.reserve(NumOps - 1); 1434 for (unsigned I = 1; I < NumOps; ++I) 1435 Ops.push_back(Op.getOperand(I)); 1436 1437 if (Op->getNumValues() == 1) 1438 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1439 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1440 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1441 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1442 } 1443 1444 // CC is a comparison that will be implemented using an integer or 1445 // floating-point comparison. Return the condition code mask for 1446 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1447 // unsigned comparisons and clear for signed ones. In the floating-point 1448 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1449 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1450 #define CONV(X) \ 1451 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1452 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1453 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1454 1455 switch (CC) { 1456 default: 1457 llvm_unreachable("Invalid integer condition!"); 1458 1459 CONV(EQ); 1460 CONV(NE); 1461 CONV(GT); 1462 CONV(GE); 1463 CONV(LT); 1464 CONV(LE); 1465 1466 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1467 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1468 } 1469 #undef CONV 1470 } 1471 1472 // Return a sequence for getting a 1 from an IPM result when CC has a 1473 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1474 // The handling of CC values outside CCValid doesn't matter. 1475 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1476 // Deal with cases where the result can be taken directly from a bit 1477 // of the IPM result. 1478 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1479 return IPMConversion(0, 0, SystemZ::IPM_CC); 1480 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1481 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1482 1483 // Deal with cases where we can add a value to force the sign bit 1484 // to contain the right value. Putting the bit in 31 means we can 1485 // use SRL rather than RISBG(L), and also makes it easier to get a 1486 // 0/-1 value, so it has priority over the other tests below. 1487 // 1488 // These sequences rely on the fact that the upper two bits of the 1489 // IPM result are zero. 1490 uint64_t TopBit = uint64_t(1) << 31; 1491 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1492 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1493 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1494 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1495 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1496 | SystemZ::CCMASK_1 1497 | SystemZ::CCMASK_2))) 1498 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1499 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1500 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1501 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1502 | SystemZ::CCMASK_2 1503 | SystemZ::CCMASK_3))) 1504 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1505 1506 // Next try inverting the value and testing a bit. 0/1 could be 1507 // handled this way too, but we dealt with that case above. 1508 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1509 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1510 1511 // Handle cases where adding a value forces a non-sign bit to contain 1512 // the right value. 1513 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1514 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1515 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1516 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1517 1518 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1519 // can be done by inverting the low CC bit and applying one of the 1520 // sign-based extractions above. 1521 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1522 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1523 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1524 return IPMConversion(1 << SystemZ::IPM_CC, 1525 TopBit - (3 << SystemZ::IPM_CC), 31); 1526 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1527 | SystemZ::CCMASK_1 1528 | SystemZ::CCMASK_3))) 1529 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1530 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1531 | SystemZ::CCMASK_2 1532 | SystemZ::CCMASK_3))) 1533 return IPMConversion(1 << SystemZ::IPM_CC, 1534 TopBit - (1 << SystemZ::IPM_CC), 31); 1535 1536 llvm_unreachable("Unexpected CC combination"); 1537 } 1538 1539 // If C can be converted to a comparison against zero, adjust the operands 1540 // as necessary. 1541 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1542 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1543 return; 1544 1545 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1546 if (!ConstOp1) 1547 return; 1548 1549 int64_t Value = ConstOp1->getSExtValue(); 1550 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1551 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1552 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1553 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1554 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1555 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1556 } 1557 } 1558 1559 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1560 // adjust the operands as necessary. 1561 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1562 // For us to make any changes, it must a comparison between a single-use 1563 // load and a constant. 1564 if (!C.Op0.hasOneUse() || 1565 C.Op0.getOpcode() != ISD::LOAD || 1566 C.Op1.getOpcode() != ISD::Constant) 1567 return; 1568 1569 // We must have an 8- or 16-bit load. 1570 auto *Load = cast<LoadSDNode>(C.Op0); 1571 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1572 if (NumBits != 8 && NumBits != 16) 1573 return; 1574 1575 // The load must be an extending one and the constant must be within the 1576 // range of the unextended value. 1577 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1578 uint64_t Value = ConstOp1->getZExtValue(); 1579 uint64_t Mask = (1 << NumBits) - 1; 1580 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1581 // Make sure that ConstOp1 is in range of C.Op0. 1582 int64_t SignedValue = ConstOp1->getSExtValue(); 1583 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1584 return; 1585 if (C.ICmpType != SystemZICMP::SignedOnly) { 1586 // Unsigned comparison between two sign-extended values is equivalent 1587 // to unsigned comparison between two zero-extended values. 1588 Value &= Mask; 1589 } else if (NumBits == 8) { 1590 // Try to treat the comparison as unsigned, so that we can use CLI. 1591 // Adjust CCMask and Value as necessary. 1592 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1593 // Test whether the high bit of the byte is set. 1594 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1595 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1596 // Test whether the high bit of the byte is clear. 1597 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1598 else 1599 // No instruction exists for this combination. 1600 return; 1601 C.ICmpType = SystemZICMP::UnsignedOnly; 1602 } 1603 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1604 if (Value > Mask) 1605 return; 1606 // If the constant is in range, we can use any comparison. 1607 C.ICmpType = SystemZICMP::Any; 1608 } else 1609 return; 1610 1611 // Make sure that the first operand is an i32 of the right extension type. 1612 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1613 ISD::SEXTLOAD : 1614 ISD::ZEXTLOAD); 1615 if (C.Op0.getValueType() != MVT::i32 || 1616 Load->getExtensionType() != ExtType) 1617 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1618 Load->getChain(), Load->getBasePtr(), 1619 Load->getPointerInfo(), Load->getMemoryVT(), 1620 Load->isVolatile(), Load->isNonTemporal(), 1621 Load->isInvariant(), Load->getAlignment()); 1622 1623 // Make sure that the second operand is an i32 with the right value. 1624 if (C.Op1.getValueType() != MVT::i32 || 1625 Value != ConstOp1->getZExtValue()) 1626 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1627 } 1628 1629 // Return true if Op is either an unextended load, or a load suitable 1630 // for integer register-memory comparisons of type ICmpType. 1631 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1632 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1633 if (Load) { 1634 // There are no instructions to compare a register with a memory byte. 1635 if (Load->getMemoryVT() == MVT::i8) 1636 return false; 1637 // Otherwise decide on extension type. 1638 switch (Load->getExtensionType()) { 1639 case ISD::NON_EXTLOAD: 1640 return true; 1641 case ISD::SEXTLOAD: 1642 return ICmpType != SystemZICMP::UnsignedOnly; 1643 case ISD::ZEXTLOAD: 1644 return ICmpType != SystemZICMP::SignedOnly; 1645 default: 1646 break; 1647 } 1648 } 1649 return false; 1650 } 1651 1652 // Return true if it is better to swap the operands of C. 1653 static bool shouldSwapCmpOperands(const Comparison &C) { 1654 // Leave f128 comparisons alone, since they have no memory forms. 1655 if (C.Op0.getValueType() == MVT::f128) 1656 return false; 1657 1658 // Always keep a floating-point constant second, since comparisons with 1659 // zero can use LOAD TEST and comparisons with other constants make a 1660 // natural memory operand. 1661 if (isa<ConstantFPSDNode>(C.Op1)) 1662 return false; 1663 1664 // Never swap comparisons with zero since there are many ways to optimize 1665 // those later. 1666 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1667 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1668 return false; 1669 1670 // Also keep natural memory operands second if the loaded value is 1671 // only used here. Several comparisons have memory forms. 1672 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1673 return false; 1674 1675 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1676 // In that case we generally prefer the memory to be second. 1677 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1678 // The only exceptions are when the second operand is a constant and 1679 // we can use things like CHHSI. 1680 if (!ConstOp1) 1681 return true; 1682 // The unsigned memory-immediate instructions can handle 16-bit 1683 // unsigned integers. 1684 if (C.ICmpType != SystemZICMP::SignedOnly && 1685 isUInt<16>(ConstOp1->getZExtValue())) 1686 return false; 1687 // The signed memory-immediate instructions can handle 16-bit 1688 // signed integers. 1689 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1690 isInt<16>(ConstOp1->getSExtValue())) 1691 return false; 1692 return true; 1693 } 1694 1695 // Try to promote the use of CGFR and CLGFR. 1696 unsigned Opcode0 = C.Op0.getOpcode(); 1697 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1698 return true; 1699 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1700 return true; 1701 if (C.ICmpType != SystemZICMP::SignedOnly && 1702 Opcode0 == ISD::AND && 1703 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1704 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1705 return true; 1706 1707 return false; 1708 } 1709 1710 // Return a version of comparison CC mask CCMask in which the LT and GT 1711 // actions are swapped. 1712 static unsigned reverseCCMask(unsigned CCMask) { 1713 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1714 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1715 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1716 (CCMask & SystemZ::CCMASK_CMP_UO)); 1717 } 1718 1719 // Check whether C tests for equality between X and Y and whether X - Y 1720 // or Y - X is also computed. In that case it's better to compare the 1721 // result of the subtraction against zero. 1722 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1723 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1724 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1725 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1726 SDNode *N = *I; 1727 if (N->getOpcode() == ISD::SUB && 1728 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1729 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1730 C.Op0 = SDValue(N, 0); 1731 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1732 return; 1733 } 1734 } 1735 } 1736 } 1737 1738 // Check whether C compares a floating-point value with zero and if that 1739 // floating-point value is also negated. In this case we can use the 1740 // negation to set CC, so avoiding separate LOAD AND TEST and 1741 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1742 static void adjustForFNeg(Comparison &C) { 1743 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1744 if (C1 && C1->isZero()) { 1745 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1746 SDNode *N = *I; 1747 if (N->getOpcode() == ISD::FNEG) { 1748 C.Op0 = SDValue(N, 0); 1749 C.CCMask = reverseCCMask(C.CCMask); 1750 return; 1751 } 1752 } 1753 } 1754 } 1755 1756 // Check whether C compares (shl X, 32) with 0 and whether X is 1757 // also sign-extended. In that case it is better to test the result 1758 // of the sign extension using LTGFR. 1759 // 1760 // This case is important because InstCombine transforms a comparison 1761 // with (sext (trunc X)) into a comparison with (shl X, 32). 1762 static void adjustForLTGFR(Comparison &C) { 1763 // Check for a comparison between (shl X, 32) and 0. 1764 if (C.Op0.getOpcode() == ISD::SHL && 1765 C.Op0.getValueType() == MVT::i64 && 1766 C.Op1.getOpcode() == ISD::Constant && 1767 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1768 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1769 if (C1 && C1->getZExtValue() == 32) { 1770 SDValue ShlOp0 = C.Op0.getOperand(0); 1771 // See whether X has any SIGN_EXTEND_INREG uses. 1772 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1773 SDNode *N = *I; 1774 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1775 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1776 C.Op0 = SDValue(N, 0); 1777 return; 1778 } 1779 } 1780 } 1781 } 1782 } 1783 1784 // If C compares the truncation of an extending load, try to compare 1785 // the untruncated value instead. This exposes more opportunities to 1786 // reuse CC. 1787 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1788 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1789 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1790 C.Op1.getOpcode() == ISD::Constant && 1791 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1792 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1793 if (L->getMemoryVT().getStoreSizeInBits() 1794 <= C.Op0.getValueType().getSizeInBits()) { 1795 unsigned Type = L->getExtensionType(); 1796 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1797 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1798 C.Op0 = C.Op0.getOperand(0); 1799 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1800 } 1801 } 1802 } 1803 } 1804 1805 // Return true if shift operation N has an in-range constant shift value. 1806 // Store it in ShiftVal if so. 1807 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1808 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1809 if (!Shift) 1810 return false; 1811 1812 uint64_t Amount = Shift->getZExtValue(); 1813 if (Amount >= N.getValueType().getSizeInBits()) 1814 return false; 1815 1816 ShiftVal = Amount; 1817 return true; 1818 } 1819 1820 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1821 // instruction and whether the CC value is descriptive enough to handle 1822 // a comparison of type Opcode between the AND result and CmpVal. 1823 // CCMask says which comparison result is being tested and BitSize is 1824 // the number of bits in the operands. If TEST UNDER MASK can be used, 1825 // return the corresponding CC mask, otherwise return 0. 1826 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1827 uint64_t Mask, uint64_t CmpVal, 1828 unsigned ICmpType) { 1829 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1830 1831 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1832 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1833 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1834 return 0; 1835 1836 // Work out the masks for the lowest and highest bits. 1837 unsigned HighShift = 63 - countLeadingZeros(Mask); 1838 uint64_t High = uint64_t(1) << HighShift; 1839 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1840 1841 // Signed ordered comparisons are effectively unsigned if the sign 1842 // bit is dropped. 1843 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1844 1845 // Check for equality comparisons with 0, or the equivalent. 1846 if (CmpVal == 0) { 1847 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1848 return SystemZ::CCMASK_TM_ALL_0; 1849 if (CCMask == SystemZ::CCMASK_CMP_NE) 1850 return SystemZ::CCMASK_TM_SOME_1; 1851 } 1852 if (EffectivelyUnsigned && CmpVal <= Low) { 1853 if (CCMask == SystemZ::CCMASK_CMP_LT) 1854 return SystemZ::CCMASK_TM_ALL_0; 1855 if (CCMask == SystemZ::CCMASK_CMP_GE) 1856 return SystemZ::CCMASK_TM_SOME_1; 1857 } 1858 if (EffectivelyUnsigned && CmpVal < Low) { 1859 if (CCMask == SystemZ::CCMASK_CMP_LE) 1860 return SystemZ::CCMASK_TM_ALL_0; 1861 if (CCMask == SystemZ::CCMASK_CMP_GT) 1862 return SystemZ::CCMASK_TM_SOME_1; 1863 } 1864 1865 // Check for equality comparisons with the mask, or the equivalent. 1866 if (CmpVal == Mask) { 1867 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1868 return SystemZ::CCMASK_TM_ALL_1; 1869 if (CCMask == SystemZ::CCMASK_CMP_NE) 1870 return SystemZ::CCMASK_TM_SOME_0; 1871 } 1872 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1873 if (CCMask == SystemZ::CCMASK_CMP_GT) 1874 return SystemZ::CCMASK_TM_ALL_1; 1875 if (CCMask == SystemZ::CCMASK_CMP_LE) 1876 return SystemZ::CCMASK_TM_SOME_0; 1877 } 1878 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1879 if (CCMask == SystemZ::CCMASK_CMP_GE) 1880 return SystemZ::CCMASK_TM_ALL_1; 1881 if (CCMask == SystemZ::CCMASK_CMP_LT) 1882 return SystemZ::CCMASK_TM_SOME_0; 1883 } 1884 1885 // Check for ordered comparisons with the top bit. 1886 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1887 if (CCMask == SystemZ::CCMASK_CMP_LE) 1888 return SystemZ::CCMASK_TM_MSB_0; 1889 if (CCMask == SystemZ::CCMASK_CMP_GT) 1890 return SystemZ::CCMASK_TM_MSB_1; 1891 } 1892 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1893 if (CCMask == SystemZ::CCMASK_CMP_LT) 1894 return SystemZ::CCMASK_TM_MSB_0; 1895 if (CCMask == SystemZ::CCMASK_CMP_GE) 1896 return SystemZ::CCMASK_TM_MSB_1; 1897 } 1898 1899 // If there are just two bits, we can do equality checks for Low and High 1900 // as well. 1901 if (Mask == Low + High) { 1902 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1903 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1904 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1905 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1906 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1907 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1908 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1909 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1910 } 1911 1912 // Looks like we've exhausted our options. 1913 return 0; 1914 } 1915 1916 // See whether C can be implemented as a TEST UNDER MASK instruction. 1917 // Update the arguments with the TM version if so. 1918 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1919 // Check that we have a comparison with a constant. 1920 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1921 if (!ConstOp1) 1922 return; 1923 uint64_t CmpVal = ConstOp1->getZExtValue(); 1924 1925 // Check whether the nonconstant input is an AND with a constant mask. 1926 Comparison NewC(C); 1927 uint64_t MaskVal; 1928 ConstantSDNode *Mask = nullptr; 1929 if (C.Op0.getOpcode() == ISD::AND) { 1930 NewC.Op0 = C.Op0.getOperand(0); 1931 NewC.Op1 = C.Op0.getOperand(1); 1932 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1933 if (!Mask) 1934 return; 1935 MaskVal = Mask->getZExtValue(); 1936 } else { 1937 // There is no instruction to compare with a 64-bit immediate 1938 // so use TMHH instead if possible. We need an unsigned ordered 1939 // comparison with an i64 immediate. 1940 if (NewC.Op0.getValueType() != MVT::i64 || 1941 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1942 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1943 NewC.ICmpType == SystemZICMP::SignedOnly) 1944 return; 1945 // Convert LE and GT comparisons into LT and GE. 1946 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1947 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1948 if (CmpVal == uint64_t(-1)) 1949 return; 1950 CmpVal += 1; 1951 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1952 } 1953 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1954 // be masked off without changing the result. 1955 MaskVal = -(CmpVal & -CmpVal); 1956 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1957 } 1958 if (!MaskVal) 1959 return; 1960 1961 // Check whether the combination of mask, comparison value and comparison 1962 // type are suitable. 1963 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1964 unsigned NewCCMask, ShiftVal; 1965 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1966 NewC.Op0.getOpcode() == ISD::SHL && 1967 isSimpleShift(NewC.Op0, ShiftVal) && 1968 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1969 MaskVal >> ShiftVal, 1970 CmpVal >> ShiftVal, 1971 SystemZICMP::Any))) { 1972 NewC.Op0 = NewC.Op0.getOperand(0); 1973 MaskVal >>= ShiftVal; 1974 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1975 NewC.Op0.getOpcode() == ISD::SRL && 1976 isSimpleShift(NewC.Op0, ShiftVal) && 1977 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1978 MaskVal << ShiftVal, 1979 CmpVal << ShiftVal, 1980 SystemZICMP::UnsignedOnly))) { 1981 NewC.Op0 = NewC.Op0.getOperand(0); 1982 MaskVal <<= ShiftVal; 1983 } else { 1984 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1985 NewC.ICmpType); 1986 if (!NewCCMask) 1987 return; 1988 } 1989 1990 // Go ahead and make the change. 