Home | History | Annotate | Download | only in Mips
      1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //
     11 // This pass is used to make Pc relative loads of constants.
     12 // For now, only Mips16 will use this.
     13 //
     14 // Loading constants inline is expensive on Mips16 and it's in general better
     15 // to place the constant nearby in code space and then it can be loaded with a
     16 // simple 16 bit load instruction.
     17 //
     18 // The constants can be not just numbers but addresses of functions and labels.
     19 // This can be particularly helpful in static relocation mode for embedded
     20 // non-linux targets.
     21 //
     22 //
     23 
     24 #include "Mips.h"
     25 #include "MCTargetDesc/MipsBaseInfo.h"
     26 #include "Mips16InstrInfo.h"
     27 #include "MipsMachineFunction.h"
     28 #include "MipsTargetMachine.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/CodeGen/MachineBasicBlock.h"
     31 #include "llvm/CodeGen/MachineConstantPool.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineInstrBuilder.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/InstIterator.h"
     37 #include "llvm/Support/CommandLine.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Format.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Target/TargetInstrInfo.h"
     43 #include "llvm/Target/TargetMachine.h"
     44 #include "llvm/Target/TargetRegisterInfo.h"
     45 #include <algorithm>
     46 
     47 using namespace llvm;
     48 
     49 #define DEBUG_TYPE "mips-constant-islands"
     50 
     51 STATISTIC(NumCPEs,       "Number of constpool entries");
     52 STATISTIC(NumSplit,      "Number of uncond branches inserted");
     53 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
     54 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
     55 
     56 // FIXME: This option should be removed once it has received sufficient testing.
     57 static cl::opt<bool>
     58 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
     59           cl::desc("Align constant islands in code"));
     60 
     61 
     62 // Rather than do make check tests with huge amounts of code, we force
     63 // the test to use this amount.
     64 //
     65 static cl::opt<int> ConstantIslandsSmallOffset(
     66   "mips-constant-islands-small-offset",
     67   cl::init(0),
     68   cl::desc("Make small offsets be this amount for testing purposes"),
     69   cl::Hidden);
     70 
     71 //
     72 // For testing purposes we tell it to not use relaxed load forms so that it
     73 // will split blocks.
     74 //
     75 static cl::opt<bool> NoLoadRelaxation(
     76   "mips-constant-islands-no-load-relaxation",
     77   cl::init(false),
     78   cl::desc("Don't relax loads to long loads - for testing purposes"),
     79   cl::Hidden);
     80 
     81 static unsigned int branchTargetOperand(MachineInstr *MI) {
     82   switch (MI->getOpcode()) {
     83   case Mips::Bimm16:
     84   case Mips::BimmX16:
     85   case Mips::Bteqz16:
     86   case Mips::BteqzX16:
     87   case Mips::Btnez16:
     88   case Mips::BtnezX16:
     89   case Mips::JalB16:
     90     return 0;
     91   case Mips::BeqzRxImm16:
     92   case Mips::BeqzRxImmX16:
     93   case Mips::BnezRxImm16:
     94   case Mips::BnezRxImmX16:
     95     return 1;
     96   }
     97   llvm_unreachable("Unknown branch type");
     98 }
     99 
    100 static bool isUnconditionalBranch(unsigned int Opcode) {
    101   switch (Opcode) {
    102   default: return false;
    103   case Mips::Bimm16:
    104   case Mips::BimmX16:
    105   case Mips::JalB16:
    106     return true;
    107   }
    108 }
    109 
    110 static unsigned int longformBranchOpcode(unsigned int Opcode) {
    111   switch (Opcode) {
    112   case Mips::Bimm16:
    113   case Mips::BimmX16:
    114     return Mips::BimmX16;
    115   case Mips::Bteqz16:
    116   case Mips::BteqzX16:
    117     return Mips::BteqzX16;
    118   case Mips::Btnez16:
    119   case Mips::BtnezX16:
    120     return Mips::BtnezX16;
    121   case Mips::JalB16:
    122     return Mips::JalB16;
    123   case Mips::BeqzRxImm16:
    124   case Mips::BeqzRxImmX16:
    125     return Mips::BeqzRxImmX16;
    126   case Mips::BnezRxImm16:
    127   case Mips::BnezRxImmX16:
    128     return Mips::BnezRxImmX16;
    129   }
    130   llvm_unreachable("Unknown branch type");
    131 }
    132 
    133 //
    134 // FIXME: need to go through this whole constant islands port and check the math
    135 // for branch ranges and clean this up and make some functions to calculate things
    136 // that are done many times identically.
    137 // Need to refactor some of the code to call this routine.
    138 //
    139 static unsigned int branchMaxOffsets(unsigned int Opcode) {
    140   unsigned Bits, Scale;
    141   switch (Opcode) {
    142     case Mips::Bimm16:
    143       Bits = 11;
    144       Scale = 2;
    145       break;
    146     case Mips::BimmX16:
    147       Bits = 16;
    148       Scale = 2;
    149       break;
    150     case Mips::BeqzRxImm16:
    151       Bits = 8;
    152       Scale = 2;
    153       break;
    154     case Mips::BeqzRxImmX16:
    155       Bits = 16;
    156       Scale = 2;
    157       break;
    158     case Mips::BnezRxImm16:
    159       Bits = 8;
    160       Scale = 2;
    161       break;
    162     case Mips::BnezRxImmX16:
    163       Bits = 16;
    164       Scale = 2;
    165       break;
    166     case Mips::Bteqz16:
    167       Bits = 8;
    168       Scale = 2;
    169       break;
    170     case Mips::BteqzX16:
    171       Bits = 16;
    172       Scale = 2;
    173       break;
    174     case Mips::Btnez16:
    175       Bits = 8;
    176       Scale = 2;
    177       break;
    178     case Mips::BtnezX16:
    179       Bits = 16;
    180       Scale = 2;
    181       break;
    182     default:
    183       llvm_unreachable("Unknown branch type");
    184   }
    185   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    186   return MaxOffs;
    187 }
    188 
    189 namespace {
    190 
    191 
    192   typedef MachineBasicBlock::iterator Iter;
    193   typedef MachineBasicBlock::reverse_iterator ReverseIter;
    194 
    195   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
    196   /// requires constant pool entries to be scattered among the instructions
    197   /// inside a function.  To do this, it completely ignores the normal LLVM
    198   /// constant pool; instead, it places constants wherever it feels like with
    199   /// special instructions.
    200   ///
    201   /// The terminology used in this pass includes:
    202   ///   Islands - Clumps of constants placed in the function.
    203   ///   Water   - Potential places where an island could be formed.
    204   ///   CPE     - A constant pool entry that has been placed somewhere, which
    205   ///             tracks a list of users.
    206 
    207   class MipsConstantIslands : public MachineFunctionPass {
    208 
    209     /// BasicBlockInfo - Information about the offset and size of a single
    210     /// basic block.
    211     struct BasicBlockInfo {
    212       /// Offset - Distance from the beginning of the function to the beginning
    213       /// of this basic block.
    214       ///
    215       /// Offsets are computed assuming worst case padding before an aligned
    216       /// block. This means that subtracting basic block offsets always gives a
    217       /// conservative estimate of the real distance which may be smaller.
    218       ///
    219       /// Because worst case padding is used, the computed offset of an aligned
    220       /// block may not actually be aligned.
    221       unsigned Offset;
    222 
    223       /// Size - Size of the basic block in bytes.  If the block contains
    224       /// inline assembly, this is a worst case estimate.
    225       ///
    226       /// The size does not include any alignment padding whether from the
    227       /// beginning of the block, or from an aligned jump table at the end.
