Home | History | Annotate | Download | only in InstCombine
      1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // InstructionCombining - Combine instructions to form fewer, simple
     11 // instructions.  This pass does not modify the CFG.  This pass is where
     12 // algebraic simplification happens.
     13 //
     14 // This pass combines things like:
     15 //    %Y = add i32 %X, 1
     16 //    %Z = add i32 %Y, 1
     17 // into:
     18 //    %Z = add i32 %X, 2
     19 //
     20 // This is a simple worklist driven algorithm.
     21 //
     22 // This pass guarantees that the following canonicalizations are performed on
     23 // the program:
     24 //    1. If a binary operator has a constant operand, it is moved to the RHS
     25 //    2. Bitwise operators with constant operands are always grouped so that
     26 //       shifts are performed first, then or's, then and's, then xor's.
     27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
     28 //    4. All cmp instructions on boolean values are replaced with logical ops
     29 //    5. add X, X is represented as (X*2) => (X << 1)
     30 //    6. Multiplies with a power-of-two constant argument are transformed into
     31 //       shifts.
     32 //   ... etc.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/InstCombine/InstCombine.h"
     37 #include "InstCombineInternal.h"
     38 #include "llvm-c/Initialization.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/Statistic.h"
     41 #include "llvm/ADT/StringSwitch.h"
     42 #include "llvm/Analysis/AliasAnalysis.h"
     43 #include "llvm/Analysis/AssumptionCache.h"
     44 #include "llvm/Analysis/BasicAliasAnalysis.h"
     45 #include "llvm/Analysis/CFG.h"
     46 #include "llvm/Analysis/ConstantFolding.h"
     47 #include "llvm/Analysis/EHPersonalities.h"
     48 #include "llvm/Analysis/GlobalsModRef.h"
     49 #include "llvm/Analysis/InstructionSimplify.h"
     50 #include "llvm/Analysis/LoopInfo.h"
     51 #include "llvm/Analysis/MemoryBuiltins.h"
     52 #include "llvm/Analysis/TargetLibraryInfo.h"
     53 #include "llvm/Analysis/ValueTracking.h"
     54 #include "llvm/IR/CFG.h"
     55 #include "llvm/IR/DataLayout.h"
     56 #include "llvm/IR/Dominators.h"
     57 #include "llvm/IR/GetElementPtrTypeIterator.h"
     58 #include "llvm/IR/IntrinsicInst.h"
     59 #include "llvm/IR/PatternMatch.h"
     60 #include "llvm/IR/ValueHandle.h"
     61 #include "llvm/Support/CommandLine.h"
     62 #include "llvm/Support/Debug.h"
     63 #include "llvm/Support/raw_ostream.h"
     64 #include "llvm/Transforms/Scalar.h"
     65 #include "llvm/Transforms/Utils/Local.h"
     66 #include <algorithm>
     67 #include <climits>
     68 using namespace llvm;
     69 using namespace llvm::PatternMatch;
     70 
     71 #define DEBUG_TYPE "instcombine"
     72 
     73 STATISTIC(NumCombined , "Number of insts combined");
     74 STATISTIC(NumConstProp, "Number of constant folds");
     75 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
     76 STATISTIC(NumSunkInst , "Number of instructions sunk");
     77 STATISTIC(NumExpand,    "Number of expansions");
     78 STATISTIC(NumFactor   , "Number of factorizations");
     79 STATISTIC(NumReassoc  , "Number of reassociations");
     80 
     81 static cl::opt<bool>
     82 EnableExpensiveCombines("expensive-combines",
     83                         cl::desc("Enable expensive instruction combines"));
     84 
     85 Value *InstCombiner::EmitGEPOffset(User *GEP) {
     86   return llvm::EmitGEPOffset(Builder, DL, GEP);
     87 }
     88 
     89 /// Return true if it is desirable to convert an integer computation from a
     90 /// given bit width to a new bit width.
     91 /// We don't want to convert from a legal to an illegal type for example or from
     92 /// a smaller to a larger illegal type.
     93 bool InstCombiner::ShouldChangeType(unsigned FromWidth,
     94                                     unsigned ToWidth) const {
     95   bool FromLegal = DL.isLegalInteger(FromWidth);
     96   bool ToLegal = DL.isLegalInteger(ToWidth);
     97 
     98   // If this is a legal integer from type, and the result would be an illegal
     99   // type, don't do the transformation.
    100   if (FromLegal && !ToLegal)
    101     return false;
    102 
    103   // Otherwise, if both are illegal, do not increase the size of the result. We
    104   // do allow things like i160 -> i64, but not i64 -> i160.
    105   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    106     return false;
    107 
    108   return true;
    109 }
    110 
    111 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
    112 /// We don't want to convert from a legal to an illegal type for example or from
    113 /// a smaller to a larger illegal type.
    114 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
    115   assert(From->isIntegerTy() && To->isIntegerTy());
    116 
    117   unsigned FromWidth = From->getPrimitiveSizeInBits();
    118   unsigned ToWidth = To->getPrimitiveSizeInBits();
    119   return ShouldChangeType(FromWidth, ToWidth);
    120 }
    121 
    122 // Return true, if No Signed Wrap should be maintained for I.
    123 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
    124 // where both B and C should be ConstantInts, results in a constant that does
    125 // not overflow. This function only handles the Add and Sub opcodes. For
    126 // all other opcodes, the function conservatively returns false.
    127 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
    128   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
    129   if (!OBO || !OBO->hasNoSignedWrap())
    130     return false;
    131 
    132   // We reason about Add and Sub Only.
    133   Instruction::BinaryOps Opcode = I.getOpcode();
    134   if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
    135     return false;
    136 
    137   const APInt *BVal, *CVal;
    138   if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
    139     return false;
    140 
    141   bool Overflow = false;
    142   if (Opcode == Instruction::Add)
    143     BVal->sadd_ov(*CVal, Overflow);
    144   else
    145     BVal->ssub_ov(*CVal, Overflow);
    146 
    147   return !Overflow;
    148 }
    149 
    150 /// Conservatively clears subclassOptionalData after a reassociation or
    151 /// commutation. We preserve fast-math flags when applicable as they can be
    152 /// preserved.
    153 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
    154   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
    155   if (!FPMO) {
    156     I.clearSubclassOptionalData();
    157     return;
    158   }
    159 
    160   FastMathFlags FMF = I.getFastMathFlags();
    161   I.clearSubclassOptionalData();
    162   I.setFastMathFlags(FMF);
    163 }
    164 
    165 /// This performs a few simplifications for operators that are associative or
    166 /// commutative:
    167 ///
    168 ///  Commutative operators:
    169 ///
    170 ///  1. Order operands such that they are listed from right (least complex) to
    171 ///     left (most complex).  This puts constants before unary operators before
    172 ///     binary operators.
    173 ///
    174 ///  Associative operators:
    175 ///
    176 ///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    177 ///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    178 ///
    179 ///  Associative and commutative operators:
    180 ///
    181 ///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    182 ///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    183 ///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    184 ///     if C1 and C2 are constants.
    185 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
    186   Instruction::BinaryOps Opcode = I.getOpcode();
    187   bool Changed = false;
    188 
    189   do {
    190     // Order operands such that they are listed from right (least complex) to
    191     // left (most complex).  This puts constants before unary operators before
    192     // binary operators.
