Home | History | Annotate | Download | only in Analysis
      1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines routines for folding instructions into constants.
     11 //
     12 // Also, to supplement the basic IR ConstantExpr simplifications,
     13 // this file defines some additional folding routines that can make use of
     14 // DataLayout information. These functions cannot go in IR due to library
     15 // dependency issues.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Analysis/ConstantFolding.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/Analysis/TargetLibraryInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/Config/config.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GetElementPtrTypeIterator.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/Intrinsics.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/MathExtras.h"
     37 #include <cerrno>
     38 #include <cmath>
     39 
     40 #ifdef HAVE_FENV_H
     41 #include <fenv.h>
     42 #endif
     43 
     44 using namespace llvm;
     45 
     46 //===----------------------------------------------------------------------===//
     47 // Constant Folding internal helper functions
     48 //===----------------------------------------------------------------------===//
     49 
     50 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
     51 /// This always returns a non-null constant, but it may be a
     52 /// ConstantExpr if unfoldable.
     53 static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
     54   // Catch the obvious splat cases.
     55   if (C->isNullValue() && !DestTy->isX86_MMXTy())
     56     return Constant::getNullValue(DestTy);
     57   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
     58       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
     59     return Constant::getAllOnesValue(DestTy);
     60 
     61   // Handle a vector->integer cast.
     62   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
     63     VectorType *VTy = dyn_cast<VectorType>(C->getType());
     64     if (!VTy)
     65       return ConstantExpr::getBitCast(C, DestTy);
     66 
     67     unsigned NumSrcElts = VTy->getNumElements();
     68     Type *SrcEltTy = VTy->getElementType();
     69 
     70     // If the vector is a vector of floating point, convert it to vector of int
     71     // to simplify things.
     72     if (SrcEltTy->isFloatingPointTy()) {
     73       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
     74       Type *SrcIVTy =
     75         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
     76       // Ask IR to do the conversion now that #elts line up.
     77       C = ConstantExpr::getBitCast(C, SrcIVTy);
     78     }
     79 
     80     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
     81     if (!CDV)
     82       return ConstantExpr::getBitCast(C, DestTy);
     83 
     84     // Now that we know that the input value is a vector of integers, just shift
     85     // and insert them into our result.
     86     unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
     87     APInt Result(IT->getBitWidth(), 0);
     88     for (unsigned i = 0; i != NumSrcElts; ++i) {
     89       Result <<= BitShift;
     90       if (DL.isLittleEndian())
     91         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
     92       else
     93         Result |= CDV->getElementAsInteger(i);
     94     }
     95 
     96     return ConstantInt::get(IT, Result);
     97   }
     98 
     99   // The code below only handles casts to vectors currently.
    100   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
    101   if (!DestVTy)
    102     return ConstantExpr::getBitCast(C, DestTy);
    103 
    104   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
    105   // vector so the code below can handle it uniformly.
    106   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
    107     Constant *Ops = C; // don't take the address of C!
    108     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
    109   }
    110 
    111   // If this is a bitcast from constant vector -> vector, fold it.
    112   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
    113     return ConstantExpr::getBitCast(C, DestTy);
    114 
    115   // If the element types match, IR can fold it.
    116   unsigned NumDstElt = DestVTy->getNumElements();
    117   unsigned NumSrcElt = C->getType()->getVectorNumElements();
    118   if (NumDstElt == NumSrcElt)
    119     return ConstantExpr::getBitCast(C, DestTy);
    120 
    121   Type *SrcEltTy = C->getType()->getVectorElementType();
    122   Type *DstEltTy = DestVTy->getElementType();
    123 
    124   // Otherwise, we're changing the number of elements in a vector, which
    125   // requires endianness information to do the right thing.  For example,
    126   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    127   // folds to (little endian):
    128   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
    129   // and to (big endian):
    130   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
    131 
    132   // First thing is first.  We only want to think about integer here, so if
    133   // we have something in FP form, recast it as integer.
    134   if (DstEltTy->isFloatingPointTy()) {
    135     // Fold to an vector of integers with same size as our FP type.
    136     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
    137     Type *DestIVTy =
    138       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
    139     // Recursively handle this integer conversion, if possible.
    140     C = FoldBitCast(C, DestIVTy, DL);
    141 
    142     // Finally, IR can handle this now that #elts line up.
    143     return ConstantExpr::getBitCast(C, DestTy);
    144   }
    145 
    146   // Okay, we know the destination is integer, if the input is FP, convert
    147   // it to integer first.
    148   if (SrcEltTy->isFloatingPointTy()) {
    149     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
    150     Type *SrcIVTy =
    151       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
    152     // Ask IR to do the conversion now that #elts line up.
    153     C = ConstantExpr::getBitCast(C, SrcIVTy);
    154     // If IR wasn't able to fold it, bail out.
    155     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
    156         !isa<ConstantDataVector>(C))
    157       return C;
    158   }
    159 
    160   // Now we know that the input and output vectors are both integer vectors
    161   // of the same size, and that their #elements is not the same.  Do the
    162   // conversion here, which depends on whether the input or output has
    163   // more elements.
    164   bool isLittleEndian = DL.isLittleEndian();
    165 
    166   SmallVector<Constant*, 32> Result;
    167   if (NumDstElt < NumSrcElt) {
    168     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
    169     Constant *Zero = Constant::getNullValue(DstEltTy);
    170     unsigned Ratio = NumSrcElt/NumDstElt;
    171     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
    172     unsigned SrcElt = 0;
    173     for (unsigned i = 0; i != NumDstElt; ++i) {
    174       // Build each element of the result.
    175       Constant *Elt = Zero;
    176       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
    177       for (unsigned j = 0; j != Ratio; ++j) {
    178         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
    179         if (!Src)  // Reject constantexpr elements.
    180           return ConstantExpr::getBitCast(C, DestTy);
    181 
    182         // Zero extend the element to the right size.
    183         Src = ConstantExpr::getZExt(Src, Elt->getType());
    184 
    185         // Shift it to the right place, depending on endianness.
    186         Src = ConstantExpr::getShl(Src,
    187                                    ConstantInt::get(Src->getType(), ShiftAmt));
    188         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
    189 
    190         // Mix it in.
    191         Elt = ConstantExpr::getOr(Elt, Src);
    192       }
    193       Result.push_back(Elt);
    194     }
    195     return ConstantVector::get(Result);
    196   }
    197 
    198   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
    199   unsigned Ratio = NumDstElt/NumSrcElt;
    200   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
    201 
    202   // Loop over each source value, expanding into multiple results.
    203   for (unsigned i = 0; i != NumSrcElt; ++i) {
    204     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
    205     if (!Src)  // Reject constantexpr elements.
    206       return ConstantExpr::getBitCast(C, DestTy);
    207 
    208     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
    209     for (unsigned j = 0; j != Ratio; ++j) {
    210       // Shift the piece of the value into the right place, depending on
    211       // endianness.
    212       Constant *Elt = ConstantExpr::getLShr(Src,
    213                                   ConstantInt::get(Src->getType(), ShiftAmt));
    214       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
    215 
    216       // Truncate the element to an integer with the same pointer size and
    217       // convert the element back to a pointer using a inttoptr.
    218       if (DstEltTy->isPointerTy()) {
    219         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
    220         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
    221         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
    222         continue;
    223       }
    224 
    225       // Truncate and remember this piece.
    226       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
    227     }
    228   }
    229 
    230   return ConstantVector::get(Result);
    231 }
    232 
    233 
    234 /// If this constant is a constant offset from a global, return the global and
    235 /// the constant. Because of constantexprs, this function is recursive.
    236 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
    237                                        APInt &Offset, const DataLayout &DL) {
    238   // Trivial case, constant is the global.
    239   if ((GV = dyn_cast<GlobalValue>(C))) {
    240     unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
    241     Offset = APInt(BitWidth, 0);
    242     return true;
    243   }
    244 
    245   // Otherwise, if this isn't a constant expr, bail out.
