Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/MachineScheduler.h"
     16 #include "llvm/ADT/PriorityQueue.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/MachineDominators.h"
     20 #include "llvm/CodeGen/MachineLoopInfo.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/Passes.h"
     23 #include "llvm/CodeGen/RegisterClassInfo.h"
     24 #include "llvm/CodeGen/ScheduleDFS.h"
     25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     26 #include "llvm/CodeGen/TargetPassConfig.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/GraphWriter.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Target/TargetInstrInfo.h"
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "misched"
     37 
     38 namespace llvm {
     39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
     40                            cl::desc("Force top-down list scheduling"));
     41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
     42                             cl::desc("Force bottom-up list scheduling"));
     43 cl::opt<bool>
     44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
     45                        cl::desc("Print critical path length to stdout"));
     46 }
     47 
     48 #ifndef NDEBUG
     49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
     50   cl::desc("Pop up a window to show MISched dags after they are processed"));
     51 
     52 /// In some situations a few uninteresting nodes depend on nearly all other
     53 /// nodes in the graph, provide a cutoff to hide them.
     54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
     55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
     56 
     57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
     58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
     59 
     60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
     61   cl::desc("Only schedule this function"));
     62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
     63   cl::desc("Only schedule this MBB#"));
     64 #else
     65 static bool ViewMISchedDAGs = false;
     66 #endif // NDEBUG
     67 
     68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
     69 /// size of the ready lists.
     70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
     71   cl::desc("Limit ready list to N instructions"), cl::init(256));
     72 
     73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
     74   cl::desc("Enable register pressure scheduling."), cl::init(true));
     75 
     76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
     77   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
     78 
     79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
     80                                         cl::desc("Enable memop clustering."),
     81                                         cl::init(true));
     82 
     83 // Experimental heuristics
     84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
     85   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
     86 
     87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
     88   cl::desc("Verify machine instrs before and after machine scheduling"));
     89 
     90 // DAG subtrees must have at least this many nodes.
     91 static const unsigned MinSubtreeSize = 8;
     92 
     93 // Pin the vtables to this file.
     94 void MachineSchedStrategy::anchor() {}
     95 void ScheduleDAGMutation::anchor() {}
     96 
     97 //===----------------------------------------------------------------------===//
     98 // Machine Instruction Scheduling Pass and Registry
     99 //===----------------------------------------------------------------------===//
    100 
    101 MachineSchedContext::MachineSchedContext():
    102     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
    103   RegClassInfo = new RegisterClassInfo();
    104 }
    105 
    106 MachineSchedContext::~MachineSchedContext() {
    107   delete RegClassInfo;
    108 }
    109 
    110 namespace {
    111 /// Base class for a machine scheduler class that can run at any point.
    112 class MachineSchedulerBase : public MachineSchedContext,
    113                              public MachineFunctionPass {
    114 public:
    115   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
    116 
    117   void print(raw_ostream &O, const Module* = nullptr) const override;
    118 
    119 protected:
    120   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
    121 };
    122 
    123 /// MachineScheduler runs after coalescing and before register allocation.
    124 class MachineScheduler : public MachineSchedulerBase {
    125 public:
    126   MachineScheduler();
    127 
    128   void getAnalysisUsage(AnalysisUsage &AU) const override;
    129 
    130   bool runOnMachineFunction(MachineFunction&) override;
    131 
    132   static char ID; // Class identification, replacement for typeinfo
    133 
    134 protected:
    135   ScheduleDAGInstrs *createMachineScheduler();
    136 };
    137 
    138 /// PostMachineScheduler runs after shortly before code emission.
    139 class PostMachineScheduler : public MachineSchedulerBase {
    140 public:
    141   PostMachineScheduler();
    142 
    143   void getAnalysisUsage(AnalysisUsage &AU) const override;
    144 
    145   bool runOnMachineFunction(MachineFunction&) override;
    146 
    147   static char ID; // Class identification, replacement for typeinfo
    148 
    149 protected:
    150   ScheduleDAGInstrs *createPostMachineScheduler();
    151 };
    152 } // namespace
    153 
    154 char MachineScheduler::ID = 0;
    155 
    156 char &llvm::MachineSchedulerID = MachineScheduler::ID;
    157 
    158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
    159                       "Machine Instruction Scheduler", false, false)
    160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
    164                     "Machine Instruction Scheduler", false, false)
    165 
    166 MachineScheduler::MachineScheduler()
    167 : MachineSchedulerBase(ID) {
    168   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    169 }
    170 
    171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    172   AU.setPreservesCFG();
    173   AU.addRequiredID(MachineDominatorsID);
    174   AU.addRequired<MachineLoopInfo>();
    175   AU.addRequired<AAResultsWrapperPass>();
    176   AU.addRequired<TargetPassConfig>();
    177   AU.addRequired<SlotIndexes>();
    178   AU.addPreserved<SlotIndexes>();
    179   AU.addRequired<LiveIntervals>();
    180   AU.addPreserved<LiveIntervals>();
    181   MachineFunctionPass::getAnalysisUsage(AU);
    182 }
    183 
    184 char PostMachineScheduler::ID = 0;
    185 
    186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
    187 
    188 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
    189                 "PostRA Machine Instruction Scheduler", false, false)
    190 
    191 PostMachineScheduler::PostMachineScheduler()
    192 : MachineSchedulerBase(ID) {
    193   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
    194 }
    195 
    196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    197   AU.setPreservesCFG();
    198   AU.addRequiredID(MachineDominatorsID);
    199   AU.addRequired<MachineLoopInfo>();
    200   AU.addRequired<TargetPassConfig>();
    201   MachineFunctionPass::getAnalysisUsage(AU);
    202 }
    203 
    204 MachinePassRegistry MachineSchedRegistry::Registry;
    205 
    206 /// A dummy default scheduler factory indicates whether the scheduler
    207 /// is overridden on the command line.
    208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
    209   return nullptr;
    210 }
    211 
    212 /// MachineSchedOpt allows command line selection of the scheduler.
    213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
    214                RegisterPassParser<MachineSchedRegistry> >
    215 MachineSchedOpt("misched",
    216                 cl::init(&useDefaultMachineSched), cl::Hidden,
    217                 cl::desc("Machine instruction scheduler to use"));
    218 
    219 static MachineSchedRegistry
    220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
    221                      useDefaultMachineSched);
    222 
    223 static cl::opt<bool> EnableMachineSched(
    224     "enable-misched",
    225     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
    226     cl::Hidden);
    227 
    228 static cl::opt<bool> EnablePostRAMachineSched(
    229     "enable-post-misched",
    230     cl::desc("Enable the post-ra machine instruction scheduling pass."),
    231     cl::init(true), cl::Hidden);
    232 
    233 /// Forward declare the standard machine scheduler. This will be used as the
    234 /// default scheduler if the target does not set a default.
    235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
    236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
    237 
    238 /// Decrement this iterator until reaching the top or a non-debug instr.
    239 static MachineBasicBlock::const_iterator
    240 priorNonDebug(MachineBasicBlock::const_iterator I,
    241               MachineBasicBlock::const_iterator Beg) {
    242   assert(I != Beg && "reached the top of the region, cannot decrement");
    243   while (--I != Beg) {
    244     if (!I->isDebugValue())
    245       break;
    246   }
    247   return I;
    248 }
    249 
    250 /// Non-const version.
    251 static MachineBasicBlock::iterator
    252 priorNonDebug(MachineBasicBlock::iterator I,
    253               MachineBasicBlock::const_iterator Beg) {
    254   return const_cast<MachineInstr*>(
    255     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
    256 }
    257 
    258 /// If this iterator is a debug value, increment until reaching the End or a
    259 /// non-debug instruction.
    260 static MachineBasicBlock::const_iterator
    261 nextIfDebug(MachineBasicBlock::const_iterator I,
    262             MachineBasicBlock::const_iterator End) {
    263   for(; I != End; ++I) {
    264     if (!I->isDebugValue())
    265       break;
    266   }
    267   return I;
    268 }
    269 
    270 /// Non-const version.
    271 static MachineBasicBlock::iterator
    272 nextIfDebug(MachineBasicBlock::iterator I,
    273             MachineBasicBlock::const_iterator End) {
    274   // Cast the return value to nonconst MachineInstr, then cast to an
    275   // instr_iterator, which does not check for null, finally return a
    276   // bundle_iterator.
    277   return MachineBasicBlock::instr_iterator(
    278     const_cast<MachineInstr*>(
    279       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
    280 }
    281 
    282 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
    283 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
    284   // Select the scheduler, or set the default.
    285   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
    286   if (Ctor != useDefaultMachineSched)
    287     return Ctor(this);
    288 
    289   // Get the default scheduler set by the target for this function.
    290   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
    291   if (Scheduler)
    292     return Scheduler;
    293 
    294   // Default to GenericScheduler.
    295   return createGenericSchedLive(this);
    296 }
    297 
    298 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
    299 /// the caller. We don't have a command line option to override the postRA
    300 /// scheduler. The Target must configure it.
    301 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
    302   // Get the postRA scheduler set by the target for this function.
    303   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
    304   if (Scheduler)
    305     return Scheduler;
    306 
    307   // Default to GenericScheduler.
    308   return createGenericSchedPostRA(this);
    309 }
    310 
    311 /// Top-level MachineScheduler pass driver.
    312 ///
    313 /// Visit blocks in function order. Divide each block into scheduling regions
    314 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
    315 /// consistent with the DAG builder, which traverses the interior of the
    316 /// scheduling regions bottom-up.
    317 ///
    318 /// This design avoids exposing scheduling boundaries to the DAG builder,
    319 /// simplifying the DAG builder's support for "special" target instructions.
    320 /// At the same time the design allows target schedulers to operate across
    321 /// scheduling boundaries, for example to bundle the boudary instructions
    322 /// without reordering them. This creates complexity, because the target
    323 /// scheduler must update the RegionBegin and RegionEnd positions cached by
    324 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
    325 /// design would be to split blocks at scheduling boundaries, but LLVM has a
    326 /// general bias against block splitting purely for implementation simplicity.
    327 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    328   if (skipFunction(*mf.getFunction()))
    329     return false;
    330 
    331   if (EnableMachineSched.getNumOccurrences()) {
    332     if (!EnableMachineSched)
    333       return false;
    334   } else if (!mf.getSubtarget().enableMachineScheduler())
    335     return false;
    336 
    337   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
    338 
    339   // Initialize the context of the pass.
    340   MF = &mf;
    341   MLI = &getAnalysis<MachineLoopInfo>();
    342   MDT = &getAnalysis<MachineDominatorTree>();
    343   PassConfig = &getAnalysis<TargetPassConfig>();
    344   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    345 
    346   LIS = &getAnalysis<LiveIntervals>();
    347 
    348   if (VerifyScheduling) {
    349     DEBUG(LIS->dump());
    350     MF->verify(this, "Before machine scheduling.");
    351   }
    352   RegClassInfo->runOnMachineFunction(*MF);
    353 
    354   // Instantiate the selected scheduler for this target, function, and
    355   // optimization level.
    356   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
    357   scheduleRegions(*Scheduler, false);
    358 
    359   DEBUG(LIS->dump());
    360   if (VerifyScheduling)
    361     MF->verify(this, "After machine scheduling.");
    362   return true;
    363 }
    364 
    365 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    366   if (skipFunction(*mf.getFunction()))
    367     return false;
    368 
    369   if (EnablePostRAMachineSched.getNumOccurrences()) {
    370     if (!EnablePostRAMachineSched)
    371       return false;
    372   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
    373     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
    374     return false;
    375   }
    376   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
    377 
    378   // Initialize the context of the pass.
    379   MF = &mf;
    380   PassConfig = &getAnalysis<TargetPassConfig>();
    381 
    382   if (VerifyScheduling)
    383     MF->verify(this, "Before post machine scheduling.");
    384 
    385   // Instantiate the selected scheduler for this target, function, and
    386   // optimization level.
    387   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
    388   scheduleRegions(*Scheduler, true);
    389 
    390   if (VerifyScheduling)
    391     MF->verify(this, "After post machine scheduling.");
    392   return true;
    393 }
    394 
    395 /// Return true of the given instruction should not be included in a scheduling
    396 /// region.
    397 ///
    398 /// MachineScheduler does not currently support scheduling across calls. To
    399 /// handle calls, the DAG builder needs to be modified to create register
    400 /// anti/output dependencies on the registers clobbered by the call's regmask
    401 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
    402 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
    403 /// the boundary, but there would be no benefit to postRA scheduling across
    404 /// calls this late anyway.
    405 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
    406                             MachineBasicBlock *MBB,
    407                             MachineFunction *MF,
    408                             const TargetInstrInfo *TII) {
    409   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
    410 }
    411 
    412 /// Main driver for both MachineScheduler and PostMachineScheduler.
    413 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
    414                                            bool FixKillFlags) {
    415   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    416 
    417   // Visit all machine basic blocks.
    418   //
    419   // TODO: Visit blocks in global postorder or postorder within the bottom-up
    420   // loop tree. Then we can optionally compute global RegPressure.
    421   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
    422        MBB != MBBEnd; ++MBB) {
    423 
    424     Scheduler.startBlock(&*MBB);
    425 
    426 #ifndef NDEBUG
    427     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
    428       continue;
    429     if (SchedOnlyBlock.getNumOccurrences()
    430         && (int)SchedOnlyBlock != MBB->getNumber())
    431       continue;
    432 #endif
    433 
    434     // Break the block into scheduling regions [I, RegionEnd), and schedule each
    435     // region as soon as it is discovered. RegionEnd points the scheduling
    436     // boundary at the bottom of the region. The DAG does not include RegionEnd,
    437     // but the region does (i.e. the next RegionEnd is above the previous
    438     // RegionBegin). If the current block has no terminator then RegionEnd ==
    439     // MBB->end() for the bottom region.
    440     //
    441     // The Scheduler may insert instructions during either schedule() or
    442     // exitRegion(), even for empty regions. So the local iterators 'I' and
    443     // 'RegionEnd' are invalid across these calls.
    444     //
    445     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
    446     // as a single instruction.
    447     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
    448         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
    449 
    450       // Avoid decrementing RegionEnd for blocks with no terminator.
    451       if (RegionEnd != MBB->end() ||
    452           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
    453         --RegionEnd;
    454       }
    455 
    456       // The next region starts above the previous region. Look backward in the
    457       // instruction stream until we find the nearest boundary.
    458       unsigned NumRegionInstrs = 0;
    459       MachineBasicBlock::iterator I = RegionEnd;
    460       for (;I != MBB->begin(); --I) {
    461         if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
    462           break;
    463         if (!I->isDebugValue())
    464           ++NumRegionInstrs;
    465       }
    466       // Notify the scheduler of the region, even if we may skip scheduling
    467       // it. Perhaps it still needs to be bundled.
    468       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
    469 
    470       // Skip empty scheduling regions (0 or 1 schedulable instructions).
    471       if (I == RegionEnd || I == std::prev(RegionEnd)) {
    472         // Close the current region. Bundle the terminator if needed.
    473         // This invalidates 'RegionEnd' and 'I'.
    474         Scheduler.exitRegion();
    475         continue;
    476       }
    477       DEBUG(dbgs() << "********** MI Scheduling **********\n");
    478       DEBUG(dbgs() << MF->getName()
    479             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
    480             << "\n  From: " << *I << "    To: ";
    481             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
    482             else dbgs() << "End";
    483             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
    484       if (DumpCriticalPathLength) {
    485         errs() << MF->getName();
    486         errs() << ":BB# " << MBB->getNumber();
    487         errs() << " " << MBB->getName() << " \n";
    488       }
    489 
    490       // Schedule a region: possibly reorder instructions.
