Home | History | Annotate | Download | only in IPO
      1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms simple global variables that never have their address
     11 // taken.  If obviously true, it marks read/write globals as constant, deletes
     12 // variables only stored to, etc.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/IPO.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/ConstantFolding.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/TargetLibraryInfo.h"
     26 #include "llvm/IR/CallSite.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/GetElementPtrTypeIterator.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/IR/ValueHandle.h"
     38 #include "llvm/Pass.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/MathExtras.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/Utils/CtorUtils.h"
     44 #include "llvm/Transforms/Utils/GlobalStatus.h"
     45 #include "llvm/Transforms/Utils/ModuleUtils.h"
     46 #include <algorithm>
     47 #include <deque>
     48 using namespace llvm;
     49 
     50 #define DEBUG_TYPE "globalopt"
     51 
     52 STATISTIC(NumMarked    , "Number of globals marked constant");
     53 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
     54 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
     55 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
     56 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
     57 STATISTIC(NumDeleted   , "Number of globals deleted");
     58 STATISTIC(NumFnDeleted , "Number of functions deleted");
     59 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
     60 STATISTIC(NumLocalized , "Number of globals localized");
     61 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
     62 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
     63 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
     64 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
     65 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
     66 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
     67 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
     68 
     69 namespace {
     70   struct GlobalOpt : public ModulePass {
     71     void getAnalysisUsage(AnalysisUsage &AU) const override {
     72       AU.addRequired<TargetLibraryInfoWrapperPass>();
     73       AU.addRequired<DominatorTreeWrapperPass>();
     74     }
     75     static char ID; // Pass identification, replacement for typeid
     76     GlobalOpt() : ModulePass(ID) {
     77       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
     78     }
     79 
     80     bool runOnModule(Module &M) override;
     81 
     82   private:
     83     bool OptimizeFunctions(Module &M);
     84     bool OptimizeGlobalVars(Module &M);
     85     bool OptimizeGlobalAliases(Module &M);
     86     bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
     87     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
     88                                const GlobalStatus &GS);
     89     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
     90 
     91     bool isPointerValueDeadOnEntryToFunction(const Function *F,
     92                                              GlobalValue *GV);
     93 
     94     TargetLibraryInfo *TLI;
     95     SmallSet<const Comdat *, 8> NotDiscardableComdats;
     96   };
     97 }
     98 
     99 char GlobalOpt::ID = 0;
    100 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
    101                 "Global Variable Optimizer", false, false)
    102 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    103 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    104 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
    105                 "Global Variable Optimizer", false, false)
    106 
    107 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
    108 
    109 /// Is this global variable possibly used by a leak checker as a root?  If so,
    110 /// we might not really want to eliminate the stores to it.
    111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
    112   // A global variable is a root if it is a pointer, or could plausibly contain
    113   // a pointer.  There are two challenges; one is that we could have a struct
    114   // the has an inner member which is a pointer.  We recurse through the type to
    115   // detect these (up to a point).  The other is that we may actually be a union
    116   // of a pointer and another type, and so our LLVM type is an integer which
    117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
    118   // potentially contained here.
    119 
    120   if (GV->hasPrivateLinkage())
    121     return false;
    122 
    123   SmallVector<Type *, 4> Types;
    124   Types.push_back(cast<PointerType>(GV->getType())->getElementType());
    125 
    126   unsigned Limit = 20;
    127   do {
    128     Type *Ty = Types.pop_back_val();
    129     switch (Ty->getTypeID()) {
    130       default: break;
    131       case Type::PointerTyID: return true;
    132       case Type::ArrayTyID:
    133       case Type::VectorTyID: {
    134         SequentialType *STy = cast<SequentialType>(Ty);
    135         Types.push_back(STy->getElementType());
    136         break;
    137       }
    138       case Type::StructTyID: {
    139         StructType *STy = cast<StructType>(Ty);
    140         if (STy->isOpaque()) return true;
    141         for (StructType::element_iterator I = STy->element_begin(),
    142                  E = STy->element_end(); I != E; ++I) {
    143           Type *InnerTy = *I;
    144           if (isa<PointerType>(InnerTy)) return true;
    145           if (isa<CompositeType>(InnerTy))
    146             Types.push_back(InnerTy);
    147         }
    148         break;
    149       }
    150     }
    151     if (--Limit == 0) return true;
    152   } while (!Types.empty());
    153   return false;
    154 }
    155 
    156 /// Given a value that is stored to a global but never read, determine whether
    157 /// it's safe to remove the store and the chain of computation that feeds the
    158 /// store.
    159 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
    160   do {
    161     if (isa<Constant>(V))
    162       return true;
    163     if (!V->hasOneUse())
    164       return false;
    165     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
    166         isa<GlobalValue>(V))
    167       return false;
    168     if (isAllocationFn(V, TLI))
    169       return true;
    170 
    171     Instruction *I = cast<Instruction>(V);
    172     if (I->mayHaveSideEffects())
    173       return false;
    174     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
    175       if (!GEP->hasAllConstantIndices())
    176         return false;
    177     } else if (I->getNumOperands() != 1) {
    178       return false;
    179     }
    180 
    181     V = I->getOperand(0);
    182   } while (1);
    183 }
    184 
    185 /// This GV is a pointer root.  Loop over all users of the global and clean up
    186 /// any that obviously don't assign the global a value that isn't dynamically
    187 /// allocated.
    188 static bool CleanupPointerRootUsers(GlobalVariable *GV,
    189                                     const TargetLibraryInfo *TLI) {
    190   // A brief explanation of leak checkers.  The goal is to find bugs where
    191   // pointers are forgotten, causing an accumulating growth in memory
    192   // usage over time.  The common strategy for leak checkers is to whitelist the
    193   // memory pointed to by globals at exit.  This is popular because it also
    194   // solves another problem where the main thread of a C++ program may shut down
    195   // before other threads that are still expecting to use those globals.  To
    196   // handle that case, we expect the program may create a singleton and never
    197   // destroy it.
    198 
    199   bool Changed = false;
    200 
    201   // If Dead[n].first is the only use of a malloc result, we can delete its
    202   // chain of computation and the store to the global in Dead[n].second.
    203   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
    204 
    205   // Constants can't be pointers to dynamically allocated memory.
    206   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
    207        UI != E;) {
    208     User *U = *UI++;
    209     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    210       Value *V = SI->getValueOperand();
    211       if (isa<Constant>(V)) {
    212         Changed = true;
    213         SI->eraseFromParent();
    214       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
    215         if (I->hasOneUse())
    216           Dead.push_back(std::make_pair(I, SI));
    217       }
    218     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
    219       if (isa<Constant>(MSI->getValue())) {
    220         Changed = true;
    221         MSI->eraseFromParent();
    222       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
    223         if (I->hasOneUse())
    224           Dead.push_back(std::make_pair(I, MSI));
    225       }
    226     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
    227       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
    228       if (MemSrc && MemSrc->isConstant()) {
    229         Changed = true;
    230         MTI->eraseFromParent();
    231       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
    232         if (I->hasOneUse())
    233           Dead.push_back(std::make_pair(I, MTI));
    234       }
    235     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    236       if (CE->use_empty()) {
    237         CE->destroyConstant();
    238         Changed = true;
    239       }
    240     } else if (Constant *C = dyn_cast<Constant>(U)) {
    241       if (isSafeToDestroyConstant(C)) {
    242         C->destroyConstant();
    243         // This could have invalidated UI, start over from scratch.
    244         Dead.clear();
    245         CleanupPointerRootUsers(GV, TLI);
    246         return true;
    247       }
    248     }
    249   }
    250 
    251   for (int i = 0, e = Dead.size(); i != e; ++i) {
    252     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
    253       Dead[i].second->eraseFromParent();
    254       Instruction *I = Dead[i].first;
    255       do {
    256         if (isAllocationFn(I, TLI))
    257           break;
    258         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
    259         if (!J)
    260           break;
    261         I->eraseFromParent();
    262         I = J;
    263       } while (1);
    264       I->eraseFromParent();
    265     }
    266   }
    267 
    268   return Changed;
    269 }
    270 
    271 /// We just marked GV constant.  Loop over all users of the global, cleaning up
    272 /// the obvious ones.  This is largely just a quick scan over the use list to
    273 /// clean up the easy and obvious cruft.  This returns true if it made a change.
    274 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
    275                                        const DataLayout &DL,
    276                                        TargetLibraryInfo *TLI) {
    277   bool Changed = false;
    278   // Note that we need to use a weak value handle for the worklist items. When
    279   // we delete a constant array, we may also be holding pointer to one of its
    280   // elements (or an element of one of its elements if we're dealing with an
    281   // array of arrays) in the worklist.
    282   SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
    283   while (!WorkList.empty()) {
    284     Value *UV = WorkList.pop_back_val();
    285     if (!UV)
    286       continue;
    287 
    288     User *U = cast<User>(UV);
    289 
    290     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    291       if (Init) {
    292         // Replace the load with the initializer.
    293         LI->replaceAllUsesWith(Init);
    294         LI->eraseFromParent();
    295         Changed = true;
    296       }
    297     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    298       // Store must be unreachable or storing Init into the global.
    299       SI->eraseFromParent();
    300       Changed = true;
    301     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    302       if (CE->getOpcode() == Instruction::GetElementPtr) {
    303         Constant *SubInit = nullptr;
    304         if (Init)
    305           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    306         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
    307       } else if ((CE->getOpcode() == Instruction::BitCast &&
    308                   CE->getType()->isPointerTy()) ||
    309                  CE->getOpcode() == Instruction::AddrSpaceCast) {
    310         // Pointer cast, delete any stores and memsets to the global.
    311         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
    312       }
    313 
    314       if (CE->use_empty()) {
    315         CE->destroyConstant();
    316         Changed = true;
    317       }
    318     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    319       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
    320       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
    321       // and will invalidate our notion of what Init is.
    322       Constant *SubInit = nullptr;
    323       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
    324         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
    325             ConstantFoldInstruction(GEP, DL, TLI));
    326         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
    327           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    328 
    329         // If the initializer is an all-null value and we have an inbounds GEP,
    330         // we already know what the result of any load from that GEP is.
    331         // TODO: Handle splats.
    332         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
    333           SubInit = Constant::getNullValue(GEP->getType()->getElementType());
    334       }
    335       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
    336 
    337       if (GEP->use_empty()) {
    338         GEP->eraseFromParent();
    339         Changed = true;
    340       }
    341     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
    342       if (MI->getRawDest() == V) {
    343         MI->eraseFromParent();
    344         Changed = true;
    345       }
    346 
    347     } else if (Constant *C = dyn_cast<Constant>(U)) {
    348       // If we have a chain of dead constantexprs or other things dangling from
    349       // us, and if they are all dead, nuke them without remorse.
    350       if (isSafeToDestroyConstant(C)) {
    351         C->destroyConstant();
    352         CleanupConstantGlobalUsers(V, Init, DL, TLI);
    353         return true;
    354       }
    355     }
    356   }
    357   return Changed;
    358 }
    359 
    360 /// Return true if the specified instruction is a safe user of a derived
    361 /// expression from a global that we want to SROA.
    362 static bool isSafeSROAElementUse(Value *V) {
    363   // We might have a dead and dangling constant hanging off of here.
    364   if (Constant *C = dyn_cast<Constant>(V))
    365     return isSafeToDestroyConstant(C);
    366 
    367   Instruction *I = dyn_cast<Instruction>(V);
    368   if (!I) return false;
    369 
    370   // Loads are ok.
    371   if (isa<LoadInst>(I)) return true;
    372 
    373   // Stores *to* the pointer are ok.
    374   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    375     return SI->getOperand(0) != V;
    376 
    377   // Otherwise, it must be a GEP.
    378   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
    379   if (!GEPI) return false;
    380 
    381   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
    382       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
    383     return false;
    384 
    385   for (User *U : GEPI->users())
    386     if (!isSafeSROAElementUse(U))
    387       return false;
    388   return true;
    389 }
    390 
    391 
    392 /// U is a direct user of the specified global value.  Look at it and its uses
    393 /// and decide whether it is safe to SROA this global.
    394 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
    395   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    396   if (!isa<GetElementPtrInst>(U) &&
    397       (!isa<ConstantExpr>(U) ||
    398        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
    399     return false;
    400 
    401   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
    402   // don't like < 3 operand CE's, and we don't like non-constant integer
    403   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
    404   // value of C.
    405   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
    406       !cast<Constant>(U->getOperand(1))->isNullValue() ||
    407       !isa<ConstantInt>(U->getOperand(2)))
    408     return false;
    409 
    410   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
    411   ++GEPI;  // Skip over the pointer index.
    412 
    413   // If this is a use of an array allocation, do a bit more checking for sanity.
    414   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
    415     uint64_t NumElements = AT->getNumElements();
    416     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
    417 
    418     // Check to make sure that index falls within the array.  If not,
    419     // something funny is going on, so we won't do the optimization.
    420     //
    421     if (Idx->getZExtValue() >= NumElements)
    422       return false;
    423 
    424     // We cannot scalar repl this level of the array unless any array
    425     // sub-indices are in-range constants.  In particular, consider:
    426     // A[0][i].  We cannot know that the user isn't doing invalid things like
    427     // allowing i to index an out-of-range subscript that accesses A[1].
    428     //
    429     // Scalar replacing *just* the outer index of the array is probably not
    430     // going to be a win anyway, so just give up.
    431     for (++GEPI; // Skip array index.
