1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Forward declare the standard machine scheduler. This will be used as the 234 /// default scheduler if the target does not set a default. 235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 237 238 /// Decrement this iterator until reaching the top or a non-debug instr. 239 static MachineBasicBlock::const_iterator 240 priorNonDebug(MachineBasicBlock::const_iterator I, 241 MachineBasicBlock::const_iterator Beg) { 242 assert(I != Beg && "reached the top of the region, cannot decrement"); 243 while (--I != Beg) { 244 if (!I->isDebugValue()) 245 break; 246 } 247 return I; 248 } 249 250 /// Non-const version. 251 static MachineBasicBlock::iterator 252 priorNonDebug(MachineBasicBlock::iterator I, 253 MachineBasicBlock::const_iterator Beg) { 254 return const_cast<MachineInstr*>( 255 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 256 } 257 258 /// If this iterator is a debug value, increment until reaching the End or a 259 /// non-debug instruction. 260 static MachineBasicBlock::const_iterator 261 nextIfDebug(MachineBasicBlock::const_iterator I, 262 MachineBasicBlock::const_iterator End) { 263 for(; I != End; ++I) { 264 if (!I->isDebugValue()) 265 break; 266 } 267 return I; 268 } 269 270 /// Non-const version. 271 static MachineBasicBlock::iterator 272 nextIfDebug(MachineBasicBlock::iterator I, 273 MachineBasicBlock::const_iterator End) { 274 // Cast the return value to nonconst MachineInstr, then cast to an 275 // instr_iterator, which does not check for null, finally return a 276 // bundle_iterator. 277 return MachineBasicBlock::instr_iterator( 278 const_cast<MachineInstr*>( 279 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 280 } 281 282 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 283 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 284 // Select the scheduler, or set the default. 285 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 286 if (Ctor != useDefaultMachineSched) 287 return Ctor(this); 288 289 // Get the default scheduler set by the target for this function. 290 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 291 if (Scheduler) 292 return Scheduler; 293 294 // Default to GenericScheduler. 295 return createGenericSchedLive(this); 296 } 297 298 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 299 /// the caller. We don't have a command line option to override the postRA 300 /// scheduler. The Target must configure it. 301 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 302 // Get the postRA scheduler set by the target for this function. 303 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 304 if (Scheduler) 305 return Scheduler; 306 307 // Default to GenericScheduler. 308 return createGenericSchedPostRA(this); 309 } 310 311 /// Top-level MachineScheduler pass driver. 312 /// 313 /// Visit blocks in function order. Divide each block into scheduling regions 314 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 315 /// consistent with the DAG builder, which traverses the interior of the 316 /// scheduling regions bottom-up. 317 /// 318 /// This design avoids exposing scheduling boundaries to the DAG builder, 319 /// simplifying the DAG builder's support for "special" target instructions. 320 /// At the same time the design allows target schedulers to operate across 321 /// scheduling boundaries, for example to bundle the boudary instructions 322 /// without reordering them. This creates complexity, because the target 323 /// scheduler must update the RegionBegin and RegionEnd positions cached by 324 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 325 /// design would be to split blocks at scheduling boundaries, but LLVM has a 326 /// general bias against block splitting purely for implementation simplicity. 327 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 328 if (skipFunction(*mf.getFunction())) 329 return false; 330 331 if (EnableMachineSched.getNumOccurrences()) { 332 if (!EnableMachineSched) 333 return false; 334 } else if (!mf.getSubtarget().enableMachineScheduler()) 335 return false; 336 337 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 338 339 // Initialize the context of the pass. 340 MF = &mf; 341 MLI = &getAnalysis<MachineLoopInfo>(); 342 MDT = &getAnalysis<MachineDominatorTree>(); 343 PassConfig = &getAnalysis<TargetPassConfig>(); 344 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 345 346 LIS = &getAnalysis<LiveIntervals>(); 347 348 if (VerifyScheduling) { 349 DEBUG(LIS->dump()); 350 MF->verify(this, "Before machine scheduling."); 351 } 352 RegClassInfo->runOnMachineFunction(*MF); 353 354 // Instantiate the selected scheduler for this target, function, and 355 // optimization level. 356 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 357 scheduleRegions(*Scheduler, false); 358 359 DEBUG(LIS->dump()); 360 if (VerifyScheduling) 361 MF->verify(this, "After machine scheduling."); 362 return true; 363 } 364 365 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 366 if (skipFunction(*mf.getFunction())) 367 return false; 368 369 if (EnablePostRAMachineSched.getNumOccurrences()) { 370 if (!EnablePostRAMachineSched) 371 return false; 372 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 373 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 374 return false; 375 } 376 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 377 378 // Initialize the context of the pass. 379 MF = &mf; 380 PassConfig = &getAnalysis<TargetPassConfig>(); 381 382 if (VerifyScheduling) 383 MF->verify(this, "Before post machine scheduling."); 384 385 // Instantiate the selected scheduler for this target, function, and 386 // optimization level. 387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 388 scheduleRegions(*Scheduler, true); 389 390 if (VerifyScheduling) 391 MF->verify(this, "After post machine scheduling."); 392 return true; 393 } 394 395 /// Return true of the given instruction should not be included in a scheduling 396 /// region. 397 /// 398 /// MachineScheduler does not currently support scheduling across calls. To 399 /// handle calls, the DAG builder needs to be modified to create register 400 /// anti/output dependencies on the registers clobbered by the call's regmask 401 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 402 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 403 /// the boundary, but there would be no benefit to postRA scheduling across 404 /// calls this late anyway. 405 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 406 MachineBasicBlock *MBB, 407 MachineFunction *MF, 408 const TargetInstrInfo *TII) { 409 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 410 } 411 412 /// Main driver for both MachineScheduler and PostMachineScheduler. 413 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 414 bool FixKillFlags) { 415 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 416 417 // Visit all machine basic blocks. 418 // 419 // TODO: Visit blocks in global postorder or postorder within the bottom-up 420 // loop tree. Then we can optionally compute global RegPressure. 421 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 422 MBB != MBBEnd; ++MBB) { 423 424 Scheduler.startBlock(&*MBB); 425 426 #ifndef NDEBUG 427 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 428 continue; 429 if (SchedOnlyBlock.getNumOccurrences() 430 && (int)SchedOnlyBlock != MBB->getNumber()) 431 continue; 432 #endif 433 434 // Break the block into scheduling regions [I, RegionEnd), and schedule each 435 // region as soon as it is discovered. RegionEnd points the scheduling 436 // boundary at the bottom of the region. The DAG does not include RegionEnd, 437 // but the region does (i.e. the next RegionEnd is above the previous 438 // RegionBegin). If the current block has no terminator then RegionEnd == 439 // MBB->end() for the bottom region. 440 // 441 // The Scheduler may insert instructions during either schedule() or 442 // exitRegion(), even for empty regions. So the local iterators 'I' and 443 // 'RegionEnd' are invalid across these calls. 444 // 445 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 446 // as a single instruction. 447 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 448 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 449 450 // Avoid decrementing RegionEnd for blocks with no terminator. 451 if (RegionEnd != MBB->end() || 452 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 453 --RegionEnd; 454 } 455 456 // The next region starts above the previous region. Look backward in the 457 // instruction stream until we find the nearest boundary. 458 unsigned NumRegionInstrs = 0; 459 MachineBasicBlock::iterator I = RegionEnd; 460 for (;I != MBB->begin(); --I) { 461 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 462 break; 463 if (!I->isDebugValue()) 464 ++NumRegionInstrs; 465 } 466 // Notify the scheduler of the region, even if we may skip scheduling 467 // it. Perhaps it still needs to be bundled. 468 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 469 470 // Skip empty scheduling regions (0 or 1 schedulable instructions). 471 if (I == RegionEnd || I == std::prev(RegionEnd)) { 472 // Close the current region. Bundle the terminator if needed. 473 // This invalidates 'RegionEnd' and 'I'. 474 Scheduler.exitRegion(); 475 continue; 476 } 477 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 478 DEBUG(dbgs() << MF->getName() 479 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 480 << "\n From: " << *I << " To: "; 481 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 482 else dbgs() << "End"; 483 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 484 if (DumpCriticalPathLength) { 485 errs() << MF->getName(); 486 errs() << ":BB# " << MBB->getNumber(); 487 errs() << " " << MBB->getName() << " \n"; 488 } 489 490 // Schedule a region: possibly reorder instructions. 491 // This invalidates 'RegionEnd' and 'I'. 492 Scheduler.schedule(); 493 494 // Close the current region. 495 Scheduler.exitRegion(); 496 497 // Scheduling has invalidated the current iterator 'I'. Ask the 498 // scheduler for the top of it's scheduled region. 499 RegionEnd = Scheduler.begin(); 500 } 501 Scheduler.finishBlock(); 502 // FIXME: Ideally, no further passes should rely on kill flags. However, 503 // thumb2 size reduction is currently an exception, so the PostMIScheduler 504 // needs to do this. 505 if (FixKillFlags) 506 Scheduler.fixupKills(&*MBB); 507 } 508 Scheduler.finalizeSchedule(); 509 } 510 511 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 512 // unimplemented 513 } 514 515 LLVM_DUMP_METHOD 516 void ReadyQueue::dump() { 517 dbgs() << "Queue " << Name << ": "; 518 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 519 dbgs() << Queue[i]->NodeNum << " "; 520 dbgs() << "\n"; 521 } 522 523 //===----------------------------------------------------------------------===// 524 // ScheduleDAGMI - Basic machine instruction scheduling. This is 525 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 526 // virtual registers. 527 // ===----------------------------------------------------------------------===/ 528 529 // Provide a vtable anchor. 530 ScheduleDAGMI::~ScheduleDAGMI() { 531 } 532 533 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 534 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 535 } 536 537 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 538 if (SuccSU != &ExitSU) { 539 // Do not use WillCreateCycle, it assumes SD scheduling. 540 // If Pred is reachable from Succ, then the edge creates a cycle. 541 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 542 return false; 543 Topo.AddPred(SuccSU, PredDep.getSUnit()); 544 } 545 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 546 // Return true regardless of whether a new edge needed to be inserted. 547 return true; 548 } 549 550 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 551 /// NumPredsLeft reaches zero, release the successor node. 552 /// 553 /// FIXME: Adjust SuccSU height based on MinLatency. 554 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 555 SUnit *SuccSU = SuccEdge->getSUnit(); 556 557 if (SuccEdge->isWeak()) { 558 --SuccSU->WeakPredsLeft; 559 if (SuccEdge->isCluster()) 560 NextClusterSucc = SuccSU; 561 return; 562 } 563 #ifndef NDEBUG 564 if (SuccSU->NumPredsLeft == 0) { 565 dbgs() << "*** Scheduling failed! ***\n"; 566 SuccSU->dump(this); 567 dbgs() << " has been released too many times!\n"; 568 llvm_unreachable(nullptr); 569 } 570 #endif 571 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 572 // CurrCycle may have advanced since then. 573 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 574 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 575 576 --SuccSU->NumPredsLeft; 577 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 578 SchedImpl->releaseTopNode(SuccSU); 579 } 580 581 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 582 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 583 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 584 I != E; ++I) { 585 releaseSucc(SU, &*I); 586 } 587 } 588 589 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 590 /// NumSuccsLeft reaches zero, release the predecessor node. 591 /// 592 /// FIXME: Adjust PredSU height based on MinLatency. 593 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 594 SUnit *PredSU = PredEdge->getSUnit(); 595 596 if (PredEdge->isWeak()) { 597 --PredSU->WeakSuccsLeft; 598 if (PredEdge->isCluster()) 599 NextClusterPred = PredSU; 600 return; 601 } 602 #ifndef NDEBUG 603 if (PredSU->NumSuccsLeft == 0) { 604 dbgs() << "*** Scheduling failed! ***\n"; 605 PredSU->dump(this); 606 dbgs() << " has been released too many times!\n"; 607 llvm_unreachable(nullptr); 608 } 609 #endif 610 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 611 // CurrCycle may have advanced since then. 612 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 613 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 614 615 --PredSU->NumSuccsLeft; 616 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 617 SchedImpl->releaseBottomNode(PredSU); 618 } 619 620 /// releasePredecessors - Call releasePred on each of SU's predecessors. 621 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 622 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 623 I != E; ++I) { 624 releasePred(SU, &*I); 625 } 626 } 627 628 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 629 /// crossing a scheduling boundary. [begin, end) includes all instructions in 630 /// the region, including the boundary itself and single-instruction regions 631 /// that don't get scheduled. 632 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 633 MachineBasicBlock::iterator begin, 634 MachineBasicBlock::iterator end, 635 unsigned regioninstrs) 636 { 637 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 638 639 SchedImpl->initPolicy(begin, end, regioninstrs); 640 } 641 642 /// This is normally called from the main scheduler loop but may also be invoked 643 /// by the scheduling strategy to perform additional code motion. 