    228       unsigned Size;
    229 
    230       // FIXME: ignore LogAlign for this patch
    231       //
    232       unsigned postOffset(unsigned LogAlign = 0) const {
    233         unsigned PO = Offset + Size;
    234         return PO;
    235       }
    236 
    237       BasicBlockInfo() : Offset(0), Size(0) {}
    238 
    239     };
    240 
    241     std::vector<BasicBlockInfo> BBInfo;
    242 
    243     /// WaterList - A sorted list of basic blocks where islands could be placed
    244     /// (i.e. blocks that don't fall through to the following block, due
    245     /// to a return, unreachable, or unconditional branch).
    246     std::vector<MachineBasicBlock*> WaterList;
    247 
    248     /// NewWaterList - The subset of WaterList that was created since the
    249     /// previous iteration by inserting unconditional branches.
    250     SmallSet<MachineBasicBlock*, 4> NewWaterList;
    251 
    252     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
    253 
    254     /// CPUser - One user of a constant pool, keeping the machine instruction
    255     /// pointer, the constant pool being referenced, and the max displacement
    256     /// allowed from the instruction to the CP.  The HighWaterMark records the
    257     /// highest basic block where a new CPEntry can be placed.  To ensure this
    258     /// pass terminates, the CP entries are initially placed at the end of the
    259     /// function and then move monotonically to lower addresses.  The
    260     /// exception to this rule is when the current CP entry for a particular
    261     /// CPUser is out of range, but there is another CP entry for the same
    262     /// constant value in range.  We want to use the existing in-range CP
    263     /// entry, but if it later moves out of range, the search for new water
    264     /// should resume where it left off.  The HighWaterMark is used to record
    265     /// that point.
    266     struct CPUser {
    267       MachineInstr *MI;
    268       MachineInstr *CPEMI;
    269       MachineBasicBlock *HighWaterMark;
    270     private:
    271       unsigned MaxDisp;
    272       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
    273                                 // with different displacements
    274       unsigned LongFormOpcode;
    275     public:
    276       bool NegOk;
    277       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
    278              bool neg,
    279              unsigned longformmaxdisp, unsigned longformopcode)
    280         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
    281           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
    282           NegOk(neg){
    283         HighWaterMark = CPEMI->getParent();
    284       }
    285       /// getMaxDisp - Returns the maximum displacement supported by MI.
    286       unsigned getMaxDisp() const {
    287         unsigned xMaxDisp = ConstantIslandsSmallOffset?
    288                             ConstantIslandsSmallOffset: MaxDisp;
    289         return xMaxDisp;
    290       }
    291       void setMaxDisp(unsigned val) {
    292         MaxDisp = val;
    293       }
    294       unsigned getLongFormMaxDisp() const {
    295         return LongFormMaxDisp;
    296       }
    297       unsigned getLongFormOpcode() const {
    298           return LongFormOpcode;
    299       }
    300     };
    301 
    302     /// CPUsers - Keep track of all of the machine instructions that use various
    303     /// constant pools and their max displacement.
    304     std::vector<CPUser> CPUsers;
    305 
    306   /// CPEntry - One per constant pool entry, keeping the machine instruction
    307   /// pointer, the constpool index, and the number of CPUser's which
    308   /// reference this entry.
    309   struct CPEntry {
    310     MachineInstr *CPEMI;
    311     unsigned CPI;
    312     unsigned RefCount;
    313     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
    314       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    315   };
    316 
    317   /// CPEntries - Keep track of all of the constant pool entry machine
    318   /// instructions. For each original constpool index (i.e. those that
    319   /// existed upon entry to this pass), it keeps a vector of entries.
    320   /// Original elements are cloned as we go along; the clones are
    321   /// put in the vector of the original element, but have distinct CPIs.
    322   std::vector<std::vector<CPEntry> > CPEntries;
    323 
    324   /// ImmBranch - One per immediate branch, keeping the machine instruction
    325   /// pointer, conditional or unconditional, the max displacement,
    326   /// and (if isCond is true) the corresponding unconditional branch
    327   /// opcode.
    328   struct ImmBranch {
    329     MachineInstr *MI;
    330     unsigned MaxDisp : 31;
    331     bool isCond : 1;
    332     int UncondBr;
    333     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
    334       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    335   };
    336 
    337   /// ImmBranches - Keep track of all the immediate branch instructions.
    338   ///
    339   std::vector<ImmBranch> ImmBranches;
    340 
    341   /// HasFarJump - True if any far jump instruction has been emitted during
    342   /// the branch fix up pass.
    343   bool HasFarJump;
    344 
    345   const TargetMachine &TM;
    346   bool IsPIC;
    347   const MipsSubtarget *STI;
    348   const Mips16InstrInfo *TII;
    349   MipsFunctionInfo *MFI;
    350   MachineFunction *MF;
    351   MachineConstantPool *MCP;
    352 
    353   unsigned PICLabelUId;
    354   bool PrescannedForConstants;
    355 
    356   void initPICLabelUId(unsigned UId) {
    357     PICLabelUId = UId;
    358   }
    359 
    360 
    361   unsigned createPICLabelUId() {
    362     return PICLabelUId++;
    363   }
    364 
    365   public:
    366     static char ID;
    367     MipsConstantIslands(TargetMachine &tm)
    368         : MachineFunctionPass(ID), TM(tm),
    369           IsPIC(TM.getRelocationModel() == Reloc::PIC_), STI(nullptr),
    370           MF(nullptr), MCP(nullptr), PrescannedForConstants(false) {}
    371 
    372     const char *getPassName() const override {
    373       return "Mips Constant Islands";
    374     }
    375 
    376     bool runOnMachineFunction(MachineFunction &F) override;
    377 
    378     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
    379     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    380     unsigned getCPELogAlign(const MachineInstr *CPEMI);
    381     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
    382     unsigned getOffsetOf(MachineInstr *MI) const;
    383     unsigned getUserOffset(CPUser&) const;
    384     void dumpBBs();
    385 
    386     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    387                          unsigned Disp, bool NegativeOK);
    388     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    389                          const CPUser &U);
    390 
    391     void computeBlockSize(MachineBasicBlock *MBB);
    392     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
    393     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    394     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
    395     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
    396     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
    397     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
    398     bool findAvailableWater(CPUser&U, unsigned UserOffset,
    399                             water_iterator &WaterIter);
    400     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
    401                         MachineBasicBlock *&NewMBB);
    402     bool handleConstantPoolUser(unsigned CPUserIndex);
    403     void removeDeadCPEMI(MachineInstr *CPEMI);
    404     bool removeUnusedCPEntries();
    405     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
    406                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
    407                           bool DoDump = false);
    408     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
    409                         CPUser &U, unsigned &Growth);
    410     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    411     bool fixupImmediateBr(ImmBranch &Br);
    412     bool fixupConditionalBr(ImmBranch &Br);
    413     bool fixupUnconditionalBr(ImmBranch &Br);
    414 
    415     void prescanForConstants();
    416 
    417   private:
    418 
    419   };
    420 
    421   char MipsConstantIslands::ID = 0;
    422 } // end of anonymous namespace
    423 
    424 bool MipsConstantIslands::isOffsetInRange
    425   (unsigned UserOffset, unsigned TrialOffset,
    426    const CPUser &U) {
    427   return isOffsetInRange(UserOffset, TrialOffset,
    428                          U.getMaxDisp(), U.NegOk);
    429 }
    430 /// print block size and offset information - debugging
    431 void MipsConstantIslands::dumpBBs() {
    432   DEBUG({
    433     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
    434       const BasicBlockInfo &BBI = BBInfo[J];
    435       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
    436              << format(" size=%#x\n", BBInfo[J].Size);
    437     }
    438   });
    439 }
    440 /// createMipsLongBranchPass - Returns a pass that converts branches to long
    441 /// branches.
