Home | History | Annotate | Download | only in Scalar
      1 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass converts vector operations into scalar operations, in order
     11 // to expose optimization opportunities on the individual scalar operations.
     12 // It is mainly intended for targets that do not have vector units, but it
     13 // may also be useful for revectorizing code to different vector widths.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/IR/IRBuilder.h"
     19 #include "llvm/IR/InstVisitor.h"
     20 #include "llvm/Pass.h"
     21 #include "llvm/Support/CommandLine.h"
     22 #include "llvm/Transforms/Scalar.h"
     23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "scalarizer"
     28 
     29 namespace {
     30 // Used to store the scattered form of a vector.
     31 typedef SmallVector<Value *, 8> ValueVector;
     32 
     33 // Used to map a vector Value to its scattered form.  We use std::map
     34 // because we want iterators to persist across insertion and because the
     35 // values are relatively large.
     36 typedef std::map<Value *, ValueVector> ScatterMap;
     37 
     38 // Lists Instructions that have been replaced with scalar implementations,
     39 // along with a pointer to their scattered forms.
     40 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
     41 
     42 // Provides a very limited vector-like interface for lazily accessing one
     43 // component of a scattered vector or vector pointer.
     44 class Scatterer {
     45 public:
     46   Scatterer() {}
     47 
     48   // Scatter V into Size components.  If new instructions are needed,
     49   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
     50   // the results.
     51   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
     52             ValueVector *cachePtr = nullptr);
     53 
     54   // Return component I, creating a new Value for it if necessary.
     55   Value *operator[](unsigned I);
     56 
     57   // Return the number of components.
     58   unsigned size() const { return Size; }
     59 
     60 private:
     61   BasicBlock *BB;
     62   BasicBlock::iterator BBI;
     63   Value *V;
     64   ValueVector *CachePtr;
     65   PointerType *PtrTy;
     66   ValueVector Tmp;
     67   unsigned Size;
     68 };
     69 
     70 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
     71 // called Name that compares X and Y in the same way as FCI.
     72 struct FCmpSplitter {
     73   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
     74   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
     75                     const Twine &Name) const {
     76     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
     77   }
     78   FCmpInst &FCI;
     79 };
     80 
     81 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
     82 // called Name that compares X and Y in the same way as ICI.
     83 struct ICmpSplitter {
     84   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
     85   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
     86                     const Twine &Name) const {
     87     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
     88   }
     89   ICmpInst &ICI;
     90 };
     91 
     92 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
     93 // a binary operator like BO called Name with operands X and Y.
     94 struct BinarySplitter {
     95   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
     96   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
     97                     const Twine &Name) const {
     98     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
     99   }
    100   BinaryOperator &BO;
    101 };
    102 
    103 // Information about a load or store that we're scalarizing.
    104 struct VectorLayout {
    105   VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
    106 
    107   // Return the alignment of element I.
    108   uint64_t getElemAlign(unsigned I) {
    109     return MinAlign(VecAlign, I * ElemSize);
    110   }
    111 
    112   // The type of the vector.
    113   VectorType *VecTy;
    114 
    115   // The type of each element.
    116   Type *ElemTy;
    117 
    118   // The alignment of the vector.
    119   uint64_t VecAlign;
    120 
    121   // The size of each element.
    122   uint64_t ElemSize;
    123 };
    124 
    125 class Scalarizer : public FunctionPass,
    126                    public InstVisitor<Scalarizer, bool> {
    127 public:
    128   static char ID;
    129 
    130   Scalarizer() :
    131     FunctionPass(ID) {
    132     initializeScalarizerPass(*PassRegistry::getPassRegistry());
    133   }
    134 
    135   bool doInitialization(Module &M) override;
    136   bool runOnFunction(Function &F) override;
    137 
    138   // InstVisitor methods.  They return true if the instruction was scalarized,
    139   // false if nothing changed.
    140   bool visitInstruction(Instruction &) { return false; }
    141   bool visitSelectInst(SelectInst &SI);
    142   bool visitICmpInst(ICmpInst &);
    143   bool visitFCmpInst(FCmpInst &);
    144   bool visitBinaryOperator(BinaryOperator &);
    145   bool visitGetElementPtrInst(GetElementPtrInst &);
    146   bool visitCastInst(CastInst &);
    147   bool visitBitCastInst(BitCastInst &);
    148   bool visitShuffleVectorInst(ShuffleVectorInst &);
    149   bool visitPHINode(PHINode &);
    150   bool visitLoadInst(LoadInst &);
    151   bool visitStoreInst(StoreInst &);
    152 
    153   static void registerOptions() {
    154     // This is disabled by default because having separate loads and stores
    155     // makes it more likely that the -combiner-alias-analysis limits will be
    156     // reached.
