Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCInstrInfo.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPC.h"
     17 #include "PPCHazardRecognizers.h"
     18 #include "PPCInstrBuilder.h"
     19 #include "PPCMachineFunctionInfo.h"
     20 #include "PPCTargetMachine.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunctionPass.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/CodeGen/ScheduleDAG.h"
     31 #include "llvm/CodeGen/SlotIndexes.h"
     32 #include "llvm/CodeGen/StackMaps.h"
     33 #include "llvm/MC/MCAsmInfo.h"
     34 #include "llvm/MC/MCInst.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 #include "llvm/Support/TargetRegistry.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "ppc-instr-info"
     44 
     45 #define GET_INSTRMAP_INFO
     46 #define GET_INSTRINFO_CTOR_DTOR
     47 #include "PPCGenInstrInfo.inc"
     48 
     49 static cl::
     50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
     51             cl::desc("Disable analysis for CTR loops"));
     52 
     53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
     54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
     55 
     56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
     57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
     58 cl::Hidden);
     59 
     60 static cl::opt<bool>
     61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
     62   cl::desc("Use the old (incorrect) instruction latency calculation"));
     63 
     64 // Pin the vtable to this file.
     65 void PPCInstrInfo::anchor() {}
     66 
     67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
     68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
     69       Subtarget(STI), RI(STI.getTargetMachine()) {}
     70 
     71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
     72 /// this target when scheduling the DAG.
     73 ScheduleHazardRecognizer *
     74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
     75                                            const ScheduleDAG *DAG) const {
     76   unsigned Directive =
     77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
     78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
     79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
     80     const InstrItineraryData *II =
     81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
     82     return new ScoreboardHazardRecognizer(II, DAG);
     83   }
     84 
     85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
     86 }
     87 
     88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
     89 /// to use for this target when scheduling the DAG.
     90 ScheduleHazardRecognizer *
     91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
     92                                                  const ScheduleDAG *DAG) const {
     93   unsigned Directive =
     94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
     95 
     96   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
     97     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
     98 
     99   // Most subtargets use a PPC970 recognizer.
    100   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
    101       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
    102     assert(DAG->TII && "No InstrInfo?");
    103 
    104     return new PPCHazardRecognizer970(*DAG);
    105   }
    106 
    107   return new ScoreboardHazardRecognizer(II, DAG);
    108 }
    109 
    110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
    111                                        const MachineInstr *MI,
    112                                        unsigned *PredCost) const {
    113   if (!ItinData || UseOldLatencyCalc)
    114     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
    115 
    116   // The default implementation of getInstrLatency calls getStageLatency, but
    117   // getStageLatency does not do the right thing for us. While we have
    118   // itinerary, most cores are fully pipelined, and so the itineraries only
    119   // express the first part of the pipeline, not every stage. Instead, we need
    120   // to use the listed output operand cycle number (using operand 0 here, which
    121   // is an output).
    122 
    123   unsigned Latency = 1;
    124   unsigned DefClass = MI->getDesc().getSchedClass();
    125   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    126     const MachineOperand &MO = MI->getOperand(i);
    127     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
    128       continue;
    129 
    130     int Cycle = ItinData->getOperandCycle(DefClass, i);
    131     if (Cycle < 0)
    132       continue;
    133 
    134     Latency = std::max(Latency, (unsigned) Cycle);
    135   }
    136 
    137   return Latency;
    138 }
    139 
    140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
    141                                     const MachineInstr *DefMI, unsigned DefIdx,
    142                                     const MachineInstr *UseMI,
    143                                     unsigned UseIdx) const {
    144   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
    145                                                    UseMI, UseIdx);
    146 
    147   if (!DefMI->getParent())
    148     return Latency;
    149 
    150   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
    151   unsigned Reg = DefMO.getReg();
    152 
    153   bool IsRegCR;
    154   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    155     const MachineRegisterInfo *MRI =
    156       &DefMI->getParent()->getParent()->getRegInfo();
    157     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
    158               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
    159   } else {
    160     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
    161               PPC::CRBITRCRegClass.contains(Reg);
    162   }
    163 
    164   if (UseMI->isBranch() && IsRegCR) {
    165     if (Latency < 0)
    166       Latency = getInstrLatency(ItinData, DefMI);
    167 
    168     // On some cores, there is an additional delay between writing to a condition
    169     // register, and using it from a branch.
    170     unsigned Directive = Subtarget.getDarwinDirective();
    171     switch (Directive) {
    172     default: break;
    173     case PPC::DIR_7400:
    174     case PPC::DIR_750:
    175     case PPC::DIR_970:
    176     case PPC::DIR_E5500:
    177     case PPC::DIR_PWR4:
    178     case PPC::DIR_PWR5:
    179     case PPC::DIR_PWR5X:
    180     case PPC::DIR_PWR6:
    181     case PPC::DIR_PWR6X:
    182     case PPC::DIR_PWR7:
    183     case PPC::DIR_PWR8:
    184       Latency += 2;
    185       break;
    186     }
    187   }
    188 
    189   return Latency;
    190 }
    191 
    192 // This function does not list all associative and commutative operations, but
    193 // only those worth feeding through the machine combiner in an attempt to
    194 // reduce the critical path. Mostly, this means floating-point operations,
    195 // because they have high latencies (compared to other operations, such and
    196 // and/or, which are also associative and commutative, but have low latencies).
    197 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
    198   switch (Inst.getOpcode()) {
    199   // FP Add:
    200   case PPC::FADD:
    201   case PPC::FADDS:
    202   // FP Multiply:
    203   case PPC::FMUL:
    204   case PPC::FMULS:
    205   // Altivec Add:
    206   case PPC::VADDFP:
    207   // VSX Add:
    208   case PPC::XSADDDP:
    209   case PPC::XVADDDP:
    210   case PPC::XVADDSP:
    211   case PPC::XSADDSP:
    212   // VSX Multiply:
    213   case PPC::XSMULDP:
    214   case PPC::XVMULDP:
    215   case PPC::XVMULSP:
    216   case PPC::XSMULSP:
    217   // QPX Add:
    218   case PPC::QVFADD:
    219   case PPC::QVFADDS:
    220   case PPC::QVFADDSs:
    221   // QPX Multiply:
    222   case PPC::QVFMUL:
    223   case PPC::QVFMULS:
    224   case PPC::QVFMULSs:
    225     return true;
    226   default:
    227     return false;
    228   }
    229 }
    230 
    231 bool PPCInstrInfo::getMachineCombinerPatterns(
    232     MachineInstr &Root,
    233     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
    234   // Using the machine combiner in this way is potentially expensive, so
    235   // restrict to when aggressive optimizations are desired.
    236   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
    237     return false;
    238 
    239   // FP reassociation is only legal when we don't need strict IEEE semantics.
    240   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
    241     return false;
    242 
    243   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
    244 }
    245 
    246 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
    247 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
    248                                          unsigned &SrcReg, unsigned &DstReg,
    249                                          unsigned &SubIdx) const {
    250   switch (MI.getOpcode()) {
    251   default: return false;
    252   case PPC::EXTSW:
    253   case PPC::EXTSW_32_64:
    254     SrcReg = MI.getOperand(1).getReg();
    255     DstReg = MI.getOperand(0).getReg();
    256     SubIdx = PPC::sub_32;
    257     return true;
    258   }
    259 }
    260 
    261 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    262                                            int &FrameIndex) const {
    263   // Note: This list must be kept consistent with LoadRegFromStackSlot.
