Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/Scalar.h"
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/DenseSet.h"
     23 #include "llvm/ADT/PointerIntPair.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/GlobalsModRef.h"
     28 #include "llvm/Analysis/ConstantFolding.h"
     29 #include "llvm/Analysis/TargetLibraryInfo.h"
     30 #include "llvm/IR/CallSite.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/InstVisitor.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/Pass.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include "llvm/Transforms/IPO.h"
     41 #include "llvm/Transforms/Utils/Local.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "sccp"
     46 
     47 STATISTIC(NumInstRemoved, "Number of instructions removed");
     48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     49 
     50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     53 
     54 namespace {
     55 /// LatticeVal class - This class represents the different lattice values that
     56 /// an LLVM value may occupy.  It is a simple class with value semantics.
     57 ///
     58 class LatticeVal {
     59   enum LatticeValueTy {
     60     /// undefined - This LLVM Value has no known value yet.
     61     undefined,
     62 
     63     /// constant - This LLVM Value has a specific constant value.
     64     constant,
     65 
     66     /// forcedconstant - This LLVM Value was thought to be undef until
     67     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     68     /// with another (different) constant, it goes to overdefined, instead of
     69     /// asserting.
     70     forcedconstant,
     71 
     72     /// overdefined - This instruction is not known to be constant, and we know
     73     /// it has a value.
     74     overdefined
     75   };
     76 
     77   /// Val: This stores the current lattice value along with the Constant* for
     78   /// the constant if this is a 'constant' or 'forcedconstant' value.
     79   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     80 
     81   LatticeValueTy getLatticeValue() const {
     82     return Val.getInt();
     83   }
     84 
     85 public:
     86   LatticeVal() : Val(nullptr, undefined) {}
     87 
     88   bool isUndefined() const { return getLatticeValue() == undefined; }
     89   bool isConstant() const {
     90     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     91   }
     92   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     93 
     94   Constant *getConstant() const {
     95     assert(isConstant() && "Cannot get the constant of a non-constant!");
     96     return Val.getPointer();
     97   }
     98 
     99   /// markOverdefined - Return true if this is a change in status.
    100   bool markOverdefined() {
    101     if (isOverdefined())
    102       return false;
    103 
    104     Val.setInt(overdefined);
    105     return true;
    106   }
    107 
    108   /// markConstant - Return true if this is a change in status.
    109   bool markConstant(Constant *V) {
    110     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    111       assert(getConstant() == V && "Marking constant with different value");
    112       return false;
    113     }
    114 
    115     if (isUndefined()) {
    116       Val.setInt(constant);
    117       assert(V && "Marking constant with NULL");
    118       Val.setPointer(V);
    119     } else {
    120       assert(getLatticeValue() == forcedconstant &&
    121              "Cannot move from overdefined to constant!");
    122       // Stay at forcedconstant if the constant is the same.
    123       if (V == getConstant()) return false;
    124 
    125       // Otherwise, we go to overdefined.  Assumptions made based on the
    126       // forced value are possibly wrong.  Assuming this is another constant
    127       // could expose a contradiction.
    128       Val.setInt(overdefined);
    129     }
    130     return true;
    131   }
    132 
    133   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    134   /// otherwise return null.
    135   ConstantInt *getConstantInt() const {
    136     if (isConstant())
    137       return dyn_cast<ConstantInt>(getConstant());
    138     return nullptr;
    139   }
    140 
    141   void markForcedConstant(Constant *V) {
    142     assert(isUndefined() && "Can't force a defined value!");
    143     Val.setInt(forcedconstant);
    144     Val.setPointer(V);
    145   }
    146 };
    147 } // end anonymous namespace.
    148 
    149 
    150 namespace {
    151 
    152 //===----------------------------------------------------------------------===//
    153 //
    154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    155 /// Constant Propagation.
    156 ///
    157 class SCCPSolver : public InstVisitor<SCCPSolver> {
    158   const DataLayout &DL;
    159   const TargetLibraryInfo *TLI;
    160   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    161   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    162 
    163   /// StructValueState - This maintains ValueState for values that have
    164   /// StructType, for example for formal arguments, calls, insertelement, etc.
    165   ///
    166   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    167 
    168   /// GlobalValue - If we are tracking any values for the contents of a global
    169   /// variable, we keep a mapping from the constant accessor to the element of
    170   /// the global, to the currently known value.  If the value becomes
    171   /// overdefined, it's entry is simply removed from this map.
    172   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    173 
    174   /// TrackedRetVals - If we are tracking arguments into and the return
    175   /// value out of a function, it will have an entry in this map, indicating
    176   /// what the known return value for the function is.
    177   DenseMap<Function*, LatticeVal> TrackedRetVals;
    178 
    179   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    180   /// that return multiple values.
    181   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    182 
    183   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    184   /// represented here for efficient lookup.
    185   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    186 
    187   /// TrackingIncomingArguments - This is the set of functions for whose
    188   /// arguments we make optimistic assumptions about and try to prove as
    189   /// constants.
    190   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    191 
    192   /// The reason for two worklists is that overdefined is the lowest state
    193   /// on the lattice, and moving things to overdefined as fast as possible
    194   /// makes SCCP converge much faster.
    195   ///
    196   /// By having a separate worklist, we accomplish this because everything
    197   /// possibly overdefined will become overdefined at the soonest possible
    198   /// point.
    199   SmallVector<Value*, 64> OverdefinedInstWorkList;
    200   SmallVector<Value*, 64> InstWorkList;
    201 
    202 
    203   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    204 
    205   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    206   /// PHI nodes retriggered.
    207   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    208   DenseSet<Edge> KnownFeasibleEdges;
    209 public:
    210   SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
    211       : DL(DL), TLI(tli) {}
    212 
    213   /// MarkBlockExecutable - This method can be used by clients to mark all of
    214   /// the blocks that are known to be intrinsically live in the processed unit.
    215   ///
    216   /// This returns true if the block was not considered live before.
    217   bool MarkBlockExecutable(BasicBlock *BB) {
    218     if (!BBExecutable.insert(BB).second)
    219       return false;
    220     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    221     BBWorkList.push_back(BB);  // Add the block to the work list!
    222     return true;
    223   }
    224 
    225   /// TrackValueOfGlobalVariable - Clients can use this method to
    226   /// inform the SCCPSolver that it should track loads and stores to the
    227   /// specified global variable if it can.  This is only legal to call if
    228   /// performing Interprocedural SCCP.
    229   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    230     // We only track the contents of scalar globals.
    231     if (GV->getType()->getElementType()->isSingleValueType()) {
    232       LatticeVal &IV = TrackedGlobals[GV];
    233       if (!isa<UndefValue>(GV->getInitializer()))
    234         IV.markConstant(GV->getInitializer());
    235     }
    236   }
    237 
    238   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    239   /// and out of the specified function (which cannot have its address taken),
    240   /// this method must be called.
    241   void AddTrackedFunction(Function *F) {
    242     // Add an entry, F -> undef.
    243     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    244       MRVFunctionsTracked.insert(F);
    245       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    246         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    247                                                      LatticeVal()));
    248     } else
    249       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    250   }
    251 
    252   void AddArgumentTrackedFunction(Function *F) {
    253     TrackingIncomingArguments.insert(F);
    254   }
    255 
    256   /// Solve - Solve for constants and executable blocks.
    257   ///
    258   void Solve();
    259 
    260   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    261   /// that branches on undef values cannot reach any of their successors.
    262   /// However, this is not a safe assumption.  After we solve dataflow, this
    263   /// method should be use to handle this.  If this returns true, the solver
    264   /// should be rerun.
    265   bool ResolvedUndefsIn(Function &F);
    266 
    267   bool isBlockExecutable(BasicBlock *BB) const {
    268     return BBExecutable.count(BB);
    269   }
    270 
    271   LatticeVal getLatticeValueFor(Value *V) const {
    272     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    273     assert(I != ValueState.end() && "V is not in valuemap!");
    274     return I->second;
    275   }
    276 
    277   /// getTrackedRetVals - Get the inferred return value map.
    278   ///
    279   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    280     return TrackedRetVals;
    281   }
    282 
    283   /// getTrackedGlobals - Get and return the set of inferred initializers for
    284   /// global variables.
