Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGOpenMPRuntime.h"
     20 #include "CGRecordLayout.h"
     21 #include "CodeGenModule.h"
     22 #include "TargetInfo.h"
     23 #include "clang/AST/ASTContext.h"
     24 #include "clang/AST/Attr.h"
     25 #include "clang/AST/DeclObjC.h"
     26 #include "clang/Frontend/CodeGenOptions.h"
     27 #include "llvm/ADT/Hashing.h"
     28 #include "llvm/ADT/StringExtras.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 #include "llvm/IR/LLVMContext.h"
     32 #include "llvm/IR/MDBuilder.h"
     33 #include "llvm/Support/ConvertUTF.h"
     34 #include "llvm/Support/MathExtras.h"
     35 
     36 using namespace clang;
     37 using namespace CodeGen;
     38 
     39 //===--------------------------------------------------------------------===//
     40 //                        Miscellaneous Helper Methods
     41 //===--------------------------------------------------------------------===//
     42 
     43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     44   unsigned addressSpace =
     45     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     46 
     47   llvm::PointerType *destType = Int8PtrTy;
     48   if (addressSpace)
     49     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     50 
     51   if (value->getType() == destType) return value;
     52   return Builder.CreateBitCast(value, destType);
     53 }
     54 
     55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     56 /// block.
     57 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
     58                                           const Twine &Name) {
     59   auto Alloca = CreateTempAlloca(Ty, Name);
     60   Alloca->setAlignment(Align.getQuantity());
     61   return Address(Alloca, Align);
     62 }
     63 
     64 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     65 /// block.
     66 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     67                                                     const Twine &Name) {
     68   if (!Builder.isNamePreserving())
     69     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
     70   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
     71 }
     72 
     73 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
     74 /// default alignment of the corresponding LLVM type, which is *not*
     75 /// guaranteed to be related in any way to the expected alignment of
     76 /// an AST type that might have been lowered to Ty.
     77 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
     78                                                       const Twine &Name) {
     79   CharUnits Align =
     80     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
     81   return CreateTempAlloca(Ty, Align, Name);
     82 }
     83 
     84 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
     85   assert(isa<llvm::AllocaInst>(Var.getPointer()));
     86   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
     87   Store->setAlignment(Var.getAlignment().getQuantity());
     88   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     89   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
     90 }
     91 
     92 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
     93   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     94   return CreateTempAlloca(ConvertType(Ty), Align, Name);
     95 }
     96 
     97 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
     98   // FIXME: Should we prefer the preferred type alignment here?
     99   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
    100 }
    101 
    102 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
    103                                        const Twine &Name) {
    104   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
    105 }
    106 
    107 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
    108 /// expression and compare the result against zero, returning an Int1Ty value.
    109 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
    110   PGO.setCurrentStmt(E);
    111   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
    112     llvm::Value *MemPtr = EmitScalarExpr(E);
    113     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
    114   }
    115 
    116   QualType BoolTy = getContext().BoolTy;
    117   SourceLocation Loc = E->getExprLoc();
    118   if (!E->getType()->isAnyComplexType())
    119     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
    120 
    121   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
    122                                        Loc);
    123 }
    124 
    125 /// EmitIgnoredExpr - Emit code to compute the specified expression,
    126 /// ignoring the result.
    127 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
    128   if (E->isRValue())
    129     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
    130 
    131   // Just emit it as an l-value and drop the result.
    132   EmitLValue(E);
    133 }
    134 
    135 /// EmitAnyExpr - Emit code to compute the specified expression which
    136 /// can have any type.  The result is returned as an RValue struct.
    137 /// If this is an aggregate expression, AggSlot indicates where the
    138 /// result should be returned.
    139 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
    140                                     AggValueSlot aggSlot,
    141                                     bool ignoreResult) {
    142   switch (getEvaluationKind(E->getType())) {
    143   case TEK_Scalar:
    144     return RValue::get(EmitScalarExpr(E, ignoreResult));
    145   case TEK_Complex:
    146     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
    147   case TEK_Aggregate:
    148     if (!ignoreResult && aggSlot.isIgnored())
    149       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    150     EmitAggExpr(E, aggSlot);
    151     return aggSlot.asRValue();
    152   }
    153   llvm_unreachable("bad evaluation kind");
    154 }
    155 
    156 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    157 /// always be accessible even if no aggregate location is provided.
    158 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    159   AggValueSlot AggSlot = AggValueSlot::ignored();
    160 
    161   if (hasAggregateEvaluationKind(E->getType()))
    162     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    163   return EmitAnyExpr(E, AggSlot);
    164 }
    165 
    166 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    167 /// location.
    168 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    169                                        Address Location,
    170                                        Qualifiers Quals,
    171                                        bool IsInit) {
    172   // FIXME: This function should take an LValue as an argument.
    173   switch (getEvaluationKind(E->getType())) {
    174   case TEK_Complex:
    175     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
    176                               /*isInit*/ false);
    177     return;
    178 
    179   case TEK_Aggregate: {
    180     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
    181                                          AggValueSlot::IsDestructed_t(IsInit),
    182                                          AggValueSlot::DoesNotNeedGCBarriers,
    183                                          AggValueSlot::IsAliased_t(!IsInit)));
    184     return;
    185   }
    186 
    187   case TEK_Scalar: {
    188     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    189     LValue LV = MakeAddrLValue(Location, E->getType());
    190     EmitStoreThroughLValue(RV, LV);
    191     return;
    192   }
    193   }
    194   llvm_unreachable("bad evaluation kind");
    195 }
    196 
    197 static void
    198 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
    199                      const Expr *E, Address ReferenceTemporary) {
    200   // Objective-C++ ARC:
    201   //   If we are binding a reference to a temporary that has ownership, we
    202   //   need to perform retain/release operations on the temporary.
    203   //
    204   // FIXME: This should be looking at E, not M.
    205   if (auto Lifetime = M->getType().getObjCLifetime()) {
    206     switch (Lifetime) {
    207     case Qualifiers::OCL_None:
    208     case Qualifiers::OCL_ExplicitNone:
    209       // Carry on to normal cleanup handling.
    210       break;
    211 
    212     case Qualifiers::OCL_Autoreleasing:
    213       // Nothing to do; cleaned up by an autorelease pool.
    214       return;
    215 
    216     case Qualifiers::OCL_Strong:
    217     case Qualifiers::OCL_Weak:
    218       switch (StorageDuration Duration = M->getStorageDuration()) {
    219       case SD_Static:
    220         // Note: we intentionally do not register a cleanup to release
    221         // the object on program termination.
    222         return;
    223 
    224       case SD_Thread:
    225         // FIXME: We should probably register a cleanup in this case.
    226         return;
    227 
    228       case SD_Automatic:
    229       case SD_FullExpression:
    230         CodeGenFunction::Destroyer *Destroy;
    231         CleanupKind CleanupKind;
    232         if (Lifetime == Qualifiers::OCL_Strong) {
    233           const ValueDecl *VD = M->getExtendingDecl();
    234           bool Precise =
    235               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    236           CleanupKind = CGF.getARCCleanupKind();
    237           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
    238                             : &CodeGenFunction::destroyARCStrongImprecise;
    239         } else {
    240           // __weak objects always get EH cleanups; otherwise, exceptions
    241           // could cause really nasty crashes instead of mere leaks.
    242           CleanupKind = NormalAndEHCleanup;
    243           Destroy = &CodeGenFunction::destroyARCWeak;
    244         }
    245         if (Duration == SD_FullExpression)
    246           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
    247                           M->getType(), *Destroy,
    248                           CleanupKind & EHCleanup);
    249         else
    250           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
    251                                           M->getType(),
    252                                           *Destroy, CleanupKind & EHCleanup);
    253         return;
    254 
    255       case SD_Dynamic:
    256         llvm_unreachable("temporary cannot have dynamic storage duration");
    257       }
    258       llvm_unreachable("unknown storage duration");
    259     }
    260   }
    261 
    262   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
    263   if (const RecordType *RT =
    264           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    265     // Get the destructor for the reference temporary.
    266     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    267     if (!ClassDecl->hasTrivialDestructor())
    268       ReferenceTemporaryDtor = ClassDecl->getDestructor();
    269   }
    270 
    271   if (!ReferenceTemporaryDtor)
    272     return;
    273 
    274   // Call the destructor for the temporary.
    275   switch (M->getStorageDuration()) {
    276   case SD_Static:
    277   case SD_Thread: {
    278     llvm::Constant *CleanupFn;
    279     llvm::Constant *CleanupArg;
    280     if (E->getType()->isArrayType()) {
    281       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
    282           ReferenceTemporary, E->getType(),
    283           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
    284           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
    285       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
    286     } else {
    287       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
    288                                                StructorType::Complete);
    289       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
    290     }
    291     CGF.CGM.getCXXABI().registerGlobalDtor(
    292         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
    293     break;
    294   }
    295 
    296   case SD_FullExpression:
    297     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
    298                     CodeGenFunction::destroyCXXObject,
    299                     CGF.getLangOpts().Exceptions);
    300     break;
    301 
    302   case SD_Automatic:
    303     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
    304                                     ReferenceTemporary, E->getType(),
    305                                     CodeGenFunction::destroyCXXObject,
    306                                     CGF.getLangOpts().Exceptions);
    307     break;
    308 
    309   case SD_Dynamic:
    310     llvm_unreachable("temporary cannot have dynamic storage duration");
    311   }
    312 }
    313 
    314 static Address
    315 createReferenceTemporary(CodeGenFunction &CGF,
    316                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
    317   switch (M->getStorageDuration()) {
    318   case SD_FullExpression:
    319   case SD_Automatic: {
    320     // If we have a constant temporary array or record try to promote it into a
    321     // constant global under the same rules a normal constant would've been
    322     // promoted. This is easier on the optimizer and generally emits fewer
    323     // instructions.
    324     QualType Ty = Inner->getType();
    325     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
    326         (Ty->isArrayType() || Ty->isRecordType()) &&
    327         CGF.CGM.isTypeConstant(Ty, true))
    328       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
    329         auto *GV = new llvm::GlobalVariable(
    330             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
    331             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
    332         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
    333         GV->setAlignment(alignment.getQuantity());
    334         // FIXME: Should we put the new global into a COMDAT?
    335         return Address(GV, alignment);
    336       }
    337     return CGF.CreateMemTemp(Ty, "ref.tmp");
    338   }
    339   case SD_Thread:
    340   case SD_Static:
    341     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
    342 
    343   case SD_Dynamic:
    344     llvm_unreachable("temporary can't have dynamic storage duration");
    345   }
    346   llvm_unreachable("unknown storage duration");
    347 }
    348 
    349 LValue CodeGenFunction::
    350 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
    351   const Expr *E = M->GetTemporaryExpr();
    352 
    353     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
    354     // as that will cause the lifetime adjustment to be lost for ARC
    355   auto ownership = M->getType().getObjCLifetime();
    356   if (ownership != Qualifiers::OCL_None &&
    357       ownership != Qualifiers::OCL_ExplicitNone) {
    358     Address Object = createReferenceTemporary(*this, M, E);
    359     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
    360       Object = Address(llvm::ConstantExpr::getBitCast(Var,
    361                            ConvertTypeForMem(E->getType())
    362                              ->getPointerTo(Object.getAddressSpace())),
    363                        Object.getAlignment());
    364       // We should not have emitted the initializer for this temporary as a
    365       // constant.
    366       assert(!Var->hasInitializer());
    367       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    368     }
    369     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
    370                                        AlignmentSource::Decl);
    371 
    372     switch (getEvaluationKind(E->getType())) {
    373     default: llvm_unreachable("expected scalar or aggregate expression");
    374     case TEK_Scalar:
    375       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
    376       break;
    377     case TEK_Aggregate: {
    378       EmitAggExpr(E, AggValueSlot::forAddr(Object,
    379                                            E->getType().getQualifiers(),
    380                                            AggValueSlot::IsDestructed,
    381                                            AggValueSlot::DoesNotNeedGCBarriers,
    382                                            AggValueSlot::IsNotAliased));
    383       break;
    384     }
    385     }
    386 
    387     pushTemporaryCleanup(*this, M, E, Object);
    388     return RefTempDst;
    389   }
    390 
    391   SmallVector<const Expr *, 2> CommaLHSs;
    392   SmallVector<SubobjectAdjustment, 2> Adjustments;
    393   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
    394 
    395   for (const auto &Ignored : CommaLHSs)
    396     EmitIgnoredExpr(Ignored);
    397 
    398   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
    399     if (opaque->getType()->isRecordType()) {
    400       assert(Adjustments.empty());
    401       return EmitOpaqueValueLValue(opaque);
    402     }
    403   }
    404 
    405   // Create and initialize the reference temporary.
    406   Address Object = createReferenceTemporary(*this, M, E);
    407   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
    408     Object = Address(llvm::ConstantExpr::getBitCast(
    409         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
    410                      Object.getAlignment());
    411     // If the temporary is a global and has a constant initializer or is a
    412     // constant temporary that we promoted to a global, we may have already
    413     // initialized it.
    414     if (!Var->hasInitializer()) {
    415       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    416       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    417     }
    418   } else {
    419     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    420   }
    421   pushTemporaryCleanup(*this, M, E, Object);
    422 
    423   // Perform derived-to-base casts and/or field accesses, to get from the
    424   // temporary object we created (and, potentially, for which we extended
    425   // the lifetime) to the subobject we're binding the reference to.
    426   for (unsigned I = Adjustments.size(); I != 0; --I) {
    427     SubobjectAdjustment &Adjustment = Adjustments[I-1];
    428     switch (Adjustment.Kind) {
    429     case SubobjectAdjustment::DerivedToBaseAdjustment:
    430       Object =
    431           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
    432                                 Adjustment.DerivedToBase.BasePath->path_begin(),
    433                                 Adjustment.DerivedToBase.BasePath->path_end(),
    434                                 /*NullCheckValue=*/ false, E->getExprLoc());
    435       break;
    436 
    437     case SubobjectAdjustment::FieldAdjustment: {
    438       LValue LV = MakeAddrLValue(Object, E->getType(),
    439                                  AlignmentSource::Decl);
    440       LV = EmitLValueForField(LV, Adjustment.Field);
    441       assert(LV.isSimple() &&
    442              "materialized temporary field is not a simple lvalue");
    443       Object = LV.getAddress();
    444       break;
    445     }
    446 
    447     case SubobjectAdjustment::MemberPointerAdjustment: {
    448       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
    449       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
    450                                                Adjustment.Ptr.MPT);
    451       break;
    452     }
    453     }
    454   }
    455 
    456   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
    457 }
    458 
    459 RValue
    460 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
    461   // Emit the expression as an lvalue.
    462   LValue LV = EmitLValue(E);
    463   assert(LV.isSimple());
    464   llvm::Value *Value = LV.getPointer();
    465 
    466   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
    467     // C++11 [dcl.ref]p5 (as amended by core issue 453):
    468     //   If a glvalue to which a reference is directly bound designates neither
    469     //   an existing object or function of an appropriate type nor a region of
    470     //   storage of suitable size and alignment to contain an object of the
    471     //   reference's type, the behavior is undefined.
    472     QualType Ty = E->getType();
    473     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
    474   }
    475 
    476   return RValue::get(Value);
    477 }
    478 
    479 
    480 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    481 /// input field number being accessed.
    482 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    483                                              const llvm::Constant *Elts) {
    484   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
    485       ->getZExtValue();
    486 }
    487 
    488 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
    489 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
    490                                     llvm::Value *High) {
    491   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
    492   llvm::Value *K47 = Builder.getInt64(47);
    493   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
    494   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
    495   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
    496   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
    497   return Builder.CreateMul(B1, KMul);
    498 }
    499 
    500 bool CodeGenFunction::sanitizePerformTypeCheck() const {
    501   return SanOpts.has(SanitizerKind::Null) |
    502          SanOpts.has(SanitizerKind::Alignment) |
    503          SanOpts.has(SanitizerKind::ObjectSize) |
    504          SanOpts.has(SanitizerKind::Vptr);
    505 }
    506 
    507 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
    508                                     llvm::Value *Ptr, QualType Ty,
    509                                     CharUnits Alignment, bool SkipNullCheck) {
    510   if (!sanitizePerformTypeCheck())
    511     return;
    512 
    513   // Don't check pointers outside the default address space. The null check
    514   // isn't correct, the object-size check isn't supported by LLVM, and we can't
    515   // communicate the addresses to the runtime handler for the vptr check.
    516   if (Ptr->getType()->getPointerAddressSpace())
    517     return;
    518 
    519   SanitizerScope SanScope(this);
    520 
    521   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
    522   llvm::BasicBlock *Done = nullptr;
    523 
    524   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
    525                            TCK == TCK_UpcastToVirtualBase;
    526   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
    527       !SkipNullCheck) {
    528     // The glvalue must not be an empty glvalue.
    529     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
    530 
    531     if (AllowNullPointers) {
    532       // When performing pointer casts, it's OK if the value is null.
    533       // Skip the remaining checks in that case.