    246   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    247   if (!CE) return false;
    248 
    249   // Look through ptr->int and ptr->ptr casts.
    250   if (CE->getOpcode() == Instruction::PtrToInt ||
    251       CE->getOpcode() == Instruction::BitCast)
    252     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
    253 
    254   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
    255   GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
    256   if (!GEP)
    257     return false;
    258 
    259   unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
    260   APInt TmpOffset(BitWidth, 0);
    261 
    262   // If the base isn't a global+constant, we aren't either.
    263   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
    264     return false;
    265 
    266   // Otherwise, add any offset that our operands provide.
    267   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
    268     return false;
    269 
    270   Offset = TmpOffset;
    271   return true;
    272 }
    273 
    274 /// Recursive helper to read bits out of global. C is the constant being copied
    275 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
    276 /// results into and BytesLeft is the number of bytes left in
    277 /// the CurPtr buffer. DL is the DataLayout.
    278 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
    279                                unsigned char *CurPtr, unsigned BytesLeft,
    280                                const DataLayout &DL) {
    281   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
    282          "Out of range access");
    283 
    284   // If this element is zero or undefined, we can just return since *CurPtr is
    285   // zero initialized.
    286   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
    287     return true;
    288 
    289   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
    290     if (CI->getBitWidth() > 64 ||
    291         (CI->getBitWidth() & 7) != 0)
    292       return false;
    293 
    294     uint64_t Val = CI->getZExtValue();
    295     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
    296 
    297     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
    298       int n = ByteOffset;
    299       if (!DL.isLittleEndian())
    300         n = IntBytes - n - 1;
    301       CurPtr[i] = (unsigned char)(Val >> (n * 8));
    302       ++ByteOffset;
    303     }
    304     return true;
    305   }
    306 
    307   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    308     if (CFP->getType()->isDoubleTy()) {
    309       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
    310       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    311     }
    312     if (CFP->getType()->isFloatTy()){
    313       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
    314       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    315     }
    316     if (CFP->getType()->isHalfTy()){
    317       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
    318       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
    319     }
    320     return false;
    321   }
    322 
    323   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
    324     const StructLayout *SL = DL.getStructLayout(CS->getType());
    325     unsigned Index = SL->getElementContainingOffset(ByteOffset);
    326     uint64_t CurEltOffset = SL->getElementOffset(Index);
    327     ByteOffset -= CurEltOffset;
    328 
    329     while (1) {
    330       // If the element access is to the element itself and not to tail padding,
    331       // read the bytes from the element.
    332       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
    333 
    334       if (ByteOffset < EltSize &&
    335           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
    336                               BytesLeft, DL))
    337         return false;
    338 
    339       ++Index;
    340 
    341       // Check to see if we read from the last struct element, if so we're done.
    342       if (Index == CS->getType()->getNumElements())
    343         return true;
    344 
    345       // If we read all of the bytes we needed from this element we're done.
    346       uint64_t NextEltOffset = SL->getElementOffset(Index);
    347 
    348       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
    349         return true;
    350 
    351       // Move to the next element of the struct.
    352       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
    353       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
    354       ByteOffset = 0;
    355       CurEltOffset = NextEltOffset;
    356     }
    357     // not reached.
    358   }
    359 
    360   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
    361       isa<ConstantDataSequential>(C)) {
    362     Type *EltTy = C->getType()->getSequentialElementType();
    363     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
    364     uint64_t Index = ByteOffset / EltSize;
    365     uint64_t Offset = ByteOffset - Index * EltSize;
    366     uint64_t NumElts;
    367     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
    368       NumElts = AT->getNumElements();
    369     else
    370       NumElts = C->getType()->getVectorNumElements();
    371 
    372     for (; Index != NumElts; ++Index) {
    373       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
    374                               BytesLeft, DL))
    375         return false;
    376 
    377       uint64_t BytesWritten = EltSize - Offset;
    378       assert(BytesWritten <= EltSize && "Not indexing into this element?");
    379       if (BytesWritten >= BytesLeft)
    380         return true;
    381 
    382       Offset = 0;
    383       BytesLeft -= BytesWritten;
    384       CurPtr += BytesWritten;
    385     }
    386     return true;
    387   }
    388 
    389   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    390     if (CE->getOpcode() == Instruction::IntToPtr &&
    391         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
    392       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
    393                                 BytesLeft, DL);
    394     }
    395   }
    396 
    397   // Otherwise, unknown initializer type.
    398   return false;
    399 }
    400 
    401 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
    402                                                  const DataLayout &DL) {
    403   PointerType *PTy = cast<PointerType>(C->getType());
    404   Type *LoadTy = PTy->getElementType();
    405   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
    406 
    407   // If this isn't an integer load we can't fold it directly.
    408   if (!IntType) {
    409     unsigned AS = PTy->getAddressSpace();
    410 
    411     // If this is a float/double load, we can try folding it as an int32/64 load
    412     // and then bitcast the result.  This can be useful for union cases.  Note
    413     // that address spaces don't matter here since we're not going to result in
    414     // an actual new load.
    415     Type *MapTy;
    416     if (LoadTy->isHalfTy())
    417       MapTy = Type::getInt16PtrTy(C->getContext(), AS);
    418     else if (LoadTy->isFloatTy())
    419       MapTy = Type::getInt32PtrTy(C->getContext(), AS);
    420     else if (LoadTy->isDoubleTy())
    421       MapTy = Type::getInt64PtrTy(C->getContext(), AS);
    422     else if (LoadTy->isVectorTy()) {
    423       MapTy = PointerType::getIntNPtrTy(C->getContext(),
    424                                         DL.getTypeAllocSizeInBits(LoadTy), AS);
    425     } else
    426       return nullptr;
    427 
    428     C = FoldBitCast(C, MapTy, DL);
    429     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
    430       return FoldBitCast(Res, LoadTy, DL);
    431     return nullptr;
    432   }
    433 
    434   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
    435   if (BytesLoaded > 32 || BytesLoaded == 0)
    436     return nullptr;
    437 
    438   GlobalValue *GVal;
    439   APInt Offset;
    440   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
    441     return nullptr;
    442 
    443   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
    444   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
    445       !GV->getInitializer()->getType()->isSized())
    446     return nullptr;
    447 
    448   // If we're loading off the beginning of the global, some bytes may be valid,
    449   // but we don't try to handle this.
    450   if (Offset.isNegative())
    451     return nullptr;
    452 
    453   // If we're not accessing anything in this constant, the result is undefined.
    454   if (Offset.getZExtValue() >=
    455       DL.getTypeAllocSize(GV->getInitializer()->getType()))
    456     return UndefValue::get(IntType);
    457 
    458   unsigned char RawBytes[32] = {0};
    459   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
    460                           BytesLoaded, DL))
    461     return nullptr;
    462 
    463   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
    464   if (DL.isLittleEndian()) {
    465     ResultVal = RawBytes[BytesLoaded - 1];
    466     for (unsigned i = 1; i != BytesLoaded; ++i) {
    467       ResultVal <<= 8;
    468       ResultVal |= RawBytes[BytesLoaded - 1 - i];
    469     }
    470   } else {
    471     ResultVal = RawBytes[0];
    472     for (unsigned i = 1; i != BytesLoaded; ++i) {
    473       ResultVal <<= 8;
    474       ResultVal |= RawBytes[i];
    475     }
    476   }
    477 
    478   return ConstantInt::get(IntType->getContext(), ResultVal);
    479 }
    480 
    481 static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
    482                                                 const DataLayout &DL) {
    483   auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
    484   if (!DestPtrTy)
    485     return nullptr;
    486   Type *DestTy = DestPtrTy->getElementType();
    487 
    488   Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
    489   if (!C)
    490     return nullptr;
    491 
    492   do {
    493     Type *SrcTy = C->getType();
    494 
    495     // If the type sizes are the same and a cast is legal, just directly
    496     // cast the constant.