1991 C.Opcode = SystemZISD::TM; 1992 C.Op0 = NewC.Op0; 1993 if (Mask && Mask->getZExtValue() == MaskVal) 1994 C.Op1 = SDValue(Mask, 0); 1995 else 1996 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 1997 C.CCValid = SystemZ::CCMASK_TM; 1998 C.CCMask = NewCCMask; 1999 } 2000 2001 // Return a Comparison that tests the condition-code result of intrinsic 2002 // node Call against constant integer CC using comparison code Cond. 2003 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2004 // and CCValid is the set of possible condition-code results. 2005 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2006 SDValue Call, unsigned CCValid, uint64_t CC, 2007 ISD::CondCode Cond) { 2008 Comparison C(Call, SDValue()); 2009 C.Opcode = Opcode; 2010 C.CCValid = CCValid; 2011 if (Cond == ISD::SETEQ) 2012 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2013 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2014 else if (Cond == ISD::SETNE) 2015 // ...and the inverse of that. 2016 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2017 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2018 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2019 // always true for CC>3. 2020 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2021 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2022 // ...and the inverse of that. 2023 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2024 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2025 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2026 // always true for CC>3. 2027 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2028 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2029 // ...and the inverse of that. 2030 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2031 else 2032 llvm_unreachable("Unexpected integer comparison type"); 2033 C.CCMask &= CCValid; 2034 return C; 2035 } 2036 2037 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2038 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2039 ISD::CondCode Cond, SDLoc DL) { 2040 if (CmpOp1.getOpcode() == ISD::Constant) { 2041 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2042 unsigned Opcode, CCValid; 2043 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2044 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2045 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2046 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2047 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2048 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2049 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2050 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2051 } 2052 Comparison C(CmpOp0, CmpOp1); 2053 C.CCMask = CCMaskForCondCode(Cond); 2054 if (C.Op0.getValueType().isFloatingPoint()) { 2055 C.CCValid = SystemZ::CCMASK_FCMP; 2056 C.Opcode = SystemZISD::FCMP; 2057 adjustForFNeg(C); 2058 } else { 2059 C.CCValid = SystemZ::CCMASK_ICMP; 2060 C.Opcode = SystemZISD::ICMP; 2061 // Choose the type of comparison. Equality and inequality tests can 2062 // use either signed or unsigned comparisons. The choice also doesn't 2063 // matter if both sign bits are known to be clear. In those cases we 2064 // want to give the main isel code the freedom to choose whichever 2065 // form fits best. 2066 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2067 C.CCMask == SystemZ::CCMASK_CMP_NE || 2068 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2069 C.ICmpType = SystemZICMP::Any; 2070 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2071 C.ICmpType = SystemZICMP::UnsignedOnly; 2072 else 2073 C.ICmpType = SystemZICMP::SignedOnly; 2074 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2075 adjustZeroCmp(DAG, DL, C); 2076 adjustSubwordCmp(DAG, DL, C); 2077 adjustForSubtraction(DAG, DL, C); 2078 adjustForLTGFR(C); 2079 adjustICmpTruncate(DAG, DL, C); 2080 } 2081 2082 if (shouldSwapCmpOperands(C)) { 2083 std::swap(C.Op0, C.Op1); 2084 C.CCMask = reverseCCMask(C.CCMask); 2085 } 2086 2087 adjustForTestUnderMask(DAG, DL, C); 2088 return C; 2089 } 2090 2091 // Emit the comparison instruction described by C. 2092 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2093 if (!C.Op1.getNode()) { 2094 SDValue Op; 2095 switch (C.Op0.getOpcode()) { 2096 case ISD::INTRINSIC_W_CHAIN: 2097 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2098 break; 2099 case ISD::INTRINSIC_WO_CHAIN: 2100 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2101 break; 2102 default: 2103 llvm_unreachable("Invalid comparison operands"); 2104 } 2105 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2106 } 2107 if (C.Opcode == SystemZISD::ICMP) 2108 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2109 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2110 if (C.Opcode == SystemZISD::TM) { 2111 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2112 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2113 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2114 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2115 } 2116 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2117 } 2118 2119 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2120 // 64 bits. Extend is the extension type to use. Store the high part 2121 // in Hi and the low part in Lo. 2122 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2123 unsigned Extend, SDValue Op0, SDValue Op1, 2124 SDValue &Hi, SDValue &Lo) { 2125 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2126 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2127 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2128 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2129 DAG.getConstant(32, DL, MVT::i64)); 2130 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2131 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2132 } 2133 2134 // Lower a binary operation that produces two VT results, one in each 2135 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2136 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2137 // on the extended Op0 and (unextended) Op1. Store the even register result 2138 // in Even and the odd register result in Odd. 2139 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2140 unsigned Extend, unsigned Opcode, 2141 SDValue Op0, SDValue Op1, 2142 SDValue &Even, SDValue &Odd) { 2143 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2144 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2145 SDValue(In128, 0), Op1); 2146 bool Is32Bit = is32Bit(VT); 2147 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2148 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2149 } 2150 2151 // Return an i32 value that is 1 if the CC value produced by Glue is 2152 // in the mask CCMask and 0 otherwise. CC is known to have a value 2153 // in CCValid, so other values can be ignored. 2154 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2155 unsigned CCValid, unsigned CCMask) { 2156 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2157 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2158 2159 if (Conversion.XORValue) 2160 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2161 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2162 2163 if (Conversion.AddValue) 2164 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2165 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2166 2167 // The SHR/AND sequence should get optimized to an RISBG. 2168 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2169 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2170 if (Conversion.Bit != 31) 2171 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2172 DAG.getConstant(1, DL, MVT::i32)); 2173 return Result; 2174 } 2175 2176 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2177 // be done directly. IsFP is true if CC is for a floating-point rather than 2178 // integer comparison. 2179 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2180 switch (CC) { 2181 case ISD::SETOEQ: 2182 case ISD::SETEQ: 2183 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2184 2185 case ISD::SETOGE: 2186 case ISD::SETGE: 2187 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2188 2189 case ISD::SETOGT: 2190 case ISD::SETGT: 2191 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2192 2193 case ISD::SETUGT: 2194 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2195 2196 default: 2197 return 0; 2198 } 2199 } 2200 2201 // Return the SystemZISD vector comparison operation for CC or its inverse, 2202 // or 0 if neither can be done directly. Indicate in Invert whether the 2203 // result is for the inverse of CC. IsFP is true if CC is for a 2204 // floating-point rather than integer comparison. 2205 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2206 bool &Invert) { 2207 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2208 Invert = false; 2209 return Opcode; 2210 } 2211 2212 CC = ISD::getSetCCInverse(CC, !IsFP); 2213 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2214 Invert = true; 2215 return Opcode; 2216 } 2217 2218 return 0; 2219 } 2220 2221 // Return a v2f64 that contains the extended form of elements Start and Start+1 2222 // of v4f32 value Op. 2223 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2224 SDValue Op) { 2225 int Mask[] = { Start, -1, Start + 1, -1 }; 2226 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2227 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2228 } 2229 2230 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2231 // producing a result of type VT. 2232 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2233 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2234 // There is no hardware support for v4f32, so extend the vector into 2235 // two v2f64s and compare those. 2236 if (CmpOp0.getValueType() == MVT::v4f32) { 2237 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2238 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2239 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2240 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2241 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2242 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2243 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2244 } 2245 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2246 } 2247 2248 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2249 // an integer mask of type VT. 2250 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2251 ISD::CondCode CC, SDValue CmpOp0, 2252 SDValue CmpOp1) { 2253 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2254 bool Invert = false; 2255 SDValue Cmp; 2256 switch (CC) { 2257 // Handle tests for order using (or (ogt y x) (oge x y)). 2258 case ISD::SETUO: 2259 Invert = true; 2260 case ISD::SETO: { 2261 assert(IsFP && "Unexpected integer comparison"); 2262 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2263 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2264 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2265 break; 2266 } 2267 2268 // Handle <> tests using (or (ogt y x) (ogt x y)). 2269 case ISD::SETUEQ: 2270 Invert = true; 2271 case ISD::SETONE: { 2272 assert(IsFP && "Unexpected integer comparison"); 2273 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2274 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2275 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2276 break; 2277 } 2278 2279 // Otherwise a single comparison is enough. It doesn't really 2280 // matter whether we try the inversion or the swap first, since 2281 // there are no cases where both work. 2282 default: 2283 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2284 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2285 else { 2286 CC = ISD::getSetCCSwappedOperands(CC); 2287 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2288 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2289 else 2290 llvm_unreachable("Unhandled comparison"); 2291 } 2292 break; 2293 } 2294 if (Invert) { 2295 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2296 DAG.getConstant(65535, DL, MVT::i32)); 2297 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2298 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2299 } 2300 return Cmp; 2301 } 2302 2303 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2304 SelectionDAG &DAG) const { 2305 SDValue CmpOp0 = Op.getOperand(0); 2306 SDValue CmpOp1 = Op.getOperand(1); 2307 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2308 SDLoc DL(Op); 2309 EVT VT = Op.getValueType(); 2310 if (VT.isVector()) 2311 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2312 2313 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2314 SDValue Glue = emitCmp(DAG, DL, C); 2315 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2316 } 2317 2318 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2319 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2320 SDValue CmpOp0 = Op.getOperand(2); 2321 SDValue CmpOp1 = Op.getOperand(3); 2322 SDValue Dest = Op.getOperand(4); 2323 SDLoc DL(Op); 2324 2325 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2326 SDValue Glue = emitCmp(DAG, DL, C); 2327 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2328 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2329 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2330 } 2331 2332 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2333 // allowing Pos and Neg to be wider than CmpOp. 2334 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2335 return (Neg.getOpcode() == ISD::SUB && 2336 Neg.getOperand(0).getOpcode() == ISD::Constant && 2337 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2338 Neg.getOperand(1) == Pos && 2339 (Pos == CmpOp || 2340 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2341 Pos.getOperand(0) == CmpOp))); 2342 } 2343 2344 // Return the absolute or negative absolute of Op; IsNegative decides which. 2345 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2346 bool IsNegative) { 2347 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2348 if (IsNegative) 2349 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2350 DAG.getConstant(0, DL, Op.getValueType()), Op); 2351 return Op; 2352 } 2353 2354 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2355 SelectionDAG &DAG) const { 2356 SDValue CmpOp0 = Op.getOperand(0); 2357 SDValue CmpOp1 = Op.getOperand(1); 2358 SDValue TrueOp = Op.getOperand(2); 2359 SDValue FalseOp = Op.getOperand(3); 2360 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2361 SDLoc DL(Op); 2362 2363 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2364 2365 // Check for absolute and negative-absolute selections, including those 2366 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2367 // This check supplements the one in DAGCombiner. 2368 if (C.Opcode == SystemZISD::ICMP && 2369 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2370 C.CCMask != SystemZ::CCMASK_CMP_NE && 2371 C.Op1.getOpcode() == ISD::Constant && 2372 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2373 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2374 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2375 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2376 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2377 } 2378 2379 SDValue Glue = emitCmp(DAG, DL, C); 2380 2381 // Special case for handling -1/0 results. The shifts we use here 2382 // should get optimized with the IPM conversion sequence. 2383 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2384 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2385 if (TrueC && FalseC) { 2386 int64_t TrueVal = TrueC->getSExtValue(); 2387 int64_t FalseVal = FalseC->getSExtValue(); 2388 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2389 // Invert the condition if we want -1 on false. 2390 if (TrueVal == 0) 2391 C.CCMask ^= C.CCValid; 2392 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2393 EVT VT = Op.getValueType(); 2394 // Extend the result to VT. Upper bits are ignored. 2395 if (!is32Bit(VT)) 2396 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2397 // Sign-extend from the low bit. 2398 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2399 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2400 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2401 } 2402 } 2403 2404 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2405 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2406 2407 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2408 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2409 } 2410 2411 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2412 SelectionDAG &DAG) const { 2413 SDLoc DL(Node); 2414 const GlobalValue *GV = Node->getGlobal(); 2415 int64_t Offset = Node->getOffset(); 2416 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2417 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2418 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2419 2420 SDValue Result; 2421 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2422 // Assign anchors at 1<<12 byte boundaries. 2423 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2424 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2425 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2426 2427 // The offset can be folded into the address if it is aligned to a halfword. 2428 Offset -= Anchor; 2429 if (Offset != 0 && (Offset & 1) == 0) { 2430 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2431 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2432 Offset = 0; 2433 } 2434 } else { 2435 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2436 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2437 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2438 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2439 false, false, false, 0); 2440 } 2441 2442 // If there was a non-zero offset that we didn't fold, create an explicit 2443 // addition for it. 2444 if (Offset != 0) 2445 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2446 DAG.getConstant(Offset, DL, PtrVT)); 2447 2448 return Result; 2449 } 2450 2451 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2452 SelectionDAG &DAG, 2453 unsigned Opcode, 2454 SDValue GOTOffset) const { 2455 SDLoc DL(Node); 2456 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2457 SDValue Chain = DAG.getEntryNode(); 2458 SDValue Glue; 2459 2460 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2461 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2462 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2463 Glue = Chain.getValue(1); 2464 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2465 Glue = Chain.getValue(1); 2466 2467 // The first call operand is the chain and the second is the TLS symbol. 2468 SmallVector<SDValue, 8> Ops; 2469 Ops.push_back(Chain); 2470 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2471 Node->getValueType(0), 2472 0, 0)); 2473 2474 // Add argument registers to the end of the list so that they are 2475 // known live into the call. 2476 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2477 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2478 2479 // Add a register mask operand representing the call-preserved registers. 2480 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2481 const uint32_t *Mask = 2482 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2483 assert(Mask && "Missing call preserved mask for calling convention"); 2484 Ops.push_back(DAG.getRegisterMask(Mask)); 2485 2486 // Glue the call to the argument copies. 2487 Ops.push_back(Glue); 2488 2489 // Emit the call. 2490 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2491 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2492 Glue = Chain.getValue(1); 2493 2494 // Copy the return value from %r2. 2495 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2496 } 2497 2498 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2499 SelectionDAG &DAG) const { 2500 if (DAG.getTarget().Options.EmulatedTLS) 2501 return LowerToTLSEmulatedModel(Node, DAG); 2502 SDLoc DL(Node); 2503 const GlobalValue *GV = Node->getGlobal(); 2504 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2505 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2506 2507 // The high part of the thread pointer is in access register 0. 2508 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2509 DAG.getConstant(0, DL, MVT::i32)); 2510 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2511 2512 // The low part of the thread pointer is in access register 1. 2513 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2514 DAG.getConstant(1, DL, MVT::i32)); 2515 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2516 2517 // Merge them into a single 64-bit address. 2518 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2519 DAG.getConstant(32, DL, PtrVT)); 2520 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2521 2522 // Get the offset of GA from the thread pointer, based on the TLS model. 2523 SDValue Offset; 2524 switch (model) { 2525 case TLSModel::GeneralDynamic: { 2526 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2527 SystemZConstantPoolValue *CPV = 2528 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2529 2530 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2531 Offset = DAG.getLoad( 2532 PtrVT, DL, DAG.getEntryNode(), Offset, 2533 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2534 false, false, 0); 2535 2536 // Call __tls_get_offset to retrieve the offset. 