    534       Done = createBasicBlock("null");
    535       llvm::BasicBlock *Rest = createBasicBlock("not.null");
    536       Builder.CreateCondBr(IsNonNull, Rest, Done);
    537       EmitBlock(Rest);
    538     } else {
    539       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
    540     }
    541   }
    542 
    543   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
    544     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
    545 
    546     // The glvalue must refer to a large enough storage region.
    547     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
    548     //        to check this.
    549     // FIXME: Get object address space
    550     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
    551     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
    552     llvm::Value *Min = Builder.getFalse();
    553     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
    554     llvm::Value *LargeEnough =
    555         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
    556                               llvm::ConstantInt::get(IntPtrTy, Size));
    557     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
    558   }
    559 
    560   uint64_t AlignVal = 0;
    561 
    562   if (SanOpts.has(SanitizerKind::Alignment)) {
    563     AlignVal = Alignment.getQuantity();
    564     if (!Ty->isIncompleteType() && !AlignVal)
    565       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
    566 
    567     // The glvalue must be suitably aligned.
    568     if (AlignVal) {
    569       llvm::Value *Align =
    570           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
    571                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
    572       llvm::Value *Aligned =
    573         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
    574       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
    575     }
    576   }
    577 
    578   if (Checks.size() > 0) {
    579     llvm::Constant *StaticData[] = {
    580       EmitCheckSourceLocation(Loc),
    581       EmitCheckTypeDescriptor(Ty),
    582       llvm::ConstantInt::get(SizeTy, AlignVal),
    583       llvm::ConstantInt::get(Int8Ty, TCK)
    584     };
    585     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
    586   }
    587 
    588   // If possible, check that the vptr indicates that there is a subobject of
    589   // type Ty at offset zero within this object.
    590   //
    591   // C++11 [basic.life]p5,6:
    592   //   [For storage which does not refer to an object within its lifetime]
    593   //   The program has undefined behavior if:
    594   //    -- the [pointer or glvalue] is used to access a non-static data member
    595   //       or call a non-static member function
    596   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    597   if (SanOpts.has(SanitizerKind::Vptr) &&
    598       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
    599        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
    600        TCK == TCK_UpcastToVirtualBase) &&
    601       RD && RD->hasDefinition() && RD->isDynamicClass()) {
    602     // Compute a hash of the mangled name of the type.
    603     //
    604     // FIXME: This is not guaranteed to be deterministic! Move to a
    605     //        fingerprinting mechanism once LLVM provides one. For the time
    606     //        being the implementation happens to be deterministic.
    607     SmallString<64> MangledName;
    608     llvm::raw_svector_ostream Out(MangledName);
    609     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
    610                                                      Out);
    611 
    612     // Blacklist based on the mangled type.
    613     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
    614             Out.str())) {
    615       llvm::hash_code TypeHash = hash_value(Out.str());
    616 
    617       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
    618       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
    619       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
    620       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
    621       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
    622       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
    623 
    624       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
    625       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
    626 
    627       // Look the hash up in our cache.
    628       const int CacheSize = 128;
    629       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
    630       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
    631                                                      "__ubsan_vptr_type_cache");
    632       llvm::Value *Slot = Builder.CreateAnd(Hash,
    633                                             llvm::ConstantInt::get(IntPtrTy,
    634                                                                    CacheSize-1));
    635       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
    636       llvm::Value *CacheVal =
    637         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
    638                                   getPointerAlign());
    639 
    640       // If the hash isn't in the cache, call a runtime handler to perform the
    641       // hard work of checking whether the vptr is for an object of the right
    642       // type. This will either fill in the cache and return, or produce a
    643       // diagnostic.
    644       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
    645       llvm::Constant *StaticData[] = {
    646         EmitCheckSourceLocation(Loc),
    647         EmitCheckTypeDescriptor(Ty),
    648         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
    649         llvm::ConstantInt::get(Int8Ty, TCK)
    650       };
    651       llvm::Value *DynamicData[] = { Ptr, Hash };
    652       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
    653                 "dynamic_type_cache_miss", StaticData, DynamicData);
    654     }
    655   }
    656 
    657   if (Done) {
    658     Builder.CreateBr(Done);
    659     EmitBlock(Done);
    660   }
    661 }
    662 
    663 /// Determine whether this expression refers to a flexible array member in a
    664 /// struct. We disable array bounds checks for such members.
    665 static bool isFlexibleArrayMemberExpr(const Expr *E) {
    666   // For compatibility with existing code, we treat arrays of length 0 or
    667   // 1 as flexible array members.
    668   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
    669   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
    670     if (CAT->getSize().ugt(1))
    671       return false;
    672   } else if (!isa<IncompleteArrayType>(AT))
    673     return false;
    674 
    675   E = E->IgnoreParens();
    676 
    677   // A flexible array member must be the last member in the class.
    678   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
    679     // FIXME: If the base type of the member expr is not FD->getParent(),
    680     // this should not be treated as a flexible array member access.
    681     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    682       RecordDecl::field_iterator FI(
    683           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
    684       return ++FI == FD->getParent()->field_end();
    685     }
    686   }
    687 
    688   return false;
    689 }
    690 
    691 /// If Base is known to point to the start of an array, return the length of
    692 /// that array. Return 0 if the length cannot be determined.
    693 static llvm::Value *getArrayIndexingBound(
    694     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
    695   // For the vector indexing extension, the bound is the number of elements.
    696   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    697     IndexedType = Base->getType();
    698     return CGF.Builder.getInt32(VT->getNumElements());
    699   }
    700 
    701   Base = Base->IgnoreParens();
    702 
    703   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
    704     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
    705         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
    706       IndexedType = CE->getSubExpr()->getType();
    707       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
    708       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
    709         return CGF.Builder.getInt(CAT->getSize());
    710       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
    711         return CGF.getVLASize(VAT).first;
    712     }
    713   }
    714 
    715   return nullptr;
    716 }
    717 
    718 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
    719                                       llvm::Value *Index, QualType IndexType,
    720                                       bool Accessed) {
    721   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
    722          "should not be called unless adding bounds checks");
    723   SanitizerScope SanScope(this);
    724 
    725   QualType IndexedType;
    726   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
    727   if (!Bound)
    728     return;
    729 
    730   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
    731   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
    732   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
    733 
    734   llvm::Constant *StaticData[] = {
    735     EmitCheckSourceLocation(E->getExprLoc()),
    736     EmitCheckTypeDescriptor(IndexedType),
    737     EmitCheckTypeDescriptor(IndexType)
    738   };
    739   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
    740                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
    741   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
    742             StaticData, Index);
    743 }
    744 
    745 
    746 CodeGenFunction::ComplexPairTy CodeGenFunction::
    747 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    748                          bool isInc, bool isPre) {
    749   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
    750 
    751   llvm::Value *NextVal;
    752   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    753     uint64_t AmountVal = isInc ? 1 : -1;
    754     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    755 
    756     // Add the inc/dec to the real part.
    757     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    758   } else {
    759     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    760     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    761     if (!isInc)
    762       FVal.changeSign();
    763     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    764 
    765     // Add the inc/dec to the real part.
    766     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    767   }
    768 
    769   ComplexPairTy IncVal(NextVal, InVal.second);
    770 
    771   // Store the updated result through the lvalue.
    772   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
    773 
    774   // If this is a postinc, return the value read from memory, otherwise use the
    775   // updated value.
    776   return isPre ? IncVal : InVal;
    777 }
    778 
    779 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
    780                                              CodeGenFunction *CGF) {
    781   // Bind VLAs in the cast type.
    782   if (CGF && E->getType()->isVariablyModifiedType())
    783     CGF->EmitVariablyModifiedType(E->getType());
    784 
    785   if (CGDebugInfo *DI = getModuleDebugInfo())
    786     DI->EmitExplicitCastType(E->getType());
    787 }
    788 
    789 //===----------------------------------------------------------------------===//
    790 //                         LValue Expression Emission
    791 //===----------------------------------------------------------------------===//
    792 
    793 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
    794 /// derive a more accurate bound on the alignment of the pointer.
    795 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
    796                                                   AlignmentSource  *Source) {
    797   // We allow this with ObjC object pointers because of fragile ABIs.
    798   assert(E->getType()->isPointerType() ||
    799          E->getType()->isObjCObjectPointerType());
    800   E = E->IgnoreParens();
    801 
    802   // Casts:
    803   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
    804     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
    805       CGM.EmitExplicitCastExprType(ECE, this);
    806 
    807     switch (CE->getCastKind()) {
    808     // Non-converting casts (but not C's implicit conversion from void*).
    809     case CK_BitCast:
    810     case CK_NoOp:
    811       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
    812         if (PtrTy->getPointeeType()->isVoidType())
    813           break;
    814 
    815         AlignmentSource InnerSource;
    816         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
    817         if (Source) *Source = InnerSource;
    818 
    819         // If this is an explicit bitcast, and the source l-value is
    820         // opaque, honor the alignment of the casted-to type.
    821         if (isa<ExplicitCastExpr>(CE) &&
    822             InnerSource != AlignmentSource::Decl) {
    823           Addr = Address(Addr.getPointer(),
    824                          getNaturalPointeeTypeAlignment(E->getType(), Source));
    825         }
    826 
    827         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
    828           if (auto PT = E->getType()->getAs<PointerType>())
    829             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
    830                                       /*MayBeNull=*/true,
    831                                       CodeGenFunction::CFITCK_UnrelatedCast,
    832                                       CE->getLocStart());
    833         }
    834 
    835         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
    836       }
    837       break;
    838 
    839     // Array-to-pointer decay.
    840     case CK_ArrayToPointerDecay:
    841       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
    842 
    843     // Derived-to-base conversions.
    844     case CK_UncheckedDerivedToBase:
    845     case CK_DerivedToBase: {
    846       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
    847       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
    848       return GetAddressOfBaseClass(Addr, Derived,
    849                                    CE->path_begin(), CE->path_end(),
    850                                    ShouldNullCheckClassCastValue(CE),
    851                                    CE->getExprLoc());
    852     }
    853 
    854     // TODO: Is there any reason to treat base-to-derived conversions
    855     // specially?
    856     default:
    857       break;
    858     }
    859   }
    860 
    861   // Unary &.
    862   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    863     if (UO->getOpcode() == UO_AddrOf) {
    864       LValue LV = EmitLValue(UO->getSubExpr());
    865       if (Source) *Source = LV.getAlignmentSource();
    866       return LV.getAddress();
    867     }
    868   }
    869 
    870   // TODO: conditional operators, comma.
    871 
    872   // Otherwise, use the alignment of the type.
    873   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
    874   return Address(EmitScalarExpr(E), Align);
    875 }
    876 
    877 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    878   if (Ty->isVoidType())
    879     return RValue::get(nullptr);
    880 
    881   switch (getEvaluationKind(Ty)) {
    882   case TEK_Complex: {
    883     llvm::Type *EltTy =
    884       ConvertType(Ty->castAs<ComplexType>()->getElementType());
    885     llvm::Value *U = llvm::UndefValue::get(EltTy);
    886     return RValue::getComplex(std::make_pair(U, U));
    887   }
    888 
    889   // If this is a use of an undefined aggregate type, the aggregate must have an
    890   // identifiable address.  Just because the contents of the value are undefined
    891   // doesn't mean that the address can't be taken and compared.
    892   case TEK_Aggregate: {
    893     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    894     return RValue::getAggregate(DestPtr);
    895   }
    896 
    897   case TEK_Scalar:
    898     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    899   }
    900   llvm_unreachable("bad evaluation kind");
    901 }
    902 
    903 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    904                                               const char *Name) {
    905   ErrorUnsupported(E, Name);
    906   return GetUndefRValue(E->getType());
    907 }
    908 
    909 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    910                                               const char *Name) {
    911   ErrorUnsupported(E, Name);
    912   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    913   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
    914                         E->getType());
    915 }
    916 
    917 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
    918   LValue LV;
    919   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
    920     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
    921   else
    922     LV = EmitLValue(E);
    923   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    924     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
    925                   E->getType(), LV.getAlignment());
    926   return LV;
    927 }
    928 
    929 /// EmitLValue - Emit code to compute a designator that specifies the location
    930 /// of the expression.
    931 ///
    932 /// This can return one of two things: a simple address or a bitfield reference.
    933 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    934 /// an LLVM pointer type.
    935 ///
    936 /// If this returns a bitfield reference, nothing about the pointee type of the
    937 /// LLVM value is known: For example, it may not be a pointer to an integer.
    938 ///
    939 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    940 /// this method guarantees that the returned pointer type will point to an LLVM
    941 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    942 /// length type, this is not possible.
    943 ///
    944 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    945   ApplyDebugLocation DL(*this, E);
    946   switch (E->getStmtClass()) {
    947   default: return EmitUnsupportedLValue(E, "l-value expression");
    948 
    949   case Expr::ObjCPropertyRefExprClass:
    950     llvm_unreachable("cannot emit a property reference directly");
    951 
    952   case Expr::ObjCSelectorExprClass:
    953     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    954   case Expr::ObjCIsaExprClass:
    955     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    956   case Expr::BinaryOperatorClass:
    957     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    958   case Expr::CompoundAssignOperatorClass: {
    959     QualType Ty = E->getType();
    960     if (const AtomicType *AT = Ty->getAs<AtomicType>())
    961       Ty = AT->getValueType();
    962     if (!Ty->isAnyComplexType())
    963       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    964     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    965   }
    966   case Expr::CallExprClass:
    967   case Expr::CXXMemberCallExprClass:
    968   case Expr::CXXOperatorCallExprClass:
    969   case Expr::UserDefinedLiteralClass:
    970     return EmitCallExprLValue(cast<CallExpr>(E));
    971   case Expr::VAArgExprClass:
    972     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    973   case Expr::DeclRefExprClass:
    974     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
    975   case Expr::ParenExprClass:
    976     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
    977   case Expr::GenericSelectionExprClass:
    978     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
    979   case Expr::PredefinedExprClass:
    980     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
    981   case Expr::StringLiteralClass:
    982     return EmitStringLiteralLValue(cast<StringLiteral>(E));
    983   case Expr::ObjCEncodeExprClass:
    984     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
    985   case Expr::PseudoObjectExprClass:
    986     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
    987   case Expr::InitListExprClass:
    988     return EmitInitListLValue(cast<InitListExpr>(E));
    989   case Expr::CXXTemporaryObjectExprClass:
    990   case Expr::CXXConstructExprClass:
    991     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
    992   case Expr::CXXBindTemporaryExprClass:
    993     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
    994   case Expr::CXXUuidofExprClass:
    995     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
    996   case Expr::LambdaExprClass:
    997     return EmitLambdaLValue(cast<LambdaExpr>(E));
    998 
    999   case Expr::ExprWithCleanupsClass: {
   1000     const auto *cleanups = cast<ExprWithCleanups>(E);
   1001     enterFullExpression(cleanups);
   1002     RunCleanupsScope Scope(*this);
   1003     return EmitLValue(cleanups->getSubExpr());
   1004   }
   1005 
   1006   case Expr::CXXDefaultArgExprClass:
   1007     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
   1008   case Expr::CXXDefaultInitExprClass: {
   1009     CXXDefaultInitExprScope Scope(*this);
   1010     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
   1011   }
   1012   case Expr::CXXTypeidExprClass:
   1013     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
   1014 
   1015   case Expr::ObjCMessageExprClass:
   1016     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
   1017   case Expr::ObjCIvarRefExprClass:
   1018     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
   1019   case Expr::StmtExprClass:
   1020     return EmitStmtExprLValue(cast<StmtExpr>(E));
   1021   case Expr::UnaryOperatorClass:
   1022     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
   1023   case Expr::ArraySubscriptExprClass:
   1024     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
   1025   case Expr::OMPArraySectionExprClass:
   1026     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
   1027   case Expr::ExtVectorElementExprClass:
   1028     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
   1029   case Expr::MemberExprClass:
   1030     return EmitMemberExpr(cast<MemberExpr>(E));
   1031   case Expr::CompoundLiteralExprClass:
   1032     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
   1033   case Expr::ConditionalOperatorClass:
   1034     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
   1035   case Expr::BinaryConditionalOperatorClass:
   1036     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
   1037   case Expr::ChooseExprClass:
   1038     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
   1039   case Expr::OpaqueValueExprClass:
   1040     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
   1041   case Expr::SubstNonTypeTemplateParmExprClass:
   1042     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
   1043   case Expr::ImplicitCastExprClass:
   1044   case Expr::CStyleCastExprClass:
   1045   case Expr::CXXFunctionalCastExprClass:
   1046   case Expr::CXXStaticCastExprClass:
   1047   case Expr::CXXDynamicCastExprClass:
   1048   case Expr::CXXReinterpretCastExprClass:
   1049   case Expr::CXXConstCastExprClass:
   1050   case Expr::ObjCBridgedCastExprClass:
   1051     return EmitCastLValue(cast<CastExpr>(E));
   1052 
   1053   case Expr::MaterializeTemporaryExprClass:
   1054     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
   1055   }
   1056 }
   1057 
   1058 /// Given an object of the given canonical type, can we safely copy a
   1059 /// value out of it based on its initializer?
   1060 static bool isConstantEmittableObjectType(QualType type) {
   1061   assert(type.isCanonical());
   1062   assert(!type->isReferenceType());
   1063 
   1064   // Must be const-qualified but non-volatile.
