Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonExpandCondsets.cpp ----------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // Replace mux instructions with the corresponding legal instructions.
     11 // It is meant to work post-SSA, but still on virtual registers. It was
     12 // originally placed between register coalescing and machine instruction
     13 // scheduler.
     14 // In this place in the optimization sequence, live interval analysis had
     15 // been performed, and the live intervals should be preserved. A large part
     16 // of the code deals with preserving the liveness information.
     17 //
     18 // Liveness tracking aside, the main functionality of this pass is divided
     19 // into two steps. The first step is to replace an instruction
     20 //   vreg0 = C2_mux vreg0, vreg1, vreg2
     21 // with a pair of conditional transfers
     22 //   vreg0 = A2_tfrt vreg0, vreg1
     23 //   vreg0 = A2_tfrf vreg0, vreg2
     24 // It is the intention that the execution of this pass could be terminated
     25 // after this step, and the code generated would be functionally correct.
     26 //
     27 // If the uses of the source values vreg1 and vreg2 are kills, and their
     28 // definitions are predicable, then in the second step, the conditional
     29 // transfers will then be rewritten as predicated instructions. E.g.
     30 //   vreg0 = A2_or vreg1, vreg2
     31 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
     32 // will be rewritten as
     33 //   vreg3 = A2_port vreg99, vreg1, vreg2
     34 //
     35 // This replacement has two variants: "up" and "down". Consider this case:
     36 //   vreg0 = A2_or vreg1, vreg2
     37 //   ... [intervening instructions] ...
     38 //   vreg3 = A2_tfrt vreg99, vreg0<kill>
     39 // variant "up":
     40 //   vreg3 = A2_port vreg99, vreg1, vreg2
     41 //   ... [intervening instructions, vreg0->vreg3] ...
     42 //   [deleted]
     43 // variant "down":
     44 //   [deleted]
     45 //   ... [intervening instructions] ...
     46 //   vreg3 = A2_port vreg99, vreg1, vreg2
     47 //
     48 // Both, one or none of these variants may be valid, and checks are made
     49 // to rule out inapplicable variants.
     50 //
     51 // As an additional optimization, before either of the two steps above is
     52 // executed, the pass attempts to coalesce the target register with one of
     53 // the source registers, e.g. given an instruction
     54 //   vreg3 = C2_mux vreg0, vreg1, vreg2
     55 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
     56 // the instruction would then be (for example)
     57 //   vreg3 = C2_mux vreg0, vreg3, vreg2
     58 // and, under certain circumstances, this could result in only one predicated
     59 // instruction:
     60 //   vreg3 = A2_tfrf vreg0, vreg2
     61 //
     62 
     63 #define DEBUG_TYPE "expand-condsets"
     64 #include "HexagonTargetMachine.h"
     65 
     66 #include "llvm/CodeGen/Passes.h"
     67 #include "llvm/CodeGen/LiveInterval.h"
     68 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     69 #include "llvm/CodeGen/MachineFunction.h"
     70 #include "llvm/CodeGen/MachineInstrBuilder.h"
     71 #include "llvm/CodeGen/MachineRegisterInfo.h"
     72 #include "llvm/Target/TargetInstrInfo.h"
     73 #include "llvm/Target/TargetMachine.h"
     74 #include "llvm/Target/TargetRegisterInfo.h"
     75 #include "llvm/Support/CommandLine.h"
     76 #include "llvm/Support/Debug.h"
     77 #include "llvm/Support/raw_ostream.h"
     78 
     79 using namespace llvm;
     80 
     81 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
     82   cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
     83 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
     84   cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
     85 
     86 namespace llvm {
     87   void initializeHexagonExpandCondsetsPass(PassRegistry&);
     88   FunctionPass *createHexagonExpandCondsets();
     89 }
     90 
     91 namespace {
     92   class HexagonExpandCondsets : public MachineFunctionPass {
     93   public:
     94     static char ID;
     95     HexagonExpandCondsets() :
     96         MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
     97         LIS(0), CoaLimitActive(false),
     98         TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
     99       if (OptCoaLimit.getPosition())
    100         CoaLimitActive = true, CoaLimit = OptCoaLimit;
    101       if (OptTfrLimit.getPosition())
    102         TfrLimitActive = true, TfrLimit = OptTfrLimit;
    103       initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
    104     }
    105 
    106     virtual const char *getPassName() const {
    107       return "Hexagon Expand Condsets";
    108     }
    109     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    110       AU.addRequired<LiveIntervals>();
    111       AU.addPreserved<LiveIntervals>();
    112       AU.addPreserved<SlotIndexes>();
    113       MachineFunctionPass::getAnalysisUsage(AU);
    114     }
    115     virtual bool runOnMachineFunction(MachineFunction &MF);
    116 
    117   private:
    118     const HexagonInstrInfo *HII;
    119     const TargetRegisterInfo *TRI;
    120     MachineRegisterInfo *MRI;
    121     LiveIntervals *LIS;
    122 
    123     bool CoaLimitActive, TfrLimitActive;
    124     unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
    125 
    126     struct RegisterRef {
    127       RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
    128           Sub(Op.getSubReg()) {}
    129       RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
    130       bool operator== (RegisterRef RR) const {
    131         return Reg == RR.Reg && Sub == RR.Sub;
    132       }
    133       bool operator!= (RegisterRef RR) const { return !operator==(RR); }
    134       unsigned Reg, Sub;
    135     };
    136 
    137     typedef DenseMap<unsigned,unsigned> ReferenceMap;
    138     enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
    139     enum { Exec_Then = 0x10, Exec_Else = 0x20 };
    140     unsigned getMaskForSub(unsigned Sub);
    141     bool isCondset(const MachineInstr *MI);
    142 
    143     void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
    144     bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
    145 
    146     LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
    147     LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
    148     void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
    149     void makeUndead(unsigned Reg, SlotIndex S);
    150     void shrinkToUses(unsigned Reg, LiveInterval &LI);
    151     void updateKillFlags(unsigned Reg, LiveInterval &LI);
    152     void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
    153         LiveInterval &LI);
    154     void addInstrToLiveness(MachineInstr *MI);
    155     void removeInstrFromLiveness(MachineInstr *MI);
    156 
    157     unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
    158     MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
    159         unsigned DstSR, const MachineOperand &PredOp, bool Cond);
    160     bool split(MachineInstr *MI);
    161     bool splitInBlock(MachineBasicBlock &B);
    162 
    163     bool isPredicable(MachineInstr *MI);