    491       // This invalidates 'RegionEnd' and 'I'.
    492       Scheduler.schedule();
    493 
    494       // Close the current region.
    495       Scheduler.exitRegion();
    496 
    497       // Scheduling has invalidated the current iterator 'I'. Ask the
    498       // scheduler for the top of it's scheduled region.
    499       RegionEnd = Scheduler.begin();
    500     }
    501     Scheduler.finishBlock();
    502     // FIXME: Ideally, no further passes should rely on kill flags. However,
    503     // thumb2 size reduction is currently an exception, so the PostMIScheduler
    504     // needs to do this.
    505     if (FixKillFlags)
    506         Scheduler.fixupKills(&*MBB);
    507   }
    508   Scheduler.finalizeSchedule();
    509 }
    510 
    511 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
    512   // unimplemented
    513 }
    514 
    515 LLVM_DUMP_METHOD
    516 void ReadyQueue::dump() {
    517   dbgs() << "Queue " << Name << ": ";
    518   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
    519     dbgs() << Queue[i]->NodeNum << " ";
    520   dbgs() << "\n";
    521 }
    522 
    523 //===----------------------------------------------------------------------===//
    524 // ScheduleDAGMI - Basic machine instruction scheduling. This is
    525 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
    526 // virtual registers.
    527 // ===----------------------------------------------------------------------===/
    528 
    529 // Provide a vtable anchor.
    530 ScheduleDAGMI::~ScheduleDAGMI() {
    531 }
    532 
    533 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
    534   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
    535 }
    536 
    537 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
    538   if (SuccSU != &ExitSU) {
    539     // Do not use WillCreateCycle, it assumes SD scheduling.
    540     // If Pred is reachable from Succ, then the edge creates a cycle.
    541     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
    542       return false;
    543     Topo.AddPred(SuccSU, PredDep.getSUnit());
    544   }
    545   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
    546   // Return true regardless of whether a new edge needed to be inserted.
    547   return true;
    548 }
    549 
    550 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
    551 /// NumPredsLeft reaches zero, release the successor node.
    552 ///
    553 /// FIXME: Adjust SuccSU height based on MinLatency.
    554 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
    555   SUnit *SuccSU = SuccEdge->getSUnit();
    556 
    557   if (SuccEdge->isWeak()) {
    558     --SuccSU->WeakPredsLeft;
    559     if (SuccEdge->isCluster())
    560       NextClusterSucc = SuccSU;
    561     return;
    562   }
    563 #ifndef NDEBUG
    564   if (SuccSU->NumPredsLeft == 0) {
    565     dbgs() << "*** Scheduling failed! ***\n";
    566     SuccSU->dump(this);
    567     dbgs() << " has been released too many times!\n";
    568     llvm_unreachable(nullptr);
    569   }
    570 #endif
    571   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
    572   // CurrCycle may have advanced since then.
    573   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
    574     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
    575 
    576   --SuccSU->NumPredsLeft;
    577   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    578     SchedImpl->releaseTopNode(SuccSU);
    579 }
    580 
    581 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
    582 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
    583   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    584        I != E; ++I) {
    585     releaseSucc(SU, &*I);
    586   }
    587 }
    588 
    589 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
    590 /// NumSuccsLeft reaches zero, release the predecessor node.
    591 ///
    592 /// FIXME: Adjust PredSU height based on MinLatency.
    593 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
    594   SUnit *PredSU = PredEdge->getSUnit();
    595 
    596   if (PredEdge->isWeak()) {
    597     --PredSU->WeakSuccsLeft;
    598     if (PredEdge->isCluster())
    599       NextClusterPred = PredSU;
    600     return;
    601   }
    602 #ifndef NDEBUG
    603   if (PredSU->NumSuccsLeft == 0) {
    604     dbgs() << "*** Scheduling failed! ***\n";
    605     PredSU->dump(this);
    606     dbgs() << " has been released too many times!\n";
    607     llvm_unreachable(nullptr);
    608   }
    609 #endif
    610   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
    611   // CurrCycle may have advanced since then.
    612   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
    613     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
    614 
    615   --PredSU->NumSuccsLeft;
    616   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    617     SchedImpl->releaseBottomNode(PredSU);
    618 }
    619 
    620 /// releasePredecessors - Call releasePred on each of SU's predecessors.
    621 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
    622   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    623        I != E; ++I) {
    624     releasePred(SU, &*I);
    625   }
    626 }
    627 
    628 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    629 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    630 /// the region, including the boundary itself and single-instruction regions
    631 /// that don't get scheduled.
    632 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
    633                                      MachineBasicBlock::iterator begin,
    634                                      MachineBasicBlock::iterator end,
    635                                      unsigned regioninstrs)
    636 {
    637   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
    638 
    639   SchedImpl->initPolicy(begin, end, regioninstrs);
    640 }
    641 
    642 /// This is normally called from the main scheduler loop but may also be invoked
    643 /// by the scheduling strategy to perform additional code motion.
    644 void ScheduleDAGMI::moveInstruction(
    645   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
    646   // Advance RegionBegin if the first instruction moves down.
    647   if (&*RegionBegin == MI)
    648     ++RegionBegin;
    649 
    650   // Update the instruction stream.
    651   BB->splice(InsertPos, BB, MI);
    652 
    653   // Update LiveIntervals
    654   if (LIS)
    655     LIS->handleMove(*MI, /*UpdateFlags=*/true);
    656 
    657   // Recede RegionBegin if an instruction moves above the first.
    658   if (RegionBegin == InsertPos)
    659     RegionBegin = MI;
    660 }
    661 
    662 bool ScheduleDAGMI::checkSchedLimit() {
    663 #ifndef NDEBUG
    664   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    665     CurrentTop = CurrentBottom;
    666     return false;
    667   }
    668   ++NumInstrsScheduled;
    669 #endif
    670   return true;
    671 }
    672 
    673 /// Per-region scheduling driver, called back from
    674 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
    675 /// does not consider liveness or register pressure. It is useful for PostRA
    676 /// scheduling and potentially other custom schedulers.
    677 void ScheduleDAGMI::schedule() {
    678   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
    679   DEBUG(SchedImpl->dumpPolicy());
    680 
    681   // Build the DAG.
    682   buildSchedGraph(AA);
    683 
    684   Topo.InitDAGTopologicalSorting();
    685 
    686   postprocessDAG();
    687 
    688   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    689   findRootsAndBiasEdges(TopRoots, BotRoots);
    690 
    691   // Initialize the strategy before modifying the DAG.
    692   // This may initialize a DFSResult to be used for queue priority.
    693   SchedImpl->initialize(this);
    694 
    695   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    696           SUnits[su].dumpAll(this));
    697   if (ViewMISchedDAGs) viewGraph();
    698 
    699   // Initialize ready queues now that the DAG and priority data are finalized.
    700   initQueues(TopRoots, BotRoots);
    701 
    702   bool IsTopNode = false;
    703   while (true) {
    704     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
    705     SUnit *SU = SchedImpl->pickNode(IsTopNode);
    706     if (!SU) break;
    707 
    708     assert(!SU->isScheduled && "Node already scheduled");
    709     if (!checkSchedLimit())
    710       break;
    711 
    712     MachineInstr *MI = SU->getInstr();
    713     if (IsTopNode) {
    714       assert(SU->isTopReady() && "node still has unscheduled dependencies");
    715       if (&*CurrentTop == MI)
    716         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    717       else
    718         moveInstruction(MI, CurrentTop);
    719     } else {
    720       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    721       MachineBasicBlock::iterator priorII =
    722         priorNonDebug(CurrentBottom, CurrentTop);
    723       if (&*priorII == MI)
    724         CurrentBottom = priorII;
    725       else {
    726         if (&*CurrentTop == MI)
    727           CurrentTop = nextIfDebug(++CurrentTop, priorII);
    728         moveInstruction(MI, CurrentBottom);
    729         CurrentBottom = MI;
    730       }
    731     }
    732     // Notify the scheduling strategy before updating the DAG.
    733     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
    734     // runs, it can then use the accurate ReadyCycle time to determine whether
    735     // newly released nodes can move to the readyQ.
    736     SchedImpl->schedNode(SU, IsTopNode);
    737 
    738     updateQueues(SU, IsTopNode);
    739   }
    740   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    741 
    742   placeDebugValues();
    743 
    744   DEBUG({
    745       unsigned BBNum = begin()->getParent()->getNumber();
    746       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
    747       dumpSchedule();
    748       dbgs() << '\n';
    749     });
    750 }
    751 
    752 /// Apply each ScheduleDAGMutation step in order.
    753 void ScheduleDAGMI::postprocessDAG() {
    754   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
    755     Mutations[i]->apply(this);
    756   }
    757 }
    758 
    759 void ScheduleDAGMI::
    760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    761                       SmallVectorImpl<SUnit*> &BotRoots) {
    762   for (std::vector<SUnit>::iterator
    763          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    764     SUnit *SU = &(*I);
    765     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
    766 
    767     // Order predecessors so DFSResult follows the critical path.
    768     SU->biasCriticalPath();
    769 
    770     // A SUnit is ready to top schedule if it has no predecessors.
    771     if (!I->NumPredsLeft)
    772       TopRoots.push_back(SU);
    773     // A SUnit is ready to bottom schedule if it has no successors.
    774     if (!I->NumSuccsLeft)
    775       BotRoots.push_back(SU);
    776   }
    777   ExitSU.biasCriticalPath();
    778 }
    779 
    780 /// Identify DAG roots and setup scheduler queues.
    781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
    782                                ArrayRef<SUnit*> BotRoots) {
    783   NextClusterSucc = nullptr;
    784   NextClusterPred = nullptr;
    785 
    786   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
    787   //
    788   // Nodes with unreleased weak edges can still be roots.
    789   // Release top roots in forward order.
    790   for (SmallVectorImpl<SUnit*>::const_iterator
    791          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
    792     SchedImpl->releaseTopNode(*I);
    793   }
    794   // Release bottom roots in reverse order so the higher priority nodes appear
    795   // first. This is more natural and slightly more efficient.
    796   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
    797          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    798     SchedImpl->releaseBottomNode(*I);
    799   }
    800 
    801   releaseSuccessors(&EntrySU);
    802   releasePredecessors(&ExitSU);
    803 
    804   SchedImpl->registerRoots();
    805 
    806   // Advance past initial DebugValues.
    807   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
    808   CurrentBottom = RegionEnd;
    809 }
    810 
    811 /// Update scheduler queues after scheduling an instruction.
    812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
    813   // Release dependent instructions for scheduling.
    814   if (IsTopNode)
    815     releaseSuccessors(SU);
    816   else
    817     releasePredecessors(SU);
    818 
    819   SU->isScheduled = true;
    820 }
    821 
    822 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
    823 void ScheduleDAGMI::placeDebugValues() {
    824   // If first instruction was a DBG_VALUE then put it back.
    825   if (FirstDbgValue) {
    826     BB->splice(RegionBegin, BB, FirstDbgValue);
    827     RegionBegin = FirstDbgValue;
    828   }
    829 
    830   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    831          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    832     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    833     MachineInstr *DbgValue = P.first;
    834     MachineBasicBlock::iterator OrigPrevMI = P.second;
    835     if (&*RegionBegin == DbgValue)
    836       ++RegionBegin;
    837     BB->splice(++OrigPrevMI, BB, DbgValue);
    838     if (OrigPrevMI == std::prev(RegionEnd))
    839       RegionEnd = DbgValue;
    840   }
    841   DbgValues.clear();
    842   FirstDbgValue = nullptr;
    843 }
    844 
    845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    846 void ScheduleDAGMI::dumpSchedule() const {
    847   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    848     if (SUnit *SU = getSUnit(&(*MI)))
    849       SU->dump(this);
    850     else
    851       dbgs() << "Missing SUnit\n";
    852   }
    853 }
    854 #endif
    855 
    856 //===----------------------------------------------------------------------===//
    857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
    858 // preservation.
    859 //===----------------------------------------------------------------------===//
    860 
    861 ScheduleDAGMILive::~ScheduleDAGMILive() {
    862   delete DFSResult;
    863 }
    864 
    865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    866 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    867 /// the region, including the boundary itself and single-instruction regions
    868 /// that don't get scheduled.
    869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
    870                                 MachineBasicBlock::iterator begin,
    871                                 MachineBasicBlock::iterator end,
    872                                 unsigned regioninstrs)
    873 {
    874   // ScheduleDAGMI initializes SchedImpl's per-region policy.
    875   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
    876 
    877   // For convenience remember the end of the liveness region.
    878   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
    879 
    880   SUPressureDiffs.clear();
    881 
    882   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
    883   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
    884 
    885   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
    886          "ShouldTrackLaneMasks requires ShouldTrackPressure");
    887 }
    888 
    889 // Setup the register pressure trackers for the top scheduled top and bottom
    890 // scheduled regions.
    891 void ScheduleDAGMILive::initRegPressure() {
    892   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
    893                     ShouldTrackLaneMasks, false);
    894   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
    895                     ShouldTrackLaneMasks, false);
    896 
    897   // Close the RPTracker to finalize live ins.
    898   RPTracker.closeRegion();
    899 
    900   DEBUG(RPTracker.dump());
    901 
    902   // Initialize the live ins and live outs.
    903   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
    904   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
    905 
    906   // Close one end of the tracker so we can call
    907   // getMaxUpward/DownwardPressureDelta before advancing across any
    908   // instructions. This converts currently live regs into live ins/outs.
    909   TopRPTracker.closeTop();
    910   BotRPTracker.closeBottom();
    911 
    912   BotRPTracker.initLiveThru(RPTracker);
    913   if (!BotRPTracker.getLiveThru().empty()) {
    914     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
    915     DEBUG(dbgs() << "Live Thru: ";
    916           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
    917   };
    918 
    919   // For each live out vreg reduce the pressure change associated with other
    920   // uses of the same vreg below the live-out reaching def.
    921   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
    922 
    923   // Account for liveness generated by the region boundary.
    924   if (LiveRegionEnd != RegionEnd) {
    925     SmallVector<RegisterMaskPair, 8> LiveUses;
    926     BotRPTracker.recede(&LiveUses);
    927     updatePressureDiffs(LiveUses);
    928   }
    929 
    930   DEBUG(
    931     dbgs() << "Top Pressure:\n";
    932     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
    933     dbgs() << "Bottom Pressure:\n";
    934     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
    935   );
    936 
    937   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
    938 
    939   // Cache the list of excess pressure sets in this region. This will also track
    940   // the max pressure in the scheduled code for these sets.
    941   RegionCriticalPSets.clear();
    942   const std::vector<unsigned> &RegionPressure =
    943     RPTracker.getPressure().MaxSetPressure;
    944   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    945     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
    946     if (RegionPressure[i] > Limit) {
    947       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
    948             << " Limit " << Limit
    949             << " Actual " << RegionPressure[i] << "\n");
    950       RegionCriticalPSets.push_back(PressureChange(i));
    951     }
    952   }
    953   DEBUG(dbgs() << "Excess PSets: ";
    954         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
    955           dbgs() << TRI->getRegPressureSetName(
    956             RegionCriticalPSets[i].getPSet()) << " ";
    957         dbgs() << "\n");
    958 }
    959 
    960 void ScheduleDAGMILive::
    961 updateScheduledPressure(const SUnit *SU,
    962                         const std::vector<unsigned> &NewMaxPressure) {
    963   const PressureDiff &PDiff = getPressureDiff(SU);
    964   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
    965   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
    966        I != E; ++I) {
    967     if (!I->isValid())
    968       break;
    969     unsigned ID = I->getPSet();
    970     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
    971       ++CritIdx;
    972     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
    973       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
    974           && NewMaxPressure[ID] <= INT16_MAX)
    975         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
    976     }
    977     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
    978     if (NewMaxPressure[ID] >= Limit - 2) {
    979       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
    980             << NewMaxPressure[ID]
    981             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
    982             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
    983     }
    984   }
    985 }
    986 
    987 /// Update the PressureDiff array for liveness after scheduling this
    988 /// instruction.