   1065   Qualifiers qs = type.getLocalQualifiers();
   1066   if (!qs.hasConst() || qs.hasVolatile()) return false;
   1067 
   1068   // Otherwise, all object types satisfy this except C++ classes with
   1069   // mutable subobjects or non-trivial copy/destroy behavior.
   1070   if (const auto *RT = dyn_cast<RecordType>(type))
   1071     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
   1072       if (RD->hasMutableFields() || !RD->isTrivial())
   1073         return false;
   1074 
   1075   return true;
   1076 }
   1077 
   1078 /// Can we constant-emit a load of a reference to a variable of the
   1079 /// given type?  This is different from predicates like
   1080 /// Decl::isUsableInConstantExpressions because we do want it to apply
   1081 /// in situations that don't necessarily satisfy the language's rules
   1082 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
   1083 /// to do this with const float variables even if those variables
   1084 /// aren't marked 'constexpr'.
   1085 enum ConstantEmissionKind {
   1086   CEK_None,
   1087   CEK_AsReferenceOnly,
   1088   CEK_AsValueOrReference,
   1089   CEK_AsValueOnly
   1090 };
   1091 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
   1092   type = type.getCanonicalType();
   1093   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
   1094     if (isConstantEmittableObjectType(ref->getPointeeType()))
   1095       return CEK_AsValueOrReference;
   1096     return CEK_AsReferenceOnly;
   1097   }
   1098   if (isConstantEmittableObjectType(type))
   1099     return CEK_AsValueOnly;
   1100   return CEK_None;
   1101 }
   1102 
   1103 /// Try to emit a reference to the given value without producing it as
   1104 /// an l-value.  This is actually more than an optimization: we can't
   1105 /// produce an l-value for variables that we never actually captured
   1106 /// in a block or lambda, which means const int variables or constexpr
   1107 /// literals or similar.
   1108 CodeGenFunction::ConstantEmission
   1109 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
   1110   ValueDecl *value = refExpr->getDecl();
   1111 
   1112   // The value needs to be an enum constant or a constant variable.
   1113   ConstantEmissionKind CEK;
   1114   if (isa<ParmVarDecl>(value)) {
   1115     CEK = CEK_None;
   1116   } else if (auto *var = dyn_cast<VarDecl>(value)) {
   1117     CEK = checkVarTypeForConstantEmission(var->getType());
   1118   } else if (isa<EnumConstantDecl>(value)) {
   1119     CEK = CEK_AsValueOnly;
   1120   } else {
   1121     CEK = CEK_None;
   1122   }
   1123   if (CEK == CEK_None) return ConstantEmission();
   1124 
   1125   Expr::EvalResult result;
   1126   bool resultIsReference;
   1127   QualType resultType;
   1128 
   1129   // It's best to evaluate all the way as an r-value if that's permitted.
   1130   if (CEK != CEK_AsReferenceOnly &&
   1131       refExpr->EvaluateAsRValue(result, getContext())) {
   1132     resultIsReference = false;
   1133     resultType = refExpr->getType();
   1134 
   1135   // Otherwise, try to evaluate as an l-value.
   1136   } else if (CEK != CEK_AsValueOnly &&
   1137              refExpr->EvaluateAsLValue(result, getContext())) {
   1138     resultIsReference = true;
   1139     resultType = value->getType();
   1140 
   1141   // Failure.
   1142   } else {
   1143     return ConstantEmission();
   1144   }
   1145 
   1146   // In any case, if the initializer has side-effects, abandon ship.
   1147   if (result.HasSideEffects)
   1148     return ConstantEmission();
   1149 
   1150   // Emit as a constant.
   1151   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
   1152 
   1153   // Make sure we emit a debug reference to the global variable.
   1154   // This should probably fire even for
   1155   if (isa<VarDecl>(value)) {
   1156     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
   1157       EmitDeclRefExprDbgValue(refExpr, C);
   1158   } else {
   1159     assert(isa<EnumConstantDecl>(value));
   1160     EmitDeclRefExprDbgValue(refExpr, C);
   1161   }
   1162 
   1163   // If we emitted a reference constant, we need to dereference that.
   1164   if (resultIsReference)
   1165     return ConstantEmission::forReference(C);
   1166 
   1167   return ConstantEmission::forValue(C);
   1168 }
   1169 
   1170 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
   1171                                                SourceLocation Loc) {
   1172   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
   1173                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
   1174                           lvalue.getTBAAInfo(),
   1175                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
   1176                           lvalue.isNontemporal());
   1177 }
   1178 
   1179 static bool hasBooleanRepresentation(QualType Ty) {
   1180   if (Ty->isBooleanType())
   1181     return true;
   1182 
   1183   if (const EnumType *ET = Ty->getAs<EnumType>())
   1184     return ET->getDecl()->getIntegerType()->isBooleanType();
   1185 
   1186   if (const AtomicType *AT = Ty->getAs<AtomicType>())
   1187     return hasBooleanRepresentation(AT->getValueType());
   1188 
   1189   return false;
   1190 }
   1191 
   1192 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
   1193                             llvm::APInt &Min, llvm::APInt &End,
   1194                             bool StrictEnums) {
   1195   const EnumType *ET = Ty->getAs<EnumType>();
   1196   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
   1197                                 ET && !ET->getDecl()->isFixed();
   1198   bool IsBool = hasBooleanRepresentation(Ty);
   1199   if (!IsBool && !IsRegularCPlusPlusEnum)
   1200     return false;
   1201 
   1202   if (IsBool) {
   1203     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
   1204     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
   1205   } else {
   1206     const EnumDecl *ED = ET->getDecl();
   1207     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
   1208     unsigned Bitwidth = LTy->getScalarSizeInBits();
   1209     unsigned NumNegativeBits = ED->getNumNegativeBits();
   1210     unsigned NumPositiveBits = ED->getNumPositiveBits();
   1211 
   1212     if (NumNegativeBits) {
   1213       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
   1214       assert(NumBits <= Bitwidth);
   1215       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
   1216       Min = -End;
   1217     } else {
   1218       assert(NumPositiveBits <= Bitwidth);
   1219       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
   1220       Min = llvm::APInt(Bitwidth, 0);
   1221     }
   1222   }
   1223   return true;
   1224 }
   1225 
   1226 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
   1227   llvm::APInt Min, End;
   1228   if (!getRangeForType(*this, Ty, Min, End,
   1229                        CGM.getCodeGenOpts().StrictEnums))
   1230     return nullptr;
   1231 
   1232   llvm::MDBuilder MDHelper(getLLVMContext());
   1233   return MDHelper.createRange(Min, End);
   1234 }
   1235 
   1236 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
   1237                                                QualType Ty,
   1238                                                SourceLocation Loc,
   1239                                                AlignmentSource AlignSource,
   1240                                                llvm::MDNode *TBAAInfo,
   1241                                                QualType TBAABaseType,
   1242                                                uint64_t TBAAOffset,
   1243                                                bool isNontemporal) {
   1244   // For better performance, handle vector loads differently.
   1245   if (Ty->isVectorType()) {
   1246     const llvm::Type *EltTy = Addr.getElementType();
   1247 
   1248     const auto *VTy = cast<llvm::VectorType>(EltTy);
   1249 
   1250     // Handle vectors of size 3 like size 4 for better performance.
   1251     if (VTy->getNumElements() == 3) {
   1252 
   1253       // Bitcast to vec4 type.
   1254       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
   1255                                                          4);
   1256       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
   1257       // Now load value.
   1258       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
   1259 
   1260       // Shuffle vector to get vec3.
   1261       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
   1262                                       {0, 1, 2}, "extractVec");
   1263       return EmitFromMemory(V, Ty);
   1264     }
   1265   }
   1266 
   1267   // Atomic operations have to be done on integral types.
   1268   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
   1269     LValue lvalue =
   1270       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
   1271     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
   1272   }
   1273 
   1274   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
   1275   if (isNontemporal) {
   1276     llvm::MDNode *Node = llvm::MDNode::get(
   1277         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
   1278     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
   1279   }
   1280   if (TBAAInfo) {
   1281     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1282                                                       TBAAOffset);
   1283     if (TBAAPath)
   1284       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
   1285                                       false /*ConvertTypeToTag*/);
   1286   }
   1287 
   1288   bool NeedsBoolCheck =
   1289       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
   1290   bool NeedsEnumCheck =
   1291       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
   1292   if (NeedsBoolCheck || NeedsEnumCheck) {
   1293     SanitizerScope SanScope(this);
   1294     llvm::APInt Min, End;
   1295     if (getRangeForType(*this, Ty, Min, End, true)) {
   1296       --End;
   1297       llvm::Value *Check;
   1298       if (!Min)
   1299         Check = Builder.CreateICmpULE(
   1300           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1301       else {
   1302         llvm::Value *Upper = Builder.CreateICmpSLE(
   1303           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1304         llvm::Value *Lower = Builder.CreateICmpSGE(
   1305           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
   1306         Check = Builder.CreateAnd(Upper, Lower);
   1307       }
   1308       llvm::Constant *StaticArgs[] = {
   1309         EmitCheckSourceLocation(Loc),
   1310         EmitCheckTypeDescriptor(Ty)
   1311       };
   1312       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
   1313       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
   1314                 EmitCheckValue(Load));
   1315     }
   1316   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
   1317     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
   1318       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
   1319 
   1320   return EmitFromMemory(Load, Ty);
   1321 }
   1322 
   1323 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
   1324   // Bool has a different representation in memory than in registers.
   1325   if (hasBooleanRepresentation(Ty)) {
   1326     // This should really always be an i1, but sometimes it's already
   1327     // an i8, and it's awkward to track those cases down.
   1328     if (Value->getType()->isIntegerTy(1))
   1329       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
   1330     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1331            "wrong value rep of bool");
   1332   }
   1333 
   1334   return Value;
   1335 }
   1336 
   1337 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
   1338   // Bool has a different representation in memory than in registers.
   1339   if (hasBooleanRepresentation(Ty)) {
   1340     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1341            "wrong value rep of bool");
   1342     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
   1343   }
   1344 
   1345   return Value;
   1346 }
   1347 
   1348 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
   1349                                         bool Volatile, QualType Ty,
   1350                                         AlignmentSource AlignSource,
   1351                                         llvm::MDNode *TBAAInfo,
   1352                                         bool isInit, QualType TBAABaseType,
   1353                                         uint64_t TBAAOffset,
   1354                                         bool isNontemporal) {
   1355 
   1356   // Handle vectors differently to get better performance.
   1357   if (Ty->isVectorType()) {
   1358     llvm::Type *SrcTy = Value->getType();
   1359     auto *VecTy = cast<llvm::VectorType>(SrcTy);
   1360     // Handle vec3 special.
   1361     if (VecTy->getNumElements() == 3) {
   1362       // Our source is a vec3, do a shuffle vector to make it a vec4.
   1363       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
   1364                                 Builder.getInt32(2),
   1365                                 llvm::UndefValue::get(Builder.getInt32Ty())};
   1366       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1367       Value = Builder.CreateShuffleVector(Value,
   1368                                           llvm::UndefValue::get(VecTy),
   1369                                           MaskV, "extractVec");
   1370       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
   1371     }
   1372     if (Addr.getElementType() != SrcTy) {
   1373       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
   1374     }
   1375   }
   1376 
   1377   Value = EmitToMemory(Value, Ty);
   1378 
   1379   if (Ty->isAtomicType() ||
   1380       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
   1381     EmitAtomicStore(RValue::get(Value),
   1382                     LValue::MakeAddr(Addr, Ty, getContext(),
   1383                                      AlignSource, TBAAInfo),
   1384                     isInit);
   1385     return;
   1386   }
   1387 
   1388   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
   1389   if (isNontemporal) {
   1390     llvm::MDNode *Node =
   1391         llvm::MDNode::get(Store->getContext(),
   1392                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
   1393     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
   1394   }
   1395   if (TBAAInfo) {
   1396     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1397                                                       TBAAOffset);
   1398     if (TBAAPath)
   1399       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
   1400                                       false /*ConvertTypeToTag*/);
   1401   }
   1402 }
   1403 
   1404 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
   1405                                         bool isInit) {
   1406   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
   1407                     lvalue.getType(), lvalue.getAlignmentSource(),
   1408                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
   1409                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
   1410 }
   1411 
   1412 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
   1413 /// method emits the address of the lvalue, then loads the result as an rvalue,
   1414 /// returning the rvalue.
   1415 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
   1416   if (LV.isObjCWeak()) {
   1417     // load of a __weak object.
   1418     Address AddrWeakObj = LV.getAddress();
   1419     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
   1420                                                              AddrWeakObj));
   1421   }
   1422   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1423     // In MRC mode, we do a load+autorelease.
   1424     if (!getLangOpts().ObjCAutoRefCount) {
   1425       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
   1426     }
   1427 
   1428     // In ARC mode, we load retained and then consume the value.
   1429     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
   1430     Object = EmitObjCConsumeObject(LV.getType(), Object);
   1431     return RValue::get(Object);
   1432   }
   1433 
   1434   if (LV.isSimple()) {
   1435     assert(!LV.getType()->isFunctionType());
   1436 
   1437     // Everything needs a load.
   1438     return RValue::get(EmitLoadOfScalar(LV, Loc));
   1439   }
   1440 
   1441   if (LV.isVectorElt()) {
   1442     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
   1443                                               LV.isVolatileQualified());
   1444     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
   1445                                                     "vecext"));
   1446   }
   1447 
   1448   // If this is a reference to a subset of the elements of a vector, either
   1449   // shuffle the input or extract/insert them as appropriate.
   1450   if (LV.isExtVectorElt())
   1451     return EmitLoadOfExtVectorElementLValue(LV);
   1452 
   1453   // Global Register variables always invoke intrinsics
   1454   if (LV.isGlobalReg())
   1455     return EmitLoadOfGlobalRegLValue(LV);
   1456 
   1457   assert(LV.isBitField() && "Unknown LValue type!");
   1458   return EmitLoadOfBitfieldLValue(LV);
   1459 }
   1460 
   1461 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
   1462   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
   1463 
   1464   // Get the output type.
   1465   llvm::Type *ResLTy = ConvertType(LV.getType());
   1466 
   1467   Address Ptr = LV.getBitFieldAddress();
   1468   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
   1469 
   1470   if (Info.IsSigned) {
   1471     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
   1472     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
   1473     if (HighBits)
   1474       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
   1475     if (Info.Offset + HighBits)
   1476       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
   1477   } else {
   1478     if (Info.Offset)
   1479       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
   1480     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
   1481       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
   1482                                                               Info.Size),
   1483                               "bf.clear");
   1484   }
   1485   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
   1486 
   1487   return RValue::get(Val);
   1488 }
   1489 
   1490 // If this is a reference to a subset of the elements of a vector, create an
   1491 // appropriate shufflevector.
   1492 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
   1493   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
   1494                                         LV.isVolatileQualified());
   1495 
   1496   const llvm::Constant *Elts = LV.getExtVectorElts();
   1497 
   1498   // If the result of the expression is a non-vector type, we must be extracting
   1499   // a single element.  Just codegen as an extractelement.
   1500   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1501   if (!ExprVT) {
   1502     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1503     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1504     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
   1505   }
   1506 
   1507   // Always use shuffle vector to try to retain the original program structure
   1508   unsigned NumResultElts = ExprVT->getNumElements();
   1509 
   1510   SmallVector<llvm::Constant*, 4> Mask;
   1511   for (unsigned i = 0; i != NumResultElts; ++i)
   1512     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
   1513 
   1514   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1515   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
   1516                                     MaskV);
   1517   return RValue::get(Vec);
   1518 }
   1519 
   1520 /// @brief Generates lvalue for partial ext_vector access.
   1521 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
   1522   Address VectorAddress = LV.getExtVectorAddress();
   1523   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1524   QualType EQT = ExprVT->getElementType();
   1525   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
   1526 
   1527   Address CastToPointerElement =
   1528     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
   1529                                  "conv.ptr.element");
   1530 
   1531   const llvm::Constant *Elts = LV.getExtVectorElts();
   1532   unsigned ix = getAccessedFieldNo(0, Elts);
   1533 
   1534   Address VectorBasePtrPlusIx =
   1535     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
   1536                                    getContext().getTypeSizeInChars(EQT),
   1537                                    "vector.elt");
   1538 
   1539   return VectorBasePtrPlusIx;
   1540 }
   1541 
   1542 /// @brief Load of global gamed gegisters are always calls to intrinsics.
   1543 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
   1544   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
   1545          "Bad type for register variable");
   1546   llvm::MDNode *RegName = cast<llvm::MDNode>(
   1547       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
   1548 
   1549   // We accept integer and pointer types only
   1550   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
   1551   llvm::Type *Ty = OrigTy;
   1552   if (OrigTy->isPointerTy())
   1553     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1554   llvm::Type *Types[] = { Ty };
   1555 
   1556   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
   1557   llvm::Value *Call = Builder.CreateCall(
   1558       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
   1559   if (OrigTy->isPointerTy())
   1560     Call = Builder.CreateIntToPtr(Call, OrigTy);
   1561   return RValue::get(Call);
   1562 }
   1563 
   1564 
   1565 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1566 /// lvalue, where both are guaranteed to the have the same type, and that type
   1567 /// is 'Ty'.