    264   switch (MI->getOpcode()) {
    265   default: break;
    266   case PPC::LD:
    267   case PPC::LWZ:
    268   case PPC::LFS:
    269   case PPC::LFD:
    270   case PPC::RESTORE_CR:
    271   case PPC::RESTORE_CRBIT:
    272   case PPC::LVX:
    273   case PPC::LXVD2X:
    274   case PPC::QVLFDX:
    275   case PPC::QVLFSXs:
    276   case PPC::QVLFDXb:
    277   case PPC::RESTORE_VRSAVE:
    278     // Check for the operands added by addFrameReference (the immediate is the
    279     // offset which defaults to 0).
    280     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
    281         MI->getOperand(2).isFI()) {
    282       FrameIndex = MI->getOperand(2).getIndex();
    283       return MI->getOperand(0).getReg();
    284     }
    285     break;
    286   }
    287   return 0;
    288 }
    289 
    290 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    291                                           int &FrameIndex) const {
    292   // Note: This list must be kept consistent with StoreRegToStackSlot.
    293   switch (MI->getOpcode()) {
    294   default: break;
    295   case PPC::STD:
    296   case PPC::STW:
    297   case PPC::STFS:
    298   case PPC::STFD:
    299   case PPC::SPILL_CR:
    300   case PPC::SPILL_CRBIT:
    301   case PPC::STVX:
    302   case PPC::STXVD2X:
    303   case PPC::QVSTFDX:
    304   case PPC::QVSTFSXs:
    305   case PPC::QVSTFDXb:
    306   case PPC::SPILL_VRSAVE:
    307     // Check for the operands added by addFrameReference (the immediate is the
    308     // offset which defaults to 0).
    309     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
    310         MI->getOperand(2).isFI()) {
    311       FrameIndex = MI->getOperand(2).getIndex();
    312       return MI->getOperand(0).getReg();
    313     }
    314     break;
    315   }
    316   return 0;
    317 }
    318 
    319 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr *MI,
    320                                                    bool NewMI,
    321                                                    unsigned OpIdx1,
    322                                                    unsigned OpIdx2) const {
    323   MachineFunction &MF = *MI->getParent()->getParent();
    324 
    325   // Normal instructions can be commuted the obvious way.
    326   if (MI->getOpcode() != PPC::RLWIMI &&
    327       MI->getOpcode() != PPC::RLWIMIo)
    328     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
    329   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
    330   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
    331   // changing the relative order of the mask operands might change what happens
    332   // to the high-bits of the mask (and, thus, the result).
    333 
    334   // Cannot commute if it has a non-zero rotate count.
    335   if (MI->getOperand(3).getImm() != 0)
    336     return nullptr;
    337 
    338   // If we have a zero rotate count, we have:
    339   //   M = mask(MB,ME)
    340   //   Op0 = (Op1 & ~M) | (Op2 & M)
    341   // Change this to:
    342   //   M = mask((ME+1)&31, (MB-1)&31)
    343   //   Op0 = (Op2 & ~M) | (Op1 & M)
    344 
    345   // Swap op1/op2
    346   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
    347          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
    348   unsigned Reg0 = MI->getOperand(0).getReg();
    349   unsigned Reg1 = MI->getOperand(1).getReg();
    350   unsigned Reg2 = MI->getOperand(2).getReg();
    351   unsigned SubReg1 = MI->getOperand(1).getSubReg();
    352   unsigned SubReg2 = MI->getOperand(2).getSubReg();
    353   bool Reg1IsKill = MI->getOperand(1).isKill();
    354   bool Reg2IsKill = MI->getOperand(2).isKill();
    355   bool ChangeReg0 = false;
    356   // If machine instrs are no longer in two-address forms, update
    357   // destination register as well.
    358   if (Reg0 == Reg1) {
    359     // Must be two address instruction!
    360     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
    361            "Expecting a two-address instruction!");
    362     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
    363     Reg2IsKill = false;
    364     ChangeReg0 = true;
    365   }
    366 
    367   // Masks.
    368   unsigned MB = MI->getOperand(4).getImm();
    369   unsigned ME = MI->getOperand(5).getImm();
    370 
    371   // We can't commute a trivial mask (there is no way to represent an all-zero
    372   // mask).
    373   if (MB == 0 && ME == 31)
    374     return nullptr;
    375 
    376   if (NewMI) {
    377     // Create a new instruction.
    378     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
    379     bool Reg0IsDead = MI->getOperand(0).isDead();
    380     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
    381       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
    382       .addReg(Reg2, getKillRegState(Reg2IsKill))
    383       .addReg(Reg1, getKillRegState(Reg1IsKill))
    384       .addImm((ME+1) & 31)
    385       .addImm((MB-1) & 31);
    386   }
    387 
    388   if (ChangeReg0) {
    389     MI->getOperand(0).setReg(Reg2);
    390     MI->getOperand(0).setSubReg(SubReg2);
    391   }
    392   MI->getOperand(2).setReg(Reg1);
    393   MI->getOperand(1).setReg(Reg2);
    394   MI->getOperand(2).setSubReg(SubReg1);
    395   MI->getOperand(1).setSubReg(SubReg2);
    396   MI->getOperand(2).setIsKill(Reg1IsKill);
    397   MI->getOperand(1).setIsKill(Reg2IsKill);
    398 
    399   // Swap the mask around.
    400   MI->getOperand(4).setImm((ME+1) & 31);
    401   MI->getOperand(5).setImm((MB-1) & 31);
    402   return MI;
    403 }
    404 
    405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
    406                                          unsigned &SrcOpIdx2) const {
    407   // For VSX A-Type FMA instructions, it is the first two operands that can be
    408   // commuted, however, because the non-encoded tied input operand is listed
    409   // first, the operands to swap are actually the second and third.
    410 
    411   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
    412   if (AltOpc == -1)
    413     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
    414 
    415   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
    416   // and SrcOpIdx2.
    417   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
    418 }
    419 
    420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
    421                               MachineBasicBlock::iterator MI) const {
    422   // This function is used for scheduling, and the nop wanted here is the type
    423   // that terminates dispatch groups on the POWER cores.
    424   unsigned Directive = Subtarget.getDarwinDirective();
    425   unsigned Opcode;
    426   switch (Directive) {
    427   default:            Opcode = PPC::NOP; break;
    428   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
    429   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
    430   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
    431   }
    432 
    433   DebugLoc DL;
    434   BuildMI(MBB, MI, DL, get(Opcode));
    435 }
    436 
    437 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    438 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
    439   NopInst.setOpcode(PPC::NOP);
    440 }
    441 
    442 // Branch analysis.
    443 // Note: If the condition register is set to CTR or CTR8 then this is a
    444 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
    445 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    446                                  MachineBasicBlock *&FBB,
    447                                  SmallVectorImpl<MachineOperand> &Cond,
    448                                  bool AllowModify) const {
    449   bool isPPC64 = Subtarget.isPPC64();
    450 
    451   // If the block has no terminators, it just falls into the block after it.
    452   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
    453   if (I == MBB.end())
    454     return false;
    455 
    456   if (!isUnpredicatedTerminator(I))
    457     return false;
    458 
    459   // Get the last instruction in the block.
    460   MachineInstr *LastInst = I;
    461 
    462   // If there is only one terminator instruction, process it.
    463   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    464     if (LastInst->getOpcode() == PPC::B) {
    465       if (!LastInst->getOperand(0).isMBB())
    466         return true;
    467       TBB = LastInst->getOperand(0).getMBB();
    468       return false;
    469     } else if (LastInst->getOpcode() == PPC::BCC) {
    470       if (!LastInst->getOperand(2).isMBB())
    471         return true;
    472       // Block ends with fall-through condbranch.
