Home | History | Annotate | Download | only in arm64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
      6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
      7 
      8 #include "src/arm64/assembler-arm64.h"
      9 #include "src/assembler.h"
     10 #include "src/debug/debug.h"
     11 
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 
     17 bool CpuFeatures::SupportsCrankshaft() { return true; }
     18 
     19 
     20 void RelocInfo::apply(intptr_t delta) {
     21   // On arm64 only internal references need extra work.
     22   DCHECK(RelocInfo::IsInternalReference(rmode_));
     23 
     24   // Absolute code pointer inside code object moves with the code object.
     25   intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
     26   *p += delta;  // Relocate entry.
     27 }
     28 
     29 
     30 void RelocInfo::set_target_address(Address target,
     31                                    WriteBarrierMode write_barrier_mode,
     32                                    ICacheFlushMode icache_flush_mode) {
     33   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
     34   Assembler::set_target_address_at(isolate_, pc_, host_, target,
     35                                    icache_flush_mode);
     36   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
     37       IsCodeTarget(rmode_)) {
     38     Object* target_code = Code::GetCodeFromTargetAddress(target);
     39     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
     40         host(), this, HeapObject::cast(target_code));
     41   }
     42 }
     43 
     44 inline int CPURegister::code() const {
     45   DCHECK(IsValid());
     46   return reg_code;
     47 }
     48 
     49 
     50 inline CPURegister::RegisterType CPURegister::type() const {
     51   DCHECK(IsValidOrNone());
     52   return reg_type;
     53 }
     54 
     55 
     56 inline RegList CPURegister::Bit() const {
     57   DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
     58   return IsValid() ? 1UL << reg_code : 0;
     59 }
     60 
     61 
     62 inline int CPURegister::SizeInBits() const {
     63   DCHECK(IsValid());
     64   return reg_size;
     65 }
     66 
     67 
     68 inline int CPURegister::SizeInBytes() const {
     69   DCHECK(IsValid());
     70   DCHECK(SizeInBits() % 8 == 0);
     71   return reg_size / 8;
     72 }
     73 
     74 
     75 inline bool CPURegister::Is32Bits() const {
     76   DCHECK(IsValid());
     77   return reg_size == 32;
     78 }
     79 
     80 
     81 inline bool CPURegister::Is64Bits() const {
     82   DCHECK(IsValid());
     83   return reg_size == 64;
     84 }
     85 
     86 
     87 inline bool CPURegister::IsValid() const {
     88   if (IsValidRegister() || IsValidFPRegister()) {
     89     DCHECK(!IsNone());
     90     return true;
     91   } else {
     92     DCHECK(IsNone());
     93     return false;
     94   }
     95 }
     96 
     97 
     98 inline bool CPURegister::IsValidRegister() const {
     99   return IsRegister() &&
    100          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
    101          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
    102 }
    103 
    104 
    105 inline bool CPURegister::IsValidFPRegister() const {
    106   return IsFPRegister() &&
    107          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
    108          (reg_code < kNumberOfFPRegisters);
    109 }
    110 
    111 
    112 inline bool CPURegister::IsNone() const {
    113   // kNoRegister types should always have size 0 and code 0.
    114   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
    115   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
    116 
    117   return reg_type == kNoRegister;
    118 }
    119 
    120 
    121 inline bool CPURegister::Is(const CPURegister& other) const {
    122   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    123   return Aliases(other) && (reg_size == other.reg_size);
    124 }
    125 
    126 
    127 inline bool CPURegister::Aliases(const CPURegister& other) const {
    128   DCHECK(IsValidOrNone() && other.IsValidOrNone());
    129   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
    130 }
    131 
    132 
    133 inline bool CPURegister::IsRegister() const {
    134   return reg_type == kRegister;
    135 }
    136 
    137 
    138 inline bool CPURegister::IsFPRegister() const {
    139   return reg_type == kFPRegister;
    140 }
    141 
    142 
    143 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
    144   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
    145 }
    146 
    147 
    148 inline bool CPURegister::IsValidOrNone() const {
    149   return IsValid() || IsNone();
    150 }
    151 
    152 
    153 inline bool CPURegister::IsZero() const {
    154   DCHECK(IsValid());
    155   return IsRegister() && (reg_code == kZeroRegCode);
    156 }
    157 
    158 
    159 inline bool CPURegister::IsSP() const {
    160   DCHECK(IsValid());
    161   return IsRegister() && (reg_code == kSPRegInternalCode);
    162 }
    163 
    164 
    165 inline void CPURegList::Combine(const CPURegList& other) {