    432          GEPI != E;
    433          ++GEPI) {
    434       uint64_t NumElements;
    435       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
    436         NumElements = SubArrayTy->getNumElements();
    437       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
    438         NumElements = SubVectorTy->getNumElements();
    439       else {
    440         assert((*GEPI)->isStructTy() &&
    441                "Indexed GEP type is not array, vector, or struct!");
    442         continue;
    443       }
    444 
    445       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    446       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
    447         return false;
    448     }
    449   }
    450 
    451   for (User *UU : U->users())
    452     if (!isSafeSROAElementUse(UU))
    453       return false;
    454 
    455   return true;
    456 }
    457 
    458 /// Look at all uses of the global and decide whether it is safe for us to
    459 /// perform this transformation.
    460 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
    461   for (User *U : GV->users())
    462     if (!IsUserOfGlobalSafeForSRA(U, GV))
    463       return false;
    464 
    465   return true;
    466 }
    467 
    468 
    469 /// Perform scalar replacement of aggregates on the specified global variable.
    470 /// This opens the door for other optimizations by exposing the behavior of the
    471 /// program in a more fine-grained way.  We have determined that this
    472 /// transformation is safe already.  We return the first global variable we
    473 /// insert so that the caller can reprocess it.
    474 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
    475   // Make sure this global only has simple uses that we can SRA.
    476   if (!GlobalUsersSafeToSRA(GV))
    477     return nullptr;
    478 
    479   assert(GV->hasLocalLinkage() && !GV->isConstant());
    480   Constant *Init = GV->getInitializer();
    481   Type *Ty = Init->getType();
    482 
    483   std::vector<GlobalVariable*> NewGlobals;
    484   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
    485 
    486   // Get the alignment of the global, either explicit or target-specific.
    487   unsigned StartAlignment = GV->getAlignment();
    488   if (StartAlignment == 0)
    489     StartAlignment = DL.getABITypeAlignment(GV->getType());
    490 
    491   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    492     NewGlobals.reserve(STy->getNumElements());
    493     const StructLayout &Layout = *DL.getStructLayout(STy);
    494     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    495       Constant *In = Init->getAggregateElement(i);
    496       assert(In && "Couldn't get element of initializer?");
    497       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
    498                                                GlobalVariable::InternalLinkage,
    499                                                In, GV->getName()+"."+Twine(i),
    500                                                GV->getThreadLocalMode(),
    501                                               GV->getType()->getAddressSpace());
    502       NGV->setExternallyInitialized(GV->isExternallyInitialized());
    503       Globals.insert(GV->getIterator(), NGV);
    504       NewGlobals.push_back(NGV);
    505 
    506       // Calculate the known alignment of the field.  If the original aggregate
    507       // had 256 byte alignment for example, something might depend on that:
    508       // propagate info to each field.
    509       uint64_t FieldOffset = Layout.getElementOffset(i);
    510       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
    511       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
    512         NGV->setAlignment(NewAlign);
    513     }
    514   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    515     unsigned NumElements = 0;
    516     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
    517       NumElements = ATy->getNumElements();
    518     else
    519       NumElements = cast<VectorType>(STy)->getNumElements();
    520 
    521     if (NumElements > 16 && GV->hasNUsesOrMore(16))
    522       return nullptr; // It's not worth it.
    523     NewGlobals.reserve(NumElements);
    524 
    525     uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
    526     unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
    527     for (unsigned i = 0, e = NumElements; i != e; ++i) {
    528       Constant *In = Init->getAggregateElement(i);
    529       assert(In && "Couldn't get element of initializer?");
    530 
    531       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
    532                                                GlobalVariable::InternalLinkage,
    533                                                In, GV->getName()+"."+Twine(i),
    534                                                GV->getThreadLocalMode(),
    535                                               GV->getType()->getAddressSpace());
    536       NGV->setExternallyInitialized(GV->isExternallyInitialized());
    537       Globals.insert(GV->getIterator(), NGV);
    538       NewGlobals.push_back(NGV);
    539 
    540       // Calculate the known alignment of the field.  If the original aggregate
    541       // had 256 byte alignment for example, something might depend on that:
    542       // propagate info to each field.
    543       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
    544       if (NewAlign > EltAlign)
    545         NGV->setAlignment(NewAlign);
    546     }
    547   }
    548 
    549   if (NewGlobals.empty())
    550     return nullptr;
    551 
    552   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
    553 
    554   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
    555 
    556   // Loop over all of the uses of the global, replacing the constantexpr geps,
    557   // with smaller constantexpr geps or direct references.
    558   while (!GV->use_empty()) {
    559     User *GEP = GV->user_back();
    560     assert(((isa<ConstantExpr>(GEP) &&
    561              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
    562             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
    563 
    564     // Ignore the 1th operand, which has to be zero or else the program is quite
    565     // broken (undefined).  Get the 2nd operand, which is the structure or array
    566     // index.
    567     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    568     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
    569 
    570     Value *NewPtr = NewGlobals[Val];
    571     Type *NewTy = NewGlobals[Val]->getValueType();
    572 
    573     // Form a shorter GEP if needed.
    574     if (GEP->getNumOperands() > 3) {
    575       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
    576         SmallVector<Constant*, 8> Idxs;
    577         Idxs.push_back(NullInt);
    578         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
    579           Idxs.push_back(CE->getOperand(i));
    580         NewPtr =
    581             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
    582       } else {
    583         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
    584         SmallVector<Value*, 8> Idxs;
    585         Idxs.push_back(NullInt);
    586         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
    587           Idxs.push_back(GEPI->getOperand(i));
    588         NewPtr = GetElementPtrInst::Create(
    589             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
    590       }
    591     }
    592     GEP->replaceAllUsesWith(NewPtr);
    593 
    594     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
    595       GEPI->eraseFromParent();
    596     else
    597       cast<ConstantExpr>(GEP)->destroyConstant();
    598   }
    599 
    600   // Delete the old global, now that it is dead.
    601   Globals.erase(GV);
    602   ++NumSRA;
    603 
    604   // Loop over the new globals array deleting any globals that are obviously
    605   // dead.  This can arise due to scalarization of a structure or an array that
    606   // has elements that are dead.
    607   unsigned FirstGlobal = 0;
    608   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    609     if (NewGlobals[i]->use_empty()) {
    610       Globals.erase(NewGlobals[i]);
    611       if (FirstGlobal == i) ++FirstGlobal;
    612     }
    613 
    614   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
    615 }
    616 
    617 /// Return true if all users of the specified value will trap if the value is
    618 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
    619 /// reprocessing them.
    620 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
    621                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
    622   for (const User *U : V->users())
    623     if (isa<LoadInst>(U)) {
    624       // Will trap.
    625     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    626       if (SI->getOperand(0) == V) {
    627         //cerr << "NONTRAPPING USE: " << *U;
    628         return false;  // Storing the value.
    629       }
    630     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
    631       if (CI->getCalledValue() != V) {
    632         //cerr << "NONTRAPPING USE: " << *U;
    633         return false;  // Not calling the ptr
    634       }
    635     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    636       if (II->getCalledValue() != V) {
    637         //cerr << "NONTRAPPING USE: " << *U;
    638         return false;  // Not calling the ptr
    639       }
    640     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
    641       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    642     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    643       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    644     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    645       // If we've already seen this phi node, ignore it, it has already been
    646       // checked.
    647       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
    648         return false;
    649     } else if (isa<ICmpInst>(U) &&
    650                isa<ConstantPointerNull>(U->getOperand(1))) {
    651       // Ignore icmp X, null
    652     } else {
    653       //cerr << "NONTRAPPING USE: " << *U;
    654       return false;
    655     }
    656 
    657   return true;
    658 }
    659 
    660 /// Return true if all uses of any loads from GV will trap if the loaded value
    661 /// is null.  Note that this also permits comparisons of the loaded value
    662 /// against null, as a special case.
    663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
    664   for (const User *U : GV->users())
    665     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
    666       SmallPtrSet<const PHINode*, 8> PHIs;
    667       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
    668         return false;
    669     } else if (isa<StoreInst>(U)) {
    670       // Ignore stores to the global.
    671     } else {
    672       // We don't know or understand this user, bail out.
    673       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
    674       return false;
    675     }
    676   return true;
    677 }
    678 
    679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
    680   bool Changed = false;
    681   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
    682     Instruction *I = cast<Instruction>(*UI++);
    683     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    684       LI->setOperand(0, NewV);
    685       Changed = true;
    686     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    687       if (SI->getOperand(1) == V) {
    688         SI->setOperand(1, NewV);
    689         Changed = true;
    690       }
    691     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    692       CallSite CS(I);
    693       if (CS.getCalledValue() == V) {
    694         // Calling through the pointer!  Turn into a direct call, but be careful
    695         // that the pointer is not also being passed as an argument.
    696         CS.setCalledFunction(NewV);
    697         Changed = true;
    698         bool PassedAsArg = false;
    699         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    700           if (CS.getArgument(i) == V) {
    701             PassedAsArg = true;
    702             CS.setArgument(i, NewV);
    703           }
    704 
    705         if (PassedAsArg) {
    706           // Being passed as an argument also.  Be careful to not invalidate UI!
    707           UI = V->user_begin();
    708         }
    709       }
    710     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    711       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
    712                                 ConstantExpr::getCast(CI->getOpcode(),
    713                                                       NewV, CI->getType()));
    714       if (CI->use_empty()) {
    715         Changed = true;
    716         CI->eraseFromParent();
    717       }
    718     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    719       // Should handle GEP here.
    720       SmallVector<Constant*, 8> Idxs;
    721       Idxs.reserve(GEPI->getNumOperands()-1);
    722       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
    723            i != e; ++i)
    724         if (Constant *C = dyn_cast<Constant>(*i))
    725           Idxs.push_back(C);
    726         else
    727           break;
    728       if (Idxs.size() == GEPI->getNumOperands()-1)
    729         Changed |= OptimizeAwayTrappingUsesOfValue(
    730             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
    731       if (GEPI->use_empty()) {
    732         Changed = true;
    733         GEPI->eraseFromParent();
    734       }
    735     }
    736   }
    737 
    738   return Changed;
    739 }
    740 
    741 
    742 /// The specified global has only one non-null value stored into it.  If there
    743 /// are uses of the loaded value that would trap if the loaded value is
    744 /// dynamically null, then we know that they cannot be reachable with a null
    745 /// optimize away the load.
    746 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
    747                                             const DataLayout &DL,
    748                                             TargetLibraryInfo *TLI) {
    749   bool Changed = false;
    750 
    751   // Keep track of whether we are able to remove all the uses of the global
    752   // other than the store that defines it.
    753   bool AllNonStoreUsesGone = true;
    754 
    755   // Replace all uses of loads with uses of uses of the stored value.
    756   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
    757     User *GlobalUser = *GUI++;
    758     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
    759       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
    760       // If we were able to delete all uses of the loads
    761       if (LI->use_empty()) {
    762         LI->eraseFromParent();
    763         Changed = true;
    764       } else {
    765         AllNonStoreUsesGone = false;
    766       }
    767     } else if (isa<StoreInst>(GlobalUser)) {
    768       // Ignore the store that stores "LV" to the global.
    769       assert(GlobalUser->getOperand(1) == GV &&
    770              "Must be storing *to* the global");
    771     } else {
    772       AllNonStoreUsesGone = false;
    773 
    774       // If we get here we could have other crazy uses that are transitively
    775       // loaded.
    776       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
    777               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
    778               isa<BitCastInst>(GlobalUser) ||
    779               isa<GetElementPtrInst>(GlobalUser)) &&
    780              "Only expect load and stores!");
    781     }
    782   }
    783 
    784   if (Changed) {
    785     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
    786     ++NumGlobUses;
    787   }
    788 
    789   // If we nuked all of the loads, then none of the stores are needed either,
    790   // nor is the global.
    791   if (AllNonStoreUsesGone) {
    792     if (isLeakCheckerRoot(GV)) {
    793       Changed |= CleanupPointerRootUsers(GV, TLI);
    794     } else {
    795       Changed = true;
    796       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
    797     }
    798     if (GV->use_empty()) {
    799       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
    800       Changed = true;
    801       GV->eraseFromParent();
    802       ++NumDeleted;
    803     }
    804   }
    805   return Changed;
    806 }
    807 
    808 /// Walk the use list of V, constant folding all of the instructions that are
    809 /// foldable.
    810 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
    811                                 TargetLibraryInfo *TLI) {
    812   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
    813     if (Instruction *I = dyn_cast<Instruction>(*UI++))
    814       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
    815         I->replaceAllUsesWith(NewC);
    816 
    817         // Advance UI to the next non-I use to avoid invalidating it!
    818         // Instructions could multiply use V.
    819         while (UI != E && *UI == I)
    820           ++UI;
    821         I->eraseFromParent();
    822       }
    823 }
    824 
    825 /// This function takes the specified global variable, and transforms the
    826 /// program as if it always contained the result of the specified malloc.
    827 /// Because it is always the result of the specified malloc, there is no reason
    828 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
    829 /// loads of GV as uses of the new global.
    830 static GlobalVariable *
    831 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
    832                               ConstantInt *NElements, const DataLayout &DL,
    833                               TargetLibraryInfo *TLI) {
    834   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
    835 
    836   Type *GlobalType;
    837   if (NElements->getZExtValue() == 1)
    838     GlobalType = AllocTy;
    839   else
    840     // If we have an array allocation, the global variable is of an array.
    841     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
    842 
    843   // Create the new global variable.  The contents of the malloc'd memory is
    844   // undefined, so initialize with an undef value.
    845   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
    846                                              GlobalType, false,
    847                                              GlobalValue::InternalLinkage,
    848                                              UndefValue::get(GlobalType),
    849                                              GV->getName()+".body",
    850                                              GV,
    851                                              GV->getThreadLocalMode());
    852 
    853   // If there are bitcast users of the malloc (which is typical, usually we have
    854   // a malloc + bitcast) then replace them with uses of the new global.  Update
    855   // other users to use the global as well.