    157     OptionRegistry::registerOption<bool, Scalarizer,
    158                                  &Scalarizer::ScalarizeLoadStore>(
    159         "scalarize-load-store",
    160         "Allow the scalarizer pass to scalarize loads and store", false);
    161   }
    162 
    163 private:
    164   Scatterer scatter(Instruction *, Value *);
    165   void gather(Instruction *, const ValueVector &);
    166   bool canTransferMetadata(unsigned Kind);
    167   void transferMetadata(Instruction *, const ValueVector &);
    168   bool getVectorLayout(Type *, unsigned, VectorLayout &, const DataLayout &);
    169   bool finish();
    170 
    171   template<typename T> bool splitBinary(Instruction &, const T &);
    172 
    173   ScatterMap Scattered;
    174   GatherList Gathered;
    175   unsigned ParallelLoopAccessMDKind;
    176   bool ScalarizeLoadStore;
    177 };
    178 
    179 char Scalarizer::ID = 0;
    180 } // end anonymous namespace
    181 
    182 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
    183                              "Scalarize vector operations", false, false)
    184 
    185 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
    186                      ValueVector *cachePtr)
    187   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
    188   Type *Ty = V->getType();
    189   PtrTy = dyn_cast<PointerType>(Ty);
    190   if (PtrTy)
    191     Ty = PtrTy->getElementType();
    192   Size = Ty->getVectorNumElements();
    193   if (!CachePtr)
    194     Tmp.resize(Size, nullptr);
    195   else if (CachePtr->empty())
    196     CachePtr->resize(Size, nullptr);
    197   else
    198     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
    199 }
    200 
    201 // Return component I, creating a new Value for it if necessary.
    202 Value *Scatterer::operator[](unsigned I) {
    203   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
    204   // Try to reuse a previous value.
    205   if (CV[I])
    206     return CV[I];
    207   IRBuilder<> Builder(BB, BBI);
    208   if (PtrTy) {
    209     if (!CV[0]) {
    210       Type *Ty =
    211         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
    212                          PtrTy->getAddressSpace());
    213       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
    214     }
    215     if (I != 0)
    216       CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
    217                                          V->getName() + ".i" + Twine(I));
    218   } else {
    219     // Search through a chain of InsertElementInsts looking for element I.
    220     // Record other elements in the cache.  The new V is still suitable
    221     // for all uncached indices.
    222     for (;;) {
    223       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
    224       if (!Insert)
    225         break;
    226       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
    227       if (!Idx)
    228         break;
    229       unsigned J = Idx->getZExtValue();
    230       V = Insert->getOperand(0);
    231       if (I == J) {
    232         CV[J] = Insert->getOperand(1);
    233         return CV[J];
    234       } else if (!CV[J]) {
    235         // Only cache the first entry we find for each index we're not actively
    236         // searching for. This prevents us from going too far up the chain and
    237         // caching incorrect entries.
    238         CV[J] = Insert->getOperand(1);
    239       }
    240     }
    241     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
    242                                          V->getName() + ".i" + Twine(I));
    243   }
    244   return CV[I];
    245 }
    246 
    247 bool Scalarizer::doInitialization(Module &M) {
    248   ParallelLoopAccessMDKind =
    249       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
    250   ScalarizeLoadStore =
    251       M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
    252   return false;
    253 }
    254 
    255 bool Scalarizer::runOnFunction(Function &F) {
    256   assert(Gathered.empty() && Scattered.empty());
    257   for (BasicBlock &BB : F) {
    258     for (BasicBlock::iterator II = BB.begin(), IE = BB.end(); II != IE;) {
    259       Instruction *I = &*II;
    260       bool Done = visit(I);
    261       ++II;
    262       if (Done && I->getType()->isVoidTy())
    263         I->eraseFromParent();
    264     }
    265   }
    266   return finish();
    267 }
    268 
    269 // Return a scattered form of V that can be accessed by Point.  V must be a
    270 // vector or a pointer to a vector.
    271 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
    272   if (Argument *VArg = dyn_cast<Argument>(V)) {
    273     // Put the scattered form of arguments in the entry block,
    274     // so that it can be used everywhere.
    275     Function *F = VArg->getParent();
    276     BasicBlock *BB = &F->getEntryBlock();
    277     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
    278   }
    279   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
    280     // Put the scattered form of an instruction directly after the
    281     // instruction.
    282     BasicBlock *BB = VOp->getParent();
    283     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
    284                      V, &Scattered[V]);
    285   }
    286   // In the fallback case, just put the scattered before Point and
    287   // keep the result local to Point.