2537 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2538 break; 2539 } 2540 2541 case TLSModel::LocalDynamic: { 2542 // Load the GOT offset of the module ID. 2543 SystemZConstantPoolValue *CPV = 2544 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2545 2546 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2547 Offset = DAG.getLoad( 2548 PtrVT, DL, DAG.getEntryNode(), Offset, 2549 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2550 false, false, 0); 2551 2552 // Call __tls_get_offset to retrieve the module base offset. 2553 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2554 2555 // Note: The SystemZLDCleanupPass will remove redundant computations 2556 // of the module base offset. Count total number of local-dynamic 2557 // accesses to trigger execution of that pass. 2558 SystemZMachineFunctionInfo* MFI = 2559 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2560 MFI->incNumLocalDynamicTLSAccesses(); 2561 2562 // Add the per-symbol offset. 2563 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2564 2565 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2566 DTPOffset = DAG.getLoad( 2567 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2568 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2569 false, false, 0); 2570 2571 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2572 break; 2573 } 2574 2575 case TLSModel::InitialExec: { 2576 // Load the offset from the GOT. 2577 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2578 SystemZII::MO_INDNTPOFF); 2579 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2580 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2581 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2582 false, false, false, 0); 2583 break; 2584 } 2585 2586 case TLSModel::LocalExec: { 2587 // Force the offset into the constant pool and load it from there. 2588 SystemZConstantPoolValue *CPV = 2589 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2590 2591 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2592 Offset = DAG.getLoad( 2593 PtrVT, DL, DAG.getEntryNode(), Offset, 2594 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2595 false, false, 0); 2596 break; 2597 } 2598 } 2599 2600 // Add the base and offset together. 2601 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2602 } 2603 2604 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2605 SelectionDAG &DAG) const { 2606 SDLoc DL(Node); 2607 const BlockAddress *BA = Node->getBlockAddress(); 2608 int64_t Offset = Node->getOffset(); 2609 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2610 2611 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2612 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2613 return Result; 2614 } 2615 2616 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2617 SelectionDAG &DAG) const { 2618 SDLoc DL(JT); 2619 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2620 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2621 2622 // Use LARL to load the address of the table. 2623 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2624 } 2625 2626 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2627 SelectionDAG &DAG) const { 2628 SDLoc DL(CP); 2629 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2630 2631 SDValue Result; 2632 if (CP->isMachineConstantPoolEntry()) 2633 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2634 CP->getAlignment()); 2635 else 2636 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2637 CP->getAlignment(), CP->getOffset()); 2638 2639 // Use LARL to load the address of the constant pool entry. 2640 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2641 } 2642 2643 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2644 SelectionDAG &DAG) const { 2645 SDLoc DL(Op); 2646 SDValue In = Op.getOperand(0); 2647 EVT InVT = In.getValueType(); 2648 EVT ResVT = Op.getValueType(); 2649 2650 // Convert loads directly. This is normally done by DAGCombiner, 2651 // but we need this case for bitcasts that are created during lowering 2652 // and which are then lowered themselves. 2653 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2654 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2655 LoadN->getMemOperand()); 2656 2657 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2658 SDValue In64; 2659 if (Subtarget.hasHighWord()) { 2660 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2661 MVT::i64); 2662 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2663 MVT::i64, SDValue(U64, 0), In); 2664 } else { 2665 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2666 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2667 DAG.getConstant(32, DL, MVT::i64)); 2668 } 2669 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2670 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2671 DL, MVT::f32, Out64); 2672 } 2673 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2674 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2675 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2676 MVT::f64, SDValue(U64, 0), In); 2677 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2678 if (Subtarget.hasHighWord()) 2679 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2680 MVT::i32, Out64); 2681 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2682 DAG.getConstant(32, DL, MVT::i64)); 2683 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2684 } 2685 llvm_unreachable("Unexpected bitcast combination"); 2686 } 2687 2688 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2689 SelectionDAG &DAG) const { 2690 MachineFunction &MF = DAG.getMachineFunction(); 2691 SystemZMachineFunctionInfo *FuncInfo = 2692 MF.getInfo<SystemZMachineFunctionInfo>(); 2693 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2694 2695 SDValue Chain = Op.getOperand(0); 2696 SDValue Addr = Op.getOperand(1); 2697 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2698 SDLoc DL(Op); 2699 2700 // The initial values of each field. 2701 const unsigned NumFields = 4; 2702 SDValue Fields[NumFields] = { 2703 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2704 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2705 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2706 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2707 }; 2708 2709 // Store each field into its respective slot. 2710 SDValue MemOps[NumFields]; 2711 unsigned Offset = 0; 2712 for (unsigned I = 0; I < NumFields; ++I) { 2713 SDValue FieldAddr = Addr; 2714 if (Offset != 0) 2715 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2716 DAG.getIntPtrConstant(Offset, DL)); 2717 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2718 MachinePointerInfo(SV, Offset), 2719 false, false, 0); 2720 Offset += 8; 2721 } 2722 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2723 } 2724 2725 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2726 SelectionDAG &DAG) const { 2727 SDValue Chain = Op.getOperand(0); 2728 SDValue DstPtr = Op.getOperand(1); 2729 SDValue SrcPtr = Op.getOperand(2); 2730 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2731 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2732 SDLoc DL(Op); 2733 2734 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2735 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2736 /*isTailCall*/false, 2737 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2738 } 2739 2740 SDValue SystemZTargetLowering:: 2741 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2742 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2743 bool RealignOpt = !DAG.getMachineFunction().getFunction()-> 2744 hasFnAttribute("no-realign-stack"); 2745 2746 SDValue Chain = Op.getOperand(0); 2747 SDValue Size = Op.getOperand(1); 2748 SDValue Align = Op.getOperand(2); 2749 SDLoc DL(Op); 2750 2751 // If user has set the no alignment function attribute, ignore 2752 // alloca alignments. 2753 uint64_t AlignVal = (RealignOpt ? 2754 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2755 2756 uint64_t StackAlign = TFI->getStackAlignment(); 2757 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2758 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2759 2760 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2761 SDValue NeededSpace = Size; 2762 2763 // Get a reference to the stack pointer. 2764 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2765 2766 // Add extra space for alignment if needed. 2767 if (ExtraAlignSpace) 2768 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2769 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2770 2771 // Get the new stack pointer value. 2772 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2773 2774 // Copy the new stack pointer back. 2775 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2776 2777 // The allocated data lives above the 160 bytes allocated for the standard 2778 // frame, plus any outgoing stack arguments. We don't know how much that 2779 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2780 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2781 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2782 2783 // Dynamically realign if needed. 2784 if (RequiredAlign > StackAlign) { 2785 Result = 2786 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2787 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2788 Result = 2789 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2790 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2791 } 2792 2793 SDValue Ops[2] = { Result, Chain }; 2794 return DAG.getMergeValues(Ops, DL); 2795 } 2796 2797 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2798 SelectionDAG &DAG) const { 2799 EVT VT = Op.getValueType(); 2800 SDLoc DL(Op); 2801 SDValue Ops[2]; 2802 if (is32Bit(VT)) 2803 // Just do a normal 64-bit multiplication and extract the results. 2804 // We define this so that it can be used for constant division. 2805 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2806 Op.getOperand(1), Ops[1], Ops[0]); 2807 else { 2808 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2809 // 2810 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2811 // 2812 // but using the fact that the upper halves are either all zeros 2813 // or all ones: 2814 // 2815 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2816 // 2817 // and grouping the right terms together since they are quicker than the 2818 // multiplication: 2819 // 2820 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2821 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2822 SDValue LL = Op.getOperand(0); 2823 SDValue RL = Op.getOperand(1); 2824 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2825 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2826 // UMUL_LOHI64 returns the low result in the odd register and the high 2827 // result in the even register. SMUL_LOHI is defined to return the 2828 // low half first, so the results are in reverse order. 2829 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2830 LL, RL, Ops[1], Ops[0]); 2831 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2832 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2833 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2834 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2835 } 2836 return DAG.getMergeValues(Ops, DL); 2837 } 2838 2839 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2840 SelectionDAG &DAG) const { 2841 EVT VT = Op.getValueType(); 2842 SDLoc DL(Op); 2843 SDValue Ops[2]; 2844 if (is32Bit(VT)) 2845 // Just do a normal 64-bit multiplication and extract the results. 2846 // We define this so that it can be used for constant division. 2847 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2848 Op.getOperand(1), Ops[1], Ops[0]); 2849 else 2850 // UMUL_LOHI64 returns the low result in the odd register and the high 2851 // result in the even register. UMUL_LOHI is defined to return the 2852 // low half first, so the results are in reverse order. 2853 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2854 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2855 return DAG.getMergeValues(Ops, DL); 2856 } 2857 2858 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2859 SelectionDAG &DAG) const { 2860 SDValue Op0 = Op.getOperand(0); 2861 SDValue Op1 = Op.getOperand(1); 2862 EVT VT = Op.getValueType(); 2863 SDLoc DL(Op); 2864 unsigned Opcode; 2865 2866 // We use DSGF for 32-bit division. 2867 if (is32Bit(VT)) { 2868 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2869 Opcode = SystemZISD::SDIVREM32; 2870 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2871 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2872 Opcode = SystemZISD::SDIVREM32; 2873 } else 2874 Opcode = SystemZISD::SDIVREM64; 2875 2876 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2877 // input is "don't care". The instruction returns the remainder in 2878 // the even register and the quotient in the odd register. 2879 SDValue Ops[2]; 2880 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2881 Op0, Op1, Ops[1], Ops[0]); 2882 return DAG.getMergeValues(Ops, DL); 2883 } 2884 2885 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2886 SelectionDAG &DAG) const { 2887 EVT VT = Op.getValueType(); 2888 SDLoc DL(Op); 2889 2890 // DL(G) uses a double-width dividend, so we need to clear the even 2891 // register in the GR128 input. The instruction returns the remainder 2892 // in the even register and the quotient in the odd register. 2893 SDValue Ops[2]; 2894 if (is32Bit(VT)) 2895 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2896 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2897 else 2898 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2899 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2900 return DAG.getMergeValues(Ops, DL); 2901 } 2902 2903 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2904 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2905 2906 // Get the known-zero masks for each operand. 2907 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2908 APInt KnownZero[2], KnownOne[2]; 2909 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2910 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2911 2912 // See if the upper 32 bits of one operand and the lower 32 bits of the 2913 // other are known zero. They are the low and high operands respectively. 2914 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2915 KnownZero[1].getZExtValue() }; 2916 unsigned High, Low; 2917 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2918 High = 1, Low = 0; 2919 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2920 High = 0, Low = 1; 2921 else 2922 return Op; 2923 2924 SDValue LowOp = Ops[Low]; 2925 SDValue HighOp = Ops[High]; 2926 2927 // If the high part is a constant, we're better off using IILH. 2928 if (HighOp.getOpcode() == ISD::Constant) 2929 return Op; 2930 2931 // If the low part is a constant that is outside the range of LHI, 2932 // then we're better off using IILF. 2933 if (LowOp.getOpcode() == ISD::Constant) { 2934 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2935 if (!isInt<16>(Value)) 2936 return Op; 2937 } 2938 2939 // Check whether the high part is an AND that doesn't change the 2940 // high 32 bits and just masks out low bits. We can skip it if so. 2941 if (HighOp.getOpcode() == ISD::AND && 2942 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2943 SDValue HighOp0 = HighOp.getOperand(0); 2944 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2945 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2946 HighOp = HighOp0; 2947 } 2948 2949 // Take advantage of the fact that all GR32 operations only change the 2950 // low 32 bits by truncating Low to an i32 and inserting it directly 2951 // using a subreg. The interesting cases are those where the truncation 2952 // can be folded. 2953 SDLoc DL(Op); 2954 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2955 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2956 MVT::i64, HighOp, Low32); 2957 } 2958 2959 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2960 SelectionDAG &DAG) const { 2961 EVT VT = Op.getValueType(); 2962 SDLoc DL(Op); 2963 Op = Op.getOperand(0); 2964 2965 // Handle vector types via VPOPCT. 2966 if (VT.isVector()) { 2967 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2968 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2969 switch (VT.getVectorElementType().getSizeInBits()) { 2970 case 8: 2971 break; 2972 case 16: { 2973 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2974 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2975 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2976 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2977 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2978 break; 2979 } 2980 case 32: { 2981 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2982 DAG.getConstant(0, DL, MVT::i32)); 2983 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2984 break; 2985 } 2986 case 64: { 2987 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2988 DAG.getConstant(0, DL, MVT::i32)); 2989 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2990 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2991 break; 2992 } 2993 default: 2994 llvm_unreachable("Unexpected type"); 2995 } 2996 return Op; 2997 } 2998 2999 // Get the known-zero mask for the operand. 3000 APInt KnownZero, KnownOne; 3001 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3002 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3003 if (NumSignificantBits == 0) 3004 return DAG.getConstant(0, DL, VT); 3005 3006 // Skip known-zero high parts of the operand. 3007 int64_t OrigBitSize = VT.getSizeInBits(); 3008 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3009 BitSize = std::min(BitSize, OrigBitSize); 3010 3011 // The POPCNT instruction counts the number of bits in each byte. 3012 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3013 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3014 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3015 3016 // Add up per-byte counts in a binary tree. All bits of Op at 3017 // position larger than BitSize remain zero throughout. 3018 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3019 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3020 if (BitSize != OrigBitSize) 3021 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3022 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3023 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3024 } 3025 3026 // Extract overall result from high byte. 3027 if (BitSize > 8) 3028 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3029 DAG.getConstant(BitSize - 8, DL, VT)); 3030 3031 return Op; 3032 } 3033 3034 // Op is an atomic load. Lower it into a normal volatile load. 3035 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3036 SelectionDAG &DAG) const { 3037 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3038 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3039 Node->getChain(), Node->getBasePtr(), 3040 Node->getMemoryVT(), Node->getMemOperand()); 3041 } 3042 3043 // Op is an atomic store. Lower it into a normal volatile store followed 3044 // by a serialization. 3045 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3046 SelectionDAG &DAG) const { 3047 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3048 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3049 Node->getBasePtr(), Node->getMemoryVT(), 3050 Node->getMemOperand()); 3051 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3052 Chain), 0); 3053 } 3054 3055 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3056 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3057 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3058 SelectionDAG &DAG, 3059 unsigned Opcode) const { 3060 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3061 3062 // 32-bit operations need no code outside the main loop. 3063 EVT NarrowVT = Node->getMemoryVT(); 3064 EVT WideVT = MVT::i32; 3065 if (NarrowVT == WideVT) 3066 return Op; 3067 3068 int64_t BitSize = NarrowVT.getSizeInBits(); 3069 SDValue ChainIn = Node->getChain(); 3070 SDValue Addr = Node->getBasePtr(); 3071 SDValue Src2 = Node->getVal(); 3072 MachineMemOperand *MMO = Node->getMemOperand(); 3073 SDLoc DL(Node); 3074 EVT PtrVT = Addr.getValueType(); 3075 3076 // Convert atomic subtracts of constants into additions. 3077 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3078 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3079 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3080 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3081 } 3082 3083 // Get the address of the containing word. 3084 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3085 DAG.getConstant(-4, DL, PtrVT)); 3086 3087 // Get the number of bits that the word must be rotated left in order 3088 // to bring the field to the top bits of a GR32. 3089 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3090 DAG.getConstant(3, DL, PtrVT)); 3091 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3092 3093 // Get the complementing shift amount, for rotating a field in the top 3094 // bits back to its proper position. 3095 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3096 DAG.getConstant(0, DL, WideVT), BitShift); 3097 3098 // Extend the source operand to 32 bits and prepare it for the inner loop. 3099 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3100 // operations require the source to be shifted in advance. (This shift 3101 // can be folded if the source is constant.) For AND and NAND, the lower 3102 // bits must be set, while for other opcodes they should be left clear. 