    473       TBB = LastInst->getOperand(2).getMBB();
    474       Cond.push_back(LastInst->getOperand(0));
    475       Cond.push_back(LastInst->getOperand(1));
    476       return false;
    477     } else if (LastInst->getOpcode() == PPC::BC) {
    478       if (!LastInst->getOperand(1).isMBB())
    479         return true;
    480       // Block ends with fall-through condbranch.
    481       TBB = LastInst->getOperand(1).getMBB();
    482       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    483       Cond.push_back(LastInst->getOperand(0));
    484       return false;
    485     } else if (LastInst->getOpcode() == PPC::BCn) {
    486       if (!LastInst->getOperand(1).isMBB())
    487         return true;
    488       // Block ends with fall-through condbranch.
    489       TBB = LastInst->getOperand(1).getMBB();
    490       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    491       Cond.push_back(LastInst->getOperand(0));
    492       return false;
    493     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
    494                LastInst->getOpcode() == PPC::BDNZ) {
    495       if (!LastInst->getOperand(0).isMBB())
    496         return true;
    497       if (DisableCTRLoopAnal)
    498         return true;
    499       TBB = LastInst->getOperand(0).getMBB();
    500       Cond.push_back(MachineOperand::CreateImm(1));
    501       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    502                                                true));
    503       return false;
    504     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
    505                LastInst->getOpcode() == PPC::BDZ) {
    506       if (!LastInst->getOperand(0).isMBB())
    507         return true;
    508       if (DisableCTRLoopAnal)
    509         return true;
    510       TBB = LastInst->getOperand(0).getMBB();
    511       Cond.push_back(MachineOperand::CreateImm(0));
    512       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    513                                                true));
    514       return false;
    515     }
    516 
    517     // Otherwise, don't know what this is.
    518     return true;
    519   }
    520 
    521   // Get the instruction before it if it's a terminator.
    522   MachineInstr *SecondLastInst = I;
    523 
    524   // If there are three terminators, we don't know what sort of block this is.
    525   if (SecondLastInst && I != MBB.begin() &&
    526       isUnpredicatedTerminator(--I))
    527     return true;
    528 
    529   // If the block ends with PPC::B and PPC:BCC, handle it.
    530   if (SecondLastInst->getOpcode() == PPC::BCC &&
    531       LastInst->getOpcode() == PPC::B) {
    532     if (!SecondLastInst->getOperand(2).isMBB() ||
    533         !LastInst->getOperand(0).isMBB())
    534       return true;
    535     TBB =  SecondLastInst->getOperand(2).getMBB();
    536     Cond.push_back(SecondLastInst->getOperand(0));
    537     Cond.push_back(SecondLastInst->getOperand(1));
    538     FBB = LastInst->getOperand(0).getMBB();
    539     return false;
    540   } else if (SecondLastInst->getOpcode() == PPC::BC &&
    541       LastInst->getOpcode() == PPC::B) {
    542     if (!SecondLastInst->getOperand(1).isMBB() ||
    543         !LastInst->getOperand(0).isMBB())
    544       return true;
    545     TBB =  SecondLastInst->getOperand(1).getMBB();
    546     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    547     Cond.push_back(SecondLastInst->getOperand(0));
    548     FBB = LastInst->getOperand(0).getMBB();
    549     return false;
    550   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
    551       LastInst->getOpcode() == PPC::B) {
    552     if (!SecondLastInst->getOperand(1).isMBB() ||
    553         !LastInst->getOperand(0).isMBB())
    554       return true;
    555     TBB =  SecondLastInst->getOperand(1).getMBB();
    556     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    557     Cond.push_back(SecondLastInst->getOperand(0));
    558     FBB = LastInst->getOperand(0).getMBB();
    559     return false;
    560   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
    561               SecondLastInst->getOpcode() == PPC::BDNZ) &&
    562       LastInst->getOpcode() == PPC::B) {
    563     if (!SecondLastInst->getOperand(0).isMBB() ||
    564         !LastInst->getOperand(0).isMBB())
    565       return true;
    566     if (DisableCTRLoopAnal)
    567       return true;
    568     TBB = SecondLastInst->getOperand(0).getMBB();
    569     Cond.push_back(MachineOperand::CreateImm(1));
    570     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    571                                              true));
    572     FBB = LastInst->getOperand(0).getMBB();
    573     return false;
    574   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
    575               SecondLastInst->getOpcode() == PPC::BDZ) &&
    576       LastInst->getOpcode() == PPC::B) {
    577     if (!SecondLastInst->getOperand(0).isMBB() ||
    578         !LastInst->getOperand(0).isMBB())
    579       return true;
    580     if (DisableCTRLoopAnal)
    581       return true;
    582     TBB = SecondLastInst->getOperand(0).getMBB();
    583     Cond.push_back(MachineOperand::CreateImm(0));
    584     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    585                                              true));
    586     FBB = LastInst->getOperand(0).getMBB();
    587     return false;
    588   }
    589 
    590   // If the block ends with two PPC:Bs, handle it.  The second one is not
    591   // executed, so remove it.
    592   if (SecondLastInst->getOpcode() == PPC::B &&
    593       LastInst->getOpcode() == PPC::B) {
    594     if (!SecondLastInst->getOperand(0).isMBB())
    595       return true;
    596     TBB = SecondLastInst->getOperand(0).getMBB();
    597     I = LastInst;
    598     if (AllowModify)
    599       I->eraseFromParent();
    600     return false;
    601   }
    602 
    603   // Otherwise, can't handle this.
    604   return true;
    605 }
    606 
    607 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    608   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
    609   if (I == MBB.end())
    610     return 0;
    611 
    612   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
    613       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
    614       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    615       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    616     return 0;
    617 
    618   // Remove the branch.
    619   I->eraseFromParent();
    620 
    621   I = MBB.end();
    622 
    623   if (I == MBB.begin()) return 1;
    624   --I;
    625   if (I->getOpcode() != PPC::BCC &&
    626       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
    627       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    628       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    629     return 1;
    630 
    631   // Remove the branch.
    632   I->eraseFromParent();
    633   return 2;
    634 }
    635 
    636 unsigned
    637 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    638                            MachineBasicBlock *FBB,
    639                            ArrayRef<MachineOperand> Cond,
    640                            DebugLoc DL) const {
    641   // Shouldn't be a fall through.
    642   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    643   assert((Cond.size() == 2 || Cond.size() == 0) &&
    644          "PPC branch conditions have two components!");
    645 
    646   bool isPPC64 = Subtarget.isPPC64();
    647 
    648   // One-way branch.
    649   if (!FBB) {
    650     if (Cond.empty())   // Unconditional branch
    651       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
    652     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    653       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    654                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    655                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    656     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    657       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    658     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    659       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    660     else                // Conditional branch
    661       BuildMI(&MBB, DL, get(PPC::BCC))
    662         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    663     return 1;
    664   }
    665 
    666   // Two-way Conditional Branch.
    667   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    668     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    669                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    670                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    671   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    672     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    673   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    674     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    675   else
    676     BuildMI(&MBB, DL, get(PPC::BCC))
    677       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    678   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
    679   return 2;
    680 }
    681 
    682 // Select analysis.
    683 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
    684                 ArrayRef<MachineOperand> Cond,
    685                 unsigned TrueReg, unsigned FalseReg,
    686                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
    687   if (!Subtarget.hasISEL())
    688     return false;
    689 
    690   if (Cond.size() != 2)
    691     return false;
    692 
    693   // If this is really a bdnz-like condition, then it cannot be turned into a
    694   // select.