    288   return Scatterer(Point->getParent(), Point->getIterator(), V);
    289 }
    290 
    291 // Replace Op with the gathered form of the components in CV.  Defer the
    292 // deletion of Op and creation of the gathered form to the end of the pass,
    293 // so that we can avoid creating the gathered form if all uses of Op are
    294 // replaced with uses of CV.
    295 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
    296   // Since we're not deleting Op yet, stub out its operands, so that it
    297   // doesn't make anything live unnecessarily.
    298   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
    299     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
    300 
    301   transferMetadata(Op, CV);
    302 
    303   // If we already have a scattered form of Op (created from ExtractElements
    304   // of Op itself), replace them with the new form.
    305   ValueVector &SV = Scattered[Op];
    306   if (!SV.empty()) {
    307     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
    308       Instruction *Old = cast<Instruction>(SV[I]);
    309       CV[I]->takeName(Old);
    310       Old->replaceAllUsesWith(CV[I]);
    311       Old->eraseFromParent();
    312     }
    313   }
    314   SV = CV;
    315   Gathered.push_back(GatherList::value_type(Op, &SV));
    316 }
    317 
    318 // Return true if it is safe to transfer the given metadata tag from
    319 // vector to scalar instructions.
    320 bool Scalarizer::canTransferMetadata(unsigned Tag) {
    321   return (Tag == LLVMContext::MD_tbaa
    322           || Tag == LLVMContext::MD_fpmath
    323           || Tag == LLVMContext::MD_tbaa_struct
    324           || Tag == LLVMContext::MD_invariant_load
    325           || Tag == LLVMContext::MD_alias_scope
    326           || Tag == LLVMContext::MD_noalias
    327           || Tag == ParallelLoopAccessMDKind);
    328 }
    329 
    330 // Transfer metadata from Op to the instructions in CV if it is known
    331 // to be safe to do so.
    332 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
    333   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    334   Op->getAllMetadataOtherThanDebugLoc(MDs);
    335   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
    336     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
    337       for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
    338                MI = MDs.begin(),
    339                ME = MDs.end();
    340            MI != ME; ++MI)
    341         if (canTransferMetadata(MI->first))
    342           New->setMetadata(MI->first, MI->second);
    343       New->setDebugLoc(Op->getDebugLoc());
    344     }
    345   }
    346 }
    347 
    348 // Try to fill in Layout from Ty, returning true on success.  Alignment is
    349 // the alignment of the vector, or 0 if the ABI default should be used.
    350 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
    351                                  VectorLayout &Layout, const DataLayout &DL) {
    352   // Make sure we're dealing with a vector.
    353   Layout.VecTy = dyn_cast<VectorType>(Ty);
    354   if (!Layout.VecTy)
    355     return false;
    356 
    357   // Check that we're dealing with full-byte elements.
    358   Layout.ElemTy = Layout.VecTy->getElementType();
    359   if (DL.getTypeSizeInBits(Layout.ElemTy) !=
    360       DL.getTypeStoreSizeInBits(Layout.ElemTy))
    361     return false;
    362 
    363   if (Alignment)
    364     Layout.VecAlign = Alignment;
    365   else
    366     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
    367   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
    368   return true;
    369 }
    370 
    371 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
    372 // to create an instruction like I with operands X and Y and name Name.