   1568 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
   1569                                              bool isInit) {
   1570   if (!Dst.isSimple()) {
   1571     if (Dst.isVectorElt()) {
   1572       // Read/modify/write the vector, inserting the new element.
   1573       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
   1574                                             Dst.isVolatileQualified());
   1575       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
   1576                                         Dst.getVectorIdx(), "vecins");
   1577       Builder.CreateStore(Vec, Dst.getVectorAddress(),
   1578                           Dst.isVolatileQualified());
   1579       return;
   1580     }
   1581 
   1582     // If this is an update of extended vector elements, insert them as
   1583     // appropriate.
   1584     if (Dst.isExtVectorElt())
   1585       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
   1586 
   1587     if (Dst.isGlobalReg())
   1588       return EmitStoreThroughGlobalRegLValue(Src, Dst);
   1589 
   1590     assert(Dst.isBitField() && "Unknown LValue type");
   1591     return EmitStoreThroughBitfieldLValue(Src, Dst);
   1592   }
   1593 
   1594   // There's special magic for assigning into an ARC-qualified l-value.
   1595   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
   1596     switch (Lifetime) {
   1597     case Qualifiers::OCL_None:
   1598       llvm_unreachable("present but none");
   1599 
   1600     case Qualifiers::OCL_ExplicitNone:
   1601       // nothing special
   1602       break;
   1603 
   1604     case Qualifiers::OCL_Strong:
   1605       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
   1606       return;
   1607 
   1608     case Qualifiers::OCL_Weak:
   1609       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
   1610       return;
   1611 
   1612     case Qualifiers::OCL_Autoreleasing:
   1613       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
   1614                                                      Src.getScalarVal()));
   1615       // fall into the normal path
   1616       break;
   1617     }
   1618   }
   1619 
   1620   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
   1621     // load of a __weak object.
   1622     Address LvalueDst = Dst.getAddress();
   1623     llvm::Value *src = Src.getScalarVal();
   1624      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
   1625     return;
   1626   }
   1627 
   1628   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1629     // load of a __strong object.
   1630     Address LvalueDst = Dst.getAddress();
   1631     llvm::Value *src = Src.getScalarVal();
   1632     if (Dst.isObjCIvar()) {
   1633       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1634       llvm::Type *ResultType = IntPtrTy;
   1635       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
   1636       llvm::Value *RHS = dst.getPointer();
   1637       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1638       llvm::Value *LHS =
   1639         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
   1640                                "sub.ptr.lhs.cast");
   1641       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1642       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1643                                               BytesBetween);
   1644     } else if (Dst.isGlobalObjCRef()) {
   1645       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1646                                                 Dst.isThreadLocalRef());
   1647     }
   1648     else
   1649       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1650     return;
   1651   }
   1652 
   1653   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1654   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
   1655 }
   1656 
   1657 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1658                                                      llvm::Value **Result) {
   1659   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1660   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1661   Address Ptr = Dst.getBitFieldAddress();
   1662 
   1663   // Get the source value, truncated to the width of the bit-field.
   1664   llvm::Value *SrcVal = Src.getScalarVal();
   1665 
   1666   // Cast the source to the storage type and shift it into place.
   1667   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
   1668                                  /*IsSigned=*/false);
   1669   llvm::Value *MaskedVal = SrcVal;
   1670 
   1671   // See if there are other bits in the bitfield's storage we'll need to load
   1672   // and mask together with source before storing.
   1673   if (Info.StorageSize != Info.Size) {
   1674     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
   1675     llvm::Value *Val =
   1676       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
   1677 
   1678     // Mask the source value as needed.
   1679     if (!hasBooleanRepresentation(Dst.getType()))
   1680       SrcVal = Builder.CreateAnd(SrcVal,
   1681                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
   1682                                                             Info.Size),
   1683                                  "bf.value");
   1684     MaskedVal = SrcVal;
   1685     if (Info.Offset)
   1686       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
   1687 
   1688     // Mask out the original value.
   1689     Val = Builder.CreateAnd(Val,
   1690                             ~llvm::APInt::getBitsSet(Info.StorageSize,
   1691                                                      Info.Offset,
   1692                                                      Info.Offset + Info.Size),
   1693                             "bf.clear");
   1694 
   1695     // Or together the unchanged values and the source value.
   1696     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
   1697   } else {
   1698     assert(Info.Offset == 0);
   1699   }
   1700 
   1701   // Write the new value back out.
   1702   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
   1703 
   1704   // Return the new value of the bit-field, if requested.
   1705   if (Result) {
   1706     llvm::Value *ResultVal = MaskedVal;
   1707 
   1708     // Sign extend the value if needed.
   1709     if (Info.IsSigned) {
   1710       assert(Info.Size <= Info.StorageSize);
   1711       unsigned HighBits = Info.StorageSize - Info.Size;
   1712       if (HighBits) {
   1713         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
   1714         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
   1715       }
   1716     }
   1717 
   1718     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
   1719                                       "bf.result.cast");
   1720     *Result = EmitFromMemory(ResultVal, Dst.getType());
   1721   }
   1722 }
   1723 
   1724 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1725                                                                LValue Dst) {
   1726   // This access turns into a read/modify/write of the vector.  Load the input
   1727   // value now.
   1728   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
   1729                                         Dst.isVolatileQualified());
   1730   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1731 
   1732   llvm::Value *SrcVal = Src.getScalarVal();
   1733 
   1734   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1735     unsigned NumSrcElts = VTy->getNumElements();
   1736     unsigned NumDstElts =
   1737        cast<llvm::VectorType>(Vec->getType())->getNumElements();
   1738     if (NumDstElts == NumSrcElts) {
   1739       // Use shuffle vector is the src and destination are the same number of
   1740       // elements and restore the vector mask since it is on the side it will be
   1741       // stored.
   1742       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1743       for (unsigned i = 0; i != NumSrcElts; ++i)
   1744         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
   1745 
   1746       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1747       Vec = Builder.CreateShuffleVector(SrcVal,
   1748                                         llvm::UndefValue::get(Vec->getType()),
   1749                                         MaskV);
   1750     } else if (NumDstElts > NumSrcElts) {
   1751       // Extended the source vector to the same length and then shuffle it
   1752       // into the destination.
   1753       // FIXME: since we're shuffling with undef, can we just use the indices
   1754       //        into that?  This could be simpler.
   1755       SmallVector<llvm::Constant*, 4> ExtMask;
   1756       for (unsigned i = 0; i != NumSrcElts; ++i)
   1757         ExtMask.push_back(Builder.getInt32(i));
   1758       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
   1759       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1760       llvm::Value *ExtSrcVal =
   1761         Builder.CreateShuffleVector(SrcVal,
   1762                                     llvm::UndefValue::get(SrcVal->getType()),
   1763                                     ExtMaskV);
   1764       // build identity
   1765       SmallVector<llvm::Constant*, 4> Mask;
   1766       for (unsigned i = 0; i != NumDstElts; ++i)
   1767         Mask.push_back(Builder.getInt32(i));
   1768 
   1769       // When the vector size is odd and .odd or .hi is used, the last element
   1770       // of the Elts constant array will be one past the size of the vector.
   1771       // Ignore the last element here, if it is greater than the mask size.
   1772       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
   1773         NumSrcElts--;
   1774 
   1775       // modify when what gets shuffled in
   1776       for (unsigned i = 0; i != NumSrcElts; ++i)
   1777         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
   1778       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1779       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
   1780     } else {
   1781       // We should never shorten the vector
   1782       llvm_unreachable("unexpected shorten vector length");
   1783     }
   1784   } else {
   1785     // If the Src is a scalar (not a vector) it must be updating one element.
   1786     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1787     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1788     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
   1789   }
   1790 
   1791   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
   1792                       Dst.isVolatileQualified());
   1793 }
   1794 
   1795 /// @brief Store of global named registers are always calls to intrinsics.
   1796 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
   1797   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
   1798          "Bad type for register variable");
   1799   llvm::MDNode *RegName = cast<llvm::MDNode>(
   1800       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
   1801   assert(RegName && "Register LValue is not metadata");
   1802 
   1803   // We accept integer and pointer types only
   1804   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
   1805   llvm::Type *Ty = OrigTy;
   1806   if (OrigTy->isPointerTy())
   1807     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1808   llvm::Type *Types[] = { Ty };
   1809 
   1810   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
   1811   llvm::Value *Value = Src.getScalarVal();
   1812   if (OrigTy->isPointerTy())
   1813     Value = Builder.CreatePtrToInt(Value, Ty);
   1814   Builder.CreateCall(
   1815       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
   1816 }
   1817 
   1818 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
   1819 // generating write-barries API. It is currently a global, ivar,
   1820 // or neither.
   1821 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1822                                  LValue &LV,
   1823                                  bool IsMemberAccess=false) {
   1824   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
   1825     return;
   1826 
   1827   if (isa<ObjCIvarRefExpr>(E)) {
   1828     QualType ExpTy = E->getType();
   1829     if (IsMemberAccess && ExpTy->isPointerType()) {
   1830       // If ivar is a structure pointer, assigning to field of
   1831       // this struct follows gcc's behavior and makes it a non-ivar
   1832       // writer-barrier conservatively.
   1833       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1834       if (ExpTy->isRecordType()) {
   1835         LV.setObjCIvar(false);
   1836         return;
   1837       }
   1838     }
   1839     LV.setObjCIvar(true);
   1840     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
   1841     LV.setBaseIvarExp(Exp->getBase());
   1842     LV.setObjCArray(E->getType()->isArrayType());
   1843     return;
   1844   }
   1845 
   1846   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
   1847     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1848       if (VD->hasGlobalStorage()) {
   1849         LV.setGlobalObjCRef(true);
   1850         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
   1851       }
   1852     }
   1853     LV.setObjCArray(E->getType()->isArrayType());
   1854     return;
   1855   }
   1856 
   1857   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
   1858     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1859     return;
   1860   }
   1861 
   1862   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
   1863     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1864     if (LV.isObjCIvar()) {
   1865       // If cast is to a structure pointer, follow gcc's behavior and make it
   1866       // a non-ivar write-barrier.
   1867       QualType ExpTy = E->getType();
   1868       if (ExpTy->isPointerType())
   1869         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1870       if (ExpTy->isRecordType())
   1871         LV.setObjCIvar(false);
   1872     }
   1873     return;
   1874   }
   1875 
   1876   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1877     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1878     return;
   1879   }
   1880 
   1881   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1882     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1883     return;
   1884   }
   1885 
   1886   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1887     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1888     return;
   1889   }
   1890 
   1891   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1892     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1893     return;
   1894   }
   1895 
   1896   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1897     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1898     if (LV.isObjCIvar() && !LV.isObjCArray())
   1899       // Using array syntax to assigning to what an ivar points to is not
   1900       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1901       LV.setObjCIvar(false);
   1902     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1903       // Using array syntax to assigning to what global points to is not
   1904       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1905       LV.setGlobalObjCRef(false);
   1906     return;
   1907   }
   1908 
   1909   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
   1910     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
   1911     // We don't know if member is an 'ivar', but this flag is looked at
   1912     // only in the context of LV.isObjCIvar().
   1913     LV.setObjCArray(E->getType()->isArrayType());
   1914     return;
   1915   }
   1916 }
   1917 
   1918 static llvm::Value *
   1919 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1920                                 llvm::Value *V, llvm::Type *IRType,
   1921                                 StringRef Name = StringRef()) {
   1922   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1923   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1924 }
   1925 
   1926 static LValue EmitThreadPrivateVarDeclLValue(
   1927     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
   1928     llvm::Type *RealVarTy, SourceLocation Loc) {
   1929   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
   1930   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
   1931   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
   1932 }
   1933 
   1934 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
   1935                                              const ReferenceType *RefTy,
   1936                                              AlignmentSource *Source) {
   1937   llvm::Value *Ptr = Builder.CreateLoad(Addr);
   1938   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
   1939                                               Source, /*forPointee*/ true));
   1940 
   1941 }
   1942 
   1943 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
   1944                                                   const ReferenceType *RefTy) {
   1945   AlignmentSource Source;
   1946   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
   1947   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
   1948 }
   1949 
   1950 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1951                                       const Expr *E, const VarDecl *VD) {
   1952   QualType T = E->getType();
   1953 
   1954   // If it's thread_local, emit a call to its wrapper function instead.
   1955   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
   1956       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
   1957     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
   1958 
   1959   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1960   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
   1961   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   1962   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
   1963   Address Addr(V, Alignment);
   1964   LValue LV;
   1965   // Emit reference to the private copy of the variable if it is an OpenMP
   1966   // threadprivate variable.
   1967   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
   1968     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
   1969                                           E->getExprLoc());
   1970   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
   1971     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
   1972   } else {
   1973     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
   1974   }
   1975   setObjCGCLValueClass(CGF.getContext(), E, LV);
   1976   return LV;
   1977 }
   1978 
   1979 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   1980                                      const Expr *E, const FunctionDecl *FD) {
   1981   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   1982   if (!FD->hasPrototype()) {
   1983     if (const FunctionProtoType *Proto =
   1984             FD->getType()->getAs<FunctionProtoType>()) {
   1985       // Ugly case: for a K&R-style definition, the type of the definition
   1986       // isn't the same as the type of a use.  Correct for this with a
   1987       // bitcast.
   1988       QualType NoProtoType =
   1989           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
   1990       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   1991       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
   1992     }
   1993   }
   1994   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
   1995   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
   1996 }
   1997 
   1998 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
   1999                                       llvm::Value *ThisValue) {
   2000   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
   2001   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
   2002   return CGF.EmitLValueForField(LV, FD);
   2003 }
   2004 
   2005 /// Named Registers are named metadata pointing to the register name
   2006 /// which will be read from/written to as an argument to the intrinsic
   2007 /// @llvm.read/write_register.
   2008 /// So far, only the name is being passed down, but other options such as
   2009 /// register type, allocation type or even optimization options could be
   2010 /// passed down via the metadata node.
   2011 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
   2012   SmallString<64> Name("llvm.named.register.");
   2013   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
   2014   assert(Asm->getLabel().size() < 64-Name.size() &&
   2015       "Register name too big");
   2016   Name.append(Asm->getLabel());
   2017   llvm::NamedMDNode *M =
   2018     CGM.getModule().getOrInsertNamedMetadata(Name);
   2019   if (M->getNumOperands() == 0) {
   2020     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
   2021                                               Asm->getLabel());
   2022     llvm::Metadata *Ops[] = {Str};
   2023     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
   2024   }
   2025 
   2026   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
   2027 
   2028   llvm::Value *Ptr =
   2029     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
   2030   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
   2031 }
   2032 
   2033 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   2034   const NamedDecl *ND = E->getDecl();
   2035   QualType T = E->getType();
   2036 
   2037   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   2038     // Global Named registers access via intrinsics only
   2039     if (VD->getStorageClass() == SC_Register &&
   2040         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
   2041       return EmitGlobalNamedRegister(VD, CGM);
   2042 
   2043     // A DeclRefExpr for a reference initialized by a constant expression can
   2044     // appear without being odr-used. Directly emit the constant initializer.
   2045     const Expr *Init = VD->getAnyInitializer(VD);
   2046     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
   2047         VD->isUsableInConstantExpressions(getContext()) &&
   2048         VD->checkInitIsICE() &&
   2049         // Do not emit if it is private OpenMP variable.
   2050         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
   2051           LocalDeclMap.count(VD))) {
   2052       llvm::Constant *Val =
   2053         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
   2054       assert(Val && "failed to emit reference constant expression");
   2055       // FIXME: Eventually we will want to emit vector element references.
   2056 
   2057       // Should we be using the alignment of the constant pointer we emitted?
   2058       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
   2059                                                     /*pointee*/ true);
   2060 
   2061       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
   2062     }
   2063 
   2064     // Check for captured variables.
   2065     if (E->refersToEnclosingVariableOrCapture()) {
   2066       if (auto *FD = LambdaCaptureFields.lookup(VD))
   2067         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
   2068       else if (CapturedStmtInfo) {
   2069         auto it = LocalDeclMap.find(VD);
   2070         if (it != LocalDeclMap.end()) {
   2071           if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
   2072             return EmitLoadOfReferenceLValue(it->second, RefTy);
   2073           }
   2074           return MakeAddrLValue(it->second, T);
   2075         }
   2076         LValue CapLVal =
   2077             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
   2078                                     CapturedStmtInfo->getContextValue());
   2079         return MakeAddrLValue(
   2080             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
   2081             CapLVal.getType(), AlignmentSource::Decl);
   2082       }
   2083 
   2084       assert(isa<BlockDecl>(CurCodeDecl));
   2085       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
   2086       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
   2087     }
   2088   }
   2089 
   2090   // FIXME: We should be able to assert this for FunctionDecls as well!
   2091   // FIXME: We should be able to assert this for all DeclRefExprs, not just
   2092   // those with a valid source location.