    695   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    696     return false;
    697 
    698   // Check register classes.
    699   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    700   const TargetRegisterClass *RC =
    701     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    702   if (!RC)
    703     return false;
    704 
    705   // isel is for regular integer GPRs only.
    706   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
    707       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
    708       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
    709       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
    710     return false;
    711 
    712   // FIXME: These numbers are for the A2, how well they work for other cores is
    713   // an open question. On the A2, the isel instruction has a 2-cycle latency
    714   // but single-cycle throughput. These numbers are used in combination with
    715   // the MispredictPenalty setting from the active SchedMachineModel.
    716   CondCycles = 1;
    717   TrueCycles = 1;
    718   FalseCycles = 1;
    719 
    720   return true;
    721 }
    722 
    723 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
    724                                 MachineBasicBlock::iterator MI, DebugLoc dl,
    725                                 unsigned DestReg, ArrayRef<MachineOperand> Cond,
    726                                 unsigned TrueReg, unsigned FalseReg) const {
    727   assert(Cond.size() == 2 &&
    728          "PPC branch conditions have two components!");
    729 
    730   assert(Subtarget.hasISEL() &&
    731          "Cannot insert select on target without ISEL support");
    732 
    733   // Get the register classes.
    734   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    735   const TargetRegisterClass *RC =
    736     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    737   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
    738 
    739   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
    740                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
    741   assert((Is64Bit ||
    742           PPC::GPRCRegClass.hasSubClassEq(RC) ||
    743           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
    744          "isel is for regular integer GPRs only");
    745 
    746   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
    747   unsigned SelectPred = Cond[0].getImm();
    748 
    749   unsigned SubIdx;
    750   bool SwapOps;
    751   switch (SelectPred) {
    752   default: llvm_unreachable("invalid predicate for isel");
    753   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
    754   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
    755   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
    756   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
    757   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
    758   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
    759   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
    760   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
    761   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
    762   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
    763   }
    764 
    765   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
    766            SecondReg = SwapOps ? TrueReg  : FalseReg;
    767 
    768   // The first input register of isel cannot be r0. If it is a member
    769   // of a register class that can be r0, then copy it first (the
    770   // register allocator should eliminate the copy).
    771   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
    772       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
    773     const TargetRegisterClass *FirstRC =
    774       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
    775         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
    776     unsigned OldFirstReg = FirstReg;
    777     FirstReg = MRI.createVirtualRegister(FirstRC);
    778     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
    779       .addReg(OldFirstReg);
    780   }
    781 
    782   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
    783     .addReg(FirstReg).addReg(SecondReg)
    784     .addReg(Cond[1].getReg(), 0, SubIdx);
    785 }
    786 
    787 static unsigned getCRBitValue(unsigned CRBit) {
    788   unsigned Ret = 4;
    789   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
    790       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
    791       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
    792       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
    793     Ret = 3;
    794   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
    795       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
    796       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
    797       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
    798     Ret = 2;
    799   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
    800       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
    801       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
    802       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
    803     Ret = 1;
    804   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
    805       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
    806       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
    807       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
    808     Ret = 0;
    809 
    810   assert(Ret != 4 && "Invalid CR bit register");
    811   return Ret;
    812 }
    813 
    814 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    815                                MachineBasicBlock::iterator I, DebugLoc DL,
    816                                unsigned DestReg, unsigned SrcReg,
    817                                bool KillSrc) const {
    818   // We can end up with self copies and similar things as a result of VSX copy
    819   // legalization. Promote them here.
    820   const TargetRegisterInfo *TRI = &getRegisterInfo();
    821   if (PPC::F8RCRegClass.contains(DestReg) &&
    822       PPC::VSRCRegClass.contains(SrcReg)) {
    823     unsigned SuperReg =
    824       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
    825 
    826     if (VSXSelfCopyCrash && SrcReg == SuperReg)
    827       llvm_unreachable("nop VSX copy");
    828 
    829     DestReg = SuperReg;
    830   } else if (PPC::VRRCRegClass.contains(DestReg) &&
    831              PPC::VSRCRegClass.contains(SrcReg)) {
    832     unsigned SuperReg =
    833       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
    834 
    835     if (VSXSelfCopyCrash && SrcReg == SuperReg)
    836       llvm_unreachable("nop VSX copy");
    837 
    838     DestReg = SuperReg;
    839   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
    840              PPC::VSRCRegClass.contains(DestReg)) {
    841     unsigned SuperReg =
    842       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
    843 
    844     if (VSXSelfCopyCrash && DestReg == SuperReg)
    845       llvm_unreachable("nop VSX copy");
    846 
    847     SrcReg = SuperReg;
    848   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
    849              PPC::VSRCRegClass.contains(DestReg)) {
    850     unsigned SuperReg =
    851       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
    852 
    853     if (VSXSelfCopyCrash && DestReg == SuperReg)
    854       llvm_unreachable("nop VSX copy");
    855 
    856     SrcReg = SuperReg;
    857   }
    858 
    859   // Different class register copy
    860   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
    861       PPC::GPRCRegClass.contains(DestReg)) {
    862     unsigned CRReg = getCRFromCRBit(SrcReg);
    863     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
    864        .addReg(CRReg), getKillRegState(KillSrc);
    865     // Rotate the CR bit in the CR fields to be the least significant bit and
    866     // then mask with 0x1 (MB = ME = 31).
    867     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
    868        .addReg(DestReg, RegState::Kill)
    869        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
    870        .addImm(31)
    871        .addImm(31);
    872     return;
    873   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
    874       PPC::G8RCRegClass.contains(DestReg)) {
    875     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg)
    876        .addReg(SrcReg), getKillRegState(KillSrc);
    877     return;
    878   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
    879       PPC::GPRCRegClass.contains(DestReg)) {
    880     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
    881        .addReg(SrcReg), getKillRegState(KillSrc);
    882     return;
    883    }
    884 
    885   unsigned Opc;
    886   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
    887     Opc = PPC::OR;
    888   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
    889     Opc = PPC::OR8;
    890   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
    891     Opc = PPC::FMR;
    892   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
    893     Opc = PPC::MCRF;
    894   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
    895     Opc = PPC::VOR;
    896   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
    897     // There are two different ways this can be done:
    898     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
    899     //      issue in VSU pipeline 0.
    900     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
    901     //      can go to either pipeline.
    902     // We'll always use xxlor here, because in practically all cases where
    903     // copies are generated, they are close enough to some use that the
    904     // lower-latency form is preferable.
    905     Opc = PPC::XXLOR;
    906   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
    907            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
    908     Opc = PPC::XXLORf;
    909   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
    910     Opc = PPC::QVFMR;
    911   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
    912     Opc = PPC::QVFMRs;
    913   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
    914     Opc = PPC::QVFMRb;
    915   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
    916     Opc = PPC::CROR;
    917   else
    918     llvm_unreachable("Impossible reg-to-reg copy");
    919 
    920   const MCInstrDesc &MCID = get(Opc);
    921   if (MCID.getNumOperands() == 3)
    922     BuildMI(MBB, I, DL, MCID, DestReg)
    923       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
    924   else
    925     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
    926 }
    927 
    928 // This function returns true if a CR spill is necessary and false otherwise.
    929 bool
    930 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
    931                                   unsigned SrcReg, bool isKill,
    932                                   int FrameIdx,
    933                                   const TargetRegisterClass *RC,
    934                                   SmallVectorImpl<MachineInstr*> &NewMIs,
    935                                   bool &NonRI, bool &SpillsVRS) const{
    936   // Note: If additional store instructions are added here,
    937   // update isStoreToStackSlot.