    166   DCHECK(IsValid());
    167   DCHECK(other.type() == type_);
    168   DCHECK(other.RegisterSizeInBits() == size_);
    169   list_ |= other.list();
    170 }
    171 
    172 
    173 inline void CPURegList::Remove(const CPURegList& other) {
    174   DCHECK(IsValid());
    175   if (other.type() == type_) {
    176     list_ &= ~other.list();
    177   }
    178 }
    179 
    180 
    181 inline void CPURegList::Combine(const CPURegister& other) {
    182   DCHECK(other.type() == type_);
    183   DCHECK(other.SizeInBits() == size_);
    184   Combine(other.code());
    185 }
    186 
    187 
    188 inline void CPURegList::Remove(const CPURegister& other1,
    189                                const CPURegister& other2,
    190                                const CPURegister& other3,
    191                                const CPURegister& other4) {
    192   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
    193   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
    194   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
    195   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
    196 }
    197 
    198 
    199 inline void CPURegList::Combine(int code) {
    200   DCHECK(IsValid());
    201   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    202   list_ |= (1UL << code);
    203 }
    204 
    205 
    206 inline void CPURegList::Remove(int code) {
    207   DCHECK(IsValid());
    208   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
    209   list_ &= ~(1UL << code);
    210 }
    211 
    212 
    213 inline Register Register::XRegFromCode(unsigned code) {
    214   if (code == kSPRegInternalCode) {
    215     return csp;
    216   } else {
    217     DCHECK(code < kNumberOfRegisters);
    218     return Register::Create(code, kXRegSizeInBits);
    219   }
    220 }
    221 
    222 
    223 inline Register Register::WRegFromCode(unsigned code) {
    224   if (code == kSPRegInternalCode) {
    225     return wcsp;
    226   } else {
    227     DCHECK(code < kNumberOfRegisters);
    228     return Register::Create(code, kWRegSizeInBits);
    229   }
    230 }
    231 
    232 
    233 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
    234   DCHECK(code < kNumberOfFPRegisters);
    235   return FPRegister::Create(code, kSRegSizeInBits);
    236 }
    237 
    238 
    239 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
    240   DCHECK(code < kNumberOfFPRegisters);
    241   return FPRegister::Create(code, kDRegSizeInBits);
    242 }
    243 
    244 
    245 inline Register CPURegister::W() const {
    246   DCHECK(IsValidRegister());
    247   return Register::WRegFromCode(reg_code);
    248 }
    249 
    250 
    251 inline Register CPURegister::X() const {
    252   DCHECK(IsValidRegister());
    253   return Register::XRegFromCode(reg_code);
    254 }
    255 
    256 
    257 inline FPRegister CPURegister::S() const {
    258   DCHECK(IsValidFPRegister());
    259   return FPRegister::SRegFromCode(reg_code);
    260 }
    261 
    262 
    263 inline FPRegister CPURegister::D() const {
    264   DCHECK(IsValidFPRegister());
    265   return FPRegister::DRegFromCode(reg_code);
    266 }
    267 
    268 
    269 // Immediate.
    270 // Default initializer is for int types
    271 template<typename T>
    272 struct ImmediateInitializer {
    273   static const bool kIsIntType = true;
    274   static inline RelocInfo::Mode rmode_for(T) {
    275     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
    276   }
    277   static inline int64_t immediate_for(T t) {
    278     STATIC_ASSERT(sizeof(T) <= 8);
    279     return t;
    280   }
    281 };
    282 
    283 
    284 template<>
    285 struct ImmediateInitializer<Smi*> {
    286   static const bool kIsIntType = false;
    287   static inline RelocInfo::Mode rmode_for(Smi* t) {
    288     return RelocInfo::NONE64;
    289   }
    290   static inline int64_t immediate_for(Smi* t) {;
    291     return reinterpret_cast<int64_t>(t);
    292   }
    293 };
    294 
    295 
    296 template<>
    297 struct ImmediateInitializer<ExternalReference> {
    298   static const bool kIsIntType = false;
    299   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
    300     return RelocInfo::EXTERNAL_REFERENCE;
    301   }
    302   static inline int64_t immediate_for(ExternalReference t) {;
    303     return reinterpret_cast<int64_t>(t.address());
    304   }
    305 };
    306 
    307 
    308 template<typename T>
    309 Immediate::Immediate(Handle<T> value) {
    310   InitializeHandle(value);
    311 }
    312 
    313 
    314 template<typename T>
    315 Immediate::Immediate(T t)
    316     : value_(ImmediateInitializer<T>::immediate_for(t)),
    317       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
    318 
    319 
    320 template<typename T>
    321 Immediate::Immediate(T t, RelocInfo::Mode rmode)
    322     : value_(ImmediateInitializer<T>::immediate_for(t)),
    323       rmode_(rmode) {
    324   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
    325 }
    326 
    327 
    328 // Operand.