    373 template<typename Splitter>
    374 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
    375   VectorType *VT = dyn_cast<VectorType>(I.getType());
    376   if (!VT)
    377     return false;
    378 
    379   unsigned NumElems = VT->getNumElements();
    380   IRBuilder<> Builder(&I);
    381   Scatterer Op0 = scatter(&I, I.getOperand(0));
    382   Scatterer Op1 = scatter(&I, I.getOperand(1));
    383   assert(Op0.size() == NumElems && "Mismatched binary operation");
    384   assert(Op1.size() == NumElems && "Mismatched binary operation");
    385   ValueVector Res;
    386   Res.resize(NumElems);
    387   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
    388     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
    389                       I.getName() + ".i" + Twine(Elem));
    390   gather(&I, Res);
    391   return true;
    392 }
    393 
    394 bool Scalarizer::visitSelectInst(SelectInst &SI) {
    395   VectorType *VT = dyn_cast<VectorType>(SI.getType());
    396   if (!VT)
    397     return false;
    398 
    399   unsigned NumElems = VT->getNumElements();
    400   IRBuilder<> Builder(&SI);
    401   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
    402   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
    403   assert(Op1.size() == NumElems && "Mismatched select");
    404   assert(Op2.size() == NumElems && "Mismatched select");
    405   ValueVector Res;
    406   Res.resize(NumElems);
    407 
    408   if (SI.getOperand(0)->getType()->isVectorTy()) {
    409     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
    410     assert(Op0.size() == NumElems && "Mismatched select");
    411     for (unsigned I = 0; I < NumElems; ++I)
    412       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
    413                                     SI.getName() + ".i" + Twine(I));
    414   } else {
    415     Value *Op0 = SI.getOperand(0);
    416     for (unsigned I = 0; I < NumElems; ++I)
    417       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
    418                                     SI.getName() + ".i" + Twine(I));
    419   }
    420   gather(&SI, Res);
    421   return true;
    422 }
    423 
    424 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
    425   return splitBinary(ICI, ICmpSplitter(ICI));
    426 }
    427 
    428 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
    429   return splitBinary(FCI, FCmpSplitter(FCI));
    430 }
    431 
    432 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
    433   return splitBinary(BO, BinarySplitter(BO));
    434 }
    435 
    436 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
    437   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
    438   if (!VT)
    439     return false;
    440 
    441   IRBuilder<> Builder(&GEPI);
    442   unsigned NumElems = VT->getNumElements();
    443   unsigned NumIndices = GEPI.getNumIndices();
    444 
    445   Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
    446 
    447   SmallVector<Scatterer, 8> Ops;
    448   Ops.resize(NumIndices);
    449   for (unsigned I = 0; I < NumIndices; ++I)
    450     Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
    451 
    452   ValueVector Res;
    453   Res.resize(NumElems);
    454   for (unsigned I = 0; I < NumElems; ++I) {
    455     SmallVector<Value *, 8> Indices;
    456     Indices.resize(NumIndices);
    457     for (unsigned J = 0; J < NumIndices; ++J)
    458       Indices[J] = Ops[J][I];
    459     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
    460                                GEPI.getName() + ".i" + Twine(I));
    461     if (GEPI.isInBounds())
    462       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
    463         NewGEPI->setIsInBounds();
    464   }
    465   gather(&GEPI, Res);
    466   return true;
    467 }
    468 
    469 bool Scalarizer::visitCastInst(CastInst &CI) {
    470   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
    471   if (!VT)
    472     return false;
    473 
    474   unsigned NumElems = VT->getNumElements();
    475   IRBuilder<> Builder(&CI);
    476   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
    477   assert(Op0.size() == NumElems && "Mismatched cast");
    478   ValueVector Res;
    479   Res.resize(NumElems);
    480   for (unsigned I = 0; I < NumElems; ++I)
    481     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
    482                                 CI.getName() + ".i" + Twine(I));
    483   gather(&CI, Res);
    484   return true;
    485 }
    486 
    487 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
    488   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
    489   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
    490   if (!DstVT || !SrcVT)
    491     return false;
    492 
    493   unsigned DstNumElems = DstVT->getNumElements();
    494   unsigned SrcNumElems = SrcVT->getNumElements();
    495   IRBuilder<> Builder(&BCI);
    496   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
    497   ValueVector Res;
    498   Res.resize(DstNumElems);
    499 
    500   if (DstNumElems == SrcNumElems) {
    501     for (unsigned I = 0; I < DstNumElems; ++I)
    502       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
    503                                      BCI.getName() + ".i" + Twine(I));
    504   } else if (DstNumElems > SrcNumElems) {
    505     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
    506     // individual elements to the destination.
    507     unsigned FanOut = DstNumElems / SrcNumElems;
    508     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
    509     unsigned ResI = 0;
    510     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
    511       Value *V = Op0[Op0I];
    512       Instruction *VI;
    513       // Look through any existing bitcasts before converting to <N x t2>.
    514       // In the best case, the resulting conversion might be a no-op.