    938 
    939   DebugLoc DL;
    940   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
    941       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    942     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
    943                                        .addReg(SrcReg,
    944                                                getKillRegState(isKill)),
    945                                        FrameIdx));
    946   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
    947              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    948     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
    949                                        .addReg(SrcReg,
    950                                                getKillRegState(isKill)),
    951                                        FrameIdx));
    952   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    953     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
    954                                        .addReg(SrcReg,
    955                                                getKillRegState(isKill)),
    956                                        FrameIdx));
    957   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    958     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
    959                                        .addReg(SrcReg,
    960                                                getKillRegState(isKill)),
    961                                        FrameIdx));
    962   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    963     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
    964                                        .addReg(SrcReg,
    965                                                getKillRegState(isKill)),
    966                                        FrameIdx));
    967     return true;
    968   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    969     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
    970                                        .addReg(SrcReg,
    971                                                getKillRegState(isKill)),
    972                                        FrameIdx));
    973     return true;
    974   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    975     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
    976                                        .addReg(SrcReg,
    977                                                getKillRegState(isKill)),
    978                                        FrameIdx));
    979     NonRI = true;
    980   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
    981     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
    982                                        .addReg(SrcReg,
    983                                                getKillRegState(isKill)),
    984                                        FrameIdx));
    985     NonRI = true;
    986   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
    987     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
    988                                        .addReg(SrcReg,
    989                                                getKillRegState(isKill)),
    990                                        FrameIdx));
    991     NonRI = true;
    992   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
    993     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
    994                                        .addReg(SrcReg,
    995                                                getKillRegState(isKill)),
    996                                        FrameIdx));
    997     NonRI = true;
    998   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    999     assert(Subtarget.isDarwin() &&
   1000            "VRSAVE only needs spill/restore on Darwin");
   1001     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
   1002                                        .addReg(SrcReg,
   1003                                                getKillRegState(isKill)),
   1004                                        FrameIdx));
   1005     SpillsVRS = true;
   1006   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
   1007     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
   1008                                        .addReg(SrcReg,
   1009                                                getKillRegState(isKill)),
   1010                                        FrameIdx));
   1011     NonRI = true;
   1012   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
   1013     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
   1014                                        .addReg(SrcReg,
   1015                                                getKillRegState(isKill)),
   1016                                        FrameIdx));
   1017     NonRI = true;
   1018   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
   1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
   1020                                        .addReg(SrcReg,
   1021                                                getKillRegState(isKill)),
   1022                                        FrameIdx));
   1023     NonRI = true;
   1024   } else {
   1025     llvm_unreachable("Unknown regclass!");
   1026   }
   1027 
   1028   return false;
   1029 }
   1030 
   1031 void
   1032 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   1033                                   MachineBasicBlock::iterator MI,
   1034                                   unsigned SrcReg, bool isKill, int FrameIdx,
   1035                                   const TargetRegisterClass *RC,
   1036                                   const TargetRegisterInfo *TRI) const {
   1037   MachineFunction &MF = *MBB.getParent();
   1038   SmallVector<MachineInstr*, 4> NewMIs;
   1039 
   1040   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1041   FuncInfo->setHasSpills();
   1042 
   1043   bool NonRI = false, SpillsVRS = false;
   1044   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
   1045                           NonRI, SpillsVRS))
   1046     FuncInfo->setSpillsCR();
   1047 
   1048   if (SpillsVRS)
   1049     FuncInfo->setSpillsVRSAVE();
   1050 
   1051   if (NonRI)
   1052     FuncInfo->setHasNonRISpills();
   1053 
   1054   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
   1055     MBB.insert(MI, NewMIs[i]);
   1056 
   1057   const MachineFrameInfo &MFI = *MF.getFrameInfo();
   1058   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1059       MachinePointerInfo::getFixedStack(MF, FrameIdx),
   1060       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
   1061       MFI.getObjectAlignment(FrameIdx));
   1062   NewMIs.back()->addMemOperand(MF, MMO);
   1063 }
   1064 
   1065 bool
   1066 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
   1067                                    unsigned DestReg, int FrameIdx,
   1068                                    const TargetRegisterClass *RC,
   1069                                    SmallVectorImpl<MachineInstr*> &NewMIs,
   1070                                    bool &NonRI, bool &SpillsVRS) const{
   1071   // Note: If additional load instructions are added here,
   1072   // update isLoadFromStackSlot.
   1073 
   1074   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
   1075       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
   1076     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
   1077                                                DestReg), FrameIdx));
   1078   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
   1079              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
   1080     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
   1081                                        FrameIdx));
   1082   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
   1083     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
   1084                                        FrameIdx));
   1085   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
   1086     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
   1087                                        FrameIdx));
   1088   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
   1089     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
   1090                                                get(PPC::RESTORE_CR), DestReg),
   1091                                        FrameIdx));
   1092     return true;
   1093   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
   1094     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
   1095                                                get(PPC::RESTORE_CRBIT), DestReg),
   1096                                        FrameIdx));
   1097     return true;
   1098   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
   1099     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
   1100                                        FrameIdx));
   1101     NonRI = true;
   1102   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
   1103     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
   1104                                        FrameIdx));
   1105     NonRI = true;
   1106   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
   1107     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
   1108                                        FrameIdx));
   1109     NonRI = true;
   1110   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
   1111     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
   1112                                        FrameIdx));
   1113     NonRI = true;
   1114   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
   1115     assert(Subtarget.isDarwin() &&
   1116            "VRSAVE only needs spill/restore on Darwin");
   1117     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
   1118                                                get(PPC::RESTORE_VRSAVE),
   1119                                                DestReg),
   1120                                        FrameIdx));
   1121     SpillsVRS = true;
   1122   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
   1123     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
   1124                                        FrameIdx));
   1125     NonRI = true;
   1126   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
   1127     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
   1128                                        FrameIdx));
   1129     NonRI = true;
   1130   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
   1131     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
   1132                                        FrameIdx));
   1133     NonRI = true;
   1134   } else {
   1135     llvm_unreachable("Unknown regclass!");
   1136   }
   1137 
   1138   return false;
   1139 }
   1140 
   1141 void
   1142 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   1143                                    MachineBasicBlock::iterator MI,
   1144                                    unsigned DestReg, int FrameIdx,
   1145                                    const TargetRegisterClass *RC,
   1146                                    const TargetRegisterInfo *TRI) const {
   1147   MachineFunction &MF = *MBB.getParent();
   1148   SmallVector<MachineInstr*, 4> NewMIs;
   1149   DebugLoc DL;
   1150   if (MI != MBB.end()) DL = MI->getDebugLoc();
   1151 
   1152   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1153   FuncInfo->setHasSpills();
   1154 
   1155   bool NonRI = false, SpillsVRS = false;
   1156   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
   1157                            NonRI, SpillsVRS))
   1158     FuncInfo->setSpillsCR();
   1159 
   1160   if (SpillsVRS)
   1161     FuncInfo->setSpillsVRSAVE();
   1162 
   1163   if (NonRI)
   1164     FuncInfo->setHasNonRISpills();
   1165 
   1166   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
   1167     MBB.insert(MI, NewMIs[i]);
   1168 
   1169   const MachineFrameInfo &MFI = *MF.getFrameInfo();
   1170   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1171       MachinePointerInfo::getFixedStack(MF, FrameIdx),
   1172       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
   1173       MFI.getObjectAlignment(FrameIdx));
   1174   NewMIs.back()->addMemOperand(MF, MMO);
   1175 }
   1176 
   1177 bool PPCInstrInfo::
   1178 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1179   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
   1180   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
   1181     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
   1182   else
   1183     // Leave the CR# the same, but invert the condition.