    193     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
    194         getComplexity(I.getOperand(1)))
    195       Changed = !I.swapOperands();
    196 
    197     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    198     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
    199 
    200     if (I.isAssociative()) {
    201       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    202       if (Op0 && Op0->getOpcode() == Opcode) {
    203         Value *A = Op0->getOperand(0);
    204         Value *B = Op0->getOperand(1);
    205         Value *C = I.getOperand(1);
    206 
    207         // Does "B op C" simplify?
    208         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
    209           // It simplifies to V.  Form "A op V".
    210           I.setOperand(0, A);
    211           I.setOperand(1, V);
    212           // Conservatively clear the optional flags, since they may not be
    213           // preserved by the reassociation.
    214           if (MaintainNoSignedWrap(I, B, C) &&
    215               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
    216             // Note: this is only valid because SimplifyBinOp doesn't look at
    217             // the operands to Op0.
    218             I.clearSubclassOptionalData();
    219             I.setHasNoSignedWrap(true);
    220           } else {
    221             ClearSubclassDataAfterReassociation(I);
    222           }
    223 
    224           Changed = true;
    225           ++NumReassoc;
    226           continue;
    227         }
    228       }
    229 
    230       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    231       if (Op1 && Op1->getOpcode() == Opcode) {
    232         Value *A = I.getOperand(0);
    233         Value *B = Op1->getOperand(0);
    234         Value *C = Op1->getOperand(1);
    235 
    236         // Does "A op B" simplify?
    237         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
    238           // It simplifies to V.  Form "V op C".
    239           I.setOperand(0, V);
    240           I.setOperand(1, C);
    241           // Conservatively clear the optional flags, since they may not be
    242           // preserved by the reassociation.
    243           ClearSubclassDataAfterReassociation(I);
    244           Changed = true;
    245           ++NumReassoc;
    246           continue;
    247         }
    248       }
    249     }
    250 
    251     if (I.isAssociative() && I.isCommutative()) {
    252       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    253       if (Op0 && Op0->getOpcode() == Opcode) {
    254         Value *A = Op0->getOperand(0);
    255         Value *B = Op0->getOperand(1);
    256         Value *C = I.getOperand(1);
    257 
    258         // Does "C op A" simplify?
    259         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
    260           // It simplifies to V.  Form "V op B".
    261           I.setOperand(0, V);
    262           I.setOperand(1, B);
    263           // Conservatively clear the optional flags, since they may not be
    264           // preserved by the reassociation.
    265           ClearSubclassDataAfterReassociation(I);
    266           Changed = true;
    267           ++NumReassoc;
    268           continue;
    269         }
    270       }
    271 
    272       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    273       if (Op1 && Op1->getOpcode() == Opcode) {
    274         Value *A = I.getOperand(0);
    275         Value *B = Op1->getOperand(0);
    276         Value *C = Op1->getOperand(1);
    277 
    278         // Does "C op A" simplify?
    279         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
    280           // It simplifies to V.  Form "B op V".
    281           I.setOperand(0, B);
    282           I.setOperand(1, V);
    283           // Conservatively clear the optional flags, since they may not be
    284           // preserved by the reassociation.
    285           ClearSubclassDataAfterReassociation(I);
    286           Changed = true;
    287           ++NumReassoc;
    288           continue;
    289         }
    290       }
    291 
    292       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    293       // if C1 and C2 are constants.
    294       if (Op0 && Op1 &&
    295           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
    296           isa<Constant>(Op0->getOperand(1)) &&
    297           isa<Constant>(Op1->getOperand(1)) &&
    298           Op0->hasOneUse() && Op1->hasOneUse()) {
    299         Value *A = Op0->getOperand(0);
    300         Constant *C1 = cast<Constant>(Op0->getOperand(1));
    301         Value *B = Op1->getOperand(0);
    302         Constant *C2 = cast<Constant>(Op1->getOperand(1));
    303 
    304         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
    305         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
    306         if (isa<FPMathOperator>(New)) {
    307           FastMathFlags Flags = I.getFastMathFlags();
    308           Flags &= Op0->getFastMathFlags();
    309           Flags &= Op1->getFastMathFlags();
    310           New->setFastMathFlags(Flags);
    311         }
    312         InsertNewInstWith(New, I);
    313         New->takeName(Op1);
    314         I.setOperand(0, New);
    315         I.setOperand(1, Folded);
    316         // Conservatively clear the optional flags, since they may not be
    317         // preserved by the reassociation.
    318         ClearSubclassDataAfterReassociation(I);
    319 
    320         Changed = true;
    321         continue;
    322       }
    323     }
    324 
    325     // No further simplifications.
    326     return Changed;
    327   } while (1);
    328 }
    329 
    330 /// Return whether "X LOp (Y ROp Z)" is always equal to
    331 /// "(X LOp Y) ROp (X LOp Z)".
    332 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
    333                                      Instruction::BinaryOps ROp) {
    334   switch (LOp) {
    335   default:
    336     return false;
    337 
    338   case Instruction::And:
    339     // And distributes over Or and Xor.
    340     switch (ROp) {
    341     default:
    342       return false;
    343     case Instruction::Or:
    344     case Instruction::Xor:
    345       return true;
    346     }
    347 
    348   case Instruction::Mul:
    349     // Multiplication distributes over addition and subtraction.
    350     switch (ROp) {
    351     default:
    352       return false;
    353     case Instruction::Add:
    354     case Instruction::Sub:
    355       return true;
    356     }
    357 
    358   case Instruction::Or:
    359     // Or distributes over And.
    360     switch (ROp) {
    361     default:
    362       return false;
    363     case Instruction::And:
    364       return true;
    365     }
    366   }
    367 }
    368 
    369 /// Return whether "(X LOp Y) ROp Z" is always equal to
    370 /// "(X ROp Z) LOp (Y ROp Z)".
    371 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
    372                                      Instruction::BinaryOps ROp) {
    373   if (Instruction::isCommutative(ROp))
    374     return LeftDistributesOverRight(ROp, LOp);
    375 
    376   switch (LOp) {
    377   default:
    378     return false;
    379   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
    380   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
    381   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
    382   case Instruction::And:
    383   case Instruction::Or:
    384   case Instruction::Xor:
    385     switch (ROp) {
    386     default:
    387       return false;
    388     case Instruction::Shl:
    389     case Instruction::LShr:
    390     case Instruction::AShr:
    391       return true;
    392     }
    393   }
    394   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
    395   // but this requires knowing that the addition does not overflow and other
    396   // such subtleties.
    397   return false;
    398 }
    399 
    400 /// This function returns identity value for given opcode, which can be used to
    401 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
    402 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
    403   if (isa<Constant>(V))
    404     return nullptr;
    405 
    406   if (OpCode == Instruction::Mul)
    407     return ConstantInt::get(V->getType(), 1);
    408 
    409   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
    410 
    411   return nullptr;
    412 }
    413 
    414 /// This function factors binary ops which can be combined using distributive
    415 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
    416 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
    417 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
    418 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
    419 /// RHS to 4.
    420 static Instruction::BinaryOps
    421 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
    422                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
    423   if (!Op)
    424     return Instruction::BinaryOpsEnd;
    425 
    426   LHS = Op->getOperand(0);
    427   RHS = Op->getOperand(1);
    428 
    429   switch (TopLevelOpcode) {
    430   default:
    431     return Op->getOpcode();
    432 
    433   case Instruction::Add:
    434   case Instruction::Sub:
    435     if (Op->getOpcode() == Instruction::Shl) {
    436       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
    437         // The multiplier is really 1 << CST.