    856   BitCastInst *TheBC = nullptr;
    857   while (!CI->use_empty()) {
    858     Instruction *User = cast<Instruction>(CI->user_back());
    859     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    860       if (BCI->getType() == NewGV->getType()) {
    861         BCI->replaceAllUsesWith(NewGV);
    862         BCI->eraseFromParent();
    863       } else {
    864         BCI->setOperand(0, NewGV);
    865       }
    866     } else {
    867       if (!TheBC)
    868         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
    869       User->replaceUsesOfWith(CI, TheBC);
    870     }
    871   }
    872 
    873   Constant *RepValue = NewGV;
    874   if (NewGV->getType() != GV->getType()->getElementType())
    875     RepValue = ConstantExpr::getBitCast(RepValue,
    876                                         GV->getType()->getElementType());
    877 
    878   // If there is a comparison against null, we will insert a global bool to
    879   // keep track of whether the global was initialized yet or not.
    880   GlobalVariable *InitBool =
    881     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
    882                        GlobalValue::InternalLinkage,
    883                        ConstantInt::getFalse(GV->getContext()),
    884                        GV->getName()+".init", GV->getThreadLocalMode());
    885   bool InitBoolUsed = false;
    886 
    887   // Loop over all uses of GV, processing them in turn.
    888   while (!GV->use_empty()) {
    889     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
    890       // The global is initialized when the store to it occurs.
    891       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
    892                     SI->getOrdering(), SI->getSynchScope(), SI);
    893       SI->eraseFromParent();
    894       continue;
    895     }
    896 
    897     LoadInst *LI = cast<LoadInst>(GV->user_back());
    898     while (!LI->use_empty()) {
    899       Use &LoadUse = *LI->use_begin();
    900       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
    901       if (!ICI) {
    902         LoadUse = RepValue;
    903         continue;
    904       }
    905 
    906       // Replace the cmp X, 0 with a use of the bool value.
    907       // Sink the load to where the compare was, if atomic rules allow us to.
    908       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
    909                                LI->getOrdering(), LI->getSynchScope(),
    910                                LI->isUnordered() ? (Instruction*)ICI : LI);
    911       InitBoolUsed = true;
    912       switch (ICI->getPredicate()) {
    913       default: llvm_unreachable("Unknown ICmp Predicate!");
    914       case ICmpInst::ICMP_ULT:
    915       case ICmpInst::ICMP_SLT:   // X < null -> always false
    916         LV = ConstantInt::getFalse(GV->getContext());
    917         break;
    918       case ICmpInst::ICMP_ULE:
    919       case ICmpInst::ICMP_SLE:
    920       case ICmpInst::ICMP_EQ:
    921         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
    922         break;
    923       case ICmpInst::ICMP_NE:
    924       case ICmpInst::ICMP_UGE:
    925       case ICmpInst::ICMP_SGE:
    926       case ICmpInst::ICMP_UGT:
    927       case ICmpInst::ICMP_SGT:
    928         break;  // no change.
    929       }
    930       ICI->replaceAllUsesWith(LV);
    931       ICI->eraseFromParent();
    932     }
    933     LI->eraseFromParent();
    934   }
    935 
    936   // If the initialization boolean was used, insert it, otherwise delete it.
    937   if (!InitBoolUsed) {
    938     while (!InitBool->use_empty())  // Delete initializations
    939       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
    940     delete InitBool;
    941   } else
    942     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
    943 
    944   // Now the GV is dead, nuke it and the malloc..
    945   GV->eraseFromParent();
    946   CI->eraseFromParent();
    947 
    948   // To further other optimizations, loop over all users of NewGV and try to
    949   // constant prop them.  This will promote GEP instructions with constant
    950   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
    951   ConstantPropUsersOf(NewGV, DL, TLI);
    952   if (RepValue != NewGV)
    953     ConstantPropUsersOf(RepValue, DL, TLI);
    954 
    955   return NewGV;
    956 }
    957 
    958 /// Scan the use-list of V checking to make sure that there are no complex uses
    959 /// of V.  We permit simple things like dereferencing the pointer, but not
    960 /// storing through the address, unless it is to the specified global.
    961 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
    962                                                       const GlobalVariable *GV,
    963                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
    964   for (const User *U : V->users()) {
    965     const Instruction *Inst = cast<Instruction>(U);
    966 
    967     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
    968       continue; // Fine, ignore.
    969     }
    970 
    971     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    972       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
    973         return false;  // Storing the pointer itself... bad.
    974       continue; // Otherwise, storing through it, or storing into GV... fine.
    975     }
    976 
    977     // Must index into the array and into the struct.
    978     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
    979       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
    980         return false;
    981       continue;
    982     }
    983 
    984     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
    985       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
    986       // cycles.
    987       if (PHIs.insert(PN).second)
    988         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
    989           return false;
    990       continue;
    991     }
    992 
    993     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
    994       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
    995         return false;
    996       continue;
    997     }
    998 
    999     return false;
   1000   }
   1001   return true;
   1002 }
   1003 
   1004 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
   1005 /// allocation into loads from the global and uses of the resultant pointer.
   1006 /// Further, delete the store into GV.  This assumes that these value pass the
   1007 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
   1008 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
   1009                                           GlobalVariable *GV) {
   1010   while (!Alloc->use_empty()) {
   1011     Instruction *U = cast<Instruction>(*Alloc->user_begin());
   1012     Instruction *InsertPt = U;
   1013     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1014       // If this is the store of the allocation into the global, remove it.
   1015       if (SI->getOperand(1) == GV) {
   1016         SI->eraseFromParent();
   1017         continue;
   1018       }
   1019     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1020       // Insert the load in the corresponding predecessor, not right before the
   1021       // PHI.
   1022       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
   1023     } else if (isa<BitCastInst>(U)) {
   1024       // Must be bitcast between the malloc and store to initialize the global.
   1025       ReplaceUsesOfMallocWithGlobal(U, GV);
   1026       U->eraseFromParent();
   1027       continue;
   1028     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
   1029       // If this is a "GEP bitcast" and the user is a store to the global, then
   1030       // just process it as a bitcast.
   1031       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
   1032         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
   1033           if (SI->getOperand(1) == GV) {
   1034             // Must be bitcast GEP between the malloc and store to initialize
   1035             // the global.
   1036             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
   1037             GEPI->eraseFromParent();
   1038             continue;
   1039           }
   1040     }
   1041 
   1042     // Insert a load from the global, and use it instead of the malloc.
   1043     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
   1044     U->replaceUsesOfWith(Alloc, NL);
   1045   }
   1046 }
   1047 
   1048 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
   1049 /// perform heap SRA on.  This permits GEP's that index through the array and
   1050 /// struct field, icmps of null, and PHIs.
   1051 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
   1052                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
   1053                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
   1054   // We permit two users of the load: setcc comparing against the null
   1055   // pointer, and a getelementptr of a specific form.
   1056   for (const User *U : V->users()) {
   1057     const Instruction *UI = cast<Instruction>(U);
   1058 
   1059     // Comparison against null is ok.
   1060     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
   1061       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
   1062         return false;
   1063       continue;
   1064     }
   1065 
   1066     // getelementptr is also ok, but only a simple form.
   1067     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
   1068       // Must index into the array and into the struct.
   1069       if (GEPI->getNumOperands() < 3)
   1070         return false;
   1071 
   1072       // Otherwise the GEP is ok.
   1073       continue;
   1074     }
   1075 
   1076     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
   1077       if (!LoadUsingPHIsPerLoad.insert(PN).second)
   1078         // This means some phi nodes are dependent on each other.
   1079         // Avoid infinite looping!
   1080         return false;
   1081       if (!LoadUsingPHIs.insert(PN).second)
   1082         // If we have already analyzed this PHI, then it is safe.
   1083         continue;
   1084 
   1085       // Make sure all uses of the PHI are simple enough to transform.
   1086       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
   1087                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
   1088         return false;
   1089 
   1090       continue;
   1091     }
   1092 
   1093     // Otherwise we don't know what this is, not ok.
   1094     return false;
   1095   }
   1096 
   1097   return true;
   1098 }
   1099 
   1100 
   1101 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
   1102 /// return true.
   1103 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
   1104                                                     Instruction *StoredVal) {
   1105   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
   1106   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
   1107   for (const User *U : GV->users())
   1108     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1109       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
   1110                                           LoadUsingPHIsPerLoad))
   1111         return false;
   1112       LoadUsingPHIsPerLoad.clear();
   1113     }
   1114 
   1115   // If we reach here, we know that all uses of the loads and transitive uses
   1116   // (through PHI nodes) are simple enough to transform.  However, we don't know
   1117   // that all inputs the to the PHI nodes are in the same equivalence sets.
   1118   // Check to verify that all operands of the PHIs are either PHIS that can be
   1119   // transformed, loads from GV, or MI itself.
   1120   for (const PHINode *PN : LoadUsingPHIs) {
   1121     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
   1122       Value *InVal = PN->getIncomingValue(op);
   1123 
   1124       // PHI of the stored value itself is ok.
   1125       if (InVal == StoredVal) continue;
   1126 
   1127       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
   1128         // One of the PHIs in our set is (optimistically) ok.
   1129         if (LoadUsingPHIs.count(InPN))
   1130           continue;
   1131         return false;
   1132       }
   1133 
   1134       // Load from GV is ok.
   1135       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
   1136         if (LI->getOperand(0) == GV)
   1137           continue;
   1138 
   1139       // UNDEF? NULL?
   1140 
   1141       // Anything else is rejected.
   1142       return false;
   1143     }
   1144   }
   1145 
   1146   return true;
   1147 }
   1148 
   1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
   1150                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1151                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1152   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
   1153 
   1154   if (FieldNo >= FieldVals.size())
   1155     FieldVals.resize(FieldNo+1);
   1156 
   1157   // If we already have this value, just reuse the previously scalarized
   1158   // version.
   1159   if (Value *FieldVal = FieldVals[FieldNo])
   1160     return FieldVal;
   1161 
   1162   // Depending on what instruction this is, we have several cases.
   1163   Value *Result;
   1164   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
   1165     // This is a scalarized version of the load from the global.  Just create
   1166     // a new Load of the scalarized global.
   1167     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
   1168                                            InsertedScalarizedValues,
   1169                                            PHIsToRewrite),
   1170                           LI->getName()+".f"+Twine(FieldNo), LI);
   1171   } else {
   1172     PHINode *PN = cast<PHINode>(V);
   1173     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
   1174     // field.
   1175 
   1176     PointerType *PTy = cast<PointerType>(PN->getType());
   1177     StructType *ST = cast<StructType>(PTy->getElementType());
   1178 
   1179     unsigned AS = PTy->getAddressSpace();
   1180     PHINode *NewPN =
   1181       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
   1182                      PN->getNumIncomingValues(),
   1183                      PN->getName()+".f"+Twine(FieldNo), PN);
   1184     Result = NewPN;
   1185     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
   1186   }
   1187 
   1188   return FieldVals[FieldNo] = Result;
   1189 }
   1190 
   1191 /// Given a load instruction and a value derived from the load, rewrite the
   1192 /// derived value to use the HeapSRoA'd load.
   1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
   1194              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1195                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1196   // If this is a comparison against null, handle it.
   1197   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
   1198     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
   1199     // If we have a setcc of the loaded pointer, we can use a setcc of any
   1200     // field.
   1201     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
   1202                                    InsertedScalarizedValues, PHIsToRewrite);
   1203 
   1204     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
   1205                               Constant::getNullValue(NPtr->getType()),
   1206                               SCI->getName());
   1207     SCI->replaceAllUsesWith(New);
   1208     SCI->eraseFromParent();
   1209     return;
   1210   }
   1211 
   1212   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
   1213   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
   1214     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
   1215            && "Unexpected GEPI!");
   1216 
   1217     // Load the pointer for this field.
   1218     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
   1219     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
   1220                                      InsertedScalarizedValues, PHIsToRewrite);
   1221 
   1222     // Create the new GEP idx vector.
   1223     SmallVector<Value*, 8> GEPIdx;
   1224     GEPIdx.push_back(GEPI->getOperand(1));
   1225     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
   1226 
   1227     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
   1228                                              GEPI->getName(), GEPI);
   1229     GEPI->replaceAllUsesWith(NGEPI);
   1230     GEPI->eraseFromParent();
   1231     return;
   1232   }
   1233 
   1234   // Recursively transform the users of PHI nodes.  This will lazily create the
   1235   // PHIs that are needed for individual elements.  Keep track of what PHIs we
   1236   // see in InsertedScalarizedValues so that we don't get infinite loops (very
   1237   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
   1238   // already been seen first by another load, so its uses have already been
   1239   // processed.
   1240   PHINode *PN = cast<PHINode>(LoadUser);
   1241   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
   1242                                               std::vector<Value*>())).second)
   1243     return;
   1244 
   1245   // If this is the first time we've seen this PHI, recursively process all
   1246   // users.
   1247   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
   1248     Instruction *User = cast<Instruction>(*UI++);
   1249     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1250   }
   1251 }
   1252 
   1253 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
   1254 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
   1255 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
   1256 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
   1257                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1258                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1259   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
   1260     Instruction *User = cast<Instruction>(*UI++);
   1261     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1262   }
   1263 
   1264   if (Load->use_empty()) {
   1265     Load->eraseFromParent();
   1266     InsertedScalarizedValues.erase(Load);
   1267   }
   1268 }
   1269 
   1270 /// CI is an allocation of an array of structures.  Break it up into multiple
   1271 /// allocations of arrays of the fields.
   1272 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
   1273                                             Value *NElems, const DataLayout &DL,
   1274                                             const TargetLibraryInfo *TLI) {
   1275   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
   1276   Type *MAT = getMallocAllocatedType(CI, TLI);
   1277   StructType *STy = cast<StructType>(MAT);
   1278 
   1279   // There is guaranteed to be at least one use of the malloc (storing
   1280   // it into GV).  If there are other uses, change them to be uses of
   1281   // the global to simplify later code.  This also deletes the store
   1282   // into GV.