    285   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    286     return TrackedGlobals;
    287   }
    288 
    289   void markOverdefined(Value *V) {
    290     assert(!V->getType()->isStructTy() && "Should use other method");
    291     markOverdefined(ValueState[V], V);
    292   }
    293 
    294   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    295   /// works with both scalars and structs.
    296   void markAnythingOverdefined(Value *V) {
    297     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    298       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    299         markOverdefined(getStructValueState(V, i), V);
    300     else
    301       markOverdefined(V);
    302   }
    303 
    304 private:
    305   // markConstant - Make a value be marked as "constant".  If the value
    306   // is not already a constant, add it to the instruction work list so that
    307   // the users of the instruction are updated later.
    308   //
    309   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    310     if (!IV.markConstant(C)) return;
    311     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    312     if (IV.isOverdefined())
    313       OverdefinedInstWorkList.push_back(V);
    314     else
    315       InstWorkList.push_back(V);
    316   }
    317 
    318   void markConstant(Value *V, Constant *C) {
    319     assert(!V->getType()->isStructTy() && "Should use other method");
    320     markConstant(ValueState[V], V, C);
    321   }
    322 
    323   void markForcedConstant(Value *V, Constant *C) {
    324     assert(!V->getType()->isStructTy() && "Should use other method");
    325     LatticeVal &IV = ValueState[V];
    326     IV.markForcedConstant(C);
    327     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    328     if (IV.isOverdefined())
    329       OverdefinedInstWorkList.push_back(V);
    330     else
    331       InstWorkList.push_back(V);
    332   }
    333 
    334 
    335   // markOverdefined - Make a value be marked as "overdefined". If the
    336   // value is not already overdefined, add it to the overdefined instruction
    337   // work list so that the users of the instruction are updated later.
    338   void markOverdefined(LatticeVal &IV, Value *V) {
    339     if (!IV.markOverdefined()) return;
    340 
    341     DEBUG(dbgs() << "markOverdefined: ";
    342           if (Function *F = dyn_cast<Function>(V))
    343             dbgs() << "Function '" << F->getName() << "'\n";
    344           else
    345             dbgs() << *V << '\n');
    346     // Only instructions go on the work list
    347     OverdefinedInstWorkList.push_back(V);
    348   }
    349 
    350   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    351     if (IV.isOverdefined() || MergeWithV.isUndefined())
    352       return;  // Noop.
    353     if (MergeWithV.isOverdefined())
    354       markOverdefined(IV, V);
    355     else if (IV.isUndefined())
    356       markConstant(IV, V, MergeWithV.getConstant());
    357     else if (IV.getConstant() != MergeWithV.getConstant())
    358       markOverdefined(IV, V);
    359   }
    360 
    361   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    362     assert(!V->getType()->isStructTy() && "Should use other method");
    363     mergeInValue(ValueState[V], V, MergeWithV);
    364   }
    365 
    366 
    367   /// getValueState - Return the LatticeVal object that corresponds to the
    368   /// value.  This function handles the case when the value hasn't been seen yet
    369   /// by properly seeding constants etc.
    370   LatticeVal &getValueState(Value *V) {
    371     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    372 
    373     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    374       ValueState.insert(std::make_pair(V, LatticeVal()));
    375     LatticeVal &LV = I.first->second;
    376 
    377     if (!I.second)
    378       return LV;  // Common case, already in the map.
    379 
    380     if (Constant *C = dyn_cast<Constant>(V)) {
    381       // Undef values remain undefined.
    382       if (!isa<UndefValue>(V))
    383         LV.markConstant(C);          // Constants are constant
    384     }
    385 
    386     // All others are underdefined by default.
    387     return LV;
    388   }
    389 
    390   /// getStructValueState - Return the LatticeVal object that corresponds to the
    391   /// value/field pair.  This function handles the case when the value hasn't
    392   /// been seen yet by properly seeding constants etc.
    393   LatticeVal &getStructValueState(Value *V, unsigned i) {
    394     assert(V->getType()->isStructTy() && "Should use getValueState");
    395     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    396            "Invalid element #");
    397 
    398     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    399               bool> I = StructValueState.insert(
    400                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    401     LatticeVal &LV = I.first->second;
    402 
    403     if (!I.second)
    404       return LV;  // Common case, already in the map.
    405 
    406     if (Constant *C = dyn_cast<Constant>(V)) {
    407       Constant *Elt = C->getAggregateElement(i);
    408 
    409       if (!Elt)
    410         LV.markOverdefined();      // Unknown sort of constant.
    411       else if (isa<UndefValue>(Elt))
    412         ; // Undef values remain undefined.
    413       else
    414         LV.markConstant(Elt);      // Constants are constant.
    415     }
    416 
    417     // All others are underdefined by default.
    418     return LV;
    419   }
    420 
    421 
    422   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    423   /// work list if it is not already executable.
    424   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    425     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    426       return;  // This edge is already known to be executable!
    427 
    428     if (!MarkBlockExecutable(Dest)) {
    429       // If the destination is already executable, we just made an *edge*
    430       // feasible that wasn't before.  Revisit the PHI nodes in the block
    431       // because they have potentially new operands.
    432       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    433             << " -> " << Dest->getName() << '\n');
    434 
    435       PHINode *PN;
    436       for (BasicBlock::iterator I = Dest->begin();
    437            (PN = dyn_cast<PHINode>(I)); ++I)
    438         visitPHINode(*PN);
    439     }
    440   }
    441 
    442   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    443   // successors are reachable from a given terminator instruction.
    444   //
    445   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
    446 
    447   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    448   // block to the 'To' basic block is currently feasible.
    449   //
    450   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    451 
    452   // OperandChangedState - This method is invoked on all of the users of an
    453   // instruction that was just changed state somehow.  Based on this
    454   // information, we need to update the specified user of this instruction.
    455   //
    456   void OperandChangedState(Instruction *I) {
    457     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    458       visit(*I);
    459   }
    460 
    461 private:
    462   friend class InstVisitor<SCCPSolver>;
    463 
    464   // visit implementations - Something changed in this instruction.  Either an
    465   // operand made a transition, or the instruction is newly executable.  Change
    466   // the value type of I to reflect these changes if appropriate.
    467   void visitPHINode(PHINode &I);
    468 
    469   // Terminators
    470   void visitReturnInst(ReturnInst &I);
    471   void visitTerminatorInst(TerminatorInst &TI);
    472 
    473   void visitCastInst(CastInst &I);
    474   void visitSelectInst(SelectInst &I);
    475   void visitBinaryOperator(Instruction &I);
    476   void visitCmpInst(CmpInst &I);
    477   void visitExtractElementInst(ExtractElementInst &I);
    478   void visitInsertElementInst(InsertElementInst &I);
    479   void visitShuffleVectorInst(ShuffleVectorInst &I);
    480   void visitExtractValueInst(ExtractValueInst &EVI);
    481   void visitInsertValueInst(InsertValueInst &IVI);
    482   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    483   void visitFuncletPadInst(FuncletPadInst &FPI) {
    484     markAnythingOverdefined(&FPI);
    485   }
    486   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
    487     markAnythingOverdefined(&CPI);
    488     visitTerminatorInst(CPI);
    489   }
    490 
    491   // Instructions that cannot be folded away.
    492   void visitStoreInst     (StoreInst &I);
    493   void visitLoadInst      (LoadInst &I);
    494   void visitGetElementPtrInst(GetElementPtrInst &I);
    495   void visitCallInst      (CallInst &I) {
    496     visitCallSite(&I);
    497   }
    498   void visitInvokeInst    (InvokeInst &II) {
    499     visitCallSite(&II);
    500     visitTerminatorInst(II);
    501   }
    502   void visitCallSite      (CallSite CS);
    503   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    504   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    505   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    506   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
    507     markAnythingOverdefined(&I);
    508   }
    509   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    510   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    511   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    512 
    513   void visitInstruction(Instruction &I) {
    514     // If a new instruction is added to LLVM that we don't handle.
    515     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
    516     markAnythingOverdefined(&I);   // Just in case
    517   }
    518 };
    519 
    520 } // end anonymous namespace
    521 
    522 
    523 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    524 // successors are reachable from a given terminator instruction.