    438         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
    439         return Instruction::Mul;
    440       }
    441     }
    442     return Op->getOpcode();
    443   }
    444 
    445   // TODO: We can add other conversions e.g. shr => div etc.
    446 }
    447 
    448 /// This tries to simplify binary operations by factorizing out common terms
    449 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
    450 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
    451                                const DataLayout &DL, BinaryOperator &I,
    452                                Instruction::BinaryOps InnerOpcode, Value *A,
    453                                Value *B, Value *C, Value *D) {
    454 
    455   // If any of A, B, C, D are null, we can not factor I, return early.
    456   // Checking A and C should be enough.
    457   if (!A || !C || !B || !D)
    458     return nullptr;
    459 
    460   Value *V = nullptr;
    461   Value *SimplifiedInst = nullptr;
    462   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    463   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
    464 
    465   // Does "X op' Y" always equal "Y op' X"?
    466   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
    467 
    468   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
    469   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    470     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    471     // commutative case, "(A op' B) op (C op' A)"?
    472     if (A == C || (InnerCommutative && A == D)) {
    473       if (A != C)
    474         std::swap(C, D);
    475       // Consider forming "A op' (B op D)".
    476       // If "B op D" simplifies then it can be formed with no cost.
    477       V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
    478       // If "B op D" doesn't simplify then only go on if both of the existing
    479       // operations "A op' B" and "C op' D" will be zapped as no longer used.
    480       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
    481         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
    482       if (V) {
    483         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
    484       }
    485     }
    486 
    487   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
    488   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    489     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    490     // commutative case, "(A op' B) op (B op' D)"?
    491     if (B == D || (InnerCommutative && B == C)) {
    492       if (B != D)
    493         std::swap(C, D);
    494       // Consider forming "(A op C) op' B".
    495       // If "A op C" simplifies then it can be formed with no cost.
    496       V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
    497 
    498       // If "A op C" doesn't simplify then only go on if both of the existing
    499       // operations "A op' B" and "C op' D" will be zapped as no longer used.
    500       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
    501         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
    502       if (V) {
    503         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
    504       }
    505     }
    506 
    507   if (SimplifiedInst) {
    508     ++NumFactor;
    509     SimplifiedInst->takeName(&I);
    510 
    511     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
    512     // TODO: Check for NUW.
    513     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
    514       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
    515         bool HasNSW = false;
    516         if (isa<OverflowingBinaryOperator>(&I))
    517           HasNSW = I.hasNoSignedWrap();
    518 
    519         if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    520           if (isa<OverflowingBinaryOperator>(Op0))
    521             HasNSW &= Op0->hasNoSignedWrap();
    522 
    523         if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    524           if (isa<OverflowingBinaryOperator>(Op1))
    525             HasNSW &= Op1->hasNoSignedWrap();
    526 
    527         // We can propagate 'nsw' if we know that
    528         //  %Y = mul nsw i16 %X, C
    529         //  %Z = add nsw i16 %Y, %X
    530         // =>
    531         //  %Z = mul nsw i16 %X, C+1
    532         //
    533         // iff C+1 isn't INT_MIN
    534         const APInt *CInt;
    535         if (TopLevelOpcode == Instruction::Add &&
    536             InnerOpcode == Instruction::Mul)
    537           if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
    538             BO->setHasNoSignedWrap(HasNSW);
    539       }
    540     }
    541   }
    542   return SimplifiedInst;
    543 }
    544 
    545 /// This tries to simplify binary operations which some other binary operation
    546 /// distributes over either by factorizing out common terms
    547 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
    548 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
    549 /// Returns the simplified value, or null if it didn't simplify.
    550 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
    551   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    552   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    553   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    554 
    555   // Factorization.
    556   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
    557   auto TopLevelOpcode = I.getOpcode();
    558   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
    559   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
    560 
    561   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    562   // a common term.
    563   if (LHSOpcode == RHSOpcode) {
    564     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
    565       return V;
    566   }
    567 
    568   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
    569   // term.
    570   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
    571                                   getIdentityValue(LHSOpcode, RHS)))
    572     return V;
    573 
    574   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
    575   // term.
    576   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
    577                                   getIdentityValue(RHSOpcode, LHS), C, D))
    578     return V;
    579 
    580   // Expansion.
    581   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    582     // The instruction has the form "(A op' B) op C".  See if expanding it out
    583     // to "(A op C) op' (B op C)" results in simplifications.
    584     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    585     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    586 
    587     // Do "A op C" and "B op C" both simplify?
    588     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
    589       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
    590         // They do! Return "L op' R".
    591         ++NumExpand;
    592         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    593         if ((L == A && R == B) ||
    594             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
    595           return Op0;
    596         // Otherwise return "L op' R" if it simplifies.
    597         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
    598           return V;
    599         // Otherwise, create a new instruction.
    600         C = Builder->CreateBinOp(InnerOpcode, L, R);
    601         C->takeName(&I);
    602         return C;
    603       }
    604   }
    605 
    606   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    607     // The instruction has the form "A op (B op' C)".  See if expanding it out
    608     // to "(A op B) op' (A op C)" results in simplifications.
    609     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    610     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
    611 
    612     // Do "A op B" and "A op C" both simplify?
    613     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
    614       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
    615         // They do! Return "L op' R".
    616         ++NumExpand;
    617         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    618         if ((L == B && R == C) ||
    619             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
    620           return Op1;
    621         // Otherwise return "L op' R" if it simplifies.
    622         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
    623           return V;
    624         // Otherwise, create a new instruction.
    625         A = Builder->CreateBinOp(InnerOpcode, L, R);
    626         A->takeName(&I);
    627         return A;
    628       }
    629   }
    630 
    631   // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
    632   // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
    633   if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
    634     if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
    635       if (SI0->getCondition() == SI1->getCondition()) {
    636         Value *SI = nullptr;
    637         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
    638                                      SI1->getFalseValue(), DL, TLI, DT, AC))
    639           SI = Builder->CreateSelect(SI0->getCondition(),
    640                                      Builder->CreateBinOp(TopLevelOpcode,
    641                                                           SI0->getTrueValue(),
    642                                                           SI1->getTrueValue()),
    643                                      V);
    644         if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
    645                                      SI1->getTrueValue(), DL, TLI, DT, AC))
    646           SI = Builder->CreateSelect(
    647               SI0->getCondition(), V,
    648               Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
    649                                    SI1->getFalseValue()));
    650         if (SI) {
    651           SI->takeName(&I);
    652           return SI;
    653         }
    654       }
    655     }
    656   }
    657 
    658   return nullptr;
    659 }
    660 
    661 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
    662 /// constant zero (which is the 'negate' form).
    663 Value *InstCombiner::dyn_castNegVal(Value *V) const {
    664   if (BinaryOperator::isNeg(V))
    665     return BinaryOperator::getNegArgument(V);
    666 
    667   // Constants can be considered to be negated values if they can be folded.