644 void ScheduleDAGMI::moveInstruction( 645 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 646 // Advance RegionBegin if the first instruction moves down. 647 if (&*RegionBegin == MI) 648 ++RegionBegin; 649 650 // Update the instruction stream. 651 BB->splice(InsertPos, BB, MI); 652 653 // Update LiveIntervals 654 if (LIS) 655 LIS->handleMove(*MI, /*UpdateFlags=*/true); 656 657 // Recede RegionBegin if an instruction moves above the first. 658 if (RegionBegin == InsertPos) 659 RegionBegin = MI; 660 } 661 662 bool ScheduleDAGMI::checkSchedLimit() { 663 #ifndef NDEBUG 664 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 665 CurrentTop = CurrentBottom; 666 return false; 667 } 668 ++NumInstrsScheduled; 669 #endif 670 return true; 671 } 672 673 /// Per-region scheduling driver, called back from 674 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 675 /// does not consider liveness or register pressure. It is useful for PostRA 676 /// scheduling and potentially other custom schedulers. 677 void ScheduleDAGMI::schedule() { 678 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 679 DEBUG(SchedImpl->dumpPolicy()); 680 681 // Build the DAG. 682 buildSchedGraph(AA); 683 684 Topo.InitDAGTopologicalSorting(); 685 686 postprocessDAG(); 687 688 SmallVector<SUnit*, 8> TopRoots, BotRoots; 689 findRootsAndBiasEdges(TopRoots, BotRoots); 690 691 // Initialize the strategy before modifying the DAG. 692 // This may initialize a DFSResult to be used for queue priority. 693 SchedImpl->initialize(this); 694 695 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 696 SUnits[su].dumpAll(this)); 697 if (ViewMISchedDAGs) viewGraph(); 698 699 // Initialize ready queues now that the DAG and priority data are finalized. 700 initQueues(TopRoots, BotRoots); 701 702 bool IsTopNode = false; 703 while (true) { 704 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 705 SUnit *SU = SchedImpl->pickNode(IsTopNode); 706 if (!SU) break; 707 708 assert(!SU->isScheduled && "Node already scheduled"); 709 if (!checkSchedLimit()) 710 break; 711 712 MachineInstr *MI = SU->getInstr(); 713 if (IsTopNode) { 714 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 715 if (&*CurrentTop == MI) 716 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 717 else 718 moveInstruction(MI, CurrentTop); 719 } else { 720 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 721 MachineBasicBlock::iterator priorII = 722 priorNonDebug(CurrentBottom, CurrentTop); 723 if (&*priorII == MI) 724 CurrentBottom = priorII; 725 else { 726 if (&*CurrentTop == MI) 727 CurrentTop = nextIfDebug(++CurrentTop, priorII); 728 moveInstruction(MI, CurrentBottom); 729 CurrentBottom = MI; 730 } 731 } 732 // Notify the scheduling strategy before updating the DAG. 733 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 734 // runs, it can then use the accurate ReadyCycle time to determine whether 735 // newly released nodes can move to the readyQ. 736 SchedImpl->schedNode(SU, IsTopNode); 737 738 updateQueues(SU, IsTopNode); 739 } 740 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 741 742 placeDebugValues(); 743 744 DEBUG({ 745 unsigned BBNum = begin()->getParent()->getNumber(); 746 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 747 dumpSchedule(); 748 dbgs() << '\n'; 749 }); 750 } 751 752 /// Apply each ScheduleDAGMutation step in order. 753 void ScheduleDAGMI::postprocessDAG() { 754 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 755 Mutations[i]->apply(this); 756 } 757 } 758 759 void ScheduleDAGMI:: 760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 761 SmallVectorImpl<SUnit*> &BotRoots) { 762 for (std::vector<SUnit>::iterator 763 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 764 SUnit *SU = &(*I); 765 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 766 767 // Order predecessors so DFSResult follows the critical path. 768 SU->biasCriticalPath(); 769 770 // A SUnit is ready to top schedule if it has no predecessors. 771 if (!I->NumPredsLeft) 772 TopRoots.push_back(SU); 773 // A SUnit is ready to bottom schedule if it has no successors. 774 if (!I->NumSuccsLeft) 775 BotRoots.push_back(SU); 776 } 777 ExitSU.biasCriticalPath(); 778 } 779 780 /// Identify DAG roots and setup scheduler queues. 781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 782 ArrayRef<SUnit*> BotRoots) { 783 NextClusterSucc = nullptr; 784 NextClusterPred = nullptr; 785 786 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 787 // 788 // Nodes with unreleased weak edges can still be roots. 789 // Release top roots in forward order. 790 for (SmallVectorImpl<SUnit*>::const_iterator 791 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 792 SchedImpl->releaseTopNode(*I); 793 } 794 // Release bottom roots in reverse order so the higher priority nodes appear 795 // first. This is more natural and slightly more efficient. 796 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 797 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 798 SchedImpl->releaseBottomNode(*I); 799 } 800 801 releaseSuccessors(&EntrySU); 802 releasePredecessors(&ExitSU); 803 804 SchedImpl->registerRoots(); 805 806 // Advance past initial DebugValues. 807 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 808 CurrentBottom = RegionEnd; 809 } 810 811 /// Update scheduler queues after scheduling an instruction. 812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 813 // Release dependent instructions for scheduling. 814 if (IsTopNode) 815 releaseSuccessors(SU); 816 else 817 releasePredecessors(SU); 818 819 SU->isScheduled = true; 820 } 821 822 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 823 void ScheduleDAGMI::placeDebugValues() { 824 // If first instruction was a DBG_VALUE then put it back. 825 if (FirstDbgValue) { 826 BB->splice(RegionBegin, BB, FirstDbgValue); 827 RegionBegin = FirstDbgValue; 828 } 829 830 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 831 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 832 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 833 MachineInstr *DbgValue = P.first; 834 MachineBasicBlock::iterator OrigPrevMI = P.second; 835 if (&*RegionBegin == DbgValue) 836 ++RegionBegin; 837 BB->splice(++OrigPrevMI, BB, DbgValue); 838 if (OrigPrevMI == std::prev(RegionEnd)) 839 RegionEnd = DbgValue; 840 } 841 DbgValues.clear(); 842 FirstDbgValue = nullptr; 843 } 844 845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 846 void ScheduleDAGMI::dumpSchedule() const { 847 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 848 if (SUnit *SU = getSUnit(&(*MI))) 849 SU->dump(this); 850 else 851 dbgs() << "Missing SUnit\n"; 852 } 853 } 854 #endif 855 856 //===----------------------------------------------------------------------===// 857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 858 // preservation. 859 //===----------------------------------------------------------------------===// 860 861 ScheduleDAGMILive::~ScheduleDAGMILive() { 862 delete DFSResult; 863 } 864 865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 866 /// crossing a scheduling boundary. [begin, end) includes all instructions in 867 /// the region, including the boundary itself and single-instruction regions 868 /// that don't get scheduled. 869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 870 MachineBasicBlock::iterator begin, 871 MachineBasicBlock::iterator end, 872 unsigned regioninstrs) 873 { 874 // ScheduleDAGMI initializes SchedImpl's per-region policy. 875 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 876 877 // For convenience remember the end of the liveness region. 878 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 879 880 SUPressureDiffs.clear(); 881 882 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 883 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 884 885 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 886 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 887 } 888 889 // Setup the register pressure trackers for the top scheduled top and bottom 890 // scheduled regions. 891 void ScheduleDAGMILive::initRegPressure() { 892 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 893 ShouldTrackLaneMasks, false); 894 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 895 ShouldTrackLaneMasks, false); 896 897 // Close the RPTracker to finalize live ins. 898 RPTracker.closeRegion(); 899 900 DEBUG(RPTracker.dump()); 901 902 // Initialize the live ins and live outs. 903 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 904 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 905 906 // Close one end of the tracker so we can call 907 // getMaxUpward/DownwardPressureDelta before advancing across any 908 // instructions. This converts currently live regs into live ins/outs. 909 TopRPTracker.closeTop(); 910 BotRPTracker.closeBottom(); 911 912 BotRPTracker.initLiveThru(RPTracker); 913 if (!BotRPTracker.getLiveThru().empty()) { 914 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 915 DEBUG(dbgs() << "Live Thru: "; 916 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 917 }; 918 919 // For each live out vreg reduce the pressure change associated with other 920 // uses of the same vreg below the live-out reaching def. 921 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 922 923 // Account for liveness generated by the region boundary. 924 if (LiveRegionEnd != RegionEnd) { 925 SmallVector<RegisterMaskPair, 8> LiveUses; 926 BotRPTracker.recede(&LiveUses); 927 updatePressureDiffs(LiveUses); 928 } 929 930 DEBUG( 931 dbgs() << "Top Pressure:\n"; 932 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 933 dbgs() << "Bottom Pressure:\n"; 934 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 935 ); 936 937 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 938 939 // Cache the list of excess pressure sets in this region. This will also track 940 // the max pressure in the scheduled code for these sets. 941 RegionCriticalPSets.clear(); 942 const std::vector<unsigned> &RegionPressure = 943 RPTracker.getPressure().MaxSetPressure; 944 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 945 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 946 if (RegionPressure[i] > Limit) { 947 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 948 << " Limit " << Limit 949 << " Actual " << RegionPressure[i] << "\n"); 950 RegionCriticalPSets.push_back(PressureChange(i)); 951 } 952 } 953 DEBUG(dbgs() << "Excess PSets: "; 954 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 955 dbgs() << TRI->getRegPressureSetName( 956 RegionCriticalPSets[i].getPSet()) << " "; 957 dbgs() << "\n"); 958 } 959 960 void ScheduleDAGMILive:: 961 updateScheduledPressure(const SUnit *SU, 962 const std::vector<unsigned> &NewMaxPressure) { 963 const PressureDiff &PDiff = getPressureDiff(SU); 964 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 965 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 966 I != E; ++I) { 967 if (!I->isValid()) 968 break; 969 unsigned ID = I->getPSet(); 970 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 971 ++CritIdx; 972 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 973 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 974 && NewMaxPressure[ID] <= INT16_MAX) 975 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 976 } 977 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 978 if (NewMaxPressure[ID] >= Limit - 2) { 979 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 980 << NewMaxPressure[ID] 981 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 982 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 983 } 984 } 985 } 986 987 /// Update the PressureDiff array for liveness after scheduling this 988 /// instruction. 989 void ScheduleDAGMILive::updatePressureDiffs( 990 ArrayRef<RegisterMaskPair> LiveUses) { 991 for (const RegisterMaskPair &P : LiveUses) { 992 unsigned Reg = P.RegUnit; 993 /// FIXME: Currently assuming single-use physregs. 994 if (!TRI->isVirtualRegister(Reg)) 995 continue; 996 997 if (ShouldTrackLaneMasks) { 998 // If the register has just become live then other uses won't change 999 // this fact anymore => decrement pressure. 1000 // If the register has just become dead then other uses make it come 1001 // back to life => increment pressure. 1002 bool Decrement = P.LaneMask != 0; 1003 1004 for (const VReg2SUnit &V2SU 1005 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1006 SUnit &SU = *V2SU.SU; 1007 if (SU.isScheduled || &SU == &ExitSU) 1008 continue; 1009 1010 PressureDiff &PDiff = getPressureDiff(&SU); 1011 PDiff.addPressureChange(Reg, Decrement, &MRI); 1012 DEBUG( 1013 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1014 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1015 << ' ' << *SU.getInstr(); 1016 dbgs() << " to "; 1017 PDiff.dump(*TRI); 1018 ); 1019 } 1020 } else { 1021 assert(P.LaneMask != 0); 1022 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1023 // This may be called before CurrentBottom has been initialized. However, 1024 // BotRPTracker must have a valid position. We want the value live into the 1025 // instruction or live out of the block, so ask for the previous 1026 // instruction's live-out. 1027 const LiveInterval &LI = LIS->getInterval(Reg); 1028 VNInfo *VNI; 1029 MachineBasicBlock::const_iterator I = 1030 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1031 if (I == BB->end()) 1032 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1033 else { 1034 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1035 VNI = LRQ.valueIn(); 1036 } 1037 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1038 assert(VNI && "No live value at use."); 1039 for (const VReg2SUnit &V2SU 1040 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1041 SUnit *SU = V2SU.SU; 1042 // If this use comes before the reaching def, it cannot be a last use, 1043 // so decrease its pressure change. 1044 if (!SU->isScheduled && SU != &ExitSU) { 1045 LiveQueryResult LRQ = 1046 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1047 if (LRQ.valueIn() == VNI) { 1048 PressureDiff &PDiff = getPressureDiff(SU); 1049 PDiff.addPressureChange(Reg, true, &MRI); 1050 DEBUG( 1051 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1052 << *SU->getInstr(); 1053 dbgs() << " to "; 1054 PDiff.dump(*TRI); 1055 ); 1056 } 1057 } 1058 } 1059 } 1060 } 1061 } 1062 1063 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1064 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1065 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1066 /// 1067 /// This is a skeletal driver, with all the functionality pushed into helpers, 1068 /// so that it can be easily extended by experimental schedulers. Generally, 1069 /// implementing MachineSchedStrategy should be sufficient to implement a new 1070 /// scheduling algorithm. However, if a scheduler further subclasses 1071 /// ScheduleDAGMILive then it will want to override this virtual method in order 1072 /// to update any specialized state. 