    329 template<typename T>
    330 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
    331 
    332 
    333 template<typename T>
    334 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
    335 
    336 
    337 template<typename T>
    338 Operand::Operand(T t, RelocInfo::Mode rmode)
    339     : immediate_(t, rmode),
    340       reg_(NoReg) {}
    341 
    342 
    343 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
    344     : immediate_(0),
    345       reg_(reg),
    346       shift_(shift),
    347       extend_(NO_EXTEND),
    348       shift_amount_(shift_amount) {
    349   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
    350   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
    351   DCHECK(!reg.IsSP());
    352 }
    353 
    354 
    355 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
    356     : immediate_(0),
    357       reg_(reg),
    358       shift_(NO_SHIFT),
    359       extend_(extend),
    360       shift_amount_(shift_amount) {
    361   DCHECK(reg.IsValid());
    362   DCHECK(shift_amount <= 4);
    363   DCHECK(!reg.IsSP());
    364 
    365   // Extend modes SXTX and UXTX require a 64-bit register.
    366   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
    367 }
    368 
    369 
    370 bool Operand::IsImmediate() const {
    371   return reg_.Is(NoReg);
    372 }
    373 
    374 
    375 bool Operand::IsShiftedRegister() const {
    376   return reg_.IsValid() && (shift_ != NO_SHIFT);
    377 }
    378 
    379 
    380 bool Operand::IsExtendedRegister() const {
    381   return reg_.IsValid() && (extend_ != NO_EXTEND);
    382 }
    383 
    384 
    385 bool Operand::IsZero() const {
    386   if (IsImmediate()) {
    387     return ImmediateValue() == 0;
    388   } else {
    389     return reg().IsZero();
    390   }
    391 }
    392 
    393 
    394 Operand Operand::ToExtendedRegister() const {
    395   DCHECK(IsShiftedRegister());
    396   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
    397   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
    398 }
    399 
    400 
    401 Immediate Operand::immediate() const {
    402   DCHECK(IsImmediate());
    403   return immediate_;
    404 }
    405 
    406 
    407 int64_t Operand::ImmediateValue() const {
    408   DCHECK(IsImmediate());
    409   return immediate_.value();
    410 }
    411 
    412 
    413 Register Operand::reg() const {
    414   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    415   return reg_;
    416 }
    417 
    418 
    419 Shift Operand::shift() const {
    420   DCHECK(IsShiftedRegister());
    421   return shift_;
    422 }
    423 
    424 
    425 Extend Operand::extend() const {
    426   DCHECK(IsExtendedRegister());
    427   return extend_;
    428 }
    429 
    430 
    431 unsigned Operand::shift_amount() const {
    432   DCHECK(IsShiftedRegister() || IsExtendedRegister());
    433   return shift_amount_;
    434 }
    435 
    436 
    437 Operand Operand::UntagSmi(Register smi) {
    438   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    439                                                          kSmiValueSize));
    440   DCHECK(smi.Is64Bits());
    441   return Operand(smi, ASR, kSmiShift);
    442 }
    443 
    444 
    445 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
    446   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
    447                                                          kSmiValueSize));
    448   DCHECK(smi.Is64Bits());
    449   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
    450   if (scale > kSmiShift) {
    451     return Operand(smi, LSL, scale - kSmiShift);
    452   } else if (scale < kSmiShift) {
    453     return Operand(smi, ASR, kSmiShift - scale);
    454   }
    455   return Operand(smi);
    456 }
    457 
    458 
    459 MemOperand::MemOperand()
    460   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
    461     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    462 }
    463 
    464 
    465 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
    466   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
    467     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
    468   DCHECK(base.Is64Bits() && !base.IsZero());
    469 }
    470 
    471 
    472 MemOperand::MemOperand(Register base,
    473                        Register regoffset,
    474                        Extend extend,
    475                        unsigned shift_amount)
    476   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    477     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
    478   DCHECK(base.Is64Bits() && !base.IsZero());
    479   DCHECK(!regoffset.IsSP());
    480   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
    481 
    482   // SXTX extend mode requires a 64-bit offset register.
    483   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
    484 }
    485 
    486 
    487 MemOperand::MemOperand(Register base,
    488                        Register regoffset,
    489                        Shift shift,
    490                        unsigned shift_amount)
    491   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
    492     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
    493   DCHECK(base.Is64Bits() && !base.IsZero());
    494   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
    495   DCHECK(shift == LSL);
    496 }
    497 
    498 
    499 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
    500   : base_(base), addrmode_(addrmode) {
    501   DCHECK(base.Is64Bits() && !base.IsZero());
    502 
    503   if (offset.IsImmediate()) {
    504     offset_ = offset.ImmediateValue();
    505 
    506     regoffset_ = NoReg;
    507   } else if (offset.IsShiftedRegister()) {
    508     DCHECK(addrmode == Offset);
    509 
    510     regoffset_ = offset.reg();
    511     shift_ = offset.shift();
    512     shift_amount_ = offset.shift_amount();
    513 
    514     extend_ = NO_EXTEND;
    515     offset_ = 0;
    516 
    517     // These assertions match those in the shifted-register constructor.