    164     MachineInstr *getReachingDefForPred(RegisterRef RD,
    165         MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
    166     bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
    167     bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
    168     void predicateAt(RegisterRef RD, MachineInstr *MI,
    169         MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
    170     void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
    171         bool Cond, MachineBasicBlock::iterator First,
    172         MachineBasicBlock::iterator Last);
    173     bool predicate(MachineInstr *TfrI, bool Cond);
    174     bool predicateInBlock(MachineBasicBlock &B);
    175 
    176     void postprocessUndefImplicitUses(MachineBasicBlock &B);
    177     void removeImplicitUses(MachineInstr *MI);
    178     void removeImplicitUses(MachineBasicBlock &B);
    179 
    180     bool isIntReg(RegisterRef RR, unsigned &BW);
    181     bool isIntraBlocks(LiveInterval &LI);
    182     bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
    183     bool coalesceSegments(MachineFunction &MF);
    184   };
    185 }
    186 
    187 char HexagonExpandCondsets::ID = 0;
    188 
    189 
    190 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
    191   switch (Sub) {
    192     case Hexagon::subreg_loreg:
    193       return Sub_Low;
    194     case Hexagon::subreg_hireg:
    195       return Sub_High;
    196     case Hexagon::NoSubRegister:
    197       return Sub_None;
    198   }
    199   llvm_unreachable("Invalid subregister");
    200 }
    201 
    202 
    203 bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
    204   unsigned Opc = MI->getOpcode();
    205   switch (Opc) {
    206     case Hexagon::C2_mux:
    207     case Hexagon::C2_muxii:
    208     case Hexagon::C2_muxir:
    209     case Hexagon::C2_muxri:
    210     case Hexagon::MUX64_rr:
    211         return true;
    212       break;
    213   }
    214   return false;
    215 }
    216 
    217 
    218 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
    219       unsigned Exec) {
    220   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
    221   ReferenceMap::iterator F = Map.find(RR.Reg);
    222   if (F == Map.end())
    223     Map.insert(std::make_pair(RR.Reg, Mask));
    224   else
    225     F->second |= Mask;
    226 }
    227 
    228 
    229 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
    230       unsigned Exec) {
    231   ReferenceMap::iterator F = Map.find(RR.Reg);
    232   if (F == Map.end())
    233     return false;
    234   unsigned Mask = getMaskForSub(RR.Sub) | Exec;
    235   if (Mask & F->second)
    236     return true;
    237   return false;
    238 }
    239 
    240 
    241 LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
    242       SlotIndex S) {
    243   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    244     if (I->start >= S)
    245       return I;
    246   }
    247   return LI.end();
    248 }
    249 
    250 
    251 LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
    252       SlotIndex S) {
    253   LiveInterval::iterator P = LI.end();
    254   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    255     if (I->end > S)
    256       return P;
    257     P = I;
    258   }
    259   return P;
    260 }
    261 
    262 
    263 /// Find the implicit use of register Reg in slot index S, and make sure
    264 /// that the "defined" flag is set to SetDef. While the mux expansion is
    265 /// going on, predicated instructions will have implicit uses of the
    266 /// registers that are being defined. This is to keep any preceding
    267 /// definitions live. If there is no preceding definition, the implicit
    268 /// use will be marked as "undef", otherwise it will be "defined". This
    269 /// function is used to update the flag.
    270 void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
    271       bool SetDef) {
    272   if (!S.isRegister())
    273     return;
    274   MachineInstr *MI = LIS->getInstructionFromIndex(S);
    275   assert(MI && "Expecting instruction");
    276   for (auto &Op : MI->operands()) {
    277     if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
    278       continue;
    279     bool IsDef = !Op.isUndef();
    280     if (Op.isImplicit() && IsDef != SetDef)
    281       Op.setIsUndef(!SetDef);
    282   }
    283 }
    284 
    285 
    286 void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
    287   // If S is a block boundary, then there can still be a dead def reaching
    288   // this point. Instead of traversing the CFG, queue start points of all
    289   // live segments that begin with a register, and end at a block boundary.
    290   // This may "resurrect" some truly dead definitions, but doing so is
    291   // harmless.
    292   SmallVector<MachineInstr*,8> Defs;
    293   if (S.isBlock()) {
    294     LiveInterval &LI = LIS->getInterval(Reg);
    295     for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    296       if (!I->start.isRegister() || !I->end.isBlock())
    297         continue;
    298       MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
    299       Defs.push_back(MI);
    300     }
    301   } else if (S.isRegister()) {
    302     MachineInstr *MI = LIS->getInstructionFromIndex(S);
    303     Defs.push_back(MI);
    304   }
    305 
    306   for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
    307     MachineInstr *MI = Defs[i];
    308     for (auto &Op : MI->operands()) {
    309       if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
    310         continue;
    311       Op.setIsDead(false);
    312     }
    313   }
    314 }
    315 
    316 
    317 /// Shrink the segments in the live interval for a given register to the last
    318 /// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
    319 /// function will not mark any definitions of Reg as dead. The reason for this
    320 /// is that this function is used while a MUX instruction is being expanded,
    321 /// or while a conditional copy is undergoing predication. During these
    322 /// processes, there may be defs present in the instruction sequence that have
    323 /// not yet been removed, or there may be missing uses that have not yet been
    324 /// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
    325 /// but since it does not extend any intervals that are too short, we need to
    326 /// pre-emptively extend them here in anticipation of further changes.
    327 void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
    328   SmallVector<MachineInstr*,4> Deads;
    329   LIS->shrinkToUses(&LI, &Deads);
    330   // Need to undo the deadification made by "shrinkToUses". It's easier to
    331   // do it here, since we have a list of all instructions that were just
    332   // marked as dead.
    333   for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
    334     MachineInstr *MI = Deads[i];
    335     // Clear the "dead" flag.
    336     for (auto &Op : MI->operands()) {
    337       if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
    338         continue;
    339       Op.setIsDead(false);
    340     }
    341     // Extend the live segment to the beginning of the next one.