1073 void ScheduleDAGMILive::schedule() { 1074 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1075 DEBUG(SchedImpl->dumpPolicy()); 1076 buildDAGWithRegPressure(); 1077 1078 Topo.InitDAGTopologicalSorting(); 1079 1080 postprocessDAG(); 1081 1082 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1083 findRootsAndBiasEdges(TopRoots, BotRoots); 1084 1085 // Initialize the strategy before modifying the DAG. 1086 // This may initialize a DFSResult to be used for queue priority. 1087 SchedImpl->initialize(this); 1088 1089 DEBUG( 1090 for (const SUnit &SU : SUnits) { 1091 SU.dumpAll(this); 1092 if (ShouldTrackPressure) { 1093 dbgs() << " Pressure Diff : "; 1094 getPressureDiff(&SU).dump(*TRI); 1095 } 1096 dbgs() << '\n'; 1097 } 1098 ); 1099 if (ViewMISchedDAGs) viewGraph(); 1100 1101 // Initialize ready queues now that the DAG and priority data are finalized. 1102 initQueues(TopRoots, BotRoots); 1103 1104 bool IsTopNode = false; 1105 while (true) { 1106 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1107 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1108 if (!SU) break; 1109 1110 assert(!SU->isScheduled && "Node already scheduled"); 1111 if (!checkSchedLimit()) 1112 break; 1113 1114 scheduleMI(SU, IsTopNode); 1115 1116 if (DFSResult) { 1117 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1118 if (!ScheduledTrees.test(SubtreeID)) { 1119 ScheduledTrees.set(SubtreeID); 1120 DFSResult->scheduleTree(SubtreeID); 1121 SchedImpl->scheduleTree(SubtreeID); 1122 } 1123 } 1124 1125 // Notify the scheduling strategy after updating the DAG. 1126 SchedImpl->schedNode(SU, IsTopNode); 1127 1128 updateQueues(SU, IsTopNode); 1129 } 1130 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1131 1132 placeDebugValues(); 1133 1134 DEBUG({ 1135 unsigned BBNum = begin()->getParent()->getNumber(); 1136 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1137 dumpSchedule(); 1138 dbgs() << '\n'; 1139 }); 1140 } 1141 1142 /// Build the DAG and setup three register pressure trackers. 1143 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1144 if (!ShouldTrackPressure) { 1145 RPTracker.reset(); 1146 RegionCriticalPSets.clear(); 1147 buildSchedGraph(AA); 1148 return; 1149 } 1150 1151 // Initialize the register pressure tracker used by buildSchedGraph. 1152 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1153 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1154 1155 // Account for liveness generate by the region boundary. 1156 if (LiveRegionEnd != RegionEnd) 1157 RPTracker.recede(); 1158 1159 // Build the DAG, and compute current register pressure. 1160 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1161 1162 // Initialize top/bottom trackers after computing region pressure. 1163 initRegPressure(); 1164 } 1165 1166 void ScheduleDAGMILive::computeDFSResult() { 1167 if (!DFSResult) 1168 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1169 DFSResult->clear(); 1170 ScheduledTrees.clear(); 1171 DFSResult->resize(SUnits.size()); 1172 DFSResult->compute(SUnits); 1173 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1174 } 1175 1176 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1177 /// only provides the critical path for single block loops. To handle loops that 1178 /// span blocks, we could use the vreg path latencies provided by 1179 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1180 /// available for use in the scheduler. 1181 /// 1182 /// The cyclic path estimation identifies a def-use pair that crosses the back 1183 /// edge and considers the depth and height of the nodes. For example, consider 1184 /// the following instruction sequence where each instruction has unit latency 1185 /// and defines an epomymous virtual register: 1186 /// 1187 /// a->b(a,c)->c(b)->d(c)->exit 1188 /// 1189 /// The cyclic critical path is a two cycles: b->c->b 1190 /// The acyclic critical path is four cycles: a->b->c->d->exit 1191 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1192 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1193 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1194 /// LiveInDepth = depth(b) = len(a->b) = 1 1195 /// 1196 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1197 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1198 /// CyclicCriticalPath = min(2, 2) = 2 1199 /// 1200 /// This could be relevant to PostRA scheduling, but is currently implemented 1201 /// assuming LiveIntervals. 1202 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1203 // This only applies to single block loop. 1204 if (!BB->isSuccessor(BB)) 1205 return 0; 1206 1207 unsigned MaxCyclicLatency = 0; 1208 // Visit each live out vreg def to find def/use pairs that cross iterations. 1209 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1210 unsigned Reg = P.RegUnit; 1211 if (!TRI->isVirtualRegister(Reg)) 1212 continue; 1213 const LiveInterval &LI = LIS->getInterval(Reg); 1214 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1215 if (!DefVNI) 1216 continue; 1217 1218 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1219 const SUnit *DefSU = getSUnit(DefMI); 1220 if (!DefSU) 1221 continue; 1222 1223 unsigned LiveOutHeight = DefSU->getHeight(); 1224 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1225 // Visit all local users of the vreg def. 1226 for (const VReg2SUnit &V2SU 1227 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1228 SUnit *SU = V2SU.SU; 1229 if (SU == &ExitSU) 1230 continue; 1231 1232 // Only consider uses of the phi. 1233 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1234 if (!LRQ.valueIn()->isPHIDef()) 1235 continue; 1236 1237 // Assume that a path spanning two iterations is a cycle, which could 1238 // overestimate in strange cases. This allows cyclic latency to be 1239 // estimated as the minimum slack of the vreg's depth or height. 1240 unsigned CyclicLatency = 0; 1241 if (LiveOutDepth > SU->getDepth()) 1242 CyclicLatency = LiveOutDepth - SU->getDepth(); 1243 1244 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1245 if (LiveInHeight > LiveOutHeight) { 1246 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1247 CyclicLatency = LiveInHeight - LiveOutHeight; 1248 } else 1249 CyclicLatency = 0; 1250 1251 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1252 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1253 if (CyclicLatency > MaxCyclicLatency) 1254 MaxCyclicLatency = CyclicLatency; 1255 } 1256 } 1257 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1258 return MaxCyclicLatency; 1259 } 1260 1261 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1262 /// the Top RP tracker in case the region beginning has changed. 1263 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1264 ArrayRef<SUnit*> BotRoots) { 1265 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1266 if (ShouldTrackPressure) { 1267 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1268 TopRPTracker.setPos(CurrentTop); 1269 } 1270 } 1271 1272 /// Move an instruction and update register pressure. 1273 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1274 // Move the instruction to its new location in the instruction stream. 1275 MachineInstr *MI = SU->getInstr(); 1276 1277 if (IsTopNode) { 1278 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1279 if (&*CurrentTop == MI) 1280 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1281 else { 1282 moveInstruction(MI, CurrentTop); 1283 TopRPTracker.setPos(MI); 1284 } 1285 1286 if (ShouldTrackPressure) { 1287 // Update top scheduled pressure. 1288 RegisterOperands RegOpers; 1289 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1290 if (ShouldTrackLaneMasks) { 1291 // Adjust liveness and add missing dead+read-undef flags. 1292 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1293 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1294 } else { 1295 // Adjust for missing dead-def flags. 1296 RegOpers.detectDeadDefs(*MI, *LIS); 1297 } 1298 1299 TopRPTracker.advance(RegOpers); 1300 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1301 DEBUG( 1302 dbgs() << "Top Pressure:\n"; 1303 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1304 ); 1305 1306 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1307 } 1308 } else { 1309 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1310 MachineBasicBlock::iterator priorII = 1311 priorNonDebug(CurrentBottom, CurrentTop); 1312 if (&*priorII == MI) 1313 CurrentBottom = priorII; 1314 else { 1315 if (&*CurrentTop == MI) { 1316 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1317 TopRPTracker.setPos(CurrentTop); 1318 } 1319 moveInstruction(MI, CurrentBottom); 1320 CurrentBottom = MI; 1321 } 1322 if (ShouldTrackPressure) { 1323 RegisterOperands RegOpers; 1324 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1325 if (ShouldTrackLaneMasks) { 1326 // Adjust liveness and add missing dead+read-undef flags. 1327 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1328 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1329 } else { 1330 // Adjust for missing dead-def flags. 1331 RegOpers.detectDeadDefs(*MI, *LIS); 1332 } 1333 1334 BotRPTracker.recedeSkipDebugValues(); 1335 SmallVector<RegisterMaskPair, 8> LiveUses; 1336 BotRPTracker.recede(RegOpers, &LiveUses); 1337 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1338 DEBUG( 1339 dbgs() << "Bottom Pressure:\n"; 1340 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1341 ); 1342 1343 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1344 updatePressureDiffs(LiveUses); 1345 } 1346 } 1347 } 1348 1349 //===----------------------------------------------------------------------===// 1350 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1351 //===----------------------------------------------------------------------===// 1352 1353 namespace { 1354 /// \brief Post-process the DAG to create cluster edges between neighboring 1355 /// loads or between neighboring stores. 1356 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1357 struct MemOpInfo { 1358 SUnit *SU; 1359 unsigned BaseReg; 1360 int64_t Offset; 1361 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1362 : SU(su), BaseReg(reg), Offset(ofs) {} 1363 1364 bool operator<(const MemOpInfo&RHS) const { 1365 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1366 } 1367 }; 1368 1369 const TargetInstrInfo *TII; 1370 const TargetRegisterInfo *TRI; 1371 bool IsLoad; 1372 1373 public: 1374 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1375 const TargetRegisterInfo *tri, bool IsLoad) 1376 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1377 1378 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1379 1380 protected: 1381 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1382 }; 1383 1384 class StoreClusterMutation : public BaseMemOpClusterMutation { 1385 public: 1386 StoreClusterMutation(const TargetInstrInfo *tii, 1387 const TargetRegisterInfo *tri) 1388 : BaseMemOpClusterMutation(tii, tri, false) {} 1389 }; 1390 1391 class LoadClusterMutation : public BaseMemOpClusterMutation { 1392 public: 1393 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1394 : BaseMemOpClusterMutation(tii, tri, true) {} 1395 }; 1396 } // anonymous 1397 1398 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1399 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1400 SmallVector<MemOpInfo, 32> MemOpRecords; 1401 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1402 SUnit *SU = MemOps[Idx]; 1403 unsigned BaseReg; 1404 int64_t Offset; 1405 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1406 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1407 } 1408 if (MemOpRecords.size() < 2) 1409 return; 1410 1411 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1412 unsigned ClusterLength = 1; 1413 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1414 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1415 ClusterLength = 1; 1416 continue; 1417 } 1418 1419 SUnit *SUa = MemOpRecords[Idx].SU; 1420 SUnit *SUb = MemOpRecords[Idx+1].SU; 1421 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1422 ClusterLength) && 1423 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1424 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1425 << SUb->NodeNum << ")\n"); 1426 // Copy successor edges from SUa to SUb. Interleaving computation 1427 // dependent on SUa can prevent load combining due to register reuse. 1428 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1429 // loads should have effectively the same inputs. 1430 for (SUnit::const_succ_iterator 1431 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1432 if (SI->getSUnit() == SUb) 1433 continue; 1434 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1435 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1436 } 1437 ++ClusterLength; 1438 } else 1439 ClusterLength = 1; 1440 } 1441 } 1442 1443 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1444 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1445 1446 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1447 1448 // Map DAG NodeNum to store chain ID. 1449 DenseMap<unsigned, unsigned> StoreChainIDs; 1450 // Map each store chain to a set of dependent MemOps. 1451 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1452 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1453 SUnit *SU = &DAG->SUnits[Idx]; 1454 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1455 (!IsLoad && !SU->getInstr()->mayStore())) 1456 continue; 1457 1458 unsigned ChainPredID = DAG->SUnits.size(); 1459 for (SUnit::const_pred_iterator 1460 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1461 if (PI->isCtrl()) { 1462 ChainPredID = PI->getSUnit()->NodeNum; 1463 break; 1464 } 1465 } 1466 // Check if this chain-like pred has been seen 1467 // before. ChainPredID==MaxNodeID at the top of the schedule. 1468 unsigned NumChains = StoreChainDependents.size(); 1469 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1470 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1471 if (Result.second) 1472 StoreChainDependents.resize(NumChains + 1); 1473 StoreChainDependents[Result.first->second].push_back(SU); 1474 } 1475 1476 // Iterate over the store chains. 1477 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1478 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1483 //===----------------------------------------------------------------------===// 1484 1485 namespace { 1486 /// \brief Post-process the DAG to create cluster edges between instructions 1487 /// that may be fused by the processor into a single operation. 