   1283   ReplaceUsesOfMallocWithGlobal(CI, GV);
   1284 
   1285   // Okay, at this point, there are no users of the malloc.  Insert N
   1286   // new mallocs at the same place as CI, and N globals.
   1287   std::vector<Value*> FieldGlobals;
   1288   std::vector<Value*> FieldMallocs;
   1289 
   1290   unsigned AS = GV->getType()->getPointerAddressSpace();
   1291   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
   1292     Type *FieldTy = STy->getElementType(FieldNo);
   1293     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
   1294 
   1295     GlobalVariable *NGV =
   1296       new GlobalVariable(*GV->getParent(),
   1297                          PFieldTy, false, GlobalValue::InternalLinkage,
   1298                          Constant::getNullValue(PFieldTy),
   1299                          GV->getName() + ".f" + Twine(FieldNo), GV,
   1300                          GV->getThreadLocalMode());
   1301     FieldGlobals.push_back(NGV);
   1302 
   1303     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
   1304     if (StructType *ST = dyn_cast<StructType>(FieldTy))
   1305       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
   1306     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
   1307     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
   1308                                         ConstantInt::get(IntPtrTy, TypeSize),
   1309                                         NElems, nullptr,
   1310                                         CI->getName() + ".f" + Twine(FieldNo));
   1311     FieldMallocs.push_back(NMI);
   1312     new StoreInst(NMI, NGV, CI);
   1313   }
   1314 
   1315   // The tricky aspect of this transformation is handling the case when malloc
   1316   // fails.  In the original code, malloc failing would set the result pointer
   1317   // of malloc to null.  In this case, some mallocs could succeed and others
   1318   // could fail.  As such, we emit code that looks like this:
   1319   //    F0 = malloc(field0)
   1320   //    F1 = malloc(field1)
   1321   //    F2 = malloc(field2)
   1322   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
   1323   //      if (F0) { free(F0); F0 = 0; }
   1324   //      if (F1) { free(F1); F1 = 0; }
   1325   //      if (F2) { free(F2); F2 = 0; }
   1326   //    }
   1327   // The malloc can also fail if its argument is too large.
   1328   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
   1329   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
   1330                                   ConstantZero, "isneg");
   1331   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
   1332     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
   1333                              Constant::getNullValue(FieldMallocs[i]->getType()),
   1334                                "isnull");
   1335     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
   1336   }
   1337 
   1338   // Split the basic block at the old malloc.
   1339   BasicBlock *OrigBB = CI->getParent();
   1340   BasicBlock *ContBB =
   1341       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
   1342 
   1343   // Create the block to check the first condition.  Put all these blocks at the
   1344   // end of the function as they are unlikely to be executed.
   1345   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
   1346                                                 "malloc_ret_null",
   1347                                                 OrigBB->getParent());
   1348 
   1349   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
   1350   // branch on RunningOr.
   1351   OrigBB->getTerminator()->eraseFromParent();
   1352   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
   1353 
   1354   // Within the NullPtrBlock, we need to emit a comparison and branch for each
   1355   // pointer, because some may be null while others are not.
   1356   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1357     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
   1358     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
   1359                               Constant::getNullValue(GVVal->getType()));
   1360     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
   1361                                                OrigBB->getParent());
   1362     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
   1363                                                OrigBB->getParent());
   1364     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
   1365                                          Cmp, NullPtrBlock);
   1366 
   1367     // Fill in FreeBlock.
   1368     CallInst::CreateFree(GVVal, BI);
   1369     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
   1370                   FreeBlock);
   1371     BranchInst::Create(NextBlock, FreeBlock);
   1372 
   1373     NullPtrBlock = NextBlock;
   1374   }
   1375 
   1376   BranchInst::Create(ContBB, NullPtrBlock);
   1377 
   1378   // CI is no longer needed, remove it.
   1379   CI->eraseFromParent();
   1380 
   1381   /// As we process loads, if we can't immediately update all uses of the load,
   1382   /// keep track of what scalarized loads are inserted for a given load.
   1383   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
   1384   InsertedScalarizedValues[GV] = FieldGlobals;
   1385 
   1386   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
   1387 
   1388   // Okay, the malloc site is completely handled.  All of the uses of GV are now
   1389   // loads, and all uses of those loads are simple.  Rewrite them to use loads
   1390   // of the per-field globals instead.
   1391   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
   1392     Instruction *User = cast<Instruction>(*UI++);
   1393 
   1394     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1395       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
   1396       continue;
   1397     }
   1398 
   1399     // Must be a store of null.
   1400     StoreInst *SI = cast<StoreInst>(User);
   1401     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
   1402            "Unexpected heap-sra user!");
   1403 
   1404     // Insert a store of null into each global.
   1405     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1406       PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
   1407       Constant *Null = Constant::getNullValue(PT->getElementType());
   1408       new StoreInst(Null, FieldGlobals[i], SI);
   1409     }
   1410     // Erase the original store.
   1411     SI->eraseFromParent();
   1412   }
   1413 
   1414   // While we have PHIs that are interesting to rewrite, do it.
   1415   while (!PHIsToRewrite.empty()) {
   1416     PHINode *PN = PHIsToRewrite.back().first;
   1417     unsigned FieldNo = PHIsToRewrite.back().second;
   1418     PHIsToRewrite.pop_back();
   1419     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
   1420     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
   1421 
   1422     // Add all the incoming values.  This can materialize more phis.
   1423     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1424       Value *InVal = PN->getIncomingValue(i);
   1425       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
   1426                                PHIsToRewrite);
   1427       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
   1428     }
   1429   }
   1430 
   1431   // Drop all inter-phi links and any loads that made it this far.
   1432   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1433        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1434        I != E; ++I) {
   1435     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1436       PN->dropAllReferences();
   1437     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1438       LI->dropAllReferences();
   1439   }
   1440 
   1441   // Delete all the phis and loads now that inter-references are dead.
   1442   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1443        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1444        I != E; ++I) {
   1445     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1446       PN->eraseFromParent();
   1447     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1448       LI->eraseFromParent();
   1449   }
   1450 
   1451   // The old global is now dead, remove it.
   1452   GV->eraseFromParent();
   1453 
   1454   ++NumHeapSRA;
   1455   return cast<GlobalVariable>(FieldGlobals[0]);
   1456 }
   1457 
   1458 /// This function is called when we see a pointer global variable with a single
   1459 /// value stored it that is a malloc or cast of malloc.
   1460 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
   1461                                                Type *AllocTy,
   1462                                                AtomicOrdering Ordering,
   1463                                                Module::global_iterator &GVI,
   1464                                                const DataLayout &DL,
   1465                                                TargetLibraryInfo *TLI) {
   1466   // If this is a malloc of an abstract type, don't touch it.
   1467   if (!AllocTy->isSized())
   1468     return false;
   1469 
   1470   // We can't optimize this global unless all uses of it are *known* to be
   1471   // of the malloc value, not of the null initializer value (consider a use
   1472   // that compares the global's value against zero to see if the malloc has
   1473   // been reached).  To do this, we check to see if all uses of the global
   1474   // would trap if the global were null: this proves that they must all
   1475   // happen after the malloc.
   1476   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
   1477     return false;
   1478 
   1479   // We can't optimize this if the malloc itself is used in a complex way,
   1480   // for example, being stored into multiple globals.  This allows the
   1481   // malloc to be stored into the specified global, loaded icmp'd, and
   1482   // GEP'd.  These are all things we could transform to using the global
   1483   // for.
   1484   SmallPtrSet<const PHINode*, 8> PHIs;
   1485   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
   1486     return false;
   1487 
   1488   // If we have a global that is only initialized with a fixed size malloc,
   1489   // transform the program to use global memory instead of malloc'd memory.
   1490   // This eliminates dynamic allocation, avoids an indirection accessing the
   1491   // data, and exposes the resultant global to further GlobalOpt.
   1492   // We cannot optimize the malloc if we cannot determine malloc array size.
   1493   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
   1494   if (!NElems)
   1495     return false;
   1496 
   1497   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
   1498     // Restrict this transformation to only working on small allocations
   1499     // (2048 bytes currently), as we don't want to introduce a 16M global or
   1500     // something.
   1501     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
   1502       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI)
   1503                 ->getIterator();
   1504       return true;
   1505     }
   1506 
   1507   // If the allocation is an array of structures, consider transforming this
   1508   // into multiple malloc'd arrays, one for each field.  This is basically
   1509   // SRoA for malloc'd memory.
   1510 
   1511   if (Ordering != NotAtomic)
   1512     return false;
   1513 
   1514   // If this is an allocation of a fixed size array of structs, analyze as a
   1515   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
   1516   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
   1517     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
   1518       AllocTy = AT->getElementType();
   1519 
   1520   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
   1521   if (!AllocSTy)
   1522     return false;
   1523 
   1524   // This the structure has an unreasonable number of fields, leave it
   1525   // alone.
   1526   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
   1527       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
   1528 
   1529     // If this is a fixed size array, transform the Malloc to be an alloc of
   1530     // structs.  malloc [100 x struct],1 -> malloc struct, 100
   1531     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
   1532       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
   1533       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
   1534       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
   1535       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
   1536       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
   1537                                                    AllocSize, NumElements,
   1538                                                    nullptr, CI->getName());
   1539       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
   1540       CI->replaceAllUsesWith(Cast);
   1541       CI->eraseFromParent();
   1542       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
   1543         CI = cast<CallInst>(BCI->getOperand(0));
   1544       else
   1545         CI = cast<CallInst>(Malloc);
   1546     }
   1547 
   1548     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
   1549                                DL, TLI)
   1550               ->getIterator();
   1551     return true;
   1552   }
   1553 
   1554   return false;
   1555 }
   1556 
   1557 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
   1558 // that only one value (besides its initializer) is ever stored to the global.
   1559 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
   1560                                      AtomicOrdering Ordering,
   1561                                      Module::global_iterator &GVI,
   1562                                      const DataLayout &DL,
   1563                                      TargetLibraryInfo *TLI) {
   1564   // Ignore no-op GEPs and bitcasts.
   1565   StoredOnceVal = StoredOnceVal->stripPointerCasts();
   1566 
   1567   // If we are dealing with a pointer global that is initialized to null and
   1568   // only has one (non-null) value stored into it, then we can optimize any
   1569   // users of the loaded value (often calls and loads) that would trap if the
   1570   // value was null.
   1571   if (GV->getInitializer()->getType()->isPointerTy() &&
   1572       GV->getInitializer()->isNullValue()) {
   1573     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
   1574       if (GV->getInitializer()->getType() != SOVC->getType())
   1575         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
   1576 
   1577       // Optimize away any trapping uses of the loaded value.
   1578       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
   1579         return true;
   1580     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
   1581       Type *MallocType = getMallocAllocatedType(CI, TLI);
   1582       if (MallocType &&
   1583           TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
   1584                                              DL, TLI))
   1585         return true;
   1586     }
   1587   }
   1588 
   1589   return false;
   1590 }
   1591 
   1592 /// At this point, we have learned that the only two values ever stored into GV
   1593 /// are its initializer and OtherVal.  See if we can shrink the global into a
   1594 /// boolean and select between the two values whenever it is used.  This exposes
   1595 /// the values to other scalar optimizations.
   1596 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
   1597   Type *GVElType = GV->getType()->getElementType();
   1598 
   1599   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
   1600   // an FP value, pointer or vector, don't do this optimization because a select
   1601   // between them is very expensive and unlikely to lead to later
   1602   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
   1603   // where v1 and v2 both require constant pool loads, a big loss.
   1604   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
   1605       GVElType->isFloatingPointTy() ||
   1606       GVElType->isPointerTy() || GVElType->isVectorTy())
   1607     return false;
   1608 
   1609   // Walk the use list of the global seeing if all the uses are load or store.
   1610   // If there is anything else, bail out.
   1611   for (User *U : GV->users())
   1612     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
   1613       return false;
   1614 
   1615   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
   1616 
   1617   // Create the new global, initializing it to false.
   1618   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
   1619                                              false,
   1620                                              GlobalValue::InternalLinkage,
   1621                                         ConstantInt::getFalse(GV->getContext()),
   1622                                              GV->getName()+".b",
   1623                                              GV->getThreadLocalMode(),
   1624                                              GV->getType()->getAddressSpace());
   1625   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
   1626 
   1627   Constant *InitVal = GV->getInitializer();
   1628   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
   1629          "No reason to shrink to bool!");
   1630 
   1631   // If initialized to zero and storing one into the global, we can use a cast
   1632   // instead of a select to synthesize the desired value.
   1633   bool IsOneZero = false;
   1634   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
   1635     IsOneZero = InitVal->isNullValue() && CI->isOne();
   1636 
   1637   while (!GV->use_empty()) {
   1638     Instruction *UI = cast<Instruction>(GV->user_back());
   1639     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
   1640       // Change the store into a boolean store.
   1641       bool StoringOther = SI->getOperand(0) == OtherVal;
   1642       // Only do this if we weren't storing a loaded value.
   1643       Value *StoreVal;
   1644       if (StoringOther || SI->getOperand(0) == InitVal) {
   1645         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
   1646                                     StoringOther);
   1647       } else {
   1648         // Otherwise, we are storing a previously loaded copy.  To do this,
   1649         // change the copy from copying the original value to just copying the
   1650         // bool.
   1651         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
   1652 
   1653         // If we've already replaced the input, StoredVal will be a cast or
   1654         // select instruction.  If not, it will be a load of the original
   1655         // global.
   1656         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
   1657           assert(LI->getOperand(0) == GV && "Not a copy!");
   1658           // Insert a new load, to preserve the saved value.