    989 void ScheduleDAGMILive::updatePressureDiffs(
    990     ArrayRef<RegisterMaskPair> LiveUses) {
    991   for (const RegisterMaskPair &P : LiveUses) {
    992     unsigned Reg = P.RegUnit;
    993     /// FIXME: Currently assuming single-use physregs.
    994     if (!TRI->isVirtualRegister(Reg))
    995       continue;
    996 
    997     if (ShouldTrackLaneMasks) {
    998       // If the register has just become live then other uses won't change
    999       // this fact anymore => decrement pressure.
   1000       // If the register has just become dead then other uses make it come
   1001       // back to life => increment pressure.
   1002       bool Decrement = P.LaneMask != 0;
   1003 
   1004       for (const VReg2SUnit &V2SU
   1005            : make_range(VRegUses.find(Reg), VRegUses.end())) {
   1006         SUnit &SU = *V2SU.SU;
   1007         if (SU.isScheduled || &SU == &ExitSU)
   1008           continue;
   1009 
   1010         PressureDiff &PDiff = getPressureDiff(&SU);
   1011         PDiff.addPressureChange(Reg, Decrement, &MRI);
   1012         DEBUG(
   1013           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
   1014                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
   1015                  << ' ' << *SU.getInstr();
   1016           dbgs() << "              to ";
   1017           PDiff.dump(*TRI);
   1018         );
   1019       }
   1020     } else {
   1021       assert(P.LaneMask != 0);
   1022       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
   1023       // This may be called before CurrentBottom has been initialized. However,
   1024       // BotRPTracker must have a valid position. We want the value live into the
   1025       // instruction or live out of the block, so ask for the previous
   1026       // instruction's live-out.
   1027       const LiveInterval &LI = LIS->getInterval(Reg);
   1028       VNInfo *VNI;
   1029       MachineBasicBlock::const_iterator I =
   1030         nextIfDebug(BotRPTracker.getPos(), BB->end());
   1031       if (I == BB->end())
   1032         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
   1033       else {
   1034         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
   1035         VNI = LRQ.valueIn();
   1036       }
   1037       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
   1038       assert(VNI && "No live value at use.");
   1039       for (const VReg2SUnit &V2SU
   1040            : make_range(VRegUses.find(Reg), VRegUses.end())) {
   1041         SUnit *SU = V2SU.SU;
   1042         // If this use comes before the reaching def, it cannot be a last use,
   1043         // so decrease its pressure change.
   1044         if (!SU->isScheduled && SU != &ExitSU) {
   1045           LiveQueryResult LRQ =
   1046               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
   1047           if (LRQ.valueIn() == VNI) {
   1048             PressureDiff &PDiff = getPressureDiff(SU);
   1049             PDiff.addPressureChange(Reg, true, &MRI);
   1050             DEBUG(
   1051               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
   1052                      << *SU->getInstr();
   1053               dbgs() << "              to ";
   1054               PDiff.dump(*TRI);
   1055             );
   1056           }
   1057         }
   1058       }
   1059     }
   1060   }
   1061 }
   1062 
   1063 /// schedule - Called back from MachineScheduler::runOnMachineFunction
   1064 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
   1065 /// only includes instructions that have DAG nodes, not scheduling boundaries.
   1066 ///
   1067 /// This is a skeletal driver, with all the functionality pushed into helpers,
   1068 /// so that it can be easily extended by experimental schedulers. Generally,
   1069 /// implementing MachineSchedStrategy should be sufficient to implement a new
   1070 /// scheduling algorithm. However, if a scheduler further subclasses
   1071 /// ScheduleDAGMILive then it will want to override this virtual method in order
   1072 /// to update any specialized state.
   1073 void ScheduleDAGMILive::schedule() {
   1074   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
   1075   DEBUG(SchedImpl->dumpPolicy());
   1076   buildDAGWithRegPressure();
   1077 
   1078   Topo.InitDAGTopologicalSorting();
   1079 
   1080   postprocessDAG();
   1081 
   1082   SmallVector<SUnit*, 8> TopRoots, BotRoots;
   1083   findRootsAndBiasEdges(TopRoots, BotRoots);
   1084 
   1085   // Initialize the strategy before modifying the DAG.
   1086   // This may initialize a DFSResult to be used for queue priority.
   1087   SchedImpl->initialize(this);
   1088 
   1089   DEBUG(
   1090     for (const SUnit &SU : SUnits) {
   1091       SU.dumpAll(this);
   1092       if (ShouldTrackPressure) {
   1093         dbgs() << "  Pressure Diff      : ";
   1094         getPressureDiff(&SU).dump(*TRI);
   1095       }
   1096       dbgs() << '\n';
   1097     }
   1098   );
   1099   if (ViewMISchedDAGs) viewGraph();
   1100 
   1101   // Initialize ready queues now that the DAG and priority data are finalized.
   1102   initQueues(TopRoots, BotRoots);
   1103 
   1104   bool IsTopNode = false;
   1105   while (true) {
   1106     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
   1107     SUnit *SU = SchedImpl->pickNode(IsTopNode);
   1108     if (!SU) break;
   1109 
   1110     assert(!SU->isScheduled && "Node already scheduled");
   1111     if (!checkSchedLimit())
   1112       break;
   1113 
   1114     scheduleMI(SU, IsTopNode);
   1115 
   1116     if (DFSResult) {
   1117       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
   1118       if (!ScheduledTrees.test(SubtreeID)) {
   1119         ScheduledTrees.set(SubtreeID);
   1120         DFSResult->scheduleTree(SubtreeID);
   1121         SchedImpl->scheduleTree(SubtreeID);
   1122       }
   1123     }
   1124 
   1125     // Notify the scheduling strategy after updating the DAG.
   1126     SchedImpl->schedNode(SU, IsTopNode);
   1127 
   1128     updateQueues(SU, IsTopNode);
   1129   }
   1130   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
   1131 
   1132   placeDebugValues();
   1133 
   1134   DEBUG({
   1135       unsigned BBNum = begin()->getParent()->getNumber();
   1136       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
   1137       dumpSchedule();
   1138       dbgs() << '\n';
   1139     });
   1140 }
   1141 
   1142 /// Build the DAG and setup three register pressure trackers.
   1143 void ScheduleDAGMILive::buildDAGWithRegPressure() {
   1144   if (!ShouldTrackPressure) {
   1145     RPTracker.reset();
   1146     RegionCriticalPSets.clear();
   1147     buildSchedGraph(AA);
   1148     return;
   1149   }
   1150 
   1151   // Initialize the register pressure tracker used by buildSchedGraph.
   1152   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
   1153                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
   1154 
   1155   // Account for liveness generate by the region boundary.
   1156   if (LiveRegionEnd != RegionEnd)
   1157     RPTracker.recede();
   1158 
   1159   // Build the DAG, and compute current register pressure.
   1160   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
   1161 
   1162   // Initialize top/bottom trackers after computing region pressure.
   1163   initRegPressure();
   1164 }
   1165 
   1166 void ScheduleDAGMILive::computeDFSResult() {
   1167   if (!DFSResult)
   1168     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
   1169   DFSResult->clear();
   1170   ScheduledTrees.clear();
   1171   DFSResult->resize(SUnits.size());
   1172   DFSResult->compute(SUnits);
   1173   ScheduledTrees.resize(DFSResult->getNumSubtrees());
   1174 }
   1175 
   1176 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
   1177 /// only provides the critical path for single block loops. To handle loops that
   1178 /// span blocks, we could use the vreg path latencies provided by
   1179 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
   1180 /// available for use in the scheduler.
   1181 ///
   1182 /// The cyclic path estimation identifies a def-use pair that crosses the back
   1183 /// edge and considers the depth and height of the nodes. For example, consider
   1184 /// the following instruction sequence where each instruction has unit latency
   1185 /// and defines an epomymous virtual register:
   1186 ///
   1187 /// a->b(a,c)->c(b)->d(c)->exit
   1188 ///
   1189 /// The cyclic critical path is a two cycles: b->c->b
   1190 /// The acyclic critical path is four cycles: a->b->c->d->exit
   1191 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
   1192 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
   1193 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
   1194 /// LiveInDepth = depth(b) = len(a->b) = 1
   1195 ///
   1196 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
   1197 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
   1198 /// CyclicCriticalPath = min(2, 2) = 2
   1199 ///
   1200 /// This could be relevant to PostRA scheduling, but is currently implemented
   1201 /// assuming LiveIntervals.
   1202 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
   1203   // This only applies to single block loop.
   1204   if (!BB->isSuccessor(BB))
   1205     return 0;
   1206 
   1207   unsigned MaxCyclicLatency = 0;
   1208   // Visit each live out vreg def to find def/use pairs that cross iterations.
   1209   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
   1210     unsigned Reg = P.RegUnit;
   1211     if (!TRI->isVirtualRegister(Reg))
   1212         continue;
   1213     const LiveInterval &LI = LIS->getInterval(Reg);
   1214     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
   1215     if (!DefVNI)
   1216       continue;
   1217 
   1218     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
   1219     const SUnit *DefSU = getSUnit(DefMI);
   1220     if (!DefSU)
   1221       continue;
   1222 
   1223     unsigned LiveOutHeight = DefSU->getHeight();
   1224     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
   1225     // Visit all local users of the vreg def.
   1226     for (const VReg2SUnit &V2SU
   1227          : make_range(VRegUses.find(Reg), VRegUses.end())) {
   1228       SUnit *SU = V2SU.SU;
   1229       if (SU == &ExitSU)
   1230         continue;
   1231 
   1232       // Only consider uses of the phi.
   1233       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
   1234       if (!LRQ.valueIn()->isPHIDef())
   1235         continue;
   1236 
   1237       // Assume that a path spanning two iterations is a cycle, which could
   1238       // overestimate in strange cases. This allows cyclic latency to be
   1239       // estimated as the minimum slack of the vreg's depth or height.
   1240       unsigned CyclicLatency = 0;
   1241       if (LiveOutDepth > SU->getDepth())
   1242         CyclicLatency = LiveOutDepth - SU->getDepth();
   1243 
   1244       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
   1245       if (LiveInHeight > LiveOutHeight) {
   1246         if (LiveInHeight - LiveOutHeight < CyclicLatency)
   1247           CyclicLatency = LiveInHeight - LiveOutHeight;
   1248       } else
   1249         CyclicLatency = 0;
   1250 
   1251       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
   1252             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
   1253       if (CyclicLatency > MaxCyclicLatency)
   1254         MaxCyclicLatency = CyclicLatency;
   1255     }
   1256   }
   1257   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
   1258   return MaxCyclicLatency;
   1259 }
   1260 
   1261 /// Release ExitSU predecessors and setup scheduler queues. Re-position
   1262 /// the Top RP tracker in case the region beginning has changed.
   1263 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
   1264                                    ArrayRef<SUnit*> BotRoots) {
   1265   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
   1266   if (ShouldTrackPressure) {
   1267     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
   1268     TopRPTracker.setPos(CurrentTop);
   1269   }
   1270 }
   1271 
   1272 /// Move an instruction and update register pressure.
   1273 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
   1274   // Move the instruction to its new location in the instruction stream.
   1275   MachineInstr *MI = SU->getInstr();
   1276 
   1277   if (IsTopNode) {
   1278     assert(SU->isTopReady() && "node still has unscheduled dependencies");
   1279     if (&*CurrentTop == MI)
   1280       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
   1281     else {
   1282       moveInstruction(MI, CurrentTop);
   1283       TopRPTracker.setPos(MI);
   1284     }
   1285 
   1286     if (ShouldTrackPressure) {
   1287       // Update top scheduled pressure.
   1288       RegisterOperands RegOpers;
   1289       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
   1290       if (ShouldTrackLaneMasks) {
   1291         // Adjust liveness and add missing dead+read-undef flags.
   1292         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
   1293         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
   1294       } else {
   1295         // Adjust for missing dead-def flags.
   1296         RegOpers.detectDeadDefs(*MI, *LIS);
   1297       }
   1298 
   1299       TopRPTracker.advance(RegOpers);
   1300       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
   1301       DEBUG(
   1302         dbgs() << "Top Pressure:\n";
   1303         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
   1304       );
   1305 
   1306       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
   1307     }
   1308   } else {
   1309     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
   1310     MachineBasicBlock::iterator priorII =
   1311       priorNonDebug(CurrentBottom, CurrentTop);
   1312     if (&*priorII == MI)
   1313       CurrentBottom = priorII;
   1314     else {
   1315       if (&*CurrentTop == MI) {
   1316         CurrentTop = nextIfDebug(++CurrentTop, priorII);
   1317         TopRPTracker.setPos(CurrentTop);
   1318       }
   1319       moveInstruction(MI, CurrentBottom);
   1320       CurrentBottom = MI;
   1321     }
   1322     if (ShouldTrackPressure) {
   1323       RegisterOperands RegOpers;
   1324       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
   1325       if (ShouldTrackLaneMasks) {
   1326         // Adjust liveness and add missing dead+read-undef flags.
   1327         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
   1328         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
   1329       } else {
   1330         // Adjust for missing dead-def flags.
   1331         RegOpers.detectDeadDefs(*MI, *LIS);
   1332       }
   1333 
   1334       BotRPTracker.recedeSkipDebugValues();
   1335       SmallVector<RegisterMaskPair, 8> LiveUses;
   1336       BotRPTracker.recede(RegOpers, &LiveUses);
   1337       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
   1338       DEBUG(
   1339         dbgs() << "Bottom Pressure:\n";
   1340         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
   1341       );
   1342 
   1343       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
   1344       updatePressureDiffs(LiveUses);
   1345     }
   1346   }
   1347 }
   1348 
   1349 //===----------------------------------------------------------------------===//
   1350 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
   1351 //===----------------------------------------------------------------------===//
   1352 
   1353 namespace {
   1354 /// \brief Post-process the DAG to create cluster edges between neighboring
   1355 /// loads or between neighboring stores.