    342     LiveInterval::iterator End = LI.end();
    343     SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
    344     LiveInterval::iterator T = LI.FindSegmentContaining(S);
    345     assert(T != End);
    346     LiveInterval::iterator N = std::next(T);
    347     if (N != End)
    348       T->end = N->start;
    349     else
    350       T->end = LIS->getMBBEndIdx(MI->getParent());
    351   }
    352   updateKillFlags(Reg, LI);
    353 }
    354 
    355 
    356 /// Given an updated live interval LI for register Reg, update the kill flags
    357 /// in instructions using Reg to reflect the liveness changes.
    358 void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
    359   MRI->clearKillFlags(Reg);
    360   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    361     SlotIndex EX = I->end;
    362     if (!EX.isRegister())
    363       continue;
    364     MachineInstr *MI = LIS->getInstructionFromIndex(EX);
    365     for (auto &Op : MI->operands()) {
    366       if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
    367         continue;
    368       // Only set the kill flag on the first encountered use of Reg in this
    369       // instruction.
    370       Op.setIsKill(true);
    371       break;
    372     }
    373   }
    374 }
    375 
    376 
    377 /// When adding a new instruction to liveness, the newly added definition
    378 /// will start a new live segment. This may happen at a position that falls
    379 /// within an existing live segment. In such case that live segment needs to
    380 /// be truncated to make room for the new segment. Ultimately, the truncation
    381 /// will occur at the last use, but for now the segment can be terminated
    382 /// right at the place where the new segment will start. The segments will be
    383 /// shrunk-to-uses later.
    384 void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
    385       SlotIndex S, LiveInterval &LI) {
    386   // Terminate the live segment pointed to by LT within a live interval LI.
    387   if (LT == LI.end())
    388     return;
    389 
    390   VNInfo *OldVN = LT->valno;
    391   SlotIndex EX = LT->end;
    392   LT->end = S;
    393   // If LT does not end at a block boundary, the termination is done.
    394   if (!EX.isBlock())
    395     return;
    396 
    397   // If LT ended at a block boundary, it's possible that its value number
    398   // is picked up at the beginning other blocks. Create a new value number
    399   // and change such blocks to use it instead.
    400   VNInfo *NewVN = 0;
    401   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    402     if (!I->start.isBlock() || I->valno != OldVN)
    403       continue;
    404     // Generate on-demand a new value number that is defined by the
    405     // block beginning (i.e. -phi).
    406     if (!NewVN)
    407       NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
    408     I->valno = NewVN;
    409   }
    410 }
    411 
    412 
    413 /// Add the specified instruction to live intervals. This function is used
    414 /// to update the live intervals while the program code is being changed.
    415 /// Neither the expansion of a MUX, nor the predication are atomic, and this
    416 /// function is used to update the live intervals while these transformations
    417 /// are being done.
    418 void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
    419   SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
    420                                        : LIS->getInstructionIndex(MI);
    421   DEBUG(dbgs() << "adding liveness info for instr\n  " << MX << "  " << *MI);
    422 
    423   MX = MX.getRegSlot();
    424   bool Predicated = HII->isPredicated(MI);
    425   MachineBasicBlock *MB = MI->getParent();
    426 
    427   // Strip all implicit uses from predicated instructions. They will be
    428   // added again, according to the updated information.
    429   if (Predicated)
    430     removeImplicitUses(MI);
    431 
    432   // For each def in MI we need to insert a new live segment starting at MX
    433   // into the interval. If there already exists a live segment in the interval
    434   // that contains MX, we need to terminate it at MX.
    435   SmallVector<RegisterRef,2> Defs;
    436   for (auto &Op : MI->operands())
    437     if (Op.isReg() && Op.isDef())
    438       Defs.push_back(RegisterRef(Op));
    439 
    440   for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
    441     unsigned DefR = Defs[i].Reg;
    442     LiveInterval &LID = LIS->getInterval(DefR);
    443     DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
    444                  << " with interval\n  " << LID << "\n");
    445     // If MX falls inside of an existing live segment, terminate it.
    446     LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
    447     if (LT != LID.end())
    448       terminateSegment(LT, MX, LID);
    449     DEBUG(dbgs() << "after terminating segment\n  " << LID << "\n");
    450 
    451     // Create a new segment starting from MX.
    452     LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
    453     SlotIndex EX;
    454     VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
    455     if (N == LID.end()) {
    456       // There is no live segment after MX. End this segment at the end of
    457       // the block.
    458       EX = LIS->getMBBEndIdx(MB);
    459     } else {
    460       // If the next segment starts at the block boundary, end the new segment
    461       // at the boundary of the preceding block (i.e. the previous index).
    462       // Otherwise, end the segment at the beginning of the next segment. In
    463       // either case it will be "shrunk-to-uses" later.
    464       EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
    465     }
    466     if (Predicated) {
    467       // Predicated instruction will have an implicit use of the defined
    468       // register. This is necessary so that this definition will not make
    469       // any previous definitions dead. If there are no previous live
    470       // segments, still add the implicit use, but make it "undef".
    471       // Because of the implicit use, the preceding definition is not
    472       // dead. Mark is as such (if necessary).
    473       MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
    474       ImpUse.setSubReg(Defs[i].Sub);
    475       bool Undef = false;
    476       if (P == LID.end())
    477         Undef = true;
    478       else {
    479         // If the previous segment extends to the end of the previous block,
    480         // the end index may actually be the beginning of this block. If
    481         // the previous segment ends at a block boundary, move it back by one,
    482         // to get the proper block for it.
    483         SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
    484         MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
    485         if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
    486           Undef = true;
    487       }
    488       if (!Undef) {
    489         makeUndead(DefR, P->valno->def);
    490         // We are adding a live use, so extend the previous segment to
    491         // include it.
    492         P->end = MX;
    493       } else {
    494         ImpUse.setIsUndef(true);
    495       }
    496 
    497       if (!MI->readsRegister(DefR))
    498         MI->addOperand(ImpUse);
    499       if (N != LID.end())
    500         makeDefined(DefR, N->start, true);
    501     }
    502     LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
    503     LID.addSegment(NR);
    504     DEBUG(dbgs() << "added a new segment " << NR << "\n  " << LID << "\n");
    505     shrinkToUses(DefR, LID);
    506     DEBUG(dbgs() << "updated imp-uses: " << *MI);
    507     LID.verify();
    508   }
    509 
    510   // For each use in MI:
    511   // - If there is no live segment that contains MX for the used register,
    512   //   extend the previous one. Ignore implicit uses.