3103 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3104 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3105 DAG.getConstant(32 - BitSize, DL, WideVT)); 3106 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3107 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3108 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3109 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3110 3111 // Construct the ATOMIC_LOADW_* node. 3112 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3113 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3114 DAG.getConstant(BitSize, DL, WideVT) }; 3115 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3116 NarrowVT, MMO); 3117 3118 // Rotate the result of the final CS so that the field is in the lower 3119 // bits of a GR32, then truncate it. 3120 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3121 DAG.getConstant(BitSize, DL, WideVT)); 3122 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3123 3124 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3125 return DAG.getMergeValues(RetOps, DL); 3126 } 3127 3128 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3129 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3130 // operations into additions. 3131 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3132 SelectionDAG &DAG) const { 3133 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3134 EVT MemVT = Node->getMemoryVT(); 3135 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3136 // A full-width operation. 3137 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3138 SDValue Src2 = Node->getVal(); 3139 SDValue NegSrc2; 3140 SDLoc DL(Src2); 3141 3142 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3143 // Use an addition if the operand is constant and either LAA(G) is 3144 // available or the negative value is in the range of A(G)FHI. 3145 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3146 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3147 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3148 } else if (Subtarget.hasInterlockedAccess1()) 3149 // Use LAA(G) if available. 3150 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3151 Src2); 3152 3153 if (NegSrc2.getNode()) 3154 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3155 Node->getChain(), Node->getBasePtr(), NegSrc2, 3156 Node->getMemOperand(), Node->getOrdering(), 3157 Node->getSynchScope()); 3158 3159 // Use the node as-is. 3160 return Op; 3161 } 3162 3163 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3164 } 3165 3166 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3167 // into a fullword ATOMIC_CMP_SWAPW operation. 3168 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3169 SelectionDAG &DAG) const { 3170 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3171 3172 // We have native support for 32-bit compare and swap. 3173 EVT NarrowVT = Node->getMemoryVT(); 3174 EVT WideVT = MVT::i32; 3175 if (NarrowVT == WideVT) 3176 return Op; 3177 3178 int64_t BitSize = NarrowVT.getSizeInBits(); 3179 SDValue ChainIn = Node->getOperand(0); 3180 SDValue Addr = Node->getOperand(1); 3181 SDValue CmpVal = Node->getOperand(2); 3182 SDValue SwapVal = Node->getOperand(3); 3183 MachineMemOperand *MMO = Node->getMemOperand(); 3184 SDLoc DL(Node); 3185 EVT PtrVT = Addr.getValueType(); 3186 3187 // Get the address of the containing word. 3188 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3189 DAG.getConstant(-4, DL, PtrVT)); 3190 3191 // Get the number of bits that the word must be rotated left in order 3192 // to bring the field to the top bits of a GR32. 3193 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3194 DAG.getConstant(3, DL, PtrVT)); 3195 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3196 3197 // Get the complementing shift amount, for rotating a field in the top 3198 // bits back to its proper position. 3199 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3200 DAG.getConstant(0, DL, WideVT), BitShift); 3201 3202 // Construct the ATOMIC_CMP_SWAPW node. 3203 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3204 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3205 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3206 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3207 VTList, Ops, NarrowVT, MMO); 3208 return AtomicOp; 3209 } 3210 3211 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3212 SelectionDAG &DAG) const { 3213 MachineFunction &MF = DAG.getMachineFunction(); 3214 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3215 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3216 SystemZ::R15D, Op.getValueType()); 3217 } 3218 3219 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3220 SelectionDAG &DAG) const { 3221 MachineFunction &MF = DAG.getMachineFunction(); 3222 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3223 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3224 SystemZ::R15D, Op.getOperand(1)); 3225 } 3226 3227 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3228 SelectionDAG &DAG) const { 3229 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3230 if (!IsData) 3231 // Just preserve the chain. 3232 return Op.getOperand(0); 3233 3234 SDLoc DL(Op); 3235 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3236 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3237 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3238 SDValue Ops[] = { 3239 Op.getOperand(0), 3240 DAG.getConstant(Code, DL, MVT::i32), 3241 Op.getOperand(1) 3242 }; 3243 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3244 Node->getVTList(), Ops, 3245 Node->getMemoryVT(), Node->getMemOperand()); 3246 } 3247 3248 // Return an i32 that contains the value of CC immediately after After, 3249 // whose final operand must be MVT::Glue. 3250 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3251 SDLoc DL(After); 3252 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3253 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3254 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3255 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3256 } 3257 3258 SDValue 3259 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3260 SelectionDAG &DAG) const { 3261 unsigned Opcode, CCValid; 3262 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3263 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3264 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3265 SDValue CC = getCCResult(DAG, Glued.getNode()); 3266 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3267 return SDValue(); 3268 } 3269 3270 return SDValue(); 3271 } 3272 3273 SDValue 3274 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3275 SelectionDAG &DAG) const { 3276 unsigned Opcode, CCValid; 3277 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3278 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3279 SDValue CC = getCCResult(DAG, Glued.getNode()); 3280 if (Op->getNumValues() == 1) 3281 return CC; 3282 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3283 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3284 CC); 3285 } 3286 3287 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3288 switch (Id) { 3289 case Intrinsic::s390_vpdi: 3290 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3291 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3292 3293 case Intrinsic::s390_vperm: 3294 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3295 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3296 3297 case Intrinsic::s390_vuphb: 3298 case Intrinsic::s390_vuphh: 3299 case Intrinsic::s390_vuphf: 3300 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3301 Op.getOperand(1)); 3302 3303 case Intrinsic::s390_vuplhb: 3304 case Intrinsic::s390_vuplhh: 3305 case Intrinsic::s390_vuplhf: 3306 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3307 Op.getOperand(1)); 3308 3309 case Intrinsic::s390_vuplb: 3310 case Intrinsic::s390_vuplhw: 3311 case Intrinsic::s390_vuplf: 3312 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3313 Op.getOperand(1)); 3314 3315 case Intrinsic::s390_vupllb: 3316 case Intrinsic::s390_vupllh: 3317 case Intrinsic::s390_vupllf: 3318 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3319 Op.getOperand(1)); 3320 3321 case Intrinsic::s390_vsumb: 3322 case Intrinsic::s390_vsumh: 3323 case Intrinsic::s390_vsumgh: 3324 case Intrinsic::s390_vsumgf: 3325 case Intrinsic::s390_vsumqf: 3326 case Intrinsic::s390_vsumqg: 3327 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3328 Op.getOperand(1), Op.getOperand(2)); 3329 } 3330 3331 return SDValue(); 3332 } 3333 3334 namespace { 3335 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3336 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3337 // Operand is the constant third operand, otherwise it is the number of 3338 // bytes in each element of the result. 3339 struct Permute { 3340 unsigned Opcode; 3341 unsigned Operand; 3342 unsigned char Bytes[SystemZ::VectorBytes]; 3343 }; 3344 } 3345 3346 static const Permute PermuteForms[] = { 3347 // VMRHG 3348 { SystemZISD::MERGE_HIGH, 8, 3349 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3350 // VMRHF 3351 { SystemZISD::MERGE_HIGH, 4, 3352 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3353 // VMRHH 3354 { SystemZISD::MERGE_HIGH, 2, 3355 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3356 // VMRHB 3357 { SystemZISD::MERGE_HIGH, 1, 3358 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3359 // VMRLG 3360 { SystemZISD::MERGE_LOW, 8, 3361 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3362 // VMRLF 3363 { SystemZISD::MERGE_LOW, 4, 3364 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3365 // VMRLH 3366 { SystemZISD::MERGE_LOW, 2, 3367 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3368 // VMRLB 3369 { SystemZISD::MERGE_LOW, 1, 3370 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3371 // VPKG 3372 { SystemZISD::PACK, 4, 3373 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3374 // VPKF 3375 { SystemZISD::PACK, 2, 3376 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3377 // VPKH 3378 { SystemZISD::PACK, 1, 3379 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3380 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3381 { SystemZISD::PERMUTE_DWORDS, 4, 3382 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3383 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3384 { SystemZISD::PERMUTE_DWORDS, 1, 3385 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3386 }; 3387 3388 // Called after matching a vector shuffle against a particular pattern. 3389 // Both the original shuffle and the pattern have two vector operands. 3390 // OpNos[0] is the operand of the original shuffle that should be used for 3391 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3392 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3393 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3394 // for operands 0 and 1 of the pattern. 3395 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3396 if (OpNos[0] < 0) { 3397 if (OpNos[1] < 0) 3398 return false; 3399 OpNo0 = OpNo1 = OpNos[1]; 3400 } else if (OpNos[1] < 0) { 3401 OpNo0 = OpNo1 = OpNos[0]; 3402 } else { 3403 OpNo0 = OpNos[0]; 3404 OpNo1 = OpNos[1]; 3405 } 3406 return true; 3407 } 3408 3409 // Bytes is a VPERM-like permute vector, except that -1 is used for 3410 // undefined bytes. Return true if the VPERM can be implemented using P. 3411 // When returning true set OpNo0 to the VPERM operand that should be 3412 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3413 // 3414 // For example, if swapping the VPERM operands allows P to match, OpNo0 3415 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3416 // operand, but rewriting it to use two duplicated operands allows it to 3417 // match P, then OpNo0 and OpNo1 will be the same. 3418 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3419 unsigned &OpNo0, unsigned &OpNo1) { 3420 int OpNos[] = { -1, -1 }; 3421 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3422 int Elt = Bytes[I]; 3423 if (Elt >= 0) { 3424 // Make sure that the two permute vectors use the same suboperand 3425 // byte number. Only the operand numbers (the high bits) are 3426 // allowed to differ. 3427 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3428 return false; 3429 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3430 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3431 // Make sure that the operand mappings are consistent with previous 3432 // elements. 3433 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3434 return false; 3435 OpNos[ModelOpNo] = RealOpNo; 3436 } 3437 } 3438 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3439 } 3440 3441 // As above, but search for a matching permute. 3442 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3443 unsigned &OpNo0, unsigned &OpNo1) { 3444 for (auto &P : PermuteForms) 3445 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3446 return &P; 3447 return nullptr; 3448 } 3449 3450 // Bytes is a VPERM-like permute vector, except that -1 is used for 3451 // undefined bytes. This permute is an operand of an outer permute. 3452 // See whether redistributing the -1 bytes gives a shuffle that can be 3453 // implemented using P. If so, set Transform to a VPERM-like permute vector 3454 // that, when applied to the result of P, gives the original permute in Bytes. 3455 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3456 const Permute &P, 3457 SmallVectorImpl<int> &Transform) { 3458 unsigned To = 0; 3459 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3460 int Elt = Bytes[From]; 3461 if (Elt < 0) 3462 // Byte number From of the result is undefined. 3463 Transform[From] = -1; 3464 else { 3465 while (P.Bytes[To] != Elt) { 3466 To += 1; 3467 if (To == SystemZ::VectorBytes) 3468 return false; 3469 } 3470 Transform[From] = To; 3471 } 3472 } 3473 return true; 3474 } 3475 3476 // As above, but search for a matching permute. 3477 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3478 SmallVectorImpl<int> &Transform) { 3479 for (auto &P : PermuteForms) 3480 if (matchDoublePermute(Bytes, P, Transform)) 3481 return &P; 3482 return nullptr; 3483 } 3484 3485 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3486 // as if it had type vNi8. 3487 static void getVPermMask(ShuffleVectorSDNode *VSN, 3488 SmallVectorImpl<int> &Bytes) { 3489 EVT VT = VSN->getValueType(0); 3490 unsigned NumElements = VT.getVectorNumElements(); 3491 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3492 Bytes.resize(NumElements * BytesPerElement, -1); 3493 for (unsigned I = 0; I < NumElements; ++I) { 3494 int Index = VSN->getMaskElt(I); 3495 if (Index >= 0) 3496 for (unsigned J = 0; J < BytesPerElement; ++J) 3497 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3498 } 3499 } 3500 3501 // Bytes is a VPERM-like permute vector, except that -1 is used for 3502 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3503 // the result come from a contiguous sequence of bytes from one input. 3504 // Set Base to the selector for the first byte if so. 3505 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3506 unsigned BytesPerElement, int &Base) { 3507 Base = -1; 3508 for (unsigned I = 0; I < BytesPerElement; ++I) { 3509 if (Bytes[Start + I] >= 0) { 3510 unsigned Elem = Bytes[Start + I]; 3511 if (Base < 0) { 3512 Base = Elem - I; 3513 // Make sure the bytes would come from one input operand. 3514 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3515 return false; 3516 } else if (unsigned(Base) != Elem - I) 3517 return false; 3518 } 3519 } 3520 return true; 3521 } 3522 3523 // Bytes is a VPERM-like permute vector, except that -1 is used for 3524 // undefined bytes. Return true if it can be performed using VSLDI. 3525 // When returning true, set StartIndex to the shift amount and OpNo0 3526 // and OpNo1 to the VPERM operands that should be used as the first 3527 // and second shift operand respectively. 3528 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3529 unsigned &StartIndex, unsigned &OpNo0, 3530 unsigned &OpNo1) { 3531 int OpNos[] = { -1, -1 }; 3532 int Shift = -1; 3533 for (unsigned I = 0; I < 16; ++I) { 3534 int Index = Bytes[I]; 3535 if (Index >= 0) { 3536 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3537 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3538 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3539 if (Shift < 0) 3540 Shift = ExpectedShift; 3541 else if (Shift != ExpectedShift) 3542 return false; 3543 // Make sure that the operand mappings are consistent with previous 3544 // elements. 3545 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3546 return false; 3547 OpNos[ModelOpNo] = RealOpNo; 3548 } 3549 } 3550 StartIndex = Shift; 3551 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3552 } 3553 3554 // Create a node that performs P on operands Op0 and Op1, casting the 3555 // operands to the appropriate type. The type of the result is determined by P. 3556 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3557 const Permute &P, SDValue Op0, SDValue Op1) { 3558 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3559 // elements of a PACK are twice as wide as the outputs. 3560 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3561 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3562 P.Operand); 3563 // Cast both operands to the appropriate type. 3564 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3565 SystemZ::VectorBytes / InBytes); 3566 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3567 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3568 SDValue Op; 3569 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3570 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3571 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3572 } else if (P.Opcode == SystemZISD::PACK) { 3573 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3574 SystemZ::VectorBytes / P.Operand); 3575 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3576 } else { 3577 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3578 } 3579 return Op; 3580 } 3581 3582 // Bytes is a VPERM-like permute vector, except that -1 is used for 3583 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3584 // VSLDI or VPERM. 3585 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3586 const SmallVectorImpl<int> &Bytes) { 3587 for (unsigned I = 0; I < 2; ++I) 3588 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3589 3590 // First see whether VSLDI can be used. 3591 unsigned StartIndex, OpNo0, OpNo1; 3592 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3593 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3594 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3595 3596 // Fall back on VPERM. Construct an SDNode for the permute vector. 3597 SDValue IndexNodes[SystemZ::VectorBytes]; 3598 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3599 if (Bytes[I] >= 0) 3600 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3601 else 3602 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3603 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3604 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3605 } 3606 3607 namespace { 3608 // Describes a general N-operand vector shuffle. 3609 struct GeneralShuffle { 3610 GeneralShuffle(EVT vt) : VT(vt) {} 3611 void addUndef(); 3612 void add(SDValue, unsigned); 3613 SDValue getNode(SelectionDAG &, SDLoc); 3614 3615 // The operands of the shuffle. 3616 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3617 3618 // Index I is -1 if byte I of the result is undefined. Otherwise the 3619 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3620 // Bytes[I] / SystemZ::VectorBytes. 3621 SmallVector<int, SystemZ::VectorBytes> Bytes; 3622 3623 // The type of the shuffle result. 3624 EVT VT; 3625 }; 3626 } 3627 3628 // Add an extra undefined element to the shuffle. 3629 void GeneralShuffle::addUndef() { 3630 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3631 for (unsigned I = 0; I < BytesPerElement; ++I) 3632 Bytes.push_back(-1); 3633 } 3634 3635 // Add an extra element to the shuffle, taking it from element Elem of Op. 3636 // A null Op indicates a vector input whose value will be calculated later; 3637 // there is at most one such input per shuffle and it always has the same 3638 // type as the result. 3639 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3640 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3641 3642 // The source vector can have wider elements than the result, 3643 // either through an explicit TRUNCATE or because of type legalization. 3644 // We want the least significant part. 3645 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3646 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3647 assert(FromBytesPerElement >= BytesPerElement && 3648 "Invalid EXTRACT_VECTOR_ELT"); 3649 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3650 (FromBytesPerElement - BytesPerElement)); 3651 3652 // Look through things like shuffles and bitcasts. 3653 while (Op.getNode()) { 3654 if (Op.getOpcode() == ISD::BITCAST) 3655 Op = Op.getOperand(0); 3656 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3657 // See whether the bytes we need come from a contiguous part of one 3658 // operand. 3659 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3660 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3661 int NewByte; 3662 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3663 break; 3664 if (NewByte < 0) { 3665 addUndef(); 3666 return; 3667 } 3668 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3669 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3670 } else if (Op.getOpcode() == ISD::UNDEF) { 3671 addUndef(); 3672 return; 3673 } else 3674 break; 3675 } 3676 3677 // Make sure that the source of the extraction is in Ops. 3678 unsigned OpNo = 0; 3679 for (; OpNo < Ops.size(); ++OpNo) 3680 if (Ops[OpNo] == Op) 3681 break; 3682 if (OpNo == Ops.size()) 3683 Ops.push_back(Op); 3684 3685 // Add the element to Bytes. 3686 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3687 for (unsigned I = 0; I < BytesPerElement; ++I) 3688 Bytes.push_back(Base + I); 3689 } 3690 3691 // Return SDNodes for the completed shuffle. 