    525 //
    526 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    527                                        SmallVectorImpl<bool> &Succs) {
    528   Succs.resize(TI.getNumSuccessors());
    529   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    530     if (BI->isUnconditional()) {
    531       Succs[0] = true;
    532       return;
    533     }
    534 
    535     LatticeVal BCValue = getValueState(BI->getCondition());
    536     ConstantInt *CI = BCValue.getConstantInt();
    537     if (!CI) {
    538       // Overdefined condition variables, and branches on unfoldable constant
    539       // conditions, mean the branch could go either way.
    540       if (!BCValue.isUndefined())
    541         Succs[0] = Succs[1] = true;
    542       return;
    543     }
    544 
    545     // Constant condition variables mean the branch can only go a single way.
    546     Succs[CI->isZero()] = true;
    547     return;
    548   }
    549 
    550   // Unwinding instructions successors are always executable.
    551   if (TI.isExceptional()) {
    552     Succs.assign(TI.getNumSuccessors(), true);
    553     return;
    554   }
    555 
    556   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    557     if (!SI->getNumCases()) {
    558       Succs[0] = true;
    559       return;
    560     }
    561     LatticeVal SCValue = getValueState(SI->getCondition());
    562     ConstantInt *CI = SCValue.getConstantInt();
    563 
    564     if (!CI) {   // Overdefined or undefined condition?
    565       // All destinations are executable!
    566       if (!SCValue.isUndefined())
    567         Succs.assign(TI.getNumSuccessors(), true);
    568       return;
    569     }
    570 
    571     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
    572     return;
    573   }
    574 
    575   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    576   if (isa<IndirectBrInst>(&TI)) {
    577     // Just mark all destinations executable!
    578     Succs.assign(TI.getNumSuccessors(), true);
    579     return;
    580   }
    581 
    582 #ifndef NDEBUG
    583   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    584 #endif
    585   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    586 }
    587 
    588 
    589 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    590 // block to the 'To' basic block is currently feasible.
    591 //
    592 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    593   assert(BBExecutable.count(To) && "Dest should always be alive!");
    594 
    595   // Make sure the source basic block is executable!!
    596   if (!BBExecutable.count(From)) return false;
    597 
    598   // Check to make sure this edge itself is actually feasible now.
    599   TerminatorInst *TI = From->getTerminator();
    600   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    601     if (BI->isUnconditional())
    602       return true;
    603 
    604     LatticeVal BCValue = getValueState(BI->getCondition());
    605 
    606     // Overdefined condition variables mean the branch could go either way,
    607     // undef conditions mean that neither edge is feasible yet.
    608     ConstantInt *CI = BCValue.getConstantInt();
    609     if (!CI)
    610       return !BCValue.isUndefined();
    611 
    612     // Constant condition variables mean the branch can only go a single way.
    613     return BI->getSuccessor(CI->isZero()) == To;
    614   }
    615 
    616   // Unwinding instructions successors are always executable.
    617   if (TI->isExceptional())
    618     return true;
    619 
    620   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    621     if (SI->getNumCases() < 1)
    622       return true;
    623 
    624     LatticeVal SCValue = getValueState(SI->getCondition());
    625     ConstantInt *CI = SCValue.getConstantInt();
    626 
    627     if (!CI)
    628       return !SCValue.isUndefined();
    629 
    630     return SI->findCaseValue(CI).getCaseSuccessor() == To;
    631   }
    632 
    633   // Just mark all destinations executable!
    634   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    635   if (isa<IndirectBrInst>(TI))
    636     return true;
    637 
    638 #ifndef NDEBUG
    639   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    640 #endif
    641   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    642 }
    643 
    644 // visit Implementations - Something changed in this instruction, either an
    645 // operand made a transition, or the instruction is newly executable.  Change
    646 // the value type of I to reflect these changes if appropriate.  This method
    647 // makes sure to do the following actions:
    648 //
    649 // 1. If a phi node merges two constants in, and has conflicting value coming
    650 //    from different branches, or if the PHI node merges in an overdefined
    651 //    value, then the PHI node becomes overdefined.
    652 // 2. If a phi node merges only constants in, and they all agree on value, the
    653 //    PHI node becomes a constant value equal to that.
    654 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    655 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    656 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    657 // 6. If a conditional branch has a value that is constant, make the selected
    658 //    destination executable
    659 // 7. If a conditional branch has a value that is overdefined, make all
    660 //    successors executable.
    661 //
    662 void SCCPSolver::visitPHINode(PHINode &PN) {
    663   // If this PN returns a struct, just mark the result overdefined.
    664   // TODO: We could do a lot better than this if code actually uses this.
    665   if (PN.getType()->isStructTy())
    666     return markAnythingOverdefined(&PN);
    667 
    668   if (getValueState(&PN).isOverdefined())
    669     return;  // Quick exit
    670 
    671   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    672   // and slow us down a lot.  Just mark them overdefined.
    673   if (PN.getNumIncomingValues() > 64)
    674     return markOverdefined(&PN);
    675 
    676   // Look at all of the executable operands of the PHI node.  If any of them
    677   // are overdefined, the PHI becomes overdefined as well.  If they are all
    678   // constant, and they agree with each other, the PHI becomes the identical
    679   // constant.  If they are constant and don't agree, the PHI is overdefined.
    680   // If there are no executable operands, the PHI remains undefined.
    681   //
    682   Constant *OperandVal = nullptr;
    683   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    684     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    685     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    686 
    687     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    688       continue;
    689 
    690     if (IV.isOverdefined())    // PHI node becomes overdefined!
    691       return markOverdefined(&PN);
    692 
    693     if (!OperandVal) {   // Grab the first value.
    694       OperandVal = IV.getConstant();
    695       continue;
    696     }
    697 
    698     // There is already a reachable operand.  If we conflict with it,
    699     // then the PHI node becomes overdefined.  If we agree with it, we
    700     // can continue on.
    701 
    702     // Check to see if there are two different constants merging, if so, the PHI
    703     // node is overdefined.
    704     if (IV.getConstant() != OperandVal)
    705       return markOverdefined(&PN);
    706   }
    707 
    708   // If we exited the loop, this means that the PHI node only has constant
    709   // arguments that agree with each other(and OperandVal is the constant) or
    710   // OperandVal is null because there are no defined incoming arguments.  If
    711   // this is the case, the PHI remains undefined.
    712   //
    713   if (OperandVal)
    714     markConstant(&PN, OperandVal);      // Acquire operand value
    715 }
    716 
    717 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    718   if (I.getNumOperands() == 0) return;  // ret void
    719 
    720   Function *F = I.getParent()->getParent();
    721   Value *ResultOp = I.getOperand(0);
    722 
    723   // If we are tracking the return value of this function, merge it in.
    724   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    725     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    726       TrackedRetVals.find(F);
    727     if (TFRVI != TrackedRetVals.end()) {
    728       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    729       return;
    730     }
    731   }
    732 
    733   // Handle functions that return multiple values.
    734   if (!TrackedMultipleRetVals.empty()) {
    735     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    736       if (MRVFunctionsTracked.count(F))
    737         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    738           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    739                        getStructValueState(ResultOp, i));
    740 
    741   }
    742 }
    743 
    744 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    745   SmallVector<bool, 16> SuccFeasible;
    746   getFeasibleSuccessors(TI, SuccFeasible);
    747 
    748   BasicBlock *BB = TI.getParent();
    749 
    750   // Mark all feasible successors executable.
    751   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    752     if (SuccFeasible[i])
    753       markEdgeExecutable(BB, TI.getSuccessor(i));
    754 }
    755 
    756 void SCCPSolver::visitCastInst(CastInst &I) {
    757   LatticeVal OpSt = getValueState(I.getOperand(0));
    758   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    759     markOverdefined(&I);
    760   else if (OpSt.isConstant())        // Propagate constant value
    761     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    762                                            OpSt.getConstant(), I.getType()));
    763 }
    764 
    765 
    766 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    767   // If this returns a struct, mark all elements over defined, we don't track
    768   // structs in structs.
    769   if (EVI.getType()->isStructTy())
    770     return markAnythingOverdefined(&EVI);
    771 
    772   // If this is extracting from more than one level of struct, we don't know.