    513   for (auto &Op : MI->operands()) {
    514     if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
    515       continue;
    516     unsigned UseR = Op.getReg();
    517     LiveInterval &LIU = LIS->getInterval(UseR);
    518     // Find the last segment P that starts before MX.
    519     LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
    520     if (P == LIU.end())
    521       P = prevSegment(LIU, MX);
    522 
    523     assert(P != LIU.end() && "MI uses undefined register?");
    524     SlotIndex EX = P->end;
    525     // If P contains MX, there is not much to do.
    526     if (EX > MX) {
    527       Op.setIsKill(false);
    528       continue;
    529     }
    530     // Otherwise, extend P to "next(MX)".
    531     P->end = MX.getNextIndex();
    532     Op.setIsKill(true);
    533     // Get the old "kill" instruction, and remove the kill flag.
    534     if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
    535       KI->clearRegisterKills(UseR, nullptr);
    536     shrinkToUses(UseR, LIU);
    537     LIU.verify();
    538   }
    539 }
    540 
    541 
    542 /// Update the live interval information to reflect the removal of the given
    543 /// instruction from the program. As with "addInstrToLiveness", this function
    544 /// is called while the program code is being changed.
    545 void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
    546   SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
    547   DEBUG(dbgs() << "removing instr\n  " << MX << "  " << *MI);
    548 
    549   // For each def in MI:
    550   // If MI starts a live segment, merge this segment with the previous segment.
    551   //
    552   for (auto &Op : MI->operands()) {
    553     if (!Op.isReg() || !Op.isDef())
    554       continue;
    555     unsigned DefR = Op.getReg();
    556     LiveInterval &LID = LIS->getInterval(DefR);
    557     LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
    558     assert(LT != LID.end() && "Expecting live segments");
    559     DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
    560                  << " with interval\n  " << LID << "\n");
    561     if (LT->start != MX)
    562       continue;
    563 
    564     VNInfo *MVN = LT->valno;
    565     if (LT != LID.begin()) {
    566       // If the current live segment is not the first, the task is easy. If
    567       // the previous segment continues into the current block, extend it to
    568       // the end of the current one, and merge the value numbers.
    569       // Otherwise, remove the current segment, and make the end of it "undef".
    570       LiveInterval::iterator P = std::prev(LT);
    571       SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
    572       MachineBasicBlock *MB = MI->getParent();
    573       MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
    574       if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
    575         makeDefined(DefR, LT->end, false);
    576         LID.removeSegment(*LT);
    577       } else {
    578         // Make the segments adjacent, so that merge-vn can also merge the
    579         // segments.
    580         P->end = LT->start;
    581         makeUndead(DefR, P->valno->def);
    582         LID.MergeValueNumberInto(MVN, P->valno);
    583       }
    584     } else {
    585       LiveInterval::iterator N = std::next(LT);
    586       LiveInterval::iterator RmB = LT, RmE = N;
    587       while (N != LID.end()) {
    588         // Iterate until the first register-based definition is found
    589         // (i.e. skip all block-boundary entries).
    590         LiveInterval::iterator Next = std::next(N);
    591         if (N->start.isRegister()) {
    592           makeDefined(DefR, N->start, false);
    593           break;
    594         }
    595         if (N->end.isRegister()) {
    596           makeDefined(DefR, N->end, false);
    597           RmE = Next;
    598           break;
    599         }
    600         RmE = Next;
    601         N = Next;
    602       }
    603       // Erase the segments in one shot to avoid invalidating iterators.
    604       LID.segments.erase(RmB, RmE);
    605     }
    606 
    607     bool VNUsed = false;
    608     for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
    609       if (I->valno != MVN)
    610         continue;
    611       VNUsed = true;
    612       break;
    613     }
    614     if (!VNUsed)
    615       MVN->markUnused();
    616 
    617     DEBUG(dbgs() << "new interval: ");
    618     if (!LID.empty()) {
    619       DEBUG(dbgs() << LID << "\n");
    620       LID.verify();
    621     } else {
    622       DEBUG(dbgs() << "<empty>\n");
    623       LIS->removeInterval(DefR);
    624     }
    625   }
    626 
    627   // For uses there is nothing to do. The intervals will be updated via
    628   // shrinkToUses.
    629   SmallVector<unsigned,4> Uses;
    630   for (auto &Op : MI->operands()) {
    631     if (!Op.isReg() || !Op.isUse())
    632       continue;
    633     unsigned R = Op.getReg();
    634     if (!TargetRegisterInfo::isVirtualRegister(R))
    635       continue;
    636     Uses.push_back(R);
    637   }
    638   LIS->RemoveMachineInstrFromMaps(MI);
    639   MI->eraseFromParent();
    640   for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
    641     LiveInterval &LI = LIS->getInterval(Uses[i]);
    642     shrinkToUses(Uses[i], LI);
    643   }
    644 }
    645 
    646 
    647 /// Get the opcode for a conditional transfer of the value in SO (source
    648 /// operand). The condition (true/false) is given in Cond.
    649 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
    650       bool Cond) {
    651   using namespace Hexagon;
    652   if (SO.isReg()) {
    653     unsigned PhysR;
    654     RegisterRef RS = SO;
    655     if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
    656       const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
    657       assert(VC->begin() != VC->end() && "Empty register class");
    658       PhysR = *VC->begin();
    659     } else {
    660       assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
    661       PhysR = RS.Reg;
    662     }
    663     unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
    664     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
    665     switch (RC->getSize()) {
    666       case 4:
    667         return Cond ? A2_tfrt : A2_tfrf;
    668       case 8:
    669         return Cond ? A2_tfrpt : A2_tfrpf;
    670     }
    671     llvm_unreachable("Invalid register operand");
    672   }
    673   if (SO.isImm() || SO.isFPImm())
    674     return Cond ? C2_cmoveit : C2_cmoveif;
    675   llvm_unreachable("Unexpected source operand");
    676 }
    677 
    678 
    679 /// Generate a conditional transfer, copying the value SrcOp to the
    680 /// destination register DstR:DstSR, and using the predicate register from
    681 /// PredOp. The Cond argument specifies whether the predicate is to be
    682 /// if(PredOp), or if(!PredOp).