    442 FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
    443   return new MipsConstantIslands(tm);
    444 }
    445 
    446 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
    447   // The intention is for this to be a mips16 only pass for now
    448   // FIXME:
    449   MF = &mf;
    450   MCP = mf.getConstantPool();
    451   STI = &static_cast<const MipsSubtarget &>(mf.getSubtarget());
    452   DEBUG(dbgs() << "constant island machine function " << "\n");
    453   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
    454     return false;
    455   }
    456   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
    457   MFI = MF->getInfo<MipsFunctionInfo>();
    458   DEBUG(dbgs() << "constant island processing " << "\n");
    459   //
    460   // will need to make predermination if there is any constants we need to
    461   // put in constant islands. TBD.
    462   //
    463   if (!PrescannedForConstants) prescanForConstants();
    464 
    465   HasFarJump = false;
    466   // This pass invalidates liveness information when it splits basic blocks.
    467   MF->getRegInfo().invalidateLiveness();
    468 
    469   // Renumber all of the machine basic blocks in the function, guaranteeing that
    470   // the numbers agree with the position of the block in the function.
    471   MF->RenumberBlocks();
    472 
    473   bool MadeChange = false;
    474 
    475   // Perform the initial placement of the constant pool entries.  To start with,
    476   // we put them all at the end of the function.
    477   std::vector<MachineInstr*> CPEMIs;
    478   if (!MCP->isEmpty())
    479     doInitialPlacement(CPEMIs);
    480 
    481   /// The next UID to take is the first unused one.
    482   initPICLabelUId(CPEMIs.size());
    483 
    484   // Do the initial scan of the function, building up information about the
    485   // sizes of each block, the location of all the water, and finding all of the
    486   // constant pool users.
    487   initializeFunctionInfo(CPEMIs);
    488   CPEMIs.clear();
    489   DEBUG(dumpBBs());
    490 
    491   /// Remove dead constant pool entries.
    492   MadeChange |= removeUnusedCPEntries();
    493 
    494   // Iteratively place constant pool entries and fix up branches until there
    495   // is no change.
    496   unsigned NoCPIters = 0, NoBRIters = 0;
    497   (void)NoBRIters;
    498   while (true) {
    499     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
    500     bool CPChange = false;
    501     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
    502       CPChange |= handleConstantPoolUser(i);
    503     if (CPChange && ++NoCPIters > 30)
    504       report_fatal_error("Constant Island pass failed to converge!");
    505     DEBUG(dumpBBs());
    506 
    507     // Clear NewWaterList now.  If we split a block for branches, it should
    508     // appear as "new water" for the next iteration of constant pool placement.
    509     NewWaterList.clear();
    510 
    511     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
    512     bool BRChange = false;
    513     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
    514       BRChange |= fixupImmediateBr(ImmBranches[i]);
    515     if (BRChange && ++NoBRIters > 30)
    516       report_fatal_error("Branch Fix Up pass failed to converge!");
    517     DEBUG(dumpBBs());
    518     if (!CPChange && !BRChange)
    519       break;
    520     MadeChange = true;
    521   }
    522 
    523   DEBUG(dbgs() << '\n'; dumpBBs());
    524 
    525   BBInfo.clear();
    526   WaterList.clear();
    527   CPUsers.clear();
    528   CPEntries.clear();
    529   ImmBranches.clear();
    530   return MadeChange;
    531 }
    532 
    533 /// doInitialPlacement - Perform the initial placement of the constant pool
    534 /// entries.  To start with, we put them all at the end of the function.
    535 void
    536 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
    537   // Create the basic block to hold the CPE's.
    538   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
    539   MF->push_back(BB);
    540 
    541 
    542   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
    543   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
    544 
    545   // Mark the basic block as required by the const-pool.
    546   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
    547   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
    548 
    549   // The function needs to be as aligned as the basic blocks. The linker may
    550   // move functions around based on their alignment.
    551   MF->ensureAlignment(BB->getAlignment());
    552 
    553   // Order the entries in BB by descending alignment.  That ensures correct
    554   // alignment of all entries as long as BB is sufficiently aligned.  Keep
    555   // track of the insertion point for each alignment.  We are going to bucket
    556   // sort the entries as they are created.
    557   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
    558 
    559   // Add all of the constants from the constant pool to the end block, use an
    560   // identity mapping of CPI's to CPE's.
    561   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
    562 
    563   const DataLayout &TD = MF->getDataLayout();
    564   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    565     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    566     assert(Size >= 4 && "Too small constant pool entry");
    567     unsigned Align = CPs[i].getAlignment();
    568     assert(isPowerOf2_32(Align) && "Invalid alignment");
    569     // Verify that all constant pool entries are a multiple of their alignment.
    570     // If not, we would have to pad them out so that instructions stay aligned.
    571     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
    572 
    573     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
    574     unsigned LogAlign = Log2_32(Align);
    575     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
    576 
    577     MachineInstr *CPEMI =
    578       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
    579         .addImm(i).addConstantPoolIndex(i).addImm(Size);
    580 
    581     CPEMIs.push_back(CPEMI);
    582 
    583     // Ensure that future entries with higher alignment get inserted before
    584     // CPEMI. This is bucket sort with iterators.
    585     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
    586       if (InsPoint[a] == InsAt)
    587         InsPoint[a] = CPEMI;
    588     // Add a new CPEntry, but no corresponding CPUser yet.
    589     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
    590     ++NumCPEs;
    591     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
    592                  << Size << ", align = " << Align <<'\n');
    593   }
    594   DEBUG(BB->dump());
    595 }
    596 
    597 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
    598 /// into the block immediately after it.
    599 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
    600   // Get the next machine basic block in the function.
    601   MachineFunction::iterator MBBI = MBB->getIterator();
    602   // Can't fall off end of function.
    603   if (std::next(MBBI) == MBB->getParent()->end())
    604     return false;
    605 
    606   MachineBasicBlock *NextBB = &*std::next(MBBI);
    607   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
    608        E = MBB->succ_end(); I != E; ++I)
    609     if (*I == NextBB)
    610       return true;
    611 
    612   return false;
    613 }
    614 
    615 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
    616 /// look up the corresponding CPEntry.
    617 MipsConstantIslands::CPEntry
    618 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
    619                                         const MachineInstr *CPEMI) {
    620   std::vector<CPEntry> &CPEs = CPEntries[CPI];
    621   // Number of entries per constpool index should be small, just do a
    622   // linear search.
    623   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    624     if (CPEs[i].CPEMI == CPEMI)
    625       return &CPEs[i];
    626   }
    627   return nullptr;
    628 }
    629 
    630 /// getCPELogAlign - Returns the required alignment of the constant pool entry
    631 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
    632 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
    633   assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
    634 
    635   // Everything is 4-byte aligned unless AlignConstantIslands is set.
    636   if (!AlignConstantIslands)
    637     return 2;
    638 
    639   unsigned CPI = CPEMI->getOperand(1).getIndex();
    640   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
    641   unsigned Align = MCP->getConstants()[CPI].getAlignment();
    642   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
    643   return Log2_32(Align);
    644 }
    645 
    646 /// initializeFunctionInfo - Do the initial scan of the function, building up
    647 /// information about the sizes of each block, the location of all the water,
    648 /// and finding all of the constant pool users.
    649 void MipsConstantIslands::
    650 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
    651   BBInfo.clear();
    652   BBInfo.resize(MF->getNumBlockIDs());
    653 
    654   // First thing, compute the size of all basic blocks, and see if the function
    655   // has any inline assembly in it. If so, we have to be conservative about
    656   // alignment assumptions, as we don't know for sure the size of any
    657   // instructions in the inline assembly.
    658   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
    659     computeBlockSize(&*I);
    660 
    661 
    662   // Compute block offsets.
    663   adjustBBOffsetsAfter(&MF->front());
    664 
    665   // Now go back through the instructions and build up our data structures.