    773   if (EVI.getNumIndices() != 1)
    774     return markOverdefined(&EVI);
    775 
    776   Value *AggVal = EVI.getAggregateOperand();
    777   if (AggVal->getType()->isStructTy()) {
    778     unsigned i = *EVI.idx_begin();
    779     LatticeVal EltVal = getStructValueState(AggVal, i);
    780     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    781   } else {
    782     // Otherwise, must be extracting from an array.
    783     return markOverdefined(&EVI);
    784   }
    785 }
    786 
    787 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    788   StructType *STy = dyn_cast<StructType>(IVI.getType());
    789   if (!STy)
    790     return markOverdefined(&IVI);
    791 
    792   // If this has more than one index, we can't handle it, drive all results to
    793   // undef.
    794   if (IVI.getNumIndices() != 1)
    795     return markAnythingOverdefined(&IVI);
    796 
    797   Value *Aggr = IVI.getAggregateOperand();
    798   unsigned Idx = *IVI.idx_begin();
    799 
    800   // Compute the result based on what we're inserting.
    801   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    802     // This passes through all values that aren't the inserted element.
    803     if (i != Idx) {
    804       LatticeVal EltVal = getStructValueState(Aggr, i);
    805       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    806       continue;
    807     }
    808 
    809     Value *Val = IVI.getInsertedValueOperand();
    810     if (Val->getType()->isStructTy())
    811       // We don't track structs in structs.
    812       markOverdefined(getStructValueState(&IVI, i), &IVI);
    813     else {
    814       LatticeVal InVal = getValueState(Val);
    815       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    816     }
    817   }
    818 }
    819 
    820 void SCCPSolver::visitSelectInst(SelectInst &I) {
    821   // If this select returns a struct, just mark the result overdefined.
    822   // TODO: We could do a lot better than this if code actually uses this.
    823   if (I.getType()->isStructTy())
    824     return markAnythingOverdefined(&I);
    825 
    826   LatticeVal CondValue = getValueState(I.getCondition());
    827   if (CondValue.isUndefined())
    828     return;
    829 
    830   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    831     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    832     mergeInValue(&I, getValueState(OpVal));
    833     return;
    834   }
    835 
    836   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    837   // See if we can produce something better than overdefined based on the T/F
    838   // value.
    839   LatticeVal TVal = getValueState(I.getTrueValue());
    840   LatticeVal FVal = getValueState(I.getFalseValue());
    841 
    842   // select ?, C, C -> C.
    843   if (TVal.isConstant() && FVal.isConstant() &&
    844       TVal.getConstant() == FVal.getConstant())
    845     return markConstant(&I, FVal.getConstant());
    846 
    847   if (TVal.isUndefined())   // select ?, undef, X -> X.
    848     return mergeInValue(&I, FVal);
    849   if (FVal.isUndefined())   // select ?, X, undef -> X.
    850     return mergeInValue(&I, TVal);
    851   markOverdefined(&I);
    852 }
    853 
    854 // Handle Binary Operators.
    855 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    856   LatticeVal V1State = getValueState(I.getOperand(0));
    857   LatticeVal V2State = getValueState(I.getOperand(1));
    858 
    859   LatticeVal &IV = ValueState[&I];
    860   if (IV.isOverdefined()) return;
    861 
    862   if (V1State.isConstant() && V2State.isConstant())
    863     return markConstant(IV, &I,
    864                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    865                                           V2State.getConstant()));
    866 
    867   // If something is undef, wait for it to resolve.
    868   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    869     return;
    870 
    871   // Otherwise, one of our operands is overdefined.  Try to produce something
    872   // better than overdefined with some tricks.
    873 
    874   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    875   // operand is overdefined.
    876   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    877     LatticeVal *NonOverdefVal = nullptr;
    878     if (!V1State.isOverdefined())
    879       NonOverdefVal = &V1State;
    880     else if (!V2State.isOverdefined())
    881       NonOverdefVal = &V2State;
    882 
    883     if (NonOverdefVal) {
    884       if (NonOverdefVal->isUndefined()) {
    885         // Could annihilate value.
    886         if (I.getOpcode() == Instruction::And)
    887           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    888         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    889           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    890         else
    891           markConstant(IV, &I,
    892                        Constant::getAllOnesValue(I.getType()));
    893         return;
    894       }
    895 
    896       if (I.getOpcode() == Instruction::And) {
    897         // X and 0 = 0
    898         if (NonOverdefVal->getConstant()->isNullValue())
    899           return markConstant(IV, &I, NonOverdefVal->getConstant());
    900       } else {
    901         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    902           if (CI->isAllOnesValue())     // X or -1 = -1
    903             return markConstant(IV, &I, NonOverdefVal->getConstant());
    904       }
    905     }
    906   }
    907 
    908 
    909   markOverdefined(&I);
    910 }
    911 
    912 // Handle ICmpInst instruction.
    913 void SCCPSolver::visitCmpInst(CmpInst &I) {
    914   LatticeVal V1State = getValueState(I.getOperand(0));
    915   LatticeVal V2State = getValueState(I.getOperand(1));
    916 
    917   LatticeVal &IV = ValueState[&I];
    918   if (IV.isOverdefined()) return;
    919 
    920   if (V1State.isConstant() && V2State.isConstant())
    921     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
    922                                                          V1State.getConstant(),
    923                                                         V2State.getConstant()));
    924 
    925   // If operands are still undefined, wait for it to resolve.
    926   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    927     return;
    928 
    929   markOverdefined(&I);
    930 }
    931 
    932 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
    933   // TODO : SCCP does not handle vectors properly.
    934   return markOverdefined(&I);
    935 
    936 #if 0
    937   LatticeVal &ValState = getValueState(I.getOperand(0));
    938   LatticeVal &IdxState = getValueState(I.getOperand(1));
    939 
    940   if (ValState.isOverdefined() || IdxState.isOverdefined())
    941     markOverdefined(&I);
    942   else if(ValState.isConstant() && IdxState.isConstant())
    943     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
    944                                                      IdxState.getConstant()));
    945 #endif
    946 }
    947 
    948 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
    949   // TODO : SCCP does not handle vectors properly.
    950   return markOverdefined(&I);
    951 #if 0
    952   LatticeVal &ValState = getValueState(I.getOperand(0));
    953   LatticeVal &EltState = getValueState(I.getOperand(1));
    954   LatticeVal &IdxState = getValueState(I.getOperand(2));
    955 
    956   if (ValState.isOverdefined() || EltState.isOverdefined() ||
    957       IdxState.isOverdefined())
    958     markOverdefined(&I);
    959   else if(ValState.isConstant() && EltState.isConstant() &&
    960           IdxState.isConstant())
    961     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
    962                                                     EltState.getConstant(),
    963                                                     IdxState.getConstant()));
    964   else if (ValState.isUndefined() && EltState.isConstant() &&
    965            IdxState.isConstant())
    966     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
    967                                                    EltState.getConstant(),
    968                                                    IdxState.getConstant()));
    969 #endif
    970 }
    971 
    972 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
    973   // TODO : SCCP does not handle vectors properly.
    974   return markOverdefined(&I);
    975 #if 0
    976   LatticeVal &V1State   = getValueState(I.getOperand(0));
    977   LatticeVal &V2State   = getValueState(I.getOperand(1));
    978   LatticeVal &MaskState = getValueState(I.getOperand(2));
    979 
    980   if (MaskState.isUndefined() ||
    981       (V1State.isUndefined() && V2State.isUndefined()))
    982     return;  // Undefined output if mask or both inputs undefined.
    983 
    984   if (V1State.isOverdefined() || V2State.isOverdefined() ||
    985       MaskState.isOverdefined()) {
    986     markOverdefined(&I);
    987   } else {
    988     // A mix of constant/undef inputs.
    989     Constant *V1 = V1State.isConstant() ?
    990         V1State.getConstant() : UndefValue::get(I.getType());
    991     Constant *V2 = V2State.isConstant() ?
    992         V2State.getConstant() : UndefValue::get(I.getType());
    993     Constant *Mask = MaskState.isConstant() ?
    994       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
    995     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
    996   }
    997 #endif
    998 }
    999 
   1000 // Handle getelementptr instructions.  If all operands are constants then we
   1001 // can turn this into a getelementptr ConstantExpr.