    668   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    669     return ConstantExpr::getNeg(C);
    670 
    671   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    672     if (C->getType()->getElementType()->isIntegerTy())
    673       return ConstantExpr::getNeg(C);
    674 
    675   return nullptr;
    676 }
    677 
    678 /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
    679 /// a constant negative zero (which is the 'negate' form).
    680 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
    681   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
    682     return BinaryOperator::getFNegArgument(V);
    683 
    684   // Constants can be considered to be negated values if they can be folded.
    685   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    686     return ConstantExpr::getFNeg(C);
    687 
    688   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    689     if (C->getType()->getElementType()->isFloatingPointTy())
    690       return ConstantExpr::getFNeg(C);
    691 
    692   return nullptr;
    693 }
    694 
    695 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
    696                                              InstCombiner *IC) {
    697   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    698     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
    699   }
    700 
    701   // Figure out if the constant is the left or the right argument.
    702   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
    703   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
    704 
    705   if (Constant *SOC = dyn_cast<Constant>(SO)) {
    706     if (ConstIsRHS)
    707       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    708     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
    709   }
    710 
    711   Value *Op0 = SO, *Op1 = ConstOperand;
    712   if (!ConstIsRHS)
    713     std::swap(Op0, Op1);
    714 
    715   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
    716     Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
    717                                     SO->getName()+".op");
    718     Instruction *FPInst = dyn_cast<Instruction>(RI);
    719     if (FPInst && isa<FPMathOperator>(FPInst))
    720       FPInst->copyFastMathFlags(BO);
    721     return RI;
    722   }
    723   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    724     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    725                                    SO->getName()+".cmp");
    726   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    727     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    728                                    SO->getName()+".cmp");
    729   llvm_unreachable("Unknown binary instruction type!");
    730 }
    731 
    732 /// Given an instruction with a select as one operand and a constant as the
    733 /// other operand, try to fold the binary operator into the select arguments.
    734 /// This also works for Cast instructions, which obviously do not have a second
    735 /// operand.
    736 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
    737   // Don't modify shared select instructions
    738   if (!SI->hasOneUse()) return nullptr;
    739   Value *TV = SI->getOperand(1);
    740   Value *FV = SI->getOperand(2);
    741 
    742   if (isa<Constant>(TV) || isa<Constant>(FV)) {
    743     // Bool selects with constant operands can be folded to logical ops.
    744     if (SI->getType()->isIntegerTy(1)) return nullptr;
    745 
    746     // If it's a bitcast involving vectors, make sure it has the same number of
    747     // elements on both sides.
    748     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
    749       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    750       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
    751 
    752       // Verify that either both or neither are vectors.
    753       if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
    754       // If vectors, verify that they have the same number of elements.
    755       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
    756         return nullptr;
    757     }
    758 
    759     // Test if a CmpInst instruction is used exclusively by a select as
    760     // part of a minimum or maximum operation. If so, refrain from doing
    761     // any other folding. This helps out other analyses which understand
    762     // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
    763     // and CodeGen. And in this case, at least one of the comparison
    764     // operands has at least one user besides the compare (the select),
    765     // which would often largely negate the benefit of folding anyway.
    766     if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
    767       if (CI->hasOneUse()) {
    768         Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
    769         if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
    770             (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
    771           return nullptr;
    772       }
    773     }
    774 
    775     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    776     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
    777 
    778     return SelectInst::Create(SI->getCondition(),
    779                               SelectTrueVal, SelectFalseVal);
    780   }
    781   return nullptr;
    782 }
    783 
    784 /// Given a binary operator, cast instruction, or select which has a PHI node as
    785 /// operand #0, see if we can fold the instruction into the PHI (which is only
    786 /// possible if all operands to the PHI are constants).
    787 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
    788   PHINode *PN = cast<PHINode>(I.getOperand(0));
    789   unsigned NumPHIValues = PN->getNumIncomingValues();
    790   if (NumPHIValues == 0)
    791     return nullptr;
    792 
    793   // We normally only transform phis with a single use.  However, if a PHI has
    794   // multiple uses and they are all the same operation, we can fold *all* of the
    795   // uses into the PHI.
    796   if (!PN->hasOneUse()) {
    797     // Walk the use list for the instruction, comparing them to I.
    798     for (User *U : PN->users()) {
    799       Instruction *UI = cast<Instruction>(U);
    800       if (UI != &I && !I.isIdenticalTo(UI))
    801         return nullptr;
    802     }
    803     // Otherwise, we can replace *all* users with the new PHI we form.
    804   }
    805 
    806   // Check to see if all of the operands of the PHI are simple constants
    807   // (constantint/constantfp/undef).  If there is one non-constant value,
    808   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
    809   // bail out.  We don't do arbitrary constant expressions here because moving
    810   // their computation can be expensive without a cost model.
    811   BasicBlock *NonConstBB = nullptr;
    812   for (unsigned i = 0; i != NumPHIValues; ++i) {
    813     Value *InVal = PN->getIncomingValue(i);
    814     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
    815       continue;
    816 
    817     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
    818     if (NonConstBB) return nullptr;  // More than one non-const value.
    819 
    820     NonConstBB = PN->getIncomingBlock(i);
    821 
    822     // If the InVal is an invoke at the end of the pred block, then we can't
    823     // insert a computation after it without breaking the edge.
    824     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
    825       if (II->getParent() == NonConstBB)
    826         return nullptr;
    827 
    828     // If the incoming non-constant value is in I's block, we will remove one
    829     // instruction, but insert another equivalent one, leading to infinite
    830     // instcombine.
    831     if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
    832       return nullptr;
    833   }
    834 
    835   // If there is exactly one non-constant value, we can insert a copy of the
    836   // operation in that block.  However, if this is a critical edge, we would be
    837   // inserting the computation on some other paths (e.g. inside a loop).  Only
    838   // do this if the pred block is unconditionally branching into the phi block.
    839   if (NonConstBB != nullptr) {
    840     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    841     if (!BI || !BI->isUnconditional()) return nullptr;
    842   }
    843 
    844   // Okay, we can do the transformation: create the new PHI node.
    845   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
    846   InsertNewInstBefore(NewPN, *PN);
    847   NewPN->takeName(PN);
    848 
    849   // If we are going to have to insert a new computation, do so right before the
    850   // predecessor's terminator.
    851   if (NonConstBB)
    852     Builder->SetInsertPoint(NonConstBB->getTerminator());
    853 
    854   // Next, add all of the operands to the PHI.
    855   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    856     // We only currently try to fold the condition of a select when it is a phi,
    857     // not the true/false values.
    858     Value *TrueV = SI->getTrueValue();
    859     Value *FalseV = SI->getFalseValue();
    860     BasicBlock *PhiTransBB = PN->getParent();
    861     for (unsigned i = 0; i != NumPHIValues; ++i) {
    862       BasicBlock *ThisBB = PN->getIncomingBlock(i);
    863       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
    864       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
    865       Value *InV = nullptr;
    866       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
    867       // even if currently isNullValue gives false.