3692 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3693 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3694 3695 if (Ops.size() == 0) 3696 return DAG.getUNDEF(VT); 3697 3698 // Make sure that there are at least two shuffle operands. 3699 if (Ops.size() == 1) 3700 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3701 3702 // Create a tree of shuffles, deferring root node until after the loop. 3703 // Try to redistribute the undefined elements of non-root nodes so that 3704 // the non-root shuffles match something like a pack or merge, then adjust 3705 // the parent node's permute vector to compensate for the new order. 3706 // Among other things, this copes with vectors like <2 x i16> that were 3707 // padded with undefined elements during type legalization. 3708 // 3709 // In the best case this redistribution will lead to the whole tree 3710 // using packs and merges. It should rarely be a loss in other cases. 3711 unsigned Stride = 1; 3712 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3713 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3714 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3715 3716 // Create a mask for just these two operands. 3717 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3718 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3719 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3720 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3721 if (OpNo == I) 3722 NewBytes[J] = Byte; 3723 else if (OpNo == I + Stride) 3724 NewBytes[J] = SystemZ::VectorBytes + Byte; 3725 else 3726 NewBytes[J] = -1; 3727 } 3728 // See if it would be better to reorganize NewMask to avoid using VPERM. 3729 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3730 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3731 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3732 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3733 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3734 if (NewBytes[J] >= 0) { 3735 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3736 "Invalid double permute"); 3737 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3738 } else 3739 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3740 } 3741 } else { 3742 // Just use NewBytes on the operands. 3743 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3744 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3745 if (NewBytes[J] >= 0) 3746 Bytes[J] = I * SystemZ::VectorBytes + J; 3747 } 3748 } 3749 } 3750 3751 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3752 if (Stride > 1) { 3753 Ops[1] = Ops[Stride]; 3754 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3755 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3756 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3757 } 3758 3759 // Look for an instruction that can do the permute without resorting 3760 // to VPERM. 3761 unsigned OpNo0, OpNo1; 3762 SDValue Op; 3763 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3764 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3765 else 3766 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3767 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3768 } 3769 3770 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3771 static bool isScalarToVector(SDValue Op) { 3772 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3773 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3774 return false; 3775 return true; 3776 } 3777 3778 // Return a vector of type VT that contains Value in the first element. 3779 // The other elements don't matter. 3780 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3781 SDValue Value) { 3782 // If we have a constant, replicate it to all elements and let the 3783 // BUILD_VECTOR lowering take care of it. 3784 if (Value.getOpcode() == ISD::Constant || 3785 Value.getOpcode() == ISD::ConstantFP) { 3786 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3787 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3788 } 3789 if (Value.getOpcode() == ISD::UNDEF) 3790 return DAG.getUNDEF(VT); 3791 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3792 } 3793 3794 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3795 // element 1. Used for cases in which replication is cheap. 3796 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3797 SDValue Op0, SDValue Op1) { 3798 if (Op0.getOpcode() == ISD::UNDEF) { 3799 if (Op1.getOpcode() == ISD::UNDEF) 3800 return DAG.getUNDEF(VT); 3801 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3802 } 3803 if (Op1.getOpcode() == ISD::UNDEF) 3804 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3805 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3806 buildScalarToVector(DAG, DL, VT, Op0), 3807 buildScalarToVector(DAG, DL, VT, Op1)); 3808 } 3809 3810 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3811 // vector for them. 3812 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3813 SDValue Op1) { 3814 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3815 return DAG.getUNDEF(MVT::v2i64); 3816 // If one of the two inputs is undefined then replicate the other one, 3817 // in order to avoid using another register unnecessarily. 3818 if (Op0.getOpcode() == ISD::UNDEF) 3819 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3820 else if (Op1.getOpcode() == ISD::UNDEF) 3821 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3822 else { 3823 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3824 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3825 } 3826 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3827 } 3828 3829 // Try to represent constant BUILD_VECTOR node BVN using a 3830 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3831 // on success. 3832 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3833 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3834 unsigned BytesPerElement = ElemVT.getStoreSize(); 3835 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3836 SDValue Op = BVN->getOperand(I); 3837 if (Op.getOpcode() != ISD::UNDEF) { 3838 uint64_t Value; 3839 if (Op.getOpcode() == ISD::Constant) 3840 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3841 else if (Op.getOpcode() == ISD::ConstantFP) 3842 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3843 .getZExtValue()); 3844 else 3845 return false; 3846 for (unsigned J = 0; J < BytesPerElement; ++J) { 3847 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3848 if (Byte == 0xff) 3849 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3850 else if (Byte != 0) 3851 return false; 3852 } 3853 } 3854 } 3855 return true; 3856 } 3857 3858 // Try to load a vector constant in which BitsPerElement-bit value Value 3859 // is replicated to fill the vector. VT is the type of the resulting 3860 // constant, which may have elements of a different size from BitsPerElement. 3861 // Return the SDValue of the constant on success, otherwise return 3862 // an empty value. 3863 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3864 const SystemZInstrInfo *TII, 3865 SDLoc DL, EVT VT, uint64_t Value, 3866 unsigned BitsPerElement) { 3867 // Signed 16-bit values can be replicated using VREPI. 3868 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3869 if (isInt<16>(SignedValue)) { 3870 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3871 SystemZ::VectorBits / BitsPerElement); 3872 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3873 DAG.getConstant(SignedValue, DL, MVT::i32)); 3874 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3875 } 3876 // See whether rotating the constant left some N places gives a value that 3877 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3878 // If so we can use VGM. 3879 unsigned Start, End; 3880 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3881 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3882 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3883 // bit numbers for an BitsPerElement value, so that 0 denotes 3884 // 1 << (BitsPerElement-1). 3885 Start -= 64 - BitsPerElement; 3886 End -= 64 - BitsPerElement; 3887 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3888 SystemZ::VectorBits / BitsPerElement); 3889 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3890 DAG.getConstant(Start, DL, MVT::i32), 3891 DAG.getConstant(End, DL, MVT::i32)); 3892 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3893 } 3894 return SDValue(); 3895 } 3896 3897 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3898 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3899 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3900 // would benefit from this representation and return it if so. 3901 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3902 BuildVectorSDNode *BVN) { 3903 EVT VT = BVN->getValueType(0); 3904 unsigned NumElements = VT.getVectorNumElements(); 3905 3906 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3907 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3908 // need a BUILD_VECTOR, add an additional placeholder operand for that 3909 // BUILD_VECTOR and store its operands in ResidueOps. 3910 GeneralShuffle GS(VT); 3911 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3912 bool FoundOne = false; 3913 for (unsigned I = 0; I < NumElements; ++I) { 3914 SDValue Op = BVN->getOperand(I); 3915 if (Op.getOpcode() == ISD::TRUNCATE) 3916 Op = Op.getOperand(0); 3917 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3918 Op.getOperand(1).getOpcode() == ISD::Constant) { 3919 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3920 GS.add(Op.getOperand(0), Elem); 3921 FoundOne = true; 3922 } else if (Op.getOpcode() == ISD::UNDEF) { 3923 GS.addUndef(); 3924 } else { 3925 GS.add(SDValue(), ResidueOps.size()); 3926 ResidueOps.push_back(BVN->getOperand(I)); 3927 } 3928 } 3929 3930 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3931 if (!FoundOne) 3932 return SDValue(); 3933 3934 // Create the BUILD_VECTOR for the remaining elements, if any. 3935 if (!ResidueOps.empty()) { 3936 while (ResidueOps.size() < NumElements) 3937 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 3938 for (auto &Op : GS.Ops) { 3939 if (!Op.getNode()) { 3940 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3941 break; 3942 } 3943 } 3944 } 3945 return GS.getNode(DAG, SDLoc(BVN)); 3946 } 3947 3948 // Combine GPR scalar values Elems into a vector of type VT. 3949 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3950 SmallVectorImpl<SDValue> &Elems) { 3951 // See whether there is a single replicated value. 3952 SDValue Single; 3953 unsigned int NumElements = Elems.size(); 3954 unsigned int Count = 0; 3955 for (auto Elem : Elems) { 3956 if (Elem.getOpcode() != ISD::UNDEF) { 3957 if (!Single.getNode()) 3958 Single = Elem; 3959 else if (Elem != Single) { 3960 Single = SDValue(); 3961 break; 3962 } 3963 Count += 1; 3964 } 3965 } 3966 // There are three cases here: 3967 // 3968 // - if the only defined element is a loaded one, the best sequence 3969 // is a replicating load. 3970 // 3971 // - otherwise, if the only defined element is an i64 value, we will 3972 // end up with the same VLVGP sequence regardless of whether we short-cut 3973 // for replication or fall through to the later code. 3974 // 3975 // - otherwise, if the only defined element is an i32 or smaller value, 3976 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3977 // This is only a win if the single defined element is used more than once. 3978 // In other cases we're better off using a single VLVGx. 3979 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3980 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3981 3982 // The best way of building a v2i64 from two i64s is to use VLVGP. 3983 if (VT == MVT::v2i64) 3984 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3985 3986 // Use a 64-bit merge high to combine two doubles. 3987 if (VT == MVT::v2f64) 3988 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3989 3990 // Build v4f32 values directly from the FPRs: 3991 // 3992 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3993 // V V VMRHF 3994 // <ABxx> <CDxx> 3995 // V VMRHG 3996 // <ABCD> 3997 if (VT == MVT::v4f32) { 3998 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3999 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4000 // Avoid unnecessary undefs by reusing the other operand. 4001 if (Op01.getOpcode() == ISD::UNDEF) 4002 Op01 = Op23; 4003 else if (Op23.getOpcode() == ISD::UNDEF) 4004 Op23 = Op01; 4005 // Merging identical replications is a no-op. 4006 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4007 return Op01; 4008 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4009 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4010 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4011 DL, MVT::v2i64, Op01, Op23); 4012 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4013 } 4014 4015 // Collect the constant terms. 4016 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4017 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4018 4019 unsigned NumConstants = 0; 4020 for (unsigned I = 0; I < NumElements; ++I) { 4021 SDValue Elem = Elems[I]; 4022 if (Elem.getOpcode() == ISD::Constant || 4023 Elem.getOpcode() == ISD::ConstantFP) { 4024 NumConstants += 1; 4025 Constants[I] = Elem; 4026 Done[I] = true; 4027 } 4028 } 4029 // If there was at least one constant, fill in the other elements of 4030 // Constants with undefs to get a full vector constant and use that 4031 // as the starting point. 4032 SDValue Result; 4033 if (NumConstants > 0) { 4034 for (unsigned I = 0; I < NumElements; ++I) 4035 if (!Constants[I].getNode()) 4036 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4037 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4038 } else { 4039 // Otherwise try to use VLVGP to start the sequence in order to 4040 // avoid a false dependency on any previous contents of the vector 4041 // register. This only makes sense if one of the associated elements 4042 // is defined. 4043 unsigned I1 = NumElements / 2 - 1; 4044 unsigned I2 = NumElements - 1; 4045 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4046 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4047 if (Def1 || Def2) { 4048 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4049 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4050 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4051 joinDwords(DAG, DL, Elem1, Elem2)); 4052 Done[I1] = true; 4053 Done[I2] = true; 4054 } else 4055 Result = DAG.getUNDEF(VT); 4056 } 4057 4058 // Use VLVGx to insert the other elements. 4059 for (unsigned I = 0; I < NumElements; ++I) 4060 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4061 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4062 DAG.getConstant(I, DL, MVT::i32)); 4063 return Result; 4064 } 4065 4066 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4067 SelectionDAG &DAG) const { 4068 const SystemZInstrInfo *TII = 4069 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4070 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4071 SDLoc DL(Op); 4072 EVT VT = Op.getValueType(); 4073 4074 if (BVN->isConstant()) { 4075 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4076 // preferred way of creating all-zero and all-one vectors so give it 4077 // priority over other methods below. 4078 uint64_t Mask = 0; 4079 if (tryBuildVectorByteMask(BVN, Mask)) { 4080 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4081 DAG.getConstant(Mask, DL, MVT::i32)); 4082 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4083 } 4084 4085 // Try using some form of replication. 4086 APInt SplatBits, SplatUndef; 4087 unsigned SplatBitSize; 4088 bool HasAnyUndefs; 4089 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4090 8, true) && 4091 SplatBitSize <= 64) { 4092 // First try assuming that any undefined bits above the highest set bit 4093 // and below the lowest set bit are 1s. This increases the likelihood of 4094 // being able to use a sign-extended element value in VECTOR REPLICATE 4095 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4096 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4097 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4098 uint64_t Lower = (SplatUndefZ 4099 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4100 uint64_t Upper = (SplatUndefZ 4101 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4102 uint64_t Value = SplatBitsZ | Upper | Lower; 4103 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4104 SplatBitSize); 4105 if (Op.getNode()) 4106 return Op; 4107 4108 // Now try assuming that any undefined bits between the first and 4109 // last defined set bits are set. This increases the chances of 4110 // using a non-wraparound mask. 4111 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4112 Value = SplatBitsZ | Middle; 4113 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4114 if (Op.getNode()) 4115 return Op; 4116 } 4117 4118 // Fall back to loading it from memory. 4119 return SDValue(); 4120 } 4121 4122 // See if we should use shuffles to construct the vector from other vectors. 4123 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4124 if (Res.getNode()) 4125 return Res; 4126 4127 // Detect SCALAR_TO_VECTOR conversions. 4128 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4129 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4130 4131 // Otherwise use buildVector to build the vector up from GPRs. 4132 unsigned NumElements = Op.getNumOperands(); 4133 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4134 for (unsigned I = 0; I < NumElements; ++I) 4135 Ops[I] = Op.getOperand(I); 4136 return buildVector(DAG, DL, VT, Ops); 4137 } 4138 4139 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4140 SelectionDAG &DAG) const { 4141 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4142 SDLoc DL(Op); 4143 EVT VT = Op.getValueType(); 4144 unsigned NumElements = VT.getVectorNumElements(); 4145 4146 if (VSN->isSplat()) { 4147 SDValue Op0 = Op.getOperand(0); 4148 unsigned Index = VSN->getSplatIndex(); 4149 assert(Index < VT.getVectorNumElements() && 4150 "Splat index should be defined and in first operand"); 4151 // See whether the value we're splatting is directly available as a scalar. 4152 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4153 Op0.getOpcode() == ISD::BUILD_VECTOR) 4154 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4155 // Otherwise keep it as a vector-to-vector operation. 4156 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4157 DAG.getConstant(Index, DL, MVT::i32)); 4158 } 4159 4160 GeneralShuffle GS(VT); 4161 for (unsigned I = 0; I < NumElements; ++I) { 4162 int Elt = VSN->getMaskElt(I); 4163 if (Elt < 0) 4164 GS.addUndef(); 4165 else 4166 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4167 unsigned(Elt) % NumElements); 4168 } 4169 return GS.getNode(DAG, SDLoc(VSN)); 4170 } 4171 4172 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4173 SelectionDAG &DAG) const { 4174 SDLoc DL(Op); 4175 // Just insert the scalar into element 0 of an undefined vector. 4176 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4177 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4178 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4179 } 4180 4181 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4182 SelectionDAG &DAG) const { 4183 // Handle insertions of floating-point values. 4184 SDLoc DL(Op); 4185 SDValue Op0 = Op.getOperand(0); 4186 SDValue Op1 = Op.getOperand(1); 4187 SDValue Op2 = Op.getOperand(2); 4188 EVT VT = Op.getValueType(); 4189 4190 // Insertions into constant indices of a v2f64 can be done using VPDI. 4191 // However, if the inserted value is a bitcast or a constant then it's 4192 // better to use GPRs, as below. 4193 if (VT == MVT::v2f64 && 4194 Op1.getOpcode() != ISD::BITCAST && 4195 Op1.getOpcode() != ISD::ConstantFP && 4196 Op2.getOpcode() == ISD::Constant) { 4197 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4198 unsigned Mask = VT.getVectorNumElements() - 1; 4199 if (Index <= Mask) 4200 return Op; 4201 } 4202 4203 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4204 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4205 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4206 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4207 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4208 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4209 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4210 } 4211 4212 SDValue 4213 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4214 SelectionDAG &DAG) const { 4215 // Handle extractions of floating-point values. 4216 SDLoc DL(Op); 4217 SDValue Op0 = Op.getOperand(0); 4218 SDValue Op1 = Op.getOperand(1); 4219 EVT VT = Op.getValueType(); 4220 EVT VecVT = Op0.getValueType(); 4221 4222 // Extractions of constant indices can be done directly. 