   1356 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
   1357   struct MemOpInfo {
   1358     SUnit *SU;
   1359     unsigned BaseReg;
   1360     int64_t Offset;
   1361     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
   1362         : SU(su), BaseReg(reg), Offset(ofs) {}
   1363 
   1364     bool operator<(const MemOpInfo&RHS) const {
   1365       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
   1366     }
   1367   };
   1368 
   1369   const TargetInstrInfo *TII;
   1370   const TargetRegisterInfo *TRI;
   1371   bool IsLoad;
   1372 
   1373 public:
   1374   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
   1375                            const TargetRegisterInfo *tri, bool IsLoad)
   1376       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
   1377 
   1378   void apply(ScheduleDAGInstrs *DAGInstrs) override;
   1379 
   1380 protected:
   1381   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
   1382 };
   1383 
   1384 class StoreClusterMutation : public BaseMemOpClusterMutation {
   1385 public:
   1386   StoreClusterMutation(const TargetInstrInfo *tii,
   1387                        const TargetRegisterInfo *tri)
   1388       : BaseMemOpClusterMutation(tii, tri, false) {}
   1389 };
   1390 
   1391 class LoadClusterMutation : public BaseMemOpClusterMutation {
   1392 public:
   1393   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
   1394       : BaseMemOpClusterMutation(tii, tri, true) {}
   1395 };
   1396 } // anonymous
   1397 
   1398 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
   1399     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
   1400   SmallVector<MemOpInfo, 32> MemOpRecords;
   1401   for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) {
   1402     SUnit *SU = MemOps[Idx];
   1403     unsigned BaseReg;
   1404     int64_t Offset;
   1405     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
   1406       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
   1407   }
   1408   if (MemOpRecords.size() < 2)
   1409     return;
   1410 
   1411   std::sort(MemOpRecords.begin(), MemOpRecords.end());
   1412   unsigned ClusterLength = 1;
   1413   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
   1414     if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) {
   1415       ClusterLength = 1;
   1416       continue;
   1417     }
   1418 
   1419     SUnit *SUa = MemOpRecords[Idx].SU;
   1420     SUnit *SUb = MemOpRecords[Idx+1].SU;
   1421     if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(),
   1422                                  ClusterLength) &&
   1423         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
   1424       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
   1425             << SUb->NodeNum << ")\n");
   1426       // Copy successor edges from SUa to SUb. Interleaving computation
   1427       // dependent on SUa can prevent load combining due to register reuse.
   1428       // Predecessor edges do not need to be copied from SUb to SUa since nearby
   1429       // loads should have effectively the same inputs.
   1430       for (SUnit::const_succ_iterator
   1431              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
   1432         if (SI->getSUnit() == SUb)
   1433           continue;
   1434         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
   1435         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
   1436       }
   1437       ++ClusterLength;
   1438     } else
   1439       ClusterLength = 1;
   1440   }
   1441 }
   1442 
   1443 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
   1444 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
   1445 
   1446   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
   1447 
   1448   // Map DAG NodeNum to store chain ID.
   1449   DenseMap<unsigned, unsigned> StoreChainIDs;
   1450   // Map each store chain to a set of dependent MemOps.
   1451   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
   1452   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1453     SUnit *SU = &DAG->SUnits[Idx];
   1454     if ((IsLoad && !SU->getInstr()->mayLoad()) ||
   1455         (!IsLoad && !SU->getInstr()->mayStore()))
   1456       continue;
   1457 
   1458     unsigned ChainPredID = DAG->SUnits.size();
   1459     for (SUnit::const_pred_iterator
   1460            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1461       if (PI->isCtrl()) {
   1462         ChainPredID = PI->getSUnit()->NodeNum;
   1463         break;
   1464       }
   1465     }
   1466     // Check if this chain-like pred has been seen
   1467     // before. ChainPredID==MaxNodeID at the top of the schedule.
   1468     unsigned NumChains = StoreChainDependents.size();
   1469     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
   1470       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
   1471     if (Result.second)
   1472       StoreChainDependents.resize(NumChains + 1);
   1473     StoreChainDependents[Result.first->second].push_back(SU);
   1474   }
   1475 
   1476   // Iterate over the store chains.
   1477   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
   1478     clusterNeighboringMemOps(StoreChainDependents[Idx], DAG);
   1479 }
   1480 
   1481 //===----------------------------------------------------------------------===//
   1482 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
   1483 //===----------------------------------------------------------------------===//
   1484 
   1485 namespace {
   1486 /// \brief Post-process the DAG to create cluster edges between instructions
   1487 /// that may be fused by the processor into a single operation.
   1488 class MacroFusion : public ScheduleDAGMutation {
   1489   const TargetInstrInfo &TII;
   1490   const TargetRegisterInfo &TRI;
   1491 public:
   1492   MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
   1493     : TII(TII), TRI(TRI) {}
   1494 
   1495   void apply(ScheduleDAGInstrs *DAGInstrs) override;
   1496 };
   1497 } // anonymous
   1498 
   1499 /// Returns true if \p MI reads a register written by \p Other.
   1500 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
   1501                        const MachineInstr &Other) {
   1502   for (const MachineOperand &MO : MI.uses()) {
   1503     if (!MO.isReg() || !MO.readsReg())
   1504       continue;
   1505 
   1506     unsigned Reg = MO.getReg();
   1507     if (Other.modifiesRegister(Reg, &TRI))
   1508       return true;
   1509   }
   1510   return false;
   1511 }
   1512 
   1513 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
   1514 /// fused operations.
   1515 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
   1516   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
   1517 
   1518   // For now, assume targets can only fuse with the branch.
   1519   SUnit &ExitSU = DAG->ExitSU;
   1520   MachineInstr *Branch = ExitSU.getInstr();
   1521   if (!Branch)
   1522     return;
   1523 
   1524   for (SUnit &SU : DAG->SUnits) {
   1525     // SUnits with successors can't be schedule in front of the ExitSU.
   1526     if (!SU.Succs.empty())
   1527       continue;
   1528     // We only care if the node writes to a register that the branch reads.
   1529     MachineInstr *Pred = SU.getInstr();
   1530     if (!HasDataDep(TRI, *Branch, *Pred))
   1531       continue;
   1532 
   1533     if (!TII.shouldScheduleAdjacent(*Pred, *Branch))
   1534       continue;
   1535 
   1536     // Create a single weak edge from SU to ExitSU. The only effect is to cause
   1537     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
   1538     // need to copy predecessor edges from ExitSU to SU, since top-down
   1539     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
   1540     // of SU, we could create an artificial edge from the deepest root, but it
   1541     // hasn't been needed yet.
   1542     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
   1543     (void)Success;
   1544     assert(Success && "No DAG nodes should be reachable from ExitSU");
   1545 
   1546     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
   1547     break;
   1548   }
   1549 }
   1550 
   1551 //===----------------------------------------------------------------------===//
   1552 // CopyConstrain - DAG post-processing to encourage copy elimination.
   1553 //===----------------------------------------------------------------------===//
   1554 
   1555 namespace {
   1556 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
   1557 /// the one use that defines the copy's source vreg, most likely an induction
   1558 /// variable increment.
   1559 class CopyConstrain : public ScheduleDAGMutation {
   1560   // Transient state.
   1561   SlotIndex RegionBeginIdx;
   1562   // RegionEndIdx is the slot index of the last non-debug instruction in the
   1563   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
   1564   SlotIndex RegionEndIdx;
   1565 public:
   1566   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
   1567 
   1568   void apply(ScheduleDAGInstrs *DAGInstrs) override;
   1569 
   1570 protected:
   1571   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
   1572 };
   1573 } // anonymous
   1574 
   1575 /// constrainLocalCopy handles two possibilities:
   1576 /// 1) Local src:
   1577 /// I0:     = dst
   1578 /// I1: src = ...
   1579 /// I2:     = dst
   1580 /// I3: dst = src (copy)
   1581 /// (create pred->succ edges I0->I1, I2->I1)
   1582 ///
   1583 /// 2) Local copy:
   1584 /// I0: dst = src (copy)
   1585 /// I1:     = dst
   1586 /// I2: src = ...
   1587 /// I3:     = dst
   1588 /// (create pred->succ edges I1->I2, I3->I2)
   1589 ///
   1590 /// Although the MachineScheduler is currently constrained to single blocks,
   1591 /// this algorithm should handle extended blocks. An EBB is a set of
   1592 /// contiguously numbered blocks such that the previous block in the EBB is
   1593 /// always the single predecessor.
   1594 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
   1595   LiveIntervals *LIS = DAG->getLIS();
   1596   MachineInstr *Copy = CopySU->getInstr();
   1597 
   1598   // Check for pure vreg copies.
   1599   const MachineOperand &SrcOp = Copy->getOperand(1);
   1600   unsigned SrcReg = SrcOp.getReg();
   1601   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
   1602     return;
   1603 
   1604   const MachineOperand &DstOp = Copy->getOperand(0);
   1605   unsigned DstReg = DstOp.getReg();
   1606   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
   1607     return;
   1608 
   1609   // Check if either the dest or source is local. If it's live across a back
   1610   // edge, it's not local. Note that if both vregs are live across the back
   1611   // edge, we cannot successfully contrain the copy without cyclic scheduling.
   1612   // If both the copy's source and dest are local live intervals, then we
   1613   // should treat the dest as the global for the purpose of adding
   1614   // constraints. This adds edges from source's other uses to the copy.
   1615   unsigned LocalReg = SrcReg;
   1616   unsigned GlobalReg = DstReg;
   1617   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
   1618   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
   1619     LocalReg = DstReg;
   1620     GlobalReg = SrcReg;
   1621     LocalLI = &LIS->getInterval(LocalReg);
   1622     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
   1623       return;
   1624   }
   1625   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
   1626 
   1627   // Find the global segment after the start of the local LI.
   1628   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
   1629   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
   1630   // local live range. We could create edges from other global uses to the local
   1631   // start, but the coalescer should have already eliminated these cases, so
   1632   // don't bother dealing with it.
   1633   if (GlobalSegment == GlobalLI->end())
   1634     return;
   1635 
   1636   // If GlobalSegment is killed at the LocalLI->start, the call to find()
   1637   // returned the next global segment. But if GlobalSegment overlaps with
   1638   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
   1639   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
   1640   if (GlobalSegment->contains(LocalLI->beginIndex()))
   1641     ++GlobalSegment;
   1642 
   1643   if (GlobalSegment == GlobalLI->end())
   1644     return;
   1645 
   1646   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
   1647   if (GlobalSegment != GlobalLI->begin()) {
   1648     // Two address defs have no hole.
   1649     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
   1650                                GlobalSegment->start)) {
   1651       return;
   1652     }
   1653     // If the prior global segment may be defined by the same two-address
   1654     // instruction that also defines LocalLI, then can't make a hole here.
   1655     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
   1656                                LocalLI->beginIndex())) {
   1657       return;
   1658     }
   1659     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
   1660     // it would be a disconnected component in the live range.
   1661     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
   1662            "Disconnected LRG within the scheduling region.");
   1663   }
   1664   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
   1665   if (!GlobalDef)
   1666     return;
   1667 
   1668   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
   1669   if (!GlobalSU)
   1670     return;
   1671 
   1672   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
   1673   // constraining the uses of the last local def to precede GlobalDef.
   1674   SmallVector<SUnit*,8> LocalUses;
   1675   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
   1676   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
   1677   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
   1678   for (SUnit::const_succ_iterator
   1679          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
   1680        I != E; ++I) {
   1681     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
   1682       continue;
   1683     if (I->getSUnit() == GlobalSU)
   1684       continue;
   1685     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
   1686       return;
   1687     LocalUses.push_back(I->getSUnit());
   1688   }
   1689   // Open the top of the GlobalLI hole by constraining any earlier global uses
   1690   // to precede the start of LocalLI.
   1691   SmallVector<SUnit*,8> GlobalUses;
   1692   MachineInstr *FirstLocalDef =
   1693     LIS->getInstructionFromIndex(LocalLI->beginIndex());
   1694   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
   1695   for (SUnit::const_pred_iterator
   1696          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
   1697     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
   1698       continue;
   1699     if (I->getSUnit() == FirstLocalSU)
   1700       continue;
   1701     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
   1702       return;
   1703     GlobalUses.push_back(I->getSUnit());
   1704   }
   1705   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
   1706   // Add the weak edges.
   1707   for (SmallVectorImpl<SUnit*>::const_iterator
   1708          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
   1709     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
   1710           << GlobalSU->NodeNum << ")\n");
   1711     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
   1712   }
   1713   for (SmallVectorImpl<SUnit*>::const_iterator
   1714          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
   1715     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
   1716           << FirstLocalSU->NodeNum << ")\n");
   1717     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
   1718   }
   1719 }
   1720 
   1721 /// \brief Callback from DAG postProcessing to create weak edges to encourage
   1722 /// copy elimination.
   1723 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
   1724   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
   1725   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
   1726 
   1727   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
   1728   if (FirstPos == DAG->end())
   1729     return;
   1730   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
   1731   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
   1732       *priorNonDebug(DAG->end(), DAG->begin()));
   1733 
   1734   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1735     SUnit *SU = &DAG->SUnits[Idx];
   1736     if (!SU->getInstr()->isCopy())
   1737       continue;
   1738 
   1739     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
   1740   }
   1741 }
   1742 
   1743 //===----------------------------------------------------------------------===//
   1744 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
   1745 // and possibly other custom schedulers.
   1746 //===----------------------------------------------------------------------===//
   1747 
   1748 static const unsigned InvalidCycle = ~0U;
   1749 
   1750 SchedBoundary::~SchedBoundary() { delete HazardRec; }
   1751 
   1752 void SchedBoundary::reset() {
   1753   // A new HazardRec is created for each DAG and owned by SchedBoundary.
   1754   // Destroying and reconstructing it is very expensive though. So keep
   1755   // invalid, placeholder HazardRecs.
   1756   if (HazardRec && HazardRec->isEnabled()) {
   1757     delete HazardRec;
   1758     HazardRec = nullptr;
   1759   }
   1760   Available.clear();
   1761   Pending.clear();
   1762   CheckPending = false;
   1763   NextSUs.clear();
   1764   CurrCycle = 0;
   1765   CurrMOps = 0;
   1766   MinReadyCycle = UINT_MAX;
   1767   ExpectedLatency = 0;
   1768   DependentLatency = 0;
   1769   RetiredMOps = 0;
   1770   MaxExecutedResCount = 0;
   1771   ZoneCritResIdx = 0;
   1772   IsResourceLimited = false;
   1773   ReservedCycles.clear();
   1774 #ifndef NDEBUG
   1775   // Track the maximum number of stall cycles that could arise either from the
   1776   // latency of a DAG edge or the number of cycles that a processor resource is
   1777   // reserved (SchedBoundary::ReservedCycles).
   1778   MaxObservedStall = 0;
   1779 #endif
   1780   // Reserve a zero-count for invalid CritResIdx.
   1781   ExecutedResCounts.resize(1);
   1782   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
   1783 }
   1784 
   1785 void SchedRemainder::
   1786 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
   1787   reset();
   1788   if (!SchedModel->hasInstrSchedModel())
   1789     return;
   1790   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
   1791   for (std::vector<SUnit>::iterator
   1792          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
   1793     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
   1794     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
   1795       * SchedModel->getMicroOpFactor();
   1796     for (TargetSchedModel::ProcResIter
   1797            PI = SchedModel->getWriteProcResBegin(SC),
   1798            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1799       unsigned PIdx = PI->ProcResourceIdx;
   1800       unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1801       RemainingCounts[PIdx] += (Factor * PI->Cycles);
   1802     }
   1803   }
   1804 }
   1805 
   1806 void SchedBoundary::
   1807 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
   1808   reset();
   1809   DAG = dag;
   1810   SchedModel = smodel;
   1811   Rem = rem;
   1812   if (SchedModel->hasInstrSchedModel()) {
   1813     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
   1814     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
   1815   }
   1816 }
   1817 
   1818 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
   1819 /// these "soft stalls" differently than the hard stall cycles based on CPU
   1820 /// resources and computed by checkHazard(). A fully in-order model
   1821 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
   1822 /// available for scheduling until they are ready. However, a weaker in-order
   1823 /// model may use this for heuristics. For example, if a processor has in-order
   1824 /// behavior when reading certain resources, this may come into play.