    683 MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
    684       unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
    685   MachineInstr *MI = SrcOp.getParent();
    686   MachineBasicBlock &B = *MI->getParent();
    687   MachineBasicBlock::iterator At = MI;
    688   DebugLoc DL = MI->getDebugLoc();
    689 
    690   // Don't avoid identity copies here (i.e. if the source and the destination
    691   // are the same registers). It is actually better to generate them here,
    692   // since this would cause the copy to potentially be predicated in the next
    693   // step. The predication will remove such a copy if it is unable to
    694   /// predicate.
    695 
    696   unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
    697   MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
    698         .addReg(DstR, RegState::Define, DstSR)
    699         .addOperand(PredOp)
    700         .addOperand(SrcOp);
    701   // We don't want any kills yet.
    702   TfrI->clearKillInfo();
    703   DEBUG(dbgs() << "created an initial copy: " << *TfrI);
    704   return TfrI;
    705 }
    706 
    707 
    708 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
    709 /// performs all necessary changes to complete the replacement.
    710 bool HexagonExpandCondsets::split(MachineInstr *MI) {
    711   if (TfrLimitActive) {
    712     if (TfrCounter >= TfrLimit)
    713       return false;
    714     TfrCounter++;
    715   }
    716   DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
    717                << ": " << *MI);
    718   MachineOperand &MD = MI->getOperand(0); // Definition
    719   MachineOperand &MP = MI->getOperand(1); // Predicate register
    720   assert(MD.isDef());
    721   unsigned DR = MD.getReg(), DSR = MD.getSubReg();
    722 
    723   // First, create the two invididual conditional transfers, and add each
    724   // of them to the live intervals information. Do that first and then remove
    725   // the old instruction from live intervals.
    726   if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
    727     addInstrToLiveness(TfrT);
    728   if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
    729     addInstrToLiveness(TfrF);
    730   removeInstrFromLiveness(MI);
    731 
    732   return true;
    733 }
    734 
    735 
    736 /// Split all MUX instructions in the given block into pairs of contitional
    737 /// transfers.
    738 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
    739   bool Changed = false;
    740   MachineBasicBlock::iterator I, E, NextI;
    741   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
    742     NextI = std::next(I);
    743     if (isCondset(I))
    744       Changed |= split(I);
    745   }
    746   return Changed;
    747 }
    748 
    749 
    750 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
    751   if (HII->isPredicated(MI) || !HII->isPredicable(MI))
    752     return false;
    753   if (MI->hasUnmodeledSideEffects() || MI->mayStore())
    754     return false;
    755   // Reject instructions with multiple defs (e.g. post-increment loads).
    756   bool HasDef = false;
    757   for (auto &Op : MI->operands()) {
    758     if (!Op.isReg() || !Op.isDef())
    759       continue;
    760     if (HasDef)
    761       return false;
    762     HasDef = true;
    763   }
    764   for (auto &Mo : MI->memoperands())
    765     if (Mo->isVolatile())
    766       return false;
    767   return true;
    768 }
    769 
    770 
    771 /// Find the reaching definition for a predicated use of RD. The RD is used
    772 /// under the conditions given by PredR and Cond, and this function will ignore
    773 /// definitions that set RD under the opposite conditions.
    774 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
    775       MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
    776   MachineBasicBlock &B = *UseIt->getParent();
    777   MachineBasicBlock::iterator I = UseIt, S = B.begin();
    778   if (I == S)
    779     return 0;
    780 
    781   bool PredValid = true;
    782   do {
    783     --I;
    784     MachineInstr *MI = &*I;
    785     // Check if this instruction can be ignored, i.e. if it is predicated
    786     // on the complementary condition.
    787     if (PredValid && HII->isPredicated(MI)) {
    788       if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
    789         continue;
    790     }
    791 
    792     // Check the defs. If the PredR is defined, invalidate it. If RD is
    793     // defined, return the instruction or 0, depending on the circumstances.
    794     for (auto &Op : MI->operands()) {
    795       if (!Op.isReg() || !Op.isDef())
    796         continue;
    797       RegisterRef RR = Op;
    798       if (RR.Reg == PredR) {
    799         PredValid = false;
    800         continue;
    801       }
    802       if (RR.Reg != RD.Reg)
    803         continue;
    804       // If the "Reg" part agrees, there is still the subregister to check.
    805       // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
    806       // not vreg1 (w/o subregisters).
    807       if (RR.Sub == RD.Sub)
    808         return MI;
    809       if (RR.Sub == 0 || RD.Sub == 0)
    810         return 0;
    811       // We have different subregisters, so we can continue looking.
    812     }
    813   } while (I != S);
    814 
    815   return 0;
    816 }
    817 
    818 
    819 /// Check if the instruction MI can be safely moved over a set of instructions
    820 /// whose side-effects (in terms of register defs and uses) are expressed in
    821 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
    822 /// that depend on the same predicate register to allow moving instructions
    823 /// over instructions predicated on the opposite condition.
    824 bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
    825       ReferenceMap &Uses) {
    826   // In order to be able to safely move MI over instructions that define
    827   // "Defs" and use "Uses", no def operand from MI can be defined or used
    828   // and no use operand can be defined.
    829   for (auto &Op : MI->operands()) {
    830     if (!Op.isReg())
    831       continue;
    832     RegisterRef RR = Op;
    833     // For physical register we would need to check register aliases, etc.
    834     // and we don't want to bother with that. It would be of little value
    835     // before the actual register rewriting (from virtual to physical).
    836     if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
    837       return false;
    838     // No redefs for any operand.
    839     if (isRefInMap(RR, Defs, Exec_Then))
    840       return false;
    841     // For defs, there cannot be uses.
    842     if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
    843       return false;
    844   }
    845   return true;
    846 }
    847 
    848 
    849 /// Check if the instruction accessing memory (TheI) can be moved to the
    850 /// location ToI.
    851 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
    852       bool IsDown) {
    853   bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
    854   if (!IsLoad && !IsStore)
    855     return true;
    856   if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
    857     return true;
    858   if (TheI->hasUnmodeledSideEffects())
    859     return false;
    860 
    861   MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
    862   MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
    863   bool Ordered = TheI->hasOrderedMemoryRef();
    864 
    865   // Search for aliased memory reference in (StartI, EndI).