4223 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4224 uint64_t Index = CIndexN->getZExtValue(); 4225 unsigned Mask = VecVT.getVectorNumElements() - 1; 4226 if (Index <= Mask) 4227 return Op; 4228 } 4229 4230 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4231 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4232 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4233 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4234 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4235 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4236 } 4237 4238 SDValue 4239 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4240 unsigned UnpackHigh) const { 4241 SDValue PackedOp = Op.getOperand(0); 4242 EVT OutVT = Op.getValueType(); 4243 EVT InVT = PackedOp.getValueType(); 4244 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4245 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4246 do { 4247 FromBits *= 2; 4248 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4249 SystemZ::VectorBits / FromBits); 4250 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4251 } while (FromBits != ToBits); 4252 return PackedOp; 4253 } 4254 4255 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4256 unsigned ByScalar) const { 4257 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4258 SDValue Op0 = Op.getOperand(0); 4259 SDValue Op1 = Op.getOperand(1); 4260 SDLoc DL(Op); 4261 EVT VT = Op.getValueType(); 4262 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4263 4264 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4265 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4266 APInt SplatBits, SplatUndef; 4267 unsigned SplatBitSize; 4268 bool HasAnyUndefs; 4269 // Check for constant splats. Use ElemBitSize as the minimum element 4270 // width and reject splats that need wider elements. 4271 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4272 ElemBitSize, true) && 4273 SplatBitSize == ElemBitSize) { 4274 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4275 DL, MVT::i32); 4276 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4277 } 4278 // Check for variable splats. 4279 BitVector UndefElements; 4280 SDValue Splat = BVN->getSplatValue(&UndefElements); 4281 if (Splat) { 4282 // Since i32 is the smallest legal type, we either need a no-op 4283 // or a truncation. 4284 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4285 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4286 } 4287 } 4288 4289 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4290 // and the shift amount is directly available in a GPR. 4291 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4292 if (VSN->isSplat()) { 4293 SDValue VSNOp0 = VSN->getOperand(0); 4294 unsigned Index = VSN->getSplatIndex(); 4295 assert(Index < VT.getVectorNumElements() && 4296 "Splat index should be defined and in first operand"); 4297 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4298 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4299 // Since i32 is the smallest legal type, we either need a no-op 4300 // or a truncation. 4301 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4302 VSNOp0.getOperand(Index)); 4303 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4304 } 4305 } 4306 } 4307 4308 // Otherwise just treat the current form as legal. 4309 return Op; 4310 } 4311 4312 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4313 SelectionDAG &DAG) const { 4314 switch (Op.getOpcode()) { 4315 case ISD::BR_CC: 4316 return lowerBR_CC(Op, DAG); 4317 case ISD::SELECT_CC: 4318 return lowerSELECT_CC(Op, DAG); 4319 case ISD::SETCC: 4320 return lowerSETCC(Op, DAG); 4321 case ISD::GlobalAddress: 4322 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4323 case ISD::GlobalTLSAddress: 4324 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4325 case ISD::BlockAddress: 4326 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4327 case ISD::JumpTable: 4328 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4329 case ISD::ConstantPool: 4330 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4331 case ISD::BITCAST: 4332 return lowerBITCAST(Op, DAG); 4333 case ISD::VASTART: 4334 return lowerVASTART(Op, DAG); 4335 case ISD::VACOPY: 4336 return lowerVACOPY(Op, DAG); 4337 case ISD::DYNAMIC_STACKALLOC: 4338 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4339 case ISD::SMUL_LOHI: 4340 return lowerSMUL_LOHI(Op, DAG); 4341 case ISD::UMUL_LOHI: 4342 return lowerUMUL_LOHI(Op, DAG); 4343 case ISD::SDIVREM: 4344 return lowerSDIVREM(Op, DAG); 4345 case ISD::UDIVREM: 4346 return lowerUDIVREM(Op, DAG); 4347 case ISD::OR: 4348 return lowerOR(Op, DAG); 4349 case ISD::CTPOP: 4350 return lowerCTPOP(Op, DAG); 4351 case ISD::CTLZ_ZERO_UNDEF: 4352 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4353 Op.getValueType(), Op.getOperand(0)); 4354 case ISD::CTTZ_ZERO_UNDEF: 4355 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4356 Op.getValueType(), Op.getOperand(0)); 4357 case ISD::ATOMIC_SWAP: 4358 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4359 case ISD::ATOMIC_STORE: 4360 return lowerATOMIC_STORE(Op, DAG); 4361 case ISD::ATOMIC_LOAD: 4362 return lowerATOMIC_LOAD(Op, DAG); 4363 case ISD::ATOMIC_LOAD_ADD: 4364 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4365 case ISD::ATOMIC_LOAD_SUB: 4366 return lowerATOMIC_LOAD_SUB(Op, DAG); 4367 case ISD::ATOMIC_LOAD_AND: 4368 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4369 case ISD::ATOMIC_LOAD_OR: 4370 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4371 case ISD::ATOMIC_LOAD_XOR: 4372 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4373 case ISD::ATOMIC_LOAD_NAND: 4374 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4375 case ISD::ATOMIC_LOAD_MIN: 4376 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4377 case ISD::ATOMIC_LOAD_MAX: 4378 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4379 case ISD::ATOMIC_LOAD_UMIN: 4380 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4381 case ISD::ATOMIC_LOAD_UMAX: 4382 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4383 case ISD::ATOMIC_CMP_SWAP: 4384 return lowerATOMIC_CMP_SWAP(Op, DAG); 4385 case ISD::STACKSAVE: 4386 return lowerSTACKSAVE(Op, DAG); 4387 case ISD::STACKRESTORE: 4388 return lowerSTACKRESTORE(Op, DAG); 4389 case ISD::PREFETCH: 4390 return lowerPREFETCH(Op, DAG); 4391 case ISD::INTRINSIC_W_CHAIN: 4392 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4393 case ISD::INTRINSIC_WO_CHAIN: 4394 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4395 case ISD::BUILD_VECTOR: 4396 return lowerBUILD_VECTOR(Op, DAG); 4397 case ISD::VECTOR_SHUFFLE: 4398 return lowerVECTOR_SHUFFLE(Op, DAG); 4399 case ISD::SCALAR_TO_VECTOR: 4400 return lowerSCALAR_TO_VECTOR(Op, DAG); 4401 case ISD::INSERT_VECTOR_ELT: 4402 return lowerINSERT_VECTOR_ELT(Op, DAG); 4403 case ISD::EXTRACT_VECTOR_ELT: 4404 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4405 case ISD::SIGN_EXTEND_VECTOR_INREG: 4406 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4407 case ISD::ZERO_EXTEND_VECTOR_INREG: 4408 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4409 case ISD::SHL: 4410 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4411 case ISD::SRL: 4412 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4413 case ISD::SRA: 4414 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4415 default: 4416 llvm_unreachable("Unexpected node to lower"); 4417 } 4418 } 4419 4420 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4421 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4422 switch ((SystemZISD::NodeType)Opcode) { 4423 case SystemZISD::FIRST_NUMBER: break; 4424 OPCODE(RET_FLAG); 4425 OPCODE(CALL); 4426 OPCODE(SIBCALL); 4427 OPCODE(TLS_GDCALL); 4428 OPCODE(TLS_LDCALL); 4429 OPCODE(PCREL_WRAPPER); 4430 OPCODE(PCREL_OFFSET); 4431 OPCODE(IABS); 4432 OPCODE(ICMP); 4433 OPCODE(FCMP); 4434 OPCODE(TM); 4435 OPCODE(BR_CCMASK); 4436 OPCODE(SELECT_CCMASK); 4437 OPCODE(ADJDYNALLOC); 4438 OPCODE(EXTRACT_ACCESS); 4439 OPCODE(POPCNT); 4440 OPCODE(UMUL_LOHI64); 4441 OPCODE(SDIVREM32); 4442 OPCODE(SDIVREM64); 4443 OPCODE(UDIVREM32); 4444 OPCODE(UDIVREM64); 4445 OPCODE(MVC); 4446 OPCODE(MVC_LOOP); 4447 OPCODE(NC); 4448 OPCODE(NC_LOOP); 4449 OPCODE(OC); 4450 OPCODE(OC_LOOP); 4451 OPCODE(XC); 4452 OPCODE(XC_LOOP); 4453 OPCODE(CLC); 4454 OPCODE(CLC_LOOP); 4455 OPCODE(STPCPY); 4456 OPCODE(STRCMP); 4457 OPCODE(SEARCH_STRING); 4458 OPCODE(IPM); 4459 OPCODE(SERIALIZE); 4460 OPCODE(TBEGIN); 4461 OPCODE(TBEGIN_NOFLOAT); 4462 OPCODE(TEND); 4463 OPCODE(BYTE_MASK); 4464 OPCODE(ROTATE_MASK); 4465 OPCODE(REPLICATE); 4466 OPCODE(JOIN_DWORDS); 4467 OPCODE(SPLAT); 4468 OPCODE(MERGE_HIGH); 4469 OPCODE(MERGE_LOW); 4470 OPCODE(SHL_DOUBLE); 4471 OPCODE(PERMUTE_DWORDS); 4472 OPCODE(PERMUTE); 4473 OPCODE(PACK); 4474 OPCODE(PACKS_CC); 4475 OPCODE(PACKLS_CC); 4476 OPCODE(UNPACK_HIGH); 4477 OPCODE(UNPACKL_HIGH); 4478 OPCODE(UNPACK_LOW); 4479 OPCODE(UNPACKL_LOW); 4480 OPCODE(VSHL_BY_SCALAR); 4481 OPCODE(VSRL_BY_SCALAR); 4482 OPCODE(VSRA_BY_SCALAR); 4483 OPCODE(VSUM); 4484 OPCODE(VICMPE); 4485 OPCODE(VICMPH); 4486 OPCODE(VICMPHL); 4487 OPCODE(VICMPES); 4488 OPCODE(VICMPHS); 4489 OPCODE(VICMPHLS); 4490 OPCODE(VFCMPE); 4491 OPCODE(VFCMPH); 4492 OPCODE(VFCMPHE); 4493 OPCODE(VFCMPES); 4494 OPCODE(VFCMPHS); 4495 OPCODE(VFCMPHES); 4496 OPCODE(VFTCI); 4497 OPCODE(VEXTEND); 4498 OPCODE(VROUND); 4499 OPCODE(VTM); 4500 OPCODE(VFAE_CC); 4501 OPCODE(VFAEZ_CC); 4502 OPCODE(VFEE_CC); 4503 OPCODE(VFEEZ_CC); 4504 OPCODE(VFENE_CC); 4505 OPCODE(VFENEZ_CC); 4506 OPCODE(VISTR_CC); 4507 OPCODE(VSTRC_CC); 4508 OPCODE(VSTRCZ_CC); 4509 OPCODE(ATOMIC_SWAPW); 4510 OPCODE(ATOMIC_LOADW_ADD); 4511 OPCODE(ATOMIC_LOADW_SUB); 4512 OPCODE(ATOMIC_LOADW_AND); 4513 OPCODE(ATOMIC_LOADW_OR); 4514 OPCODE(ATOMIC_LOADW_XOR); 4515 OPCODE(ATOMIC_LOADW_NAND); 4516 OPCODE(ATOMIC_LOADW_MIN); 4517 OPCODE(ATOMIC_LOADW_MAX); 4518 OPCODE(ATOMIC_LOADW_UMIN); 4519 OPCODE(ATOMIC_LOADW_UMAX); 4520 OPCODE(ATOMIC_CMP_SWAPW); 4521 OPCODE(PREFETCH); 4522 } 4523 return nullptr; 4524 #undef OPCODE 4525 } 4526 4527 // Return true if VT is a vector whose elements are a whole number of bytes 4528 // in width. 4529 static bool canTreatAsByteVector(EVT VT) { 4530 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4531 } 4532 4533 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4534 // producing a result of type ResVT. Op is a possibly bitcast version 4535 // of the input vector and Index is the index (based on type VecVT) that 4536 // should be extracted. Return the new extraction if a simplification 4537 // was possible or if Force is true. 4538 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4539 SDValue Op, unsigned Index, 4540 DAGCombinerInfo &DCI, 4541 bool Force) const { 4542 SelectionDAG &DAG = DCI.DAG; 4543 4544 // The number of bytes being extracted. 4545 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4546 4547 for (;;) { 4548 unsigned Opcode = Op.getOpcode(); 4549 if (Opcode == ISD::BITCAST) 4550 // Look through bitcasts. 4551 Op = Op.getOperand(0); 4552 else if (Opcode == ISD::VECTOR_SHUFFLE && 4553 canTreatAsByteVector(Op.getValueType())) { 4554 // Get a VPERM-like permute mask and see whether the bytes covered 4555 // by the extracted element are a contiguous sequence from one 4556 // source operand. 4557 SmallVector<int, SystemZ::VectorBytes> Bytes; 4558 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4559 int First; 4560 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4561 BytesPerElement, First)) 4562 break; 4563 if (First < 0) 4564 return DAG.getUNDEF(ResVT); 4565 // Make sure the contiguous sequence starts at a multiple of the 4566 // original element size. 4567 unsigned Byte = unsigned(First) % Bytes.size(); 4568 if (Byte % BytesPerElement != 0) 4569 break; 4570 // We can get the extracted value directly from an input. 4571 Index = Byte / BytesPerElement; 4572 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4573 Force = true; 4574 } else if (Opcode == ISD::BUILD_VECTOR && 4575 canTreatAsByteVector(Op.getValueType())) { 4576 // We can only optimize this case if the BUILD_VECTOR elements are 4577 // at least as wide as the extracted value. 4578 EVT OpVT = Op.getValueType(); 4579 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4580 if (OpBytesPerElement < BytesPerElement) 4581 break; 4582 // Make sure that the least-significant bit of the extracted value 4583 // is the least significant bit of an input. 4584 unsigned End = (Index + 1) * BytesPerElement; 4585 if (End % OpBytesPerElement != 0) 4586 break; 4587 // We're extracting the low part of one operand of the BUILD_VECTOR. 4588 Op = Op.getOperand(End / OpBytesPerElement - 1); 4589 if (!Op.getValueType().isInteger()) { 4590 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4591 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4592 DCI.AddToWorklist(Op.getNode()); 4593 } 4594 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4595 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4596 if (VT != ResVT) { 4597 DCI.AddToWorklist(Op.getNode()); 4598 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4599 } 4600 return Op; 4601 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4602 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4603 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4604 canTreatAsByteVector(Op.getValueType()) && 4605 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4606 // Make sure that only the unextended bits are significant. 4607 EVT ExtVT = Op.getValueType(); 4608 EVT OpVT = Op.getOperand(0).getValueType(); 4609 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4610 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4611 unsigned Byte = Index * BytesPerElement; 4612 unsigned SubByte = Byte % ExtBytesPerElement; 4613 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4614 if (SubByte < MinSubByte || 4615 SubByte + BytesPerElement > ExtBytesPerElement) 4616 break; 4617 // Get the byte offset of the unextended element 4618 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4619 // ...then add the byte offset relative to that element. 4620 Byte += SubByte - MinSubByte; 4621 if (Byte % BytesPerElement != 0) 4622 break; 4623 Op = Op.getOperand(0); 4624 Index = Byte / BytesPerElement; 4625 Force = true; 4626 } else 4627 break; 4628 } 4629 if (Force) { 4630 if (Op.getValueType() != VecVT) { 4631 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4632 DCI.AddToWorklist(Op.getNode()); 4633 } 4634 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4635 DAG.getConstant(Index, DL, MVT::i32)); 4636 } 4637 return SDValue(); 4638 } 4639 4640 // Optimize vector operations in scalar value Op on the basis that Op 4641 // is truncated to TruncVT. 4642 SDValue 4643 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4644 DAGCombinerInfo &DCI) const { 4645 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4646 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4647 // of type TruncVT. 4648 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4649 TruncVT.getSizeInBits() % 8 == 0) { 4650 SDValue Vec = Op.getOperand(0); 4651 EVT VecVT = Vec.getValueType(); 4652 if (canTreatAsByteVector(VecVT)) { 4653 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4654 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4655 unsigned TruncBytes = TruncVT.getStoreSize(); 4656 if (BytesPerElement % TruncBytes == 0) { 4657 // Calculate the value of Y' in the above description. We are 4658 // splitting the original elements into Scale equal-sized pieces 4659 // and for truncation purposes want the last (least-significant) 4660 // of these pieces for IndexN. This is easiest to do by calculating 4661 // the start index of the following element and then subtracting 1. 4662 unsigned Scale = BytesPerElement / TruncBytes; 4663 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4664 4665 // Defer the creation of the bitcast from X to combineExtract, 4666 // which might be able to optimize the extraction. 4667 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4668 VecVT.getStoreSize() / TruncBytes); 4669 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4670 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4671 } 4672 } 4673 } 4674 } 4675 return SDValue(); 4676 } 4677 4678 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4679 DAGCombinerInfo &DCI) const { 4680 SelectionDAG &DAG = DCI.DAG; 4681 unsigned Opcode = N->getOpcode(); 4682 if (Opcode == ISD::SIGN_EXTEND) { 4683 // Convert (sext (ashr (shl X, C1), C2)) to 4684 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4685 // cheap as narrower ones. 4686 SDValue N0 = N->getOperand(0); 4687 EVT VT = N->getValueType(0); 4688 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4689 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4690 SDValue Inner = N0.getOperand(0); 4691 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4692 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4693 unsigned Extra = (VT.getSizeInBits() - 4694 N0.getValueType().getSizeInBits()); 4695 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4696 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4697 EVT ShiftVT = N0.getOperand(1).getValueType(); 4698 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4699 Inner.getOperand(0)); 4700 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4701 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4702 ShiftVT)); 4703 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4704 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4705 } 4706 } 4707 } 4708 } 4709 if (Opcode == SystemZISD::MERGE_HIGH || 4710 Opcode == SystemZISD::MERGE_LOW) { 4711 SDValue Op0 = N->getOperand(0); 4712 SDValue Op1 = N->getOperand(1); 4713 if (Op0.getOpcode() == ISD::BITCAST) 4714 Op0 = Op0.getOperand(0); 4715 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4716 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4717 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4718 // for v4f32. 4719 if (Op1 == N->getOperand(0)) 4720 return Op1; 4721 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4722 EVT VT = Op1.getValueType(); 4723 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4724 if (ElemBytes <= 4) { 4725 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4726 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4727 EVT InVT = VT.changeVectorElementTypeToInteger(); 4728 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4729 SystemZ::VectorBytes / ElemBytes / 2); 4730 if (VT != InVT) { 4731 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4732 DCI.AddToWorklist(Op1.getNode()); 4733 } 4734 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4735 DCI.AddToWorklist(Op.getNode()); 4736 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4737 } 4738 } 4739 } 4740 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4741 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4742 // If X has wider elements then convert it to: 4743 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4744 if (Opcode == ISD::STORE) { 4745 auto *SN = cast<StoreSDNode>(N); 4746 EVT MemVT = SN->getMemoryVT(); 4747 if (MemVT.isInteger()) { 4748 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4749 SN->getValue(), DCI); 4750 if (Value.getNode()) { 4751 DCI.AddToWorklist(Value.getNode()); 4752 4753 // Rewrite the store with the new form of stored value. 4754 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4755 SN->getBasePtr(), SN->getMemoryVT(), 4756 SN->getMemOperand()); 4757 } 4758 } 4759 } 4760 // Try to simplify a vector extraction. 4761 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4762 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4763 SDValue Op0 = N->getOperand(0); 4764 EVT VecVT = Op0.getValueType(); 4765 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4766 IndexN->getZExtValue(), DCI, false); 4767 } 4768 } 4769 // (join_dwords X, X) == (replicate X) 4770 if (Opcode == SystemZISD::JOIN_DWORDS && 4771 N->getOperand(0) == N->getOperand(1)) 4772 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4773 N->getOperand(0)); 4774 // (fround (extract_vector_elt X 0)) 4775 // (fround (extract_vector_elt X 1)) -> 4776 // (extract_vector_elt (VROUND X) 0) 4777 // (extract_vector_elt (VROUND X) 1) 4778 // 4779 // This is a special case since the target doesn't really support v2f32s. 4780 if (Opcode == ISD::FP_ROUND) { 4781 SDValue Op0 = N->getOperand(0); 4782 if (N->getValueType(0) == MVT::f32 && 4783 Op0.hasOneUse() && 4784 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4785 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4786 Op0.getOperand(1).getOpcode() == ISD::Constant && 4787 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4788 SDValue Vec = Op0.getOperand(0); 4789 for (auto *U : Vec->uses()) { 4790 if (U != Op0.getNode() && 4791 U->hasOneUse() && 4792 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4793 U->getOperand(0) == Vec && 4794 U->getOperand(1).getOpcode() == ISD::Constant && 4795 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4796 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4797 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4798 OtherRound.getOperand(0) == SDValue(U, 0) && 4799 OtherRound.getValueType() == MVT::f32) { 4800 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4801 MVT::v4f32, Vec); 4802 DCI.AddToWorklist(VRound.getNode()); 4803 SDValue Extract1 = 4804 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4805 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4806 DCI.AddToWorklist(Extract1.getNode()); 4807 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4808 SDValue Extract0 = 4809 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4810 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4811 return Extract0; 4812 } 4813 } 4814 } 4815 } 4816 } 4817 return SDValue(); 4818 } 4819 4820 //===----------------------------------------------------------------------===// 4821 // Custom insertion 4822 //===----------------------------------------------------------------------===// 4823 4824 // Create a new basic block after MBB. 4825 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4826 MachineFunction &MF = *MBB->getParent(); 4827 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4828 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4829 return NewMBB; 4830 } 4831 4832 // Split MBB after MI and return the new block (the one that contains 4833 // instructions after MI). 4834 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4835 MachineBasicBlock *MBB) { 4836 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4837 NewMBB->splice(NewMBB->begin(), MBB, 4838 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4839 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4840 return NewMBB; 4841 } 4842 4843 // Split MBB before MI and return the new block (the one that contains MI). 