   1825 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
   1826   if (!SU->isUnbuffered)
   1827     return 0;
   1828 
   1829   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1830   if (ReadyCycle > CurrCycle)
   1831     return ReadyCycle - CurrCycle;
   1832   return 0;
   1833 }
   1834 
   1835 /// Compute the next cycle at which the given processor resource can be
   1836 /// scheduled.
   1837 unsigned SchedBoundary::
   1838 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
   1839   unsigned NextUnreserved = ReservedCycles[PIdx];
   1840   // If this resource has never been used, always return cycle zero.
   1841   if (NextUnreserved == InvalidCycle)
   1842     return 0;
   1843   // For bottom-up scheduling add the cycles needed for the current operation.
   1844   if (!isTop())
   1845     NextUnreserved += Cycles;
   1846   return NextUnreserved;
   1847 }
   1848 
   1849 /// Does this SU have a hazard within the current instruction group.
   1850 ///
   1851 /// The scheduler supports two modes of hazard recognition. The first is the
   1852 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
   1853 /// supports highly complicated in-order reservation tables
   1854 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
   1855 ///
   1856 /// The second is a streamlined mechanism that checks for hazards based on
   1857 /// simple counters that the scheduler itself maintains. It explicitly checks
   1858 /// for instruction dispatch limitations, including the number of micro-ops that
   1859 /// can dispatch per cycle.
   1860 ///
   1861 /// TODO: Also check whether the SU must start a new group.
   1862 bool SchedBoundary::checkHazard(SUnit *SU) {
   1863   if (HazardRec->isEnabled()
   1864       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
   1865     return true;
   1866   }
   1867   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
   1868   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
   1869     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
   1870           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
   1871     return true;
   1872   }
   1873   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
   1874     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1875     for (TargetSchedModel::ProcResIter
   1876            PI = SchedModel->getWriteProcResBegin(SC),
   1877            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1878       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
   1879       if (NRCycle > CurrCycle) {
   1880 #ifndef NDEBUG
   1881         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
   1882 #endif
   1883         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
   1884               << SchedModel->getResourceName(PI->ProcResourceIdx)
   1885               << "=" << NRCycle << "c\n");
   1886         return true;
   1887       }
   1888     }
   1889   }
   1890   return false;
   1891 }
   1892 
   1893 // Find the unscheduled node in ReadySUs with the highest latency.
   1894 unsigned SchedBoundary::
   1895 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
   1896   SUnit *LateSU = nullptr;
   1897   unsigned RemLatency = 0;
   1898   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
   1899        I != E; ++I) {
   1900     unsigned L = getUnscheduledLatency(*I);
   1901     if (L > RemLatency) {
   1902       RemLatency = L;
   1903       LateSU = *I;
   1904     }
   1905   }
   1906   if (LateSU) {
   1907     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
   1908           << LateSU->NodeNum << ") " << RemLatency << "c\n");
   1909   }
   1910   return RemLatency;
   1911 }
   1912 
   1913 // Count resources in this zone and the remaining unscheduled
   1914 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
   1915 // resource index, or zero if the zone is issue limited.
   1916 unsigned SchedBoundary::
   1917 getOtherResourceCount(unsigned &OtherCritIdx) {
   1918   OtherCritIdx = 0;
   1919   if (!SchedModel->hasInstrSchedModel())
   1920     return 0;
   1921 
   1922   unsigned OtherCritCount = Rem->RemIssueCount
   1923     + (RetiredMOps * SchedModel->getMicroOpFactor());
   1924   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
   1925         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
   1926   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
   1927        PIdx != PEnd; ++PIdx) {
   1928     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
   1929     if (OtherCount > OtherCritCount) {
   1930       OtherCritCount = OtherCount;
   1931       OtherCritIdx = PIdx;
   1932     }
   1933   }
   1934   if (OtherCritIdx) {
   1935     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
   1936           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
   1937           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
   1938   }
   1939   return OtherCritCount;
   1940 }
   1941 
   1942 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
   1943   assert(SU->getInstr() && "Scheduled SUnit must have instr");
   1944 
   1945 #ifndef NDEBUG
   1946   // ReadyCycle was been bumped up to the CurrCycle when this node was
   1947   // scheduled, but CurrCycle may have been eagerly advanced immediately after
   1948   // scheduling, so may now be greater than ReadyCycle.
   1949   if (ReadyCycle > CurrCycle)
   1950     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
   1951 #endif
   1952 
   1953   if (ReadyCycle < MinReadyCycle)
   1954     MinReadyCycle = ReadyCycle;
   1955 
   1956   // Check for interlocks first. For the purpose of other heuristics, an
   1957   // instruction that cannot issue appears as if it's not in the ReadyQueue.
   1958   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   1959   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
   1960       Available.size() >= ReadyListLimit)
   1961     Pending.push(SU);
   1962   else
   1963     Available.push(SU);
   1964 
   1965   // Record this node as an immediate dependent of the scheduled node.
   1966   NextSUs.insert(SU);
   1967 }
   1968 
   1969 void SchedBoundary::releaseTopNode(SUnit *SU) {
   1970   if (SU->isScheduled)
   1971     return;
   1972 
   1973   releaseNode(SU, SU->TopReadyCycle);
   1974 }
   1975 
   1976 void SchedBoundary::releaseBottomNode(SUnit *SU) {
   1977   if (SU->isScheduled)
   1978     return;
   1979 
   1980   releaseNode(SU, SU->BotReadyCycle);
   1981 }
   1982 
   1983 /// Move the boundary of scheduled code by one cycle.
   1984 void SchedBoundary::bumpCycle(unsigned NextCycle) {
   1985   if (SchedModel->getMicroOpBufferSize() == 0) {
   1986     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
   1987     if (MinReadyCycle > NextCycle)
   1988       NextCycle = MinReadyCycle;
   1989   }
   1990   // Update the current micro-ops, which will issue in the next cycle.
   1991   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
   1992   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
   1993 
   1994   // Decrement DependentLatency based on the next cycle.
   1995   if ((NextCycle - CurrCycle) > DependentLatency)
   1996     DependentLatency = 0;
   1997   else
   1998     DependentLatency -= (NextCycle - CurrCycle);
   1999 
   2000   if (!HazardRec->isEnabled()) {
   2001     // Bypass HazardRec virtual calls.
   2002     CurrCycle = NextCycle;
   2003   } else {
   2004     // Bypass getHazardType calls in case of long latency.
   2005     for (; CurrCycle != NextCycle; ++CurrCycle) {
   2006       if (isTop())
   2007         HazardRec->AdvanceCycle();
   2008       else
   2009         HazardRec->RecedeCycle();
   2010     }
   2011   }
   2012   CheckPending = true;
   2013   unsigned LFactor = SchedModel->getLatencyFactor();
   2014   IsResourceLimited =
   2015     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   2016     > (int)LFactor;
   2017 
   2018   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
   2019 }
   2020 
   2021 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
   2022   ExecutedResCounts[PIdx] += Count;
   2023   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
   2024     MaxExecutedResCount = ExecutedResCounts[PIdx];
   2025 }
   2026 
   2027 /// Add the given processor resource to this scheduled zone.
   2028 ///
   2029 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
   2030 /// during which this resource is consumed.
   2031 ///
   2032 /// \return the next cycle at which the instruction may execute without
   2033 /// oversubscribing resources.
   2034 unsigned SchedBoundary::
   2035 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
   2036   unsigned Factor = SchedModel->getResourceFactor(PIdx);
   2037   unsigned Count = Factor * Cycles;
   2038   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
   2039         << " +" << Cycles << "x" << Factor << "u\n");
   2040 
   2041   // Update Executed resources counts.
   2042   incExecutedResources(PIdx, Count);
   2043   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
   2044   Rem->RemainingCounts[PIdx] -= Count;
   2045 
   2046   // Check if this resource exceeds the current critical resource. If so, it
   2047   // becomes the critical resource.
   2048   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
   2049     ZoneCritResIdx = PIdx;
   2050     DEBUG(dbgs() << "  *** Critical resource "
   2051           << SchedModel->getResourceName(PIdx) << ": "
   2052           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
   2053   }
   2054   // For reserved resources, record the highest cycle using the resource.
   2055   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
   2056   if (NextAvailable > CurrCycle) {
   2057     DEBUG(dbgs() << "  Resource conflict: "
   2058           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
   2059           << NextAvailable << "\n");
   2060   }
   2061   return NextAvailable;
   2062 }
   2063 
   2064 /// Move the boundary of scheduled code by one SUnit.
   2065 void SchedBoundary::bumpNode(SUnit *SU) {
   2066   // Update the reservation table.
   2067   if (HazardRec->isEnabled()) {
   2068     if (!isTop() && SU->isCall) {
   2069       // Calls are scheduled with their preceding instructions. For bottom-up
   2070       // scheduling, clear the pipeline state before emitting.
   2071       HazardRec->Reset();
   2072     }
   2073     HazardRec->EmitInstruction(SU);
   2074   }
   2075   // checkHazard should prevent scheduling multiple instructions per cycle that
   2076   // exceed the issue width.
   2077   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   2078   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
   2079   assert(
   2080       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
   2081       "Cannot schedule this instruction's MicroOps in the current cycle.");
   2082 
   2083   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   2084   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
   2085 
   2086   unsigned NextCycle = CurrCycle;
   2087   switch (SchedModel->getMicroOpBufferSize()) {
   2088   case 0:
   2089     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
   2090     break;
   2091   case 1:
   2092     if (ReadyCycle > NextCycle) {
   2093       NextCycle = ReadyCycle;
   2094       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
   2095     }
   2096     break;
   2097   default:
   2098     // We don't currently model the OOO reorder buffer, so consider all
   2099     // scheduled MOps to be "retired". We do loosely model in-order resource
   2100     // latency. If this instruction uses an in-order resource, account for any
   2101     // likely stall cycles.
   2102     if (SU->isUnbuffered && ReadyCycle > NextCycle)
   2103       NextCycle = ReadyCycle;
   2104     break;
   2105   }
   2106   RetiredMOps += IncMOps;
   2107 
   2108   // Update resource counts and critical resource.
   2109   if (SchedModel->hasInstrSchedModel()) {
   2110     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
   2111     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
   2112     Rem->RemIssueCount -= DecRemIssue;
   2113     if (ZoneCritResIdx) {
   2114       // Scale scheduled micro-ops for comparing with the critical resource.
   2115       unsigned ScaledMOps =
   2116         RetiredMOps * SchedModel->getMicroOpFactor();
   2117 
   2118       // If scaled micro-ops are now more than the previous critical resource by
   2119       // a full cycle, then micro-ops issue becomes critical.
   2120       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
   2121           >= (int)SchedModel->getLatencyFactor()) {
   2122         ZoneCritResIdx = 0;
   2123         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
   2124               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
   2125       }
   2126     }
   2127     for (TargetSchedModel::ProcResIter
   2128            PI = SchedModel->getWriteProcResBegin(SC),
   2129            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2130       unsigned RCycle =
   2131         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
   2132       if (RCycle > NextCycle)
   2133         NextCycle = RCycle;
   2134     }
   2135     if (SU->hasReservedResource) {
   2136       // For reserved resources, record the highest cycle using the resource.
   2137       // For top-down scheduling, this is the cycle in which we schedule this
   2138       // instruction plus the number of cycles the operations reserves the
   2139       // resource. For bottom-up is it simply the instruction's cycle.
   2140       for (TargetSchedModel::ProcResIter
   2141              PI = SchedModel->getWriteProcResBegin(SC),
   2142              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2143         unsigned PIdx = PI->ProcResourceIdx;
   2144         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
   2145           if (isTop()) {
   2146             ReservedCycles[PIdx] =
   2147               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
   2148           }
   2149           else
   2150             ReservedCycles[PIdx] = NextCycle;
   2151         }
   2152       }
   2153     }
   2154   }
   2155   // Update ExpectedLatency and DependentLatency.
   2156   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
   2157   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
   2158   if (SU->getDepth() > TopLatency) {
   2159     TopLatency = SU->getDepth();
   2160     DEBUG(dbgs() << "  " << Available.getName()
   2161           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
   2162   }
   2163   if (SU->getHeight() > BotLatency) {
   2164     BotLatency = SU->getHeight();
   2165     DEBUG(dbgs() << "  " << Available.getName()
   2166           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
   2167   }
   2168   // If we stall for any reason, bump the cycle.
   2169   if (NextCycle > CurrCycle) {
   2170     bumpCycle(NextCycle);
   2171   } else {
   2172     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
   2173     // resource limited. If a stall occurred, bumpCycle does this.
   2174     unsigned LFactor = SchedModel->getLatencyFactor();
   2175     IsResourceLimited =
   2176       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   2177       > (int)LFactor;
   2178   }
   2179   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
   2180   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
   2181   // one cycle.  Since we commonly reach the max MOps here, opportunistically
   2182   // bump the cycle to avoid uselessly checking everything in the readyQ.
   2183   CurrMOps += IncMOps;
   2184   while (CurrMOps >= SchedModel->getIssueWidth()) {
   2185     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
   2186           << " at cycle " << CurrCycle << '\n');
   2187     bumpCycle(++NextCycle);
   2188   }
   2189   DEBUG(dumpScheduledState());
   2190 }
   2191 
   2192 /// Release pending ready nodes in to the available queue. This makes them
   2193 /// visible to heuristics.
   2194 void SchedBoundary::releasePending() {
   2195   // If the available queue is empty, it is safe to reset MinReadyCycle.
   2196   if (Available.empty())
   2197     MinReadyCycle = UINT_MAX;
   2198 
   2199   // Check to see if any of the pending instructions are ready to issue.  If
   2200   // so, add them to the available queue.
   2201   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   2202   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
   2203     SUnit *SU = *(Pending.begin()+i);
   2204     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
   2205 
   2206     if (ReadyCycle < MinReadyCycle)
   2207       MinReadyCycle = ReadyCycle;
   2208 
   2209     if (!IsBuffered && ReadyCycle > CurrCycle)
   2210       continue;
   2211 
   2212     if (checkHazard(SU))
   2213       continue;
   2214 
   2215     if (Available.size() >= ReadyListLimit)
   2216       break;
   2217 
   2218     Available.push(SU);
   2219     Pending.remove(Pending.begin()+i);
   2220     --i; --e;
   2221   }
   2222   CheckPending = false;
   2223 }
   2224 
   2225 /// Remove SU from the ready set for this boundary.
   2226 void SchedBoundary::removeReady(SUnit *SU) {
   2227   if (Available.isInQueue(SU))
   2228     Available.remove(Available.find(SU));
   2229   else {
   2230     assert(Pending.isInQueue(SU) && "bad ready count");
   2231     Pending.remove(Pending.find(SU));
   2232   }
   2233 }
   2234 
   2235 /// If this queue only has one ready candidate, return it. As a side effect,
   2236 /// defer any nodes that now hit a hazard, and advance the cycle until at least
   2237 /// one node is ready. If multiple instructions are ready, return NULL.
   2238 SUnit *SchedBoundary::pickOnlyChoice() {
   2239   if (CheckPending)
   2240     releasePending();
   2241 
   2242   if (CurrMOps > 0) {
   2243     // Defer any ready instrs that now have a hazard.
   2244     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
   2245       if (checkHazard(*I)) {
   2246         Pending.push(*I);
   2247         I = Available.remove(I);
   2248         continue;
   2249       }
   2250       ++I;
   2251     }
   2252   }
   2253   for (unsigned i = 0; Available.empty(); ++i) {
   2254 //  FIXME: Re-enable assert once PR20057 is resolved.