   1184     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
   1185   return false;
   1186 }
   1187 
   1188 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
   1189                              unsigned Reg, MachineRegisterInfo *MRI) const {
   1190   // For some instructions, it is legal to fold ZERO into the RA register field.
   1191   // A zero immediate should always be loaded with a single li.
   1192   unsigned DefOpc = DefMI->getOpcode();
   1193   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
   1194     return false;
   1195   if (!DefMI->getOperand(1).isImm())
   1196     return false;
   1197   if (DefMI->getOperand(1).getImm() != 0)
   1198     return false;
   1199 
   1200   // Note that we cannot here invert the arguments of an isel in order to fold
   1201   // a ZERO into what is presented as the second argument. All we have here
   1202   // is the condition bit, and that might come from a CR-logical bit operation.
   1203 
   1204   const MCInstrDesc &UseMCID = UseMI->getDesc();
   1205 
   1206   // Only fold into real machine instructions.
   1207   if (UseMCID.isPseudo())
   1208     return false;
   1209 
   1210   unsigned UseIdx;
   1211   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
   1212     if (UseMI->getOperand(UseIdx).isReg() &&
   1213         UseMI->getOperand(UseIdx).getReg() == Reg)
   1214       break;
   1215 
   1216   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
   1217   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
   1218 
   1219   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
   1220 
   1221   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
   1222   // register (which might also be specified as a pointer class kind).
   1223   if (UseInfo->isLookupPtrRegClass()) {
   1224     if (UseInfo->RegClass /* Kind */ != 1)
   1225       return false;
   1226   } else {
   1227     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
   1228         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
   1229       return false;
   1230   }
   1231 
   1232   // Make sure this is not tied to an output register (or otherwise
   1233   // constrained). This is true for ST?UX registers, for example, which
   1234   // are tied to their output registers.
   1235   if (UseInfo->Constraints != 0)
   1236     return false;
   1237 
   1238   unsigned ZeroReg;
   1239   if (UseInfo->isLookupPtrRegClass()) {
   1240     bool isPPC64 = Subtarget.isPPC64();
   1241     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
   1242   } else {
   1243     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
   1244               PPC::ZERO8 : PPC::ZERO;
   1245   }
   1246 
   1247   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
   1248   UseMI->getOperand(UseIdx).setReg(ZeroReg);
   1249 
   1250   if (DeleteDef)
   1251     DefMI->eraseFromParent();
   1252 
   1253   return true;
   1254 }
   1255 
   1256 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
   1257   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
   1258        I != IE; ++I)
   1259     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
   1260       return true;
   1261   return false;
   1262 }
   1263 
   1264 // We should make sure that, if we're going to predicate both sides of a
   1265 // condition (a diamond), that both sides don't define the counter register. We
   1266 // can predicate counter-decrement-based branches, but while that predicates
   1267 // the branching, it does not predicate the counter decrement. If we tried to
   1268 // merge the triangle into one predicated block, we'd decrement the counter
   1269 // twice.
   1270 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1271                      unsigned NumT, unsigned ExtraT,
   1272                      MachineBasicBlock &FMBB,
   1273                      unsigned NumF, unsigned ExtraF,
   1274                      BranchProbability Probability) const {
   1275   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
   1276 }
   1277 
   1278 
   1279 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
   1280   // The predicated branches are identified by their type, not really by the
   1281   // explicit presence of a predicate. Furthermore, some of them can be
   1282   // predicated more than once. Because if conversion won't try to predicate
   1283   // any instruction which already claims to be predicated (by returning true
   1284   // here), always return false. In doing so, we let isPredicable() be the
   1285   // final word on whether not the instruction can be (further) predicated.
   1286 
   1287   return false;
   1288 }
   1289 
   1290 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
   1291   if (!MI->isTerminator())
   1292     return false;
   1293 
   1294   // Conditional branch is a special case.
   1295   if (MI->isBranch() && !MI->isBarrier())
   1296     return true;
   1297 
   1298   return !isPredicated(MI);
   1299 }
   1300 
   1301 bool PPCInstrInfo::PredicateInstruction(MachineInstr *MI,
   1302                                         ArrayRef<MachineOperand> Pred) const {
   1303   unsigned OpC = MI->getOpcode();
   1304   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
   1305     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
   1306       bool isPPC64 = Subtarget.isPPC64();
   1307       MI->setDesc(get(Pred[0].getImm() ?
   1308                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
   1309                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
   1310     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1311       MI->setDesc(get(PPC::BCLR));
   1312       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1313         .addReg(Pred[1].getReg());
   1314     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1315       MI->setDesc(get(PPC::BCLRn));
   1316       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1317         .addReg(Pred[1].getReg());
   1318     } else {
   1319       MI->setDesc(get(PPC::BCCLR));
   1320       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1321         .addImm(Pred[0].getImm())
   1322         .addReg(Pred[1].getReg());
   1323     }
   1324 
   1325     return true;
   1326   } else if (OpC == PPC::B) {
   1327     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
   1328       bool isPPC64 = Subtarget.isPPC64();
   1329       MI->setDesc(get(Pred[0].getImm() ?
   1330                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
   1331                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
   1332     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1333       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
   1334       MI->RemoveOperand(0);
   1335 
   1336       MI->setDesc(get(PPC::BC));
   1337       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1338         .addReg(Pred[1].getReg())
   1339         .addMBB(MBB);
   1340     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1341       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
   1342       MI->RemoveOperand(0);
   1343 
   1344       MI->setDesc(get(PPC::BCn));
   1345       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1346         .addReg(Pred[1].getReg())
   1347         .addMBB(MBB);
   1348     } else {
   1349       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
   1350       MI->RemoveOperand(0);
   1351 
   1352       MI->setDesc(get(PPC::BCC));
   1353       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1354         .addImm(Pred[0].getImm())
   1355         .addReg(Pred[1].getReg())
   1356         .addMBB(MBB);
   1357     }
   1358 
   1359     return true;
   1360   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
   1361              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
   1362     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
   1363       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
   1364 
   1365     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
   1366     bool isPPC64 = Subtarget.isPPC64();
   1367 
   1368     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1369       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
   1370                                 (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
   1371       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1372         .addReg(Pred[1].getReg());
   1373       return true;
   1374     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1375       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
   1376                                 (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
   1377       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1378         .addReg(Pred[1].getReg());
   1379       return true;
   1380     }
   1381 
   1382     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
   1383                               (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
   1384     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
   1385       .addImm(Pred[0].getImm())
   1386       .addReg(Pred[1].getReg());
   1387     return true;
   1388   }
   1389 
   1390   return false;
   1391 }
   1392 
   1393 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
   1394                                      ArrayRef<MachineOperand> Pred2) const {
   1395   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
   1396   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
   1397 
   1398   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
   1399     return false;
   1400   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
   1401     return false;
   1402 
   1403   // P1 can only subsume P2 if they test the same condition register.
   1404   if (Pred1[1].getReg() != Pred2[1].getReg())
   1405     return false;
   1406 
   1407   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
   1408   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
   1409 
   1410   if (P1 == P2)
   1411     return true;
   1412 
   1413   // Does P1 subsume P2, e.g. GE subsumes GT.
   1414   if (P1 == PPC::PRED_LE &&
   1415       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
   1416     return true;
   1417   if (P1 == PPC::PRED_GE &&
   1418       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
   1419     return true;
   1420 
   1421   return false;
   1422 }
   1423 
   1424 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
   1425                                     std::vector<MachineOperand> &Pred) const {
   1426   // Note: At the present time, the contents of Pred from this function is
   1427   // unused by IfConversion. This implementation follows ARM by pushing the
   1428   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
   1429   // predicate, instructions defining CTR or CTR8 are also included as
   1430   // predicate-defining instructions.