    518     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
    519     DCHECK(shift_ == LSL);
    520   } else {
    521     DCHECK(offset.IsExtendedRegister());
    522     DCHECK(addrmode == Offset);
    523 
    524     regoffset_ = offset.reg();
    525     extend_ = offset.extend();
    526     shift_amount_ = offset.shift_amount();
    527 
    528     shift_ = NO_SHIFT;
    529     offset_ = 0;
    530 
    531     // These assertions match those in the extended-register constructor.
    532     DCHECK(!regoffset_.IsSP());
    533     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
    534     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
    535   }
    536 }
    537 
    538 bool MemOperand::IsImmediateOffset() const {
    539   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
    540 }
    541 
    542 
    543 bool MemOperand::IsRegisterOffset() const {
    544   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
    545 }
    546 
    547 
    548 bool MemOperand::IsPreIndex() const {
    549   return addrmode_ == PreIndex;
    550 }
    551 
    552 
    553 bool MemOperand::IsPostIndex() const {
    554   return addrmode_ == PostIndex;
    555 }
    556 
    557 Operand MemOperand::OffsetAsOperand() const {
    558   if (IsImmediateOffset()) {
    559     return offset();
    560   } else {
    561     DCHECK(IsRegisterOffset());
    562     if (extend() == NO_EXTEND) {
    563       return Operand(regoffset(), shift(), shift_amount());
    564     } else {
    565       return Operand(regoffset(), extend(), shift_amount());
    566     }
    567   }
    568 }
    569 
    570 
    571 void Assembler::Unreachable() {
    572 #ifdef USE_SIMULATOR
    573   debug("UNREACHABLE", __LINE__, BREAK);
    574 #else
    575   // Crash by branching to 0. lr now points near the fault.
    576   Emit(BLR | Rn(xzr));
    577 #endif
    578 }
    579 
    580 
    581 Address Assembler::target_pointer_address_at(Address pc) {
    582   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    583   DCHECK(instr->IsLdrLiteralX());
    584   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
    585 }
    586 
    587 
    588 // Read/Modify the code target address in the branch/call instruction at pc.
    589 Address Assembler::target_address_at(Address pc, Address constant_pool) {
    590   return Memory::Address_at(target_pointer_address_at(pc));
    591 }
    592 
    593 
    594 Address Assembler::target_address_at(Address pc, Code* code) {
    595   Address constant_pool = code ? code->constant_pool() : NULL;
    596   return target_address_at(pc, constant_pool);
    597 }
    598 
    599 
    600 Address Assembler::target_address_from_return_address(Address pc) {
    601   // Returns the address of the call target from the return address that will
    602   // be returned to after a call.
    603   // Call sequence on ARM64 is:
    604   //  ldr ip0, #... @ load from literal pool
    605   //  blr ip0
    606   Address candidate = pc - 2 * kInstructionSize;
    607   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
    608   USE(instr);
    609   DCHECK(instr->IsLdrLiteralX());
    610   return candidate;
    611 }
    612 
    613 
    614 Address Assembler::return_address_from_call_start(Address pc) {
    615   // The call, generated by MacroAssembler::Call, is one of two possible
    616   // sequences:
    617   //
    618   // Without relocation:
    619   //  movz  temp, #(target & 0x000000000000ffff)
    620   //  movk  temp, #(target & 0x00000000ffff0000)
    621   //  movk  temp, #(target & 0x0000ffff00000000)
    622   //  blr   temp
    623   //
    624   // With relocation:
    625   //  ldr   temp, =target
    626   //  blr   temp
    627   //
    628   // The return address is immediately after the blr instruction in both cases,
    629   // so it can be found by adding the call size to the address at the start of
    630   // the call sequence.
    631   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
    632   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
    633 
    634   Instruction* instr = reinterpret_cast<Instruction*>(pc);
    635   if (instr->IsMovz()) {
    636     // Verify the instruction sequence.
    637     DCHECK(instr->following(1)->IsMovk());
    638     DCHECK(instr->following(2)->IsMovk());
    639     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
    640     return pc + Assembler::kCallSizeWithoutRelocation;
    641   } else {
    642     // Verify the instruction sequence.