    666   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    667        MBBI != E; ++MBBI) {
    668     MachineBasicBlock &MBB = *MBBI;
    669 
    670     // If this block doesn't fall through into the next MBB, then this is
    671     // 'water' that a constant pool island could be placed.
    672     if (!BBHasFallthrough(&MBB))
    673       WaterList.push_back(&MBB);
    674     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    675          I != E; ++I) {
    676       if (I->isDebugValue())
    677         continue;
    678 
    679       int Opc = I->getOpcode();
    680       if (I->isBranch()) {
    681         bool isCond = false;
    682         unsigned Bits = 0;
    683         unsigned Scale = 1;
    684         int UOpc = Opc;
    685         switch (Opc) {
    686         default:
    687           continue;  // Ignore other branches for now
    688         case Mips::Bimm16:
    689           Bits = 11;
    690           Scale = 2;
    691           isCond = false;
    692           break;
    693         case Mips::BimmX16:
    694           Bits = 16;
    695           Scale = 2;
    696           isCond = false;
    697           break;
    698         case Mips::BeqzRxImm16:
    699           UOpc=Mips::Bimm16;
    700           Bits = 8;
    701           Scale = 2;
    702           isCond = true;
    703           break;
    704         case Mips::BeqzRxImmX16:
    705           UOpc=Mips::Bimm16;
    706           Bits = 16;
    707           Scale = 2;
    708           isCond = true;
    709           break;
    710         case Mips::BnezRxImm16:
    711           UOpc=Mips::Bimm16;
    712           Bits = 8;
    713           Scale = 2;
    714           isCond = true;
    715           break;
    716         case Mips::BnezRxImmX16:
    717           UOpc=Mips::Bimm16;
    718           Bits = 16;
    719           Scale = 2;
    720           isCond = true;
    721           break;
    722         case Mips::Bteqz16:
    723           UOpc=Mips::Bimm16;
    724           Bits = 8;
    725           Scale = 2;
    726           isCond = true;
    727           break;
    728         case Mips::BteqzX16:
    729           UOpc=Mips::Bimm16;
    730           Bits = 16;
    731           Scale = 2;
    732           isCond = true;
    733           break;
    734         case Mips::Btnez16:
    735           UOpc=Mips::Bimm16;
    736           Bits = 8;
    737           Scale = 2;
    738           isCond = true;
    739           break;
    740         case Mips::BtnezX16:
    741           UOpc=Mips::Bimm16;
    742           Bits = 16;
    743           Scale = 2;
    744           isCond = true;
    745           break;
    746         }
    747         // Record this immediate branch.
    748         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    749         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
    750       }
    751 
    752       if (Opc == Mips::CONSTPOOL_ENTRY)
    753         continue;
    754 
    755 
    756       // Scan the instructions for constant pool operands.
    757       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
    758         if (I->getOperand(op).isCPI()) {
    759 
    760           // We found one.  The addressing mode tells us the max displacement
    761           // from the PC that this instruction permits.
    762 
    763           // Basic size info comes from the TSFlags field.
    764           unsigned Bits = 0;
    765           unsigned Scale = 1;
    766           bool NegOk = false;
    767           unsigned LongFormBits = 0;
    768           unsigned LongFormScale = 0;
    769           unsigned LongFormOpcode = 0;
    770           switch (Opc) {
    771           default:
    772             llvm_unreachable("Unknown addressing mode for CP reference!");
    773           case Mips::LwRxPcTcp16:
    774             Bits = 8;
    775             Scale = 4;
    776             LongFormOpcode = Mips::LwRxPcTcpX16;
    777             LongFormBits = 14;
    778             LongFormScale = 1;
    779             break;
    780           case Mips::LwRxPcTcpX16:
    781             Bits = 14;
    782             Scale = 1;
    783             NegOk = true;
    784             break;
    785           }
    786           // Remember that this is a user of a CP entry.
    787           unsigned CPI = I->getOperand(op).getIndex();
    788           MachineInstr *CPEMI = CPEMIs[CPI];
    789           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
    790           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
    791           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
    792                                    LongFormMaxOffs, LongFormOpcode));
    793 
    794           // Increment corresponding CPEntry reference count.
    795           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    796           assert(CPE && "Cannot find a corresponding CPEntry!");
    797           CPE->RefCount++;
    798 
    799           // Instructions can only use one CP entry, don't bother scanning the
    800           // rest of the operands.
    801           break;
    802 
    803         }
    804 
    805     }
    806   }
    807 
    808 }
    809 
    810 /// computeBlockSize - Compute the size and some alignment information for MBB.
    811 /// This function updates BBInfo directly.
    812 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
    813   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
    814   BBI.Size = 0;
    815 
    816   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    817        ++I)
    818     BBI.Size += TII->GetInstSizeInBytes(I);
    819 
    820 }
    821 
    822 /// getOffsetOf - Return the current offset of the specified machine instruction
    823 /// from the start of the function.  This offset changes as stuff is moved
    824 /// around inside the function.
    825 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
    826   MachineBasicBlock *MBB = MI->getParent();
    827 
    828   // The offset is composed of two things: the sum of the sizes of all MBB's
    829   // before this instruction's block, and the offset from the start of the block
    830   // it is in.
    831   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
    832 
    833   // Sum instructions before MI in MBB.
    834   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
    835     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    836     Offset += TII->GetInstSizeInBytes(I);
    837   }
    838   return Offset;
    839 }
    840 
    841 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
    842 /// ID.
    843 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
    844                               const MachineBasicBlock *RHS) {
    845   return LHS->getNumber() < RHS->getNumber();
    846 }
    847 
    848 /// updateForInsertedWaterBlock - When a block is newly inserted into the
    849 /// machine function, it upsets all of the block numbers.  Renumber the blocks
    850 /// and update the arrays that parallel this numbering.
    851 void MipsConstantIslands::updateForInsertedWaterBlock
    852   (MachineBasicBlock *NewBB) {
    853   // Renumber the MBB's to keep them consecutive.
    854   NewBB->getParent()->RenumberBlocks(NewBB);
    855 
    856   // Insert an entry into BBInfo to align it properly with the (newly
    857   // renumbered) block numbers.
    858   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    859 
    860   // Next, update WaterList.  Specifically, we need to add NewMBB as having
    861   // available water after it.
    862   water_iterator IP =
    863     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
    864                      CompareMBBNumbers);
    865   WaterList.insert(IP, NewBB);
    866 }
    867 
    868 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
    869   return getOffsetOf(U.MI);
    870 }
    871 
    872 /// Split the basic block containing MI into two blocks, which are joined by
    873 /// an unconditional branch.  Update data structures and renumber blocks to
    874 /// account for this change and returns the newly created block.
    875 MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
    876   (MachineInstr *MI) {
    877   MachineBasicBlock *OrigBB = MI->getParent();
    878 
    879   // Create a new MBB for the code after the OrigBB.
    880   MachineBasicBlock *NewBB =
    881     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
    882   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
    883   MF->insert(MBBI, NewBB);
    884 
    885   // Splice the instructions starting with MI over to NewBB.
    886   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
    887 
    888   // Add an unconditional branch from OrigBB to NewBB.
    889   // Note the new unconditional branch is not being recorded.
    890   // There doesn't seem to be meaningful DebugInfo available; this doesn't
    891   // correspond to anything in the source.
    892   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
    893   ++NumSplit;
    894 
    895   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
    896   NewBB->transferSuccessors(OrigBB);
    897 
    898   // OrigBB branches to NewBB.
    899   OrigBB->addSuccessor(NewBB);
    900 
    901   // Update internal data structures to account for the newly inserted MBB.
    902   // This is almost the same as updateForInsertedWaterBlock, except that
    903   // the Water goes after OrigBB, not NewBB.
    904   MF->RenumberBlocks(NewBB);
    905 
    906   // Insert an entry into BBInfo to align it properly with the (newly
    907   // renumbered) block numbers.