   2255 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
   2256 //           "permanent hazard");
   2257     (void)i;
   2258     bumpCycle(CurrCycle + 1);
   2259     releasePending();
   2260   }
   2261 
   2262   DEBUG(Pending.dump());
   2263   DEBUG(Available.dump());
   2264 
   2265   if (Available.size() == 1)
   2266     return *Available.begin();
   2267   return nullptr;
   2268 }
   2269 
   2270 #ifndef NDEBUG
   2271 // This is useful information to dump after bumpNode.
   2272 // Note that the Queue contents are more useful before pickNodeFromQueue.
   2273 void SchedBoundary::dumpScheduledState() {
   2274   unsigned ResFactor;
   2275   unsigned ResCount;
   2276   if (ZoneCritResIdx) {
   2277     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
   2278     ResCount = getResourceCount(ZoneCritResIdx);
   2279   } else {
   2280     ResFactor = SchedModel->getMicroOpFactor();
   2281     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
   2282   }
   2283   unsigned LFactor = SchedModel->getLatencyFactor();
   2284   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
   2285          << "  Retired: " << RetiredMOps;
   2286   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
   2287   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
   2288          << ResCount / ResFactor << " "
   2289          << SchedModel->getResourceName(ZoneCritResIdx)
   2290          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
   2291          << (IsResourceLimited ? "  - Resource" : "  - Latency")
   2292          << " limited.\n";
   2293 }
   2294 #endif
   2295 
   2296 //===----------------------------------------------------------------------===//
   2297 // GenericScheduler - Generic implementation of MachineSchedStrategy.
   2298 //===----------------------------------------------------------------------===//
   2299 
   2300 void GenericSchedulerBase::SchedCandidate::
   2301 initResourceDelta(const ScheduleDAGMI *DAG,
   2302                   const TargetSchedModel *SchedModel) {
   2303   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
   2304     return;
   2305 
   2306   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   2307   for (TargetSchedModel::ProcResIter
   2308          PI = SchedModel->getWriteProcResBegin(SC),
   2309          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2310     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
   2311       ResDelta.CritResources += PI->Cycles;
   2312     if (PI->ProcResourceIdx == Policy.DemandResIdx)
   2313       ResDelta.DemandedResources += PI->Cycles;
   2314   }
   2315 }
   2316 
   2317 /// Set the CandPolicy given a scheduling zone given the current resources and
   2318 /// latencies inside and outside the zone.
   2319 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
   2320                                      SchedBoundary &CurrZone,
   2321                                      SchedBoundary *OtherZone) {
   2322   // Apply preemptive heuristics based on the total latency and resources
   2323   // inside and outside this zone. Potential stalls should be considered before
   2324   // following this policy.
   2325 
   2326   // Compute remaining latency. We need this both to determine whether the
   2327   // overall schedule has become latency-limited and whether the instructions
   2328   // outside this zone are resource or latency limited.
   2329   //
   2330   // The "dependent" latency is updated incrementally during scheduling as the
   2331   // max height/depth of scheduled nodes minus the cycles since it was
   2332   // scheduled:
   2333   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
   2334   //
   2335   // The "independent" latency is the max ready queue depth:
   2336   //   ILat = max N.depth for N in Available|Pending
   2337   //
   2338   // RemainingLatency is the greater of independent and dependent latency.
   2339   unsigned RemLatency = CurrZone.getDependentLatency();
   2340   RemLatency = std::max(RemLatency,
   2341                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
   2342   RemLatency = std::max(RemLatency,
   2343                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
   2344 
   2345   // Compute the critical resource outside the zone.
   2346   unsigned OtherCritIdx = 0;
   2347   unsigned OtherCount =
   2348     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
   2349 
   2350   bool OtherResLimited = false;
   2351   if (SchedModel->hasInstrSchedModel()) {
   2352     unsigned LFactor = SchedModel->getLatencyFactor();
   2353     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
   2354   }
   2355   // Schedule aggressively for latency in PostRA mode. We don't check for
   2356   // acyclic latency during PostRA, and highly out-of-order processors will
   2357   // skip PostRA scheduling.
   2358   if (!OtherResLimited) {
   2359     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
   2360       Policy.ReduceLatency |= true;
   2361       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
   2362             << " RemainingLatency " << RemLatency << " + "
   2363             << CurrZone.getCurrCycle() << "c > CritPath "
   2364             << Rem.CriticalPath << "\n");
   2365     }
   2366   }
   2367   // If the same resource is limiting inside and outside the zone, do nothing.
   2368   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
   2369     return;
   2370 
   2371   DEBUG(
   2372     if (CurrZone.isResourceLimited()) {
   2373       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
   2374              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
   2375              << "\n";
   2376     }
   2377     if (OtherResLimited)
   2378       dbgs() << "  RemainingLimit: "
   2379              << SchedModel->getResourceName(OtherCritIdx) << "\n";
   2380     if (!CurrZone.isResourceLimited() && !OtherResLimited)
   2381       dbgs() << "  Latency limited both directions.\n");
   2382 
   2383   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
   2384     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
   2385 
   2386   if (OtherResLimited)
   2387     Policy.DemandResIdx = OtherCritIdx;
   2388 }
   2389 
   2390 #ifndef NDEBUG
   2391 const char *GenericSchedulerBase::getReasonStr(
   2392   GenericSchedulerBase::CandReason Reason) {
   2393   switch (Reason) {
   2394   case NoCand:         return "NOCAND    ";
   2395   case Only1:          return "ONLY1     ";
   2396   case PhysRegCopy:    return "PREG-COPY ";
   2397   case RegExcess:      return "REG-EXCESS";
   2398   case RegCritical:    return "REG-CRIT  ";
   2399   case Stall:          return "STALL     ";
   2400   case Cluster:        return "CLUSTER   ";
   2401   case Weak:           return "WEAK      ";
   2402   case RegMax:         return "REG-MAX   ";
   2403   case ResourceReduce: return "RES-REDUCE";
   2404   case ResourceDemand: return "RES-DEMAND";
   2405   case TopDepthReduce: return "TOP-DEPTH ";
   2406   case TopPathReduce:  return "TOP-PATH  ";
   2407   case BotHeightReduce:return "BOT-HEIGHT";
   2408   case BotPathReduce:  return "BOT-PATH  ";
   2409   case NextDefUse:     return "DEF-USE   ";
   2410   case NodeOrder:      return "ORDER     ";
   2411   };
   2412   llvm_unreachable("Unknown reason!");
   2413 }
   2414 
   2415 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
   2416   PressureChange P;
   2417   unsigned ResIdx = 0;
   2418   unsigned Latency = 0;
   2419   switch (Cand.Reason) {
   2420   default:
   2421     break;
   2422   case RegExcess:
   2423     P = Cand.RPDelta.Excess;
   2424     break;
   2425   case RegCritical:
   2426     P = Cand.RPDelta.CriticalMax;
   2427     break;
   2428   case RegMax:
   2429     P = Cand.RPDelta.CurrentMax;
   2430     break;
   2431   case ResourceReduce:
   2432     ResIdx = Cand.Policy.ReduceResIdx;
   2433     break;
   2434   case ResourceDemand:
   2435     ResIdx = Cand.Policy.DemandResIdx;
   2436     break;
   2437   case TopDepthReduce:
   2438     Latency = Cand.SU->getDepth();
   2439     break;
   2440   case TopPathReduce:
   2441     Latency = Cand.SU->getHeight();
   2442     break;
   2443   case BotHeightReduce:
   2444     Latency = Cand.SU->getHeight();
   2445     break;
   2446   case BotPathReduce:
   2447     Latency = Cand.SU->getDepth();
   2448     break;
   2449   }
   2450   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
   2451   if (P.isValid())
   2452     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
   2453            << ":" << P.getUnitInc() << " ";
   2454   else
   2455     dbgs() << "      ";
   2456   if (ResIdx)
   2457     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
   2458   else
   2459     dbgs() << "         ";
   2460   if (Latency)
   2461     dbgs() << " " << Latency << " cycles ";
   2462   else
   2463     dbgs() << "          ";
   2464   dbgs() << '\n';
   2465 }
   2466 #endif
   2467 
   2468 /// Return true if this heuristic determines order.
   2469 static bool tryLess(int TryVal, int CandVal,
   2470                     GenericSchedulerBase::SchedCandidate &TryCand,
   2471                     GenericSchedulerBase::SchedCandidate &Cand,
   2472                     GenericSchedulerBase::CandReason Reason) {
   2473   if (TryVal < CandVal) {
   2474     TryCand.Reason = Reason;
   2475     return true;
   2476   }
   2477   if (TryVal > CandVal) {
   2478     if (Cand.Reason > Reason)
   2479       Cand.Reason = Reason;
   2480     return true;
   2481   }
   2482   return false;
   2483 }
   2484 
   2485 static bool tryGreater(int TryVal, int CandVal,
   2486                        GenericSchedulerBase::SchedCandidate &TryCand,
   2487                        GenericSchedulerBase::SchedCandidate &Cand,
   2488                        GenericSchedulerBase::CandReason Reason) {
   2489   if (TryVal > CandVal) {
   2490     TryCand.Reason = Reason;
   2491     return true;
   2492   }
   2493   if (TryVal < CandVal) {
   2494     if (Cand.Reason > Reason)
   2495       Cand.Reason = Reason;
   2496     return true;
   2497   }
   2498   return false;
   2499 }
   2500 
   2501 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
   2502                        GenericSchedulerBase::SchedCandidate &Cand,
   2503                        SchedBoundary &Zone) {
   2504   if (Zone.isTop()) {
   2505     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
   2506       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2507                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
   2508         return true;
   2509     }
   2510     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2511                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
   2512       return true;
   2513   } else {
   2514     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
   2515       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2516                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
   2517         return true;
   2518     }
   2519     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2520                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
   2521       return true;
   2522   }
   2523   return false;
   2524 }
   2525 
   2526 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
   2527   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
   2528         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
   2529 }
   2530 
   2531 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
   2532   tracePick(Cand.Reason, Cand.AtTop);
   2533 }
   2534 
   2535 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
   2536   assert(dag->hasVRegLiveness() &&
   2537          "(PreRA)GenericScheduler needs vreg liveness");
   2538   DAG = static_cast<ScheduleDAGMILive*>(dag);
   2539   SchedModel = DAG->getSchedModel();
   2540   TRI = DAG->TRI;
   2541 
   2542   Rem.init(DAG, SchedModel);
   2543   Top.init(DAG, SchedModel, &Rem);
   2544   Bot.init(DAG, SchedModel, &Rem);
   2545 
   2546   // Initialize resource counts.
   2547 
   2548   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
   2549   // are disabled, then these HazardRecs will be disabled.
   2550   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   2551   if (!Top.HazardRec) {
   2552     Top.HazardRec =
   2553         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2554             Itin, DAG);
   2555   }
   2556   if (!Bot.HazardRec) {
   2557     Bot.HazardRec =
   2558         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2559             Itin, DAG);
   2560   }
   2561   TopCand.SU = nullptr;
   2562   BotCand.SU = nullptr;
   2563 }
   2564 
   2565 /// Initialize the per-region scheduling policy.
   2566 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
   2567                                   MachineBasicBlock::iterator End,
   2568                                   unsigned NumRegionInstrs) {
   2569   const MachineFunction &MF = *Begin->getParent()->getParent();
   2570   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
   2571 
   2572   // Avoid setting up the register pressure tracker for small regions to save
   2573   // compile time. As a rough heuristic, only track pressure when the number of
   2574   // schedulable instructions exceeds half the integer register file.
   2575   RegionPolicy.ShouldTrackPressure = true;
   2576   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
   2577     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
   2578     if (TLI->isTypeLegal(LegalIntVT)) {
   2579       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
   2580         TLI->getRegClassFor(LegalIntVT));
   2581       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
   2582     }
   2583   }
   2584 
   2585   // For generic targets, we default to bottom-up, because it's simpler and more
   2586   // compile-time optimizations have been implemented in that direction.
   2587   RegionPolicy.OnlyBottomUp = true;
   2588 
   2589   // Allow the subtarget to override default policy.
   2590   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
   2591 
   2592   // After subtarget overrides, apply command line options.
   2593   if (!EnableRegPressure)
   2594     RegionPolicy.ShouldTrackPressure = false;
   2595 
   2596   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
   2597   // e.g. -misched-bottomup=false allows scheduling in both directions.
   2598   assert((!ForceTopDown || !ForceBottomUp) &&
   2599          "-misched-topdown incompatible with -misched-bottomup");
   2600   if (ForceBottomUp.getNumOccurrences() > 0) {
   2601     RegionPolicy.OnlyBottomUp = ForceBottomUp;
   2602     if (RegionPolicy.OnlyBottomUp)
   2603       RegionPolicy.OnlyTopDown = false;
   2604   }
   2605   if (ForceTopDown.getNumOccurrences() > 0) {
   2606     RegionPolicy.OnlyTopDown = ForceTopDown;
   2607     if (RegionPolicy.OnlyTopDown)
   2608       RegionPolicy.OnlyBottomUp = false;
   2609   }
   2610 }
   2611 
   2612 void GenericScheduler::dumpPolicy() {
   2613   dbgs() << "GenericScheduler RegionPolicy: "
   2614          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
   2615          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
   2616          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
   2617          << "\n";
   2618 }
   2619 
   2620 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
   2621 /// critical path by more cycles than it takes to drain the instruction buffer.
   2622 /// We estimate an upper bounds on in-flight instructions as:
   2623 ///
   2624 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
   2625 /// InFlightIterations = AcyclicPath / CyclesPerIteration
   2626 /// InFlightResources = InFlightIterations * LoopResources
   2627 ///
   2628 /// TODO: Check execution resources in addition to IssueCount.
   2629 void GenericScheduler::checkAcyclicLatency() {
   2630   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
   2631     return;
   2632 
   2633   // Scaled number of cycles per loop iteration.
   2634   unsigned IterCount =
   2635     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
   2636              Rem.RemIssueCount);
   2637   // Scaled acyclic critical path.
   2638   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
   2639   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
   2640   unsigned InFlightCount =
   2641     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
   2642   unsigned BufferLimit =
   2643     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
   2644 
   2645   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
   2646 
   2647   DEBUG(dbgs() << "IssueCycles="
   2648         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
   2649         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
   2650         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
   2651         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
   2652         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
   2653         if (Rem.IsAcyclicLatencyLimited)
   2654           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
   2655 }
   2656 
   2657 void GenericScheduler::registerRoots() {
   2658   Rem.CriticalPath = DAG->ExitSU.getDepth();
   2659 
   2660   // Some roots may not feed into ExitSU. Check all of them in case.
   2661   for (std::vector<SUnit*>::const_iterator
   2662          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
   2663     if ((*I)->getDepth() > Rem.CriticalPath)
   2664       Rem.CriticalPath = (*I)->getDepth();
   2665   }
   2666   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
   2667   if (DumpCriticalPathLength) {
   2668     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
   2669   }
   2670 
   2671   if (EnableCyclicPath) {
   2672     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
   2673     checkAcyclicLatency();
   2674   }
   2675 }
   2676 
   2677 static bool tryPressure(const PressureChange &TryP,
   2678                         const PressureChange &CandP,
   2679                         GenericSchedulerBase::SchedCandidate &TryCand,
   2680                         GenericSchedulerBase::SchedCandidate &Cand,
   2681                         GenericSchedulerBase::CandReason Reason,
   2682                         const TargetRegisterInfo *TRI,
   2683                         const MachineFunction &MF) {
   2684   // If one candidate decreases and the other increases, go with it.