   1659           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1660                                   LI->getOrdering(), LI->getSynchScope(), LI);
   1661         } else {
   1662           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
   1663                  "This is not a form that we understand!");
   1664           StoreVal = StoredVal->getOperand(0);
   1665           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
   1666         }
   1667       }
   1668       new StoreInst(StoreVal, NewGV, false, 0,
   1669                     SI->getOrdering(), SI->getSynchScope(), SI);
   1670     } else {
   1671       // Change the load into a load of bool then a select.
   1672       LoadInst *LI = cast<LoadInst>(UI);
   1673       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1674                                    LI->getOrdering(), LI->getSynchScope(), LI);
   1675       Value *NSI;
   1676       if (IsOneZero)
   1677         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
   1678       else
   1679         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
   1680       NSI->takeName(LI);
   1681       LI->replaceAllUsesWith(NSI);
   1682     }
   1683     UI->eraseFromParent();
   1684   }
   1685 
   1686   // Retain the name of the old global variable. People who are debugging their
   1687   // programs may expect these variables to be named the same.
   1688   NewGV->takeName(GV);
   1689   GV->eraseFromParent();
   1690   return true;
   1691 }
   1692 
   1693 
   1694 /// Analyze the specified global variable and optimize it if possible.  If we
   1695 /// make a change, return true.
   1696 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
   1697                               Module::global_iterator &GVI) {
   1698   // Do more involved optimizations if the global is internal.
   1699   GV->removeDeadConstantUsers();
   1700 
   1701   if (GV->use_empty()) {
   1702     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV << "\n");
   1703     GV->eraseFromParent();
   1704     ++NumDeleted;
   1705     return true;
   1706   }
   1707 
   1708   if (!GV->hasLocalLinkage())
   1709     return false;
   1710 
   1711   GlobalStatus GS;
   1712 
   1713   if (GlobalStatus::analyzeGlobal(GV, GS))
   1714     return false;
   1715 
   1716   if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
   1717     GV->setUnnamedAddr(true);
   1718     NumUnnamed++;
   1719   }
   1720 
   1721   if (GV->isConstant() || !GV->hasInitializer())
   1722     return false;
   1723 
   1724   return ProcessInternalGlobal(GV, GVI, GS);
   1725 }
   1726 
   1727 bool GlobalOpt::isPointerValueDeadOnEntryToFunction(const Function *F, GlobalValue *GV) {
   1728   // Find all uses of GV. We expect them all to be in F, and if we can't
   1729   // identify any of the uses we bail out.
   1730   //
   1731   // On each of these uses, identify if the memory that GV points to is
   1732   // used/required/live at the start of the function. If it is not, for example
   1733   // if the first thing the function does is store to the GV, the GV can
   1734   // possibly be demoted.
   1735   //
   1736   // We don't do an exhaustive search for memory operations - simply look
   1737   // through bitcasts as they're quite common and benign.
   1738   const DataLayout &DL = GV->getParent()->getDataLayout();
   1739   SmallVector<LoadInst *, 4> Loads;
   1740   SmallVector<StoreInst *, 4> Stores;
   1741   for (auto *U : GV->users()) {
   1742     if (Operator::getOpcode(U) == Instruction::BitCast) {
   1743       for (auto *UU : U->users()) {
   1744         if (auto *LI = dyn_cast<LoadInst>(UU))
   1745           Loads.push_back(LI);
   1746         else if (auto *SI = dyn_cast<StoreInst>(UU))
   1747           Stores.push_back(SI);
   1748         else
   1749           return false;
   1750       }
   1751       continue;
   1752     }
   1753 
   1754     Instruction *I = dyn_cast<Instruction>(U);
   1755     if (!I)
   1756       return false;
   1757     assert(I->getParent()->getParent() == F);
   1758 
   1759     if (auto *LI = dyn_cast<LoadInst>(I))
   1760       Loads.push_back(LI);
   1761     else if (auto *SI = dyn_cast<StoreInst>(I))
   1762       Stores.push_back(SI);
   1763     else
   1764       return false;
   1765   }
   1766 
   1767   // We have identified all uses of GV into loads and stores. Now check if all
   1768   // of them are known not to depend on the value of the global at the function
   1769   // entry point. We do this by ensuring that every load is dominated by at
   1770   // least one store.
   1771   auto &DT = getAnalysis<DominatorTreeWrapperPass>(*const_cast<Function *>(F))
   1772                  .getDomTree();
   1773 
   1774   // The below check is quadratic. Check we're not going to do too many tests.
   1775   // FIXME: Even though this will always have worst-case quadratic time, we
   1776   // could put effort into minimizing the average time by putting stores that
   1777   // have been shown to dominate at least one load at the beginning of the
   1778   // Stores array, making subsequent dominance checks more likely to succeed
   1779   // early.
   1780   //
   1781   // The threshold here is fairly large because global->local demotion is a
   1782   // very powerful optimization should it fire.
   1783   const unsigned Threshold = 100;
   1784   if (Loads.size() * Stores.size() > Threshold)
   1785     return false;
   1786 
   1787   for (auto *L : Loads) {
   1788     auto *LTy = L->getType();
   1789     if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) {
   1790           auto *STy = S->getValueOperand()->getType();
   1791           // The load is only dominated by the store if DomTree says so
   1792           // and the number of bits loaded in L is less than or equal to
   1793           // the number of bits stored in S.
   1794           return DT.dominates(S, L) &&
   1795                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
   1796         }))
   1797       return false;
   1798   }
   1799   // All loads have known dependences inside F, so the global can be localized.
   1800   return true;
   1801 }
   1802 
   1803 /// C may have non-instruction users. Can all of those users be turned into
   1804 /// instructions?
   1805 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
   1806   // We don't do this exhaustively. The most common pattern that we really need
   1807   // to care about is a constant GEP or constant bitcast - so just looking
   1808   // through one single ConstantExpr.
   1809   //
   1810   // The set of constants that this function returns true for must be able to be
   1811   // handled by makeAllConstantUsesInstructions.
   1812   for (auto *U : C->users()) {
   1813     if (isa<Instruction>(U))
   1814       continue;
   1815     if (!isa<ConstantExpr>(U))
   1816       // Non instruction, non-constantexpr user; cannot convert this.
   1817       return false;
   1818     for (auto *UU : U->users())
   1819       if (!isa<Instruction>(UU))
   1820         // A constantexpr used by another constant. We don't try and recurse any
   1821         // further but just bail out at this point.
   1822         return false;
   1823   }
   1824 
   1825   return true;
   1826 }
   1827 
   1828 /// C may have non-instruction users, and
   1829 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
   1830 /// non-instruction users to instructions.
   1831 static void makeAllConstantUsesInstructions(Constant *C) {
   1832   SmallVector<ConstantExpr*,4> Users;
   1833   for (auto *U : C->users()) {
   1834     if (isa<ConstantExpr>(U))
   1835       Users.push_back(cast<ConstantExpr>(U));
   1836     else
   1837       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
   1838       // should not have returned true for C.
   1839       assert(
   1840           isa<Instruction>(U) &&
   1841           "Can't transform non-constantexpr non-instruction to instruction!");
   1842   }
   1843 
   1844   SmallVector<Value*,4> UUsers;
   1845   for (auto *U : Users) {
   1846     UUsers.clear();
   1847     for (auto *UU : U->users())
   1848       UUsers.push_back(UU);
   1849     for (auto *UU : UUsers) {
   1850       Instruction *UI = cast<Instruction>(UU);
   1851       Instruction *NewU = U->getAsInstruction();
   1852       NewU->insertBefore(UI);
   1853       UI->replaceUsesOfWith(U, NewU);
   1854     }
   1855     U->dropAllReferences();
   1856   }
   1857 }
   1858 
   1859 /// Analyze the specified global variable and optimize
   1860 /// it if possible.  If we make a change, return true.
   1861 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
   1862                                       Module::global_iterator &GVI,
   1863                                       const GlobalStatus &GS) {
   1864   auto &DL = GV->getParent()->getDataLayout();
   1865   // If this is a first class global and has only one accessing function and
   1866   // this function is non-recursive, we replace the global with a local alloca
   1867   // in this function.
   1868   //
   1869   // NOTE: It doesn't make sense to promote non-single-value types since we
   1870   // are just replacing static memory to stack memory.
   1871   //
   1872   // If the global is in different address space, don't bring it to stack.
   1873   if (!GS.HasMultipleAccessingFunctions &&
   1874       GS.AccessingFunction &&
   1875       GV->getType()->getElementType()->isSingleValueType() &&
   1876       GV->getType()->getAddressSpace() == 0 &&
   1877       !GV->isExternallyInitialized() &&
   1878       allNonInstructionUsersCanBeMadeInstructions(GV) &&
   1879       GS.AccessingFunction->doesNotRecurse() &&
   1880       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV) ) {
   1881     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
   1882     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
   1883                                                    ->getEntryBlock().begin());
   1884     Type *ElemTy = GV->getType()->getElementType();
   1885     // FIXME: Pass Global's alignment when globals have alignment
   1886     AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
   1887                                         GV->getName(), &FirstI);
   1888     if (!isa<UndefValue>(GV->getInitializer()))
   1889       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
   1890 
   1891     makeAllConstantUsesInstructions(GV);
   1892 
   1893     GV->replaceAllUsesWith(Alloca);
   1894     GV->eraseFromParent();
   1895     ++NumLocalized;
   1896     return true;
   1897   }
   1898 
   1899   // If the global is never loaded (but may be stored to), it is dead.
   1900   // Delete it now.
   1901   if (!GS.IsLoaded) {
   1902     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
   1903 
   1904     bool Changed;
   1905     if (isLeakCheckerRoot(GV)) {
   1906       // Delete any constant stores to the global.
   1907       Changed = CleanupPointerRootUsers(GV, TLI);
   1908     } else {
   1909       // Delete any stores we can find to the global.  We may not be able to
   1910       // make it completely dead though.
   1911       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1912     }
   1913 
   1914     // If the global is dead now, delete it.
   1915     if (GV->use_empty()) {
   1916       GV->eraseFromParent();
   1917       ++NumDeleted;
   1918       Changed = true;
   1919     }
   1920     return Changed;
   1921 
   1922   } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
   1923     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
   1924     GV->setConstant(true);
   1925 
   1926     // Clean up any obviously simplifiable users now.
   1927     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1928 
   1929     // If the global is dead now, just nuke it.
   1930     if (GV->use_empty()) {
   1931       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
   1932             << "all users and delete global!\n");
   1933       GV->eraseFromParent();
   1934       ++NumDeleted;
   1935     }
   1936 
   1937     ++NumMarked;
   1938     return true;
   1939   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
   1940     const DataLayout &DL = GV->getParent()->getDataLayout();
   1941     if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
   1942       GVI = FirstNewGV->getIterator(); // Don't skip the newly produced globals!
   1943       return true;
   1944     }
   1945   } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
   1946     // If the initial value for the global was an undef value, and if only
   1947     // one other value was stored into it, we can just change the
   1948     // initializer to be the stored value, then delete all stores to the
   1949     // global.  This allows us to mark it constant.
   1950     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   1951       if (isa<UndefValue>(GV->getInitializer())) {
   1952         // Change the initial value here.
   1953         GV->setInitializer(SOVConstant);
   1954 
   1955         // Clean up any obviously simplifiable users now.
   1956         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1957 
   1958         if (GV->use_empty()) {
   1959           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
   1960                        << "simplify all users and delete global!\n");
   1961           GV->eraseFromParent();
   1962           ++NumDeleted;
   1963         } else {
   1964           GVI = GV->getIterator();
   1965         }
   1966         ++NumSubstitute;
   1967         return true;
   1968       }
   1969 
   1970     // Try to optimize globals based on the knowledge that only one value
   1971     // (besides its initializer) is ever stored to the global.
   1972     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
   1973                                  DL, TLI))
   1974       return true;
   1975 
   1976     // Otherwise, if the global was not a boolean, we can shrink it to be a
   1977     // boolean.
   1978     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
   1979       if (GS.Ordering == NotAtomic) {
   1980         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
   1981           ++NumShrunkToBool;
   1982           return true;
   1983         }
   1984       }
   1985     }
   1986   }
   1987 
   1988   return false;
   1989 }
   1990 
   1991 /// Walk all of the direct calls of the specified function, changing them to
   1992 /// FastCC.
   1993 static void ChangeCalleesToFastCall(Function *F) {
   1994   for (User *U : F->users()) {
   1995     if (isa<BlockAddress>(U))
   1996       continue;
   1997     CallSite CS(cast<Instruction>(U));
   1998     CS.setCallingConv(CallingConv::Fast);
   1999   }
   2000 }
   2001 
   2002 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
   2003   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   2004     unsigned Index = Attrs.getSlotIndex(i);
   2005     if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
   2006       continue;
   2007 
   2008     // There can be only one.
   2009     return Attrs.removeAttribute(C, Index, Attribute::Nest);
   2010   }
   2011 
   2012   return Attrs;
   2013 }
   2014 
   2015 static void RemoveNestAttribute(Function *F) {
   2016   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
   2017   for (User *U : F->users()) {
   2018     if (isa<BlockAddress>(U))
   2019       continue;
   2020     CallSite CS(cast<Instruction>(U));
   2021     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
   2022   }
   2023 }
   2024 
   2025 /// Return true if this is a calling convention that we'd like to change.  The
   2026 /// idea here is that we don't want to mess with the convention if the user
   2027 /// explicitly requested something with performance implications like coldcc,
   2028 /// GHC, or anyregcc.
   2029 static bool isProfitableToMakeFastCC(Function *F) {
   2030   CallingConv::ID CC = F->getCallingConv();
   2031   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
   2032   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
   2033 }
   2034 
   2035 bool GlobalOpt::OptimizeFunctions(Module &M) {
   2036   bool Changed = false;
   2037   // Optimize functions.