1488 class MacroFusion : public ScheduleDAGMutation { 1489 const TargetInstrInfo &TII; 1490 const TargetRegisterInfo &TRI; 1491 public: 1492 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1493 : TII(TII), TRI(TRI) {} 1494 1495 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1496 }; 1497 } // anonymous 1498 1499 /// Returns true if \p MI reads a register written by \p Other. 1500 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1501 const MachineInstr &Other) { 1502 for (const MachineOperand &MO : MI.uses()) { 1503 if (!MO.isReg() || !MO.readsReg()) 1504 continue; 1505 1506 unsigned Reg = MO.getReg(); 1507 if (Other.modifiesRegister(Reg, &TRI)) 1508 return true; 1509 } 1510 return false; 1511 } 1512 1513 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1514 /// fused operations. 1515 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1516 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1517 1518 // For now, assume targets can only fuse with the branch. 1519 SUnit &ExitSU = DAG->ExitSU; 1520 MachineInstr *Branch = ExitSU.getInstr(); 1521 if (!Branch) 1522 return; 1523 1524 for (SUnit &SU : DAG->SUnits) { 1525 // SUnits with successors can't be schedule in front of the ExitSU. 1526 if (!SU.Succs.empty()) 1527 continue; 1528 // We only care if the node writes to a register that the branch reads. 1529 MachineInstr *Pred = SU.getInstr(); 1530 if (!HasDataDep(TRI, *Branch, *Pred)) 1531 continue; 1532 1533 if (!TII.shouldScheduleAdjacent(*Pred, *Branch)) 1534 continue; 1535 1536 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1537 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1538 // need to copy predecessor edges from ExitSU to SU, since top-down 1539 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1540 // of SU, we could create an artificial edge from the deepest root, but it 1541 // hasn't been needed yet. 1542 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1543 (void)Success; 1544 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1545 1546 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1547 break; 1548 } 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // CopyConstrain - DAG post-processing to encourage copy elimination. 1553 //===----------------------------------------------------------------------===// 1554 1555 namespace { 1556 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1557 /// the one use that defines the copy's source vreg, most likely an induction 1558 /// variable increment. 1559 class CopyConstrain : public ScheduleDAGMutation { 1560 // Transient state. 1561 SlotIndex RegionBeginIdx; 1562 // RegionEndIdx is the slot index of the last non-debug instruction in the 1563 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1564 SlotIndex RegionEndIdx; 1565 public: 1566 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1567 1568 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1569 1570 protected: 1571 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1572 }; 1573 } // anonymous 1574 1575 /// constrainLocalCopy handles two possibilities: 1576 /// 1) Local src: 1577 /// I0: = dst 1578 /// I1: src = ... 1579 /// I2: = dst 1580 /// I3: dst = src (copy) 1581 /// (create pred->succ edges I0->I1, I2->I1) 1582 /// 1583 /// 2) Local copy: 1584 /// I0: dst = src (copy) 1585 /// I1: = dst 1586 /// I2: src = ... 1587 /// I3: = dst 1588 /// (create pred->succ edges I1->I2, I3->I2) 1589 /// 1590 /// Although the MachineScheduler is currently constrained to single blocks, 1591 /// this algorithm should handle extended blocks. An EBB is a set of 1592 /// contiguously numbered blocks such that the previous block in the EBB is 1593 /// always the single predecessor. 1594 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1595 LiveIntervals *LIS = DAG->getLIS(); 1596 MachineInstr *Copy = CopySU->getInstr(); 1597 1598 // Check for pure vreg copies. 1599 const MachineOperand &SrcOp = Copy->getOperand(1); 1600 unsigned SrcReg = SrcOp.getReg(); 1601 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1602 return; 1603 1604 const MachineOperand &DstOp = Copy->getOperand(0); 1605 unsigned DstReg = DstOp.getReg(); 1606 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1607 return; 1608 1609 // Check if either the dest or source is local. If it's live across a back 1610 // edge, it's not local. Note that if both vregs are live across the back 1611 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1612 // If both the copy's source and dest are local live intervals, then we 1613 // should treat the dest as the global for the purpose of adding 1614 // constraints. This adds edges from source's other uses to the copy. 1615 unsigned LocalReg = SrcReg; 1616 unsigned GlobalReg = DstReg; 1617 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1618 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1619 LocalReg = DstReg; 1620 GlobalReg = SrcReg; 1621 LocalLI = &LIS->getInterval(LocalReg); 1622 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1623 return; 1624 } 1625 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1626 1627 // Find the global segment after the start of the local LI. 1628 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1629 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1630 // local live range. We could create edges from other global uses to the local 1631 // start, but the coalescer should have already eliminated these cases, so 1632 // don't bother dealing with it. 1633 if (GlobalSegment == GlobalLI->end()) 1634 return; 1635 1636 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1637 // returned the next global segment. But if GlobalSegment overlaps with 1638 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1639 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1640 if (GlobalSegment->contains(LocalLI->beginIndex())) 1641 ++GlobalSegment; 1642 1643 if (GlobalSegment == GlobalLI->end()) 1644 return; 1645 1646 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1647 if (GlobalSegment != GlobalLI->begin()) { 1648 // Two address defs have no hole. 1649 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1650 GlobalSegment->start)) { 1651 return; 1652 } 1653 // If the prior global segment may be defined by the same two-address 1654 // instruction that also defines LocalLI, then can't make a hole here. 1655 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1656 LocalLI->beginIndex())) { 1657 return; 1658 } 1659 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1660 // it would be a disconnected component in the live range. 1661 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1662 "Disconnected LRG within the scheduling region."); 1663 } 1664 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1665 if (!GlobalDef) 1666 return; 1667 1668 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1669 if (!GlobalSU) 1670 return; 1671 1672 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1673 // constraining the uses of the last local def to precede GlobalDef. 1674 SmallVector<SUnit*,8> LocalUses; 1675 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1676 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1677 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1678 for (SUnit::const_succ_iterator 1679 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1680 I != E; ++I) { 1681 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1682 continue; 1683 if (I->getSUnit() == GlobalSU) 1684 continue; 1685 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1686 return; 1687 LocalUses.push_back(I->getSUnit()); 1688 } 1689 // Open the top of the GlobalLI hole by constraining any earlier global uses 1690 // to precede the start of LocalLI. 1691 SmallVector<SUnit*,8> GlobalUses; 1692 MachineInstr *FirstLocalDef = 1693 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1694 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1695 for (SUnit::const_pred_iterator 1696 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1697 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1698 continue; 1699 if (I->getSUnit() == FirstLocalSU) 1700 continue; 1701 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1702 return; 1703 GlobalUses.push_back(I->getSUnit()); 1704 } 1705 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1706 // Add the weak edges. 1707 for (SmallVectorImpl<SUnit*>::const_iterator 1708 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1709 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1710 << GlobalSU->NodeNum << ")\n"); 1711 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1712 } 1713 for (SmallVectorImpl<SUnit*>::const_iterator 1714 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1715 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1716 << FirstLocalSU->NodeNum << ")\n"); 1717 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1718 } 1719 } 1720 1721 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1722 /// copy elimination. 1723 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1724 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1725 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1726 1727 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1728 if (FirstPos == DAG->end()) 1729 return; 1730 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1731 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1732 *priorNonDebug(DAG->end(), DAG->begin())); 1733 1734 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1735 SUnit *SU = &DAG->SUnits[Idx]; 1736 if (!SU->getInstr()->isCopy()) 1737 continue; 1738 1739 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1740 } 1741 } 1742 1743 //===----------------------------------------------------------------------===// 1744 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1745 // and possibly other custom schedulers. 1746 //===----------------------------------------------------------------------===// 1747 1748 static const unsigned InvalidCycle = ~0U; 1749 1750 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1751 1752 void SchedBoundary::reset() { 1753 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1754 // Destroying and reconstructing it is very expensive though. So keep 1755 // invalid, placeholder HazardRecs. 1756 if (HazardRec && HazardRec->isEnabled()) { 1757 delete HazardRec; 1758 HazardRec = nullptr; 1759 } 1760 Available.clear(); 1761 Pending.clear(); 1762 CheckPending = false; 1763 NextSUs.clear(); 1764 CurrCycle = 0; 1765 CurrMOps = 0; 1766 MinReadyCycle = UINT_MAX; 1767 ExpectedLatency = 0; 1768 DependentLatency = 0; 1769 RetiredMOps = 0; 1770 MaxExecutedResCount = 0; 1771 ZoneCritResIdx = 0; 1772 IsResourceLimited = false; 1773 ReservedCycles.clear(); 1774 #ifndef NDEBUG 1775 // Track the maximum number of stall cycles that could arise either from the 1776 // latency of a DAG edge or the number of cycles that a processor resource is 1777 // reserved (SchedBoundary::ReservedCycles). 1778 MaxObservedStall = 0; 1779 #endif 1780 // Reserve a zero-count for invalid CritResIdx. 1781 ExecutedResCounts.resize(1); 1782 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1783 } 1784 1785 void SchedRemainder:: 1786 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1787 reset(); 1788 if (!SchedModel->hasInstrSchedModel()) 1789 return; 1790 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1791 for (std::vector<SUnit>::iterator 1792 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1793 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1794 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1795 * SchedModel->getMicroOpFactor(); 1796 for (TargetSchedModel::ProcResIter 1797 PI = SchedModel->getWriteProcResBegin(SC), 1798 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1799 unsigned PIdx = PI->ProcResourceIdx; 1800 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1801 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1802 } 1803 } 1804 } 1805 1806 void SchedBoundary:: 1807 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1808 reset(); 1809 DAG = dag; 1810 SchedModel = smodel; 1811 Rem = rem; 1812 if (SchedModel->hasInstrSchedModel()) { 1813 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1814 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1815 } 1816 } 1817 1818 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1819 /// these "soft stalls" differently than the hard stall cycles based on CPU 1820 /// resources and computed by checkHazard(). A fully in-order model 1821 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1822 /// available for scheduling until they are ready. However, a weaker in-order 1823 /// model may use this for heuristics. For example, if a processor has in-order 1824 /// behavior when reading certain resources, this may come into play. 1825 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1826 if (!SU->isUnbuffered) 1827 return 0; 1828 1829 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1830 if (ReadyCycle > CurrCycle) 1831 return ReadyCycle - CurrCycle; 1832 return 0; 1833 } 1834 1835 /// Compute the next cycle at which the given processor resource can be 1836 /// scheduled. 1837 unsigned SchedBoundary:: 1838 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1839 unsigned NextUnreserved = ReservedCycles[PIdx]; 1840 // If this resource has never been used, always return cycle zero. 1841 if (NextUnreserved == InvalidCycle) 1842 return 0; 1843 // For bottom-up scheduling add the cycles needed for the current operation. 1844 if (!isTop()) 1845 NextUnreserved += Cycles; 1846 return NextUnreserved; 1847 } 1848 1849 /// Does this SU have a hazard within the current instruction group. 1850 /// 1851 /// The scheduler supports two modes of hazard recognition. The first is the 1852 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1853 /// supports highly complicated in-order reservation tables 1854 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1855 /// 1856 /// The second is a streamlined mechanism that checks for hazards based on 1857 /// simple counters that the scheduler itself maintains. It explicitly checks 1858 /// for instruction dispatch limitations, including the number of micro-ops that 1859 /// can dispatch per cycle. 1860 /// 1861 /// TODO: Also check whether the SU must start a new group. 1862 bool SchedBoundary::checkHazard(SUnit *SU) { 1863 if (HazardRec->isEnabled() 1864 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1865 return true; 1866 } 1867 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1868 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1869 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1870 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1871 return true; 1872 } 1873 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1874 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1875 for (TargetSchedModel::ProcResIter 1876 PI = SchedModel->getWriteProcResBegin(SC), 1877 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1878 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1879 if (NRCycle > CurrCycle) { 1880 #ifndef NDEBUG 1881 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1882 #endif 1883 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1884 << SchedModel->getResourceName(PI->ProcResourceIdx) 1885 << "=" << NRCycle << "c\n"); 1886 return true; 1887 } 1888 } 1889 } 1890 return false; 1891 } 1892 1893 // Find the unscheduled node in ReadySUs with the highest latency. 