   1431 
   1432   const TargetRegisterClass *RCs[] =
   1433     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
   1434       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
   1435 
   1436   bool Found = false;
   1437   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1438     const MachineOperand &MO = MI->getOperand(i);
   1439     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
   1440       const TargetRegisterClass *RC = RCs[c];
   1441       if (MO.isReg()) {
   1442         if (MO.isDef() && RC->contains(MO.getReg())) {
   1443           Pred.push_back(MO);
   1444           Found = true;
   1445         }
   1446       } else if (MO.isRegMask()) {
   1447         for (TargetRegisterClass::iterator I = RC->begin(),
   1448              IE = RC->end(); I != IE; ++I)
   1449           if (MO.clobbersPhysReg(*I)) {
   1450             Pred.push_back(MO);
   1451             Found = true;
   1452           }
   1453       }
   1454     }
   1455   }
   1456 
   1457   return Found;
   1458 }
   1459 
   1460 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
   1461   unsigned OpC = MI->getOpcode();
   1462   switch (OpC) {
   1463   default:
   1464     return false;
   1465   case PPC::B:
   1466   case PPC::BLR:
   1467   case PPC::BLR8:
   1468   case PPC::BCTR:
   1469   case PPC::BCTR8:
   1470   case PPC::BCTRL:
   1471   case PPC::BCTRL8:
   1472     return true;
   1473   }
   1474 }
   1475 
   1476 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
   1477                                   unsigned &SrcReg, unsigned &SrcReg2,
   1478                                   int &Mask, int &Value) const {
   1479   unsigned Opc = MI->getOpcode();
   1480 
   1481   switch (Opc) {
   1482   default: return false;
   1483   case PPC::CMPWI:
   1484   case PPC::CMPLWI:
   1485   case PPC::CMPDI:
   1486   case PPC::CMPLDI:
   1487     SrcReg = MI->getOperand(1).getReg();
   1488     SrcReg2 = 0;
   1489     Value = MI->getOperand(2).getImm();
   1490     Mask = 0xFFFF;
   1491     return true;
   1492   case PPC::CMPW:
   1493   case PPC::CMPLW:
   1494   case PPC::CMPD:
   1495   case PPC::CMPLD:
   1496   case PPC::FCMPUS:
   1497   case PPC::FCMPUD:
   1498     SrcReg = MI->getOperand(1).getReg();
   1499     SrcReg2 = MI->getOperand(2).getReg();
   1500     return true;
   1501   }
   1502 }
   1503 
   1504 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
   1505                                         unsigned SrcReg, unsigned SrcReg2,
   1506                                         int Mask, int Value,
   1507                                         const MachineRegisterInfo *MRI) const {
   1508   if (DisableCmpOpt)
   1509     return false;
   1510 
   1511   int OpC = CmpInstr->getOpcode();
   1512   unsigned CRReg = CmpInstr->getOperand(0).getReg();
   1513 
   1514   // FP record forms set CR1 based on the execption status bits, not a
   1515   // comparison with zero.
   1516   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
   1517     return false;
   1518 
   1519   // The record forms set the condition register based on a signed comparison
   1520   // with zero (so says the ISA manual). This is not as straightforward as it
   1521   // seems, however, because this is always a 64-bit comparison on PPC64, even
   1522   // for instructions that are 32-bit in nature (like slw for example).
   1523   // So, on PPC32, for unsigned comparisons, we can use the record forms only
   1524   // for equality checks (as those don't depend on the sign). On PPC64,
   1525   // we are restricted to equality for unsigned 64-bit comparisons and for
   1526   // signed 32-bit comparisons the applicability is more restricted.
   1527   bool isPPC64 = Subtarget.isPPC64();
   1528   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
   1529   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
   1530   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
   1531 
   1532   // Get the unique definition of SrcReg.
   1533   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   1534   if (!MI) return false;
   1535   int MIOpC = MI->getOpcode();
   1536 
   1537   bool equalityOnly = false;
   1538   bool noSub = false;
   1539   if (isPPC64) {
   1540     if (is32BitSignedCompare) {
   1541       // We can perform this optimization only if MI is sign-extending.
   1542       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
   1543           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
   1544           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
   1545           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
   1546           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
   1547         noSub = true;
   1548       } else
   1549         return false;
   1550     } else if (is32BitUnsignedCompare) {
   1551       // We can perform this optimization, equality only, if MI is
   1552       // zero-extending.
   1553       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
   1554           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
   1555           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
   1556         noSub = true;
   1557         equalityOnly = true;
   1558       } else
   1559         return false;
   1560     } else
   1561       equalityOnly = is64BitUnsignedCompare;
   1562   } else
   1563     equalityOnly = is32BitUnsignedCompare;
   1564 
   1565   if (equalityOnly) {
   1566     // We need to check the uses of the condition register in order to reject
   1567     // non-equality comparisons.
   1568     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
   1569          IE = MRI->use_instr_end(); I != IE; ++I) {
   1570       MachineInstr *UseMI = &*I;
   1571       if (UseMI->getOpcode() == PPC::BCC) {
   1572         unsigned Pred = UseMI->getOperand(0).getImm();
   1573         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
   1574           return false;
   1575       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1576                  UseMI->getOpcode() == PPC::ISEL8) {
   1577         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
   1578         if (SubIdx != PPC::sub_eq)
   1579           return false;
   1580       } else
   1581         return false;
   1582     }
   1583   }
   1584 
   1585   MachineBasicBlock::iterator I = CmpInstr;
   1586 
   1587   // Scan forward to find the first use of the compare.
   1588   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
   1589        I != EL; ++I) {
   1590     bool FoundUse = false;
   1591     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
   1592          JE = MRI->use_instr_end(); J != JE; ++J)
   1593       if (&*J == &*I) {
   1594         FoundUse = true;
   1595         break;
   1596       }
   1597 
   1598     if (FoundUse)
   1599       break;
   1600   }
   1601 
   1602   // There are two possible candidates which can be changed to set CR[01].
   1603   // One is MI, the other is a SUB instruction.
   1604   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   1605   MachineInstr *Sub = nullptr;
   1606   if (SrcReg2 != 0)
   1607     // MI is not a candidate for CMPrr.
   1608     MI = nullptr;
   1609   // FIXME: Conservatively refuse to convert an instruction which isn't in the
   1610   // same BB as the comparison. This is to allow the check below to avoid calls
   1611   // (and other explicit clobbers); instead we should really check for these
   1612   // more explicitly (in at least a few predecessors).
   1613   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
   1614     // PPC does not have a record-form SUBri.
   1615     return false;
   1616   }
   1617 
   1618   // Search for Sub.
   1619   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1620   --I;
   1621 
   1622   // Get ready to iterate backward from CmpInstr.
   1623   MachineBasicBlock::iterator E = MI,
   1624                               B = CmpInstr->getParent()->begin();
   1625 
   1626   for (; I != E && !noSub; --I) {
   1627     const MachineInstr &Instr = *I;
   1628     unsigned IOpC = Instr.getOpcode();
   1629 
   1630     if (&*I != CmpInstr && (
   1631         Instr.modifiesRegister(PPC::CR0, TRI) ||
   1632         Instr.readsRegister(PPC::CR0, TRI)))
   1633       // This instruction modifies or uses the record condition register after
   1634       // the one we want to change. While we could do this transformation, it
   1635       // would likely not be profitable. This transformation removes one
   1636       // instruction, and so even forcing RA to generate one move probably
   1637       // makes it unprofitable.