    643     DCHECK(instr->IsLdrLiteralX());
    644     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
    645     return pc + Assembler::kCallSizeWithRelocation;
    646   }
    647 }
    648 
    649 
    650 void Assembler::deserialization_set_special_target_at(
    651     Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
    652   Memory::Address_at(constant_pool_entry) = target;
    653 }
    654 
    655 
    656 void Assembler::deserialization_set_target_internal_reference_at(
    657     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
    658   Memory::Address_at(pc) = target;
    659 }
    660 
    661 
    662 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
    663                                       Address constant_pool, Address target,
    664                                       ICacheFlushMode icache_flush_mode) {
    665   Memory::Address_at(target_pointer_address_at(pc)) = target;
    666   // Intuitively, we would think it is necessary to always flush the
    667   // instruction cache after patching a target address in the code as follows:
    668   //   Assembler::FlushICache(isolate(), pc, sizeof(target));
    669   // However, on ARM, an instruction is actually patched in the case of
    670   // embedded constants of the form:
    671   // ldr   ip, [pc, #...]
    672   // since the instruction accessing this address in the constant pool remains
    673   // unchanged, a flush is not required.
    674 }
    675 
    676 
    677 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
    678                                       Address target,
    679                                       ICacheFlushMode icache_flush_mode) {
    680   Address constant_pool = code ? code->constant_pool() : NULL;
    681   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
    682 }
    683 
    684 
    685 int RelocInfo::target_address_size() {
    686   return kPointerSize;
    687 }
    688 
    689 
    690 Address RelocInfo::target_address() {
    691   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    692   return Assembler::target_address_at(pc_, host_);
    693 }
    694 
    695 Address RelocInfo::target_address_address() {
    696   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    697                               || rmode_ == EMBEDDED_OBJECT
    698                               || rmode_ == EXTERNAL_REFERENCE);
    699   return Assembler::target_pointer_address_at(pc_);
    700 }
    701 
    702 
    703 Address RelocInfo::constant_pool_entry_address() {
    704   DCHECK(IsInConstantPool());
    705   return Assembler::target_pointer_address_at(pc_);
    706 }
    707 
    708 
    709 Object* RelocInfo::target_object() {
    710   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    711   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    712 }
    713 
    714 
    715 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    716   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    717   return Handle<Object>(reinterpret_cast<Object**>(
    718       Assembler::target_address_at(pc_, host_)));
    719 }
    720 
    721 
    722 void RelocInfo::set_target_object(Object* target,
    723                                   WriteBarrierMode write_barrier_mode,
    724                                   ICacheFlushMode icache_flush_mode) {
    725   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    726   Assembler::set_target_address_at(isolate_, pc_, host_,
    727                                    reinterpret_cast<Address>(target),
    728                                    icache_flush_mode);
    729   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    730       host() != NULL &&
    731       target->IsHeapObject()) {
    732     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    733         host(), this, HeapObject::cast(target));
    734   }
    735 }
    736 
    737 
    738 Address RelocInfo::target_external_reference() {
    739   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    740   return Assembler::target_address_at(pc_, host_);
    741 }
    742 
    743 
    744 Address RelocInfo::target_internal_reference() {
    745   DCHECK(rmode_ == INTERNAL_REFERENCE);
    746   return Memory::Address_at(pc_);
    747 }
    748 
    749 
    750 Address RelocInfo::target_internal_reference_address() {
    751   DCHECK(rmode_ == INTERNAL_REFERENCE);
    752   return reinterpret_cast<Address>(pc_);
    753 }
    754 
    755 
    756 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    757   DCHECK(IsRuntimeEntry(rmode_));
    758   return target_address();
    759 }
    760 
    761 
    762 void RelocInfo::set_target_runtime_entry(Address target,
    763                                          WriteBarrierMode write_barrier_mode,
    764                                          ICacheFlushMode icache_flush_mode) {
    765   DCHECK(IsRuntimeEntry(rmode_));
    766   if (target_address() != target) {
    767     set_target_address(target, write_barrier_mode, icache_flush_mode);
    768   }
    769 }
    770 
    771 
    772 Handle<Cell> RelocInfo::target_cell_handle() {
    773   UNIMPLEMENTED();
    774   Cell *null_cell = NULL;
    775   return Handle<Cell>(null_cell);
    776 }
    777 
    778 
    779 Cell* RelocInfo::target_cell() {
    780   DCHECK(rmode_ == RelocInfo::CELL);
    781   return Cell::FromValueAddress(Memory::Address_at(pc_));
    782 }
    783 
    784 
    785 void RelocInfo::set_target_cell(Cell* cell,
    786                                 WriteBarrierMode write_barrier_mode,
    787                                 ICacheFlushMode icache_flush_mode) {
    788   UNIMPLEMENTED();
    789 }
    790 
    791 
    792 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
    793 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
    794 
    795 
    796 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    797   UNREACHABLE();  // This should never be reached on ARM64.