1894 unsigned SchedBoundary:: 1895 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1896 SUnit *LateSU = nullptr; 1897 unsigned RemLatency = 0; 1898 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1899 I != E; ++I) { 1900 unsigned L = getUnscheduledLatency(*I); 1901 if (L > RemLatency) { 1902 RemLatency = L; 1903 LateSU = *I; 1904 } 1905 } 1906 if (LateSU) { 1907 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1908 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1909 } 1910 return RemLatency; 1911 } 1912 1913 // Count resources in this zone and the remaining unscheduled 1914 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1915 // resource index, or zero if the zone is issue limited. 1916 unsigned SchedBoundary:: 1917 getOtherResourceCount(unsigned &OtherCritIdx) { 1918 OtherCritIdx = 0; 1919 if (!SchedModel->hasInstrSchedModel()) 1920 return 0; 1921 1922 unsigned OtherCritCount = Rem->RemIssueCount 1923 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1924 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1925 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1926 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1927 PIdx != PEnd; ++PIdx) { 1928 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1929 if (OtherCount > OtherCritCount) { 1930 OtherCritCount = OtherCount; 1931 OtherCritIdx = PIdx; 1932 } 1933 } 1934 if (OtherCritIdx) { 1935 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1936 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1937 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1938 } 1939 return OtherCritCount; 1940 } 1941 1942 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1943 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1944 1945 #ifndef NDEBUG 1946 // ReadyCycle was been bumped up to the CurrCycle when this node was 1947 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1948 // scheduling, so may now be greater than ReadyCycle. 1949 if (ReadyCycle > CurrCycle) 1950 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1951 #endif 1952 1953 if (ReadyCycle < MinReadyCycle) 1954 MinReadyCycle = ReadyCycle; 1955 1956 // Check for interlocks first. For the purpose of other heuristics, an 1957 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1958 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1959 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 1960 Available.size() >= ReadyListLimit) 1961 Pending.push(SU); 1962 else 1963 Available.push(SU); 1964 1965 // Record this node as an immediate dependent of the scheduled node. 1966 NextSUs.insert(SU); 1967 } 1968 1969 void SchedBoundary::releaseTopNode(SUnit *SU) { 1970 if (SU->isScheduled) 1971 return; 1972 1973 releaseNode(SU, SU->TopReadyCycle); 1974 } 1975 1976 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1977 if (SU->isScheduled) 1978 return; 1979 1980 releaseNode(SU, SU->BotReadyCycle); 1981 } 1982 1983 /// Move the boundary of scheduled code by one cycle. 1984 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1985 if (SchedModel->getMicroOpBufferSize() == 0) { 1986 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1987 if (MinReadyCycle > NextCycle) 1988 NextCycle = MinReadyCycle; 1989 } 1990 // Update the current micro-ops, which will issue in the next cycle. 1991 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1992 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1993 1994 // Decrement DependentLatency based on the next cycle. 1995 if ((NextCycle - CurrCycle) > DependentLatency) 1996 DependentLatency = 0; 1997 else 1998 DependentLatency -= (NextCycle - CurrCycle); 1999 2000 if (!HazardRec->isEnabled()) { 2001 // Bypass HazardRec virtual calls. 2002 CurrCycle = NextCycle; 2003 } else { 2004 // Bypass getHazardType calls in case of long latency. 2005 for (; CurrCycle != NextCycle; ++CurrCycle) { 2006 if (isTop()) 2007 HazardRec->AdvanceCycle(); 2008 else 2009 HazardRec->RecedeCycle(); 2010 } 2011 } 2012 CheckPending = true; 2013 unsigned LFactor = SchedModel->getLatencyFactor(); 2014 IsResourceLimited = 2015 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2016 > (int)LFactor; 2017 2018 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2019 } 2020 2021 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2022 ExecutedResCounts[PIdx] += Count; 2023 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2024 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2025 } 2026 2027 /// Add the given processor resource to this scheduled zone. 2028 /// 2029 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2030 /// during which this resource is consumed. 2031 /// 2032 /// \return the next cycle at which the instruction may execute without 2033 /// oversubscribing resources. 2034 unsigned SchedBoundary:: 2035 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2036 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2037 unsigned Count = Factor * Cycles; 2038 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2039 << " +" << Cycles << "x" << Factor << "u\n"); 2040 2041 // Update Executed resources counts. 2042 incExecutedResources(PIdx, Count); 2043 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2044 Rem->RemainingCounts[PIdx] -= Count; 2045 2046 // Check if this resource exceeds the current critical resource. If so, it 2047 // becomes the critical resource. 2048 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2049 ZoneCritResIdx = PIdx; 2050 DEBUG(dbgs() << " *** Critical resource " 2051 << SchedModel->getResourceName(PIdx) << ": " 2052 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2053 } 2054 // For reserved resources, record the highest cycle using the resource. 2055 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2056 if (NextAvailable > CurrCycle) { 2057 DEBUG(dbgs() << " Resource conflict: " 2058 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2059 << NextAvailable << "\n"); 2060 } 2061 return NextAvailable; 2062 } 2063 2064 /// Move the boundary of scheduled code by one SUnit. 2065 void SchedBoundary::bumpNode(SUnit *SU) { 2066 // Update the reservation table. 2067 if (HazardRec->isEnabled()) { 2068 if (!isTop() && SU->isCall) { 2069 // Calls are scheduled with their preceding instructions. For bottom-up 2070 // scheduling, clear the pipeline state before emitting. 2071 HazardRec->Reset(); 2072 } 2073 HazardRec->EmitInstruction(SU); 2074 } 2075 // checkHazard should prevent scheduling multiple instructions per cycle that 2076 // exceed the issue width. 2077 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2078 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2079 assert( 2080 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2081 "Cannot schedule this instruction's MicroOps in the current cycle."); 2082 2083 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2084 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2085 2086 unsigned NextCycle = CurrCycle; 2087 switch (SchedModel->getMicroOpBufferSize()) { 2088 case 0: 2089 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2090 break; 2091 case 1: 2092 if (ReadyCycle > NextCycle) { 2093 NextCycle = ReadyCycle; 2094 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2095 } 2096 break; 2097 default: 2098 // We don't currently model the OOO reorder buffer, so consider all 2099 // scheduled MOps to be "retired". We do loosely model in-order resource 2100 // latency. If this instruction uses an in-order resource, account for any 2101 // likely stall cycles. 2102 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2103 NextCycle = ReadyCycle; 2104 break; 2105 } 2106 RetiredMOps += IncMOps; 2107 2108 // Update resource counts and critical resource. 2109 if (SchedModel->hasInstrSchedModel()) { 2110 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2111 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2112 Rem->RemIssueCount -= DecRemIssue; 2113 if (ZoneCritResIdx) { 2114 // Scale scheduled micro-ops for comparing with the critical resource. 2115 unsigned ScaledMOps = 2116 RetiredMOps * SchedModel->getMicroOpFactor(); 2117 2118 // If scaled micro-ops are now more than the previous critical resource by 2119 // a full cycle, then micro-ops issue becomes critical. 2120 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2121 >= (int)SchedModel->getLatencyFactor()) { 2122 ZoneCritResIdx = 0; 2123 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2124 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2125 } 2126 } 2127 for (TargetSchedModel::ProcResIter 2128 PI = SchedModel->getWriteProcResBegin(SC), 2129 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2130 unsigned RCycle = 2131 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2132 if (RCycle > NextCycle) 2133 NextCycle = RCycle; 2134 } 2135 if (SU->hasReservedResource) { 2136 // For reserved resources, record the highest cycle using the resource. 2137 // For top-down scheduling, this is the cycle in which we schedule this 2138 // instruction plus the number of cycles the operations reserves the 2139 // resource. For bottom-up is it simply the instruction's cycle. 2140 for (TargetSchedModel::ProcResIter 2141 PI = SchedModel->getWriteProcResBegin(SC), 2142 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2143 unsigned PIdx = PI->ProcResourceIdx; 2144 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2145 if (isTop()) { 2146 ReservedCycles[PIdx] = 2147 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2148 } 2149 else 2150 ReservedCycles[PIdx] = NextCycle; 2151 } 2152 } 2153 } 2154 } 2155 // Update ExpectedLatency and DependentLatency. 2156 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2157 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2158 if (SU->getDepth() > TopLatency) { 2159 TopLatency = SU->getDepth(); 2160 DEBUG(dbgs() << " " << Available.getName() 2161 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2162 } 2163 if (SU->getHeight() > BotLatency) { 2164 BotLatency = SU->getHeight(); 2165 DEBUG(dbgs() << " " << Available.getName() 2166 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2167 } 2168 // If we stall for any reason, bump the cycle. 2169 if (NextCycle > CurrCycle) { 2170 bumpCycle(NextCycle); 2171 } else { 2172 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2173 // resource limited. If a stall occurred, bumpCycle does this. 2174 unsigned LFactor = SchedModel->getLatencyFactor(); 2175 IsResourceLimited = 2176 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2177 > (int)LFactor; 2178 } 2179 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2180 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2181 // one cycle. Since we commonly reach the max MOps here, opportunistically 2182 // bump the cycle to avoid uselessly checking everything in the readyQ. 2183 CurrMOps += IncMOps; 2184 while (CurrMOps >= SchedModel->getIssueWidth()) { 2185 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2186 << " at cycle " << CurrCycle << '\n'); 2187 bumpCycle(++NextCycle); 2188 } 2189 DEBUG(dumpScheduledState()); 2190 } 2191 2192 /// Release pending ready nodes in to the available queue. This makes them 2193 /// visible to heuristics. 2194 void SchedBoundary::releasePending() { 2195 // If the available queue is empty, it is safe to reset MinReadyCycle. 2196 if (Available.empty()) 2197 MinReadyCycle = UINT_MAX; 2198 2199 // Check to see if any of the pending instructions are ready to issue. If 2200 // so, add them to the available queue. 2201 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2202 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2203 SUnit *SU = *(Pending.begin()+i); 2204 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2205 2206 if (ReadyCycle < MinReadyCycle) 2207 MinReadyCycle = ReadyCycle; 2208 2209 if (!IsBuffered && ReadyCycle > CurrCycle) 2210 continue; 2211 2212 if (checkHazard(SU)) 2213 continue; 2214 2215 if (Available.size() >= ReadyListLimit) 2216 break; 2217 2218 Available.push(SU); 2219 Pending.remove(Pending.begin()+i); 2220 --i; --e; 2221 } 2222 CheckPending = false; 2223 } 2224 2225 /// Remove SU from the ready set for this boundary. 2226 void SchedBoundary::removeReady(SUnit *SU) { 2227 if (Available.isInQueue(SU)) 2228 Available.remove(Available.find(SU)); 2229 else { 2230 assert(Pending.isInQueue(SU) && "bad ready count"); 2231 Pending.remove(Pending.find(SU)); 2232 } 2233 } 2234 2235 /// If this queue only has one ready candidate, return it. As a side effect, 2236 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2237 /// one node is ready. If multiple instructions are ready, return NULL. 2238 SUnit *SchedBoundary::pickOnlyChoice() { 2239 if (CheckPending) 2240 releasePending(); 2241 2242 if (CurrMOps > 0) { 2243 // Defer any ready instrs that now have a hazard. 2244 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2245 if (checkHazard(*I)) { 2246 Pending.push(*I); 2247 I = Available.remove(I); 2248 continue; 2249 } 2250 ++I; 2251 } 2252 } 2253 for (unsigned i = 0; Available.empty(); ++i) { 2254 // FIXME: Re-enable assert once PR20057 is resolved. 2255 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2256 // "permanent hazard"); 2257 (void)i; 2258 bumpCycle(CurrCycle + 1); 2259 releasePending(); 2260 } 2261 2262 DEBUG(Pending.dump()); 2263 DEBUG(Available.dump()); 2264 2265 if (Available.size() == 1) 2266 return *Available.begin(); 2267 return nullptr; 2268 } 2269 2270 #ifndef NDEBUG 2271 // This is useful information to dump after bumpNode. 2272 // Note that the Queue contents are more useful before pickNodeFromQueue. 2273 void SchedBoundary::dumpScheduledState() { 2274 unsigned ResFactor; 2275 unsigned ResCount; 2276 if (ZoneCritResIdx) { 2277 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2278 ResCount = getResourceCount(ZoneCritResIdx); 2279 } else { 2280 ResFactor = SchedModel->getMicroOpFactor(); 2281 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2282 } 2283 unsigned LFactor = SchedModel->getLatencyFactor(); 2284 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2285 << " Retired: " << RetiredMOps; 2286 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2287 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2288 << ResCount / ResFactor << " " 2289 << SchedModel->getResourceName(ZoneCritResIdx) 2290 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2291 << (IsResourceLimited ? " - Resource" : " - Latency") 2292 << " limited.