   2093   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
   2094           !E->getLocation().isValid()) &&
   2095          "Should not use decl without marking it used!");
   2096 
   2097   if (ND->hasAttr<WeakRefAttr>()) {
   2098     const auto *VD = cast<ValueDecl>(ND);
   2099     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
   2100     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
   2101   }
   2102 
   2103   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   2104     // Check if this is a global variable.
   2105     if (VD->hasLinkage() || VD->isStaticDataMember())
   2106       return EmitGlobalVarDeclLValue(*this, E, VD);
   2107 
   2108     Address addr = Address::invalid();
   2109 
   2110     // The variable should generally be present in the local decl map.
   2111     auto iter = LocalDeclMap.find(VD);
   2112     if (iter != LocalDeclMap.end()) {
   2113       addr = iter->second;
   2114 
   2115     // Otherwise, it might be static local we haven't emitted yet for
   2116     // some reason; most likely, because it's in an outer function.
   2117     } else if (VD->isStaticLocal()) {
   2118       addr = Address(CGM.getOrCreateStaticVarDecl(
   2119           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
   2120                      getContext().getDeclAlign(VD));
   2121 
   2122     // No other cases for now.
   2123     } else {
   2124       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
   2125     }
   2126 
   2127 
   2128     // Check for OpenMP threadprivate variables.
   2129     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
   2130       return EmitThreadPrivateVarDeclLValue(
   2131           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
   2132           E->getExprLoc());
   2133     }
   2134 
   2135     // Drill into block byref variables.
   2136     bool isBlockByref = VD->hasAttr<BlocksAttr>();
   2137     if (isBlockByref) {
   2138       addr = emitBlockByrefAddress(addr, VD);
   2139     }
   2140 
   2141     // Drill into reference types.
   2142     LValue LV;
   2143     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
   2144       LV = EmitLoadOfReferenceLValue(addr, RefTy);
   2145     } else {
   2146       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
   2147     }
   2148 
   2149     bool isLocalStorage = VD->hasLocalStorage();
   2150 
   2151     bool NonGCable = isLocalStorage &&
   2152                      !VD->getType()->isReferenceType() &&
   2153                      !isBlockByref;
   2154     if (NonGCable) {
   2155       LV.getQuals().removeObjCGCAttr();
   2156       LV.setNonGC(true);
   2157     }
   2158 
   2159     bool isImpreciseLifetime =
   2160       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
   2161     if (isImpreciseLifetime)
   2162       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
   2163     setObjCGCLValueClass(getContext(), E, LV);
   2164     return LV;
   2165   }
   2166 
   2167   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   2168     return EmitFunctionDeclLValue(*this, E, FD);
   2169 
   2170   llvm_unreachable("Unhandled DeclRefExpr");
   2171 }
   2172 
   2173 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   2174   // __extension__ doesn't affect lvalue-ness.
   2175   if (E->getOpcode() == UO_Extension)
   2176     return EmitLValue(E->getSubExpr());
   2177 
   2178   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   2179   switch (E->getOpcode()) {
   2180   default: llvm_unreachable("Unknown unary operator lvalue!");
   2181   case UO_Deref: {
   2182     QualType T = E->getSubExpr()->getType()->getPointeeType();
   2183     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   2184 
   2185     AlignmentSource AlignSource;
   2186     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
   2187     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
   2188     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   2189 
   2190     // We should not generate __weak write barrier on indirect reference
   2191     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   2192     // But, we continue to generate __strong write barrier on indirect write
   2193     // into a pointer to object.
   2194     if (getLangOpts().ObjC1 &&
   2195         getLangOpts().getGC() != LangOptions::NonGC &&
   2196         LV.isObjCWeak())
   2197       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2198     return LV;
   2199   }
   2200   case UO_Real:
   2201   case UO_Imag: {
   2202     LValue LV = EmitLValue(E->getSubExpr());
   2203     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   2204 
   2205     // __real is valid on scalars.  This is a faster way of testing that.
   2206     // __imag can only produce an rvalue on scalars.
   2207     if (E->getOpcode() == UO_Real &&
   2208         !LV.getAddress().getElementType()->isStructTy()) {
   2209       assert(E->getSubExpr()->getType()->isArithmeticType());
   2210       return LV;
   2211     }
   2212 
   2213     assert(E->getSubExpr()->getType()->isAnyComplexType());
   2214 
   2215     Address Component =
   2216       (E->getOpcode() == UO_Real
   2217          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
   2218          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
   2219     return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
   2220   }
   2221   case UO_PreInc:
   2222   case UO_PreDec: {
   2223     LValue LV = EmitLValue(E->getSubExpr());
   2224     bool isInc = E->getOpcode() == UO_PreInc;
   2225 
   2226     if (E->getType()->isAnyComplexType())
   2227       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   2228     else
   2229       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   2230     return LV;
   2231   }
   2232   }
   2233 }
   2234 
   2235 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   2236   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   2237                         E->getType(), AlignmentSource::Decl);
   2238 }
   2239 
   2240 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   2241   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   2242                         E->getType(), AlignmentSource::Decl);
   2243 }
   2244 
   2245 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   2246   auto SL = E->getFunctionName();
   2247   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
   2248   StringRef FnName = CurFn->getName();
   2249   if (FnName.startswith("\01"))
   2250     FnName = FnName.substr(1);
   2251   StringRef NameItems[] = {
   2252       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
   2253   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
   2254   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
   2255     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
   2256     return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
   2257   }
   2258   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
   2259   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
   2260 }
   2261 
   2262 /// Emit a type description suitable for use by a runtime sanitizer library. The
   2263 /// format of a type descriptor is
   2264 ///
   2265 /// \code
   2266 ///   { i16 TypeKind, i16 TypeInfo }
   2267 /// \endcode
   2268 ///
   2269 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
   2270 /// integer, 1 for a floating point value, and -1 for anything else.
   2271 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
   2272   // Only emit each type's descriptor once.
   2273   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
   2274     return C;
   2275 
   2276   uint16_t TypeKind = -1;
   2277   uint16_t TypeInfo = 0;
   2278 
   2279   if (T->isIntegerType()) {
   2280     TypeKind = 0;
   2281     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
   2282                (T->isSignedIntegerType() ? 1 : 0);
   2283   } else if (T->isFloatingType()) {
   2284     TypeKind = 1;
   2285     TypeInfo = getContext().getTypeSize(T);
   2286   }
   2287 
   2288   // Format the type name as if for a diagnostic, including quotes and
   2289   // optionally an 'aka'.
   2290   SmallString<32> Buffer;
   2291   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
   2292                                     (intptr_t)T.getAsOpaquePtr(),
   2293                                     StringRef(), StringRef(), None, Buffer,
   2294                                     None);
   2295 
   2296   llvm::Constant *Components[] = {
   2297     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
   2298     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
   2299   };
   2300   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
   2301 
   2302   auto *GV = new llvm::GlobalVariable(
   2303       CGM.getModule(), Descriptor->getType(),
   2304       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
   2305   GV->setUnnamedAddr(true);
   2306   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
   2307 
   2308   // Remember the descriptor for this type.
   2309   CGM.setTypeDescriptorInMap(T, GV);
   2310 
   2311   return GV;
   2312 }
   2313 
   2314 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
   2315   llvm::Type *TargetTy = IntPtrTy;
   2316 
   2317   // Floating-point types which fit into intptr_t are bitcast to integers
   2318   // and then passed directly (after zero-extension, if necessary).
   2319   if (V->getType()->isFloatingPointTy()) {
   2320     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
   2321     if (Bits <= TargetTy->getIntegerBitWidth())
   2322       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
   2323                                                          Bits));
   2324   }
   2325 
   2326   // Integers which fit in intptr_t are zero-extended and passed directly.
   2327   if (V->getType()->isIntegerTy() &&
   2328       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
   2329     return Builder.CreateZExt(V, TargetTy);
   2330 
   2331   // Pointers are passed directly, everything else is passed by address.
   2332   if (!V->getType()->isPointerTy()) {
   2333     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
   2334     Builder.CreateStore(V, Ptr);
   2335     V = Ptr.getPointer();
   2336   }
   2337   return Builder.CreatePtrToInt(V, TargetTy);
   2338 }
   2339 
   2340 /// \brief Emit a representation of a SourceLocation for passing to a handler
   2341 /// in a sanitizer runtime library. The format for this data is:
   2342 /// \code
   2343 ///   struct SourceLocation {
   2344 ///     const char *Filename;
   2345 ///     int32_t Line, Column;
   2346 ///   };
   2347 /// \endcode
   2348 /// For an invalid SourceLocation, the Filename pointer is null.
   2349 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
   2350   llvm::Constant *Filename;
   2351   int Line, Column;
   2352 
   2353   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
   2354   if (PLoc.isValid()) {
   2355     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
   2356     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
   2357                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
   2358     Filename = FilenameGV.getPointer();
   2359     Line = PLoc.getLine();
   2360     Column = PLoc.getColumn();
   2361   } else {
   2362     Filename = llvm::Constant::getNullValue(Int8PtrTy);
   2363     Line = Column = 0;
   2364   }
   2365 
   2366   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
   2367                             Builder.getInt32(Column)};
   2368 
   2369   return llvm::ConstantStruct::getAnon(Data);
   2370 }
   2371 
   2372 namespace {
   2373 /// \brief Specify under what conditions this check can be recovered
   2374 enum class CheckRecoverableKind {
   2375   /// Always terminate program execution if this check fails.
   2376   Unrecoverable,
   2377   /// Check supports recovering, runtime has both fatal (noreturn) and
   2378   /// non-fatal handlers for this check.
   2379   Recoverable,
   2380   /// Runtime conditionally aborts, always need to support recovery.
   2381   AlwaysRecoverable
   2382 };
   2383 }
   2384 
   2385 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
   2386   assert(llvm::countPopulation(Kind) == 1);
   2387   switch (Kind) {
   2388   case SanitizerKind::Vptr:
   2389     return CheckRecoverableKind::AlwaysRecoverable;
   2390   case SanitizerKind::Return:
   2391   case SanitizerKind::Unreachable:
   2392     return CheckRecoverableKind::Unrecoverable;
   2393   default:
   2394     return CheckRecoverableKind::Recoverable;
   2395   }
   2396 }
   2397 
   2398 static void emitCheckHandlerCall(CodeGenFunction &CGF,
   2399                                  llvm::FunctionType *FnType,
   2400                                  ArrayRef<llvm::Value *> FnArgs,
   2401                                  StringRef CheckName,
   2402                                  CheckRecoverableKind RecoverKind, bool IsFatal,
   2403                                  llvm::BasicBlock *ContBB) {
   2404   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
   2405   bool NeedsAbortSuffix =
   2406       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
   2407   std::string FnName = ("__ubsan_handle_" + CheckName +
   2408                         (NeedsAbortSuffix ? "_abort" : "")).str();
   2409   bool MayReturn =
   2410       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
   2411 
   2412   llvm::AttrBuilder B;
   2413   if (!MayReturn) {
   2414     B.addAttribute(llvm::Attribute::NoReturn)
   2415         .addAttribute(llvm::Attribute::NoUnwind);
   2416   }
   2417   B.addAttribute(llvm::Attribute::UWTable);
   2418 
   2419   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
   2420       FnType, FnName,
   2421       llvm::AttributeSet::get(CGF.getLLVMContext(),
   2422                               llvm::AttributeSet::FunctionIndex, B));
   2423   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
   2424   if (!MayReturn) {
   2425     HandlerCall->setDoesNotReturn();
   2426     CGF.Builder.CreateUnreachable();
   2427   } else {
   2428     CGF.Builder.CreateBr(ContBB);
   2429   }
   2430 }
   2431 
   2432 void CodeGenFunction::EmitCheck(
   2433     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
   2434     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
   2435     ArrayRef<llvm::Value *> DynamicArgs) {
   2436   assert(IsSanitizerScope);
   2437   assert(Checked.size() > 0);
   2438 
   2439   llvm::Value *FatalCond = nullptr;
   2440   llvm::Value *RecoverableCond = nullptr;
   2441   llvm::Value *TrapCond = nullptr;
   2442   for (int i = 0, n = Checked.size(); i < n; ++i) {
   2443     llvm::Value *Check = Checked[i].first;
   2444     // -fsanitize-trap= overrides -fsanitize-recover=.
   2445     llvm::Value *&Cond =
   2446         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
   2447             ? TrapCond
   2448             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
   2449                   ? RecoverableCond
   2450                   : FatalCond;
   2451     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
   2452   }
   2453 
   2454   if (TrapCond)
   2455     EmitTrapCheck(TrapCond);
   2456   if (!FatalCond && !RecoverableCond)
   2457     return;
   2458 
   2459   llvm::Value *JointCond;
   2460   if (FatalCond && RecoverableCond)
   2461     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
   2462   else
   2463     JointCond = FatalCond ? FatalCond : RecoverableCond;
   2464   assert(JointCond);
   2465 
   2466   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
   2467   assert(SanOpts.has(Checked[0].second));
   2468 #ifndef NDEBUG
   2469   for (int i = 1, n = Checked.size(); i < n; ++i) {
   2470     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
   2471            "All recoverable kinds in a single check must be same!");
   2472     assert(SanOpts.has(Checked[i].second));
   2473   }
   2474 #endif
   2475 
   2476   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2477   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
   2478   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
   2479   // Give hint that we very much don't expect to execute the handler
   2480   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
   2481   llvm::MDBuilder MDHelper(getLLVMContext());
   2482   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2483   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2484   EmitBlock(Handlers);
   2485 
   2486   // Emit handler arguments and create handler function type.
   2487   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2488   auto *InfoPtr =
   2489       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2490                                llvm::GlobalVariable::PrivateLinkage, Info);
   2491   InfoPtr->setUnnamedAddr(true);
   2492   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
   2493 
   2494   SmallVector<llvm::Value *, 4> Args;
   2495   SmallVector<llvm::Type *, 4> ArgTypes;
   2496   Args.reserve(DynamicArgs.size() + 1);
   2497   ArgTypes.reserve(DynamicArgs.size() + 1);
   2498 
   2499   // Handler functions take an i8* pointing to the (handler-specific) static
   2500   // information block, followed by a sequence of intptr_t arguments
   2501   // representing operand values.
   2502   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
   2503   ArgTypes.push_back(Int8PtrTy);
   2504   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
   2505     Args.push_back(EmitCheckValue(DynamicArgs[i]));
   2506     ArgTypes.push_back(IntPtrTy);
   2507   }
   2508 
   2509   llvm::FunctionType *FnType =
   2510     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
   2511 
   2512   if (!FatalCond || !RecoverableCond) {
   2513     // Simple case: we need to generate a single handler call, either
   2514     // fatal, or non-fatal.
   2515     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
   2516                          (FatalCond != nullptr), Cont);
   2517   } else {
   2518     // Emit two handler calls: first one for set of unrecoverable checks,
   2519     // another one for recoverable.
   2520     llvm::BasicBlock *NonFatalHandlerBB =
   2521         createBasicBlock("non_fatal." + CheckName);
   2522     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
   2523     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
   2524     EmitBlock(FatalHandlerBB);
   2525     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
   2526                          NonFatalHandlerBB);
   2527     EmitBlock(NonFatalHandlerBB);
   2528     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
   2529                          Cont);
   2530   }
   2531 
   2532   EmitBlock(Cont);
   2533 }
   2534 
   2535 void CodeGenFunction::EmitCfiSlowPathCheck(llvm::Value *Cond,
   2536                                            llvm::ConstantInt *TypeId,
   2537                                            llvm::Value *Ptr) {
   2538   auto &Ctx = getLLVMContext();
   2539   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
   2540 
   2541   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
   2542   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
   2543 
   2544   llvm::MDBuilder MDHelper(getLLVMContext());
   2545   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2546   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2547 
   2548   EmitBlock(CheckBB);
   2549 
   2550   llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
   2551       "__cfi_slowpath",
   2552       llvm::FunctionType::get(
   2553           llvm::Type::getVoidTy(Ctx),
   2554           {llvm::Type::getInt64Ty(Ctx),
   2555            llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(Ctx))},
   2556           false));
   2557   llvm::CallInst *CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
   2558   CheckCall->setDoesNotThrow();
   2559 
   2560   EmitBlock(Cont);
   2561 }
   2562 
   2563 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
   2564   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2565 
   2566   // If we're optimizing, collapse all calls to trap down to just one per
   2567   // function to save on code size.
   2568   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
   2569     TrapBB = createBasicBlock("trap");
   2570     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2571     EmitBlock(TrapBB);
   2572     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
   2573     TrapCall->setDoesNotReturn();
   2574     TrapCall->setDoesNotThrow();
   2575     Builder.CreateUnreachable();
   2576   } else {
   2577     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2578   }
   2579 
   2580   EmitBlock(Cont);
   2581 }
   2582 
   2583 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
   2584   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
   2585 
   2586   if (!CGM.getCodeGenOpts().TrapFuncName.empty())
   2587     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
   2588                            "trap-func-name",
   2589                            CGM.getCodeGenOpts().TrapFuncName);
   2590 
   2591   return TrapCall;
   2592 }
   2593 
   2594 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
   2595                                                  AlignmentSource *AlignSource) {
   2596   assert(E->getType()->isArrayType() &&
   2597          "Array to pointer decay must have array source type!");
   2598 
   2599   // Expressions of array type can't be bitfields or vector elements.