   2038   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
   2039     Function *F = &*FI++;
   2040     // Functions without names cannot be referenced outside this module.
   2041     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
   2042       F->setLinkage(GlobalValue::InternalLinkage);
   2043 
   2044     const Comdat *C = F->getComdat();
   2045     bool inComdat = C && NotDiscardableComdats.count(C);
   2046     F->removeDeadConstantUsers();
   2047     if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
   2048       F->eraseFromParent();
   2049       Changed = true;
   2050       ++NumFnDeleted;
   2051     } else if (F->hasLocalLinkage()) {
   2052       if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
   2053           !F->hasAddressTaken()) {
   2054         // If this function has a calling convention worth changing, is not a
   2055         // varargs function, and is only called directly, promote it to use the
   2056         // Fast calling convention.
   2057         F->setCallingConv(CallingConv::Fast);
   2058         ChangeCalleesToFastCall(F);
   2059         ++NumFastCallFns;
   2060         Changed = true;
   2061       }
   2062 
   2063       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
   2064           !F->hasAddressTaken()) {
   2065         // The function is not used by a trampoline intrinsic, so it is safe
   2066         // to remove the 'nest' attribute.
   2067         RemoveNestAttribute(F);
   2068         ++NumNestRemoved;
   2069         Changed = true;
   2070       }
   2071     }
   2072   }
   2073   return Changed;
   2074 }
   2075 
   2076 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
   2077   bool Changed = false;
   2078 
   2079   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
   2080        GVI != E; ) {
   2081     GlobalVariable *GV = &*GVI++;
   2082     // Global variables without names cannot be referenced outside this module.
   2083     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
   2084       GV->setLinkage(GlobalValue::InternalLinkage);
   2085     // Simplify the initializer.
   2086     if (GV->hasInitializer())
   2087       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
   2088         auto &DL = M.getDataLayout();
   2089         Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
   2090         if (New && New != CE)
   2091           GV->setInitializer(New);
   2092       }
   2093 
   2094     if (GV->isDiscardableIfUnused()) {
   2095       if (const Comdat *C = GV->getComdat())
   2096         if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
   2097           continue;
   2098       Changed |= ProcessGlobal(GV, GVI);
   2099     }
   2100   }
   2101   return Changed;
   2102 }
   2103 
   2104 static inline bool
   2105 isSimpleEnoughValueToCommit(Constant *C,
   2106                             SmallPtrSetImpl<Constant *> &SimpleConstants,
   2107                             const DataLayout &DL);
   2108 
   2109 /// Return true if the specified constant can be handled by the code generator.
   2110 /// We don't want to generate something like:
   2111 ///   void *X = &X/42;
   2112 /// because the code generator doesn't have a relocation that can handle that.
   2113 ///
   2114 /// This function should be called if C was not found (but just got inserted)
   2115 /// in SimpleConstants to avoid having to rescan the same constants all the
   2116 /// time.
   2117 static bool
   2118 isSimpleEnoughValueToCommitHelper(Constant *C,
   2119                                   SmallPtrSetImpl<Constant *> &SimpleConstants,
   2120                                   const DataLayout &DL) {
   2121   // Simple global addresses are supported, do not allow dllimport or
   2122   // thread-local globals.
   2123   if (auto *GV = dyn_cast<GlobalValue>(C))
   2124     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
   2125 
   2126   // Simple integer, undef, constant aggregate zero, etc are all supported.
   2127   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
   2128     return true;
   2129 
   2130   // Aggregate values are safe if all their elements are.
   2131   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
   2132       isa<ConstantVector>(C)) {
   2133     for (Value *Op : C->operands())
   2134       if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
   2135         return false;
   2136     return true;
   2137   }
   2138 
   2139   // We don't know exactly what relocations are allowed in constant expressions,
   2140   // so we allow &global+constantoffset, which is safe and uniformly supported
   2141   // across targets.
   2142   ConstantExpr *CE = cast<ConstantExpr>(C);
   2143   switch (CE->getOpcode()) {
   2144   case Instruction::BitCast:
   2145     // Bitcast is fine if the casted value is fine.
   2146     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2147 
   2148   case Instruction::IntToPtr:
   2149   case Instruction::PtrToInt:
   2150     // int <=> ptr is fine if the int type is the same size as the
   2151     // pointer type.
   2152     if (DL.getTypeSizeInBits(CE->getType()) !=
   2153         DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
   2154       return false;
   2155     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2156 
   2157   // GEP is fine if it is simple + constant offset.
   2158   case Instruction::GetElementPtr:
   2159     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
   2160       if (!isa<ConstantInt>(CE->getOperand(i)))
   2161         return false;
   2162     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2163 
   2164   case Instruction::Add:
   2165     // We allow simple+cst.
   2166     if (!isa<ConstantInt>(CE->getOperand(1)))
   2167       return false;
   2168     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2169   }
   2170   return false;
   2171 }
   2172 
   2173 static inline bool
   2174 isSimpleEnoughValueToCommit(Constant *C,
   2175                             SmallPtrSetImpl<Constant *> &SimpleConstants,
   2176                             const DataLayout &DL) {
   2177   // If we already checked this constant, we win.
   2178   if (!SimpleConstants.insert(C).second)
   2179     return true;
   2180   // Check the constant.
   2181   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
   2182 }
   2183 
   2184 
   2185 /// Return true if this constant is simple enough for us to understand.  In
   2186 /// particular, if it is a cast to anything other than from one pointer type to
   2187 /// another pointer type, we punt.  We basically just support direct accesses to
   2188 /// globals and GEP's of globals.  This should be kept up to date with
   2189 /// CommitValueTo.
   2190 static bool isSimpleEnoughPointerToCommit(Constant *C) {
   2191   // Conservatively, avoid aggregate types. This is because we don't
   2192   // want to worry about them partially overlapping other stores.
   2193   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
   2194     return false;
   2195 
   2196   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
   2197     // Do not allow weak/*_odr/linkonce linkage or external globals.
   2198     return GV->hasUniqueInitializer();
   2199 
   2200   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2201     // Handle a constantexpr gep.
   2202     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2203         isa<GlobalVariable>(CE->getOperand(0)) &&
   2204         cast<GEPOperator>(CE)->isInBounds()) {
   2205       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2206       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2207       // external globals.
   2208       if (!GV->hasUniqueInitializer())
   2209         return false;
   2210 
   2211       // The first index must be zero.
   2212       ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
   2213       if (!CI || !CI->isZero()) return false;
   2214 
   2215       // The remaining indices must be compile-time known integers within the
   2216       // notional bounds of the corresponding static array types.
   2217       if (!CE->isGEPWithNoNotionalOverIndexing())
   2218         return false;
   2219 
   2220       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2221 
   2222     // A constantexpr bitcast from a pointer to another pointer is a no-op,
   2223     // and we know how to evaluate it by moving the bitcast from the pointer
   2224     // operand to the value operand.
   2225     } else if (CE->getOpcode() == Instruction::BitCast &&
   2226                isa<GlobalVariable>(CE->getOperand(0))) {
   2227       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2228       // external globals.
   2229       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
   2230     }
   2231   }
   2232 
   2233   return false;
   2234 }
   2235 
   2236 /// Evaluate a piece of a constantexpr store into a global initializer.  This
   2237 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
   2238 /// GEP operands of Addr [0, OpNo) have been stepped into.
   2239 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
   2240                                    ConstantExpr *Addr, unsigned OpNo) {
   2241   // Base case of the recursion.
   2242   if (OpNo == Addr->getNumOperands()) {
   2243     assert(Val->getType() == Init->getType() && "Type mismatch!");
   2244     return Val;
   2245   }
   2246 
   2247   SmallVector<Constant*, 32> Elts;
   2248   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
   2249     // Break up the constant into its elements.
   2250     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   2251       Elts.push_back(Init->getAggregateElement(i));
   2252 
   2253     // Replace the element that we are supposed to.
   2254     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
   2255     unsigned Idx = CU->getZExtValue();
   2256     assert(Idx < STy->getNumElements() && "Struct index out of range!");
   2257     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
   2258 
   2259     // Return the modified struct.
   2260     return ConstantStruct::get(STy, Elts);
   2261   }
   2262 
   2263   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
   2264   SequentialType *InitTy = cast<SequentialType>(Init->getType());
   2265 
   2266   uint64_t NumElts;
   2267   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
   2268     NumElts = ATy->getNumElements();
   2269   else
   2270     NumElts = InitTy->getVectorNumElements();
   2271 
   2272   // Break up the array into elements.
   2273   for (uint64_t i = 0, e = NumElts; i != e; ++i)
   2274     Elts.push_back(Init->getAggregateElement(i));
   2275 
   2276   assert(CI->getZExtValue() < NumElts);
   2277   Elts[CI->getZExtValue()] =
   2278     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
   2279 
   2280   if (Init->getType()->isArrayTy())
   2281     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
   2282   return ConstantVector::get(Elts);
   2283 }
   2284 
   2285 /// We have decided that Addr (which satisfies the predicate
   2286 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
   2287 static void CommitValueTo(Constant *Val, Constant *Addr) {
   2288   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
   2289     assert(GV->hasInitializer());
   2290     GV->setInitializer(Val);
   2291     return;
   2292   }
   2293 
   2294   ConstantExpr *CE = cast<ConstantExpr>(Addr);
   2295   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2296   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
   2297 }
   2298 
   2299 namespace {
   2300 
   2301 /// This class evaluates LLVM IR, producing the Constant representing each SSA
   2302 /// instruction.  Changes to global variables are stored in a mapping that can
   2303 /// be iterated over after the evaluation is complete.  Once an evaluation call
   2304 /// fails, the evaluation object should not be reused.
   2305 class Evaluator {
   2306 public:
   2307   Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
   2308       : DL(DL), TLI(TLI) {
   2309     ValueStack.emplace_back();
   2310   }
   2311 
   2312   ~Evaluator() {
   2313     for (auto &Tmp : AllocaTmps)
   2314       // If there are still users of the alloca, the program is doing something
   2315       // silly, e.g. storing the address of the alloca somewhere and using it
   2316       // later.  Since this is undefined, we'll just make it be null.
   2317       if (!Tmp->use_empty())
   2318         Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
   2319   }
   2320 
   2321   /// Evaluate a call to function F, returning true if successful, false if we
   2322   /// can't evaluate it.  ActualArgs contains the formal arguments for the
   2323   /// function.
   2324   bool EvaluateFunction(Function *F, Constant *&RetVal,
   2325                         const SmallVectorImpl<Constant*> &ActualArgs);
   2326 
   2327   /// Evaluate all instructions in block BB, returning true if successful, false
   2328   /// if we can't evaluate it.  NewBB returns the next BB that control flows
   2329   /// into, or null upon return.
   2330   bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
   2331 
   2332   Constant *getVal(Value *V) {
   2333     if (Constant *CV = dyn_cast<Constant>(V)) return CV;
   2334     Constant *R = ValueStack.back().lookup(V);
   2335     assert(R && "Reference to an uncomputed value!");
   2336     return R;
   2337   }
   2338 
   2339   void setVal(Value *V, Constant *C) {
   2340     ValueStack.back()[V] = C;
   2341   }
   2342 
   2343   const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
   2344     return MutatedMemory;
   2345   }
   2346 
   2347   const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
   2348     return Invariants;
   2349   }
   2350 
   2351 private:
   2352   Constant *ComputeLoadResult(Constant *P);
   2353 
   2354   /// As we compute SSA register values, we store their contents here. The back
   2355   /// of the deque contains the current function and the stack contains the
   2356   /// values in the calling frames.
   2357   std::deque<DenseMap<Value*, Constant*>> ValueStack;
   2358 
   2359   /// This is used to detect recursion.  In pathological situations we could hit
   2360   /// exponential behavior, but at least there is nothing unbounded.
   2361   SmallVector<Function*, 4> CallStack;
   2362 
   2363   /// For each store we execute, we update this map.  Loads check this to get
   2364   /// the most up-to-date value.  If evaluation is successful, this state is
   2365   /// committed to the process.
   2366   DenseMap<Constant*, Constant*> MutatedMemory;
   2367 
   2368   /// To 'execute' an alloca, we create a temporary global variable to represent
   2369   /// its body.  This vector is needed so we can delete the temporary globals
   2370   /// when we are done.
   2371   SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
   2372 
   2373   /// These global variables have been marked invariant by the static
   2374   /// constructor.
   2375   SmallPtrSet<GlobalVariable*, 8> Invariants;
   2376 
   2377   /// These are constants we have checked and know to be simple enough to live
   2378   /// in a static initializer of a global.
   2379   SmallPtrSet<Constant*, 8> SimpleConstants;
   2380 
   2381   const DataLayout &DL;
   2382   const TargetLibraryInfo *TLI;
   2383 };
   2384 
   2385 }  // anonymous namespace
   2386 
   2387 /// Return the value that would be computed by a load from P after the stores
   2388 /// reflected by 'memory' have been performed.  If we can't decide, return null.
   2389 Constant *Evaluator::ComputeLoadResult(Constant *P) {
   2390   // If this memory location has been recently stored, use the stored value: it
   2391   // is the most up-to-date.
   2392   DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
   2393   if (I != MutatedMemory.end()) return I->second;
   2394 
   2395   // Access it.
   2396   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
   2397     if (GV->hasDefinitiveInitializer())
   2398       return GV->getInitializer();
   2399     return nullptr;
   2400   }
   2401 
   2402   // Handle a constantexpr getelementptr.
   2403   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
   2404     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2405         isa<GlobalVariable>(CE->getOperand(0))) {
   2406       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2407       if (GV->hasDefinitiveInitializer())
   2408         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2409     }
   2410 
   2411   return nullptr;  // don't know how to evaluate.