\n"; 2293 } 2294 #endif 2295 2296 //===----------------------------------------------------------------------===// 2297 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2298 //===----------------------------------------------------------------------===// 2299 2300 void GenericSchedulerBase::SchedCandidate:: 2301 initResourceDelta(const ScheduleDAGMI *DAG, 2302 const TargetSchedModel *SchedModel) { 2303 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2304 return; 2305 2306 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2307 for (TargetSchedModel::ProcResIter 2308 PI = SchedModel->getWriteProcResBegin(SC), 2309 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2310 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2311 ResDelta.CritResources += PI->Cycles; 2312 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2313 ResDelta.DemandedResources += PI->Cycles; 2314 } 2315 } 2316 2317 /// Set the CandPolicy given a scheduling zone given the current resources and 2318 /// latencies inside and outside the zone. 2319 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2320 SchedBoundary &CurrZone, 2321 SchedBoundary *OtherZone) { 2322 // Apply preemptive heuristics based on the total latency and resources 2323 // inside and outside this zone. Potential stalls should be considered before 2324 // following this policy. 2325 2326 // Compute remaining latency. We need this both to determine whether the 2327 // overall schedule has become latency-limited and whether the instructions 2328 // outside this zone are resource or latency limited. 2329 // 2330 // The "dependent" latency is updated incrementally during scheduling as the 2331 // max height/depth of scheduled nodes minus the cycles since it was 2332 // scheduled: 2333 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2334 // 2335 // The "independent" latency is the max ready queue depth: 2336 // ILat = max N.depth for N in Available|Pending 2337 // 2338 // RemainingLatency is the greater of independent and dependent latency. 2339 unsigned RemLatency = CurrZone.getDependentLatency(); 2340 RemLatency = std::max(RemLatency, 2341 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2342 RemLatency = std::max(RemLatency, 2343 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2344 2345 // Compute the critical resource outside the zone. 2346 unsigned OtherCritIdx = 0; 2347 unsigned OtherCount = 2348 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2349 2350 bool OtherResLimited = false; 2351 if (SchedModel->hasInstrSchedModel()) { 2352 unsigned LFactor = SchedModel->getLatencyFactor(); 2353 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2354 } 2355 // Schedule aggressively for latency in PostRA mode. We don't check for 2356 // acyclic latency during PostRA, and highly out-of-order processors will 2357 // skip PostRA scheduling. 2358 if (!OtherResLimited) { 2359 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2360 Policy.ReduceLatency |= true; 2361 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2362 << " RemainingLatency " << RemLatency << " + " 2363 << CurrZone.getCurrCycle() << "c > CritPath " 2364 << Rem.CriticalPath << "\n"); 2365 } 2366 } 2367 // If the same resource is limiting inside and outside the zone, do nothing. 2368 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2369 return; 2370 2371 DEBUG( 2372 if (CurrZone.isResourceLimited()) { 2373 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2374 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2375 << "\n"; 2376 } 2377 if (OtherResLimited) 2378 dbgs() << " RemainingLimit: " 2379 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2380 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2381 dbgs() << " Latency limited both directions.\n"); 2382 2383 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2384 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2385 2386 if (OtherResLimited) 2387 Policy.DemandResIdx = OtherCritIdx; 2388 } 2389 2390 #ifndef NDEBUG 2391 const char *GenericSchedulerBase::getReasonStr( 2392 GenericSchedulerBase::CandReason Reason) { 2393 switch (Reason) { 2394 case NoCand: return "NOCAND "; 2395 case Only1: return "ONLY1 "; 2396 case PhysRegCopy: return "PREG-COPY "; 2397 case RegExcess: return "REG-EXCESS"; 2398 case RegCritical: return "REG-CRIT "; 2399 case Stall: return "STALL "; 2400 case Cluster: return "CLUSTER "; 2401 case Weak: return "WEAK "; 2402 case RegMax: return "REG-MAX "; 2403 case ResourceReduce: return "RES-REDUCE"; 2404 case ResourceDemand: return "RES-DEMAND"; 2405 case TopDepthReduce: return "TOP-DEPTH "; 2406 case TopPathReduce: return "TOP-PATH "; 2407 case BotHeightReduce:return "BOT-HEIGHT"; 2408 case BotPathReduce: return "BOT-PATH "; 2409 case NextDefUse: return "DEF-USE "; 2410 case NodeOrder: return "ORDER "; 2411 }; 2412 llvm_unreachable("Unknown reason!"); 2413 } 2414 2415 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2416 PressureChange P; 2417 unsigned ResIdx = 0; 2418 unsigned Latency = 0; 2419 switch (Cand.Reason) { 2420 default: 2421 break; 2422 case RegExcess: 2423 P = Cand.RPDelta.Excess; 2424 break; 2425 case RegCritical: 2426 P = Cand.RPDelta.CriticalMax; 2427 break; 2428 case RegMax: 2429 P = Cand.RPDelta.CurrentMax; 2430 break; 2431 case ResourceReduce: 2432 ResIdx = Cand.Policy.ReduceResIdx; 2433 break; 2434 case ResourceDemand: 2435 ResIdx = Cand.Policy.DemandResIdx; 2436 break; 2437 case TopDepthReduce: 2438 Latency = Cand.SU->getDepth(); 2439 break; 2440 case TopPathReduce: 2441 Latency = Cand.SU->getHeight(); 2442 break; 2443 case BotHeightReduce: 2444 Latency = Cand.SU->getHeight(); 2445 break; 2446 case BotPathReduce: 2447 Latency = Cand.SU->getDepth(); 2448 break; 2449 } 2450 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2451 if (P.isValid()) 2452 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2453 << ":" << P.getUnitInc() << " "; 2454 else 2455 dbgs() << " "; 2456 if (ResIdx) 2457 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2458 else 2459 dbgs() << " "; 2460 if (Latency) 2461 dbgs() << " " << Latency << " cycles "; 2462 else 2463 dbgs() << " "; 2464 dbgs() << '\n'; 2465 } 2466 #endif 2467 2468 /// Return true if this heuristic determines order. 2469 static bool tryLess(int TryVal, int CandVal, 2470 GenericSchedulerBase::SchedCandidate &TryCand, 2471 GenericSchedulerBase::SchedCandidate &Cand, 2472 GenericSchedulerBase::CandReason Reason) { 2473 if (TryVal < CandVal) { 2474 TryCand.Reason = Reason; 2475 return true; 2476 } 2477 if (TryVal > CandVal) { 2478 if (Cand.Reason > Reason) 2479 Cand.Reason = Reason; 2480 return true; 2481 } 2482 return false; 2483 } 2484 2485 static bool tryGreater(int TryVal, int CandVal, 2486 GenericSchedulerBase::SchedCandidate &TryCand, 2487 GenericSchedulerBase::SchedCandidate &Cand, 2488 GenericSchedulerBase::CandReason Reason) { 2489 if (TryVal > CandVal) { 2490 TryCand.Reason = Reason; 2491 return true; 2492 } 2493 if (TryVal < CandVal) { 2494 if (Cand.Reason > Reason) 2495 Cand.Reason = Reason; 2496 return true; 2497 } 2498 return false; 2499 } 2500 2501 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2502 GenericSchedulerBase::SchedCandidate &Cand, 2503 SchedBoundary &Zone) { 2504 if (Zone.isTop()) { 2505 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2506 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2507 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2508 return true; 2509 } 2510 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2511 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2512 return true; 2513 } else { 2514 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2515 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2516 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2517 return true; 2518 } 2519 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2520 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2521 return true; 2522 } 2523 return false; 2524 } 2525 2526 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2527 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2528 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2529 } 2530 2531 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2532 tracePick(Cand.Reason, Cand.AtTop); 2533 } 2534 2535 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2536 assert(dag->hasVRegLiveness() && 2537 "(PreRA)GenericScheduler needs vreg liveness"); 2538 DAG = static_cast<ScheduleDAGMILive*>(dag); 2539 SchedModel = DAG->getSchedModel(); 2540 TRI = DAG->TRI; 2541 2542 Rem.init(DAG, SchedModel); 2543 Top.init(DAG, SchedModel, &Rem); 2544 Bot.init(DAG, SchedModel, &Rem); 2545 2546 // Initialize resource counts. 2547 2548 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2549 // are disabled, then these HazardRecs will be disabled. 2550 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2551 if (!Top.HazardRec) { 2552 Top.HazardRec = 2553 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2554 Itin, DAG); 2555 } 2556 if (!Bot.HazardRec) { 2557 Bot.HazardRec = 2558 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2559 Itin, DAG); 2560 } 2561 TopCand.SU = nullptr; 2562 BotCand.SU = nullptr; 2563 } 2564 2565 /// Initialize the per-region scheduling policy. 2566 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2567 MachineBasicBlock::iterator End, 2568 unsigned NumRegionInstrs) { 2569 const MachineFunction &MF = *Begin->getParent()->getParent(); 2570 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2571 2572 // Avoid setting up the register pressure tracker for small regions to save 2573 // compile time. As a rough heuristic, only track pressure when the number of 2574 // schedulable instructions exceeds half the integer register file. 2575 RegionPolicy.ShouldTrackPressure = true; 2576 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2577 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2578 if (TLI->isTypeLegal(LegalIntVT)) { 2579 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2580 TLI->getRegClassFor(LegalIntVT)); 2581 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2582 } 2583 } 2584 2585 // For generic targets, we default to bottom-up, because it's simpler and more 2586 // compile-time optimizations have been implemented in that direction. 2587 RegionPolicy.OnlyBottomUp = true; 2588 2589 // Allow the subtarget to override default policy. 2590 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2591 2592 // After subtarget overrides, apply command line options. 2593 if (!EnableRegPressure) 2594 RegionPolicy.ShouldTrackPressure = false; 2595 2596 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2597 // e.g. -misched-bottomup=false allows scheduling in both directions. 2598 assert((!ForceTopDown || !ForceBottomUp) && 2599 "-misched-topdown incompatible with -misched-bottomup"); 2600 if (ForceBottomUp.getNumOccurrences() > 0) { 2601 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2602 if (RegionPolicy.OnlyBottomUp) 2603 RegionPolicy.OnlyTopDown = false; 2604 } 2605 if (ForceTopDown.getNumOccurrences() > 0) { 2606 RegionPolicy.OnlyTopDown = ForceTopDown; 2607 if (RegionPolicy.OnlyTopDown) 2608 RegionPolicy.OnlyBottomUp = false; 2609 } 2610 } 2611 2612 void GenericScheduler::dumpPolicy() { 2613 dbgs() << "GenericScheduler RegionPolicy: " 2614 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2615 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2616 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2617 << "\n"; 2618 } 2619 2620 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2621 /// critical path by more cycles than it takes to drain the instruction buffer. 2622 /// We estimate an upper bounds on in-flight instructions as: 2623 /// 2624 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2625 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2626 /// InFlightResources = InFlightIterations * LoopResources 2627 /// 2628 /// TODO: Check execution resources in addition to IssueCount. 2629 void GenericScheduler::checkAcyclicLatency() { 2630 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2631 return; 2632 2633 // Scaled number of cycles per loop iteration. 2634 unsigned IterCount = 2635 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2636 Rem.RemIssueCount); 2637 // Scaled acyclic critical path. 2638 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2639 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2640 unsigned InFlightCount = 2641 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2642 unsigned BufferLimit = 2643 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2644 2645 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2646 2647 DEBUG(dbgs() << "IssueCycles=" 2648 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2649 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2650 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2651 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2652 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2653 if (Rem.IsAcyclicLatencyLimited) 2654 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2655 } 2656 2657 void GenericScheduler::registerRoots() { 2658 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2659 2660 // Some roots may not feed into ExitSU. Check all of them in case. 2661 for (std::vector<SUnit*>::const_iterator 2662 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2663 if ((*I)->getDepth() > Rem.CriticalPath) 2664 Rem.CriticalPath = (*I)->getDepth(); 2665 } 2666 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2667 if (DumpCriticalPathLength) { 2668 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2669 } 2670 2671 if (EnableCyclicPath) { 2672 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2673 checkAcyclicLatency(); 2674 } 2675 } 2676 2677 static bool tryPressure(const PressureChange &TryP, 2678 const PressureChange &CandP, 2679 GenericSchedulerBase::SchedCandidate &TryCand, 2680 GenericSchedulerBase::SchedCandidate &Cand, 2681 GenericSchedulerBase::CandReason Reason, 2682 const TargetRegisterInfo *TRI, 2683 const MachineFunction &MF) { 2684 // If one candidate decreases and the other increases, go with it. 2685 // Invalid candidates have UnitInc==0. 2686 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2687 Reason)) { 2688 return true; 2689 } 2690 // Do not compare the magnitude of pressure changes between top and bottom 2691 // boundary. 2692 if (Cand.AtTop != TryCand.AtTop) 2693 return false; 2694 2695 // If both candidates affect the same set in the same boundary, go with the 2696 // smallest increase. 2697 unsigned TryPSet = TryP.getPSetOrMax(); 2698 unsigned CandPSet = CandP.getPSetOrMax(); 2699 if (TryPSet == CandPSet) { 2700 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2701 Reason); 2702 } 2703 2704 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2705 std::numeric_limits<int>::max(); 2706 2707 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2708 std::numeric_limits<int>::max(); 2709 2710 // If the candidates are decreasing pressure, reverse priority. 