    868       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
    869       if (InC && !isa<ConstantExpr>(InC))
    870         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
    871       else
    872         InV = Builder->CreateSelect(PN->getIncomingValue(i),
    873                                     TrueVInPred, FalseVInPred, "phitmp");
    874       NewPN->addIncoming(InV, ThisBB);
    875     }
    876   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    877     Constant *C = cast<Constant>(I.getOperand(1));
    878     for (unsigned i = 0; i != NumPHIValues; ++i) {
    879       Value *InV = nullptr;
    880       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    881         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
    882       else if (isa<ICmpInst>(CI))
    883         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
    884                                   C, "phitmp");
    885       else
    886         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
    887                                   C, "phitmp");
    888       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    889     }
    890   } else if (I.getNumOperands() == 2) {
    891     Constant *C = cast<Constant>(I.getOperand(1));
    892     for (unsigned i = 0; i != NumPHIValues; ++i) {
    893       Value *InV = nullptr;
    894       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    895         InV = ConstantExpr::get(I.getOpcode(), InC, C);
    896       else
    897         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
    898                                    PN->getIncomingValue(i), C, "phitmp");
    899       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    900     }
    901   } else {
    902     CastInst *CI = cast<CastInst>(&I);
    903     Type *RetTy = CI->getType();
    904     for (unsigned i = 0; i != NumPHIValues; ++i) {
    905       Value *InV;
    906       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    907         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
    908       else
    909         InV = Builder->CreateCast(CI->getOpcode(),
    910                                 PN->getIncomingValue(i), I.getType(), "phitmp");
    911       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    912     }
    913   }
    914 
    915   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    916     Instruction *User = cast<Instruction>(*UI++);
    917     if (User == &I) continue;
    918     replaceInstUsesWith(*User, NewPN);
    919     eraseInstFromFunction(*User);
    920   }
    921   return replaceInstUsesWith(I, NewPN);
    922 }
    923 
    924 /// Given a pointer type and a constant offset, determine whether or not there
    925 /// is a sequence of GEP indices into the pointed type that will land us at the
    926 /// specified offset. If so, fill them into NewIndices and return the resultant
    927 /// element type, otherwise return null.
    928 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
    929                                         SmallVectorImpl<Value *> &NewIndices) {
    930   Type *Ty = PtrTy->getElementType();
    931   if (!Ty->isSized())
    932     return nullptr;
    933 
    934   // Start with the index over the outer type.  Note that the type size
    935   // might be zero (even if the offset isn't zero) if the indexed type
    936   // is something like [0 x {int, int}]
    937   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
    938   int64_t FirstIdx = 0;
    939   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
    940     FirstIdx = Offset/TySize;
    941     Offset -= FirstIdx*TySize;
    942 
    943     // Handle hosts where % returns negative instead of values [0..TySize).
    944     if (Offset < 0) {
    945       --FirstIdx;
    946       Offset += TySize;
    947       assert(Offset >= 0);
    948     }
    949     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
    950   }
    951 
    952   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
    953 
    954   // Index into the types.  If we fail, set OrigBase to null.
    955   while (Offset) {
    956     // Indexing into tail padding between struct/array elements.
    957     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
    958       return nullptr;
    959 
    960     if (StructType *STy = dyn_cast<StructType>(Ty)) {
    961       const StructLayout *SL = DL.getStructLayout(STy);
    962       assert(Offset < (int64_t)SL->getSizeInBytes() &&
    963              "Offset must stay within the indexed type");
    964 
    965       unsigned Elt = SL->getElementContainingOffset(Offset);
    966       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    967                                             Elt));
    968 
    969       Offset -= SL->getElementOffset(Elt);
    970       Ty = STy->getElementType(Elt);
    971     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    972       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
    973       assert(EltSize && "Cannot index into a zero-sized array");
    974       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
    975       Offset %= EltSize;
    976       Ty = AT->getElementType();
    977     } else {
    978       // Otherwise, we can't index into the middle of this atomic type, bail.
    979       return nullptr;
    980     }
    981   }
    982 
    983   return Ty;
    984 }
    985 
    986 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
    987   // If this GEP has only 0 indices, it is the same pointer as
    988   // Src. If Src is not a trivial GEP too, don't combine
    989   // the indices.
    990   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
    991       !Src.hasOneUse())
    992     return false;
    993   return true;
    994 }
    995 
    996 /// Return a value X such that Val = X * Scale, or null if none.
    997 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
    998 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
    999   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
   1000   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
   1001          Scale.getBitWidth() && "Scale not compatible with value!");
   1002 
   1003   // If Val is zero or Scale is one then Val = Val * Scale.
   1004   if (match(Val, m_Zero()) || Scale == 1) {
   1005     NoSignedWrap = true;
   1006     return Val;
   1007   }
   1008 
   1009   // If Scale is zero then it does not divide Val.
   1010   if (Scale.isMinValue())
   1011     return nullptr;
   1012 
   1013   // Look through chains of multiplications, searching for a constant that is
   1014   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
   1015   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
   1016   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
   1017   // down from Val:
   1018   //
   1019   //     Val = M1 * X          ||   Analysis starts here and works down
   1020   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
   1021   //      M2 =  Z * 4          \/   than one use
   1022   //
   1023   // Then to modify a term at the bottom:
   1024   //
   1025   //     Val = M1 * X
   1026   //      M1 =  Z * Y          ||   Replaced M2 with Z
   1027   //
   1028   // Then to work back up correcting nsw flags.
   1029 
   1030   // Op - the term we are currently analyzing.  Starts at Val then drills down.
   1031   // Replaced with its descaled value before exiting from the drill down loop.
   1032   Value *Op = Val;
   1033 
   1034   // Parent - initially null, but after drilling down notes where Op came from.
   1035   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
   1036   // 0'th operand of Val.
   1037   std::pair<Instruction*, unsigned> Parent;
   1038 
   1039   // Set if the transform requires a descaling at deeper levels that doesn't
   1040   // overflow.
   1041   bool RequireNoSignedWrap = false;
   1042 
   1043   // Log base 2 of the scale. Negative if not a power of 2.
   1044   int32_t logScale = Scale.exactLogBase2();
   1045 
   1046   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
   1047 
   1048     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
   1049       // If Op is a constant divisible by Scale then descale to the quotient.
   1050       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
   1051       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
   1052       if (!Remainder.isMinValue())
   1053         // Not divisible by Scale.
   1054         return nullptr;
   1055       // Replace with the quotient in the parent.
   1056       Op = ConstantInt::get(CI->getType(), Quotient);
   1057       NoSignedWrap = true;
   1058       break;
   1059     }
   1060 
   1061     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
   1062 
   1063       if (BO->getOpcode() == Instruction::Mul) {
   1064         // Multiplication.
   1065         NoSignedWrap = BO->hasNoSignedWrap();
   1066         if (RequireNoSignedWrap && !NoSignedWrap)
   1067           return nullptr;
   1068 
   1069         // There are three cases for multiplication: multiplication by exactly
   1070         // the scale, multiplication by a constant different to the scale, and
   1071         // multiplication by something else.
   1072         Value *LHS = BO->getOperand(0);
   1073         Value *RHS = BO->getOperand(1);
   1074 
   1075         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1076           // Multiplication by a constant.
   1077           if (CI->getValue() == Scale) {
   1078             // Multiplication by exactly the scale, replace the multiplication
   1079             // by its left-hand side in the parent.
   1080             Op = LHS;
   1081             break;
   1082           }
   1083 
   1084           // Otherwise drill down into the constant.
   1085           if (!Op->hasOneUse())
   1086             return nullptr;
   1087 
   1088           Parent = std::make_pair(BO, 1);
   1089           continue;
   1090         }
   1091 
   1092         // Multiplication by something else. Drill down into the left-hand side
   1093         // since that's where the reassociate pass puts the good stuff.