   2685   // Invalid candidates have UnitInc==0.
   2686   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
   2687                  Reason)) {
   2688     return true;
   2689   }
   2690   // Do not compare the magnitude of pressure changes between top and bottom
   2691   // boundary.
   2692   if (Cand.AtTop != TryCand.AtTop)
   2693     return false;
   2694 
   2695   // If both candidates affect the same set in the same boundary, go with the
   2696   // smallest increase.
   2697   unsigned TryPSet = TryP.getPSetOrMax();
   2698   unsigned CandPSet = CandP.getPSetOrMax();
   2699   if (TryPSet == CandPSet) {
   2700     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
   2701                    Reason);
   2702   }
   2703 
   2704   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
   2705                                  std::numeric_limits<int>::max();
   2706 
   2707   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
   2708                                    std::numeric_limits<int>::max();
   2709 
   2710   // If the candidates are decreasing pressure, reverse priority.
   2711   if (TryP.getUnitInc() < 0)
   2712     std::swap(TryRank, CandRank);
   2713   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
   2714 }
   2715 
   2716 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
   2717   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
   2718 }
   2719 
   2720 /// Minimize physical register live ranges. Regalloc wants them adjacent to
   2721 /// their physreg def/use.
   2722 ///
   2723 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
   2724 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
   2725 /// with the operation that produces or consumes the physreg. We'll do this when
   2726 /// regalloc has support for parallel copies.
   2727 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
   2728   const MachineInstr *MI = SU->getInstr();
   2729   if (!MI->isCopy())
   2730     return 0;
   2731 
   2732   unsigned ScheduledOper = isTop ? 1 : 0;
   2733   unsigned UnscheduledOper = isTop ? 0 : 1;
   2734   // If we have already scheduled the physreg produce/consumer, immediately
   2735   // schedule the copy.
   2736   if (TargetRegisterInfo::isPhysicalRegister(
   2737         MI->getOperand(ScheduledOper).getReg()))
   2738     return 1;
   2739   // If the physreg is at the boundary, defer it. Otherwise schedule it
   2740   // immediately to free the dependent. We can hoist the copy later.
   2741   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
   2742   if (TargetRegisterInfo::isPhysicalRegister(
   2743         MI->getOperand(UnscheduledOper).getReg()))
   2744     return AtBoundary ? -1 : 1;
   2745   return 0;
   2746 }
   2747 
   2748 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
   2749                                      bool AtTop,
   2750                                      const RegPressureTracker &RPTracker,
   2751                                      RegPressureTracker &TempTracker) {
   2752   Cand.SU = SU;
   2753   Cand.AtTop = AtTop;
   2754   if (DAG->isTrackingPressure()) {
   2755     if (AtTop) {
   2756       TempTracker.getMaxDownwardPressureDelta(
   2757         Cand.SU->getInstr(),
   2758         Cand.RPDelta,
   2759         DAG->getRegionCriticalPSets(),
   2760         DAG->getRegPressure().MaxSetPressure);
   2761     } else {
   2762       if (VerifyScheduling) {
   2763         TempTracker.getMaxUpwardPressureDelta(
   2764           Cand.SU->getInstr(),
   2765           &DAG->getPressureDiff(Cand.SU),
   2766           Cand.RPDelta,
   2767           DAG->getRegionCriticalPSets(),
   2768           DAG->getRegPressure().MaxSetPressure);
   2769       } else {
   2770         RPTracker.getUpwardPressureDelta(
   2771           Cand.SU->getInstr(),
   2772           DAG->getPressureDiff(Cand.SU),
   2773           Cand.RPDelta,
   2774           DAG->getRegionCriticalPSets(),
   2775           DAG->getRegPressure().MaxSetPressure);
   2776       }
   2777     }
   2778   }
   2779   DEBUG(if (Cand.RPDelta.Excess.isValid())
   2780           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
   2781                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
   2782                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
   2783 }
   2784 
   2785 /// Apply a set of heursitics to a new candidate. Heuristics are currently
   2786 /// hierarchical. This may be more efficient than a graduated cost model because
   2787 /// we don't need to evaluate all aspects of the model for each node in the
   2788 /// queue. But it's really done to make the heuristics easier to debug and
   2789 /// statistically analyze.
   2790 ///
   2791 /// \param Cand provides the policy and current best candidate.
   2792 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   2793 /// \param Zone describes the scheduled zone that we are extending, or nullptr
   2794 //              if Cand is from a different zone than TryCand.
   2795 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
   2796                                     SchedCandidate &TryCand,
   2797                                     SchedBoundary *Zone) {
   2798   // Initialize the candidate if needed.
   2799   if (!Cand.isValid()) {
   2800     TryCand.Reason = NodeOrder;
   2801     return;
   2802   }
   2803 
   2804   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
   2805                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
   2806                  TryCand, Cand, PhysRegCopy))
   2807     return;
   2808 
   2809   // Avoid exceeding the target's limit.
   2810   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
   2811                                                Cand.RPDelta.Excess,
   2812                                                TryCand, Cand, RegExcess, TRI,
   2813                                                DAG->MF))
   2814     return;
   2815 
   2816   // Avoid increasing the max critical pressure in the scheduled region.
   2817   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
   2818                                                Cand.RPDelta.CriticalMax,
   2819                                                TryCand, Cand, RegCritical, TRI,
   2820                                                DAG->MF))
   2821     return;
   2822 
   2823   // We only compare a subset of features when comparing nodes between
   2824   // Top and Bottom boundary. Some properties are simply incomparable, in many
   2825   // other instances we should only override the other boundary if something
   2826   // is a clear good pick on one boundary. Skip heuristics that are more
   2827   // "tie-breaking" in nature.
   2828   bool SameBoundary = Zone != nullptr;
   2829   if (SameBoundary) {
   2830     // For loops that are acyclic path limited, aggressively schedule for
   2831     // latency.  This can result in very long dependence chains scheduled in
   2832     // sequence, so once every cycle (when CurrMOps == 0), switch to normal
   2833     // heuristics.
   2834     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
   2835         tryLatency(TryCand, Cand, *Zone))
   2836       return;
   2837 
   2838     // Prioritize instructions that read unbuffered resources by stall cycles.
   2839     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
   2840                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   2841       return;
   2842   }
   2843 
   2844   // Keep clustered nodes together to encourage downstream peephole
   2845   // optimizations which may reduce resource requirements.
   2846   //
   2847   // This is a best effort to set things up for a post-RA pass. Optimizations
   2848   // like generating loads of multiple registers should ideally be done within
   2849   // the scheduler pass by combining the loads during DAG postprocessing.
   2850   const SUnit *CandNextClusterSU =
   2851     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
   2852   const SUnit *TryCandNextClusterSU =
   2853     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
   2854   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
   2855                  Cand.SU == CandNextClusterSU,
   2856                  TryCand, Cand, Cluster))
   2857     return;
   2858 
   2859   if (SameBoundary) {
   2860     // Weak edges are for clustering and other constraints.
   2861     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
   2862                 getWeakLeft(Cand.SU, Cand.AtTop),
   2863                 TryCand, Cand, Weak))
   2864       return;
   2865   }
   2866 
   2867   // Avoid increasing the max pressure of the entire region.
   2868   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
   2869                                                Cand.RPDelta.CurrentMax,
   2870                                                TryCand, Cand, RegMax, TRI,
   2871                                                DAG->MF))
   2872     return;
   2873 
   2874   if (SameBoundary) {
   2875     // Avoid critical resource consumption and balance the schedule.
   2876     TryCand.initResourceDelta(DAG, SchedModel);
   2877     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   2878                 TryCand, Cand, ResourceReduce))
   2879       return;
   2880     if (tryGreater(TryCand.ResDelta.DemandedResources,
   2881                    Cand.ResDelta.DemandedResources,
   2882                    TryCand, Cand, ResourceDemand))
   2883       return;
   2884 
   2885     // Avoid serializing long latency dependence chains.
   2886     // For acyclic path limited loops, latency was already checked above.
   2887     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
   2888         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
   2889       return;
   2890 
   2891     // Prefer immediate defs/users of the last scheduled instruction. This is a
   2892     // local pressure avoidance strategy that also makes the machine code
   2893     // readable.
   2894     if (tryGreater(Zone->isNextSU(TryCand.SU), Zone->isNextSU(Cand.SU),
   2895                    TryCand, Cand, NextDefUse))
   2896       return;
   2897 
   2898     // Fall through to original instruction order.
   2899     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
   2900         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
   2901       TryCand.Reason = NodeOrder;
   2902     }
   2903   }
   2904 }
   2905 
   2906 /// Pick the best candidate from the queue.
   2907 ///
   2908 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
   2909 /// DAG building. To adjust for the current scheduling location we need to
   2910 /// maintain the number of vreg uses remaining to be top-scheduled.
   2911 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
   2912                                          const CandPolicy &ZonePolicy,
   2913                                          const RegPressureTracker &RPTracker,
   2914                                          SchedCandidate &Cand) {
   2915   // getMaxPressureDelta temporarily modifies the tracker.
   2916   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
   2917 
   2918   ReadyQueue &Q = Zone.Available;
   2919   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   2920 
   2921     SchedCandidate TryCand(ZonePolicy);
   2922     initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker);
   2923     // Pass SchedBoundary only when comparing nodes from the same boundary.
   2924     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
   2925     tryCandidate(Cand, TryCand, ZoneArg);
   2926     if (TryCand.Reason != NoCand) {
   2927       // Initialize resource delta if needed in case future heuristics query it.
   2928       if (TryCand.ResDelta == SchedResourceDelta())
   2929         TryCand.initResourceDelta(DAG, SchedModel);
   2930       Cand.setBest(TryCand);
   2931       DEBUG(traceCandidate(Cand));
   2932     }
   2933   }
   2934 }
   2935 
   2936 /// Pick the best candidate node from either the top or bottom queue.
   2937 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
   2938   // Schedule as far as possible in the direction of no choice. This is most
   2939   // efficient, but also provides the best heuristics for CriticalPSets.
   2940   if (SUnit *SU = Bot.pickOnlyChoice()) {
   2941     IsTopNode = false;
   2942     tracePick(Only1, false);
   2943     return SU;
   2944   }
   2945   if (SUnit *SU = Top.pickOnlyChoice()) {
   2946     IsTopNode = true;
   2947     tracePick(Only1, true);
   2948     return SU;
   2949   }
   2950   // Set the bottom-up policy based on the state of the current bottom zone and
   2951   // the instructions outside the zone, including the top zone.
   2952   CandPolicy BotPolicy;
   2953   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
   2954   // Set the top-down policy based on the state of the current top zone and
   2955   // the instructions outside the zone, including the bottom zone.
   2956   CandPolicy TopPolicy;
   2957   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
   2958 
   2959   // See if BotCand is still valid (because we previously scheduled from Top).
   2960   DEBUG(dbgs() << "Picking from Bot:\n");
   2961   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
   2962       BotCand.Policy != BotPolicy) {
   2963     BotCand.reset(CandPolicy());
   2964     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
   2965     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
   2966   } else {
   2967     DEBUG(traceCandidate(BotCand));
   2968 #ifndef NDEBUG
   2969     if (VerifyScheduling) {
   2970       SchedCandidate TCand;
   2971       TCand.reset(CandPolicy());
   2972       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
   2973       assert(TCand.SU == BotCand.SU &&
   2974              "Last pick result should correspond to re-picking right now");
   2975     }
   2976 #endif
   2977   }
   2978 
   2979   // Check if the top Q has a better candidate.
   2980   DEBUG(dbgs() << "Picking from Top:\n");
   2981   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
   2982       TopCand.Policy != TopPolicy) {
   2983     TopCand.reset(CandPolicy());
   2984     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
   2985     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
   2986   } else {
   2987     DEBUG(traceCandidate(TopCand));
   2988 #ifndef NDEBUG
   2989     if (VerifyScheduling) {
   2990       SchedCandidate TCand;
   2991       TCand.reset(CandPolicy());
   2992       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
   2993       assert(TCand.SU == TopCand.SU &&
   2994            "Last pick result should correspond to re-picking right now");
   2995     }
   2996 #endif
   2997   }
   2998 
   2999   // Pick best from BotCand and TopCand.
   3000   assert(BotCand.isValid());
   3001   assert(TopCand.isValid());
   3002   SchedCandidate Cand = BotCand;
   3003   TopCand.Reason = NoCand;
   3004   tryCandidate(Cand, TopCand, nullptr);
   3005   if (TopCand.Reason != NoCand) {
   3006     Cand.setBest(TopCand);
   3007     DEBUG(traceCandidate(Cand));
   3008   }
   3009 
   3010   IsTopNode = Cand.AtTop;
   3011   tracePick(Cand);
   3012   return Cand.SU;
   3013 }
   3014 
   3015 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
   3016 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
   3017   if (DAG->top() == DAG->bottom()) {
   3018     assert(Top.Available.empty() && Top.Pending.empty() &&
   3019            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
   3020     return nullptr;
   3021   }
   3022   SUnit *SU;
   3023   do {
   3024     if (RegionPolicy.OnlyTopDown) {
   3025       SU = Top.pickOnlyChoice();
   3026       if (!SU) {
   3027         CandPolicy NoPolicy;
   3028         TopCand.reset(NoPolicy);
   3029         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
   3030         assert(TopCand.Reason != NoCand && "failed to find a candidate");
   3031         tracePick(TopCand);
   3032         SU = TopCand.SU;
   3033       }
   3034       IsTopNode = true;
   3035     } else if (RegionPolicy.OnlyBottomUp) {
   3036       SU = Bot.pickOnlyChoice();
   3037       if (!SU) {
   3038         CandPolicy NoPolicy;
   3039         BotCand.reset(NoPolicy);
   3040         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
   3041         assert(BotCand.Reason != NoCand && "failed to find a candidate");
   3042         tracePick(BotCand);
   3043         SU = BotCand.SU;
   3044       }
   3045       IsTopNode = false;
   3046     } else {
   3047       SU = pickNodeBidirectional(IsTopNode);
   3048     }
   3049   } while (SU->isScheduled);
   3050 
   3051   if (SU->isTopReady())
   3052     Top.removeReady(SU);
   3053   if (SU->isBottomReady())
   3054     Bot.removeReady(SU);
   3055 
   3056   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   3057   return SU;
   3058 }
   3059 
   3060 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
   3061 
   3062   MachineBasicBlock::iterator InsertPos = SU->getInstr();
   3063   if (!isTop)
   3064     ++InsertPos;
   3065   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
   3066 
   3067   // Find already scheduled copies with a single physreg dependence and move
   3068   // them just above the scheduled instruction.
   3069   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
   3070        I != E; ++I) {
   3071     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
   3072       continue;
   3073     SUnit *DepSU = I->getSUnit();
   3074     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
   3075       continue;
   3076     MachineInstr *Copy = DepSU->getInstr();
   3077     if (!Copy->isCopy())
   3078       continue;
   3079     DEBUG(dbgs() << "  Rescheduling physreg copy ";
   3080           I->getSUnit()->dump(DAG));
   3081     DAG->moveInstruction(Copy, InsertPos);
   3082   }
   3083 }
   3084 
   3085 /// Update the scheduler's state after scheduling a node. This is the same node
   3086 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
   3087 /// update it's state based on the current cycle before MachineSchedStrategy
   3088 /// does.
   3089 ///
   3090 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
   3091 /// them here. See comments in biasPhysRegCopy.