    908   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    909 
    910   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
    911   // available water after it (but not if it's already there, which happens
    912   // when splitting before a conditional branch that is followed by an
    913   // unconditional branch - in that case we want to insert NewBB).
    914   water_iterator IP =
    915     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
    916                      CompareMBBNumbers);
    917   MachineBasicBlock* WaterBB = *IP;
    918   if (WaterBB == OrigBB)
    919     WaterList.insert(std::next(IP), NewBB);
    920   else
    921     WaterList.insert(IP, OrigBB);
    922   NewWaterList.insert(OrigBB);
    923 
    924   // Figure out how large the OrigBB is.  As the first half of the original
    925   // block, it cannot contain a tablejump.  The size includes
    926   // the new jump we added.  (It should be possible to do this without
    927   // recounting everything, but it's very confusing, and this is rarely
    928   // executed.)
    929   computeBlockSize(OrigBB);
    930 
    931   // Figure out how large the NewMBB is.  As the second half of the original
    932   // block, it may contain a tablejump.
    933   computeBlockSize(NewBB);
    934 
    935   // All BBOffsets following these blocks must be modified.
    936   adjustBBOffsetsAfter(OrigBB);
    937 
    938   return NewBB;
    939 }
    940 
    941 
    942 
    943 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
    944 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
    945 /// constant pool entry).
    946 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
    947                                          unsigned TrialOffset, unsigned MaxDisp,
    948                                          bool NegativeOK) {
    949   if (UserOffset <= TrialOffset) {
    950     // User before the Trial.
    951     if (TrialOffset - UserOffset <= MaxDisp)
    952       return true;
    953   } else if (NegativeOK) {
    954     if (UserOffset - TrialOffset <= MaxDisp)
    955       return true;
    956   }
    957   return false;
    958 }
    959 
    960 /// isWaterInRange - Returns true if a CPE placed after the specified
    961 /// Water (a basic block) will be in range for the specific MI.
    962 ///
    963 /// Compute how much the function will grow by inserting a CPE after Water.
    964 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
    965                                         MachineBasicBlock* Water, CPUser &U,
    966                                         unsigned &Growth) {
    967   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
    968   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
    969   unsigned NextBlockOffset, NextBlockAlignment;
    970   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
    971   if (NextBlock == MF->end()) {
    972     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
    973     NextBlockAlignment = 0;
    974   } else {
    975     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
    976     NextBlockAlignment = NextBlock->getAlignment();
    977   }
    978   unsigned Size = U.CPEMI->getOperand(2).getImm();
    979   unsigned CPEEnd = CPEOffset + Size;
    980 
    981   // The CPE may be able to hide in the alignment padding before the next
    982   // block. It may also cause more padding to be required if it is more aligned
    983   // that the next block.
    984   if (CPEEnd > NextBlockOffset) {
    985     Growth = CPEEnd - NextBlockOffset;
    986     // Compute the padding that would go at the end of the CPE to align the next
    987     // block.
    988     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
    989 
    990     // If the CPE is to be inserted before the instruction, that will raise
    991     // the offset of the instruction. Also account for unknown alignment padding
    992     // in blocks between CPE and the user.
    993     if (CPEOffset < UserOffset)
    994       UserOffset += Growth;
    995   } else
    996     // CPE fits in existing padding.
    997     Growth = 0;
    998 
    999   return isOffsetInRange(UserOffset, CPEOffset, U);
   1000 }
   1001 
   1002 /// isCPEntryInRange - Returns true if the distance between specific MI and
   1003 /// specific ConstPool entry instruction can fit in MI's displacement field.
   1004 bool MipsConstantIslands::isCPEntryInRange
   1005   (MachineInstr *MI, unsigned UserOffset,
   1006    MachineInstr *CPEMI, unsigned MaxDisp,
   1007    bool NegOk, bool DoDump) {
   1008   unsigned CPEOffset  = getOffsetOf(CPEMI);
   1009 
   1010   if (DoDump) {
   1011     DEBUG({
   1012       unsigned Block = MI->getParent()->getNumber();
   1013       const BasicBlockInfo &BBI = BBInfo[Block];
   1014       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
   1015              << " max delta=" << MaxDisp
   1016              << format(" insn address=%#x", UserOffset)
   1017              << " in BB#" << Block << ": "
   1018              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
   1019              << format("CPE address=%#x offset=%+d: ", CPEOffset,
   1020                        int(CPEOffset-UserOffset));
   1021     });
   1022   }
   1023 
   1024   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
   1025 }
   1026 
   1027 #ifndef NDEBUG
   1028 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
   1029 /// unconditionally branches to its only successor.
   1030 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
   1031   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
   1032     return false;
   1033   MachineBasicBlock *Succ = *MBB->succ_begin();
   1034   MachineBasicBlock *Pred = *MBB->pred_begin();
   1035   MachineInstr *PredMI = &Pred->back();
   1036   if (PredMI->getOpcode() == Mips::Bimm16)
   1037     return PredMI->getOperand(0).getMBB() == Succ;
   1038   return false;
   1039 }
   1040 #endif
   1041 
   1042 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
   1043   unsigned BBNum = BB->getNumber();
   1044   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
   1045     // Get the offset and known bits at the end of the layout predecessor.
   1046     // Include the alignment of the current block.
   1047     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
   1048     BBInfo[i].Offset = Offset;
   1049   }
   1050 }
   1051 
   1052 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
   1053 /// and instruction CPEMI, and decrement its refcount.  If the refcount
   1054 /// becomes 0 remove the entry and instruction.  Returns true if we removed
   1055 /// the entry, false if we didn't.
   1056 
   1057 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
   1058                                                     MachineInstr *CPEMI) {
   1059   // Find the old entry. Eliminate it if it is no longer used.
   1060   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
   1061   assert(CPE && "Unexpected!");
   1062   if (--CPE->RefCount == 0) {
   1063     removeDeadCPEMI(CPEMI);
   1064     CPE->CPEMI = nullptr;
   1065     --NumCPEs;
   1066     return true;
   1067   }
   1068   return false;
   1069 }
   1070 
   1071 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1072 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1073 /// change the data structures so the user references the clone.  Returns:
   1074 /// 0 = no existing entry found
   1075 /// 1 = entry found, and there were no code insertions or deletions
   1076 /// 2 = entry found, and there were code insertions or deletions
   1077 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
   1078 {
   1079   MachineInstr *UserMI = U.MI;
   1080   MachineInstr *CPEMI  = U.CPEMI;
   1081 
   1082   // Check to see if the CPE is already in-range.
   1083   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
   1084                        true)) {
   1085     DEBUG(dbgs() << "In range\n");
   1086     return 1;
   1087   }
   1088 
   1089   // No.  Look for previously created clones of the CPE that are in range.
   1090   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1091   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1092   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1093     // We already tried this one
   1094     if (CPEs[i].CPEMI == CPEMI)
   1095       continue;
   1096     // Removing CPEs can leave empty entries, skip
   1097     if (CPEs[i].CPEMI == nullptr)
   1098       continue;
   1099     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
   1100                      U.NegOk)) {
   1101       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1102                    << CPEs[i].CPI << "\n");
   1103       // Point the CPUser node to the replacement
   1104       U.CPEMI = CPEs[i].CPEMI;
   1105       // Change the CPI in the instruction operand to refer to the clone.
   1106       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1107         if (UserMI->getOperand(j).isCPI()) {
   1108           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1109           break;
   1110         }
   1111       // Adjust the refcount of the clone...
   1112       CPEs[i].RefCount++;
   1113       // ...and the original.  If we didn't remove the old entry, none of the
   1114       // addresses changed, so we don't need another pass.
   1115       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1116     }
   1117   }
   1118   return 0;
   1119 }
   1120 
   1121 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1122 /// This version checks if the longer form of the instruction can be used to
   1123 /// to satisfy things.