    798   return Handle<Object>();
    799 }
    800 
    801 
    802 Code* RelocInfo::code_age_stub() {
    803   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    804   // Read the stub entry point from the code age sequence.
    805   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    806   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
    807 }
    808 
    809 
    810 void RelocInfo::set_code_age_stub(Code* stub,
    811                                   ICacheFlushMode icache_flush_mode) {
    812   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    813   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
    814   // Overwrite the stub entry point in the code age sequence. This is loaded as
    815   // a literal so there is no need to call FlushICache here.
    816   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
    817   Memory::Address_at(stub_entry_address) = stub->instruction_start();
    818 }
    819 
    820 
    821 Address RelocInfo::debug_call_address() {
    822   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    823   // For the above sequences the Relocinfo points to the load literal loading
    824   // the call address.
    825   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
    826   return Assembler::target_address_at(pc_, host_);
    827 }
    828 
    829 
    830 void RelocInfo::set_debug_call_address(Address target) {
    831   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    832   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
    833   Assembler::set_target_address_at(isolate_, pc_, host_, target);
    834   if (host() != NULL) {
    835     Object* target_code = Code::GetCodeFromTargetAddress(target);
    836     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    837         host(), this, HeapObject::cast(target_code));
    838   }
    839 }
    840 
    841 
    842 void RelocInfo::WipeOut() {
    843   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
    844          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
    845          IsInternalReference(rmode_));
    846   if (IsInternalReference(rmode_)) {
    847     Memory::Address_at(pc_) = NULL;
    848   } else {
    849     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
    850   }
    851 }
    852 
    853 template <typename ObjectVisitor>
    854 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    855   RelocInfo::Mode mode = rmode();
    856   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    857     visitor->VisitEmbeddedPointer(this);
    858   } else if (RelocInfo::IsCodeTarget(mode)) {
    859     visitor->VisitCodeTarget(this);
    860   } else if (mode == RelocInfo::CELL) {
    861     visitor->VisitCell(this);
    862   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    863     visitor->VisitExternalReference(this);
    864   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    865     visitor->VisitInternalReference(this);
    866   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    867              IsPatchedDebugBreakSlotSequence()) {
    868     visitor->VisitDebugTarget(this);
    869   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    870     visitor->VisitRuntimeEntry(this);
    871   }
    872 }
    873 
    874 
    875 template<typename StaticVisitor>
    876 void RelocInfo::Visit(Heap* heap) {
    877   RelocInfo::Mode mode = rmode();
    878   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    879     StaticVisitor::VisitEmbeddedPointer(heap, this);
    880   } else if (RelocInfo::IsCodeTarget(mode)) {
    881     StaticVisitor::VisitCodeTarget(heap, this);
    882   } else if (mode == RelocInfo::CELL) {
    883     StaticVisitor::VisitCell(heap, this);
    884   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    885     StaticVisitor::VisitExternalReference(this);
    886   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
    887     StaticVisitor::VisitInternalReference(this);
    888   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    889              IsPatchedDebugBreakSlotSequence()) {
    890     StaticVisitor::VisitDebugTarget(heap, this);
    891   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    892     StaticVisitor::VisitRuntimeEntry(this);
    893   }
    894 }
    895 
    896 
    897 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
    898   DCHECK(rt.IsValid());
    899   if (rt.IsRegister()) {
    900     return rt.Is64Bits() ? LDR_x : LDR_w;
    901   } else {
    902     DCHECK(rt.IsFPRegister());
    903     return rt.Is64Bits() ? LDR_d : LDR_s;
    904   }
    905 }
    906 
    907 
    908 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
    909                                          const CPURegister& rt2) {
    910   DCHECK(AreSameSizeAndType(rt, rt2));
    911   USE(rt2);
    912   if (rt.IsRegister()) {
    913     return rt.Is64Bits() ? LDP_x : LDP_w;
    914   } else {
    915     DCHECK(rt.IsFPRegister());