    497     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
    498       Instruction::CastOps Cast = Instruction::BitCast;
    499       // If we are going from a pointer to int or vice versa, we spell the cast
    500       // differently.
    501       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
    502         Cast = Instruction::IntToPtr;
    503       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
    504         Cast = Instruction::PtrToInt;
    505 
    506       if (CastInst::castIsValid(Cast, C, DestTy))
    507         return ConstantExpr::getCast(Cast, C, DestTy);
    508     }
    509 
    510     // If this isn't an aggregate type, there is nothing we can do to drill down
    511     // and find a bitcastable constant.
    512     if (!SrcTy->isAggregateType())
    513       return nullptr;
    514 
    515     // We're simulating a load through a pointer that was bitcast to point to
    516     // a different type, so we can try to walk down through the initial
    517     // elements of an aggregate to see if some part of th e aggregate is
    518     // castable to implement the "load" semantic model.
    519     C = C->getAggregateElement(0u);
    520   } while (C);
    521 
    522   return nullptr;
    523 }
    524 
    525 /// Return the value that a load from C would produce if it is constant and
    526 /// determinable. If this is not determinable, return null.
    527 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
    528                                              const DataLayout &DL) {
    529   // First, try the easy cases:
    530   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
    531     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    532       return GV->getInitializer();
    533 
    534   if (auto *GA = dyn_cast<GlobalAlias>(C))
    535     if (GA->getAliasee() && !GA->mayBeOverridden())
    536       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), DL);
    537 
    538   // If the loaded value isn't a constant expr, we can't handle it.
    539   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
    540   if (!CE)
    541     return nullptr;
    542 
    543   if (CE->getOpcode() == Instruction::GetElementPtr) {
    544     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
    545       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    546         if (Constant *V =
    547              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
    548           return V;
    549       }
    550     }
    551   }
    552 
    553   if (CE->getOpcode() == Instruction::BitCast)
    554     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
    555       return LoadedC;
    556 
    557   // Instead of loading constant c string, use corresponding integer value
    558   // directly if string length is small enough.
    559   StringRef Str;
    560   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
    561     unsigned StrLen = Str.size();
    562     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
    563     unsigned NumBits = Ty->getPrimitiveSizeInBits();
    564     // Replace load with immediate integer if the result is an integer or fp
    565     // value.
    566     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
    567         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
    568       APInt StrVal(NumBits, 0);
    569       APInt SingleChar(NumBits, 0);
    570       if (DL.isLittleEndian()) {
    571         for (signed i = StrLen-1; i >= 0; i--) {
    572           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    573           StrVal = (StrVal << 8) | SingleChar;
    574         }
    575       } else {
    576         for (unsigned i = 0; i < StrLen; i++) {
    577           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
    578           StrVal = (StrVal << 8) | SingleChar;
    579         }
    580         // Append NULL at the end.
    581         SingleChar = 0;
    582         StrVal = (StrVal << 8) | SingleChar;
    583       }
    584 
    585       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
    586       if (Ty->isFloatingPointTy())
    587         Res = ConstantExpr::getBitCast(Res, Ty);
    588       return Res;
    589     }
    590   }
    591 
    592   // If this load comes from anywhere in a constant global, and if the global
    593   // is all undef or zero, we know what it loads.
    594   if (GlobalVariable *GV =
    595           dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
    596     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
    597       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
    598       if (GV->getInitializer()->isNullValue())
    599         return Constant::getNullValue(ResTy);
    600       if (isa<UndefValue>(GV->getInitializer()))
    601         return UndefValue::get(ResTy);
    602     }
    603   }
    604 
    605   // Try hard to fold loads from bitcasted strange and non-type-safe things.
    606   return FoldReinterpretLoadFromConstPtr(CE, DL);
    607 }
    608 
    609 static Constant *ConstantFoldLoadInst(const LoadInst *LI,
    610                                       const DataLayout &DL) {
    611   if (LI->isVolatile()) return nullptr;
    612 
    613   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
    614     return ConstantFoldLoadFromConstPtr(C, DL);
    615 
    616   return nullptr;
    617 }
    618 
    619 /// One of Op0/Op1 is a constant expression.
    620 /// Attempt to symbolically evaluate the result of a binary operator merging
    621 /// these together.  If target data info is available, it is provided as DL,
    622 /// otherwise DL is null.
    623 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
    624                                            Constant *Op1,
    625                                            const DataLayout &DL) {
    626   // SROA
    627 
    628   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
    629   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
    630   // bits.
    631 
    632   if (Opc == Instruction::And) {
    633     unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
    634     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
    635     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
    636     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
    637     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
    638     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
    639       // All the bits of Op0 that the 'and' could be masking are already zero.
    640       return Op0;
    641     }
    642     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
    643       // All the bits of Op1 that the 'and' could be masking are already zero.
    644       return Op1;
    645     }
    646 
    647     APInt KnownZero = KnownZero0 | KnownZero1;
    648     APInt KnownOne = KnownOne0 & KnownOne1;
    649     if ((KnownZero | KnownOne).isAllOnesValue()) {
    650       return ConstantInt::get(Op0->getType(), KnownOne);
    651     }
    652   }
    653 
    654   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
    655   // constant.  This happens frequently when iterating over a global array.
    656   if (Opc == Instruction::Sub) {
    657     GlobalValue *GV1, *GV2;
    658     APInt Offs1, Offs2;
    659 
    660     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
    661       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
    662         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
    663 
    664         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
    665         // PtrToInt may change the bitwidth so we have convert to the right size
    666         // first.
    667         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
    668                                                 Offs2.zextOrTrunc(OpSize));
    669       }
    670   }
    671 
    672   return nullptr;
    673 }
    674 
    675 /// If array indices are not pointer-sized integers, explicitly cast them so
    676 /// that they aren't implicitly casted by the getelementptr.
    677 static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
    678                                 Type *ResultTy, const DataLayout &DL,
    679                                 const TargetLibraryInfo *TLI) {
    680   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
    681 
    682   bool Any = false;
    683   SmallVector<Constant*, 32> NewIdxs;
    684   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
    685     if ((i == 1 ||
    686          !isa<StructType>(GetElementPtrInst::getIndexedType(
    687              cast<PointerType>(Ops[0]->getType()->getScalarType())
    688                  ->getElementType(),
    689              Ops.slice(1, i - 1)))) &&
    690         Ops[i]->getType() != IntPtrTy) {
    691       Any = true;
    692       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
    693                                                                       true,
    694                                                                       IntPtrTy,
    695                                                                       true),
    696                                               Ops[i], IntPtrTy));
    697     } else
    698       NewIdxs.push_back(Ops[i]);
    699   }
    700 
    701   if (!Any)
    702     return nullptr;
    703 
    704   Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
    705   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    706     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
    707       C = Folded;
    708   }
    709 
    710   return C;
    711 }
    712 
    713 /// Strip the pointer casts, but preserve the address space information.
    714 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
    715   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
    716   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
    717   Ptr = Ptr->stripPointerCasts();
    718   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
    719 
    720   // Preserve the address space number of the pointer.
    721   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
    722     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
    723       OldPtrTy->getAddressSpace());
    724     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
    725   }
    726   return Ptr;
    727 }
    728 
    729 /// If we can symbolically evaluate the GEP constant expression, do so.