   2600   LValue LV = EmitLValue(E);
   2601   Address Addr = LV.getAddress();
   2602   if (AlignSource) *AlignSource = LV.getAlignmentSource();
   2603 
   2604   // If the array type was an incomplete type, we need to make sure
   2605   // the decay ends up being the right type.
   2606   llvm::Type *NewTy = ConvertType(E->getType());
   2607   Addr = Builder.CreateElementBitCast(Addr, NewTy);
   2608 
   2609   // Note that VLA pointers are always decayed, so we don't need to do
   2610   // anything here.
   2611   if (!E->getType()->isVariableArrayType()) {
   2612     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
   2613            "Expected pointer to array");
   2614     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
   2615   }
   2616 
   2617   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
   2618   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
   2619 }
   2620 
   2621 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   2622 /// array to pointer, return the array subexpression.
   2623 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   2624   // If this isn't just an array->pointer decay, bail out.
   2625   const auto *CE = dyn_cast<CastExpr>(E);
   2626   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
   2627     return nullptr;
   2628 
   2629   // If this is a decay from variable width array, bail out.
   2630   const Expr *SubExpr = CE->getSubExpr();
   2631   if (SubExpr->getType()->isVariableArrayType())
   2632     return nullptr;
   2633 
   2634   return SubExpr;
   2635 }
   2636 
   2637 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
   2638                                           llvm::Value *ptr,
   2639                                           ArrayRef<llvm::Value*> indices,
   2640                                           bool inbounds,
   2641                                     const llvm::Twine &name = "arrayidx") {
   2642   if (inbounds) {
   2643     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
   2644   } else {
   2645     return CGF.Builder.CreateGEP(ptr, indices, name);
   2646   }
   2647 }
   2648 
   2649 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
   2650                                       llvm::Value *idx,
   2651                                       CharUnits eltSize) {
   2652   // If we have a constant index, we can use the exact offset of the
   2653   // element we're accessing.
   2654   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
   2655     CharUnits offset = constantIdx->getZExtValue() * eltSize;
   2656     return arrayAlign.alignmentAtOffset(offset);
   2657 
   2658   // Otherwise, use the worst-case alignment for any element.
   2659   } else {
   2660     return arrayAlign.alignmentOfArrayElement(eltSize);
   2661   }
   2662 }
   2663 
   2664 static QualType getFixedSizeElementType(const ASTContext &ctx,
   2665                                         const VariableArrayType *vla) {
   2666   QualType eltType;
   2667   do {
   2668     eltType = vla->getElementType();
   2669   } while ((vla = ctx.getAsVariableArrayType(eltType)));
   2670   return eltType;
   2671 }
   2672 
   2673 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
   2674                                      ArrayRef<llvm::Value*> indices,
   2675                                      QualType eltType, bool inbounds,
   2676                                      const llvm::Twine &name = "arrayidx") {
   2677   // All the indices except that last must be zero.
   2678 #ifndef NDEBUG
   2679   for (auto idx : indices.drop_back())
   2680     assert(isa<llvm::ConstantInt>(idx) &&
   2681            cast<llvm::ConstantInt>(idx)->isZero());
   2682 #endif
   2683 
   2684   // Determine the element size of the statically-sized base.  This is
   2685   // the thing that the indices are expressed in terms of.
   2686   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
   2687     eltType = getFixedSizeElementType(CGF.getContext(), vla);
   2688   }
   2689 
   2690   // We can use that to compute the best alignment of the element.
   2691   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   2692   CharUnits eltAlign =
   2693     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
   2694 
   2695   llvm::Value *eltPtr =
   2696     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
   2697   return Address(eltPtr, eltAlign);
   2698 }
   2699 
   2700 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2701                                                bool Accessed) {
   2702   // The index must always be an integer, which is not an aggregate.  Emit it.
   2703   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   2704   QualType IdxTy  = E->getIdx()->getType();
   2705   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   2706 
   2707   if (SanOpts.has(SanitizerKind::ArrayBounds))
   2708     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
   2709 
   2710   // If the base is a vector type, then we are forming a vector element lvalue
   2711   // with this subscript.
   2712   if (E->getBase()->getType()->isVectorType() &&
   2713       !isa<ExtVectorElementExpr>(E->getBase())) {
   2714     // Emit the vector as an lvalue to get its address.
   2715     LValue LHS = EmitLValue(E->getBase());
   2716     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   2717     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   2718                                  E->getBase()->getType(),
   2719                                  LHS.getAlignmentSource());
   2720   }
   2721 
   2722   // All the other cases basically behave like simple offsetting.
   2723 
   2724   // Extend or truncate the index type to 32 or 64-bits.
   2725   if (Idx->getType() != IntPtrTy)
   2726     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   2727 
   2728   // Handle the extvector case we ignored above.
   2729   if (isa<ExtVectorElementExpr>(E->getBase())) {
   2730     LValue LV = EmitLValue(E->getBase());
   2731     Address Addr = EmitExtVectorElementLValue(LV);
   2732 
   2733     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
   2734     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
   2735     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
   2736   }
   2737 
   2738   AlignmentSource AlignSource;
   2739   Address Addr = Address::invalid();
   2740   if (const VariableArrayType *vla =
   2741            getContext().getAsVariableArrayType(E->getType())) {
   2742     // The base must be a pointer, which is not an aggregate.  Emit
   2743     // it.  It needs to be emitted first in case it's what captures
   2744     // the VLA bounds.
   2745     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2746 
   2747     // The element count here is the total number of non-VLA elements.
   2748     llvm::Value *numElements = getVLASize(vla).first;
   2749 
   2750     // Effectively, the multiply by the VLA size is part of the GEP.
   2751     // GEP indexes are signed, and scaling an index isn't permitted to
   2752     // signed-overflow, so we use the same semantics for our explicit
   2753     // multiply.  We suppress this if overflow is not undefined behavior.
   2754     if (getLangOpts().isSignedOverflowDefined()) {
   2755       Idx = Builder.CreateMul(Idx, numElements);
   2756     } else {
   2757       Idx = Builder.CreateNSWMul(Idx, numElements);
   2758     }
   2759 
   2760     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
   2761                                  !getLangOpts().isSignedOverflowDefined());
   2762 
   2763   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   2764     // Indexing over an interface, as in "NSString *P; P[4];"
   2765     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
   2766     llvm::Value *InterfaceSizeVal =
   2767       llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
   2768 
   2769     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
   2770 
   2771     // Emit the base pointer.
   2772     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2773 
   2774     // We don't necessarily build correct LLVM struct types for ObjC
   2775     // interfaces, so we can't rely on GEP to do this scaling
   2776     // correctly, so we need to cast to i8*.  FIXME: is this actually
   2777     // true?  A lot of other things in the fragile ABI would break...
   2778     llvm::Type *OrigBaseTy = Addr.getType();
   2779     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
   2780 
   2781     // Do the GEP.
   2782     CharUnits EltAlign =
   2783       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
   2784     llvm::Value *EltPtr =
   2785       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
   2786     Addr = Address(EltPtr, EltAlign);
   2787 
   2788     // Cast back.
   2789     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
   2790   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   2791     // If this is A[i] where A is an array, the frontend will have decayed the
   2792     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   2793     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   2794     // "gep x, i" here.  Emit one "gep A, 0, i".
   2795     assert(Array->getType()->isArrayType() &&
   2796            "Array to pointer decay must have array source type!");
   2797     LValue ArrayLV;
   2798     // For simple multidimensional array indexing, set the 'accessed' flag for
   2799     // better bounds-checking of the base expression.
   2800     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   2801       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   2802     else
   2803       ArrayLV = EmitLValue(Array);
   2804 
   2805     // Propagate the alignment from the array itself to the result.
   2806     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
   2807                                  {CGM.getSize(CharUnits::Zero()), Idx},
   2808                                  E->getType(),
   2809                                  !getLangOpts().isSignedOverflowDefined());
   2810     AlignSource = ArrayLV.getAlignmentSource();
   2811   } else {
   2812     // The base must be a pointer; emit it with an estimate of its alignment.
   2813     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2814     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
   2815                                  !getLangOpts().isSignedOverflowDefined());
   2816   }
   2817 
   2818   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
   2819 
   2820   // TODO: Preserve/extend path TBAA metadata?
   2821 
   2822   if (getLangOpts().ObjC1 &&
   2823       getLangOpts().getGC() != LangOptions::NonGC) {
   2824     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2825     setObjCGCLValueClass(getContext(), E, LV);
   2826   }
   2827   return LV;
   2828 }
   2829 
   2830 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
   2831                                                 bool IsLowerBound) {
   2832   LValue Base;
   2833   if (auto *ASE =
   2834           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
   2835     Base = EmitOMPArraySectionExpr(ASE, IsLowerBound);
   2836   else
   2837     Base = EmitLValue(E->getBase());
   2838   QualType BaseTy = Base.getType();
   2839   llvm::Value *Idx = nullptr;
   2840   QualType ResultExprTy;
   2841   if (auto *AT = getContext().getAsArrayType(BaseTy))
   2842     ResultExprTy = AT->getElementType();
   2843   else
   2844     ResultExprTy = BaseTy->getPointeeType();
   2845   if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) {
   2846     // Requesting lower bound or upper bound, but without provided length and
   2847     // without ':' symbol for the default length -> length = 1.
   2848     // Idx = LowerBound ?: 0;
   2849     if (auto *LowerBound = E->getLowerBound()) {
   2850       Idx = Builder.CreateIntCast(
   2851           EmitScalarExpr(LowerBound), IntPtrTy,
   2852           LowerBound->getType()->hasSignedIntegerRepresentation());
   2853     } else
   2854       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
   2855   } else {
   2856     // Try to emit length or lower bound as constant. If this is possible, 1 is
   2857     // subtracted from constant length or lower bound. Otherwise, emit LLVM IR
   2858     // (LB + Len) - 1.
   2859     auto &C = CGM.getContext();
   2860     auto *Length = E->getLength();
   2861     llvm::APSInt ConstLength;
   2862     if (Length) {
   2863       // Idx = LowerBound + Length - 1;
   2864       if (Length->isIntegerConstantExpr(ConstLength, C)) {
   2865         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
   2866         Length = nullptr;
   2867       }
   2868       auto *LowerBound = E->getLowerBound();
   2869       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
   2870       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
   2871         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
   2872         LowerBound = nullptr;
   2873       }
   2874       if (!Length)
   2875         --ConstLength;
   2876       else if (!LowerBound)
   2877         --ConstLowerBound;
   2878 
   2879       if (Length || LowerBound) {
   2880         auto *LowerBoundVal =
   2881             LowerBound
   2882                 ? Builder.CreateIntCast(
   2883                       EmitScalarExpr(LowerBound), IntPtrTy,
   2884                       LowerBound->getType()->hasSignedIntegerRepresentation())
   2885                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
   2886         auto *LengthVal =
   2887             Length
   2888                 ? Builder.CreateIntCast(
   2889                       EmitScalarExpr(Length), IntPtrTy,
   2890                       Length->getType()->hasSignedIntegerRepresentation())
   2891                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
   2892         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
   2893                                 /*HasNUW=*/false,
   2894                                 !getLangOpts().isSignedOverflowDefined());
   2895         if (Length && LowerBound) {
   2896           Idx = Builder.CreateSub(
   2897               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
   2898               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
   2899         }
   2900       } else
   2901         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
   2902     } else {
   2903       // Idx = ArraySize - 1;
   2904       if (auto *VAT = C.getAsVariableArrayType(BaseTy)) {
   2905         Length = VAT->getSizeExpr();
   2906         if (Length->isIntegerConstantExpr(ConstLength, C))
   2907           Length = nullptr;
   2908       } else {
   2909         auto *CAT = C.getAsConstantArrayType(BaseTy);
   2910         ConstLength = CAT->getSize();
   2911       }
   2912       if (Length) {
   2913         auto *LengthVal = Builder.CreateIntCast(
   2914             EmitScalarExpr(Length), IntPtrTy,
   2915             Length->getType()->hasSignedIntegerRepresentation());
   2916         Idx = Builder.CreateSub(
   2917             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
   2918             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
   2919       } else {
   2920         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
   2921         --ConstLength;
   2922         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
   2923       }
   2924     }
   2925   }
   2926   assert(Idx);
   2927 
   2928   llvm::Value *EltPtr;
   2929   QualType FixedSizeEltType = ResultExprTy;
   2930   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
   2931     // The element count here is the total number of non-VLA elements.
   2932     llvm::Value *numElements = getVLASize(VLA).first;
   2933     FixedSizeEltType = getFixedSizeElementType(getContext(), VLA);
   2934 
   2935     // Effectively, the multiply by the VLA size is part of the GEP.
   2936     // GEP indexes are signed, and scaling an index isn't permitted to
   2937     // signed-overflow, so we use the same semantics for our explicit
   2938     // multiply.  We suppress this if overflow is not undefined behavior.
   2939     if (getLangOpts().isSignedOverflowDefined()) {
   2940       Idx = Builder.CreateMul(Idx, numElements);
   2941       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
   2942     } else {
   2943       Idx = Builder.CreateNSWMul(Idx, numElements);
   2944       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
   2945     }
   2946   } else if (BaseTy->isConstantArrayType()) {
   2947     llvm::Value *ArrayPtr = Base.getPointer();
   2948     llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
   2949     llvm::Value *Args[] = {Zero, Idx};
   2950 
   2951     if (getLangOpts().isSignedOverflowDefined())
   2952       EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
   2953     else
   2954       EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
   2955   } else {
   2956     // The base must be a pointer, which is not an aggregate.  Emit it.
   2957     if (getLangOpts().isSignedOverflowDefined())
   2958       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
   2959     else
   2960       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
   2961   }
   2962 
   2963   CharUnits EltAlign =
   2964     Base.getAlignment().alignmentOfArrayElement(
   2965                           getContext().getTypeSizeInChars(FixedSizeEltType));
   2966 
   2967   // Limit the alignment to that of the result type.
   2968   LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy,
   2969                              Base.getAlignmentSource());
   2970 
   2971   LV.getQuals().setAddressSpace(BaseTy.getAddressSpace());
   2972 
   2973   return LV;
   2974 }
   2975 
   2976 LValue CodeGenFunction::
   2977 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   2978   // Emit the base vector as an l-value.
   2979   LValue Base;
   2980 
   2981   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   2982   if (E->isArrow()) {
   2983     // If it is a pointer to a vector, emit the address and form an lvalue with
   2984     // it.
   2985     AlignmentSource AlignSource;
   2986     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2987     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   2988     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
   2989     Base.getQuals().removeObjCGCAttr();
   2990   } else if (E->getBase()->isGLValue()) {
   2991     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   2992     // emit the base as an lvalue.
   2993     assert(E->getBase()->getType()->isVectorType());
   2994     Base = EmitLValue(E->getBase());
   2995   } else {
   2996     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   2997     assert(E->getBase()->getType()->isVectorType() &&
   2998            "Result must be a vector");
   2999     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   3000 
   3001     // Store the vector to memory (because LValue wants an address).
   3002     Address VecMem = CreateMemTemp(E->getBase()->getType());
   3003     Builder.CreateStore(Vec, VecMem);
   3004     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
   3005                           AlignmentSource::Decl);
   3006   }
   3007 
   3008   QualType type =
   3009     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   3010 
   3011   // Encode the element access list into a vector of unsigned indices.
   3012   SmallVector<uint32_t, 4> Indices;
   3013   E->getEncodedElementAccess(Indices);
   3014 
   3015   if (Base.isSimple()) {
   3016     llvm::Constant *CV =
   3017         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
   3018     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
   3019                                     Base.getAlignmentSource());
   3020   }
   3021   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   3022 
   3023   llvm::Constant *BaseElts = Base.getExtVectorElts();
   3024   SmallVector<llvm::Constant *, 4> CElts;
   3025 
   3026   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   3027     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
   3028   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   3029   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
   3030                                   Base.getAlignmentSource());
   3031 }
   3032 
   3033 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   3034   Expr *BaseExpr = E->getBase();
   3035 
   3036   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   3037   LValue BaseLV;
   3038   if (E->isArrow()) {
   3039     AlignmentSource AlignSource;
   3040     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
   3041     QualType PtrTy = BaseExpr->getType()->getPointeeType();
   3042     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
   3043     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
   3044   } else
   3045     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
   3046 
   3047   NamedDecl *ND = E->getMemberDecl();
   3048   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
   3049     LValue LV = EmitLValueForField(BaseLV, Field);
   3050     setObjCGCLValueClass(getContext(), E, LV);
   3051     return LV;
   3052   }
   3053 
   3054   if (auto *VD = dyn_cast<VarDecl>(ND))
   3055     return EmitGlobalVarDeclLValue(*this, E, VD);
   3056 
   3057   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   3058     return EmitFunctionDeclLValue(*this, E, FD);
   3059 
   3060   llvm_unreachable("Unhandled member declaration!");
   3061 }
   3062 
   3063 /// Given that we are currently emitting a lambda, emit an l-value for
   3064 /// one of its members.