   1002 //
   1003 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
   1004   if (ValueState[&I].isOverdefined()) return;
   1005 
   1006   SmallVector<Constant*, 8> Operands;
   1007   Operands.reserve(I.getNumOperands());
   1008 
   1009   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1010     LatticeVal State = getValueState(I.getOperand(i));
   1011     if (State.isUndefined())
   1012       return;  // Operands are not resolved yet.
   1013 
   1014     if (State.isOverdefined())
   1015       return markOverdefined(&I);
   1016 
   1017     assert(State.isConstant() && "Unknown state!");
   1018     Operands.push_back(State.getConstant());
   1019   }
   1020 
   1021   Constant *Ptr = Operands[0];
   1022   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
   1023   markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
   1024                                                   Indices));
   1025 }
   1026 
   1027 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1028   // If this store is of a struct, ignore it.
   1029   if (SI.getOperand(0)->getType()->isStructTy())
   1030     return;
   1031 
   1032   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1033     return;
   1034 
   1035   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1036   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1037   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1038 
   1039   // Get the value we are storing into the global, then merge it.
   1040   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1041   if (I->second.isOverdefined())
   1042     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1043 }
   1044 
   1045 
   1046 // Handle load instructions.  If the operand is a constant pointer to a constant
   1047 // global, we can replace the load with the loaded constant value!
   1048 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1049   // If this load is of a struct, just mark the result overdefined.
   1050   if (I.getType()->isStructTy())
   1051     return markAnythingOverdefined(&I);
   1052 
   1053   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1054   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1055 
   1056   LatticeVal &IV = ValueState[&I];
   1057   if (IV.isOverdefined()) return;
   1058 
   1059   if (!PtrVal.isConstant() || I.isVolatile())
   1060     return markOverdefined(IV, &I);
   1061 
   1062   Constant *Ptr = PtrVal.getConstant();
   1063 
   1064   // load null -> null
   1065   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1066     return markConstant(IV, &I, UndefValue::get(I.getType()));
   1067 
   1068   // Transform load (constant global) into the value loaded.
   1069   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1070     if (!TrackedGlobals.empty()) {
   1071       // If we are tracking this global, merge in the known value for it.
   1072       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1073         TrackedGlobals.find(GV);
   1074       if (It != TrackedGlobals.end()) {
   1075         mergeInValue(IV, &I, It->second);
   1076         return;
   1077       }
   1078     }
   1079   }
   1080 
   1081   // Transform load from a constant into a constant if possible.
   1082   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
   1083     return markConstant(IV, &I, C);
   1084 
   1085   // Otherwise we cannot say for certain what value this load will produce.
   1086   // Bail out.
   1087   markOverdefined(IV, &I);
   1088 }
   1089 
   1090 void SCCPSolver::visitCallSite(CallSite CS) {
   1091   Function *F = CS.getCalledFunction();
   1092   Instruction *I = CS.getInstruction();
   1093 
   1094   // The common case is that we aren't tracking the callee, either because we
   1095   // are not doing interprocedural analysis or the callee is indirect, or is
   1096   // external.  Handle these cases first.
   1097   if (!F || F->isDeclaration()) {
   1098 CallOverdefined:
   1099     // Void return and not tracking callee, just bail.
   1100     if (I->getType()->isVoidTy()) return;
   1101 
   1102     // Otherwise, if we have a single return value case, and if the function is
   1103     // a declaration, maybe we can constant fold it.
   1104     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1105         canConstantFoldCallTo(F)) {
   1106 
   1107       SmallVector<Constant*, 8> Operands;
   1108       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1109            AI != E; ++AI) {
   1110         LatticeVal State = getValueState(*AI);
   1111 
   1112         if (State.isUndefined())
   1113           return;  // Operands are not resolved yet.
   1114         if (State.isOverdefined())
   1115           return markOverdefined(I);
   1116         assert(State.isConstant() && "Unknown state!");
   1117         Operands.push_back(State.getConstant());
   1118       }
   1119 
   1120       if (getValueState(I).isOverdefined())
   1121         return;
   1122 
   1123       // If we can constant fold this, mark the result of the call as a
   1124       // constant.
   1125       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
   1126         return markConstant(I, C);
   1127     }
   1128 
   1129     // Otherwise, we don't know anything about this call, mark it overdefined.
   1130     return markAnythingOverdefined(I);
   1131   }
   1132 
   1133   // If this is a local function that doesn't have its address taken, mark its
   1134   // entry block executable and merge in the actual arguments to the call into
   1135   // the formal arguments of the function.
   1136   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1137     MarkBlockExecutable(&F->front());
   1138 
   1139     // Propagate information from this call site into the callee.
   1140     CallSite::arg_iterator CAI = CS.arg_begin();
   1141     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1142          AI != E; ++AI, ++CAI) {
   1143       // If this argument is byval, and if the function is not readonly, there
   1144       // will be an implicit copy formed of the input aggregate.
   1145       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1146         markOverdefined(&*AI);
   1147         continue;
   1148       }
   1149 
   1150       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1151         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1152           LatticeVal CallArg = getStructValueState(*CAI, i);
   1153           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
   1154         }
   1155       } else {
   1156         mergeInValue(&*AI, getValueState(*CAI));
   1157       }
   1158     }
   1159   }
   1160 
   1161   // If this is a single/zero retval case, see if we're tracking the function.
   1162   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1163     if (!MRVFunctionsTracked.count(F))
   1164       goto CallOverdefined;  // Not tracking this callee.
   1165 
   1166     // If we are tracking this callee, propagate the result of the function
   1167     // into this call site.
   1168     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1169       mergeInValue(getStructValueState(I, i), I,
   1170                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1171   } else {
   1172     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1173     if (TFRVI == TrackedRetVals.end())
   1174       goto CallOverdefined;  // Not tracking this callee.
   1175 
   1176     // If so, propagate the return value of the callee into this call result.
   1177     mergeInValue(I, TFRVI->second);
   1178   }
   1179 }
   1180 
   1181 void SCCPSolver::Solve() {
   1182   // Process the work lists until they are empty!
   1183   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1184          !OverdefinedInstWorkList.empty()) {
   1185     // Process the overdefined instruction's work list first, which drives other
   1186     // things to overdefined more quickly.
   1187     while (!OverdefinedInstWorkList.empty()) {
   1188       Value *I = OverdefinedInstWorkList.pop_back_val();
   1189 
   1190       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1191 
   1192       // "I" got into the work list because it either made the transition from
   1193       // bottom to constant, or to overdefined.
   1194       //
   1195       // Anything on this worklist that is overdefined need not be visited
   1196       // since all of its users will have already been marked as overdefined
   1197       // Update all of the users of this instruction's value.
   1198       //
   1199       for (User *U : I->users())
   1200         if (Instruction *UI = dyn_cast<Instruction>(U))
   1201           OperandChangedState(UI);
   1202     }
   1203 
   1204     // Process the instruction work list.
   1205     while (!InstWorkList.empty()) {
   1206       Value *I = InstWorkList.pop_back_val();
   1207 
   1208       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1209 
   1210       // "I" got into the work list because it made the transition from undef to
   1211       // constant.
   1212       //
   1213       // Anything on this worklist that is overdefined need not be visited
   1214       // since all of its users will have already been marked as overdefined.
   1215       // Update all of the users of this instruction's value.
   1216       //
   1217       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1218         for (User *U : I->users())
   1219           if (Instruction *UI = dyn_cast<Instruction>(U))
   1220             OperandChangedState(UI);
   1221     }
   1222 
   1223     // Process the basic block work list.
   1224     while (!BBWorkList.empty()) {
   1225       BasicBlock *BB = BBWorkList.back();
   1226       BBWorkList.pop_back();
   1227 
   1228       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1229 
   1230       // Notify all instructions in this basic block that they are newly
   1231       // executable.
   1232       visit(BB);
   1233     }
   1234   }
   1235 }
   1236 
   1237 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1238 /// that branches on undef values cannot reach any of their successors.
   1239 /// However, this is not a safe assumption.  After we solve dataflow, this
   1240 /// method should be use to handle this.  If this returns true, the solver
   1241 /// should be rerun.
   1242 ///
   1243 /// This method handles this by finding an unresolved branch and marking it one
   1244 /// of the edges from the block as being feasible, even though the condition
   1245 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1246 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1247 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1248 /// constraints on the condition of the branch, as that would impact other users
   1249 /// of the value.