    866   for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
    867     MachineInstr *MI = &*I;
    868     if (MI->hasUnmodeledSideEffects())
    869       return false;
    870     bool L = MI->mayLoad(), S = MI->mayStore();
    871     if (!L && !S)
    872       continue;
    873     if (Ordered && MI->hasOrderedMemoryRef())
    874       return false;
    875 
    876     bool Conflict = (L && IsStore) || S;
    877     if (Conflict)
    878       return false;
    879   }
    880   return true;
    881 }
    882 
    883 
    884 /// Generate a predicated version of MI (where the condition is given via
    885 /// PredR and Cond) at the point indicated by Where.
    886 void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
    887       MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
    888   // The problem with updating live intervals is that we can move one def
    889   // past another def. In particular, this can happen when moving an A2_tfrt
    890   // over an A2_tfrf defining the same register. From the point of view of
    891   // live intervals, these two instructions are two separate definitions,
    892   // and each one starts another live segment. LiveIntervals's "handleMove"
    893   // does not allow such moves, so we need to handle it ourselves. To avoid
    894   // invalidating liveness data while we are using it, the move will be
    895   // implemented in 4 steps: (1) add a clone of the instruction MI at the
    896   // target location, (2) update liveness, (3) delete the old instruction,
    897   // and (4) update liveness again.
    898 
    899   MachineBasicBlock &B = *MI->getParent();
    900   DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
    901   unsigned Opc = MI->getOpcode();
    902   unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
    903   MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
    904   unsigned Ox = 0, NP = MI->getNumOperands();
    905   // Skip all defs from MI first.
    906   while (Ox < NP) {
    907     MachineOperand &MO = MI->getOperand(Ox);
    908     if (!MO.isReg() || !MO.isDef())
    909       break;
    910     Ox++;
    911   }
    912   // Add the new def, then the predicate register, then the rest of the
    913   // operands.
    914   MB.addReg(RD.Reg, RegState::Define, RD.Sub);
    915   MB.addReg(PredR);
    916   while (Ox < NP) {
    917     MachineOperand &MO = MI->getOperand(Ox);
    918     if (!MO.isReg() || !MO.isImplicit())
    919       MB.addOperand(MO);
    920     Ox++;
    921   }
    922 
    923   MachineFunction &MF = *B.getParent();
    924   MachineInstr::mmo_iterator I = MI->memoperands_begin();
    925   unsigned NR = std::distance(I, MI->memoperands_end());
    926   MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
    927   for (unsigned i = 0; i < NR; ++i)
    928     MemRefs[i] = *I++;
    929   MB.setMemRefs(MemRefs, MemRefs+NR);
    930 
    931   MachineInstr *NewI = MB;
    932   NewI->clearKillInfo();
    933   addInstrToLiveness(NewI);
    934 }
    935 
    936 
    937 /// In the range [First, Last], rename all references to the "old" register RO
    938 /// to the "new" register RN, but only in instructions predicated on the given
    939 /// condition.
    940 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
    941       unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
    942       MachineBasicBlock::iterator Last) {
    943   MachineBasicBlock::iterator End = std::next(Last);
    944   for (MachineBasicBlock::iterator I = First; I != End; ++I) {
    945     MachineInstr *MI = &*I;
    946     // Do not touch instructions that are not predicated, or are predicated
    947     // on the opposite condition.
    948     if (!HII->isPredicated(MI))
    949       continue;
    950     if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
    951       continue;
    952 
    953     for (auto &Op : MI->operands()) {
    954       if (!Op.isReg() || RO != RegisterRef(Op))
    955         continue;
    956       Op.setReg(RN.Reg);
    957       Op.setSubReg(RN.Sub);
    958       // In practice, this isn't supposed to see any defs.
    959       assert(!Op.isDef() && "Not expecting a def");
    960     }
    961   }
    962 }
    963 
    964 
    965 /// For a given conditional copy, predicate the definition of the source of
    966 /// the copy under the given condition (using the same predicate register as
    967 /// the copy).
    968 bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
    969   // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
    970   unsigned Opc = TfrI->getOpcode();
    971   (void)Opc;
    972   assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
    973   DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
    974                << ": " << *TfrI);
    975 
    976   MachineOperand &MD = TfrI->getOperand(0);
    977   MachineOperand &MP = TfrI->getOperand(1);
    978   MachineOperand &MS = TfrI->getOperand(2);
    979   // The source operand should be a <kill>. This is not strictly necessary,
    980   // but it makes things a lot simpler. Otherwise, we would need to rename
    981   // some registers, which would complicate the transformation considerably.
    982   if (!MS.isKill())
    983     return false;
    984 
    985   RegisterRef RT(MS);
    986   unsigned PredR = MP.getReg();
    987   MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
    988   if (!DefI || !isPredicable(DefI))
    989     return false;
    990 
    991   DEBUG(dbgs() << "Source def: " << *DefI);
    992 
    993   // Collect the information about registers defined and used between the
    994   // DefI and the TfrI.
    995   // Map: reg -> bitmask of subregs
    996   ReferenceMap Uses, Defs;
    997   MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
    998 
    999   // Check if the predicate register is valid between DefI and TfrI.
   1000   // If it is, we can then ignore instructions predicated on the negated
   1001   // conditions when collecting def and use information.
   1002   bool PredValid = true;
   1003   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
   1004     if (!I->modifiesRegister(PredR, 0))
   1005       continue;
   1006     PredValid = false;
   1007     break;
   1008   }
   1009 
   1010   for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
   1011     MachineInstr *MI = &*I;
   1012     // If this instruction is predicated on the same register, it could
   1013     // potentially be ignored.
   1014     // By default assume that the instruction executes on the same condition
   1015     // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
   1016     unsigned Exec = Exec_Then | Exec_Else;
   1017     if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
   1018       Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
   1019 
   1020     for (auto &Op : MI->operands()) {
   1021       if (!Op.isReg())
   1022         continue;
   1023       // We don't want to deal with physical registers. The reason is that
   1024       // they can be aliased with other physical registers. Aliased virtual
   1025       // registers must share the same register number, and can only differ
   1026       // in the subregisters, which we are keeping track of. Physical
   1027       // registers ters no longer have subregisters---their super- and
   1028       // subregisters are other physical registers, and we are not checking
   1029       // that.