   3065 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
   3066   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
   3067   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
   3068   QualType LambdaTagType =
   3069     getContext().getTagDeclType(Field->getParent());
   3070   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
   3071   return EmitLValueForField(LambdaLV, Field);
   3072 }
   3073 
   3074 /// Drill down to the storage of a field without walking into
   3075 /// reference types.
   3076 ///
   3077 /// The resulting address doesn't necessarily have the right type.
   3078 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
   3079                                       const FieldDecl *field) {
   3080   const RecordDecl *rec = field->getParent();
   3081 
   3082   unsigned idx =
   3083     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   3084 
   3085   CharUnits offset;
   3086   // Adjust the alignment down to the given offset.
   3087   // As a special case, if the LLVM field index is 0, we know that this
   3088   // is zero.
   3089   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
   3090                          .getFieldOffset(field->getFieldIndex()) == 0) &&
   3091          "LLVM field at index zero had non-zero offset?");
   3092   if (idx != 0) {
   3093     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
   3094     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
   3095     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
   3096   }
   3097 
   3098   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
   3099 }
   3100 
   3101 LValue CodeGenFunction::EmitLValueForField(LValue base,
   3102                                            const FieldDecl *field) {
   3103   AlignmentSource fieldAlignSource =
   3104     getFieldAlignmentSource(base.getAlignmentSource());
   3105 
   3106   if (field->isBitField()) {
   3107     const CGRecordLayout &RL =
   3108       CGM.getTypes().getCGRecordLayout(field->getParent());
   3109     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
   3110     Address Addr = base.getAddress();
   3111     unsigned Idx = RL.getLLVMFieldNo(field);
   3112     if (Idx != 0)
   3113       // For structs, we GEP to the field that the record layout suggests.
   3114       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
   3115                                      field->getName());
   3116     // Get the access type.
   3117     llvm::Type *FieldIntTy =
   3118       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
   3119     if (Addr.getElementType() != FieldIntTy)
   3120       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
   3121 
   3122     QualType fieldType =
   3123       field->getType().withCVRQualifiers(base.getVRQualifiers());
   3124     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
   3125   }
   3126 
   3127   const RecordDecl *rec = field->getParent();
   3128   QualType type = field->getType();
   3129 
   3130   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   3131 
   3132   Address addr = base.getAddress();
   3133   unsigned cvr = base.getVRQualifiers();
   3134   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
   3135   if (rec->isUnion()) {
   3136     // For unions, there is no pointer adjustment.
   3137     assert(!type->isReferenceType() && "union has reference member");
   3138     // TODO: handle path-aware TBAA for union.
   3139     TBAAPath = false;
   3140   } else {
   3141     // For structs, we GEP to the field that the record layout suggests.
   3142     addr = emitAddrOfFieldStorage(*this, addr, field);
   3143 
   3144     // If this is a reference field, load the reference right now.
   3145     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   3146       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   3147       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   3148 
   3149       // Loading the reference will disable path-aware TBAA.
   3150       TBAAPath = false;
   3151       if (CGM.shouldUseTBAA()) {
   3152         llvm::MDNode *tbaa;
   3153         if (mayAlias)
   3154           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   3155         else
   3156           tbaa = CGM.getTBAAInfo(type);
   3157         if (tbaa)
   3158           CGM.DecorateInstructionWithTBAA(load, tbaa);
   3159       }
   3160 
   3161       mayAlias = false;
   3162       type = refType->getPointeeType();
   3163 
   3164       CharUnits alignment =
   3165         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
   3166       addr = Address(load, alignment);
   3167 
   3168       // Qualifiers on the struct don't apply to the referencee, and
   3169       // we'll pick up CVR from the actual type later, so reset these
   3170       // additional qualifiers now.
   3171       cvr = 0;
   3172     }
   3173   }
   3174 
   3175   // Make sure that the address is pointing to the right type.  This is critical
   3176   // for both unions and structs.  A union needs a bitcast, a struct element
   3177   // will need a bitcast if the LLVM type laid out doesn't match the desired
   3178   // type.
   3179   addr = Builder.CreateElementBitCast(addr,
   3180                                       CGM.getTypes().ConvertTypeForMem(type),
   3181                                       field->getName());
   3182 
   3183   if (field->hasAttr<AnnotateAttr>())
   3184     addr = EmitFieldAnnotations(field, addr);
   3185 
   3186   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
   3187   LV.getQuals().addCVRQualifiers(cvr);
   3188   if (TBAAPath) {
   3189     const ASTRecordLayout &Layout =
   3190         getContext().getASTRecordLayout(field->getParent());
   3191     // Set the base type to be the base type of the base LValue and
   3192     // update offset to be relative to the base type.
   3193     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
   3194     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
   3195                      Layout.getFieldOffset(field->getFieldIndex()) /
   3196                                            getContext().getCharWidth());
   3197   }
   3198 
   3199   // __weak attribute on a field is ignored.
   3200   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   3201     LV.getQuals().removeObjCGCAttr();
   3202 
   3203   // Fields of may_alias structs act like 'char' for TBAA purposes.
   3204   // FIXME: this should get propagated down through anonymous structs
   3205   // and unions.
   3206   if (mayAlias && LV.getTBAAInfo())
   3207     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   3208 
   3209   return LV;
   3210 }
   3211 
   3212 LValue
   3213 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
   3214                                                   const FieldDecl *Field) {
   3215   QualType FieldType = Field->getType();
   3216 
   3217   if (!FieldType->isReferenceType())
   3218     return EmitLValueForField(Base, Field);
   3219 
   3220   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
   3221 
   3222   // Make sure that the address is pointing to the right type.
   3223   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   3224   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
   3225 
   3226   // TODO: access-path TBAA?
   3227   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
   3228   return MakeAddrLValue(V, FieldType, FieldAlignSource);
   3229 }
   3230 
   3231 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   3232   if (E->isFileScope()) {
   3233     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
   3234     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
   3235   }
   3236   if (E->getType()->isVariablyModifiedType())
   3237     // make sure to emit the VLA size.
   3238     EmitVariablyModifiedType(E->getType());
   3239 
   3240   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   3241   const Expr *InitExpr = E->getInitializer();
   3242   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
   3243 
   3244   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   3245                    /*Init*/ true);
   3246 
   3247   return Result;
   3248 }
   3249 
   3250 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
   3251   if (!E->isGLValue())
   3252     // Initializing an aggregate temporary in C++11: T{...}.
   3253     return EmitAggExprToLValue(E);
   3254 
   3255   // An lvalue initializer list must be initializing a reference.
   3256   assert(E->getNumInits() == 1 && "reference init with multiple values");
   3257   return EmitLValue(E->getInit(0));
   3258 }
   3259 
   3260 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
   3261 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
   3262 /// LValue is returned and the current block has been terminated.
   3263 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
   3264                                                     const Expr *Operand) {
   3265   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
   3266     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
   3267     return None;
   3268   }
   3269 
   3270   return CGF.EmitLValue(Operand);
   3271 }
   3272 
   3273 LValue CodeGenFunction::
   3274 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   3275   if (!expr->isGLValue()) {
   3276     // ?: here should be an aggregate.
   3277     assert(hasAggregateEvaluationKind(expr->getType()) &&
   3278            "Unexpected conditional operator!");
   3279     return EmitAggExprToLValue(expr);
   3280   }
   3281 
   3282   OpaqueValueMapping binding(*this, expr);
   3283 
   3284   const Expr *condExpr = expr->getCond();
   3285   bool CondExprBool;
   3286   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   3287     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   3288     if (!CondExprBool) std::swap(live, dead);
   3289 
   3290     if (!ContainsLabel(dead)) {
   3291       // If the true case is live, we need to track its region.
   3292       if (CondExprBool)
   3293         incrementProfileCounter(expr);
   3294       return EmitLValue(live);
   3295     }
   3296   }
   3297 
   3298   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   3299   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   3300   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   3301 
   3302   ConditionalEvaluation eval(*this);
   3303   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
   3304 
   3305   // Any temporaries created here are conditional.
   3306   EmitBlock(lhsBlock);
   3307   incrementProfileCounter(expr);
   3308   eval.begin(*this);
   3309   Optional<LValue> lhs =
   3310       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
   3311   eval.end(*this);
   3312 
   3313   if (lhs && !lhs->isSimple())
   3314     return EmitUnsupportedLValue(expr, "conditional operator");
   3315 
   3316   lhsBlock = Builder.GetInsertBlock();
   3317   if (lhs)
   3318     Builder.CreateBr(contBlock);
   3319 
   3320   // Any temporaries created here are conditional.
   3321   EmitBlock(rhsBlock);
   3322   eval.begin(*this);
   3323   Optional<LValue> rhs =
   3324       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
   3325   eval.end(*this);
   3326   if (rhs && !rhs->isSimple())
   3327     return EmitUnsupportedLValue(expr, "conditional operator");
   3328   rhsBlock = Builder.GetInsertBlock();
   3329 
   3330   EmitBlock(contBlock);
   3331 
   3332   if (lhs && rhs) {
   3333     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
   3334                                            2, "cond-lvalue");
   3335     phi->addIncoming(lhs->getPointer(), lhsBlock);
   3336     phi->addIncoming(rhs->getPointer(), rhsBlock);
   3337     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
   3338     AlignmentSource alignSource =
   3339       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
   3340     return MakeAddrLValue(result, expr->getType(), alignSource);
   3341   } else {
   3342     assert((lhs || rhs) &&
   3343            "both operands of glvalue conditional are throw-expressions?");
   3344     return lhs ? *lhs : *rhs;
   3345   }
   3346 }
   3347 
   3348 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
   3349 /// type. If the cast is to a reference, we can have the usual lvalue result,
   3350 /// otherwise if a cast is needed by the code generator in an lvalue context,
   3351 /// then it must mean that we need the address of an aggregate in order to
   3352 /// access one of its members.  This can happen for all the reasons that casts
   3353 /// are permitted with aggregate result, including noop aggregate casts, and
   3354 /// cast from scalar to union.
   3355 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   3356   switch (E->getCastKind()) {
   3357   case CK_ToVoid:
   3358   case CK_BitCast:
   3359   case CK_ArrayToPointerDecay:
   3360   case CK_FunctionToPointerDecay:
   3361   case CK_NullToMemberPointer:
   3362   case CK_NullToPointer:
   3363   case CK_IntegralToPointer:
   3364   case CK_PointerToIntegral:
   3365   case CK_PointerToBoolean:
   3366   case CK_VectorSplat:
   3367   case CK_IntegralCast:
   3368   case CK_IntegralToBoolean:
   3369   case CK_IntegralToFloating:
   3370   case CK_FloatingToIntegral:
   3371   case CK_FloatingToBoolean:
   3372   case CK_FloatingCast:
   3373   case CK_FloatingRealToComplex:
   3374   case CK_FloatingComplexToReal:
   3375   case CK_FloatingComplexToBoolean:
   3376   case CK_FloatingComplexCast:
   3377   case CK_FloatingComplexToIntegralComplex:
   3378   case CK_IntegralRealToComplex:
   3379   case CK_IntegralComplexToReal:
   3380   case CK_IntegralComplexToBoolean:
   3381   case CK_IntegralComplexCast:
   3382   case CK_IntegralComplexToFloatingComplex:
   3383   case CK_DerivedToBaseMemberPointer:
   3384   case CK_BaseToDerivedMemberPointer:
   3385   case CK_MemberPointerToBoolean:
   3386   case CK_ReinterpretMemberPointer:
   3387   case CK_AnyPointerToBlockPointerCast:
   3388   case CK_ARCProduceObject:
   3389   case CK_ARCConsumeObject:
   3390   case CK_ARCReclaimReturnedObject:
   3391   case CK_ARCExtendBlockObject:
   3392   case CK_CopyAndAutoreleaseBlockObject:
   3393   case CK_AddressSpaceConversion:
   3394     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   3395 
   3396   case CK_Dependent:
   3397     llvm_unreachable("dependent cast kind in IR gen!");
   3398 
   3399   case CK_BuiltinFnToFnPtr:
   3400     llvm_unreachable("builtin functions are handled elsewhere");
   3401 
   3402   // These are never l-values; just use the aggregate emission code.
   3403   case CK_NonAtomicToAtomic:
   3404   case CK_AtomicToNonAtomic:
   3405     return EmitAggExprToLValue(E);
   3406 
   3407   case CK_Dynamic: {
   3408     LValue LV = EmitLValue(E->getSubExpr());
   3409     Address V = LV.getAddress();
   3410     const auto *DCE = cast<CXXDynamicCastExpr>(E);
   3411     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   3412   }
   3413 
   3414   case CK_ConstructorConversion:
   3415   case CK_UserDefinedConversion:
   3416   case CK_CPointerToObjCPointerCast:
   3417   case CK_BlockPointerToObjCPointerCast:
   3418   case CK_NoOp:
   3419   case CK_LValueToRValue:
   3420     return EmitLValue(E->getSubExpr());
   3421 
   3422   case CK_UncheckedDerivedToBase:
   3423   case CK_DerivedToBase: {
   3424     const RecordType *DerivedClassTy =
   3425       E->getSubExpr()->getType()->getAs<RecordType>();
   3426     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   3427 
   3428     LValue LV = EmitLValue(E->getSubExpr());
   3429     Address This = LV.getAddress();
   3430 
   3431     // Perform the derived-to-base conversion
   3432     Address Base = GetAddressOfBaseClass(
   3433         This, DerivedClassDecl, E->path_begin(), E->path_end(),
   3434         /*NullCheckValue=*/false, E->getExprLoc());
   3435 
   3436     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
   3437   }
   3438   case CK_ToUnion:
   3439     return EmitAggExprToLValue(E);
   3440   case CK_BaseToDerived: {
   3441     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   3442     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   3443 
   3444     LValue LV = EmitLValue(E->getSubExpr());
   3445 
   3446     // Perform the base-to-derived conversion
   3447     Address Derived =
   3448       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   3449                                E->path_begin(), E->path_end(),
   3450                                /*NullCheckValue=*/false);
   3451 
   3452     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
   3453     // performed and the object is not of the derived type.
   3454     if (sanitizePerformTypeCheck())
   3455       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
   3456                     Derived.getPointer(), E->getType());
   3457 
   3458     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
   3459       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
   3460                                 /*MayBeNull=*/false,
   3461                                 CFITCK_DerivedCast, E->getLocStart());
   3462 
   3463     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
   3464   }
   3465   case CK_LValueBitCast: {
   3466     // This must be a reinterpret_cast (or c-style equivalent).
   3467     const auto *CE = cast<ExplicitCastExpr>(E);
   3468 
   3469     CGM.EmitExplicitCastExprType(CE, this);
   3470     LValue LV = EmitLValue(E->getSubExpr());
   3471     Address V = Builder.CreateBitCast(LV.getAddress(),
   3472                                       ConvertType(CE->getTypeAsWritten()));
   3473 
   3474     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
   3475       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
   3476                                 /*MayBeNull=*/false,
   3477                                 CFITCK_UnrelatedCast, E->getLocStart());
   3478 
   3479     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
   3480   }
   3481   case CK_ObjCObjectLValueCast: {
   3482     LValue LV = EmitLValue(E->getSubExpr());
   3483     Address V = Builder.CreateElementBitCast(LV.getAddress(),
   3484                                              ConvertType(E->getType()));
   3485     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
   3486   }
   3487   case CK_ZeroToOCLEvent:
   3488     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
   3489   }
   3490 
   3491   llvm_unreachable("Unhandled lvalue cast kind?");
   3492 }
   3493 
   3494 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   3495   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
   3496   return getOpaqueLValueMapping(e);
   3497 }
   3498 
   3499 RValue CodeGenFunction::EmitRValueForField(LValue LV,
   3500                                            const FieldDecl *FD,
   3501                                            SourceLocation Loc) {
   3502   QualType FT = FD->getType();
   3503   LValue FieldLV = EmitLValueForField(LV, FD);
   3504   switch (getEvaluationKind(FT)) {
   3505   case TEK_Complex:
   3506     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
   3507   case TEK_Aggregate:
   3508     return FieldLV.asAggregateRValue();
   3509   case TEK_Scalar:
   3510     return EmitLoadOfLValue(FieldLV, Loc);
   3511   }
   3512   llvm_unreachable("bad evaluation kind");
   3513 }
   3514 
   3515 //===--------------------------------------------------------------------===//
   3516 //                             Expression Emission
   3517 //===--------------------------------------------------------------------===//
   3518 
   3519 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   3520                                      ReturnValueSlot ReturnValue) {
   3521   // Builtins never have block type.
   3522   if (E->getCallee()->getType()->isBlockPointerType())
   3523     return EmitBlockCallExpr(E, ReturnValue);
   3524 
   3525   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
   3526     return EmitCXXMemberCallExpr(CE, ReturnValue);
   3527 
   3528   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
   3529     return EmitCUDAKernelCallExpr(CE, ReturnValue);
   3530 
   3531   const Decl *TargetDecl = E->getCalleeDecl();
   3532   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   3533     if (unsigned builtinID = FD->getBuiltinID())
   3534       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
   3535   }
   3536 
   3537   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
   3538     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   3539       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   3540 
   3541   if (const auto *PseudoDtor =
   3542           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   3543     QualType DestroyedType = PseudoDtor->getDestroyedType();
   3544     if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
   3545       // Automatic Reference Counting:
   3546       //   If the pseudo-expression names a retainable object with weak or
   3547       //   strong lifetime, the object shall be released.