   1250 ///
   1251 /// This scan also checks for values that use undefs, whose results are actually
   1252 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1253 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1254 /// even if X isn't defined.
   1255 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1256   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1257     if (!BBExecutable.count(&*BB))
   1258       continue;
   1259 
   1260     for (Instruction &I : *BB) {
   1261       // Look for instructions which produce undef values.
   1262       if (I.getType()->isVoidTy()) continue;
   1263 
   1264       if (StructType *STy = dyn_cast<StructType>(I.getType())) {
   1265         // Only a few things that can be structs matter for undef.
   1266 
   1267         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1268         if (CallSite CS = CallSite(&I))
   1269           if (Function *F = CS.getCalledFunction())
   1270             if (MRVFunctionsTracked.count(F))
   1271               continue;
   1272 
   1273         // extractvalue and insertvalue don't need to be marked; they are
   1274         // tracked as precisely as their operands.
   1275         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1276           continue;
   1277 
   1278         // Send the results of everything else to overdefined.  We could be
   1279         // more precise than this but it isn't worth bothering.
   1280         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1281           LatticeVal &LV = getStructValueState(&I, i);
   1282           if (LV.isUndefined())
   1283             markOverdefined(LV, &I);
   1284         }
   1285         continue;
   1286       }
   1287 
   1288       LatticeVal &LV = getValueState(&I);
   1289       if (!LV.isUndefined()) continue;
   1290 
   1291       // extractvalue is safe; check here because the argument is a struct.
   1292       if (isa<ExtractValueInst>(I))
   1293         continue;
   1294 
   1295       // Compute the operand LatticeVals, for convenience below.
   1296       // Anything taking a struct is conservatively assumed to require
   1297       // overdefined markings.
   1298       if (I.getOperand(0)->getType()->isStructTy()) {
   1299         markOverdefined(&I);
   1300         return true;
   1301       }
   1302       LatticeVal Op0LV = getValueState(I.getOperand(0));
   1303       LatticeVal Op1LV;
   1304       if (I.getNumOperands() == 2) {
   1305         if (I.getOperand(1)->getType()->isStructTy()) {
   1306           markOverdefined(&I);
   1307           return true;
   1308         }
   1309 
   1310         Op1LV = getValueState(I.getOperand(1));
   1311       }
   1312       // If this is an instructions whose result is defined even if the input is
   1313       // not fully defined, propagate the information.
   1314       Type *ITy = I.getType();
   1315       switch (I.getOpcode()) {
   1316       case Instruction::Add:
   1317       case Instruction::Sub:
   1318       case Instruction::Trunc:
   1319       case Instruction::FPTrunc:
   1320       case Instruction::BitCast:
   1321         break; // Any undef -> undef
   1322       case Instruction::FSub:
   1323       case Instruction::FAdd:
   1324       case Instruction::FMul:
   1325       case Instruction::FDiv:
   1326       case Instruction::FRem:
   1327         // Floating-point binary operation: be conservative.
   1328         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1329           markForcedConstant(&I, Constant::getNullValue(ITy));
   1330         else
   1331           markOverdefined(&I);
   1332         return true;
   1333       case Instruction::ZExt:
   1334       case Instruction::SExt:
   1335       case Instruction::FPToUI:
   1336       case Instruction::FPToSI:
   1337       case Instruction::FPExt:
   1338       case Instruction::PtrToInt:
   1339       case Instruction::IntToPtr:
   1340       case Instruction::SIToFP:
   1341       case Instruction::UIToFP:
   1342         // undef -> 0; some outputs are impossible
   1343         markForcedConstant(&I, Constant::getNullValue(ITy));
   1344         return true;
   1345       case Instruction::Mul:
   1346       case Instruction::And:
   1347         // Both operands undef -> undef
   1348         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1349           break;
   1350         // undef * X -> 0.   X could be zero.
   1351         // undef & X -> 0.   X could be zero.
   1352         markForcedConstant(&I, Constant::getNullValue(ITy));
   1353         return true;
   1354 
   1355       case Instruction::Or:
   1356         // Both operands undef -> undef
   1357         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1358           break;
   1359         // undef | X -> -1.   X could be -1.
   1360         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
   1361         return true;
   1362 
   1363       case Instruction::Xor:
   1364         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1365         // necessary, but we try to be nice to people who expect this
   1366         // behavior in simple cases
   1367         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
   1368           markForcedConstant(&I, Constant::getNullValue(ITy));
   1369           return true;
   1370         }
   1371         // undef ^ X -> undef
   1372         break;
   1373 
   1374       case Instruction::SDiv:
   1375       case Instruction::UDiv:
   1376       case Instruction::SRem:
   1377       case Instruction::URem:
   1378         // X / undef -> undef.  No change.
   1379         // X % undef -> undef.  No change.
   1380         if (Op1LV.isUndefined()) break;
   1381 
   1382         // undef / X -> 0.   X could be maxint.
   1383         // undef % X -> 0.   X could be 1.
   1384         markForcedConstant(&I, Constant::getNullValue(ITy));
   1385         return true;
   1386 
   1387       case Instruction::AShr:
   1388         // X >>a undef -> undef.
   1389         if (Op1LV.isUndefined()) break;
   1390 
   1391         // undef >>a X -> all ones
   1392         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
   1393         return true;
   1394       case Instruction::LShr:
   1395       case Instruction::Shl:
   1396         // X << undef -> undef.
   1397         // X >> undef -> undef.
   1398         if (Op1LV.isUndefined()) break;
   1399 
   1400         // undef << X -> 0
   1401         // undef >> X -> 0
   1402         markForcedConstant(&I, Constant::getNullValue(ITy));
   1403         return true;
   1404       case Instruction::Select:
   1405         Op1LV = getValueState(I.getOperand(1));
   1406         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1407         if (Op0LV.isUndefined()) {
   1408           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1409             Op1LV = getValueState(I.getOperand(2));
   1410         } else if (Op1LV.isUndefined()) {
   1411           // c ? undef : undef -> undef.  No change.
   1412           Op1LV = getValueState(I.getOperand(2));
   1413           if (Op1LV.isUndefined())
   1414             break;
   1415           // Otherwise, c ? undef : x -> x.
   1416         } else {
   1417           // Leave Op1LV as Operand(1)'s LatticeValue.
   1418         }
   1419 
   1420         if (Op1LV.isConstant())
   1421           markForcedConstant(&I, Op1LV.getConstant());
   1422         else
   1423           markOverdefined(&I);
   1424         return true;
   1425       case Instruction::Load:
   1426         // A load here means one of two things: a load of undef from a global,
   1427         // a load from an unknown pointer.  Either way, having it return undef
   1428         // is okay.
   1429         break;
   1430       case Instruction::ICmp:
   1431         // X == undef -> undef.  Other comparisons get more complicated.
   1432         if (cast<ICmpInst>(&I)->isEquality())
   1433           break;
   1434         markOverdefined(&I);
   1435         return true;
   1436       case Instruction::Call:
   1437       case Instruction::Invoke: {
   1438         // There are two reasons a call can have an undef result
   1439         // 1. It could be tracked.
   1440         // 2. It could be constant-foldable.
   1441         // Because of the way we solve return values, tracked calls must
   1442         // never be marked overdefined in ResolvedUndefsIn.
   1443         if (Function *F = CallSite(&I).getCalledFunction())
   1444           if (TrackedRetVals.count(F))
   1445             break;
   1446 
   1447         // If the call is constant-foldable, we mark it overdefined because
   1448         // we do not know what return values are valid.
   1449         markOverdefined(&I);
   1450         return true;
   1451       }
   1452       default:
   1453         // If we don't know what should happen here, conservatively mark it
   1454         // overdefined.
   1455         markOverdefined(&I);
   1456         return true;
   1457       }
   1458     }
   1459 
   1460     // Check to see if we have a branch or switch on an undefined value.  If so
   1461     // we force the branch to go one way or the other to make the successor
   1462     // values live.  It doesn't really matter which way we force it.
   1463     TerminatorInst *TI = BB->getTerminator();
   1464     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1465       if (!BI->isConditional()) continue;
   1466       if (!getValueState(BI->getCondition()).isUndefined())
   1467         continue;
   1468 
   1469       // If the input to SCCP is actually branch on undef, fix the undef to
   1470       // false.