   1030       RegisterRef RR = Op;
   1031       if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
   1032         return false;
   1033 
   1034       ReferenceMap &Map = Op.isDef() ? Defs : Uses;
   1035       addRefToMap(RR, Map, Exec);
   1036     }
   1037   }
   1038 
   1039   // The situation:
   1040   //   RT = DefI
   1041   //   ...
   1042   //   RD = TfrI ..., RT
   1043 
   1044   // If the register-in-the-middle (RT) is used or redefined between
   1045   // DefI and TfrI, we may not be able proceed with this transformation.
   1046   // We can ignore a def that will not execute together with TfrI, and a
   1047   // use that will. If there is such a use (that does execute together with
   1048   // TfrI), we will not be able to move DefI down. If there is a use that
   1049   // executed if TfrI's condition is false, then RT must be available
   1050   // unconditionally (cannot be predicated).
   1051   // Essentially, we need to be able to rename RT to RD in this segment.
   1052   if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
   1053     return false;
   1054   RegisterRef RD = MD;
   1055   // If the predicate register is defined between DefI and TfrI, the only
   1056   // potential thing to do would be to move the DefI down to TfrI, and then
   1057   // predicate. The reaching def (DefI) must be movable down to the location
   1058   // of the TfrI.
   1059   // If the target register of the TfrI (RD) is not used or defined between
   1060   // DefI and TfrI, consider moving TfrI up to DefI.
   1061   bool CanUp =   canMoveOver(TfrI, Defs, Uses);
   1062   bool CanDown = canMoveOver(DefI, Defs, Uses);
   1063   // The TfrI does not access memory, but DefI could. Check if it's safe
   1064   // to move DefI down to TfrI.
   1065   if (DefI->mayLoad() || DefI->mayStore())
   1066     if (!canMoveMemTo(DefI, TfrI, true))
   1067       CanDown = false;
   1068 
   1069   DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
   1070                << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
   1071   MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
   1072   if (CanUp)
   1073     predicateAt(RD, DefI, PastDefIt, PredR, Cond);
   1074   else if (CanDown)
   1075     predicateAt(RD, DefI, TfrIt, PredR, Cond);
   1076   else
   1077     return false;
   1078 
   1079   if (RT != RD)
   1080     renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
   1081 
   1082   // Delete the user of RT first (it should work either way, but this order
   1083   // of deleting is more natural).
   1084   removeInstrFromLiveness(TfrI);
   1085   removeInstrFromLiveness(DefI);
   1086   return true;
   1087 }
   1088 
   1089 
   1090 /// Predicate all cases of conditional copies in the specified block.
   1091 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
   1092   bool Changed = false;
   1093   MachineBasicBlock::iterator I, E, NextI;
   1094   for (I = B.begin(), E = B.end(); I != E; I = NextI) {
   1095     NextI = std::next(I);
   1096     unsigned Opc = I->getOpcode();
   1097     if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
   1098       bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
   1099       if (!Done) {
   1100         // If we didn't predicate I, we may need to remove it in case it is
   1101         // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
   1102         if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
   1103           removeInstrFromLiveness(I);
   1104       }
   1105       Changed |= Done;
   1106     }
   1107   }
   1108   return Changed;
   1109 }
   1110 
   1111 
   1112 void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
   1113   for (unsigned i = MI->getNumOperands(); i > 0; --i) {
   1114     MachineOperand &MO = MI->getOperand(i-1);
   1115     if (MO.isReg() && MO.isUse() && MO.isImplicit())
   1116       MI->RemoveOperand(i-1);
   1117   }
   1118 }
   1119 
   1120 
   1121 void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
   1122   for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   1123     MachineInstr *MI = &*I;
   1124     if (HII->isPredicated(MI))
   1125       removeImplicitUses(MI);
   1126   }
   1127 }
   1128 
   1129 
   1130 void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
   1131   // Implicit uses that are "undef" are only meaningful (outside of the
   1132   // internals of this pass) when the instruction defines a subregister,
   1133   // and the implicit-undef use applies to the defined register. In such
   1134   // cases, the proper way to record the information in the IR is to mark
   1135   // the definition as "undef", which will be interpreted as "read-undef".
   1136   typedef SmallSet<unsigned,2> RegisterSet;
   1137   for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
   1138     MachineInstr *MI = &*I;
   1139     RegisterSet Undefs;
   1140     for (unsigned i = MI->getNumOperands(); i > 0; --i) {
   1141       MachineOperand &MO = MI->getOperand(i-1);
   1142       if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
   1143         MI->RemoveOperand(i-1);
   1144         Undefs.insert(MO.getReg());
   1145       }
   1146     }
   1147     for (auto &Op : MI->operands()) {
   1148       if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
   1149         continue;
   1150       if (Undefs.count(Op.getReg()))
   1151         Op.setIsUndef(true);
   1152     }
   1153   }
   1154 }
   1155 
   1156 
   1157 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
   1158   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
   1159     return false;
   1160   const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
   1161   if (RC == &Hexagon::IntRegsRegClass) {
   1162     BW = 32;
   1163     return true;
   1164   }
   1165   if (RC == &Hexagon::DoubleRegsRegClass) {
   1166     BW = (RR.Sub != 0) ? 32 : 64;
   1167     return true;
   1168   }
   1169   return false;
   1170 }
   1171 
   1172 
   1173 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
   1174   for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
   1175     LiveRange::Segment &LR = *I;
   1176     // Range must start at a register...
   1177     if (!LR.start.isRegister())
   1178       return false;
   1179     // ...and end in a register or in a dead slot.