    916     return rt.Is64Bits() ? LDP_d : LDP_s;
    917   }
    918 }
    919 
    920 
    921 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
    922   DCHECK(rt.IsValid());
    923   if (rt.IsRegister()) {
    924     return rt.Is64Bits() ? STR_x : STR_w;
    925   } else {
    926     DCHECK(rt.IsFPRegister());
    927     return rt.Is64Bits() ? STR_d : STR_s;
    928   }
    929 }
    930 
    931 
    932 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
    933                                           const CPURegister& rt2) {
    934   DCHECK(AreSameSizeAndType(rt, rt2));
    935   USE(rt2);
    936   if (rt.IsRegister()) {
    937     return rt.Is64Bits() ? STP_x : STP_w;
    938   } else {
    939     DCHECK(rt.IsFPRegister());
    940     return rt.Is64Bits() ? STP_d : STP_s;
    941   }
    942 }
    943 
    944 
    945 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
    946   if (rt.IsRegister()) {
    947     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
    948   } else {
    949     DCHECK(rt.IsFPRegister());
    950     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
    951   }
    952 }
    953 
    954 
    955 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
    956   DCHECK(kStartOfLabelLinkChain == 0);
    957   int offset = LinkAndGetByteOffsetTo(label);
    958   DCHECK(IsAligned(offset, kInstructionSize));
    959   return offset >> kInstructionSizeLog2;
    960 }
    961 
    962 
    963 Instr Assembler::Flags(FlagsUpdate S) {
    964   if (S == SetFlags) {
    965     return 1 << FlagsUpdate_offset;
    966   } else if (S == LeaveFlags) {
    967     return 0 << FlagsUpdate_offset;
    968   }
    969   UNREACHABLE();
    970   return 0;
    971 }
    972 
    973 
    974 Instr Assembler::Cond(Condition cond) {
    975   return cond << Condition_offset;
    976 }
    977 
    978 
    979 Instr Assembler::ImmPCRelAddress(int imm21) {
    980   CHECK(is_int21(imm21));
    981   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
    982   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
    983   Instr immlo = imm << ImmPCRelLo_offset;
    984   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
    985 }
    986 
    987 
    988 Instr Assembler::ImmUncondBranch(int imm26) {
    989   CHECK(is_int26(imm26));
    990   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
    991 }
    992 
    993 
    994 Instr Assembler::ImmCondBranch(int imm19) {
    995   CHECK(is_int19(imm19));
    996   return truncate_to_int19(imm19) << ImmCondBranch_offset;
    997 }
    998 
    999 
   1000 Instr Assembler::ImmCmpBranch(int imm19) {
   1001   CHECK(is_int19(imm19));
   1002   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
   1003 }
   1004 
   1005 
   1006 Instr Assembler::ImmTestBranch(int imm14) {
   1007   CHECK(is_int14(imm14));
   1008   return truncate_to_int14(imm14) << ImmTestBranch_offset;
   1009 }
   1010 
   1011 
   1012 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
   1013   DCHECK(is_uint6(bit_pos));
   1014   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
   1015   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
   1016   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
   1017   b5 &= ImmTestBranchBit5_mask;
   1018   b40 &= ImmTestBranchBit40_mask;
   1019   return b5 | b40;
   1020 }
   1021 
   1022 
   1023 Instr Assembler::SF(Register rd) {
   1024     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
   1025 }
   1026 
   1027 
   1028 Instr Assembler::ImmAddSub(int imm) {
   1029   DCHECK(IsImmAddSub(imm));
   1030   if (is_uint12(imm)) {  // No shift required.
   1031     imm <<= ImmAddSub_offset;
   1032   } else {
   1033     imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
   1034   }
   1035   return imm;
   1036 }
   1037 
   1038 
   1039 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
   1040   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
   1041          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
   1042   USE(reg_size);
   1043   return imms << ImmS_offset;
   1044 }
   1045 
   1046 
   1047 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
   1048   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1049          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1050   USE(reg_size);
   1051   DCHECK(is_uint6(immr));
   1052   return immr << ImmR_offset;
   1053 }
   1054 
   1055 
   1056 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
   1057   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1058   DCHECK(is_uint6(imms));
   1059   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
   1060   USE(reg_size);
   1061   return imms << ImmSetBits_offset;
   1062 }
   1063 
   1064 
   1065 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
   1066   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1067   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
   1068          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