   2412 }
   2413 
   2414 /// Evaluate all instructions in block BB, returning true if successful, false
   2415 /// if we can't evaluate it.  NewBB returns the next BB that control flows into,
   2416 /// or null upon return.
   2417 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
   2418                               BasicBlock *&NextBB) {
   2419   // This is the main evaluation loop.
   2420   while (1) {
   2421     Constant *InstResult = nullptr;
   2422 
   2423     DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
   2424 
   2425     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
   2426       if (!SI->isSimple()) {
   2427         DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
   2428         return false;  // no volatile/atomic accesses.
   2429       }
   2430       Constant *Ptr = getVal(SI->getOperand(1));
   2431       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
   2432         DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
   2433         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
   2434         DEBUG(dbgs() << "; To: " << *Ptr << "\n");
   2435       }
   2436       if (!isSimpleEnoughPointerToCommit(Ptr)) {
   2437         // If this is too complex for us to commit, reject it.
   2438         DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
   2439         return false;
   2440       }
   2441 
   2442       Constant *Val = getVal(SI->getOperand(0));
   2443 
   2444       // If this might be too difficult for the backend to handle (e.g. the addr
   2445       // of one global variable divided by another) then we can't commit it.
   2446       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
   2447         DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
   2448               << "\n");
   2449         return false;
   2450       }
   2451 
   2452       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
   2453         if (CE->getOpcode() == Instruction::BitCast) {
   2454           DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
   2455           // If we're evaluating a store through a bitcast, then we need
   2456           // to pull the bitcast off the pointer type and push it onto the
   2457           // stored value.
   2458           Ptr = CE->getOperand(0);
   2459 
   2460           Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
   2461 
   2462           // In order to push the bitcast onto the stored value, a bitcast
   2463           // from NewTy to Val's type must be legal.  If it's not, we can try
   2464           // introspecting NewTy to find a legal conversion.
   2465           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
   2466             // If NewTy is a struct, we can convert the pointer to the struct
   2467             // into a pointer to its first member.
   2468             // FIXME: This could be extended to support arrays as well.
   2469             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
   2470               NewTy = STy->getTypeAtIndex(0U);
   2471 
   2472               IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
   2473               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
   2474               Constant * const IdxList[] = {IdxZero, IdxZero};
   2475 
   2476               Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
   2477               if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2478                 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
   2479 
   2480             // If we can't improve the situation by introspecting NewTy,
   2481             // we have to give up.
   2482             } else {
   2483               DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
   2484                     "evaluate.\n");
   2485               return false;
   2486             }
   2487           }
   2488 
   2489           // If we found compatible types, go ahead and push the bitcast
   2490           // onto the stored value.
   2491           Val = ConstantExpr::getBitCast(Val, NewTy);
   2492 
   2493           DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
   2494         }
   2495       }
   2496 
   2497       MutatedMemory[Ptr] = Val;
   2498     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
   2499       InstResult = ConstantExpr::get(BO->getOpcode(),
   2500                                      getVal(BO->getOperand(0)),
   2501                                      getVal(BO->getOperand(1)));
   2502       DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
   2503             << "\n");
   2504     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
   2505       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
   2506                                             getVal(CI->getOperand(0)),
   2507                                             getVal(CI->getOperand(1)));
   2508       DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
   2509             << "\n");
   2510     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
   2511       InstResult = ConstantExpr::getCast(CI->getOpcode(),
   2512                                          getVal(CI->getOperand(0)),
   2513                                          CI->getType());
   2514       DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
   2515             << "\n");
   2516     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
   2517       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
   2518                                            getVal(SI->getOperand(1)),
   2519                                            getVal(SI->getOperand(2)));
   2520       DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
   2521             << "\n");
   2522     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
   2523       InstResult = ConstantExpr::getExtractValue(
   2524           getVal(EVI->getAggregateOperand()), EVI->getIndices());
   2525       DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
   2526                    << "\n");
   2527     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
   2528       InstResult = ConstantExpr::getInsertValue(
   2529           getVal(IVI->getAggregateOperand()),
   2530           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
   2531       DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
   2532                    << "\n");
   2533     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
   2534       Constant *P = getVal(GEP->getOperand(0));
   2535       SmallVector<Constant*, 8> GEPOps;
   2536       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
   2537            i != e; ++i)
   2538         GEPOps.push_back(getVal(*i));
   2539       InstResult =
   2540           ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
   2541                                          cast<GEPOperator>(GEP)->isInBounds());
   2542       DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
   2543             << "\n");
   2544     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
   2545 
   2546       if (!LI->isSimple()) {
   2547         DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
   2548         return false;  // no volatile/atomic accesses.
   2549       }
   2550 
   2551       Constant *Ptr = getVal(LI->getOperand(0));
   2552       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
   2553         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
   2554         DEBUG(dbgs() << "Found a constant pointer expression, constant "
   2555               "folding: " << *Ptr << "\n");
   2556       }
   2557       InstResult = ComputeLoadResult(Ptr);
   2558       if (!InstResult) {
   2559         DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
   2560               "\n");
   2561         return false; // Could not evaluate load.
   2562       }
   2563 
   2564       DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
   2565     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
   2566       if (AI->isArrayAllocation()) {
   2567         DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
   2568         return false;  // Cannot handle array allocs.
   2569       }
   2570       Type *Ty = AI->getType()->getElementType();
   2571       AllocaTmps.push_back(
   2572           make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
   2573                                       UndefValue::get(Ty), AI->getName()));
   2574       InstResult = AllocaTmps.back().get();
   2575       DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
   2576     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
   2577       CallSite CS(&*CurInst);
   2578 
   2579       // Debug info can safely be ignored here.
   2580       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
   2581         DEBUG(dbgs() << "Ignoring debug info.\n");
   2582         ++CurInst;
   2583         continue;
   2584       }
   2585 
   2586       // Cannot handle inline asm.
   2587       if (isa<InlineAsm>(CS.getCalledValue())) {
   2588         DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
   2589         return false;
   2590       }
   2591 
   2592       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
   2593         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
   2594           if (MSI->isVolatile()) {
   2595             DEBUG(dbgs() << "Can not optimize a volatile memset " <<
   2596                   "intrinsic.\n");
   2597             return false;
   2598           }
   2599           Constant *Ptr = getVal(MSI->getDest());
   2600           Constant *Val = getVal(MSI->getValue());
   2601           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
   2602           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
   2603             // This memset is a no-op.
   2604             DEBUG(dbgs() << "Ignoring no-op memset.\n");
   2605             ++CurInst;
   2606             continue;
   2607           }
   2608         }
   2609 
   2610         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   2611             II->getIntrinsicID() == Intrinsic::lifetime_end) {
   2612           DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
   2613           ++CurInst;
   2614           continue;
   2615         }
   2616 
   2617         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
   2618           // We don't insert an entry into Values, as it doesn't have a
   2619           // meaningful return value.
   2620           if (!II->use_empty()) {
   2621             DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
   2622             return false;
   2623           }
   2624           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
   2625           Value *PtrArg = getVal(II->getArgOperand(1));
   2626           Value *Ptr = PtrArg->stripPointerCasts();
   2627           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   2628             Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
   2629             if (!Size->isAllOnesValue() &&
   2630                 Size->getValue().getLimitedValue() >=
   2631                     DL.getTypeStoreSize(ElemTy)) {
   2632               Invariants.insert(GV);
   2633               DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
   2634                     << "\n");
   2635             } else {
   2636               DEBUG(dbgs() << "Found a global var, but can not treat it as an "
   2637                     "invariant.\n");
   2638             }
   2639           }
   2640           // Continue even if we do nothing.
   2641           ++CurInst;
   2642           continue;
   2643         } else if (II->getIntrinsicID() == Intrinsic::assume) {
   2644           DEBUG(dbgs() << "Skipping assume intrinsic.\n");
   2645           ++CurInst;
   2646           continue;
   2647         }
   2648 
   2649         DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
   2650         return false;
   2651       }
   2652 
   2653       // Resolve function pointers.
   2654       Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
   2655       if (!Callee || Callee->mayBeOverridden()) {
   2656         DEBUG(dbgs() << "Can not resolve function pointer.\n");
   2657         return false;  // Cannot resolve.
   2658       }
   2659 
   2660       SmallVector<Constant*, 8> Formals;
   2661       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
   2662         Formals.push_back(getVal(*i));
   2663 
   2664       if (Callee->isDeclaration()) {
   2665         // If this is a function we can constant fold, do it.
   2666         if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
   2667           InstResult = C;
   2668           DEBUG(dbgs() << "Constant folded function call. Result: " <<
   2669                 *InstResult << "\n");
   2670         } else {
   2671           DEBUG(dbgs() << "Can not constant fold function call.\n");
   2672           return false;
   2673         }
   2674       } else {
   2675         if (Callee->getFunctionType()->isVarArg()) {
   2676           DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
   2677           return false;
   2678         }
   2679 
   2680         Constant *RetVal = nullptr;
   2681         // Execute the call, if successful, use the return value.
   2682         ValueStack.emplace_back();
   2683         if (!EvaluateFunction(Callee, RetVal, Formals)) {
   2684           DEBUG(dbgs() << "Failed to evaluate function.\n");
   2685           return false;
   2686         }
   2687         ValueStack.pop_back();
   2688         InstResult = RetVal;
   2689 
   2690         if (InstResult) {
   2691           DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
   2692                 InstResult << "\n\n");
   2693         } else {
   2694           DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
   2695         }
   2696       }
   2697     } else if (isa<TerminatorInst>(CurInst)) {
   2698       DEBUG(dbgs() << "Found a terminator instruction.\n");
   2699 
   2700       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
   2701         if (BI->isUnconditional()) {
   2702           NextBB = BI->getSuccessor(0);
   2703         } else {
   2704           ConstantInt *Cond =
   2705             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
   2706           if (!Cond) return false;  // Cannot determine.
   2707 
   2708           NextBB = BI->getSuccessor(!Cond->getZExtValue());
   2709         }
   2710       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
   2711         ConstantInt *Val =
   2712           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
   2713         if (!Val) return false;  // Cannot determine.
   2714         NextBB = SI->findCaseValue(Val).getCaseSuccessor();
   2715       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
   2716         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
   2717         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
   2718           NextBB = BA->getBasicBlock();
   2719         else
   2720           return false;  // Cannot determine.
   2721       } else if (isa<ReturnInst>(CurInst)) {
   2722         NextBB = nullptr;
   2723       } else {
   2724         // invoke, unwind, resume, unreachable.
   2725         DEBUG(dbgs() << "Can not handle terminator.");
   2726         return false;  // Cannot handle this terminator.
   2727       }
   2728 
   2729       // We succeeded at evaluating this block!
   2730       DEBUG(dbgs() << "Successfully evaluated block.\n");
   2731       return true;
   2732     } else {
   2733       // Did not know how to evaluate this!
   2734       DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
   2735             "\n");
   2736       return false;
   2737     }
   2738 
   2739     if (!CurInst->use_empty()) {
   2740       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
   2741         InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
   2742 
   2743       setVal(&*CurInst, InstResult);
   2744     }
   2745 
   2746     // If we just processed an invoke, we finished evaluating the block.
   2747     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
   2748       NextBB = II->getNormalDest();
   2749       DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
   2750       return true;
   2751     }
   2752 
   2753     // Advance program counter.
   2754     ++CurInst;
   2755   }
   2756 }
   2757 
   2758 /// Evaluate a call to function F, returning true if successful, false if we
   2759 /// can't evaluate it.  ActualArgs contains the formal arguments for the
   2760 /// function.
   2761 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
   2762                                  const SmallVectorImpl<Constant*> &ActualArgs) {
   2763   // Check to see if this function is already executing (recursion).  If so,
   2764   // bail out.  TODO: we might want to accept limited recursion.
   2765   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
   2766     return false;
   2767 
   2768   CallStack.push_back(F);
   2769 
   2770   // Initialize arguments to the incoming values specified.
   2771   unsigned ArgNo = 0;
   2772   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
   2773        ++AI, ++ArgNo)
   2774     setVal(&*AI, ActualArgs[ArgNo]);
   2775 
   2776   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
   2777   // we can only evaluate any one basic block at most once.  This set keeps
   2778   // track of what we have executed so we can detect recursive cases etc.
   2779   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
   2780 
   2781   // CurBB - The current basic block we're evaluating.
   2782   BasicBlock *CurBB = &F->front();
   2783 
   2784   BasicBlock::iterator CurInst = CurBB->begin();
   2785 
   2786   while (1) {
   2787     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
   2788     DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
   2789 
   2790     if (!EvaluateBlock(CurInst, NextBB))
   2791       return false;
   2792 
   2793     if (!NextBB) {
   2794       // Successfully running until there's no next block means that we found
   2795       // the return.  Fill it the return value and pop the call stack.
   2796       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
   2797       if (RI->getNumOperands())
   2798         RetVal = getVal(RI->getOperand(0));
   2799       CallStack.pop_back();
   2800       return true;
   2801     }
   2802 
   2803     // Okay, we succeeded in evaluating this control flow.  See if we have
   2804     // executed the new block before.  If so, we have a looping function,
   2805     // which we cannot evaluate in reasonable time.
   2806     if (!ExecutedBlocks.insert(NextBB).second)
   2807       return false;  // looped!
   2808 
   2809     // Okay, we have never been in this block before.  Check to see if there
   2810     // are any PHI nodes.  If so, evaluate them with information about where
   2811     // we came from.
   2812     PHINode *PN = nullptr;
   2813     for (CurInst = NextBB->begin();
   2814          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
   2815       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
   2816 
   2817     // Advance to the next block.
   2818     CurBB = NextBB;
   2819   }
   2820 }
   2821 
   2822 /// Evaluate static constructors in the function, if we can.  Return true if we
   2823 /// can, false otherwise.