   1471       if (isa<UndefValue>(BI->getCondition())) {
   1472         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1473         markEdgeExecutable(&*BB, TI->getSuccessor(1));
   1474         return true;
   1475       }
   1476 
   1477       // Otherwise, it is a branch on a symbolic value which is currently
   1478       // considered to be undef.  Handle this by forcing the input value to the
   1479       // branch to false.
   1480       markForcedConstant(BI->getCondition(),
   1481                          ConstantInt::getFalse(TI->getContext()));
   1482       return true;
   1483     }
   1484 
   1485     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1486       if (!SI->getNumCases())
   1487         continue;
   1488       if (!getValueState(SI->getCondition()).isUndefined())
   1489         continue;
   1490 
   1491       // If the input to SCCP is actually switch on undef, fix the undef to
   1492       // the first constant.
   1493       if (isa<UndefValue>(SI->getCondition())) {
   1494         SI->setCondition(SI->case_begin().getCaseValue());
   1495         markEdgeExecutable(&*BB, SI->case_begin().getCaseSuccessor());
   1496         return true;
   1497       }
   1498 
   1499       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
   1500       return true;
   1501     }
   1502   }
   1503 
   1504   return false;
   1505 }
   1506 
   1507 
   1508 namespace {
   1509   //===--------------------------------------------------------------------===//
   1510   //
   1511   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1512   /// Sparse Conditional Constant Propagator.
   1513   ///
   1514   struct SCCP : public FunctionPass {
   1515     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1516       AU.addRequired<TargetLibraryInfoWrapperPass>();
   1517       AU.addPreserved<GlobalsAAWrapperPass>();
   1518     }
   1519     static char ID; // Pass identification, replacement for typeid
   1520     SCCP() : FunctionPass(ID) {
   1521       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1522     }
   1523 
   1524     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1525     // algorithm, and return true if the function was modified.
   1526     //
   1527     bool runOnFunction(Function &F) override;
   1528   };
   1529 } // end anonymous namespace
   1530 
   1531 char SCCP::ID = 0;
   1532 INITIALIZE_PASS(SCCP, "sccp",
   1533                 "Sparse Conditional Constant Propagation", false, false)
   1534 
   1535 // createSCCPPass - This is the public interface to this file.
   1536 FunctionPass *llvm::createSCCPPass() {
   1537   return new SCCP();
   1538 }
   1539 
   1540 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1541   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1542   ++NumDeadBlocks;
   1543 
   1544   // Check to see if there are non-terminating instructions to delete.
   1545   if (isa<TerminatorInst>(BB->begin()))
   1546     return;
   1547 
   1548   // Delete the instructions backwards, as it has a reduced likelihood of having
   1549   // to update as many def-use and use-def chains.
   1550   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1551   while (EndInst != BB->begin()) {
   1552     // Delete the next to last instruction.
   1553     Instruction *Inst = &*--EndInst->getIterator();
   1554     if (!Inst->use_empty())
   1555       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1556     if (Inst->isEHPad()) {
   1557       EndInst = Inst;
   1558       continue;
   1559     }
   1560     BB->getInstList().erase(Inst);
   1561     ++NumInstRemoved;
   1562   }
   1563 }
   1564 
   1565 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1566 // and return true if the function was modified.
   1567 //
   1568 bool SCCP::runOnFunction(Function &F) {
   1569   if (skipOptnoneFunction(F))
   1570     return false;
   1571 
   1572   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1573   const DataLayout &DL = F.getParent()->getDataLayout();
   1574   const TargetLibraryInfo *TLI =
   1575       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1576   SCCPSolver Solver(DL, TLI);
   1577 
   1578   // Mark the first block of the function as being executable.
   1579   Solver.MarkBlockExecutable(&F.front());
   1580 
   1581   // Mark all arguments to the function as being overdefined.
   1582   for (Argument &AI : F.args())
   1583     Solver.markAnythingOverdefined(&AI);
   1584 
   1585   // Solve for constants.
   1586   bool ResolvedUndefs = true;
   1587   while (ResolvedUndefs) {
   1588     Solver.Solve();
   1589     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1590     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1591   }
   1592 
   1593   bool MadeChanges = false;
   1594 
   1595   // If we decided that there are basic blocks that are dead in this function,
   1596   // delete their contents now.  Note that we cannot actually delete the blocks,
   1597   // as we cannot modify the CFG of the function.
   1598 
   1599   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1600     if (!Solver.isBlockExecutable(&*BB)) {
   1601       DeleteInstructionInBlock(&*BB);
   1602       MadeChanges = true;
   1603       continue;
   1604     }
   1605 
   1606     // Iterate over all of the instructions in a function, replacing them with
   1607     // constants if we have found them to be of constant values.
   1608     //
   1609     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1610       Instruction *Inst = &*BI++;
   1611       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1612         continue;
   1613 
   1614       // TODO: Reconstruct structs from their elements.
   1615       if (Inst->getType()->isStructTy())
   1616         continue;
   1617 
   1618       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1619       if (IV.isOverdefined())
   1620         continue;
   1621 
   1622       Constant *Const = IV.isConstant()
   1623         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1624       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
   1625 
   1626       // Replaces all of the uses of a variable with uses of the constant.
   1627       Inst->replaceAllUsesWith(Const);
   1628 
   1629       // Delete the instruction.
   1630       Inst->eraseFromParent();
   1631 
   1632       // Hey, we just changed something!
   1633       MadeChanges = true;
   1634       ++NumInstRemoved;
   1635     }
   1636   }
   1637 
   1638   return MadeChanges;
   1639 }
   1640 
   1641 namespace {
   1642   //===--------------------------------------------------------------------===//
   1643   //
   1644   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1645   /// Constant Propagation.
   1646   ///
   1647   struct IPSCCP : public ModulePass {
   1648     void getAnalysisUsage(AnalysisUsage &AU) const override {
   1649       AU.addRequired<TargetLibraryInfoWrapperPass>();
   1650     }
   1651     static char ID;
   1652     IPSCCP() : ModulePass(ID) {
   1653       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1654     }
   1655     bool runOnModule(Module &M) override;
   1656   };
   1657 } // end anonymous namespace
   1658 
   1659 char IPSCCP::ID = 0;
   1660 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
   1661                 "Interprocedural Sparse Conditional Constant Propagation",
   1662                 false, false)
   1663 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1664 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
   1665                 "Interprocedural Sparse Conditional Constant Propagation",
   1666                 false, false)
   1667 
   1668 // createIPSCCPPass - This is the public interface to this file.
   1669 ModulePass *llvm::createIPSCCPPass() {
   1670   return new IPSCCP();
   1671 }
   1672 
   1673 
   1674 static bool AddressIsTaken(const GlobalValue *GV) {
   1675   // Delete any dead constantexpr klingons.
   1676   GV->removeDeadConstantUsers();
   1677 
   1678   for (const Use &U : GV->uses()) {
   1679     const User *UR = U.getUser();
   1680     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
   1681       if (SI->getOperand(0) == GV || SI->isVolatile())
   1682         return true;  // Storing addr of GV.
   1683     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
   1684       // Make sure we are calling the function, not passing the address.
   1685       ImmutableCallSite CS(cast<Instruction>(UR));
   1686       if (!CS.isCallee(&U))
   1687         return true;
   1688     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
   1689       if (LI->isVolatile())
   1690         return true;
   1691     } else if (isa<BlockAddress>(UR)) {
   1692       // blockaddress doesn't take the address of the function, it takes addr
   1693       // of label.
   1694     } else {
   1695       return true;
   1696     }
   1697   }
   1698   return false;
   1699 }
   1700 
   1701 bool IPSCCP::runOnModule(Module &M) {
   1702   const DataLayout &DL = M.getDataLayout();
   1703   const TargetLibraryInfo *TLI =
   1704       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1705   SCCPSolver Solver(DL, TLI);
   1706 
   1707   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1708   // that are in the input.  As IPSCCP runs through and simplifies code,
   1709   // functions that were address taken can end up losing their
   1710   // address-taken-ness.  Because of this, we keep track of their addresses from
   1711   // the first pass so we can use them for the later simplification pass.
   1712   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1713 
   1714   // Loop over all functions, marking arguments to those with their addresses
   1715   // taken or that are external as overdefined.