   1180     if (!LR.end.isRegister() && !LR.end.isDead())
   1181       return false;
   1182   }
   1183   return true;
   1184 }
   1185 
   1186 
   1187 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
   1188   if (CoaLimitActive) {
   1189     if (CoaCounter >= CoaLimit)
   1190       return false;
   1191     CoaCounter++;
   1192   }
   1193   unsigned BW1, BW2;
   1194   if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
   1195     return false;
   1196   if (MRI->isLiveIn(R1.Reg))
   1197     return false;
   1198   if (MRI->isLiveIn(R2.Reg))
   1199     return false;
   1200 
   1201   LiveInterval &L1 = LIS->getInterval(R1.Reg);
   1202   LiveInterval &L2 = LIS->getInterval(R2.Reg);
   1203   bool Overlap = L1.overlaps(L2);
   1204 
   1205   DEBUG(dbgs() << "compatible registers: ("
   1206                << (Overlap ? "overlap" : "disjoint") << ")\n  "
   1207                << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
   1208                << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
   1209   if (R1.Sub || R2.Sub)
   1210     return false;
   1211   if (Overlap)
   1212     return false;
   1213 
   1214   // Coalescing could have a negative impact on scheduling, so try to limit
   1215   // to some reasonable extent. Only consider coalescing segments, when one
   1216   // of them does not cross basic block boundaries.
   1217   if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
   1218     return false;
   1219 
   1220   MRI->replaceRegWith(R2.Reg, R1.Reg);
   1221 
   1222   // Move all live segments from L2 to L1.
   1223   typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
   1224   ValueInfoMap VM;
   1225   for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
   1226     VNInfo *NewVN, *OldVN = I->valno;
   1227     ValueInfoMap::iterator F = VM.find(OldVN);
   1228     if (F == VM.end()) {
   1229       NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
   1230       VM.insert(std::make_pair(OldVN, NewVN));
   1231     } else {
   1232       NewVN = F->second;
   1233     }
   1234     L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
   1235   }
   1236   while (L2.begin() != L2.end())
   1237     L2.removeSegment(*L2.begin());
   1238 
   1239   updateKillFlags(R1.Reg, L1);
   1240   DEBUG(dbgs() << "coalesced: " << L1 << "\n");
   1241   L1.verify();
   1242 
   1243   return true;
   1244 }
   1245 
   1246 
   1247 /// Attempt to coalesce one of the source registers to a MUX intruction with
   1248 /// the destination register. This could lead to having only one predicated
   1249 /// instruction in the end instead of two.
   1250 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
   1251   SmallVector<MachineInstr*,16> Condsets;
   1252   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
   1253     MachineBasicBlock &B = *I;
   1254     for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
   1255       MachineInstr *MI = &*J;
   1256       if (!isCondset(MI))
   1257         continue;
   1258       MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
   1259       if (!S1.isReg() && !S2.isReg())
   1260         continue;
   1261       Condsets.push_back(MI);
   1262     }
   1263   }
   1264 
   1265   bool Changed = false;
   1266   for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
   1267     MachineInstr *CI = Condsets[i];
   1268     RegisterRef RD = CI->getOperand(0);
   1269     RegisterRef RP = CI->getOperand(1);
   1270     MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
   1271     bool Done = false;
   1272     // Consider this case:
   1273     //   vreg1 = instr1 ...
   1274     //   vreg2 = instr2 ...
   1275     //   vreg0 = C2_mux ..., vreg1, vreg2
   1276     // If vreg0 was coalesced with vreg1, we could end up with the following
   1277     // code:
   1278     //   vreg0 = instr1 ...
   1279     //   vreg2 = instr2 ...
   1280     //   vreg0 = A2_tfrf ..., vreg2
   1281     // which will later become:
   1282     //   vreg0 = instr1 ...
   1283     //   vreg0 = instr2_cNotPt ...
   1284     // i.e. there will be an unconditional definition (instr1) of vreg0
   1285     // followed by a conditional one. The output dependency was there before
   1286     // and it unavoidable, but if instr1 is predicable, we will no longer be
   1287     // able to predicate it here.
   1288     // To avoid this scenario, don't coalesce the destination register with
   1289     // a source register that is defined by a predicable instruction.
   1290     if (S1.isReg()) {
   1291       RegisterRef RS = S1;
   1292       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
   1293       if (!RDef || !HII->isPredicable(RDef))
   1294         Done = coalesceRegisters(RD, RegisterRef(S1));
   1295     }
   1296     if (!Done && S2.isReg()) {
   1297       RegisterRef RS = S2;
   1298       MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
   1299       if (!RDef || !HII->isPredicable(RDef))
   1300         Done = coalesceRegisters(RD, RegisterRef(S2));
   1301     }
   1302     Changed |= Done;
   1303   }
   1304   return Changed;
   1305 }
   1306 
   1307 
   1308 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
   1309   HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
   1310   TRI = MF.getSubtarget().getRegisterInfo();
   1311   LIS = &getAnalysis<LiveIntervals>();
   1312   MRI = &MF.getRegInfo();
   1313 
   1314   bool Changed = false;
   1315 
   1316   // Try to coalesce the target of a mux with one of its sources.
   1317   // This could eliminate a register copy in some circumstances.
   1318   Changed |= coalesceSegments(MF);
   1319 
   1320   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
   1321     // First, simply split all muxes into a pair of conditional transfers
   1322     // and update the live intervals to reflect the new arrangement.
   1323     // This is done mainly to make the live interval update simpler, than it
   1324     // would be while trying to predicate instructions at the same time.
   1325     Changed |= splitInBlock(*I);
   1326     // Traverse all blocks and collapse predicable instructions feeding
   1327     // conditional transfers into predicated instructions.
   1328     // Walk over all the instructions again, so we may catch pre-existing
   1329     // cases that were not created in the previous step.
   1330     Changed |= predicateInBlock(*I);
   1331   }
   1332 
   1333   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
   1334     postprocessUndefImplicitUses(*I);
   1335   return Changed;
   1336 }
   1337 
   1338 
   1339 //===----------------------------------------------------------------------===//
   1340 //                         Public Constructor Functions
   1341 //===----------------------------------------------------------------------===//
   1342 
   1343 static void initializePassOnce(PassRegistry &Registry) {
   1344   const char *Name = "Hexagon Expand Condsets";
   1345   PassInfo *PI = new PassInfo(Name, "expand-condsets",
   1346         &HexagonExpandCondsets::ID, 0, false, false);
   1347   Registry.registerPass(*PI, true);
   1348 }
   1349 
   1350 void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
   1351   CALL_ONCE_INITIALIZATION(initializePassOnce)
   1352 }
   1353 
   1354 
   1355 FunctionPass *llvm::createHexagonExpandCondsets() {
   1356   return new HexagonExpandCondsets();
   1357 }
   1358