    730 static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
    731                                          Type *ResultTy, const DataLayout &DL,
    732                                          const TargetLibraryInfo *TLI) {
    733   Constant *Ptr = Ops[0];
    734   if (!Ptr->getType()->getPointerElementType()->isSized() ||
    735       !Ptr->getType()->isPointerTy())
    736     return nullptr;
    737 
    738   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
    739   Type *ResultElementTy = ResultTy->getPointerElementType();
    740 
    741   // If this is a constant expr gep that is effectively computing an
    742   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
    743   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
    744     if (!isa<ConstantInt>(Ops[i])) {
    745 
    746       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
    747       // "inttoptr (sub (ptrtoint Ptr), V)"
    748       if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
    749         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
    750         assert((!CE || CE->getType() == IntPtrTy) &&
    751                "CastGEPIndices didn't canonicalize index types!");
    752         if (CE && CE->getOpcode() == Instruction::Sub &&
    753             CE->getOperand(0)->isNullValue()) {
    754           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
    755           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
    756           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
    757           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
    758             Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
    759           return Res;
    760         }
    761       }
    762       return nullptr;
    763     }
    764 
    765   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
    766   APInt Offset =
    767       APInt(BitWidth,
    768             DL.getIndexedOffset(
    769                 Ptr->getType(),
    770                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
    771   Ptr = StripPtrCastKeepAS(Ptr);
    772 
    773   // If this is a GEP of a GEP, fold it all into a single GEP.
    774   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
    775     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
    776 
    777     // Do not try the incorporate the sub-GEP if some index is not a number.
    778     bool AllConstantInt = true;
    779     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
    780       if (!isa<ConstantInt>(NestedOps[i])) {
    781         AllConstantInt = false;
    782         break;
    783       }
    784     if (!AllConstantInt)
    785       break;
    786 
    787     Ptr = cast<Constant>(GEP->getOperand(0));
    788     Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
    789     Ptr = StripPtrCastKeepAS(Ptr);
    790   }
    791 
    792   // If the base value for this address is a literal integer value, fold the
    793   // getelementptr to the resulting integer value casted to the pointer type.
    794   APInt BasePtr(BitWidth, 0);
    795   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
    796     if (CE->getOpcode() == Instruction::IntToPtr) {
    797       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
    798         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
    799     }
    800   }
    801 
    802   if (Ptr->isNullValue() || BasePtr != 0) {
    803     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
    804     return ConstantExpr::getIntToPtr(C, ResultTy);
    805   }
    806 
    807   // Otherwise form a regular getelementptr. Recompute the indices so that
    808   // we eliminate over-indexing of the notional static type array bounds.
    809   // This makes it easy to determine if the getelementptr is "inbounds".
    810   // Also, this helps GlobalOpt do SROA on GlobalVariables.
    811   Type *Ty = Ptr->getType();
    812   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
    813   SmallVector<Constant *, 32> NewIdxs;
    814 
    815   do {
    816     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
    817       if (ATy->isPointerTy()) {
    818         // The only pointer indexing we'll do is on the first index of the GEP.
    819         if (!NewIdxs.empty())
    820           break;
    821 
    822         // Only handle pointers to sized types, not pointers to functions.
    823         if (!ATy->getElementType()->isSized())
    824           return nullptr;
    825       }
    826 
    827       // Determine which element of the array the offset points into.
    828       APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
    829       if (ElemSize == 0)
    830         // The element size is 0. This may be [0 x Ty]*, so just use a zero
    831         // index for this level and proceed to the next level to see if it can
    832         // accommodate the offset.
    833         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
    834       else {
    835         // The element size is non-zero divide the offset by the element
    836         // size (rounding down), to compute the index at this level.
    837         APInt NewIdx = Offset.udiv(ElemSize);
    838         Offset -= NewIdx * ElemSize;
    839         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
    840       }
    841       Ty = ATy->getElementType();
    842     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
    843       // If we end up with an offset that isn't valid for this struct type, we
    844       // can't re-form this GEP in a regular form, so bail out. The pointer
    845       // operand likely went through casts that are necessary to make the GEP
    846       // sensible.
    847       const StructLayout &SL = *DL.getStructLayout(STy);
    848       if (Offset.uge(SL.getSizeInBytes()))
    849         break;
    850 
    851       // Determine which field of the struct the offset points into. The
    852       // getZExtValue is fine as we've already ensured that the offset is
    853       // within the range representable by the StructLayout API.
    854       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
    855       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    856                                          ElIdx));
    857       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
    858       Ty = STy->getTypeAtIndex(ElIdx);
    859     } else {
    860       // We've reached some non-indexable type.
    861       break;
    862     }
    863   } while (Ty != ResultElementTy);
    864 
    865   // If we haven't used up the entire offset by descending the static
    866   // type, then the offset is pointing into the middle of an indivisible
    867   // member, so we can't simplify it.
    868   if (Offset != 0)
    869     return nullptr;
    870 
    871   // Create a GEP.
    872   Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
    873   assert(C->getType()->getPointerElementType() == Ty &&
    874          "Computed GetElementPtr has unexpected type!");
    875 
    876   // If we ended up indexing a member with a type that doesn't match
    877   // the type of what the original indices indexed, add a cast.
    878   if (Ty != ResultElementTy)
    879     C = FoldBitCast(C, ResultTy, DL);
    880 
    881   return C;
    882 }
    883 
    884 
    885 
    886 //===----------------------------------------------------------------------===//
    887 // Constant Folding public APIs
    888 //===----------------------------------------------------------------------===//
    889 
    890 /// Try to constant fold the specified instruction.
    891 /// If successful, the constant result is returned, if not, null is returned.
    892 /// Note that this fails if not all of the operands are constant.  Otherwise,
    893 /// this function can only fail when attempting to fold instructions like loads
    894 /// and stores, which have no constant expression form.
    895 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
    896                                         const TargetLibraryInfo *TLI) {
    897   // Handle PHI nodes quickly here...
    898   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    899     Constant *CommonValue = nullptr;
    900 
    901     for (Value *Incoming : PN->incoming_values()) {
    902       // If the incoming value is undef then skip it.  Note that while we could
    903       // skip the value if it is equal to the phi node itself we choose not to
    904       // because that would break the rule that constant folding only applies if
    905       // all operands are constants.
    906       if (isa<UndefValue>(Incoming))
    907         continue;
    908       // If the incoming value is not a constant, then give up.
    909       Constant *C = dyn_cast<Constant>(Incoming);
    910       if (!C)
    911         return nullptr;
    912       // Fold the PHI's operands.
    913       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
    914         C = ConstantFoldConstantExpression(NewC, DL, TLI);
    915       // If the incoming value is a different constant to
    916       // the one we saw previously, then give up.
    917       if (CommonValue && C != CommonValue)
    918         return nullptr;
    919       CommonValue = C;
    920     }
    921 
    922 
    923     // If we reach here, all incoming values are the same constant or undef.
    924     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
    925   }
    926 
    927   // Scan the operand list, checking to see if they are all constants, if so,
    928   // hand off to ConstantFoldInstOperands.
    929   SmallVector<Constant*, 8> Ops;
    930   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
    931     Constant *Op = dyn_cast<Constant>(*i);
    932     if (!Op)
    933       return nullptr;  // All operands not constant!
    934 
    935     // Fold the Instruction's operands.
    936     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
    937       Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
    938 
    939     Ops.push_back(Op);
    940   }
    941 
    942   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    943     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    944                                            DL, TLI);
    945 
    946   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    947     return ConstantFoldLoadInst(LI, DL);
    948 
    949   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
    950     return ConstantExpr::getInsertValue(
    951                                 cast<Constant>(IVI->getAggregateOperand()),
    952                                 cast<Constant>(IVI->getInsertedValueOperand()),
    953                                 IVI->getIndices());
    954   }
    955 
    956   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
    957     return ConstantExpr::getExtractValue(
    958                                     cast<Constant>(EVI->getAggregateOperand()),
    959                                     EVI->getIndices());
    960   }
    961 
    962   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
    963 }
    964 
    965 static Constant *
    966 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
    967                                    const TargetLibraryInfo *TLI,
    968                                    SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
    969   SmallVector<Constant *, 8> Ops;
    970   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
    971        ++i) {
    972     Constant *NewC = cast<Constant>(*i);
    973     // Recursively fold the ConstantExpr's operands. If we have already folded
    974     // a ConstantExpr, we don't have to process it again.