   1094         if (!Op->hasOneUse())
   1095           return nullptr;
   1096 
   1097         Parent = std::make_pair(BO, 0);
   1098         continue;
   1099       }
   1100 
   1101       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
   1102           isa<ConstantInt>(BO->getOperand(1))) {
   1103         // Multiplication by a power of 2.
   1104         NoSignedWrap = BO->hasNoSignedWrap();
   1105         if (RequireNoSignedWrap && !NoSignedWrap)
   1106           return nullptr;
   1107 
   1108         Value *LHS = BO->getOperand(0);
   1109         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
   1110           getLimitedValue(Scale.getBitWidth());
   1111         // Op = LHS << Amt.
   1112 
   1113         if (Amt == logScale) {
   1114           // Multiplication by exactly the scale, replace the multiplication
   1115           // by its left-hand side in the parent.
   1116           Op = LHS;
   1117           break;
   1118         }
   1119         if (Amt < logScale || !Op->hasOneUse())
   1120           return nullptr;
   1121 
   1122         // Multiplication by more than the scale.  Reduce the multiplying amount
   1123         // by the scale in the parent.
   1124         Parent = std::make_pair(BO, 1);
   1125         Op = ConstantInt::get(BO->getType(), Amt - logScale);
   1126         break;
   1127       }
   1128     }
   1129 
   1130     if (!Op->hasOneUse())
   1131       return nullptr;
   1132 
   1133     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
   1134       if (Cast->getOpcode() == Instruction::SExt) {
   1135         // Op is sign-extended from a smaller type, descale in the smaller type.
   1136         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
   1137         APInt SmallScale = Scale.trunc(SmallSize);
   1138         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
   1139         // descale Op as (sext Y) * Scale.  In order to have
   1140         //   sext (Y * SmallScale) = (sext Y) * Scale
   1141         // some conditions need to hold however: SmallScale must sign-extend to
   1142         // Scale and the multiplication Y * SmallScale should not overflow.
   1143         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
   1144           // SmallScale does not sign-extend to Scale.
   1145           return nullptr;
   1146         assert(SmallScale.exactLogBase2() == logScale);
   1147         // Require that Y * SmallScale must not overflow.
   1148         RequireNoSignedWrap = true;
   1149 
   1150         // Drill down through the cast.
   1151         Parent = std::make_pair(Cast, 0);
   1152         Scale = SmallScale;
   1153         continue;
   1154       }
   1155 
   1156       if (Cast->getOpcode() == Instruction::Trunc) {
   1157         // Op is truncated from a larger type, descale in the larger type.
   1158         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
   1159         //   trunc (Y * sext Scale) = (trunc Y) * Scale
   1160         // always holds.  However (trunc Y) * Scale may overflow even if
   1161         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
   1162         // from this point up in the expression (see later).
   1163         if (RequireNoSignedWrap)
   1164           return nullptr;
   1165 
   1166         // Drill down through the cast.
   1167         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
   1168         Parent = std::make_pair(Cast, 0);
   1169         Scale = Scale.sext(LargeSize);
   1170         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
   1171           logScale = -1;
   1172         assert(Scale.exactLogBase2() == logScale);
   1173         continue;
   1174       }
   1175     }
   1176 
   1177     // Unsupported expression, bail out.
   1178     return nullptr;
   1179   }
   1180 
   1181   // If Op is zero then Val = Op * Scale.
   1182   if (match(Op, m_Zero())) {
   1183     NoSignedWrap = true;
   1184     return Op;
   1185   }
   1186 
   1187   // We know that we can successfully descale, so from here on we can safely
   1188   // modify the IR.  Op holds the descaled version of the deepest term in the
   1189   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
   1190   // not to overflow.
   1191 
   1192   if (!Parent.first)
   1193     // The expression only had one term.
   1194     return Op;
   1195 
   1196   // Rewrite the parent using the descaled version of its operand.
   1197   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
   1198   assert(Op != Parent.first->getOperand(Parent.second) &&
   1199          "Descaling was a no-op?");
   1200   Parent.first->setOperand(Parent.second, Op);
   1201   Worklist.Add(Parent.first);
   1202 
   1203   // Now work back up the expression correcting nsw flags.  The logic is based
   1204   // on the following observation: if X * Y is known not to overflow as a signed
   1205   // multiplication, and Y is replaced by a value Z with smaller absolute value,
   1206   // then X * Z will not overflow as a signed multiplication either.  As we work
   1207   // our way up, having NoSignedWrap 'true' means that the descaled value at the
   1208   // current level has strictly smaller absolute value than the original.
   1209   Instruction *Ancestor = Parent.first;
   1210   do {
   1211     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
   1212       // If the multiplication wasn't nsw then we can't say anything about the
   1213       // value of the descaled multiplication, and we have to clear nsw flags
   1214       // from this point on up.
   1215       bool OpNoSignedWrap = BO->hasNoSignedWrap();
   1216       NoSignedWrap &= OpNoSignedWrap;
   1217       if (NoSignedWrap != OpNoSignedWrap) {
   1218         BO->setHasNoSignedWrap(NoSignedWrap);
   1219         Worklist.Add(Ancestor);
   1220       }
   1221     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
   1222       // The fact that the descaled input to the trunc has smaller absolute
   1223       // value than the original input doesn't tell us anything useful about
   1224       // the absolute values of the truncations.
   1225       NoSignedWrap = false;
   1226     }
   1227     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
   1228            "Failed to keep proper track of nsw flags while drilling down?");
   1229 
   1230     if (Ancestor == Val)
   1231       // Got to the top, all done!
   1232       return Val;
   1233 
   1234     // Move up one level in the expression.
   1235     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
   1236     Ancestor = Ancestor->user_back();
   1237   } while (1);
   1238 }
   1239 
   1240 /// \brief Creates node of binary operation with the same attributes as the
   1241 /// specified one but with other operands.
   1242 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
   1243                                  InstCombiner::BuilderTy *B) {
   1244   Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
   1245   // If LHS and RHS are constant, BO won't be a binary operator.
   1246   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
   1247     NewBO->copyIRFlags(&Inst);
   1248   return BO;
   1249 }
   1250 
   1251 /// \brief Makes transformation of binary operation specific for vector types.
   1252 /// \param Inst Binary operator to transform.
   1253 /// \return Pointer to node that must replace the original binary operator, or
   1254 ///         null pointer if no transformation was made.
   1255 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
   1256   if (!Inst.getType()->isVectorTy()) return nullptr;
   1257 
   1258   // It may not be safe to reorder shuffles and things like div, urem, etc.
   1259   // because we may trap when executing those ops on unknown vector elements.
   1260   // See PR20059.
   1261   if (!isSafeToSpeculativelyExecute(&Inst))
   1262     return nullptr;
   1263 
   1264   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
   1265   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
   1266   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
   1267   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
   1268 
   1269   // If both arguments of binary operation are shuffles, which use the same
   1270   // mask and shuffle within a single vector, it is worthwhile to move the
   1271   // shuffle after binary operation:
   1272   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
   1273   if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
   1274     ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
   1275     ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
   1276     if (isa<UndefValue>(LShuf->getOperand(1)) &&
   1277         isa<UndefValue>(RShuf->getOperand(1)) &&
   1278         LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
   1279         LShuf->getMask() == RShuf->getMask()) {
   1280       Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
   1281           RShuf->getOperand(0), Builder);
   1282       return Builder->CreateShuffleVector(NewBO,
   1283           UndefValue::get(NewBO->getType()), LShuf->getMask());
   1284     }
   1285   }
   1286 
   1287   // If one argument is a shuffle within one vector, the other is a constant,
   1288   // try moving the shuffle after the binary operation.