   1638       return false;
   1639 
   1640     // Check whether CmpInstr can be made redundant by the current instruction.
   1641     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
   1642          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
   1643         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
   1644         ((Instr.getOperand(1).getReg() == SrcReg &&
   1645           Instr.getOperand(2).getReg() == SrcReg2) ||
   1646         (Instr.getOperand(1).getReg() == SrcReg2 &&
   1647          Instr.getOperand(2).getReg() == SrcReg))) {
   1648       Sub = &*I;
   1649       break;
   1650     }
   1651 
   1652     if (I == B)
   1653       // The 'and' is below the comparison instruction.
   1654       return false;
   1655   }
   1656 
   1657   // Return false if no candidates exist.
   1658   if (!MI && !Sub)
   1659     return false;
   1660 
   1661   // The single candidate is called MI.
   1662   if (!MI) MI = Sub;
   1663 
   1664   int NewOpC = -1;
   1665   MIOpC = MI->getOpcode();
   1666   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
   1667     NewOpC = MIOpC;
   1668   else {
   1669     NewOpC = PPC::getRecordFormOpcode(MIOpC);
   1670     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
   1671       NewOpC = MIOpC;
   1672   }
   1673 
   1674   // FIXME: On the non-embedded POWER architectures, only some of the record
   1675   // forms are fast, and we should use only the fast ones.
   1676 
   1677   // The defining instruction has a record form (or is already a record
   1678   // form). It is possible, however, that we'll need to reverse the condition
   1679   // code of the users.
   1680   if (NewOpC == -1)
   1681     return false;
   1682 
   1683   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
   1684   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
   1685 
   1686   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
   1687   // needs to be updated to be based on SUB.  Push the condition code
   1688   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
   1689   // condition code of these operands will be modified.
   1690   bool ShouldSwap = false;
   1691   if (Sub) {
   1692     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   1693       Sub->getOperand(2).getReg() == SrcReg;
   1694 
   1695     // The operands to subf are the opposite of sub, so only in the fixed-point
   1696     // case, invert the order.
   1697     ShouldSwap = !ShouldSwap;
   1698   }
   1699 
   1700   if (ShouldSwap)
   1701     for (MachineRegisterInfo::use_instr_iterator
   1702          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
   1703          I != IE; ++I) {
   1704       MachineInstr *UseMI = &*I;
   1705       if (UseMI->getOpcode() == PPC::BCC) {
   1706         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
   1707         assert((!equalityOnly ||
   1708                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
   1709                "Invalid predicate for equality-only optimization");
   1710         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
   1711                                 PPC::getSwappedPredicate(Pred)));
   1712       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1713                  UseMI->getOpcode() == PPC::ISEL8) {
   1714         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
   1715         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
   1716                "Invalid CR bit for equality-only optimization");
   1717 
   1718         if (NewSubReg == PPC::sub_lt)
   1719           NewSubReg = PPC::sub_gt;
   1720         else if (NewSubReg == PPC::sub_gt)
   1721           NewSubReg = PPC::sub_lt;
   1722 
   1723         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
   1724                                                  NewSubReg));
   1725       } else // We need to abort on a user we don't understand.
   1726         return false;
   1727     }
   1728 
   1729   // Create a new virtual register to hold the value of the CR set by the
   1730   // record-form instruction. If the instruction was not previously in
   1731   // record form, then set the kill flag on the CR.
   1732   CmpInstr->eraseFromParent();
   1733 
   1734   MachineBasicBlock::iterator MII = MI;
   1735   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
   1736           get(TargetOpcode::COPY), CRReg)
   1737     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
   1738 
   1739   if (MIOpC != NewOpC) {
   1740     // We need to be careful here: we're replacing one instruction with
   1741     // another, and we need to make sure that we get all of the right
   1742     // implicit uses and defs. On the other hand, the caller may be holding
   1743     // an iterator to this instruction, and so we can't delete it (this is
   1744     // specifically the case if this is the instruction directly after the
   1745     // compare).
   1746 
   1747     const MCInstrDesc &NewDesc = get(NewOpC);
   1748     MI->setDesc(NewDesc);
   1749 
   1750     if (NewDesc.ImplicitDefs)
   1751       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
   1752            *ImpDefs; ++ImpDefs)
   1753         if (!MI->definesRegister(*ImpDefs))
   1754           MI->addOperand(*MI->getParent()->getParent(),
   1755                          MachineOperand::CreateReg(*ImpDefs, true, true));
   1756     if (NewDesc.ImplicitUses)
   1757       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
   1758            *ImpUses; ++ImpUses)
   1759         if (!MI->readsRegister(*ImpUses))
   1760           MI->addOperand(*MI->getParent()->getParent(),
   1761                          MachineOperand::CreateReg(*ImpUses, false, true));
   1762   }
   1763 
   1764   // Modify the condition code of operands in OperandsToUpdate.
   1765   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   1766   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   1767   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
   1768     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
   1769 
   1770   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
   1771     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
   1772 
   1773   return true;
   1774 }
   1775 
   1776 /// GetInstSize - Return the number of bytes of code the specified
   1777 /// instruction may be.  This returns the maximum number of bytes.
   1778 ///
   1779 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
   1780   unsigned Opcode = MI->getOpcode();
   1781 
   1782   if (Opcode == PPC::INLINEASM) {
   1783     const MachineFunction *MF = MI->getParent()->getParent();
   1784     const char *AsmStr = MI->getOperand(0).getSymbolName();
   1785     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
   1786   } else if (Opcode == TargetOpcode::STACKMAP) {
   1787     return MI->getOperand(1).getImm();
   1788   } else if (Opcode == TargetOpcode::PATCHPOINT) {
   1789     PatchPointOpers Opers(MI);
   1790     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
   1791   } else {
   1792     const MCInstrDesc &Desc = get(Opcode);
   1793     return Desc.getSize();
   1794   }
   1795 }
   1796 
   1797 std::pair<unsigned, unsigned>
   1798 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
   1799   const unsigned Mask = PPCII::MO_ACCESS_MASK;
   1800   return std::make_pair(TF & Mask, TF & ~Mask);
   1801 }
   1802 
   1803 ArrayRef<std::pair<unsigned, const char *>>
   1804 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
   1805   using namespace PPCII;
   1806   static const std::pair<unsigned, const char *> TargetFlags[] = {
   1807       {MO_LO, "ppc-lo"},
   1808       {MO_HA, "ppc-ha"},
   1809       {MO_TPREL_LO, "ppc-tprel-lo"},
   1810       {MO_TPREL_HA, "ppc-tprel-ha"},
   1811       {MO_DTPREL_LO, "ppc-dtprel-lo"},
   1812       {MO_TLSLD_LO, "ppc-tlsld-lo"},
   1813       {MO_TOC_LO, "ppc-toc-lo"},
   1814       {MO_TLS, "ppc-tls"}};
   1815   return makeArrayRef(TargetFlags);
   1816 }
   1817 
   1818 ArrayRef<std::pair<unsigned, const char *>>
   1819 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
   1820   using namespace PPCII;
   1821   static const std::pair<unsigned, const char *> TargetFlags[] = {
   1822       {MO_PLT_OR_STUB, "ppc-plt-or-stub"},
   1823       {MO_PIC_FLAG, "ppc-pic"},
   1824       {MO_NLP_FLAG, "ppc-nlp"},
   1825       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
   1826   return makeArrayRef(TargetFlags);
   1827 }
   1828 
   1829