    975     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
    976       if (FoldedOps.insert(NewCE).second)
    977         NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
    978     }
    979     Ops.push_back(NewC);
    980   }
    981 
    982   if (CE->isCompare())
    983     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
    984                                            DL, TLI);
    985   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
    986 }
    987 
    988 /// Attempt to fold the constant expression
    989 /// using the specified DataLayout.  If successful, the constant result is
    990 /// result is returned, if not, null is returned.
    991 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
    992                                                const DataLayout &DL,
    993                                                const TargetLibraryInfo *TLI) {
    994   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
    995   return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
    996 }
    997 
    998 /// Attempt to constant fold an instruction with the
    999 /// specified opcode and operands.  If successful, the constant result is
   1000 /// returned, if not, null is returned.  Note that this function can fail when
   1001 /// attempting to fold instructions like loads and stores, which have no
   1002 /// constant expression form.
   1003 ///
   1004 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
   1005 /// information, due to only being passed an opcode and operands. Constant
   1006 /// folding using this function strips this information.
   1007 ///
   1008 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
   1009                                          ArrayRef<Constant *> Ops,
   1010                                          const DataLayout &DL,
   1011                                          const TargetLibraryInfo *TLI) {
   1012   // Handle easy binops first.
   1013   if (Instruction::isBinaryOp(Opcode)) {
   1014     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
   1015       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
   1016         return C;
   1017     }
   1018 
   1019     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
   1020   }
   1021 
   1022   switch (Opcode) {
   1023   default: return nullptr;
   1024   case Instruction::ICmp:
   1025   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
   1026   case Instruction::Call:
   1027     if (Function *F = dyn_cast<Function>(Ops.back()))
   1028       if (canConstantFoldCallTo(F))
   1029         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
   1030     return nullptr;
   1031   case Instruction::PtrToInt:
   1032     // If the input is a inttoptr, eliminate the pair.  This requires knowing
   1033     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
   1034     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
   1035       if (CE->getOpcode() == Instruction::IntToPtr) {
   1036         Constant *Input = CE->getOperand(0);
   1037         unsigned InWidth = Input->getType()->getScalarSizeInBits();
   1038         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
   1039         if (PtrWidth < InWidth) {
   1040           Constant *Mask =
   1041             ConstantInt::get(CE->getContext(),
   1042                              APInt::getLowBitsSet(InWidth, PtrWidth));
   1043           Input = ConstantExpr::getAnd(Input, Mask);
   1044         }
   1045         // Do a zext or trunc to get to the dest size.
   1046         return ConstantExpr::getIntegerCast(Input, DestTy, false);
   1047       }
   1048     }
   1049     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
   1050   case Instruction::IntToPtr:
   1051     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
   1052     // the int size is >= the ptr size and the address spaces are the same.
   1053     // This requires knowing the width of a pointer, so it can't be done in
   1054     // ConstantExpr::getCast.
   1055     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
   1056       if (CE->getOpcode() == Instruction::PtrToInt) {
   1057         Constant *SrcPtr = CE->getOperand(0);
   1058         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
   1059         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
   1060 
   1061         if (MidIntSize >= SrcPtrSize) {
   1062           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
   1063           if (SrcAS == DestTy->getPointerAddressSpace())
   1064             return FoldBitCast(CE->getOperand(0), DestTy, DL);
   1065         }
   1066       }
   1067     }
   1068 
   1069     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
   1070   case Instruction::Trunc:
   1071   case Instruction::ZExt:
   1072   case Instruction::SExt:
   1073   case Instruction::FPTrunc:
   1074   case Instruction::FPExt:
   1075   case Instruction::UIToFP:
   1076   case Instruction::SIToFP:
   1077   case Instruction::FPToUI:
   1078   case Instruction::FPToSI:
   1079   case Instruction::AddrSpaceCast:
   1080       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
   1081   case Instruction::BitCast:
   1082     return FoldBitCast(Ops[0], DestTy, DL);
   1083   case Instruction::Select:
   1084     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
   1085   case Instruction::ExtractElement:
   1086     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
   1087   case Instruction::InsertElement:
   1088     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
   1089   case Instruction::ShuffleVector:
   1090     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
   1091   case Instruction::GetElementPtr: {
   1092     Type *SrcTy = nullptr;
   1093     if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
   1094       return C;
   1095     if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
   1096       return C;
   1097 
   1098     return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
   1099   }
   1100   }
   1101 }
   1102 
   1103 /// Attempt to constant fold a compare
   1104 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
   1105 /// returns a constant expression of the specified operands.
   1106 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
   1107                                                 Constant *Ops0, Constant *Ops1,
   1108                                                 const DataLayout &DL,
   1109                                                 const TargetLibraryInfo *TLI) {
   1110   // fold: icmp (inttoptr x), null         -> icmp x, 0
   1111   // fold: icmp (ptrtoint x), 0            -> icmp x, null
   1112   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
   1113   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
   1114   //
   1115   // FIXME: The following comment is out of data and the DataLayout is here now.
   1116   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
   1117   // around to know if bit truncation is happening.
   1118   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
   1119     if (Ops1->isNullValue()) {
   1120       if (CE0->getOpcode() == Instruction::IntToPtr) {
   1121         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1122         // Convert the integer value to the right size to ensure we get the
   1123         // proper extension or truncation.
   1124         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1125                                                    IntPtrTy, false);
   1126         Constant *Null = Constant::getNullValue(C->getType());
   1127         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1128       }
   1129 
   1130       // Only do this transformation if the int is intptrty in size, otherwise
   1131       // there is a truncation or extension that we aren't modeling.
   1132       if (CE0->getOpcode() == Instruction::PtrToInt) {
   1133         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1134         if (CE0->getType() == IntPtrTy) {
   1135           Constant *C = CE0->getOperand(0);
   1136           Constant *Null = Constant::getNullValue(C->getType());
   1137           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
   1138         }
   1139       }
   1140     }
   1141 
   1142     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
   1143       if (CE0->getOpcode() == CE1->getOpcode()) {
   1144         if (CE0->getOpcode() == Instruction::IntToPtr) {
   1145           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
   1146 
   1147           // Convert the integer value to the right size to ensure we get the
   1148           // proper extension or truncation.
   1149           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
   1150                                                       IntPtrTy, false);
   1151           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
   1152                                                       IntPtrTy, false);
   1153           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
   1154         }
   1155 
   1156         // Only do this transformation if the int is intptrty in size, otherwise
   1157         // there is a truncation or extension that we aren't modeling.
   1158         if (CE0->getOpcode() == Instruction::PtrToInt) {
   1159           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
   1160           if (CE0->getType() == IntPtrTy &&
   1161               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
   1162             return ConstantFoldCompareInstOperands(
   1163                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
   1164           }
   1165         }
   1166       }
   1167     }
   1168 
   1169     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
   1170     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
   1171     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
   1172         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
   1173       Constant *LHS = ConstantFoldCompareInstOperands(
   1174           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
   1175       Constant *RHS = ConstantFoldCompareInstOperands(
   1176           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
   1177       unsigned OpC =
   1178         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
   1179       Constant *Ops[] = { LHS, RHS };
   1180       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
   1181     }
   1182   }
   1183 
   1184   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
   1185 }
   1186 
   1187 
   1188 /// Given a constant and a getelementptr constantexpr, return the constant value
   1189 /// being addressed by the constant expression, or null if something is funny
   1190 /// and we can't decide.
   1191 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
   1192                                                        ConstantExpr *CE) {
   1193   if (!CE->getOperand(1)->isNullValue())
   1194     return nullptr;  // Do not allow stepping over the value!
   1195 
   1196   // Loop over all of the operands, tracking down which value we are
   1197   // addressing.