   1716   //
   1717   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1718     if (F->isDeclaration())
   1719       continue;
   1720 
   1721     // If this is a strong or ODR definition of this function, then we can
   1722     // propagate information about its result into callsites of it.
   1723     if (!F->mayBeOverridden())
   1724       Solver.AddTrackedFunction(&*F);
   1725 
   1726     // If this function only has direct calls that we can see, we can track its
   1727     // arguments and return value aggressively, and can assume it is not called
   1728     // unless we see evidence to the contrary.
   1729     if (F->hasLocalLinkage()) {
   1730       if (AddressIsTaken(&*F))
   1731         AddressTakenFunctions.insert(&*F);
   1732       else {
   1733         Solver.AddArgumentTrackedFunction(&*F);
   1734         continue;
   1735       }
   1736     }
   1737 
   1738     // Assume the function is called.
   1739     Solver.MarkBlockExecutable(&F->front());
   1740 
   1741     // Assume nothing about the incoming arguments.
   1742     for (Argument &AI : F->args())
   1743       Solver.markAnythingOverdefined(&AI);
   1744   }
   1745 
   1746   // Loop over global variables.  We inform the solver about any internal global
   1747   // variables that do not have their 'addresses taken'.  If they don't have
   1748   // their addresses taken, we can propagate constants through them.
   1749   for (GlobalVariable &G : M.globals())
   1750     if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G))
   1751       Solver.TrackValueOfGlobalVariable(&G);
   1752 
   1753   // Solve for constants.
   1754   bool ResolvedUndefs = true;
   1755   while (ResolvedUndefs) {
   1756     Solver.Solve();
   1757 
   1758     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1759     ResolvedUndefs = false;
   1760     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1761       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1762   }
   1763 
   1764   bool MadeChanges = false;
   1765 
   1766   // Iterate over all of the instructions in the module, replacing them with
   1767   // constants if we have found them to be of constant values.
   1768   //
   1769   SmallVector<BasicBlock*, 512> BlocksToErase;
   1770 
   1771   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1772     if (F->isDeclaration())
   1773       continue;
   1774 
   1775     if (Solver.isBlockExecutable(&F->front())) {
   1776       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1777            AI != E; ++AI) {
   1778         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1779 
   1780         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1781         // result is a constant and replace it entirely if so.
   1782 
   1783         LatticeVal IV = Solver.getLatticeValueFor(&*AI);
   1784         if (IV.isOverdefined()) continue;
   1785 
   1786         Constant *CST = IV.isConstant() ?
   1787         IV.getConstant() : UndefValue::get(AI->getType());
   1788         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1789 
   1790         // Replaces all of the uses of a variable with uses of the
   1791         // constant.
   1792         AI->replaceAllUsesWith(CST);
   1793         ++IPNumArgsElimed;
   1794       }
   1795     }
   1796 
   1797     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1798       if (!Solver.isBlockExecutable(&*BB)) {
   1799         DeleteInstructionInBlock(&*BB);
   1800         MadeChanges = true;
   1801 
   1802         TerminatorInst *TI = BB->getTerminator();
   1803         for (BasicBlock *Succ : TI->successors()) {
   1804           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1805             Succ->removePredecessor(&*BB);
   1806         }
   1807         if (!TI->use_empty())
   1808           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1809         TI->eraseFromParent();
   1810         new UnreachableInst(M.getContext(), &*BB);
   1811 
   1812         if (&*BB != &F->front())
   1813           BlocksToErase.push_back(&*BB);
   1814         continue;
   1815       }
   1816 
   1817       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1818         Instruction *Inst = &*BI++;
   1819         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1820           continue;
   1821 
   1822         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1823         // result is a constant and replace it entirely if so.
   1824 
   1825         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1826         if (IV.isOverdefined())
   1827           continue;
   1828 
   1829         Constant *Const = IV.isConstant()
   1830           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1831         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
   1832 
   1833         // Replaces all of the uses of a variable with uses of the
   1834         // constant.
   1835         Inst->replaceAllUsesWith(Const);
   1836 
   1837         // Delete the instruction.
   1838         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1839           Inst->eraseFromParent();
   1840 
   1841         // Hey, we just changed something!
   1842         MadeChanges = true;
   1843         ++IPNumInstRemoved;
   1844       }
   1845     }
   1846 
   1847     // Now that all instructions in the function are constant folded, erase dead
   1848     // blocks, because we can now use ConstantFoldTerminator to get rid of
   1849     // in-edges.
   1850     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   1851       // If there are any PHI nodes in this successor, drop entries for BB now.
   1852       BasicBlock *DeadBB = BlocksToErase[i];
   1853       for (Value::user_iterator UI = DeadBB->user_begin(),
   1854                                 UE = DeadBB->user_end();
   1855            UI != UE;) {
   1856         // Grab the user and then increment the iterator early, as the user
   1857         // will be deleted. Step past all adjacent uses from the same user.
   1858         Instruction *I = dyn_cast<Instruction>(*UI);
   1859         do { ++UI; } while (UI != UE && *UI == I);
   1860 
   1861         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   1862         if (!I) continue;
   1863 
   1864         bool Folded = ConstantFoldTerminator(I->getParent());
   1865         if (!Folded) {
   1866           // The constant folder may not have been able to fold the terminator
   1867           // if this is a branch or switch on undef.  Fold it manually as a
   1868           // branch to the first successor.
   1869 #ifndef NDEBUG
   1870           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1871             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   1872                    "Branch should be foldable!");
   1873           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   1874             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   1875           } else {
   1876             llvm_unreachable("Didn't fold away reference to block!");
   1877           }
   1878 #endif
   1879 
   1880           // Make this an uncond branch to the first successor.
   1881           TerminatorInst *TI = I->getParent()->getTerminator();
   1882           BranchInst::Create(TI->getSuccessor(0), TI);
   1883 
   1884           // Remove entries in successor phi nodes to remove edges.
   1885           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   1886             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   1887 
   1888           // Remove the old terminator.
   1889           TI->eraseFromParent();
   1890         }
   1891       }
   1892 
   1893       // Finally, delete the basic block.
   1894       F->getBasicBlockList().erase(DeadBB);
   1895     }
   1896     BlocksToErase.clear();
   1897   }
   1898 
   1899   // If we inferred constant or undef return values for a function, we replaced
   1900   // all call uses with the inferred value.  This means we don't need to bother
   1901   // actually returning anything from the function.  Replace all return
   1902   // instructions with return undef.
   1903   //
   1904   // Do this in two stages: first identify the functions we should process, then
   1905   // actually zap their returns.  This is important because we can only do this
   1906   // if the address of the function isn't taken.  In cases where a return is the
   1907   // last use of a function, the order of processing functions would affect
   1908   // whether other functions are optimizable.
   1909   SmallVector<ReturnInst*, 8> ReturnsToZap;
   1910 
   1911   // TODO: Process multiple value ret instructions also.
   1912   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   1913   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   1914        E = RV.end(); I != E; ++I) {
   1915     Function *F = I->first;
   1916     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   1917       continue;
   1918 
   1919     // We can only do this if we know that nothing else can call the function.
   1920     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   1921       continue;
   1922 
   1923     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   1924       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   1925         if (!isa<UndefValue>(RI->getOperand(0)))
   1926           ReturnsToZap.push_back(RI);
   1927   }
   1928 
   1929   // Zap all returns which we've identified as zap to change.
   1930   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   1931     Function *F = ReturnsToZap[i]->getParent()->getParent();
   1932     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   1933   }
   1934 
   1935   // If we inferred constant or undef values for globals variables, we can
   1936   // delete the global and any stores that remain to it.
   1937   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   1938   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   1939          E = TG.end(); I != E; ++I) {
   1940     GlobalVariable *GV = I->first;
   1941     assert(!I->second.isOverdefined() &&
   1942            "Overdefined values should have been taken out of the map!");
   1943     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   1944     while (!GV->use_empty()) {
   1945       StoreInst *SI = cast<StoreInst>(GV->user_back());
   1946       SI->eraseFromParent();
   1947     }
   1948     M.getGlobalList().erase(GV);
   1949     ++IPNumGlobalConst;
   1950   }
   1951 
   1952   return MadeChanges;
   1953 }
   1954