   3092 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   3093   if (IsTopNode) {
   3094     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   3095     Top.bumpNode(SU);
   3096     if (SU->hasPhysRegUses)
   3097       reschedulePhysRegCopies(SU, true);
   3098   } else {
   3099     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
   3100     Bot.bumpNode(SU);
   3101     if (SU->hasPhysRegDefs)
   3102       reschedulePhysRegCopies(SU, false);
   3103   }
   3104 }
   3105 
   3106 /// Create the standard converging machine scheduler. This will be used as the
   3107 /// default scheduler if the target does not set a default.
   3108 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
   3109   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
   3110   // Register DAG post-processors.
   3111   //
   3112   // FIXME: extend the mutation API to allow earlier mutations to instantiate
   3113   // data and pass it to later mutations. Have a single mutation that gathers
   3114   // the interesting nodes in one pass.
   3115   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
   3116   if (EnableMemOpCluster) {
   3117     if (DAG->TII->enableClusterLoads())
   3118       DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
   3119     if (DAG->TII->enableClusterStores())
   3120       DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI));
   3121   }
   3122   if (EnableMacroFusion)
   3123     DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
   3124   return DAG;
   3125 }
   3126 
   3127 static MachineSchedRegistry
   3128 GenericSchedRegistry("converge", "Standard converging scheduler.",
   3129                      createGenericSchedLive);
   3130 
   3131 //===----------------------------------------------------------------------===//
   3132 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
   3133 //===----------------------------------------------------------------------===//
   3134 
   3135 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
   3136   DAG = Dag;
   3137   SchedModel = DAG->getSchedModel();
   3138   TRI = DAG->TRI;
   3139 
   3140   Rem.init(DAG, SchedModel);
   3141   Top.init(DAG, SchedModel, &Rem);
   3142   BotRoots.clear();
   3143 
   3144   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
   3145   // or are disabled, then these HazardRecs will be disabled.
   3146   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   3147   if (!Top.HazardRec) {
   3148     Top.HazardRec =
   3149         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   3150             Itin, DAG);
   3151   }
   3152 }
   3153 
   3154 
   3155 void PostGenericScheduler::registerRoots() {
   3156   Rem.CriticalPath = DAG->ExitSU.getDepth();
   3157 
   3158   // Some roots may not feed into ExitSU. Check all of them in case.
   3159   for (SmallVectorImpl<SUnit*>::const_iterator
   3160          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
   3161     if ((*I)->getDepth() > Rem.CriticalPath)
   3162       Rem.CriticalPath = (*I)->getDepth();
   3163   }
   3164   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
   3165   if (DumpCriticalPathLength) {
   3166     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
   3167   }
   3168 }
   3169 
   3170 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
   3171 ///
   3172 /// \param Cand provides the policy and current best candidate.
   3173 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   3174 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
   3175                                         SchedCandidate &TryCand) {
   3176 
   3177   // Initialize the candidate if needed.
   3178   if (!Cand.isValid()) {
   3179     TryCand.Reason = NodeOrder;
   3180     return;
   3181   }
   3182 
   3183   // Prioritize instructions that read unbuffered resources by stall cycles.
   3184   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
   3185               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   3186     return;
   3187 
   3188   // Avoid critical resource consumption and balance the schedule.
   3189   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   3190               TryCand, Cand, ResourceReduce))
   3191     return;
   3192   if (tryGreater(TryCand.ResDelta.DemandedResources,
   3193                  Cand.ResDelta.DemandedResources,
   3194                  TryCand, Cand, ResourceDemand))
   3195     return;
   3196 
   3197   // Avoid serializing long latency dependence chains.
   3198   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
   3199     return;
   3200   }
   3201 
   3202   // Fall through to original instruction order.
   3203   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
   3204     TryCand.Reason = NodeOrder;
   3205 }
   3206 
   3207 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
   3208   ReadyQueue &Q = Top.Available;
   3209   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   3210     SchedCandidate TryCand(Cand.Policy);
   3211     TryCand.SU = *I;
   3212     TryCand.AtTop = true;
   3213     TryCand.initResourceDelta(DAG, SchedModel);
   3214     tryCandidate(Cand, TryCand);
   3215     if (TryCand.Reason != NoCand) {
   3216       Cand.setBest(TryCand);
   3217       DEBUG(traceCandidate(Cand));
   3218     }
   3219   }
   3220 }
   3221 
   3222 /// Pick the next node to schedule.
   3223 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
   3224   if (DAG->top() == DAG->bottom()) {
   3225     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
   3226     return nullptr;
   3227   }
   3228   SUnit *SU;
   3229   do {
   3230     SU = Top.pickOnlyChoice();
   3231     if (SU) {
   3232       tracePick(Only1, true);
   3233     } else {
   3234       CandPolicy NoPolicy;
   3235       SchedCandidate TopCand(NoPolicy);
   3236       // Set the top-down policy based on the state of the current top zone and
   3237       // the instructions outside the zone, including the bottom zone.
   3238       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
   3239       pickNodeFromQueue(TopCand);
   3240       assert(TopCand.Reason != NoCand && "failed to find a candidate");
   3241       tracePick(TopCand);
   3242       SU = TopCand.SU;
   3243     }
   3244   } while (SU->isScheduled);
   3245 
   3246   IsTopNode = true;
   3247   Top.removeReady(SU);
   3248 
   3249   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   3250   return SU;
   3251 }
   3252 
   3253 /// Called after ScheduleDAGMI has scheduled an instruction and updated
   3254 /// scheduled/remaining flags in the DAG nodes.
   3255 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   3256   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   3257   Top.bumpNode(SU);
   3258 }
   3259 
   3260 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
   3261 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
   3262   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
   3263 }
   3264 
   3265 //===----------------------------------------------------------------------===//
   3266 // ILP Scheduler. Currently for experimental analysis of heuristics.
   3267 //===----------------------------------------------------------------------===//
   3268 
   3269 namespace {
   3270 /// \brief Order nodes by the ILP metric.
   3271 struct ILPOrder {
   3272   const SchedDFSResult *DFSResult;
   3273   const BitVector *ScheduledTrees;
   3274   bool MaximizeILP;
   3275 
   3276   ILPOrder(bool MaxILP)
   3277     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
   3278 
   3279   /// \brief Apply a less-than relation on node priority.
   3280   ///
   3281   /// (Return true if A comes after B in the Q.)
   3282   bool operator()(const SUnit *A, const SUnit *B) const {
   3283     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
   3284     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
   3285     if (SchedTreeA != SchedTreeB) {
   3286       // Unscheduled trees have lower priority.
   3287       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
   3288         return ScheduledTrees->test(SchedTreeB);
   3289 
   3290       // Trees with shallower connections have have lower priority.
   3291       if (DFSResult->getSubtreeLevel(SchedTreeA)
   3292           != DFSResult->getSubtreeLevel(SchedTreeB)) {
   3293         return DFSResult->getSubtreeLevel(SchedTreeA)
   3294           < DFSResult->getSubtreeLevel(SchedTreeB);
   3295       }
   3296     }
   3297     if (MaximizeILP)
   3298       return DFSResult->getILP(A) < DFSResult->getILP(B);
   3299     else
   3300       return DFSResult->getILP(A) > DFSResult->getILP(B);
   3301   }
   3302 };
   3303 
   3304 /// \brief Schedule based on the ILP metric.
   3305 class ILPScheduler : public MachineSchedStrategy {
   3306   ScheduleDAGMILive *DAG;
   3307   ILPOrder Cmp;
   3308 
   3309   std::vector<SUnit*> ReadyQ;
   3310 public:
   3311   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
   3312 
   3313   void initialize(ScheduleDAGMI *dag) override {
   3314     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
   3315     DAG = static_cast<ScheduleDAGMILive*>(dag);
   3316     DAG->computeDFSResult();
   3317     Cmp.DFSResult = DAG->getDFSResult();
   3318     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
   3319     ReadyQ.clear();
   3320   }
   3321 
   3322   void registerRoots() override {
   3323     // Restore the heap in ReadyQ with the updated DFS results.
   3324     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3325   }
   3326 
   3327   /// Implement MachineSchedStrategy interface.
   3328   /// -----------------------------------------
   3329 
   3330   /// Callback to select the highest priority node from the ready Q.
   3331   SUnit *pickNode(bool &IsTopNode) override {
   3332     if (ReadyQ.empty()) return nullptr;
   3333     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3334     SUnit *SU = ReadyQ.back();
   3335     ReadyQ.pop_back();
   3336     IsTopNode = false;
   3337     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
   3338           << " ILP: " << DAG->getDFSResult()->getILP(SU)
   3339           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
   3340           << DAG->getDFSResult()->getSubtreeLevel(
   3341             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
   3342           << "Scheduling " << *SU->getInstr());
   3343     return SU;
   3344   }
   3345 
   3346   /// \brief Scheduler callback to notify that a new subtree is scheduled.
   3347   void scheduleTree(unsigned SubtreeID) override {
   3348     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3349   }
   3350 
   3351   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
   3352   /// DFSResults, and resort the priority Q.
   3353   void schedNode(SUnit *SU, bool IsTopNode) override {
   3354     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
   3355   }
   3356 
   3357   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
   3358 
   3359   void releaseBottomNode(SUnit *SU) override {
   3360     ReadyQ.push_back(SU);
   3361     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3362   }
   3363 };
   3364 } // namespace
   3365 
   3366 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
   3367   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
   3368 }
   3369 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
   3370   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
   3371 }
   3372 static MachineSchedRegistry ILPMaxRegistry(
   3373   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
   3374 static MachineSchedRegistry ILPMinRegistry(
   3375   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
   3376 
   3377 //===----------------------------------------------------------------------===//
   3378 // Machine Instruction Shuffler for Correctness Testing
   3379 //===----------------------------------------------------------------------===//
   3380 
   3381 #ifndef NDEBUG
   3382 namespace {
   3383 /// Apply a less-than relation on the node order, which corresponds to the
   3384 /// instruction order prior to scheduling. IsReverse implements greater-than.
   3385 template<bool IsReverse>
   3386 struct SUnitOrder {
   3387   bool operator()(SUnit *A, SUnit *B) const {
   3388     if (IsReverse)
   3389       return A->NodeNum > B->NodeNum;
   3390     else
   3391       return A->NodeNum < B->NodeNum;
   3392   }
   3393 };
   3394 
   3395 /// Reorder instructions as much as possible.
   3396 class InstructionShuffler : public MachineSchedStrategy {
   3397   bool IsAlternating;
   3398   bool IsTopDown;
   3399 
   3400   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
   3401   // gives nodes with a higher number higher priority causing the latest
   3402   // instructions to be scheduled first.
   3403   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
   3404     TopQ;
   3405   // When scheduling bottom-up, use greater-than as the queue priority.
   3406   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
   3407     BottomQ;
   3408 public:
   3409   InstructionShuffler(bool alternate, bool topdown)
   3410     : IsAlternating(alternate), IsTopDown(topdown) {}
   3411 
   3412   void initialize(ScheduleDAGMI*) override {
   3413     TopQ.clear();
   3414     BottomQ.clear();
   3415   }
   3416 
   3417   /// Implement MachineSchedStrategy interface.
   3418   /// -----------------------------------------
   3419 
   3420   SUnit *pickNode(bool &IsTopNode) override {
   3421     SUnit *SU;
   3422     if (IsTopDown) {
   3423       do {
   3424         if (TopQ.empty()) return nullptr;
   3425         SU = TopQ.top();
   3426         TopQ.pop();
   3427       } while (SU->isScheduled);
   3428       IsTopNode = true;
   3429     } else {
   3430       do {
   3431         if (BottomQ.empty()) return nullptr;
   3432         SU = BottomQ.top();
   3433         BottomQ.pop();
   3434       } while (SU->isScheduled);
   3435       IsTopNode = false;
   3436     }
   3437     if (IsAlternating)
   3438       IsTopDown = !IsTopDown;
   3439     return SU;
   3440   }
   3441 
   3442   void schedNode(SUnit *SU, bool IsTopNode) override {}
   3443 
   3444   void releaseTopNode(SUnit *SU) override {
   3445     TopQ.push(SU);
   3446   }
   3447   void releaseBottomNode(SUnit *SU) override {
   3448     BottomQ.push(SU);
   3449   }
   3450 };
   3451 } // namespace
   3452 
   3453 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
   3454   bool Alternate = !ForceTopDown && !ForceBottomUp;
   3455   bool TopDown = !ForceBottomUp;
   3456   assert((TopDown || !ForceTopDown) &&
   3457          "-misched-topdown incompatible with -misched-bottomup");
   3458   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
   3459 }
   3460 static MachineSchedRegistry ShufflerRegistry(
   3461   "shuffle", "Shuffle machine instructions alternating directions",
   3462   createInstructionShuffler);
   3463 #endif // !NDEBUG
   3464 
   3465 //===----------------------------------------------------------------------===//
   3466 // GraphWriter support for ScheduleDAGMILive.
   3467 //===----------------------------------------------------------------------===//
   3468 
   3469 #ifndef NDEBUG
   3470 namespace llvm {
   3471 
   3472 template<> struct GraphTraits<
   3473   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
   3474 
   3475 template<>
   3476 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
   3477 
   3478   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   3479 
   3480   static std::string getGraphName(const ScheduleDAG *G) {
   3481     return G->MF.getName();
   3482   }
   3483 
   3484   static bool renderGraphFromBottomUp() {
   3485     return true;
   3486   }
   3487 
   3488   static bool isNodeHidden(const SUnit *Node) {
   3489     if (ViewMISchedCutoff == 0)
   3490       return false;
   3491     return (Node->Preds.size() > ViewMISchedCutoff
   3492          || Node->Succs.size() > ViewMISchedCutoff);
   3493   }
   3494 
   3495   /// If you want to override the dot attributes printed for a particular
   3496   /// edge, override this method.
   3497   static std::string getEdgeAttributes(const SUnit *Node,
   3498                                        SUnitIterator EI,
   3499                                        const ScheduleDAG *Graph) {
   3500     if (EI.isArtificialDep())
   3501       return "color=cyan,style=dashed";
   3502     if (EI.isCtrlDep())
   3503       return "color=blue,style=dashed";
   3504     return "";
   3505   }
   3506 
   3507   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
   3508     std::string Str;
   3509     raw_string_ostream SS(Str);
   3510     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3511     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3512       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3513     SS << "SU:" << SU->NodeNum;
   3514     if (DFS)
   3515       SS << " I:" << DFS->getNumInstrs(SU);
   3516     return SS.str();
   3517   }
   3518   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
   3519     return G->getGraphNodeLabel(SU);
   3520   }
   3521 
   3522   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
   3523     std::string Str("shape=Mrecord");
   3524     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3525     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3526       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3527     if (DFS) {
   3528       Str += ",style=filled,fillcolor=\"#";
   3529       Str += DOT::getColorString(DFS->getSubtreeID(N));
   3530       Str += '"';
   3531     }
   3532     return Str;
   3533   }
   3534 };
   3535 } // namespace llvm
   3536 #endif // NDEBUG
   3537 
   3538 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
   3539 /// rendered using 'dot'.
   3540 ///
   3541 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
   3542 #ifndef NDEBUG
   3543   ViewGraph(this, Name, false, Title);
   3544 #else
   3545   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
   3546          << "systems with Graphviz or gv!\n";
   3547 #endif  // NDEBUG
   3548 }
   3549 
   3550 /// Out-of-line implementation with no arguments is handy for gdb.
   3551 void ScheduleDAGMI::viewGraph() {
   3552   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
   3553 }
   3554