2711 if (TryP.getUnitInc() < 0) 2712 std::swap(TryRank, CandRank); 2713 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2714 } 2715 2716 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2717 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2718 } 2719 2720 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2721 /// their physreg def/use. 2722 /// 2723 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2724 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2725 /// with the operation that produces or consumes the physreg. We'll do this when 2726 /// regalloc has support for parallel copies. 2727 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2728 const MachineInstr *MI = SU->getInstr(); 2729 if (!MI->isCopy()) 2730 return 0; 2731 2732 unsigned ScheduledOper = isTop ? 1 : 0; 2733 unsigned UnscheduledOper = isTop ? 0 : 1; 2734 // If we have already scheduled the physreg produce/consumer, immediately 2735 // schedule the copy. 2736 if (TargetRegisterInfo::isPhysicalRegister( 2737 MI->getOperand(ScheduledOper).getReg())) 2738 return 1; 2739 // If the physreg is at the boundary, defer it. Otherwise schedule it 2740 // immediately to free the dependent. We can hoist the copy later. 2741 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2742 if (TargetRegisterInfo::isPhysicalRegister( 2743 MI->getOperand(UnscheduledOper).getReg())) 2744 return AtBoundary ? -1 : 1; 2745 return 0; 2746 } 2747 2748 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2749 bool AtTop, 2750 const RegPressureTracker &RPTracker, 2751 RegPressureTracker &TempTracker) { 2752 Cand.SU = SU; 2753 Cand.AtTop = AtTop; 2754 if (DAG->isTrackingPressure()) { 2755 if (AtTop) { 2756 TempTracker.getMaxDownwardPressureDelta( 2757 Cand.SU->getInstr(), 2758 Cand.RPDelta, 2759 DAG->getRegionCriticalPSets(), 2760 DAG->getRegPressure().MaxSetPressure); 2761 } else { 2762 if (VerifyScheduling) { 2763 TempTracker.getMaxUpwardPressureDelta( 2764 Cand.SU->getInstr(), 2765 &DAG->getPressureDiff(Cand.SU), 2766 Cand.RPDelta, 2767 DAG->getRegionCriticalPSets(), 2768 DAG->getRegPressure().MaxSetPressure); 2769 } else { 2770 RPTracker.getUpwardPressureDelta( 2771 Cand.SU->getInstr(), 2772 DAG->getPressureDiff(Cand.SU), 2773 Cand.RPDelta, 2774 DAG->getRegionCriticalPSets(), 2775 DAG->getRegPressure().MaxSetPressure); 2776 } 2777 } 2778 } 2779 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2780 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2781 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2782 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2783 } 2784 2785 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2786 /// hierarchical. This may be more efficient than a graduated cost model because 2787 /// we don't need to evaluate all aspects of the model for each node in the 2788 /// queue. But it's really done to make the heuristics easier to debug and 2789 /// statistically analyze. 2790 /// 2791 /// \param Cand provides the policy and current best candidate. 2792 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2793 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2794 // if Cand is from a different zone than TryCand. 2795 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2796 SchedCandidate &TryCand, 2797 SchedBoundary *Zone) { 2798 // Initialize the candidate if needed. 2799 if (!Cand.isValid()) { 2800 TryCand.Reason = NodeOrder; 2801 return; 2802 } 2803 2804 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2805 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2806 TryCand, Cand, PhysRegCopy)) 2807 return; 2808 2809 // Avoid exceeding the target's limit. 2810 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2811 Cand.RPDelta.Excess, 2812 TryCand, Cand, RegExcess, TRI, 2813 DAG->MF)) 2814 return; 2815 2816 // Avoid increasing the max critical pressure in the scheduled region. 2817 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2818 Cand.RPDelta.CriticalMax, 2819 TryCand, Cand, RegCritical, TRI, 2820 DAG->MF)) 2821 return; 2822 2823 // We only compare a subset of features when comparing nodes between 2824 // Top and Bottom boundary. Some properties are simply incomparable, in many 2825 // other instances we should only override the other boundary if something 2826 // is a clear good pick on one boundary. Skip heuristics that are more 2827 // "tie-breaking" in nature. 2828 bool SameBoundary = Zone != nullptr; 2829 if (SameBoundary) { 2830 // For loops that are acyclic path limited, aggressively schedule for 2831 // latency. This can result in very long dependence chains scheduled in 2832 // sequence, so once every cycle (when CurrMOps == 0), switch to normal 2833 // heuristics. 2834 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2835 tryLatency(TryCand, Cand, *Zone)) 2836 return; 2837 2838 // Prioritize instructions that read unbuffered resources by stall cycles. 2839 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2840 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2841 return; 2842 } 2843 2844 // Keep clustered nodes together to encourage downstream peephole 2845 // optimizations which may reduce resource requirements. 2846 // 2847 // This is a best effort to set things up for a post-RA pass. Optimizations 2848 // like generating loads of multiple registers should ideally be done within 2849 // the scheduler pass by combining the loads during DAG postprocessing. 2850 const SUnit *CandNextClusterSU = 2851 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2852 const SUnit *TryCandNextClusterSU = 2853 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2854 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2855 Cand.SU == CandNextClusterSU, 2856 TryCand, Cand, Cluster)) 2857 return; 2858 2859 if (SameBoundary) { 2860 // Weak edges are for clustering and other constraints. 2861 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2862 getWeakLeft(Cand.SU, Cand.AtTop), 2863 TryCand, Cand, Weak)) 2864 return; 2865 } 2866 2867 // Avoid increasing the max pressure of the entire region. 2868 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2869 Cand.RPDelta.CurrentMax, 2870 TryCand, Cand, RegMax, TRI, 2871 DAG->MF)) 2872 return; 2873 2874 if (SameBoundary) { 2875 // Avoid critical resource consumption and balance the schedule. 2876 TryCand.initResourceDelta(DAG, SchedModel); 2877 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2878 TryCand, Cand, ResourceReduce)) 2879 return; 2880 if (tryGreater(TryCand.ResDelta.DemandedResources, 2881 Cand.ResDelta.DemandedResources, 2882 TryCand, Cand, ResourceDemand)) 2883 return; 2884 2885 // Avoid serializing long latency dependence chains. 2886 // For acyclic path limited loops, latency was already checked above. 2887 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2888 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2889 return; 2890 2891 // Prefer immediate defs/users of the last scheduled instruction. This is a 2892 // local pressure avoidance strategy that also makes the machine code 2893 // readable. 2894 if (tryGreater(Zone->isNextSU(TryCand.SU), Zone->isNextSU(Cand.SU), 2895 TryCand, Cand, NextDefUse)) 2896 return; 2897 2898 // Fall through to original instruction order. 2899 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2900 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2901 TryCand.Reason = NodeOrder; 2902 } 2903 } 2904 } 2905 2906 /// Pick the best candidate from the queue. 2907 /// 2908 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2909 /// DAG building. To adjust for the current scheduling location we need to 2910 /// maintain the number of vreg uses remaining to be top-scheduled. 2911 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2912 const CandPolicy &ZonePolicy, 2913 const RegPressureTracker &RPTracker, 2914 SchedCandidate &Cand) { 2915 // getMaxPressureDelta temporarily modifies the tracker. 2916 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2917 2918 ReadyQueue &Q = Zone.Available; 2919 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2920 2921 SchedCandidate TryCand(ZonePolicy); 2922 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2923 // Pass SchedBoundary only when comparing nodes from the same boundary. 2924 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2925 tryCandidate(Cand, TryCand, ZoneArg); 2926 if (TryCand.Reason != NoCand) { 2927 // Initialize resource delta if needed in case future heuristics query it. 2928 if (TryCand.ResDelta == SchedResourceDelta()) 2929 TryCand.initResourceDelta(DAG, SchedModel); 2930 Cand.setBest(TryCand); 2931 DEBUG(traceCandidate(Cand)); 2932 } 2933 } 2934 } 2935 2936 /// Pick the best candidate node from either the top or bottom queue. 2937 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2938 // Schedule as far as possible in the direction of no choice. This is most 2939 // efficient, but also provides the best heuristics for CriticalPSets. 2940 if (SUnit *SU = Bot.pickOnlyChoice()) { 2941 IsTopNode = false; 2942 tracePick(Only1, false); 2943 return SU; 2944 } 2945 if (SUnit *SU = Top.pickOnlyChoice()) { 2946 IsTopNode = true; 2947 tracePick(Only1, true); 2948 return SU; 2949 } 2950 // Set the bottom-up policy based on the state of the current bottom zone and 2951 // the instructions outside the zone, including the top zone. 2952 CandPolicy BotPolicy; 2953 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2954 // Set the top-down policy based on the state of the current top zone and 2955 // the instructions outside the zone, including the bottom zone. 2956 CandPolicy TopPolicy; 2957 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2958 2959 // See if BotCand is still valid (because we previously scheduled from Top). 2960 DEBUG(dbgs() << "Picking from Bot:\n"); 2961 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2962 BotCand.Policy != BotPolicy) { 2963 BotCand.reset(CandPolicy()); 2964 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2965 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2966 } else { 2967 DEBUG(traceCandidate(BotCand)); 2968 #ifndef NDEBUG 2969 if (VerifyScheduling) { 2970 SchedCandidate TCand; 2971 TCand.reset(CandPolicy()); 2972 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 2973 assert(TCand.SU == BotCand.SU && 2974 "Last pick result should correspond to re-picking right now"); 2975 } 2976 #endif 2977 } 2978 2979 // Check if the top Q has a better candidate. 2980 DEBUG(dbgs() << "Picking from Top:\n"); 2981 if (!TopCand.isValid() || TopCand.SU->isScheduled || 2982 TopCand.Policy != TopPolicy) { 2983 TopCand.reset(CandPolicy()); 2984 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 2985 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2986 } else { 2987 DEBUG(traceCandidate(TopCand)); 2988 #ifndef NDEBUG 2989 if (VerifyScheduling) { 2990 SchedCandidate TCand; 2991 TCand.reset(CandPolicy()); 2992 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 2993 assert(TCand.SU == TopCand.SU && 2994 "Last pick result should correspond to re-picking right now"); 2995 } 2996 #endif 2997 } 2998 2999 // Pick best from BotCand and TopCand. 3000 assert(BotCand.isValid()); 3001 assert(TopCand.isValid()); 3002 SchedCandidate Cand = BotCand; 3003 TopCand.Reason = NoCand; 3004 tryCandidate(Cand, TopCand, nullptr); 3005 if (TopCand.Reason != NoCand) { 3006 Cand.setBest(TopCand); 3007 DEBUG(traceCandidate(Cand)); 3008 } 3009 3010 IsTopNode = Cand.AtTop; 3011 tracePick(Cand); 3012 return Cand.SU; 3013 } 3014 3015 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3016 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3017 if (DAG->top() == DAG->bottom()) { 3018 assert(Top.Available.empty() && Top.Pending.empty() && 3019 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3020 return nullptr; 3021 } 3022 SUnit *SU; 3023 do { 3024 if (RegionPolicy.OnlyTopDown) { 3025 SU = Top.pickOnlyChoice(); 3026 if (!SU) { 3027 CandPolicy NoPolicy; 3028 TopCand.reset(NoPolicy); 3029 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3030 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3031 tracePick(TopCand); 3032 SU = TopCand.SU; 3033 } 3034 IsTopNode = true; 3035 } else if (RegionPolicy.OnlyBottomUp) { 3036 SU = Bot.pickOnlyChoice(); 3037 if (!SU) { 3038 CandPolicy NoPolicy; 3039 BotCand.reset(NoPolicy); 3040 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3041 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3042 tracePick(BotCand); 3043 SU = BotCand.SU; 3044 } 3045 IsTopNode = false; 3046 } else { 3047 SU = pickNodeBidirectional(IsTopNode); 3048 } 3049 } while (SU->isScheduled); 3050 3051 if (SU->isTopReady()) 3052 Top.removeReady(SU); 3053 if (SU->isBottomReady()) 3054 Bot.removeReady(SU); 3055 3056 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3057 return SU; 3058 } 3059 3060 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3061 3062 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3063 if (!isTop) 3064 ++InsertPos; 3065 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3066 3067 // Find already scheduled copies with a single physreg dependence and move 3068 // them just above the scheduled instruction. 3069 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3070 I != E; ++I) { 3071 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3072 continue; 3073 SUnit *DepSU = I->getSUnit(); 3074 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3075 continue; 3076 MachineInstr *Copy = DepSU->getInstr(); 3077 if (!Copy->isCopy()) 3078 continue; 3079 DEBUG(dbgs() << " Rescheduling physreg copy "; 3080 I->getSUnit()->dump(DAG)); 3081 DAG->moveInstruction(Copy, InsertPos); 3082 } 3083 } 3084 3085 /// Update the scheduler's state after scheduling a node. This is the same node 3086 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3087 /// update it's state based on the current cycle before MachineSchedStrategy 3088 /// does. 3089 /// 3090 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3091 /// them here. See comments in biasPhysRegCopy. 3092 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3093 if (IsTopNode) { 3094 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3095 Top.bumpNode(SU); 3096 if (SU->hasPhysRegUses) 3097 reschedulePhysRegCopies(SU, true); 3098 } else { 3099 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3100 Bot.bumpNode(SU); 3101 if (SU->hasPhysRegDefs) 3102 reschedulePhysRegCopies(SU, false); 3103 } 3104 } 3105 3106 /// Create the standard converging machine scheduler. This will be used as the 3107 /// default scheduler if the target does not set a default. 3108 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3109 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3110 // Register DAG post-processors. 