   1289   ShuffleVectorInst *Shuffle = nullptr;
   1290   Constant *C1 = nullptr;
   1291   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
   1292   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
   1293   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
   1294   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
   1295   if (Shuffle && C1 &&
   1296       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
   1297       isa<UndefValue>(Shuffle->getOperand(1)) &&
   1298       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
   1299     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
   1300     // Find constant C2 that has property:
   1301     //   shuffle(C2, ShMask) = C1
   1302     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
   1303     // reorder is not possible.
   1304     SmallVector<Constant*, 16> C2M(VWidth,
   1305                                UndefValue::get(C1->getType()->getScalarType()));
   1306     bool MayChange = true;
   1307     for (unsigned I = 0; I < VWidth; ++I) {
   1308       if (ShMask[I] >= 0) {
   1309         assert(ShMask[I] < (int)VWidth);
   1310         if (!isa<UndefValue>(C2M[ShMask[I]])) {
   1311           MayChange = false;
   1312           break;
   1313         }
   1314         C2M[ShMask[I]] = C1->getAggregateElement(I);
   1315       }
   1316     }
   1317     if (MayChange) {
   1318       Constant *C2 = ConstantVector::get(C2M);
   1319       Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
   1320       Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
   1321       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
   1322       return Builder->CreateShuffleVector(NewBO,
   1323           UndefValue::get(Inst.getType()), Shuffle->getMask());
   1324     }
   1325   }
   1326 
   1327   return nullptr;
   1328 }
   1329 
   1330 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1331   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
   1332 
   1333   if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC))
   1334     return replaceInstUsesWith(GEP, V);
   1335 
   1336   Value *PtrOp = GEP.getOperand(0);
   1337 
   1338   // Eliminate unneeded casts for indices, and replace indices which displace
   1339   // by multiples of a zero size type with zero.
   1340   bool MadeChange = false;
   1341   Type *IntPtrTy =
   1342     DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
   1343 
   1344   gep_type_iterator GTI = gep_type_begin(GEP);
   1345   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
   1346        ++I, ++GTI) {
   1347     // Skip indices into struct types.
   1348     if (isa<StructType>(*GTI))
   1349       continue;
   1350 
   1351     // Index type should have the same width as IntPtr
   1352     Type *IndexTy = (*I)->getType();
   1353     Type *NewIndexType = IndexTy->isVectorTy() ?
   1354       VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
   1355 
   1356     // If the element type has zero size then any index over it is equivalent
   1357     // to an index of zero, so replace it with zero if it is not zero already.
   1358     Type *EltTy = GTI.getIndexedType();
   1359     if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
   1360       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
   1361         *I = Constant::getNullValue(NewIndexType);
   1362         MadeChange = true;
   1363       }
   1364 
   1365     if (IndexTy != NewIndexType) {
   1366       // If we are using a wider index than needed for this platform, shrink
   1367       // it to what we need.  If narrower, sign-extend it to what we need.
   1368       // This explicit cast can make subsequent optimizations more obvious.
   1369       *I = Builder->CreateIntCast(*I, NewIndexType, true);
   1370       MadeChange = true;
   1371     }
   1372   }
   1373   if (MadeChange)
   1374     return &GEP;
   1375 
   1376   // Check to see if the inputs to the PHI node are getelementptr instructions.
   1377   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
   1378     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
   1379     if (!Op1)
   1380       return nullptr;
   1381 
   1382     // Don't fold a GEP into itself through a PHI node. This can only happen
   1383     // through the back-edge of a loop. Folding a GEP into itself means that
   1384     // the value of the previous iteration needs to be stored in the meantime,
   1385     // thus requiring an additional register variable to be live, but not
   1386     // actually achieving anything (the GEP still needs to be executed once per
   1387     // loop iteration).
   1388     if (Op1 == &GEP)
   1389       return nullptr;
   1390 
   1391     int DI = -1;
   1392 
   1393     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
   1394       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
   1395       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
   1396         return nullptr;
   1397 
   1398       // As for Op1 above, don't try to fold a GEP into itself.
   1399       if (Op2 == &GEP)
   1400         return nullptr;
   1401 
   1402       // Keep track of the type as we walk the GEP.
   1403       Type *CurTy = nullptr;
   1404 
   1405       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
   1406         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
   1407           return nullptr;
   1408 
   1409         if (Op1->getOperand(J) != Op2->getOperand(J)) {
   1410           if (DI == -1) {
   1411             // We have not seen any differences yet in the GEPs feeding the
   1412             // PHI yet, so we record this one if it is allowed to be a
   1413             // variable.
   1414 
   1415             // The first two arguments can vary for any GEP, the rest have to be
   1416             // static for struct slots
   1417             if (J > 1 && CurTy->isStructTy())
   1418               return nullptr;
   1419 
   1420             DI = J;
   1421           } else {
   1422             // The GEP is different by more than one input. While this could be
   1423             // extended to support GEPs that vary by more than one variable it
   1424             // doesn't make sense since it greatly increases the complexity and
   1425             // would result in an R+R+R addressing mode which no backend
   1426             // directly supports and would need to be broken into several
   1427             // simpler instructions anyway.
   1428             return nullptr;
   1429           }
   1430         }
   1431 
   1432         // Sink down a layer of the type for the next iteration.
   1433         if (J > 0) {
   1434           if (J == 1) {
   1435             CurTy = Op1->getSourceElementType();
   1436           } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
   1437             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
   1438           } else {
   1439             CurTy = nullptr;
   1440           }
   1441         }
   1442       }
   1443     }
   1444 
   1445     // If not all GEPs are identical we'll have to create a new PHI node.
   1446     // Check that the old PHI node has only one use so that it will get
   1447     // removed.
   1448     if (DI != -1 && !PN->hasOneUse())
   1449       return nullptr;
   1450 
   1451     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
   1452     if (DI == -1) {
   1453       // All the GEPs feeding the PHI are identical. Clone one down into our
   1454       // BB so that it can be merged with the current GEP.
   1455       GEP.getParent()->getInstList().insert(
   1456           GEP.getParent()->getFirstInsertionPt(), NewGEP);
   1457     } else {
   1458       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
   1459       // into the current block so it can be merged, and create a new PHI to
   1460       // set that index.
   1461       PHINode *NewPN;
   1462       {
   1463         IRBuilderBase::InsertPointGuard Guard(*Builder);
   1464         Builder->SetInsertPoint(PN);
   1465         NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
   1466                                    PN->getNumOperands());
   1467       }
   1468 
   1469       for (auto &I : PN->operands())
   1470         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
   1471                            PN->getIncomingBlock(I));
   1472 
   1473       NewGEP->setOperand(DI, NewPN);
   1474       GEP.getParent()->getInstList().insert(
   1475           GEP.getParent()->getFirstInsertionPt(), NewGEP);
   1476       NewGEP->setOperand(DI, NewPN);
   1477     }
   1478 
   1479     GEP.setOperand(0, NewGEP);
   1480     PtrOp = NewGEP;
   1481   }
   1482 
   1483   // Combine Indices - If the source pointer to this getelementptr instruction
   1484   // is a getelementptr instruction, combine the indices of the two
   1485   // getelementptr instructions into a single instruction.