   1198   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
   1199     C = C->getAggregateElement(CE->getOperand(i));
   1200     if (!C)
   1201       return nullptr;
   1202   }
   1203   return C;
   1204 }
   1205 
   1206 /// Given a constant and getelementptr indices (with an *implied* zero pointer
   1207 /// index that is not in the list), return the constant value being addressed by
   1208 /// a virtual load, or null if something is funny and we can't decide.
   1209 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
   1210                                                   ArrayRef<Constant*> Indices) {
   1211   // Loop over all of the operands, tracking down which value we are
   1212   // addressing.
   1213   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
   1214     C = C->getAggregateElement(Indices[i]);
   1215     if (!C)
   1216       return nullptr;
   1217   }
   1218   return C;
   1219 }
   1220 
   1221 
   1222 //===----------------------------------------------------------------------===//
   1223 //  Constant Folding for Calls
   1224 //
   1225 
   1226 /// Return true if it's even possible to fold a call to the specified function.
   1227 bool llvm::canConstantFoldCallTo(const Function *F) {
   1228   switch (F->getIntrinsicID()) {
   1229   case Intrinsic::fabs:
   1230   case Intrinsic::minnum:
   1231   case Intrinsic::maxnum:
   1232   case Intrinsic::log:
   1233   case Intrinsic::log2:
   1234   case Intrinsic::log10:
   1235   case Intrinsic::exp:
   1236   case Intrinsic::exp2:
   1237   case Intrinsic::floor:
   1238   case Intrinsic::ceil:
   1239   case Intrinsic::sqrt:
   1240   case Intrinsic::sin:
   1241   case Intrinsic::cos:
   1242   case Intrinsic::trunc:
   1243   case Intrinsic::rint:
   1244   case Intrinsic::nearbyint:
   1245   case Intrinsic::pow:
   1246   case Intrinsic::powi:
   1247   case Intrinsic::bswap:
   1248   case Intrinsic::ctpop:
   1249   case Intrinsic::ctlz:
   1250   case Intrinsic::cttz:
   1251   case Intrinsic::fma:
   1252   case Intrinsic::fmuladd:
   1253   case Intrinsic::copysign:
   1254   case Intrinsic::round:
   1255   case Intrinsic::sadd_with_overflow:
   1256   case Intrinsic::uadd_with_overflow:
   1257   case Intrinsic::ssub_with_overflow:
   1258   case Intrinsic::usub_with_overflow:
   1259   case Intrinsic::smul_with_overflow:
   1260   case Intrinsic::umul_with_overflow:
   1261   case Intrinsic::convert_from_fp16:
   1262   case Intrinsic::convert_to_fp16:
   1263   case Intrinsic::x86_sse_cvtss2si:
   1264   case Intrinsic::x86_sse_cvtss2si64:
   1265   case Intrinsic::x86_sse_cvttss2si:
   1266   case Intrinsic::x86_sse_cvttss2si64:
   1267   case Intrinsic::x86_sse2_cvtsd2si:
   1268   case Intrinsic::x86_sse2_cvtsd2si64:
   1269   case Intrinsic::x86_sse2_cvttsd2si:
   1270   case Intrinsic::x86_sse2_cvttsd2si64:
   1271     return true;
   1272   default:
   1273     return false;
   1274   case 0: break;
   1275   }
   1276 
   1277   if (!F->hasName())
   1278     return false;
   1279   StringRef Name = F->getName();
   1280 
   1281   // In these cases, the check of the length is required.  We don't want to
   1282   // return true for a name like "cos\0blah" which strcmp would return equal to
   1283   // "cos", but has length 8.
   1284   switch (Name[0]) {
   1285   default:
   1286     return false;
   1287   case 'a':
   1288     return Name == "acos" || Name == "asin" || Name == "atan" ||
   1289            Name == "atan2" || Name == "acosf" || Name == "asinf" ||
   1290            Name == "atanf" || Name == "atan2f";
   1291   case 'c':
   1292     return Name == "ceil" || Name == "cos" || Name == "cosh" ||
   1293            Name == "ceilf" || Name == "cosf" || Name == "coshf";
   1294   case 'e':
   1295     return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
   1296   case 'f':
   1297     return Name == "fabs" || Name == "floor" || Name == "fmod" ||
   1298            Name == "fabsf" || Name == "floorf" || Name == "fmodf";
   1299   case 'l':
   1300     return Name == "log" || Name == "log10" || Name == "logf" ||
   1301            Name == "log10f";
   1302   case 'p':
   1303     return Name == "pow" || Name == "powf";
   1304   case 's':
   1305     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
   1306            Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
   1307   case 't':
   1308     return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
   1309   }
   1310 }
   1311 
   1312 static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
   1313   if (Ty->isHalfTy()) {
   1314     APFloat APF(V);
   1315     bool unused;
   1316     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
   1317     return ConstantFP::get(Ty->getContext(), APF);
   1318   }
   1319   if (Ty->isFloatTy())
   1320     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
   1321   if (Ty->isDoubleTy())
   1322     return ConstantFP::get(Ty->getContext(), APFloat(V));
   1323   llvm_unreachable("Can only constant fold half/float/double");
   1324 
   1325 }
   1326 
   1327 namespace {
   1328 /// Clear the floating-point exception state.
   1329 static inline void llvm_fenv_clearexcept() {
   1330 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
   1331   feclearexcept(FE_ALL_EXCEPT);
   1332 #endif
   1333   errno = 0;
   1334 }
   1335 
   1336 /// Test if a floating-point exception was raised.
   1337 static inline bool llvm_fenv_testexcept() {
   1338   int errno_val = errno;
   1339   if (errno_val == ERANGE || errno_val == EDOM)
   1340     return true;
   1341 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
   1342   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
   1343     return true;
   1344 #endif
   1345   return false;
   1346 }
   1347 } // End namespace
   1348 
   1349 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
   1350                                 Type *Ty) {
   1351   llvm_fenv_clearexcept();
   1352   V = NativeFP(V);
   1353   if (llvm_fenv_testexcept()) {
   1354     llvm_fenv_clearexcept();
   1355     return nullptr;
   1356   }
   1357 
   1358   return GetConstantFoldFPValue(V, Ty);
   1359 }
   1360 
   1361 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
   1362                                       double V, double W, Type *Ty) {
   1363   llvm_fenv_clearexcept();
   1364   V = NativeFP(V, W);
   1365   if (llvm_fenv_testexcept()) {
   1366     llvm_fenv_clearexcept();
   1367     return nullptr;
   1368   }
   1369 
   1370   return GetConstantFoldFPValue(V, Ty);
   1371 }
   1372 
   1373 /// Attempt to fold an SSE floating point to integer conversion of a constant
   1374 /// floating point. If roundTowardZero is false, the default IEEE rounding is
   1375 /// used (toward nearest, ties to even). This matches the behavior of the
   1376 /// non-truncating SSE instructions in the default rounding mode. The desired
   1377 /// integer type Ty is used to select how many bits are available for the
   1378 /// result. Returns null if the conversion cannot be performed, otherwise
   1379 /// returns the Constant value resulting from the conversion.
   1380 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
   1381                                           bool roundTowardZero, Type *Ty) {
   1382   // All of these conversion intrinsics form an integer of at most 64bits.