   1069   USE(reg_size);
   1070   return immr << ImmRotate_offset;
   1071 }
   1072 
   1073 
   1074 Instr Assembler::ImmLLiteral(int imm19) {
   1075   CHECK(is_int19(imm19));
   1076   return truncate_to_int19(imm19) << ImmLLiteral_offset;
   1077 }
   1078 
   1079 
   1080 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
   1081   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
   1082   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
   1083   USE(reg_size);
   1084   return bitn << BitN_offset;
   1085 }
   1086 
   1087 
   1088 Instr Assembler::ShiftDP(Shift shift) {
   1089   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
   1090   return shift << ShiftDP_offset;
   1091 }
   1092 
   1093 
   1094 Instr Assembler::ImmDPShift(unsigned amount) {
   1095   DCHECK(is_uint6(amount));
   1096   return amount << ImmDPShift_offset;
   1097 }
   1098 
   1099 
   1100 Instr Assembler::ExtendMode(Extend extend) {
   1101   return extend << ExtendMode_offset;
   1102 }
   1103 
   1104 
   1105 Instr Assembler::ImmExtendShift(unsigned left_shift) {
   1106   DCHECK(left_shift <= 4);
   1107   return left_shift << ImmExtendShift_offset;
   1108 }
   1109 
   1110 
   1111 Instr Assembler::ImmCondCmp(unsigned imm) {
   1112   DCHECK(is_uint5(imm));
   1113   return imm << ImmCondCmp_offset;
   1114 }
   1115 
   1116 
   1117 Instr Assembler::Nzcv(StatusFlags nzcv) {
   1118   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
   1119 }
   1120 
   1121 
   1122 Instr Assembler::ImmLSUnsigned(int imm12) {
   1123   DCHECK(is_uint12(imm12));
   1124   return imm12 << ImmLSUnsigned_offset;
   1125 }
   1126 
   1127 
   1128 Instr Assembler::ImmLS(int imm9) {
   1129   DCHECK(is_int9(imm9));
   1130   return truncate_to_int9(imm9) << ImmLS_offset;
   1131 }
   1132 
   1133 
   1134 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
   1135   DCHECK(((imm7 >> size) << size) == imm7);
   1136   int scaled_imm7 = imm7 >> size;
   1137   DCHECK(is_int7(scaled_imm7));
   1138   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
   1139 }
   1140 
   1141 
   1142 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
   1143   DCHECK(is_uint1(shift_amount));
   1144   return shift_amount << ImmShiftLS_offset;
   1145 }
   1146 
   1147 
   1148 Instr Assembler::ImmException(int imm16) {
   1149   DCHECK(is_uint16(imm16));
   1150   return imm16 << ImmException_offset;
   1151 }
   1152 
   1153 
   1154 Instr Assembler::ImmSystemRegister(int imm15) {
   1155   DCHECK(is_uint15(imm15));
   1156   return imm15 << ImmSystemRegister_offset;
   1157 }
   1158 
   1159 
   1160 Instr Assembler::ImmHint(int imm7) {
   1161   DCHECK(is_uint7(imm7));
   1162   return imm7 << ImmHint_offset;
   1163 }
   1164 
   1165 
   1166 Instr Assembler::ImmBarrierDomain(int imm2) {
   1167   DCHECK(is_uint2(imm2));
   1168   return imm2 << ImmBarrierDomain_offset;
   1169 }
   1170 
   1171 
   1172 Instr Assembler::ImmBarrierType(int imm2) {
   1173   DCHECK(is_uint2(imm2));
   1174   return imm2 << ImmBarrierType_offset;
   1175 }
   1176 
   1177 
   1178 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
   1179   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
   1180   return static_cast<LSDataSize>(op >> SizeLS_offset);
   1181 }
   1182 
   1183 
   1184 Instr Assembler::ImmMoveWide(int imm) {
   1185   DCHECK(is_uint16(imm));
   1186   return imm << ImmMoveWide_offset;
   1187 }
   1188 
   1189 
   1190 Instr Assembler::ShiftMoveWide(int shift) {
   1191   DCHECK(is_uint2(shift));
   1192   return shift << ShiftMoveWide_offset;
   1193 }
   1194 
   1195 
   1196 Instr Assembler::FPType(FPRegister fd) {
   1197   return fd.Is64Bits() ? FP64 : FP32;
   1198 }
   1199 
   1200 
   1201 Instr Assembler::FPScale(unsigned scale) {
   1202   DCHECK(is_uint6(scale));
   1203   return scale << FPScale_offset;
   1204 }
   1205 
   1206 
   1207 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
   1208   return reg.Is64Bits() ? xzr : wzr;
   1209 }
   1210 
   1211 
   1212 inline void Assembler::CheckBufferSpace() {
   1213   DCHECK(pc_ < (buffer_ + buffer_size_));
   1214   if (buffer_space() < kGap) {
   1215     GrowBuffer();
   1216   }
   1217 }
   1218 
   1219 
   1220 inline void Assembler::CheckBuffer() {
   1221   CheckBufferSpace();
   1222   if (pc_offset() >= next_veneer_pool_check_) {
   1223     CheckVeneerPool(false, true);
   1224   }
   1225   if (pc_offset() >= next_constant_pool_check_) {
   1226     CheckConstPool(false, true);
   1227   }
   1228 }
   1229 
   1230 
   1231 TypeFeedbackId Assembler::RecordedAstId() {
   1232   DCHECK(!recorded_ast_id_.IsNone());
   1233   return recorded_ast_id_;
   1234 }
   1235 
   1236 
   1237 void Assembler::ClearRecordedAstId() {
   1238   recorded_ast_id_ = TypeFeedbackId::None();
   1239 }
   1240 
   1241 
   1242 }  // namespace internal
   1243 }  // namespace v8
   1244 
   1245 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
   1246