   3548       Expr *BaseExpr = PseudoDtor->getBase();
   3549       Address BaseValue = Address::invalid();
   3550       Qualifiers BaseQuals;
   3551 
   3552       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   3553       if (PseudoDtor->isArrow()) {
   3554         BaseValue = EmitPointerWithAlignment(BaseExpr);
   3555         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   3556         BaseQuals = PTy->getPointeeType().getQualifiers();
   3557       } else {
   3558         LValue BaseLV = EmitLValue(BaseExpr);
   3559         BaseValue = BaseLV.getAddress();
   3560         QualType BaseTy = BaseExpr->getType();
   3561         BaseQuals = BaseTy.getQualifiers();
   3562       }
   3563 
   3564       switch (DestroyedType.getObjCLifetime()) {
   3565       case Qualifiers::OCL_None:
   3566       case Qualifiers::OCL_ExplicitNone:
   3567       case Qualifiers::OCL_Autoreleasing:
   3568         break;
   3569 
   3570       case Qualifiers::OCL_Strong:
   3571         EmitARCRelease(Builder.CreateLoad(BaseValue,
   3572                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   3573                        ARCPreciseLifetime);
   3574         break;
   3575 
   3576       case Qualifiers::OCL_Weak:
   3577         EmitARCDestroyWeak(BaseValue);
   3578         break;
   3579       }
   3580     } else {
   3581       // C++ [expr.pseudo]p1:
   3582       //   The result shall only be used as the operand for the function call
   3583       //   operator (), and the result of such a call has type void. The only
   3584       //   effect is the evaluation of the postfix-expression before the dot or
   3585       //   arrow.
   3586       EmitScalarExpr(E->getCallee());
   3587     }
   3588 
   3589     return RValue::get(nullptr);
   3590   }
   3591 
   3592   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   3593   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
   3594                   TargetDecl);
   3595 }
   3596 
   3597 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   3598   // Comma expressions just emit their LHS then their RHS as an l-value.
   3599   if (E->getOpcode() == BO_Comma) {
   3600     EmitIgnoredExpr(E->getLHS());
   3601     EnsureInsertPoint();
   3602     return EmitLValue(E->getRHS());
   3603   }
   3604 
   3605   if (E->getOpcode() == BO_PtrMemD ||
   3606       E->getOpcode() == BO_PtrMemI)
   3607     return EmitPointerToDataMemberBinaryExpr(E);
   3608 
   3609   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   3610 
   3611   // Note that in all of these cases, __block variables need the RHS
   3612   // evaluated first just in case the variable gets moved by the RHS.
   3613 
   3614   switch (getEvaluationKind(E->getType())) {
   3615   case TEK_Scalar: {
   3616     switch (E->getLHS()->getType().getObjCLifetime()) {
   3617     case Qualifiers::OCL_Strong:
   3618       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   3619 
   3620     case Qualifiers::OCL_Autoreleasing:
   3621       return EmitARCStoreAutoreleasing(E).first;
   3622 
   3623     // No reason to do any of these differently.
   3624     case Qualifiers::OCL_None:
   3625     case Qualifiers::OCL_ExplicitNone:
   3626     case Qualifiers::OCL_Weak:
   3627       break;
   3628     }
   3629 
   3630     RValue RV = EmitAnyExpr(E->getRHS());
   3631     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
   3632     EmitStoreThroughLValue(RV, LV);
   3633     return LV;
   3634   }
   3635 
   3636   case TEK_Complex:
   3637     return EmitComplexAssignmentLValue(E);
   3638 
   3639   case TEK_Aggregate:
   3640     return EmitAggExprToLValue(E);
   3641   }
   3642   llvm_unreachable("bad evaluation kind");
   3643 }
   3644 
   3645 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   3646   RValue RV = EmitCallExpr(E);
   3647 
   3648   if (!RV.isScalar())
   3649     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
   3650                           AlignmentSource::Decl);
   3651 
   3652   assert(E->getCallReturnType(getContext())->isReferenceType() &&
   3653          "Can't have a scalar return unless the return type is a "
   3654          "reference type!");
   3655 
   3656   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
   3657 }
   3658 
   3659 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   3660   // FIXME: This shouldn't require another copy.
   3661   return EmitAggExprToLValue(E);
   3662 }
   3663 
   3664 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   3665   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   3666          && "binding l-value to type which needs a temporary");
   3667   AggValueSlot Slot = CreateAggTemp(E->getType());
   3668   EmitCXXConstructExpr(E, Slot);
   3669   return MakeAddrLValue(Slot.getAddress(), E->getType(),
   3670                         AlignmentSource::Decl);
   3671 }
   3672 
   3673 LValue
   3674 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   3675   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   3676 }
   3677 
   3678 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
   3679   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
   3680                                       ConvertType(E->getType()));
   3681 }
   3682 
   3683 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
   3684   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
   3685                         AlignmentSource::Decl);
   3686 }
   3687 
   3688 LValue
   3689 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   3690   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3691   Slot.setExternallyDestructed();
   3692   EmitAggExpr(E->getSubExpr(), Slot);
   3693   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
   3694   return MakeAddrLValue(Slot.getAddress(), E->getType(),
   3695                         AlignmentSource::Decl);
   3696 }
   3697 
   3698 LValue
   3699 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
   3700   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3701   EmitLambdaExpr(E, Slot);
   3702   return MakeAddrLValue(Slot.getAddress(), E->getType(),
   3703                         AlignmentSource::Decl);
   3704 }
   3705 
   3706 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   3707   RValue RV = EmitObjCMessageExpr(E);
   3708 
   3709   if (!RV.isScalar())
   3710     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
   3711                           AlignmentSource::Decl);
   3712 
   3713   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
   3714          "Can't have a scalar return unless the return type is a "
   3715          "reference type!");
   3716 
   3717   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
   3718 }
   3719 
   3720 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   3721   Address V =
   3722     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
   3723   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
   3724 }
   3725 
   3726 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   3727                                              const ObjCIvarDecl *Ivar) {
   3728   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   3729 }
   3730 
   3731 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   3732                                           llvm::Value *BaseValue,
   3733                                           const ObjCIvarDecl *Ivar,
   3734                                           unsigned CVRQualifiers) {
   3735   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   3736                                                    Ivar, CVRQualifiers);
   3737 }
   3738 
   3739 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   3740   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   3741   llvm::Value *BaseValue = nullptr;
   3742   const Expr *BaseExpr = E->getBase();
   3743   Qualifiers BaseQuals;
   3744   QualType ObjectTy;
   3745   if (E->isArrow()) {
   3746     BaseValue = EmitScalarExpr(BaseExpr);
   3747     ObjectTy = BaseExpr->getType()->getPointeeType();
   3748     BaseQuals = ObjectTy.getQualifiers();
   3749   } else {
   3750     LValue BaseLV = EmitLValue(BaseExpr);
   3751     BaseValue = BaseLV.getPointer();
   3752     ObjectTy = BaseExpr->getType();
   3753     BaseQuals = ObjectTy.getQualifiers();
   3754   }
   3755 
   3756   LValue LV =
   3757     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   3758                       BaseQuals.getCVRQualifiers());
   3759   setObjCGCLValueClass(getContext(), E, LV);
   3760   return LV;
   3761 }
   3762 
   3763 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   3764   // Can only get l-value for message expression returning aggregate type
   3765   RValue RV = EmitAnyExprToTemp(E);
   3766   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
   3767                         AlignmentSource::Decl);
   3768 }
   3769 
   3770 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   3771                                  const CallExpr *E, ReturnValueSlot ReturnValue,
   3772                                  CGCalleeInfo CalleeInfo, llvm::Value *Chain) {
   3773   // Get the actual function type. The callee type will always be a pointer to
   3774   // function type or a block pointer type.
   3775   assert(CalleeType->isFunctionPointerType() &&
   3776          "Call must have function pointer type!");
   3777 
   3778   // Preserve the non-canonical function type because things like exception
   3779   // specifications disappear in the canonical type. That information is useful
   3780   // to drive the generation of more accurate code for this call later on.
   3781   const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>()
   3782                                                  ->getPointeeType()
   3783                                                  ->getAs<FunctionProtoType>();
   3784 
   3785   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
   3786 
   3787   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
   3788     // We can only guarantee that a function is called from the correct
   3789     // context/function based on the appropriate target attributes,
   3790     // so only check in the case where we have both always_inline and target
   3791     // since otherwise we could be making a conditional call after a check for
   3792     // the proper cpu features (and it won't cause code generation issues due to
   3793     // function based code generation).
   3794     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
   3795         TargetDecl->hasAttr<TargetAttr>())
   3796       checkTargetFeatures(E, FD);
   3797 
   3798   CalleeType = getContext().getCanonicalType(CalleeType);
   3799 
   3800   const auto *FnType =
   3801       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   3802 
   3803   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
   3804       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
   3805     if (llvm::Constant *PrefixSig =
   3806             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
   3807       SanitizerScope SanScope(this);
   3808       llvm::Constant *FTRTTIConst =
   3809           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
   3810       llvm::Type *PrefixStructTyElems[] = {
   3811         PrefixSig->getType(),
   3812         FTRTTIConst->getType()
   3813       };
   3814       llvm::StructType *PrefixStructTy = llvm::StructType::get(
   3815           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
   3816 
   3817       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
   3818           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
   3819       llvm::Value *CalleeSigPtr =
   3820           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
   3821       llvm::Value *CalleeSig =
   3822           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
   3823       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
   3824 
   3825       llvm::BasicBlock *Cont = createBasicBlock("cont");
   3826       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
   3827       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
   3828 
   3829       EmitBlock(TypeCheck);
   3830       llvm::Value *CalleeRTTIPtr =
   3831           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
   3832       llvm::Value *CalleeRTTI =
   3833           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
   3834       llvm::Value *CalleeRTTIMatch =
   3835           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
   3836       llvm::Constant *StaticData[] = {
   3837         EmitCheckSourceLocation(E->getLocStart()),
   3838         EmitCheckTypeDescriptor(CalleeType)
   3839       };
   3840       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
   3841                 "function_type_mismatch", StaticData, Callee);
   3842 
   3843       Builder.CreateBr(Cont);
   3844       EmitBlock(Cont);
   3845     }
   3846   }
   3847 
   3848   // If we are checking indirect calls and this call is indirect, check that the
   3849   // function pointer is a member of the bit set for the function type.
   3850   if (SanOpts.has(SanitizerKind::CFIICall) &&
   3851       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
   3852     SanitizerScope SanScope(this);
   3853 
   3854     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
   3855     llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
   3856 
   3857     llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
   3858     llvm::Value *BitSetTest =
   3859         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
   3860                            {CastedCallee, BitSetName});
   3861 
   3862     auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD);
   3863     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && TypeId) {
   3864       EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedCallee);
   3865     } else {
   3866       llvm::Constant *StaticData[] = {
   3867           EmitCheckSourceLocation(E->getLocStart()),
   3868           EmitCheckTypeDescriptor(QualType(FnType, 0)),
   3869       };
   3870       EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall),
   3871                 "cfi_bad_icall", StaticData, CastedCallee);
   3872     }
   3873   }
   3874 
   3875   CallArgList Args;
   3876   if (Chain)
   3877     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
   3878              CGM.getContext().VoidPtrTy);
   3879   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
   3880                E->getDirectCallee(), /*ParamsToSkip*/ 0);
   3881 
   3882   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
   3883       Args, FnType, /*isChainCall=*/Chain);
   3884 
   3885   // C99 6.5.2.2p6:
   3886   //   If the expression that denotes the called function has a type
   3887   //   that does not include a prototype, [the default argument
   3888   //   promotions are performed]. If the number of arguments does not
   3889   //   equal the number of parameters, the behavior is undefined. If
   3890   //   the function is defined with a type that includes a prototype,
   3891   //   and either the prototype ends with an ellipsis (, ...) or the
   3892   //   types of the arguments after promotion are not compatible with
   3893   //   the types of the parameters, the behavior is undefined. If the
   3894   //   function is defined with a type that does not include a
   3895   //   prototype, and the types of the arguments after promotion are
   3896   //   not compatible with those of the parameters after promotion,
   3897   //   the behavior is undefined [except in some trivial cases].
   3898   // That is, in the general case, we should assume that a call
   3899   // through an unprototyped function type works like a *non-variadic*
   3900   // call.  The way we make this work is to cast to the exact type
   3901   // of the promoted arguments.
   3902   //
   3903   // Chain calls use this same code path to add the invisible chain parameter
   3904   // to the function type.
   3905   if (isa<FunctionNoProtoType>(FnType) || Chain) {
   3906     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
   3907     CalleeTy = CalleeTy->getPointerTo();
   3908     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
   3909   }
   3910 
   3911   return EmitCall(FnInfo, Callee, ReturnValue, Args,
   3912                   CGCalleeInfo(NonCanonicalFTP, TargetDecl));
   3913 }
   3914 
   3915 LValue CodeGenFunction::
   3916 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   3917   Address BaseAddr = Address::invalid();
   3918   if (E->getOpcode() == BO_PtrMemI) {
   3919     BaseAddr = EmitPointerWithAlignment(E->getLHS());
   3920   } else {
   3921     BaseAddr = EmitLValue(E->getLHS()).getAddress();
   3922   }
   3923 
   3924   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   3925 
   3926   const MemberPointerType *MPT
   3927     = E->getRHS()->getType()->getAs<MemberPointerType>();
   3928 
   3929   AlignmentSource AlignSource;
   3930   Address MemberAddr =
   3931     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
   3932                                     &AlignSource);
   3933 
   3934   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
   3935 }
   3936 
   3937 /// Given the address of a temporary variable, produce an r-value of
   3938 /// its type.
   3939 RValue CodeGenFunction::convertTempToRValue(Address addr,
   3940                                             QualType type,
   3941                                             SourceLocation loc) {
   3942   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
   3943   switch (getEvaluationKind(type)) {
   3944   case TEK_Complex:
   3945     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
   3946   case TEK_Aggregate:
   3947     return lvalue.asAggregateRValue();
   3948   case TEK_Scalar:
   3949     return RValue::get(EmitLoadOfScalar(lvalue, loc));
   3950   }
   3951   llvm_unreachable("bad evaluation kind");
   3952 }
   3953 
   3954 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
   3955   assert(Val->getType()->isFPOrFPVectorTy());
   3956   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
   3957     return;
   3958 
   3959   llvm::MDBuilder MDHelper(getLLVMContext());
   3960   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
   3961 
   3962   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
   3963 }
   3964 
   3965 namespace {
   3966   struct LValueOrRValue {
   3967     LValue LV;
   3968     RValue RV;
   3969   };
   3970 }
   3971 
   3972 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
   3973                                            const PseudoObjectExpr *E,
   3974                                            bool forLValue,
   3975                                            AggValueSlot slot) {
   3976   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   3977 
   3978   // Find the result expression, if any.
   3979   const Expr *resultExpr = E->getResultExpr();
   3980   LValueOrRValue result;
   3981 
   3982   for (PseudoObjectExpr::const_semantics_iterator
   3983          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   3984     const Expr *semantic = *i;
   3985 
   3986     // If this semantic expression is an opaque value, bind it
   3987     // to the result of its source expression.
   3988     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   3989 
   3990       // If this is the result expression, we may need to evaluate
   3991       // directly into the slot.
   3992       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   3993       OVMA opaqueData;
   3994       if (ov == resultExpr && ov->isRValue() && !forLValue &&
   3995           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
   3996         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
   3997 
   3998         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
   3999                                        AlignmentSource::Decl);
   4000         opaqueData = OVMA::bind(CGF, ov, LV);
   4001         result.RV = slot.asRValue();
   4002 
   4003       // Otherwise, emit as normal.
   4004       } else {
   4005         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   4006 
   4007         // If this is the result, also evaluate the result now.
   4008         if (ov == resultExpr) {
   4009           if (forLValue)
   4010             result.LV = CGF.EmitLValue(ov);
   4011           else
   4012             result.RV = CGF.EmitAnyExpr(ov, slot);
   4013         }
   4014       }
   4015 
   4016       opaques.push_back(opaqueData);
   4017 
   4018     // Otherwise, if the expression is the result, evaluate it
   4019     // and remember the result.
   4020     } else if (semantic == resultExpr) {
   4021       if (forLValue)
   4022         result.LV = CGF.EmitLValue(semantic);
   4023       else
   4024         result.RV = CGF.EmitAnyExpr(semantic, slot);
   4025 
   4026     // Otherwise, evaluate the expression in an ignored context.
   4027     } else {
   4028       CGF.EmitIgnoredExpr(semantic);
   4029     }
   4030   }
   4031 
   4032   // Unbind all the opaques now.
   4033   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   4034     opaques[i].unbind(CGF);
   4035 
   4036   return result;
   4037 }
   4038 
   4039 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
   4040                                                AggValueSlot slot) {
   4041   return emitPseudoObjectExpr(*this, E, false, slot).RV;
   4042 }
   4043 
   4044 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
   4045   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
   4046 }
   4047