   1383   unsigned ResultWidth = Ty->getIntegerBitWidth();
   1384   assert(ResultWidth <= 64 &&
   1385          "Can only constant fold conversions to 64 and 32 bit ints");
   1386 
   1387   uint64_t UIntVal;
   1388   bool isExact = false;
   1389   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
   1390                                               : APFloat::rmNearestTiesToEven;
   1391   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
   1392                                                   /*isSigned=*/true, mode,
   1393                                                   &isExact);
   1394   if (status != APFloat::opOK && status != APFloat::opInexact)
   1395     return nullptr;
   1396   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
   1397 }
   1398 
   1399 static double getValueAsDouble(ConstantFP *Op) {
   1400   Type *Ty = Op->getType();
   1401 
   1402   if (Ty->isFloatTy())
   1403     return Op->getValueAPF().convertToFloat();
   1404 
   1405   if (Ty->isDoubleTy())
   1406     return Op->getValueAPF().convertToDouble();
   1407 
   1408   bool unused;
   1409   APFloat APF = Op->getValueAPF();
   1410   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
   1411   return APF.convertToDouble();
   1412 }
   1413 
   1414 static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
   1415                                         Type *Ty, ArrayRef<Constant *> Operands,
   1416                                         const TargetLibraryInfo *TLI) {
   1417   if (Operands.size() == 1) {
   1418     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
   1419       if (IntrinsicID == Intrinsic::convert_to_fp16) {
   1420         APFloat Val(Op->getValueAPF());
   1421 
   1422         bool lost = false;
   1423         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
   1424 
   1425         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
   1426       }
   1427 
   1428       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1429         return nullptr;
   1430 
   1431       if (IntrinsicID == Intrinsic::round) {
   1432         APFloat V = Op->getValueAPF();
   1433         V.roundToIntegral(APFloat::rmNearestTiesToAway);
   1434         return ConstantFP::get(Ty->getContext(), V);
   1435       }
   1436 
   1437       if (IntrinsicID == Intrinsic::floor) {
   1438         APFloat V = Op->getValueAPF();
   1439         V.roundToIntegral(APFloat::rmTowardNegative);
   1440         return ConstantFP::get(Ty->getContext(), V);
   1441       }
   1442 
   1443       if (IntrinsicID == Intrinsic::ceil) {
   1444         APFloat V = Op->getValueAPF();
   1445         V.roundToIntegral(APFloat::rmTowardPositive);
   1446         return ConstantFP::get(Ty->getContext(), V);
   1447       }
   1448 
   1449       if (IntrinsicID == Intrinsic::trunc) {
   1450         APFloat V = Op->getValueAPF();
   1451         V.roundToIntegral(APFloat::rmTowardZero);
   1452         return ConstantFP::get(Ty->getContext(), V);
   1453       }
   1454 
   1455       if (IntrinsicID == Intrinsic::rint) {
   1456         APFloat V = Op->getValueAPF();
   1457         V.roundToIntegral(APFloat::rmNearestTiesToEven);
   1458         return ConstantFP::get(Ty->getContext(), V);
   1459       }
   1460 
   1461       if (IntrinsicID == Intrinsic::nearbyint) {
   1462         APFloat V = Op->getValueAPF();
   1463         V.roundToIntegral(APFloat::rmNearestTiesToEven);
   1464         return ConstantFP::get(Ty->getContext(), V);
   1465       }
   1466 
   1467       /// We only fold functions with finite arguments. Folding NaN and inf is
   1468       /// likely to be aborted with an exception anyway, and some host libms
   1469       /// have known errors raising exceptions.
   1470       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
   1471         return nullptr;
   1472 
   1473       /// Currently APFloat versions of these functions do not exist, so we use
   1474       /// the host native double versions.  Float versions are not called
   1475       /// directly but for all these it is true (float)(f((double)arg)) ==
   1476       /// f(arg).  Long double not supported yet.
   1477       double V = getValueAsDouble(Op);
   1478 
   1479       switch (IntrinsicID) {
   1480         default: break;
   1481         case Intrinsic::fabs:
   1482           return ConstantFoldFP(fabs, V, Ty);
   1483         case Intrinsic::log2:
   1484           return ConstantFoldFP(Log2, V, Ty);
   1485         case Intrinsic::log:
   1486           return ConstantFoldFP(log, V, Ty);
   1487         case Intrinsic::log10:
   1488           return ConstantFoldFP(log10, V, Ty);
   1489         case Intrinsic::exp:
   1490           return ConstantFoldFP(exp, V, Ty);
   1491         case Intrinsic::exp2:
   1492           return ConstantFoldFP(exp2, V, Ty);
   1493         case Intrinsic::sin:
   1494           return ConstantFoldFP(sin, V, Ty);
   1495         case Intrinsic::cos:
   1496           return ConstantFoldFP(cos, V, Ty);
   1497       }
   1498 
   1499       if (!TLI)
   1500         return nullptr;
   1501 
   1502       switch (Name[0]) {
   1503       case 'a':
   1504         if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
   1505             (Name == "acosf" && TLI->has(LibFunc::acosf)))
   1506           return ConstantFoldFP(acos, V, Ty);
   1507         else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
   1508                  (Name == "asinf" && TLI->has(LibFunc::asinf)))
   1509           return ConstantFoldFP(asin, V, Ty);
   1510         else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
   1511                  (Name == "atanf" && TLI->has(LibFunc::atanf)))
   1512           return ConstantFoldFP(atan, V, Ty);
   1513         break;
   1514       case 'c':
   1515         if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
   1516             (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
   1517           return ConstantFoldFP(ceil, V, Ty);
   1518         else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
   1519                  (Name == "cosf" && TLI->has(LibFunc::cosf)))
   1520           return ConstantFoldFP(cos, V, Ty);
   1521         else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
   1522                  (Name == "coshf" && TLI->has(LibFunc::coshf)))
   1523           return ConstantFoldFP(cosh, V, Ty);
   1524         break;
   1525       case 'e':
   1526         if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
   1527             (Name == "expf" && TLI->has(LibFunc::expf)))
   1528           return ConstantFoldFP(exp, V, Ty);
   1529         if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
   1530             (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
   1531           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
   1532           // C99 library.
   1533           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
   1534         break;
   1535       case 'f':
   1536         if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
   1537             (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
   1538           return ConstantFoldFP(fabs, V, Ty);
   1539         else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
   1540                  (Name == "floorf" && TLI->has(LibFunc::floorf)))
   1541           return ConstantFoldFP(floor, V, Ty);
   1542         break;
   1543       case 'l':
   1544         if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
   1545             (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
   1546           return ConstantFoldFP(log, V, Ty);
   1547         else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
   1548                  (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
   1549           return ConstantFoldFP(log10, V, Ty);
   1550         else if (IntrinsicID == Intrinsic::sqrt &&
   1551                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
   1552           if (V >= -0.0)
   1553             return ConstantFoldFP(sqrt, V, Ty);
   1554           else {
   1555             // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
   1556             // all guarantee or favor returning NaN - the square root of a
   1557             // negative number is not defined for the LLVM sqrt intrinsic.
   1558             // This is because the intrinsic should only be emitted in place of
   1559             // libm's sqrt function when using "no-nans-fp-math".
   1560             return UndefValue::get(Ty);
   1561           }
   1562         }
   1563         break;
   1564       case 's':
   1565         if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
   1566             (Name == "sinf" && TLI->has(LibFunc::sinf)))
   1567           return ConstantFoldFP(sin, V, Ty);
   1568         else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
   1569                  (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
   1570           return ConstantFoldFP(sinh, V, Ty);
   1571         else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
   1572                  (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
   1573           return ConstantFoldFP(sqrt, V, Ty);
   1574         break;
   1575       case 't':
   1576         if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
   1577             (Name == "tanf" && TLI->has(LibFunc::tanf)))
   1578           return ConstantFoldFP(tan, V, Ty);
   1579         else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
   1580                  (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
   1581           return ConstantFoldFP(tanh, V, Ty);
   1582         break;
   1583       default:
   1584         break;
   1585       }
   1586       return nullptr;
   1587     }
   1588 
   1589     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
   1590       switch (IntrinsicID) {
   1591       case Intrinsic::bswap:
   1592         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
   1593       case Intrinsic::ctpop:
   1594         return ConstantInt::get(Ty, Op->getValue().countPopulation());
   1595       case Intrinsic::convert_from_fp16: {
   1596         APFloat Val(APFloat::IEEEhalf, Op->getValue());
   1597 
   1598         bool lost = false;
   1599         APFloat::opStatus status = Val.convert(
   1600             Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
   1601 
   1602         // Conversion is always precise.