    515       while ((VI = dyn_cast<Instruction>(V)) &&
    516              VI->getOpcode() == Instruction::BitCast)
    517         V = VI->getOperand(0);
    518       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
    519       Scatterer Mid = scatter(&BCI, V);
    520       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
    521         Res[ResI++] = Mid[MidI];
    522     }
    523   } else {
    524     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
    525     unsigned FanIn = SrcNumElems / DstNumElems;
    526     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
    527     unsigned Op0I = 0;
    528     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
    529       Value *V = UndefValue::get(MidTy);
    530       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
    531         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
    532                                         BCI.getName() + ".i" + Twine(ResI)
    533                                         + ".upto" + Twine(MidI));
    534       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
    535                                         BCI.getName() + ".i" + Twine(ResI));
    536     }
    537   }
    538   gather(&BCI, Res);
    539   return true;
    540 }
    541 
    542 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
    543   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
    544   if (!VT)
    545     return false;
    546 
    547   unsigned NumElems = VT->getNumElements();
    548   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
    549   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
    550   ValueVector Res;
    551   Res.resize(NumElems);
    552 
    553   for (unsigned I = 0; I < NumElems; ++I) {
    554     int Selector = SVI.getMaskValue(I);
    555     if (Selector < 0)
    556       Res[I] = UndefValue::get(VT->getElementType());
    557     else if (unsigned(Selector) < Op0.size())
    558       Res[I] = Op0[Selector];
    559     else
    560       Res[I] = Op1[Selector - Op0.size()];
    561   }
    562   gather(&SVI, Res);
    563   return true;
    564 }
    565 
    566 bool Scalarizer::visitPHINode(PHINode &PHI) {
    567   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
    568   if (!VT)
    569     return false;
    570 
    571   unsigned NumElems = VT->getNumElements();
    572   IRBuilder<> Builder(&PHI);
    573   ValueVector Res;
    574   Res.resize(NumElems);
    575 
    576   unsigned NumOps = PHI.getNumOperands();
    577   for (unsigned I = 0; I < NumElems; ++I)
    578     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
    579                                PHI.getName() + ".i" + Twine(I));
    580 
    581   for (unsigned I = 0; I < NumOps; ++I) {
    582     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
    583     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
    584     for (unsigned J = 0; J < NumElems; ++J)
    585       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
    586   }
    587   gather(&PHI, Res);
    588   return true;
    589 }
    590 
    591 bool Scalarizer::visitLoadInst(LoadInst &LI) {
    592   if (!ScalarizeLoadStore)
    593     return false;
    594   if (!LI.isSimple())
    595     return false;
    596 
    597   VectorLayout Layout;
    598   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
    599                        LI.getModule()->getDataLayout()))
    600     return false;
    601 
    602   unsigned NumElems = Layout.VecTy->getNumElements();
    603   IRBuilder<> Builder(&LI);
    604   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
    605   ValueVector Res;
    606   Res.resize(NumElems);
    607 
    608   for (unsigned I = 0; I < NumElems; ++I)
    609     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
    610                                        LI.getName() + ".i" + Twine(I));
    611   gather(&LI, Res);
    612   return true;
    613 }
    614 
    615 bool Scalarizer::visitStoreInst(StoreInst &SI) {
    616   if (!ScalarizeLoadStore)
    617     return false;
    618   if (!SI.isSimple())
    619     return false;
    620 
    621   VectorLayout Layout;
    622   Value *FullValue = SI.getValueOperand();
    623   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
    624                        SI.getModule()->getDataLayout()))
    625     return false;
    626 
    627   unsigned NumElems = Layout.VecTy->getNumElements();
    628   IRBuilder<> Builder(&SI);
    629   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
    630   Scatterer Val = scatter(&SI, FullValue);
    631 
    632   ValueVector Stores;
    633   Stores.resize(NumElems);
    634   for (unsigned I = 0; I < NumElems; ++I) {
    635     unsigned Align = Layout.getElemAlign(I);
    636     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
    637   }
    638   transferMetadata(&SI, Stores);
    639   return true;
    640 }
    641 
    642 // Delete the instructions that we scalarized.  If a full vector result
    643 // is still needed, recreate it using InsertElements.
    644 bool Scalarizer::finish() {
    645   // The presence of data in Gathered or Scattered indicates changes
    646   // made to the Function.
    647   if (Gathered.empty() && Scattered.empty())
    648     return false;
    649   for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
    650        GMI != GME; ++GMI) {
    651     Instruction *Op = GMI->first;
    652     ValueVector &CV = *GMI->second;
    653     if (!Op->use_empty()) {
    654       // The value is still needed, so recreate it using a series of
    655       // InsertElements.
    656       Type *Ty = Op->getType();
    657       Value *Res = UndefValue::get(Ty);
    658       BasicBlock *BB = Op->getParent();
    659       unsigned Count = Ty->getVectorNumElements();
    660       IRBuilder<> Builder(Op);
    661       if (isa<PHINode>(Op))
    662         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
    663       for (unsigned I = 0; I < Count; ++I)
    664         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
    665                                           Op->getName() + ".upto" + Twine(I));
    666       Res->takeName(Op);
    667       Op->replaceAllUsesWith(Res);
    668     }
    669     Op->eraseFromParent();
    670   }
    671   Gathered.clear();
    672   Scattered.clear();
    673   return true;
    674 }
    675 
    676 FunctionPass *llvm::createScalarizerPass() {
    677   return new Scalarizer();
    678 }
    679