4844 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4845 MachineBasicBlock *MBB) { 4846 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4847 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4848 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4849 return NewMBB; 4850 } 4851 4852 // Force base value Base into a register before MI. Return the register. 4853 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4854 const SystemZInstrInfo *TII) { 4855 if (Base.isReg()) 4856 return Base.getReg(); 4857 4858 MachineBasicBlock *MBB = MI->getParent(); 4859 MachineFunction &MF = *MBB->getParent(); 4860 MachineRegisterInfo &MRI = MF.getRegInfo(); 4861 4862 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4863 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4864 .addOperand(Base).addImm(0).addReg(0); 4865 return Reg; 4866 } 4867 4868 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4869 MachineBasicBlock * 4870 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4871 MachineBasicBlock *MBB) const { 4872 const SystemZInstrInfo *TII = 4873 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4874 4875 unsigned DestReg = MI->getOperand(0).getReg(); 4876 unsigned TrueReg = MI->getOperand(1).getReg(); 4877 unsigned FalseReg = MI->getOperand(2).getReg(); 4878 unsigned CCValid = MI->getOperand(3).getImm(); 4879 unsigned CCMask = MI->getOperand(4).getImm(); 4880 DebugLoc DL = MI->getDebugLoc(); 4881 4882 MachineBasicBlock *StartMBB = MBB; 4883 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4884 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4885 4886 // StartMBB: 4887 // BRC CCMask, JoinMBB 4888 // # fallthrough to FalseMBB 4889 MBB = StartMBB; 4890 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4891 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4892 MBB->addSuccessor(JoinMBB); 4893 MBB->addSuccessor(FalseMBB); 4894 4895 // FalseMBB: 4896 // # fallthrough to JoinMBB 4897 MBB = FalseMBB; 4898 MBB->addSuccessor(JoinMBB); 4899 4900 // JoinMBB: 4901 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4902 // ... 4903 MBB = JoinMBB; 4904 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4905 .addReg(TrueReg).addMBB(StartMBB) 4906 .addReg(FalseReg).addMBB(FalseMBB); 4907 4908 MI->eraseFromParent(); 4909 return JoinMBB; 4910 } 4911 4912 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4913 // StoreOpcode is the store to use and Invert says whether the store should 4914 // happen when the condition is false rather than true. If a STORE ON 4915 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4916 MachineBasicBlock * 4917 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4918 MachineBasicBlock *MBB, 4919 unsigned StoreOpcode, unsigned STOCOpcode, 4920 bool Invert) const { 4921 const SystemZInstrInfo *TII = 4922 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4923 4924 unsigned SrcReg = MI->getOperand(0).getReg(); 4925 MachineOperand Base = MI->getOperand(1); 4926 int64_t Disp = MI->getOperand(2).getImm(); 4927 unsigned IndexReg = MI->getOperand(3).getReg(); 4928 unsigned CCValid = MI->getOperand(4).getImm(); 4929 unsigned CCMask = MI->getOperand(5).getImm(); 4930 DebugLoc DL = MI->getDebugLoc(); 4931 4932 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4933 4934 // Use STOCOpcode if possible. We could use different store patterns in 4935 // order to avoid matching the index register, but the performance trade-offs 4936 // might be more complicated in that case. 4937 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4938 if (Invert) 4939 CCMask ^= CCValid; 4940 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4941 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4942 .addImm(CCValid).addImm(CCMask); 4943 MI->eraseFromParent(); 4944 return MBB; 4945 } 4946 4947 // Get the condition needed to branch around the store. 4948 if (!Invert) 4949 CCMask ^= CCValid; 4950 4951 MachineBasicBlock *StartMBB = MBB; 4952 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4953 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4954 4955 // StartMBB: 4956 // BRC CCMask, JoinMBB 4957 // # fallthrough to FalseMBB 4958 MBB = StartMBB; 4959 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4960 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4961 MBB->addSuccessor(JoinMBB); 4962 MBB->addSuccessor(FalseMBB); 4963 4964 // FalseMBB: 4965 // store %SrcReg, %Disp(%Index,%Base) 4966 // # fallthrough to JoinMBB 4967 MBB = FalseMBB; 4968 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4969 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4970 MBB->addSuccessor(JoinMBB); 4971 4972 MI->eraseFromParent(); 4973 return JoinMBB; 4974 } 4975 4976 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4977 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4978 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4979 // BitSize is the width of the field in bits, or 0 if this is a partword 4980 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4981 // is one of the operands. Invert says whether the field should be 4982 // inverted after performing BinOpcode (e.g. for NAND). 4983 MachineBasicBlock * 4984 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4985 MachineBasicBlock *MBB, 4986 unsigned BinOpcode, 4987 unsigned BitSize, 4988 bool Invert) const { 4989 MachineFunction &MF = *MBB->getParent(); 4990 const SystemZInstrInfo *TII = 4991 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4992 MachineRegisterInfo &MRI = MF.getRegInfo(); 4993 bool IsSubWord = (BitSize < 32); 4994 4995 // Extract the operands. Base can be a register or a frame index. 4996 // Src2 can be a register or immediate. 4997 unsigned Dest = MI->getOperand(0).getReg(); 4998 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4999 int64_t Disp = MI->getOperand(2).getImm(); 5000 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 5001 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5002 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5003 DebugLoc DL = MI->getDebugLoc(); 5004 if (IsSubWord) 5005 BitSize = MI->getOperand(6).getImm(); 5006 5007 // Subword operations use 32-bit registers. 5008 const TargetRegisterClass *RC = (BitSize <= 32 ? 5009 &SystemZ::GR32BitRegClass : 5010 &SystemZ::GR64BitRegClass); 5011 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5012 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5013 5014 // Get the right opcodes for the displacement. 5015 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5016 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5017 assert(LOpcode && CSOpcode && "Displacement out of range"); 5018 5019 // Create virtual registers for temporary results. 5020 unsigned OrigVal = MRI.createVirtualRegister(RC); 5021 unsigned OldVal = MRI.createVirtualRegister(RC); 5022 unsigned NewVal = (BinOpcode || IsSubWord ? 5023 MRI.createVirtualRegister(RC) : Src2.getReg()); 5024 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5025 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5026 5027 // Insert a basic block for the main loop. 5028 MachineBasicBlock *StartMBB = MBB; 5029 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5030 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5031 5032 // StartMBB: 5033 // ... 5034 // %OrigVal = L Disp(%Base) 5035 // # fall through to LoopMMB 5036 MBB = StartMBB; 5037 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5038 .addOperand(Base).addImm(Disp).addReg(0); 5039 MBB->addSuccessor(LoopMBB); 5040 5041 // LoopMBB: 5042 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5043 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5044 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5045 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5046 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5047 // JNE LoopMBB 5048 // # fall through to DoneMMB 5049 MBB = LoopMBB; 5050 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5051 .addReg(OrigVal).addMBB(StartMBB) 5052 .addReg(Dest).addMBB(LoopMBB); 5053 if (IsSubWord) 5054 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5055 .addReg(OldVal).addReg(BitShift).addImm(0); 5056 if (Invert) { 5057 // Perform the operation normally and then invert every bit of the field. 5058 unsigned Tmp = MRI.createVirtualRegister(RC); 5059 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5060 .addReg(RotatedOldVal).addOperand(Src2); 5061 if (BitSize <= 32) 5062 // XILF with the upper BitSize bits set. 5063 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5064 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5065 else { 5066 // Use LCGR and add -1 to the result, which is more compact than 5067 // an XILF, XILH pair. 5068 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5069 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5070 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5071 .addReg(Tmp2).addImm(-1); 5072 } 5073 } else if (BinOpcode) 5074 // A simply binary operation. 5075 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5076 .addReg(RotatedOldVal).addOperand(Src2); 5077 else if (IsSubWord) 5078 // Use RISBG to rotate Src2 into position and use it to replace the 5079 // field in RotatedOldVal. 5080 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5081 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5082 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5083 if (IsSubWord) 5084 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5085 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5086 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5087 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5088 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5089 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5090 MBB->addSuccessor(LoopMBB); 5091 MBB->addSuccessor(DoneMBB); 5092 5093 MI->eraseFromParent(); 5094 return DoneMBB; 5095 } 5096 5097 // Implement EmitInstrWithCustomInserter for pseudo 5098 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5099 // instruction that should be used to compare the current field with the 5100 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5101 // for when the current field should be kept. BitSize is the width of 5102 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5103 MachineBasicBlock * 5104 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5105 MachineBasicBlock *MBB, 5106 unsigned CompareOpcode, 5107 unsigned KeepOldMask, 5108 unsigned BitSize) const { 5109 MachineFunction &MF = *MBB->getParent(); 5110 const SystemZInstrInfo *TII = 5111 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5112 MachineRegisterInfo &MRI = MF.getRegInfo(); 5113 bool IsSubWord = (BitSize < 32); 5114 5115 // Extract the operands. Base can be a register or a frame index. 5116 unsigned Dest = MI->getOperand(0).getReg(); 5117 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5118 int64_t Disp = MI->getOperand(2).getImm(); 5119 unsigned Src2 = MI->getOperand(3).getReg(); 5120 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5121 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5122 DebugLoc DL = MI->getDebugLoc(); 5123 if (IsSubWord) 5124 BitSize = MI->getOperand(6).getImm(); 5125 5126 // Subword operations use 32-bit registers. 5127 const TargetRegisterClass *RC = (BitSize <= 32 ? 5128 &SystemZ::GR32BitRegClass : 5129 &SystemZ::GR64BitRegClass); 5130 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5131 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5132 5133 // Get the right opcodes for the displacement. 5134 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5135 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5136 assert(LOpcode && CSOpcode && "Displacement out of range"); 5137 5138 // Create virtual registers for temporary results. 5139 unsigned OrigVal = MRI.createVirtualRegister(RC); 5140 unsigned OldVal = MRI.createVirtualRegister(RC); 5141 unsigned NewVal = MRI.createVirtualRegister(RC); 5142 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5143 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5144 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5145 5146 // Insert 3 basic blocks for the loop. 5147 MachineBasicBlock *StartMBB = MBB; 5148 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5149 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5150 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5151 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5152 5153 // StartMBB: 5154 // ... 5155 // %OrigVal = L Disp(%Base) 5156 // # fall through to LoopMMB 5157 MBB = StartMBB; 5158 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5159 .addOperand(Base).addImm(Disp).addReg(0); 5160 MBB->addSuccessor(LoopMBB); 5161 5162 // LoopMBB: 5163 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5164 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5165 // CompareOpcode %RotatedOldVal, %Src2 5166 // BRC KeepOldMask, UpdateMBB 5167 MBB = LoopMBB; 5168 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5169 .addReg(OrigVal).addMBB(StartMBB) 5170 .addReg(Dest).addMBB(UpdateMBB); 5171 if (IsSubWord) 5172 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5173 .addReg(OldVal).addReg(BitShift).addImm(0); 5174 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5175 .addReg(RotatedOldVal).addReg(Src2); 5176 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5177 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5178 MBB->addSuccessor(UpdateMBB); 5179 MBB->addSuccessor(UseAltMBB); 5180 5181 // UseAltMBB: 5182 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5183 // # fall through to UpdateMMB 5184 MBB = UseAltMBB; 5185 if (IsSubWord) 5186 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5187 .addReg(RotatedOldVal).addReg(Src2) 5188 .addImm(32).addImm(31 + BitSize).addImm(0); 5189 MBB->addSuccessor(UpdateMBB); 5190 5191 // UpdateMBB: 5192 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5193 // [ %RotatedAltVal, UseAltMBB ] 5194 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5195 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5196 // JNE LoopMBB 5197 // # fall through to DoneMMB 5198 MBB = UpdateMBB; 5199 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5200 .addReg(RotatedOldVal).addMBB(LoopMBB) 5201 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5202 if (IsSubWord) 5203 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5204 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5205 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5206 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5207 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5208 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5209 MBB->addSuccessor(LoopMBB); 5210 MBB->addSuccessor(DoneMBB); 5211 5212 MI->eraseFromParent(); 5213 return DoneMBB; 5214 } 5215 5216 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5217 // instruction MI. 5218 MachineBasicBlock * 5219 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5220 MachineBasicBlock *MBB) const { 5221 MachineFunction &MF = *MBB->getParent(); 5222 const SystemZInstrInfo *TII = 5223 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5224 MachineRegisterInfo &MRI = MF.getRegInfo(); 5225 5226 // Extract the operands. Base can be a register or a frame index. 5227 unsigned Dest = MI->getOperand(0).getReg(); 5228 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5229 int64_t Disp = MI->getOperand(2).getImm(); 5230 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5231 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5232 unsigned BitShift = MI->getOperand(5).getReg(); 5233 unsigned NegBitShift = MI->getOperand(6).getReg(); 5234 int64_t BitSize = MI->getOperand(7).getImm(); 5235 DebugLoc DL = MI->getDebugLoc(); 5236 5237 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5238 5239 // Get the right opcodes for the displacement. 5240 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5241 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5242 assert(LOpcode && CSOpcode && "Displacement out of range"); 5243 5244 // Create virtual registers for temporary results. 5245 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5246 unsigned OldVal = MRI.createVirtualRegister(RC); 5247 unsigned CmpVal = MRI.createVirtualRegister(RC); 5248 unsigned SwapVal = MRI.createVirtualRegister(RC); 5249 unsigned StoreVal = MRI.createVirtualRegister(RC); 5250 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5251 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5252 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5253 5254 // Insert 2 basic blocks for the loop. 5255 MachineBasicBlock *StartMBB = MBB; 5256 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5257 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5258 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5259 5260 // StartMBB: 5261 // ... 5262 // %OrigOldVal = L Disp(%Base) 5263 // # fall through to LoopMMB 5264 MBB = StartMBB; 5265 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5266 .addOperand(Base).addImm(Disp).addReg(0); 5267 MBB->addSuccessor(LoopMBB); 5268 5269 // LoopMBB: 5270 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5271 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5272 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5273 // %Dest = RLL %OldVal, BitSize(%BitShift) 5274 // ^^ The low BitSize bits contain the field 5275 // of interest. 5276 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5277 // ^^ Replace the upper 32-BitSize bits of the 5278 // comparison value with those that we loaded, 5279 // so that we can use a full word comparison. 5280 // CR %Dest, %RetryCmpVal 5281 // JNE DoneMBB 5282 // # Fall through to SetMBB 5283 MBB = LoopMBB; 5284 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5285 .addReg(OrigOldVal).addMBB(StartMBB) 5286 .addReg(RetryOldVal).addMBB(SetMBB); 5287 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5288 .addReg(OrigCmpVal).addMBB(StartMBB) 5289 .addReg(RetryCmpVal).addMBB(SetMBB); 5290 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5291 .addReg(OrigSwapVal).addMBB(StartMBB) 5292 .addReg(RetrySwapVal).addMBB(SetMBB); 5293 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5294 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5295 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5296 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5297 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5298 .addReg(Dest).addReg(RetryCmpVal); 5299 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5300 .addImm(SystemZ::CCMASK_ICMP) 5301 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5302 MBB->addSuccessor(DoneMBB); 5303 MBB->addSuccessor(SetMBB); 5304 5305 // SetMBB: 5306 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5307 // ^^ Replace the upper 32-BitSize bits of the new 5308 // value with those that we loaded. 5309 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5310 // ^^ Rotate the new field to its proper position. 5311 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5312 // JNE LoopMBB 5313 // # fall through to ExitMMB 5314 MBB = SetMBB; 5315 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5316 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5317 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5318 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5319 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5320 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5321 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5322 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5323 MBB->addSuccessor(LoopMBB); 5324 MBB->addSuccessor(DoneMBB); 5325 5326 MI->eraseFromParent(); 5327 return DoneMBB; 5328 } 5329 5330 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5331 // if the high register of the GR128 value must be cleared or false if 5332 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5333 // and subreg_l64 when extending a GR64. 5334 MachineBasicBlock * 5335 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5336 MachineBasicBlock *MBB, 5337 bool ClearEven, unsigned SubReg) const { 5338 MachineFunction &MF = *MBB->getParent(); 5339 const SystemZInstrInfo *TII = 5340 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5341 MachineRegisterInfo &MRI = MF.getRegInfo(); 5342 DebugLoc DL = MI->getDebugLoc(); 5343 5344 unsigned Dest = MI->getOperand(0).getReg(); 5345 unsigned Src = MI->getOperand(1).getReg(); 5346 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5347 5348 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5349 if (ClearEven) { 5350 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5351 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5352 5353 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5354 .addImm(0); 5355 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5356 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5357 In128 = NewIn128; 5358 } 5359 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5360 .addReg(In128).addReg(Src).addImm(SubReg); 5361 5362 MI->eraseFromParent(); 5363 return MBB; 5364 } 5365 5366 MachineBasicBlock * 5367 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5368 MachineBasicBlock *MBB, 5369 unsigned Opcode) const { 5370 MachineFunction &MF = *MBB->getParent(); 5371 const SystemZInstrInfo *TII = 5372 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5373 MachineRegisterInfo &MRI = MF.getRegInfo(); 5374 DebugLoc DL = MI->getDebugLoc(); 5375 5376 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5377 uint64_t DestDisp = MI->getOperand(1).getImm(); 5378 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5379 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5380 uint64_t Length = MI->getOperand(4).getImm(); 5381 5382 // When generating more than one CLC, all but the last will need to 5383 // branch to the end when a difference is found. 