   1603         (void)status;
   1604         assert(status == APFloat::opOK && !lost &&
   1605                "Precision lost during fp16 constfolding");
   1606 
   1607         return ConstantFP::get(Ty->getContext(), Val);
   1608       }
   1609       default:
   1610         return nullptr;
   1611       }
   1612     }
   1613 
   1614     // Support ConstantVector in case we have an Undef in the top.
   1615     if (isa<ConstantVector>(Operands[0]) ||
   1616         isa<ConstantDataVector>(Operands[0])) {
   1617       Constant *Op = cast<Constant>(Operands[0]);
   1618       switch (IntrinsicID) {
   1619       default: break;
   1620       case Intrinsic::x86_sse_cvtss2si:
   1621       case Intrinsic::x86_sse_cvtss2si64:
   1622       case Intrinsic::x86_sse2_cvtsd2si:
   1623       case Intrinsic::x86_sse2_cvtsd2si64:
   1624         if (ConstantFP *FPOp =
   1625               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1626           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1627                                           /*roundTowardZero=*/false, Ty);
   1628       case Intrinsic::x86_sse_cvttss2si:
   1629       case Intrinsic::x86_sse_cvttss2si64:
   1630       case Intrinsic::x86_sse2_cvttsd2si:
   1631       case Intrinsic::x86_sse2_cvttsd2si64:
   1632         if (ConstantFP *FPOp =
   1633               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
   1634           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
   1635                                           /*roundTowardZero=*/true, Ty);
   1636       }
   1637     }
   1638 
   1639     if (isa<UndefValue>(Operands[0])) {
   1640       if (IntrinsicID == Intrinsic::bswap)
   1641         return Operands[0];
   1642       return nullptr;
   1643     }
   1644 
   1645     return nullptr;
   1646   }
   1647 
   1648   if (Operands.size() == 2) {
   1649     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1650       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
   1651         return nullptr;
   1652       double Op1V = getValueAsDouble(Op1);
   1653 
   1654       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1655         if (Op2->getType() != Op1->getType())
   1656           return nullptr;
   1657 
   1658         double Op2V = getValueAsDouble(Op2);
   1659         if (IntrinsicID == Intrinsic::pow) {
   1660           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1661         }
   1662         if (IntrinsicID == Intrinsic::copysign) {
   1663           APFloat V1 = Op1->getValueAPF();
   1664           APFloat V2 = Op2->getValueAPF();
   1665           V1.copySign(V2);
   1666           return ConstantFP::get(Ty->getContext(), V1);
   1667         }
   1668 
   1669         if (IntrinsicID == Intrinsic::minnum) {
   1670           const APFloat &C1 = Op1->getValueAPF();
   1671           const APFloat &C2 = Op2->getValueAPF();
   1672           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
   1673         }
   1674 
   1675         if (IntrinsicID == Intrinsic::maxnum) {
   1676           const APFloat &C1 = Op1->getValueAPF();
   1677           const APFloat &C2 = Op2->getValueAPF();
   1678           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
   1679         }
   1680 
   1681         if (!TLI)
   1682           return nullptr;
   1683         if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
   1684             (Name == "powf" && TLI->has(LibFunc::powf)))
   1685           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
   1686         if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
   1687             (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
   1688           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
   1689         if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
   1690             (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
   1691           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
   1692       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
   1693         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
   1694           return ConstantFP::get(Ty->getContext(),
   1695                                  APFloat((float)std::pow((float)Op1V,
   1696                                                  (int)Op2C->getZExtValue())));
   1697         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
   1698           return ConstantFP::get(Ty->getContext(),
   1699                                  APFloat((float)std::pow((float)Op1V,
   1700                                                  (int)Op2C->getZExtValue())));
   1701         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
   1702           return ConstantFP::get(Ty->getContext(),
   1703                                  APFloat((double)std::pow((double)Op1V,
   1704                                                    (int)Op2C->getZExtValue())));
   1705       }
   1706       return nullptr;
   1707     }
   1708 
   1709     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
   1710       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
   1711         switch (IntrinsicID) {
   1712         default: break;
   1713         case Intrinsic::sadd_with_overflow:
   1714         case Intrinsic::uadd_with_overflow:
   1715         case Intrinsic::ssub_with_overflow:
   1716         case Intrinsic::usub_with_overflow:
   1717         case Intrinsic::smul_with_overflow:
   1718         case Intrinsic::umul_with_overflow: {
   1719           APInt Res;
   1720           bool Overflow;
   1721           switch (IntrinsicID) {
   1722           default: llvm_unreachable("Invalid case");
   1723           case Intrinsic::sadd_with_overflow:
   1724             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
   1725             break;
   1726           case Intrinsic::uadd_with_overflow:
   1727             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
   1728             break;
   1729           case Intrinsic::ssub_with_overflow:
   1730             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
   1731             break;
   1732           case Intrinsic::usub_with_overflow:
   1733             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
   1734             break;
   1735           case Intrinsic::smul_with_overflow:
   1736             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
   1737             break;
   1738           case Intrinsic::umul_with_overflow:
   1739             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
   1740             break;
   1741           }
   1742           Constant *Ops[] = {
   1743             ConstantInt::get(Ty->getContext(), Res),
   1744             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
   1745           };
   1746           return ConstantStruct::get(cast<StructType>(Ty), Ops);
   1747         }
   1748         case Intrinsic::cttz:
   1749           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
   1750             return UndefValue::get(Ty);
   1751           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
   1752         case Intrinsic::ctlz:
   1753           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
   1754             return UndefValue::get(Ty);
   1755           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
   1756         }
   1757       }
   1758 
   1759       return nullptr;
   1760     }
   1761     return nullptr;
   1762   }
   1763 
   1764   if (Operands.size() != 3)
   1765     return nullptr;
   1766 
   1767   if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
   1768     if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
   1769       if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
   1770         switch (IntrinsicID) {
   1771         default: break;
   1772         case Intrinsic::fma:
   1773         case Intrinsic::fmuladd: {
   1774           APFloat V = Op1->getValueAPF();
   1775           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
   1776                                                    Op3->getValueAPF(),
   1777                                                    APFloat::rmNearestTiesToEven);
   1778           if (s != APFloat::opInvalidOp)
   1779             return ConstantFP::get(Ty->getContext(), V);
   1780 
   1781           return nullptr;
   1782         }
   1783         }
   1784       }
   1785     }
   1786   }
   1787 
   1788   return nullptr;
   1789 }
   1790 
   1791 static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
   1792                                         VectorType *VTy,
   1793                                         ArrayRef<Constant *> Operands,
   1794                                         const TargetLibraryInfo *TLI) {
   1795   SmallVector<Constant *, 4> Result(VTy->getNumElements());
   1796   SmallVector<Constant *, 4> Lane(Operands.size());
   1797   Type *Ty = VTy->getElementType();
   1798 
   1799   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
   1800     // Gather a column of constants.
   1801     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
   1802       Constant *Agg = Operands[J]->getAggregateElement(I);
   1803       if (!Agg)
   1804         return nullptr;
   1805 
   1806       Lane[J] = Agg;
   1807     }
   1808 
   1809     // Use the regular scalar folding to simplify this column.
   1810     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
   1811     if (!Folded)
   1812       return nullptr;
   1813     Result[I] = Folded;
   1814   }
   1815 
   1816   return ConstantVector::get(Result);
   1817 }
   1818 
   1819 /// Attempt to constant fold a call to the specified function
   1820 /// with the specified arguments, returning null if unsuccessful.
   1821 Constant *
   1822 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
   1823                        const TargetLibraryInfo *TLI) {
   1824   if (!F->hasName())
   1825     return nullptr;
   1826   StringRef Name = F->getName();
   1827 
   1828   Type *Ty = F->getReturnType();
   1829 
   1830   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
   1831     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
   1832 
   1833   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
   1834 }
   1835