3111 // 3112 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3113 // data and pass it to later mutations. Have a single mutation that gathers 3114 // the interesting nodes in one pass. 3115 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 3116 if (EnableMemOpCluster) { 3117 if (DAG->TII->enableClusterLoads()) 3118 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 3119 if (DAG->TII->enableClusterStores()) 3120 DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI)); 3121 } 3122 if (EnableMacroFusion) 3123 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 3124 return DAG; 3125 } 3126 3127 static MachineSchedRegistry 3128 GenericSchedRegistry("converge", "Standard converging scheduler.", 3129 createGenericSchedLive); 3130 3131 //===----------------------------------------------------------------------===// 3132 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3133 //===----------------------------------------------------------------------===// 3134 3135 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3136 DAG = Dag; 3137 SchedModel = DAG->getSchedModel(); 3138 TRI = DAG->TRI; 3139 3140 Rem.init(DAG, SchedModel); 3141 Top.init(DAG, SchedModel, &Rem); 3142 BotRoots.clear(); 3143 3144 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3145 // or are disabled, then these HazardRecs will be disabled. 3146 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3147 if (!Top.HazardRec) { 3148 Top.HazardRec = 3149 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3150 Itin, DAG); 3151 } 3152 } 3153 3154 3155 void PostGenericScheduler::registerRoots() { 3156 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3157 3158 // Some roots may not feed into ExitSU. Check all of them in case. 3159 for (SmallVectorImpl<SUnit*>::const_iterator 3160 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3161 if ((*I)->getDepth() > Rem.CriticalPath) 3162 Rem.CriticalPath = (*I)->getDepth(); 3163 } 3164 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3165 if (DumpCriticalPathLength) { 3166 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3167 } 3168 } 3169 3170 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3171 /// 3172 /// \param Cand provides the policy and current best candidate. 3173 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3174 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3175 SchedCandidate &TryCand) { 3176 3177 // Initialize the candidate if needed. 3178 if (!Cand.isValid()) { 3179 TryCand.Reason = NodeOrder; 3180 return; 3181 } 3182 3183 // Prioritize instructions that read unbuffered resources by stall cycles. 3184 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3185 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3186 return; 3187 3188 // Avoid critical resource consumption and balance the schedule. 3189 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3190 TryCand, Cand, ResourceReduce)) 3191 return; 3192 if (tryGreater(TryCand.ResDelta.DemandedResources, 3193 Cand.ResDelta.DemandedResources, 3194 TryCand, Cand, ResourceDemand)) 3195 return; 3196 3197 // Avoid serializing long latency dependence chains. 3198 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3199 return; 3200 } 3201 3202 // Fall through to original instruction order. 3203 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3204 TryCand.Reason = NodeOrder; 3205 } 3206 3207 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3208 ReadyQueue &Q = Top.Available; 3209 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3210 SchedCandidate TryCand(Cand.Policy); 3211 TryCand.SU = *I; 3212 TryCand.AtTop = true; 3213 TryCand.initResourceDelta(DAG, SchedModel); 3214 tryCandidate(Cand, TryCand); 3215 if (TryCand.Reason != NoCand) { 3216 Cand.setBest(TryCand); 3217 DEBUG(traceCandidate(Cand)); 3218 } 3219 } 3220 } 3221 3222 /// Pick the next node to schedule. 3223 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3224 if (DAG->top() == DAG->bottom()) { 3225 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3226 return nullptr; 3227 } 3228 SUnit *SU; 3229 do { 3230 SU = Top.pickOnlyChoice(); 3231 if (SU) { 3232 tracePick(Only1, true); 3233 } else { 3234 CandPolicy NoPolicy; 3235 SchedCandidate TopCand(NoPolicy); 3236 // Set the top-down policy based on the state of the current top zone and 3237 // the instructions outside the zone, including the bottom zone. 3238 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3239 pickNodeFromQueue(TopCand); 3240 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3241 tracePick(TopCand); 3242 SU = TopCand.SU; 3243 } 3244 } while (SU->isScheduled); 3245 3246 IsTopNode = true; 3247 Top.removeReady(SU); 3248 3249 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3250 return SU; 3251 } 3252 3253 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3254 /// scheduled/remaining flags in the DAG nodes. 3255 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3256 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3257 Top.bumpNode(SU); 3258 } 3259 3260 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3261 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3262 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3263 } 3264 3265 //===----------------------------------------------------------------------===// 3266 // ILP Scheduler. Currently for experimental analysis of heuristics. 3267 //===----------------------------------------------------------------------===// 3268 3269 namespace { 3270 /// \brief Order nodes by the ILP metric. 3271 struct ILPOrder { 3272 const SchedDFSResult *DFSResult; 3273 const BitVector *ScheduledTrees; 3274 bool MaximizeILP; 3275 3276 ILPOrder(bool MaxILP) 3277 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3278 3279 /// \brief Apply a less-than relation on node priority. 3280 /// 3281 /// (Return true if A comes after B in the Q.) 3282 bool operator()(const SUnit *A, const SUnit *B) const { 3283 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3284 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3285 if (SchedTreeA != SchedTreeB) { 3286 // Unscheduled trees have lower priority. 3287 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3288 return ScheduledTrees->test(SchedTreeB); 3289 3290 // Trees with shallower connections have have lower priority. 3291 if (DFSResult->getSubtreeLevel(SchedTreeA) 3292 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3293 return DFSResult->getSubtreeLevel(SchedTreeA) 3294 < DFSResult->getSubtreeLevel(SchedTreeB); 3295 } 3296 } 3297 if (MaximizeILP) 3298 return DFSResult->getILP(A) < DFSResult->getILP(B); 3299 else 3300 return DFSResult->getILP(A) > DFSResult->getILP(B); 3301 } 3302 }; 3303 3304 /// \brief Schedule based on the ILP metric. 3305 class ILPScheduler : public MachineSchedStrategy { 3306 ScheduleDAGMILive *DAG; 3307 ILPOrder Cmp; 3308 3309 std::vector<SUnit*> ReadyQ; 3310 public: 3311 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3312 3313 void initialize(ScheduleDAGMI *dag) override { 3314 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3315 DAG = static_cast<ScheduleDAGMILive*>(dag); 3316 DAG->computeDFSResult(); 3317 Cmp.DFSResult = DAG->getDFSResult(); 3318 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3319 ReadyQ.clear(); 3320 } 3321 3322 void registerRoots() override { 3323 // Restore the heap in ReadyQ with the updated DFS results. 3324 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3325 } 3326 3327 /// Implement MachineSchedStrategy interface. 3328 /// ----------------------------------------- 3329 3330 /// Callback to select the highest priority node from the ready Q. 3331 SUnit *pickNode(bool &IsTopNode) override { 3332 if (ReadyQ.empty()) return nullptr; 3333 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3334 SUnit *SU = ReadyQ.back(); 3335 ReadyQ.pop_back(); 3336 IsTopNode = false; 3337 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3338 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3339 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3340 << DAG->getDFSResult()->getSubtreeLevel( 3341 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3342 << "Scheduling " << *SU->getInstr()); 3343 return SU; 3344 } 3345 3346 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3347 void scheduleTree(unsigned SubtreeID) override { 3348 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3349 } 3350 3351 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3352 /// DFSResults, and resort the priority Q. 3353 void schedNode(SUnit *SU, bool IsTopNode) override { 3354 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3355 } 3356 3357 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3358 3359 void releaseBottomNode(SUnit *SU) override { 3360 ReadyQ.push_back(SU); 3361 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3362 } 3363 }; 3364 } // namespace 3365 3366 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3367 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3368 } 3369 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3370 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3371 } 3372 static MachineSchedRegistry ILPMaxRegistry( 3373 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3374 static MachineSchedRegistry ILPMinRegistry( 3375 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3376 3377 //===----------------------------------------------------------------------===// 3378 // Machine Instruction Shuffler for Correctness Testing 3379 //===----------------------------------------------------------------------===// 3380 3381 #ifndef NDEBUG 3382 namespace { 3383 /// Apply a less-than relation on the node order, which corresponds to the 3384 /// instruction order prior to scheduling. IsReverse implements greater-than. 3385 template<bool IsReverse> 3386 struct SUnitOrder { 3387 bool operator()(SUnit *A, SUnit *B) const { 3388 if (IsReverse) 3389 return A->NodeNum > B->NodeNum; 3390 else 3391 return A->NodeNum < B->NodeNum; 3392 } 3393 }; 3394 3395 /// Reorder instructions as much as possible. 3396 class InstructionShuffler : public MachineSchedStrategy { 3397 bool IsAlternating; 3398 bool IsTopDown; 3399 3400 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3401 // gives nodes with a higher number higher priority causing the latest 3402 // instructions to be scheduled first. 3403 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3404 TopQ; 3405 // When scheduling bottom-up, use greater-than as the queue priority. 3406 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3407 BottomQ; 3408 public: 3409 InstructionShuffler(bool alternate, bool topdown) 3410 : IsAlternating(alternate), IsTopDown(topdown) {} 3411 3412 void initialize(ScheduleDAGMI*) override { 3413 TopQ.clear(); 3414 BottomQ.clear(); 3415 } 3416 3417 /// Implement MachineSchedStrategy interface. 3418 /// ----------------------------------------- 3419 3420 SUnit *pickNode(bool &IsTopNode) override { 3421 SUnit *SU; 3422 if (IsTopDown) { 3423 do { 3424 if (TopQ.empty()) return nullptr; 3425 SU = TopQ.top(); 3426 TopQ.pop(); 3427 } while (SU->isScheduled); 3428 IsTopNode = true; 3429 } else { 3430 do { 3431 if (BottomQ.empty()) return nullptr; 3432 SU = BottomQ.top(); 3433 BottomQ.pop(); 3434 } while (SU->isScheduled); 3435 IsTopNode = false; 3436 } 3437 if (IsAlternating) 3438 IsTopDown = !IsTopDown; 3439 return SU; 3440 } 3441 3442 void schedNode(SUnit *SU, bool IsTopNode) override {} 3443 3444 void releaseTopNode(SUnit *SU) override { 3445 TopQ.push(SU); 3446 } 3447 void releaseBottomNode(SUnit *SU) override { 3448 BottomQ.push(SU); 3449 } 3450 }; 3451 } // namespace 3452 3453 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3454 bool Alternate = !ForceTopDown && !ForceBottomUp; 3455 bool TopDown = !ForceBottomUp; 3456 assert((TopDown || !ForceTopDown) && 3457 "-misched-topdown incompatible with -misched-bottomup"); 3458 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3459 } 3460 static MachineSchedRegistry ShufflerRegistry( 3461 "shuffle", "Shuffle machine instructions alternating directions", 3462 createInstructionShuffler); 3463 #endif // !NDEBUG 3464 3465 //===----------------------------------------------------------------------===// 3466 // GraphWriter support for ScheduleDAGMILive. 3467 //===----------------------------------------------------------------------===// 3468 3469 #ifndef NDEBUG 3470 namespace llvm { 3471 3472 template<> struct GraphTraits< 3473 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3474 3475 template<> 3476 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3477 3478 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3479 3480 static std::string getGraphName(const ScheduleDAG *G) { 3481 return G->MF.getName(); 3482 } 3483 3484 static bool renderGraphFromBottomUp() { 3485 return true; 3486 } 3487 3488 static bool isNodeHidden(const SUnit *Node) { 3489 if (ViewMISchedCutoff == 0) 3490 return false; 3491 return (Node->Preds.size() > ViewMISchedCutoff 3492 || Node->Succs.size() > ViewMISchedCutoff); 3493 } 3494 3495 /// If you want to override the dot attributes printed for a particular 3496 /// edge, override this method. 3497 static std::string getEdgeAttributes(const SUnit *Node, 3498 SUnitIterator EI, 3499 const ScheduleDAG *Graph) { 3500 if (EI.isArtificialDep()) 3501 return "color=cyan,style=dashed"; 3502 if (EI.isCtrlDep()) 3503 return "color=blue,style=dashed"; 3504 return ""; 3505 } 3506 3507 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3508 std::string Str; 3509 raw_string_ostream SS(Str); 3510 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3511 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3512 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3513 SS << "SU:" << SU->NodeNum; 3514 if (DFS) 3515 SS << " I:" << DFS->getNumInstrs(SU); 3516 return SS.str(); 3517 } 3518 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3519 return G->getGraphNodeLabel(SU); 3520 } 3521 3522 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3523 std::string Str("shape=Mrecord"); 3524 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3525 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3526 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3527 if (DFS) { 3528 Str += ",style=filled,fillcolor=\"#"; 3529 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3530 Str += '"'; 3531 } 3532 return Str; 3533 } 3534 }; 3535 } // namespace llvm 3536 #endif // NDEBUG 3537 3538 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3539 /// rendered using 'dot'. 3540 /// 3541 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3542 #ifndef NDEBUG 3543 ViewGraph(this, Name, false, Title); 3544 #else 3545 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3546 << "systems with Graphviz or gv!\n"; 3547 #endif // NDEBUG 3548 } 3549 3550 /// Out-of-line implementation with no arguments is handy for gdb. 3551 void ScheduleDAGMI::viewGraph() { 3552 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3553 } 3554