   1124 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1125 /// change the data structures so the user references the clone.  Returns:
   1126 /// 0 = no existing entry found
   1127 /// 1 = entry found, and there were no code insertions or deletions
   1128 /// 2 = entry found, and there were code insertions or deletions
   1129 int MipsConstantIslands::findLongFormInRangeCPEntry
   1130   (CPUser& U, unsigned UserOffset)
   1131 {
   1132   MachineInstr *UserMI = U.MI;
   1133   MachineInstr *CPEMI  = U.CPEMI;
   1134 
   1135   // Check to see if the CPE is already in-range.
   1136   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
   1137                        U.getLongFormMaxDisp(), U.NegOk,
   1138                        true)) {
   1139     DEBUG(dbgs() << "In range\n");
   1140     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
   1141     U.setMaxDisp(U.getLongFormMaxDisp());
   1142     return 2;  // instruction is longer length now
   1143   }
   1144 
   1145   // No.  Look for previously created clones of the CPE that are in range.
   1146   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1147   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1148   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1149     // We already tried this one
   1150     if (CPEs[i].CPEMI == CPEMI)
   1151       continue;
   1152     // Removing CPEs can leave empty entries, skip
   1153     if (CPEs[i].CPEMI == nullptr)
   1154       continue;
   1155     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
   1156                          U.getLongFormMaxDisp(), U.NegOk)) {
   1157       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1158                    << CPEs[i].CPI << "\n");
   1159       // Point the CPUser node to the replacement
   1160       U.CPEMI = CPEs[i].CPEMI;
   1161       // Change the CPI in the instruction operand to refer to the clone.
   1162       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1163         if (UserMI->getOperand(j).isCPI()) {
   1164           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1165           break;
   1166         }
   1167       // Adjust the refcount of the clone...
   1168       CPEs[i].RefCount++;
   1169       // ...and the original.  If we didn't remove the old entry, none of the
   1170       // addresses changed, so we don't need another pass.
   1171       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1172     }
   1173   }
   1174   return 0;
   1175 }
   1176 
   1177 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
   1178 /// the specific unconditional branch instruction.
   1179 static inline unsigned getUnconditionalBrDisp(int Opc) {
   1180   switch (Opc) {
   1181   case Mips::Bimm16:
   1182     return ((1<<10)-1)*2;
   1183   case Mips::BimmX16:
   1184     return ((1<<16)-1)*2;
   1185   default:
   1186     break;
   1187   }
   1188   return ((1<<16)-1)*2;
   1189 }
   1190 
   1191 /// findAvailableWater - Look for an existing entry in the WaterList in which
   1192 /// we can place the CPE referenced from U so it's within range of U's MI.
   1193 /// Returns true if found, false if not.  If it returns true, WaterIter
   1194 /// is set to the WaterList entry.
   1195 /// To ensure that this pass
   1196 /// terminates, the CPE location for a particular CPUser is only allowed to
   1197 /// move to a lower address, so search backward from the end of the list and
   1198 /// prefer the first water that is in range.
   1199 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
   1200                                       water_iterator &WaterIter) {
   1201   if (WaterList.empty())
   1202     return false;
   1203 
   1204   unsigned BestGrowth = ~0u;
   1205   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
   1206        --IP) {
   1207     MachineBasicBlock* WaterBB = *IP;
   1208     // Check if water is in range and is either at a lower address than the
   1209     // current "high water mark" or a new water block that was created since
   1210     // the previous iteration by inserting an unconditional branch.  In the
   1211     // latter case, we want to allow resetting the high water mark back to
   1212     // this new water since we haven't seen it before.  Inserting branches
   1213     // should be relatively uncommon and when it does happen, we want to be
   1214     // sure to take advantage of it for all the CPEs near that block, so that
   1215     // we don't insert more branches than necessary.
   1216     unsigned Growth;
   1217     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
   1218         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
   1219          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
   1220       // This is the least amount of required padding seen so far.
   1221       BestGrowth = Growth;
   1222       WaterIter = IP;
   1223       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
   1224                    << " Growth=" << Growth << '\n');
   1225 
   1226       // Keep looking unless it is perfect.
   1227       if (BestGrowth == 0)
   1228         return true;
   1229     }
   1230     if (IP == B)
   1231       break;
   1232   }
   1233   return BestGrowth != ~0u;
   1234 }
   1235 
   1236 /// createNewWater - No existing WaterList entry will work for
   1237 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
   1238 /// block is used if in range, and the conditional branch munged so control
   1239 /// flow is correct.  Otherwise the block is split to create a hole with an
   1240 /// unconditional branch around it.  In either case NewMBB is set to a
   1241 /// block following which the new island can be inserted (the WaterList
   1242 /// is not adjusted).
   1243 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
   1244                                         unsigned UserOffset,
   1245                                         MachineBasicBlock *&NewMBB) {
   1246   CPUser &U = CPUsers[CPUserIndex];
   1247   MachineInstr *UserMI = U.MI;
   1248   MachineInstr *CPEMI  = U.CPEMI;
   1249   unsigned CPELogAlign = getCPELogAlign(CPEMI);
   1250   MachineBasicBlock *UserMBB = UserMI->getParent();
   1251   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
   1252 
   1253   // If the block does not end in an unconditional branch already, and if the
   1254   // end of the block is within range, make new water there.
   1255   if (BBHasFallthrough(UserMBB)) {
   1256     // Size of branch to insert.
   1257     unsigned Delta = 2;
   1258     // Compute the offset where the CPE will begin.
   1259     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
   1260 
   1261     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
   1262       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
   1263             << format(", expected CPE offset %#x\n", CPEOffset));
   1264       NewMBB = &*++UserMBB->getIterator();
   1265       // Add an unconditional branch from UserMBB to fallthrough block.  Record
   1266       // it for branch lengthening; this new branch will not get out of range,
   1267       // but if the preceding conditional branch is out of range, the targets
   1268       // will be exchanged, and the altered branch may be out of range, so the
   1269       // machinery has to know about it.
   1270       int UncondBr = Mips::Bimm16;
   1271       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
   1272       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
   1273       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
   1274                                       MaxDisp, false, UncondBr));
   1275       BBInfo[UserMBB->getNumber()].Size += Delta;
   1276       adjustBBOffsetsAfter(UserMBB);
   1277       return;
   1278     }
   1279   }
   1280 
   1281   // What a big block.  Find a place within the block to split it.
   1282 
   1283   // Try to split the block so it's fully aligned.  Compute the latest split
   1284   // point where we can add a 4-byte branch instruction, and then align to
   1285   // LogAlign which is the largest possible alignment in the function.
   1286   unsigned LogAlign = MF->getAlignment();
   1287   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
   1288   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
   1289   DEBUG(dbgs() << format("Split in middle of big block before %#x",
   1290                          BaseInsertOffset));
   1291 
   1292   // The 4 in the following is for the unconditional branch we'll be inserting
   1293   // Alignment of the island is handled
   1294   // inside isOffsetInRange.
   1295   BaseInsertOffset -= 4;
   1296 
   1297   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
   1298                << " la=" << LogAlign << '\n');
   1299 
   1300   // This could point off the end of the block if we've already got constant
   1301   // pool entries following this block; only the last one is in the water list.
   1302   // Back past any possible branches (allow for a conditional and a maximally
   1303   // long unconditional).
   1304   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
   1305     BaseInsertOffset = UserBBI.postOffset() - 8;
   1306     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
   1307   }
   1308   unsigned EndInsertOffset = BaseInsertOffset + 4 +
   1309     CPEMI->getOperand(2).getImm();
   1310   MachineBasicBlock::iterator MI = UserMI;
   1311   ++MI;
   1312   unsigned CPUIndex = CPUserIndex+1;
   1313   unsigned NumCPUsers = CPUsers.size();
   1314   //MachineInstr *LastIT = 0;
   1315   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
   1316        Offset < BaseInsertOffset;
   1317        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
   1318     assert(MI != UserMBB->end() && "Fell off end of block");
   1319     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
   1320       CPUser &U = CPUsers[CPUIndex];
   1321       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
   1322         // Shift intertion point by one unit of alignment so it is within reach.