5384 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5385 splitBlockAfter(MI, MBB) : nullptr); 5386 5387 // Check for the loop form, in which operand 5 is the trip count. 5388 if (MI->getNumExplicitOperands() > 5) { 5389 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5390 5391 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5392 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5393 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5394 forceReg(MI, DestBase, TII)); 5395 5396 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5397 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5398 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5399 MRI.createVirtualRegister(RC)); 5400 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5401 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5402 MRI.createVirtualRegister(RC)); 5403 5404 RC = &SystemZ::GR64BitRegClass; 5405 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5406 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5407 5408 MachineBasicBlock *StartMBB = MBB; 5409 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5410 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5411 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5412 5413 // StartMBB: 5414 // # fall through to LoopMMB 5415 MBB->addSuccessor(LoopMBB); 5416 5417 // LoopMBB: 5418 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5419 // [ %NextDestReg, NextMBB ] 5420 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5421 // [ %NextSrcReg, NextMBB ] 5422 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5423 // [ %NextCountReg, NextMBB ] 5424 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5425 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5426 // ( JLH EndMBB ) 5427 // 5428 // The prefetch is used only for MVC. The JLH is used only for CLC. 5429 MBB = LoopMBB; 5430 5431 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5432 .addReg(StartDestReg).addMBB(StartMBB) 5433 .addReg(NextDestReg).addMBB(NextMBB); 5434 if (!HaveSingleBase) 5435 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5436 .addReg(StartSrcReg).addMBB(StartMBB) 5437 .addReg(NextSrcReg).addMBB(NextMBB); 5438 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5439 .addReg(StartCountReg).addMBB(StartMBB) 5440 .addReg(NextCountReg).addMBB(NextMBB); 5441 if (Opcode == SystemZ::MVC) 5442 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5443 .addImm(SystemZ::PFD_WRITE) 5444 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5445 BuildMI(MBB, DL, TII->get(Opcode)) 5446 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5447 .addReg(ThisSrcReg).addImm(SrcDisp); 5448 if (EndMBB) { 5449 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5450 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5451 .addMBB(EndMBB); 5452 MBB->addSuccessor(EndMBB); 5453 MBB->addSuccessor(NextMBB); 5454 } 5455 5456 // NextMBB: 5457 // %NextDestReg = LA 256(%ThisDestReg) 5458 // %NextSrcReg = LA 256(%ThisSrcReg) 5459 // %NextCountReg = AGHI %ThisCountReg, -1 5460 // CGHI %NextCountReg, 0 5461 // JLH LoopMBB 5462 // # fall through to DoneMMB 5463 // 5464 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5465 MBB = NextMBB; 5466 5467 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5468 .addReg(ThisDestReg).addImm(256).addReg(0); 5469 if (!HaveSingleBase) 5470 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5471 .addReg(ThisSrcReg).addImm(256).addReg(0); 5472 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5473 .addReg(ThisCountReg).addImm(-1); 5474 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5475 .addReg(NextCountReg).addImm(0); 5476 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5477 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5478 .addMBB(LoopMBB); 5479 MBB->addSuccessor(LoopMBB); 5480 MBB->addSuccessor(DoneMBB); 5481 5482 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5483 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5484 Length &= 255; 5485 MBB = DoneMBB; 5486 } 5487 // Handle any remaining bytes with straight-line code. 5488 while (Length > 0) { 5489 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5490 // The previous iteration might have created out-of-range displacements. 5491 // Apply them using LAY if so. 5492 if (!isUInt<12>(DestDisp)) { 5493 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5494 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5495 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5496 DestBase = MachineOperand::CreateReg(Reg, false); 5497 DestDisp = 0; 5498 } 5499 if (!isUInt<12>(SrcDisp)) { 5500 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5501 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5502 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5503 SrcBase = MachineOperand::CreateReg(Reg, false); 5504 SrcDisp = 0; 5505 } 5506 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5507 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5508 .addOperand(SrcBase).addImm(SrcDisp); 5509 DestDisp += ThisLength; 5510 SrcDisp += ThisLength; 5511 Length -= ThisLength; 5512 // If there's another CLC to go, branch to the end if a difference 5513 // was found. 5514 if (EndMBB && Length > 0) { 5515 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5516 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5517 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5518 .addMBB(EndMBB); 5519 MBB->addSuccessor(EndMBB); 5520 MBB->addSuccessor(NextMBB); 5521 MBB = NextMBB; 5522 } 5523 } 5524 if (EndMBB) { 5525 MBB->addSuccessor(EndMBB); 5526 MBB = EndMBB; 5527 MBB->addLiveIn(SystemZ::CC); 5528 } 5529 5530 MI->eraseFromParent(); 5531 return MBB; 5532 } 5533 5534 // Decompose string pseudo-instruction MI into a loop that continually performs 5535 // Opcode until CC != 3. 5536 MachineBasicBlock * 5537 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5538 MachineBasicBlock *MBB, 5539 unsigned Opcode) const { 5540 MachineFunction &MF = *MBB->getParent(); 5541 const SystemZInstrInfo *TII = 5542 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5543 MachineRegisterInfo &MRI = MF.getRegInfo(); 5544 DebugLoc DL = MI->getDebugLoc(); 5545 5546 uint64_t End1Reg = MI->getOperand(0).getReg(); 5547 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5548 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5549 uint64_t CharReg = MI->getOperand(3).getReg(); 5550 5551 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5552 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5553 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5554 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5555 5556 MachineBasicBlock *StartMBB = MBB; 5557 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5558 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5559 5560 // StartMBB: 5561 // # fall through to LoopMMB 5562 MBB->addSuccessor(LoopMBB); 5563 5564 // LoopMBB: 5565 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5566 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5567 // R0L = %CharReg 5568 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5569 // JO LoopMBB 5570 // # fall through to DoneMMB 5571 // 5572 // The load of R0L can be hoisted by post-RA LICM. 5573 MBB = LoopMBB; 5574 5575 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5576 .addReg(Start1Reg).addMBB(StartMBB) 5577 .addReg(End1Reg).addMBB(LoopMBB); 5578 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5579 .addReg(Start2Reg).addMBB(StartMBB) 5580 .addReg(End2Reg).addMBB(LoopMBB); 5581 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5582 BuildMI(MBB, DL, TII->get(Opcode)) 5583 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5584 .addReg(This1Reg).addReg(This2Reg); 5585 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5586 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5587 MBB->addSuccessor(LoopMBB); 5588 MBB->addSuccessor(DoneMBB); 5589 5590 DoneMBB->addLiveIn(SystemZ::CC); 5591 5592 MI->eraseFromParent(); 5593 return DoneMBB; 5594 } 5595 5596 // Update TBEGIN instruction with final opcode and register clobbers. 5597 MachineBasicBlock * 5598 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5599 MachineBasicBlock *MBB, 5600 unsigned Opcode, 5601 bool NoFloat) const { 5602 MachineFunction &MF = *MBB->getParent(); 5603 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5604 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5605 5606 // Update opcode. 5607 MI->setDesc(TII->get(Opcode)); 5608 5609 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5610 // Make sure to add the corresponding GRSM bits if they are missing. 5611 uint64_t Control = MI->getOperand(2).getImm(); 5612 static const unsigned GPRControlBit[16] = { 5613 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5614 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5615 }; 5616 Control |= GPRControlBit[15]; 5617 if (TFI->hasFP(MF)) 5618 Control |= GPRControlBit[11]; 5619 MI->getOperand(2).setImm(Control); 5620 5621 // Add GPR clobbers. 5622 for (int I = 0; I < 16; I++) { 5623 if ((Control & GPRControlBit[I]) == 0) { 5624 unsigned Reg = SystemZMC::GR64Regs[I]; 5625 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5626 } 5627 } 5628 5629 // Add FPR/VR clobbers. 5630 if (!NoFloat && (Control & 4) != 0) { 5631 if (Subtarget.hasVector()) { 5632 for (int I = 0; I < 32; I++) { 5633 unsigned Reg = SystemZMC::VR128Regs[I]; 5634 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5635 } 5636 } else { 5637 for (int I = 0; I < 16; I++) { 5638 unsigned Reg = SystemZMC::FP64Regs[I]; 5639 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5640 } 5641 } 5642 } 5643 5644 return MBB; 5645 } 5646 5647 MachineBasicBlock * 5648 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, 5649 MachineBasicBlock *MBB, 5650 unsigned Opcode) const { 5651 MachineFunction &MF = *MBB->getParent(); 5652 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5653 const SystemZInstrInfo *TII = 5654 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5655 DebugLoc DL = MI->getDebugLoc(); 5656 5657 unsigned SrcReg = MI->getOperand(0).getReg(); 5658 5659 // Create new virtual register of the same class as source. 5660 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5661 unsigned DstReg = MRI->createVirtualRegister(RC); 5662 5663 // Replace pseudo with a normal load-and-test that models the def as 5664 // well. 5665 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5666 .addReg(SrcReg); 5667 MI->eraseFromParent(); 5668 5669 return MBB; 5670 } 5671 5672 MachineBasicBlock *SystemZTargetLowering:: 5673 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5674 switch (MI->getOpcode()) { 5675 case SystemZ::Select32Mux: 5676 case SystemZ::Select32: 5677 case SystemZ::SelectF32: 5678 case SystemZ::Select64: 5679 case SystemZ::SelectF64: 5680 case SystemZ::SelectF128: 5681 return emitSelect(MI, MBB); 5682 5683 case SystemZ::CondStore8Mux: 5684 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5685 case SystemZ::CondStore8MuxInv: 5686 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5687 case SystemZ::CondStore16Mux: 5688 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5689 case SystemZ::CondStore16MuxInv: 5690 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5691 case SystemZ::CondStore8: 5692 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5693 case SystemZ::CondStore8Inv: 5694 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5695 case SystemZ::CondStore16: 5696 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5697 case SystemZ::CondStore16Inv: 5698 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5699 case SystemZ::CondStore32: 5700 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5701 case SystemZ::CondStore32Inv: 5702 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5703 case SystemZ::CondStore64: 5704 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5705 case SystemZ::CondStore64Inv: 5706 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5707 case SystemZ::CondStoreF32: 5708 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5709 case SystemZ::CondStoreF32Inv: 5710 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5711 case SystemZ::CondStoreF64: 5712 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5713 case SystemZ::CondStoreF64Inv: 5714 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5715 5716 case SystemZ::AEXT128_64: 5717 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5718 case SystemZ::ZEXT128_32: 5719 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5720 case SystemZ::ZEXT128_64: 5721 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5722 5723 case SystemZ::ATOMIC_SWAPW: 5724 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5725 case SystemZ::ATOMIC_SWAP_32: 5726 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5727 case SystemZ::ATOMIC_SWAP_64: 5728 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5729 5730 case SystemZ::ATOMIC_LOADW_AR: 5731 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5732 case SystemZ::ATOMIC_LOADW_AFI: 5733 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5734 case SystemZ::ATOMIC_LOAD_AR: 5735 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5736 case SystemZ::ATOMIC_LOAD_AHI: 5737 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5738 case SystemZ::ATOMIC_LOAD_AFI: 5739 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5740 case SystemZ::ATOMIC_LOAD_AGR: 5741 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5742 case SystemZ::ATOMIC_LOAD_AGHI: 5743 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5744 case SystemZ::ATOMIC_LOAD_AGFI: 5745 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5746 5747 case SystemZ::ATOMIC_LOADW_SR: 5748 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5749 case SystemZ::ATOMIC_LOAD_SR: 5750 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5751 case SystemZ::ATOMIC_LOAD_SGR: 5752 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5753 5754 case SystemZ::ATOMIC_LOADW_NR: 5755 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5756 case SystemZ::ATOMIC_LOADW_NILH: 5757 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5758 case SystemZ::ATOMIC_LOAD_NR: 5759 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5760 case SystemZ::ATOMIC_LOAD_NILL: 5761 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5762 case SystemZ::ATOMIC_LOAD_NILH: 5763 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5764 case SystemZ::ATOMIC_LOAD_NILF: 5765 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5766 case SystemZ::ATOMIC_LOAD_NGR: 5767 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5768 case SystemZ::ATOMIC_LOAD_NILL64: 5769 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5770 case SystemZ::ATOMIC_LOAD_NILH64: 5771 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5772 case SystemZ::ATOMIC_LOAD_NIHL64: 5773 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5774 case SystemZ::ATOMIC_LOAD_NIHH64: 5775 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5776 case SystemZ::ATOMIC_LOAD_NILF64: 5777 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5778 case SystemZ::ATOMIC_LOAD_NIHF64: 5779 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5780 5781 case SystemZ::ATOMIC_LOADW_OR: 5782 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5783 case SystemZ::ATOMIC_LOADW_OILH: 5784 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5785 case SystemZ::ATOMIC_LOAD_OR: 5786 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5787 case SystemZ::ATOMIC_LOAD_OILL: 5788 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5789 case SystemZ::ATOMIC_LOAD_OILH: 5790 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5791 case SystemZ::ATOMIC_LOAD_OILF: 5792 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5793 case SystemZ::ATOMIC_LOAD_OGR: 5794 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5795 case SystemZ::ATOMIC_LOAD_OILL64: 5796 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5797 case SystemZ::ATOMIC_LOAD_OILH64: 5798 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5799 case SystemZ::ATOMIC_LOAD_OIHL64: 5800 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5801 case SystemZ::ATOMIC_LOAD_OIHH64: 5802 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5803 case SystemZ::ATOMIC_LOAD_OILF64: 5804 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5805 case SystemZ::ATOMIC_LOAD_OIHF64: 5806 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5807 5808 case SystemZ::ATOMIC_LOADW_XR: 5809 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5810 case SystemZ::ATOMIC_LOADW_XILF: 5811 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5812 case SystemZ::ATOMIC_LOAD_XR: 5813 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5814 case SystemZ::ATOMIC_LOAD_XILF: 5815 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5816 case SystemZ::ATOMIC_LOAD_XGR: 5817 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5818 case SystemZ::ATOMIC_LOAD_XILF64: 5819 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5820 case SystemZ::ATOMIC_LOAD_XIHF64: 5821 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5822 5823 case SystemZ::ATOMIC_LOADW_NRi: 5824 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5825 case SystemZ::ATOMIC_LOADW_NILHi: 5826 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5827 case SystemZ::ATOMIC_LOAD_NRi: 5828 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5829 case SystemZ::ATOMIC_LOAD_NILLi: 5830 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5831 case SystemZ::ATOMIC_LOAD_NILHi: 5832 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5833 case SystemZ::ATOMIC_LOAD_NILFi: 5834 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5835 case SystemZ::ATOMIC_LOAD_NGRi: 5836 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5837 case SystemZ::ATOMIC_LOAD_NILL64i: 5838 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5839 case SystemZ::ATOMIC_LOAD_NILH64i: 5840 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5841 case SystemZ::ATOMIC_LOAD_NIHL64i: 5842 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5843 case SystemZ::ATOMIC_LOAD_NIHH64i: 5844 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5845 case SystemZ::ATOMIC_LOAD_NILF64i: 5846 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5847 case SystemZ::ATOMIC_LOAD_NIHF64i: 5848 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5849 5850 case SystemZ::ATOMIC_LOADW_MIN: 5851 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5852 SystemZ::CCMASK_CMP_LE, 0); 5853 case SystemZ::ATOMIC_LOAD_MIN_32: 5854 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5855 SystemZ::CCMASK_CMP_LE, 32); 5856 case SystemZ::ATOMIC_LOAD_MIN_64: 5857 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5858 SystemZ::CCMASK_CMP_LE, 64); 5859 5860 case SystemZ::ATOMIC_LOADW_MAX: 5861 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5862 SystemZ::CCMASK_CMP_GE, 0); 5863 case SystemZ::ATOMIC_LOAD_MAX_32: 5864 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5865 SystemZ::CCMASK_CMP_GE, 32); 5866 case SystemZ::ATOMIC_LOAD_MAX_64: 5867 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5868 SystemZ::CCMASK_CMP_GE, 64); 5869 5870 case SystemZ::ATOMIC_LOADW_UMIN: 5871 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5872 SystemZ::CCMASK_CMP_LE, 0); 5873 case SystemZ::ATOMIC_LOAD_UMIN_32: 5874 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5875 SystemZ::CCMASK_CMP_LE, 32); 5876 case SystemZ::ATOMIC_LOAD_UMIN_64: 5877 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5878 SystemZ::CCMASK_CMP_LE, 64); 5879 5880 case SystemZ::ATOMIC_LOADW_UMAX: 5881 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5882 SystemZ::CCMASK_CMP_GE, 0); 5883 case SystemZ::ATOMIC_LOAD_UMAX_32: 5884 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5885 SystemZ::CCMASK_CMP_GE, 32); 5886 case SystemZ::ATOMIC_LOAD_UMAX_64: 5887 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5888 SystemZ::CCMASK_CMP_GE, 64); 5889 5890 case SystemZ::ATOMIC_CMP_SWAPW: 5891 return emitAtomicCmpSwapW(MI, MBB); 5892 case SystemZ::MVCSequence: 5893 case SystemZ::MVCLoop: 5894 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5895 case SystemZ::NCSequence: 5896 case SystemZ::NCLoop: 5897 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5898 case SystemZ::OCSequence: 5899 case SystemZ::OCLoop: 5900 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5901 case SystemZ::XCSequence: 5902 case SystemZ::XCLoop: 5903 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5904 case SystemZ::CLCSequence: 5905 case SystemZ::CLCLoop: 5906 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5907 case SystemZ::CLSTLoop: 5908 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5909 case SystemZ::MVSTLoop: 5910 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5911 case SystemZ::SRSTLoop: 5912 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5913 case SystemZ::TBEGIN: 5914 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5915 case SystemZ::TBEGIN_nofloat: 5916 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5917 case SystemZ::TBEGINC: 5918 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5919 case SystemZ::LTEBRCompare_VecPseudo: 5920 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 5921 case SystemZ::LTDBRCompare_VecPseudo: 5922 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 5923 case SystemZ::LTXBRCompare_VecPseudo: 5924 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 5925 5926 default: 5927 llvm_unreachable("Unexpected instr type to insert"); 5928 } 5929 } 5930