   2824 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
   2825                                       const TargetLibraryInfo *TLI) {
   2826   // Call the function.
   2827   Evaluator Eval(DL, TLI);
   2828   Constant *RetValDummy;
   2829   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
   2830                                            SmallVector<Constant*, 0>());
   2831 
   2832   if (EvalSuccess) {
   2833     ++NumCtorsEvaluated;
   2834 
   2835     // We succeeded at evaluation: commit the result.
   2836     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
   2837           << F->getName() << "' to " << Eval.getMutatedMemory().size()
   2838           << " stores.\n");
   2839     for (DenseMap<Constant*, Constant*>::const_iterator I =
   2840            Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
   2841          I != E; ++I)
   2842       CommitValueTo(I->second, I->first);
   2843     for (GlobalVariable *GV : Eval.getInvariants())
   2844       GV->setConstant(true);
   2845   }
   2846 
   2847   return EvalSuccess;
   2848 }
   2849 
   2850 static int compareNames(Constant *const *A, Constant *const *B) {
   2851   return (*A)->stripPointerCasts()->getName().compare(
   2852       (*B)->stripPointerCasts()->getName());
   2853 }
   2854 
   2855 static void setUsedInitializer(GlobalVariable &V,
   2856                                const SmallPtrSet<GlobalValue *, 8> &Init) {
   2857   if (Init.empty()) {
   2858     V.eraseFromParent();
   2859     return;
   2860   }
   2861 
   2862   // Type of pointer to the array of pointers.
   2863   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
   2864 
   2865   SmallVector<llvm::Constant *, 8> UsedArray;
   2866   for (GlobalValue *GV : Init) {
   2867     Constant *Cast
   2868       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
   2869     UsedArray.push_back(Cast);
   2870   }
   2871   // Sort to get deterministic order.
   2872   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
   2873   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
   2874 
   2875   Module *M = V.getParent();
   2876   V.removeFromParent();
   2877   GlobalVariable *NV =
   2878       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
   2879                          llvm::ConstantArray::get(ATy, UsedArray), "");
   2880   NV->takeName(&V);
   2881   NV->setSection("llvm.metadata");
   2882   delete &V;
   2883 }
   2884 
   2885 namespace {
   2886 /// An easy to access representation of llvm.used and llvm.compiler.used.
   2887 class LLVMUsed {
   2888   SmallPtrSet<GlobalValue *, 8> Used;
   2889   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
   2890   GlobalVariable *UsedV;
   2891   GlobalVariable *CompilerUsedV;
   2892 
   2893 public:
   2894   LLVMUsed(Module &M) {
   2895     UsedV = collectUsedGlobalVariables(M, Used, false);
   2896     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
   2897   }
   2898   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
   2899   typedef iterator_range<iterator> used_iterator_range;
   2900   iterator usedBegin() { return Used.begin(); }
   2901   iterator usedEnd() { return Used.end(); }
   2902   used_iterator_range used() {
   2903     return used_iterator_range(usedBegin(), usedEnd());
   2904   }
   2905   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
   2906   iterator compilerUsedEnd() { return CompilerUsed.end(); }
   2907   used_iterator_range compilerUsed() {
   2908     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
   2909   }
   2910   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
   2911   bool compilerUsedCount(GlobalValue *GV) const {
   2912     return CompilerUsed.count(GV);
   2913   }
   2914   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
   2915   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
   2916   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
   2917   bool compilerUsedInsert(GlobalValue *GV) {
   2918     return CompilerUsed.insert(GV).second;
   2919   }
   2920 
   2921   void syncVariablesAndSets() {
   2922     if (UsedV)
   2923       setUsedInitializer(*UsedV, Used);
   2924     if (CompilerUsedV)
   2925       setUsedInitializer(*CompilerUsedV, CompilerUsed);
   2926   }
   2927 };
   2928 }
   2929 
   2930 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
   2931   if (GA.use_empty()) // No use at all.
   2932     return false;
   2933 
   2934   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
   2935          "We should have removed the duplicated "
   2936          "element from llvm.compiler.used");
   2937   if (!GA.hasOneUse())
   2938     // Strictly more than one use. So at least one is not in llvm.used and
   2939     // llvm.compiler.used.
   2940     return true;
   2941 
   2942   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
   2943   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
   2944 }
   2945 
   2946 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
   2947                                                const LLVMUsed &U) {
   2948   unsigned N = 2;
   2949   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
   2950          "We should have removed the duplicated "
   2951          "element from llvm.compiler.used");
   2952   if (U.usedCount(&V) || U.compilerUsedCount(&V))
   2953     ++N;
   2954   return V.hasNUsesOrMore(N);
   2955 }
   2956 
   2957 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
   2958   if (!GA.hasLocalLinkage())
   2959     return true;
   2960 
   2961   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
   2962 }
   2963 
   2964 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
   2965                              bool &RenameTarget) {
   2966   RenameTarget = false;
   2967   bool Ret = false;
   2968   if (hasUseOtherThanLLVMUsed(GA, U))
   2969     Ret = true;
   2970 
   2971   // If the alias is externally visible, we may still be able to simplify it.
   2972   if (!mayHaveOtherReferences(GA, U))
   2973     return Ret;
   2974 
   2975   // If the aliasee has internal linkage, give it the name and linkage
   2976   // of the alias, and delete the alias.  This turns:
   2977   //   define internal ... @f(...)
   2978   //   @a = alias ... @f
   2979   // into:
   2980   //   define ... @a(...)
   2981   Constant *Aliasee = GA.getAliasee();
   2982   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
   2983   if (!Target->hasLocalLinkage())
   2984     return Ret;
   2985 
   2986   // Do not perform the transform if multiple aliases potentially target the
   2987   // aliasee. This check also ensures that it is safe to replace the section
   2988   // and other attributes of the aliasee with those of the alias.
   2989   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
   2990     return Ret;
   2991 
   2992   RenameTarget = true;
   2993   return true;
   2994 }
   2995 
   2996 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
   2997   bool Changed = false;
   2998   LLVMUsed Used(M);
   2999 
   3000   for (GlobalValue *GV : Used.used())
   3001     Used.compilerUsedErase(GV);
   3002 
   3003   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
   3004        I != E;) {
   3005     Module::alias_iterator J = I++;
   3006     // Aliases without names cannot be referenced outside this module.
   3007     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
   3008       J->setLinkage(GlobalValue::InternalLinkage);
   3009     // If the aliasee may change at link time, nothing can be done - bail out.
   3010     if (J->mayBeOverridden())
   3011       continue;
   3012 
   3013     Constant *Aliasee = J->getAliasee();
   3014     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
   3015     // We can't trivially replace the alias with the aliasee if the aliasee is
   3016     // non-trivial in some way.
   3017     // TODO: Try to handle non-zero GEPs of local aliasees.
   3018     if (!Target)
   3019       continue;
   3020     Target->removeDeadConstantUsers();
   3021 
   3022     // Make all users of the alias use the aliasee instead.
   3023     bool RenameTarget;
   3024     if (!hasUsesToReplace(*J, Used, RenameTarget))
   3025       continue;
   3026 
   3027     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
   3028     ++NumAliasesResolved;
   3029     Changed = true;
   3030 
   3031     if (RenameTarget) {
   3032       // Give the aliasee the name, linkage and other attributes of the alias.
   3033       Target->takeName(&*J);
   3034       Target->setLinkage(J->getLinkage());
   3035       Target->setVisibility(J->getVisibility());
   3036       Target->setDLLStorageClass(J->getDLLStorageClass());
   3037 
   3038       if (Used.usedErase(&*J))
   3039         Used.usedInsert(Target);
   3040 
   3041       if (Used.compilerUsedErase(&*J))
   3042         Used.compilerUsedInsert(Target);
   3043     } else if (mayHaveOtherReferences(*J, Used))
   3044       continue;
   3045 
   3046     // Delete the alias.
   3047     M.getAliasList().erase(J);
   3048     ++NumAliasesRemoved;
   3049     Changed = true;
   3050   }
   3051 
   3052   Used.syncVariablesAndSets();
   3053 
   3054   return Changed;
   3055 }
   3056 
   3057 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
   3058   if (!TLI->has(LibFunc::cxa_atexit))
   3059     return nullptr;
   3060 
   3061   Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
   3062 
   3063   if (!Fn)
   3064     return nullptr;
   3065 
   3066   FunctionType *FTy = Fn->getFunctionType();
   3067 
   3068   // Checking that the function has the right return type, the right number of
   3069   // parameters and that they all have pointer types should be enough.
   3070   if (!FTy->getReturnType()->isIntegerTy() ||
   3071       FTy->getNumParams() != 3 ||
   3072       !FTy->getParamType(0)->isPointerTy() ||
   3073       !FTy->getParamType(1)->isPointerTy() ||
   3074       !FTy->getParamType(2)->isPointerTy())
   3075     return nullptr;
   3076 
   3077   return Fn;
   3078 }
   3079 
   3080 /// Returns whether the given function is an empty C++ destructor and can
   3081 /// therefore be eliminated.
   3082 /// Note that we assume that other optimization passes have already simplified
   3083 /// the code so we only look for a function with a single basic block, where
   3084 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
   3085 /// other side-effect free instructions.
   3086 static bool cxxDtorIsEmpty(const Function &Fn,
   3087                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
   3088   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
   3089   // nounwind, but that doesn't seem worth doing.
   3090   if (Fn.isDeclaration())
   3091     return false;
   3092 
   3093   if (++Fn.begin() != Fn.end())
   3094     return false;
   3095 
   3096   const BasicBlock &EntryBlock = Fn.getEntryBlock();
   3097   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
   3098        I != E; ++I) {
   3099     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
   3100       // Ignore debug intrinsics.
   3101       if (isa<DbgInfoIntrinsic>(CI))
   3102         continue;
   3103 
   3104       const Function *CalledFn = CI->getCalledFunction();
   3105 
   3106       if (!CalledFn)
   3107         return false;
   3108 
   3109       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
   3110 
   3111       // Don't treat recursive functions as empty.
   3112       if (!NewCalledFunctions.insert(CalledFn).second)
   3113         return false;
   3114 
   3115       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
   3116         return false;
   3117     } else if (isa<ReturnInst>(*I))
   3118       return true; // We're done.
   3119     else if (I->mayHaveSideEffects())
   3120       return false; // Destructor with side effects, bail.
   3121   }
   3122 
   3123   return false;
   3124 }
   3125 
   3126 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
   3127   /// Itanium C++ ABI p3.3.5:
   3128   ///
   3129   ///   After constructing a global (or local static) object, that will require
   3130   ///   destruction on exit, a termination function is registered as follows:
   3131   ///
   3132   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
   3133   ///
   3134   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
   3135   ///   call f(p) when DSO d is unloaded, before all such termination calls
   3136   ///   registered before this one. It returns zero if registration is
   3137   ///   successful, nonzero on failure.
   3138 
   3139   // This pass will look for calls to __cxa_atexit where the function is trivial
   3140   // and remove them.
   3141   bool Changed = false;
   3142 
   3143   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
   3144        I != E;) {
   3145     // We're only interested in calls. Theoretically, we could handle invoke
   3146     // instructions as well, but neither llvm-gcc nor clang generate invokes
   3147     // to __cxa_atexit.
   3148     CallInst *CI = dyn_cast<CallInst>(*I++);
   3149     if (!CI)
   3150       continue;
   3151 
   3152     Function *DtorFn =
   3153       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
   3154     if (!DtorFn)
   3155       continue;
   3156 
   3157     SmallPtrSet<const Function *, 8> CalledFunctions;
   3158     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
   3159       continue;
   3160 
   3161     // Just remove the call.
   3162     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
   3163     CI->eraseFromParent();
   3164 
   3165     ++NumCXXDtorsRemoved;
   3166 
   3167     Changed |= true;
   3168   }
   3169 
   3170   return Changed;
   3171 }
   3172 
   3173 bool GlobalOpt::runOnModule(Module &M) {
   3174   bool Changed = false;
   3175 
   3176   auto &DL = M.getDataLayout();
   3177   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   3178 
   3179   bool LocalChange = true;
   3180   while (LocalChange) {
   3181     LocalChange = false;
   3182 
   3183     NotDiscardableComdats.clear();
   3184     for (const GlobalVariable &GV : M.globals())
   3185       if (const Comdat *C = GV.getComdat())
   3186         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
   3187           NotDiscardableComdats.insert(C);
   3188     for (Function &F : M)
   3189       if (const Comdat *C = F.getComdat())
   3190         if (!F.isDefTriviallyDead())
   3191           NotDiscardableComdats.insert(C);
   3192     for (GlobalAlias &GA : M.aliases())
   3193       if (const Comdat *C = GA.getComdat())
   3194         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
   3195           NotDiscardableComdats.insert(C);
   3196 
   3197     // Delete functions that are trivially dead, ccc -> fastcc
   3198     LocalChange |= OptimizeFunctions(M);
   3199 
   3200     // Optimize global_ctors list.
   3201     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
   3202       return EvaluateStaticConstructor(F, DL, TLI);
   3203     });
   3204 
   3205     // Optimize non-address-taken globals.
   3206     LocalChange |= OptimizeGlobalVars(M);
   3207 
   3208     // Resolve aliases, when possible.
   3209     LocalChange |= OptimizeGlobalAliases(M);
   3210 
   3211     // Try to remove trivial global destructors if they are not removed
   3212     // already.
   3213     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
   3214     if (CXAAtExitFn)
   3215       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
   3216 
   3217     Changed |= LocalChange;
   3218   }
   3219 
   3220   // TODO: Move all global ctors functions to the end of the module for code
   3221   // layout.
   3222 
   3223   return Changed;
   3224 }
   3225 
   3226