   1323         BaseInsertOffset -= 1u << LogAlign;
   1324         EndInsertOffset  -= 1u << LogAlign;
   1325       }
   1326       // This is overly conservative, as we don't account for CPEMIs being
   1327       // reused within the block, but it doesn't matter much.  Also assume CPEs
   1328       // are added in order with alignment padding.  We may eventually be able
   1329       // to pack the aligned CPEs better.
   1330       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
   1331       CPUIndex++;
   1332     }
   1333   }
   1334 
   1335   --MI;
   1336   NewMBB = splitBlockBeforeInstr(MI);
   1337 }
   1338 
   1339 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
   1340 /// is out-of-range.  If so, pick up the constant pool value and move it some
   1341 /// place in-range.  Return true if we changed any addresses (thus must run
   1342 /// another pass of branch lengthening), false otherwise.
   1343 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
   1344   CPUser &U = CPUsers[CPUserIndex];
   1345   MachineInstr *UserMI = U.MI;
   1346   MachineInstr *CPEMI  = U.CPEMI;
   1347   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1348   unsigned Size = CPEMI->getOperand(2).getImm();
   1349   // Compute this only once, it's expensive.
   1350   unsigned UserOffset = getUserOffset(U);
   1351 
   1352   // See if the current entry is within range, or there is a clone of it
   1353   // in range.
   1354   int result = findInRangeCPEntry(U, UserOffset);
   1355   if (result==1) return false;
   1356   else if (result==2) return true;
   1357 
   1358 
   1359   // Look for water where we can place this CPE.
   1360   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
   1361   MachineBasicBlock *NewMBB;
   1362   water_iterator IP;
   1363   if (findAvailableWater(U, UserOffset, IP)) {
   1364     DEBUG(dbgs() << "Found water in range\n");
   1365     MachineBasicBlock *WaterBB = *IP;
   1366 
   1367     // If the original WaterList entry was "new water" on this iteration,
   1368     // propagate that to the new island.  This is just keeping NewWaterList
   1369     // updated to match the WaterList, which will be updated below.
   1370     if (NewWaterList.erase(WaterBB))
   1371       NewWaterList.insert(NewIsland);
   1372 
   1373     // The new CPE goes before the following block (NewMBB).
   1374     NewMBB = &*++WaterBB->getIterator();
   1375   } else {
   1376     // No water found.
   1377     // we first see if a longer form of the instrucion could have reached
   1378     // the constant. in that case we won't bother to split
   1379     if (!NoLoadRelaxation) {
   1380       result = findLongFormInRangeCPEntry(U, UserOffset);
   1381       if (result != 0) return true;
   1382     }
   1383     DEBUG(dbgs() << "No water found\n");
   1384     createNewWater(CPUserIndex, UserOffset, NewMBB);
   1385 
   1386     // splitBlockBeforeInstr adds to WaterList, which is important when it is
   1387     // called while handling branches so that the water will be seen on the
   1388     // next iteration for constant pools, but in this context, we don't want
   1389     // it.  Check for this so it will be removed from the WaterList.
   1390     // Also remove any entry from NewWaterList.
   1391     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
   1392     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
   1393     if (IP != WaterList.end())
   1394       NewWaterList.erase(WaterBB);
   1395 
   1396     // We are adding new water.  Update NewWaterList.
   1397     NewWaterList.insert(NewIsland);
   1398   }
   1399 
   1400   // Remove the original WaterList entry; we want subsequent insertions in
   1401   // this vicinity to go after the one we're about to insert.  This
   1402   // considerably reduces the number of times we have to move the same CPE
   1403   // more than once and is also important to ensure the algorithm terminates.
   1404   if (IP != WaterList.end())
   1405     WaterList.erase(IP);
   1406 
   1407   // Okay, we know we can put an island before NewMBB now, do it!
   1408   MF->insert(NewMBB->getIterator(), NewIsland);
   1409 
   1410   // Update internal data structures to account for the newly inserted MBB.
   1411   updateForInsertedWaterBlock(NewIsland);
   1412 
   1413   // Decrement the old entry, and remove it if refcount becomes 0.
   1414   decrementCPEReferenceCount(CPI, CPEMI);
   1415 
   1416   // No existing clone of this CPE is within range.
   1417   // We will be generating a new clone.  Get a UID for it.
   1418   unsigned ID = createPICLabelUId();
   1419 
   1420   // Now that we have an island to add the CPE to, clone the original CPE and
   1421   // add it to the island.
   1422   U.HighWaterMark = NewIsland;
   1423   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
   1424                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
   1425   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
   1426   ++NumCPEs;
   1427 
   1428   // Mark the basic block as aligned as required by the const-pool entry.
   1429   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
   1430 
   1431   // Increase the size of the island block to account for the new entry.
   1432   BBInfo[NewIsland->getNumber()].Size += Size;
   1433   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
   1434 
   1435   // Finally, change the CPI in the instruction operand to be ID.
   1436   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
   1437     if (UserMI->getOperand(i).isCPI()) {
   1438       UserMI->getOperand(i).setIndex(ID);
   1439       break;
   1440     }
   1441 
   1442   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
   1443         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
   1444 
   1445   return true;
   1446 }
   1447 
   1448 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
   1449 /// sizes and offsets of impacted basic blocks.
   1450 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
   1451   MachineBasicBlock *CPEBB = CPEMI->getParent();
   1452   unsigned Size = CPEMI->getOperand(2).getImm();
   1453   CPEMI->eraseFromParent();
   1454   BBInfo[CPEBB->getNumber()].Size -= Size;
   1455   // All succeeding offsets have the current size value added in, fix this.
   1456   if (CPEBB->empty()) {
   1457     BBInfo[CPEBB->getNumber()].Size = 0;
   1458 
   1459     // This block no longer needs to be aligned.
   1460     CPEBB->setAlignment(0);
   1461   } else
   1462     // Entries are sorted by descending alignment, so realign from the front.
   1463     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
   1464 
   1465   adjustBBOffsetsAfter(CPEBB);
   1466   // An island has only one predecessor BB and one successor BB. Check if
   1467   // this BB's predecessor jumps directly to this BB's successor. This
   1468   // shouldn't happen currently.
   1469   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
   1470   // FIXME: remove the empty blocks after all the work is done?
   1471 }
   1472 
   1473 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
   1474 /// are zero.
   1475 bool MipsConstantIslands::removeUnusedCPEntries() {
   1476   unsigned MadeChange = false;
   1477   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
   1478       std::vector<CPEntry> &CPEs = CPEntries[i];
   1479       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
   1480         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
   1481           removeDeadCPEMI(CPEs[j].CPEMI);
   1482           CPEs[j].CPEMI = nullptr;
   1483           MadeChange = true;
   1484         }
   1485       }
   1486   }
   1487   return MadeChange;
   1488 }
   1489 
   1490 /// isBBInRange - Returns true if the distance between specific MI and
   1491 /// specific BB can fit in MI's displacement field.
   1492 bool MipsConstantIslands::isBBInRange
   1493   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
   1494 
   1495 unsigned PCAdj = 4;
   1496 
   1497   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
   1498   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1499 
   1500   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
   1501                << " from BB#" << MI->getParent()->getNumber()
   1502                << " max delta=" << MaxDisp
   1503                << " from " << getOffsetOf(MI) << " to " << DestOffset
   1504                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
   1505 
   1506   if (BrOffset <= DestOffset) {
   1507     // Branch before the Dest.
   1508     if (DestOffset-BrOffset <= MaxDisp)
   1509       return true;
   1510   } else {
   1511     if (BrOffset-DestOffset <= MaxDisp)
   1512       return true;
   1513   }
   1514   return false;
   1515 }
   1516 
   1517 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
   1518 /// away to fit in its displacement field.
   1519 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
   1520   MachineInstr *MI = Br.MI;
   1521   unsigned TargetOperand = branchTargetOperand(MI);
   1522   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
   1523 
   1524   // Check to see if the DestBB is already in-range.
   1525   if (isBBInRange(MI, DestBB, Br.MaxDisp))
   1526     return false;
   1527 
   1528   if (!Br.isCond)
   1529     return fixupUnconditionalBr(Br);
   1530   return fixupConditionalBr(Br);
   1531 }
   1532 
   1533 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
   1534 /// too far away to fit in its displacement field. If the LR register has been
   1535 /// spilled in the epilogue, then we can use BL to implement a far jump.
   1536 /// Otherwise, add an intermediate branch instruction to a branch.
   1537 bool
   1538 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
   1539   MachineInstr *MI = Br.MI;
   1540   MachineBasicBlock *MBB = MI->getParent();
   1541   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1542   // Use BL to implement far jump.
   1543   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
   1544   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
   1545     Br.MaxDisp = BimmX16MaxDisp;
   1546     MI->setDesc(TII->get(Mips::BimmX16));
   1547   }
   1548   else {
   1549     // need to give the math a more careful look here
   1550     // this is really a segment address and not
   1551     // a PC relative address. FIXME. But I think that
   1552     // just reducing the bits by 1 as I've done is correct.
   1553     // The basic block we are branching too much be longword aligned.
   1554     // we know that RA is saved because we always save it right now.
   1555     // this requirement will be relaxed later but we also have an alternate
   1556     // way to implement this that I will implement that does not need jal.
   1557     // We should have a way to back out this alignment restriction if we "can" later.
   1558     // but it is not harmful.
   1559     //
   1560     DestBB->setAlignment(2);
   1561     Br.MaxDisp = ((1<<24)-1) * 2;
   1562     MI->setDesc(TII->get(Mips::JalB16));
   1563   }
   1564   BBInfo[MBB->getNumber()].Size += 2;
   1565   adjustBBOffsetsAfter(MBB);
   1566   HasFarJump = true;
   1567   ++NumUBrFixed;
   1568 
   1569   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
   1570 
   1571   return true;
   1572 }
   1573 
   1574 
   1575 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
   1576 /// far away to fit in its displacement field. It is converted to an inverse
   1577 /// conditional branch + an unconditional branch to the destination.
   1578 bool
   1579 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
   1580   MachineInstr *MI = Br.MI;
   1581   unsigned TargetOperand = branchTargetOperand(MI);
   1582   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
   1583   unsigned Opcode = MI->getOpcode();
   1584   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
   1585   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
   1586 
   1587   // Check to see if the DestBB is already in-range.
   1588   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
   1589     Br.MaxDisp = LongFormMaxOff;
   1590     MI->setDesc(TII->get(LongFormOpcode));
   1591     return true;
   1592   }
   1593 
   1594   // Add an unconditional branch to the destination and invert the branch
   1595   // condition to jump over it:
   1596   // bteqz L1
   1597   // =>
   1598   // bnez L2
   1599   // b   L1
   1600   // L2:
   1601 
   1602   // If the branch is at the end of its MBB and that has a fall-through block,
   1603   // direct the updated conditional branch to the fall-through block. Otherwise,
   1604   // split the MBB before the next instruction.
   1605   MachineBasicBlock *MBB = MI->getParent();
   1606   MachineInstr *BMI = &MBB->back();
   1607   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
   1608   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
   1609 
   1610   ++NumCBrFixed;
   1611   if (BMI != MI) {
   1612     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
   1613         isUnconditionalBranch(BMI->getOpcode())) {
   1614       // Last MI in the BB is an unconditional branch. Can we simply invert the
   1615       // condition and swap destinations:
   1616       // beqz L1
   1617       // b   L2
   1618       // =>
   1619       // bnez L2
   1620       // b   L1
   1621       unsigned BMITargetOperand = branchTargetOperand(BMI);
   1622       MachineBasicBlock *NewDest =
   1623         BMI->getOperand(BMITargetOperand).getMBB();
   1624       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
   1625         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
   1626                      << *BMI);
   1627         MI->setDesc(TII->get(OppositeBranchOpcode));
   1628         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
   1629         MI->getOperand(TargetOperand).setMBB(NewDest);
   1630         return true;
   1631       }
   1632     }
   1633   }
   1634 
   1635 
   1636   if (NeedSplit) {
   1637     splitBlockBeforeInstr(MI);
   1638     // No need for the branch to the next block. We're adding an unconditional
   1639     // branch to the destination.
   1640     int delta = TII->GetInstSizeInBytes(&MBB->back());
   1641     BBInfo[MBB->getNumber()].Size -= delta;
   1642     MBB->back().eraseFromParent();
   1643     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
   1644   }
   1645   MachineBasicBlock *NextBB = &*++MBB->getIterator();
   1646 
   1647   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
   1648                << " also invert condition and change dest. to BB#"
   1649                << NextBB->getNumber() << "\n");
   1650 
   1651   // Insert a new conditional branch and a new unconditional branch.
   1652   // Also update the ImmBranch as well as adding a new entry for the new branch.
   1653   if (MI->getNumExplicitOperands() == 2) {
   1654     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
   1655            .addReg(MI->getOperand(0).getReg())
   1656            .addMBB(NextBB);
   1657   } else {
   1658     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
   1659            .addMBB(NextBB);
   1660   }
   1661   Br.MI = &MBB->back();
   1662   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1663   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
   1664   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1665   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
   1666   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
   1667 
   1668   // Remove the old conditional branch.  It may or may not still be in MBB.
   1669   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
   1670   MI->eraseFromParent();
   1671   adjustBBOffsetsAfter(MBB);
   1672   return true;
   1673 }
   1674 
   1675 
   1676 void MipsConstantIslands::prescanForConstants() {
   1677   unsigned J = 0;
   1678   (void)J;
   1679   for (MachineFunction::iterator B =
   1680          MF->begin(), E = MF->end(); B != E; ++B) {
   1681     for (MachineBasicBlock::instr_iterator I =
   1682         B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
   1683       switch(I->getDesc().getOpcode()) {
   1684         case Mips::LwConstant32: {
   1685           PrescannedForConstants = true;
   1686           DEBUG(dbgs() << "constant island constant " << *I << "\n");
   1687           J = I->getNumOperands();
   1688           DEBUG(dbgs() << "num operands " << J  << "\n");
   1689           MachineOperand& Literal = I->getOperand(1);
   1690           if (Literal.isImm()) {
   1691             int64_t V = Literal.getImm();
   1692             DEBUG(dbgs() << "literal " << V  << "\n");
   1693             Type *Int32Ty =
   1694               Type::getInt32Ty(MF->getFunction()->getContext());
   1695             const Constant *C = ConstantInt::get(Int32Ty, V);
   1696             unsigned index = MCP->getConstantPoolIndex(C, 4);
   1697             I->getOperand(2).ChangeToImmediate(index);
   1698             DEBUG(dbgs() << "constant island constant " << *I << "\n");
   1699             I->setDesc(TII->get(Mips::LwRxPcTcp16));
   1700             I->RemoveOperand(1);
   1701             I->RemoveOperand(1);
   1702             I->addOperand(MachineOperand::CreateCPI(index, 0));
   1703             I->addOperand(MachineOperand::CreateImm(4));
   1704           }
   1705           break;
   1706         }
   1707         default:
   1708           break;
   1709       }
   1710     }
   1711   }
   1712 }
   1713 
   1714