   1486   //
   1487   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
   1488     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
   1489       return nullptr;
   1490 
   1491     // Note that if our source is a gep chain itself then we wait for that
   1492     // chain to be resolved before we perform this transformation.  This
   1493     // avoids us creating a TON of code in some cases.
   1494     if (GEPOperator *SrcGEP =
   1495           dyn_cast<GEPOperator>(Src->getOperand(0)))
   1496       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
   1497         return nullptr;   // Wait until our source is folded to completion.
   1498 
   1499     SmallVector<Value*, 8> Indices;
   1500 
   1501     // Find out whether the last index in the source GEP is a sequential idx.
   1502     bool EndsWithSequential = false;
   1503     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
   1504          I != E; ++I)
   1505       EndsWithSequential = !(*I)->isStructTy();
   1506 
   1507     // Can we combine the two pointer arithmetics offsets?
   1508     if (EndsWithSequential) {
   1509       // Replace: gep (gep %P, long B), long A, ...
   1510       // With:    T = long A+B; gep %P, T, ...
   1511       //
   1512       Value *Sum;
   1513       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
   1514       Value *GO1 = GEP.getOperand(1);
   1515       if (SO1 == Constant::getNullValue(SO1->getType())) {
   1516         Sum = GO1;
   1517       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
   1518         Sum = SO1;
   1519       } else {
   1520         // If they aren't the same type, then the input hasn't been processed
   1521         // by the loop above yet (which canonicalizes sequential index types to
   1522         // intptr_t).  Just avoid transforming this until the input has been
   1523         // normalized.
   1524         if (SO1->getType() != GO1->getType())
   1525           return nullptr;
   1526         // Only do the combine when GO1 and SO1 are both constants. Only in
   1527         // this case, we are sure the cost after the merge is never more than
   1528         // that before the merge.
   1529         if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
   1530           return nullptr;
   1531         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
   1532       }
   1533 
   1534       // Update the GEP in place if possible.
   1535       if (Src->getNumOperands() == 2) {
   1536         GEP.setOperand(0, Src->getOperand(0));
   1537         GEP.setOperand(1, Sum);
   1538         return &GEP;
   1539       }
   1540       Indices.append(Src->op_begin()+1, Src->op_end()-1);
   1541       Indices.push_back(Sum);
   1542       Indices.append(GEP.op_begin()+2, GEP.op_end());
   1543     } else if (isa<Constant>(*GEP.idx_begin()) &&
   1544                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
   1545                Src->getNumOperands() != 1) {
   1546       // Otherwise we can do the fold if the first index of the GEP is a zero
   1547       Indices.append(Src->op_begin()+1, Src->op_end());
   1548       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
   1549     }
   1550 
   1551     if (!Indices.empty())
   1552       return GEP.isInBounds() && Src->isInBounds()
   1553                  ? GetElementPtrInst::CreateInBounds(
   1554                        Src->getSourceElementType(), Src->getOperand(0), Indices,
   1555                        GEP.getName())
   1556                  : GetElementPtrInst::Create(Src->getSourceElementType(),
   1557                                              Src->getOperand(0), Indices,
   1558                                              GEP.getName());
   1559   }
   1560 
   1561   if (GEP.getNumIndices() == 1) {
   1562     unsigned AS = GEP.getPointerAddressSpace();
   1563     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
   1564         DL.getPointerSizeInBits(AS)) {
   1565       Type *Ty = GEP.getSourceElementType();
   1566       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
   1567 
   1568       bool Matched = false;
   1569       uint64_t C;
   1570       Value *V = nullptr;
   1571       if (TyAllocSize == 1) {
   1572         V = GEP.getOperand(1);
   1573         Matched = true;
   1574       } else if (match(GEP.getOperand(1),
   1575                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
   1576         if (TyAllocSize == 1ULL << C)
   1577           Matched = true;
   1578       } else if (match(GEP.getOperand(1),
   1579                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
   1580         if (TyAllocSize == C)
   1581           Matched = true;
   1582       }
   1583 
   1584       if (Matched) {
   1585         // Canonicalize (gep i8* X, -(ptrtoint Y))
   1586         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
   1587         // The GEP pattern is emitted by the SCEV expander for certain kinds of
   1588         // pointer arithmetic.
   1589         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
   1590           Operator *Index = cast<Operator>(V);
   1591           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
   1592           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
   1593           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
   1594         }
   1595         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
   1596         // to (bitcast Y)
   1597         Value *Y;
   1598         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
   1599                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
   1600           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
   1601                                                                GEP.getType());
   1602         }
   1603       }
   1604     }
   1605   }
   1606 
   1607   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
   1608   Value *StrippedPtr = PtrOp->stripPointerCasts();
   1609   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
   1610 
   1611   // We do not handle pointer-vector geps here.
   1612   if (!StrippedPtrTy)
   1613     return nullptr;
   1614 
   1615   if (StrippedPtr != PtrOp) {
   1616     bool HasZeroPointerIndex = false;
   1617     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
   1618       HasZeroPointerIndex = C->isZero();
   1619 
   1620     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
   1621     // into     : GEP [10 x i8]* X, i32 0, ...
   1622     //
   1623     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
   1624     //           into     : GEP i8* X, ...
   1625     //
   1626     // This occurs when the program declares an array extern like "int X[];"
   1627     if (HasZeroPointerIndex) {
   1628       if (ArrayType *CATy =
   1629           dyn_cast<ArrayType>(GEP.getSourceElementType())) {
   1630         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
   1631         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
   1632           // -> GEP i8* X, ...
   1633           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
   1634           GetElementPtrInst *Res = GetElementPtrInst::Create(
   1635               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
   1636           Res->setIsInBounds(GEP.isInBounds());
   1637           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
   1638             return Res;
   1639           // Insert Res, and create an addrspacecast.
   1640           // e.g.,
   1641           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
   1642           // ->
   1643           // %0 = GEP i8 addrspace(1)* X, ...
   1644           // addrspacecast i8 addrspace(1)* %0 to i8*
   1645           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
   1646         }
   1647 
   1648         if (ArrayType *XATy =
   1649               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
   1650           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
   1651           if (CATy->getElementType() == XATy->getElementType()) {
   1652             // -> GEP [10 x i8]* X, i32 0, ...
   1653             // At this point, we know that the cast source type is a pointer
   1654             // to an array of the same type as the destination pointer
   1655             // array.  Because the array type is never stepped over (there
   1656             // is a leading zero) we can fold the cast into this GEP.
   1657             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
   1658               GEP.setOperand(0, StrippedPtr);
   1659               GEP.setSourceElementType(XATy);
   1660               return &GEP;
   1661             }
   1662             // Cannot replace the base pointer directly because StrippedPtr's
   1663             // address space is different. Instead, create a new GEP followed by
   1664             // an addrspacecast.
   1665             // e.g.,
   1666             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
   1667             //   i32 0, ...
   1668             // ->
   1669             // %0 = GEP [10 x i8] addrspace(1)* X, ...
   1670             // addrspacecast i8 addrspace(1)* %0 to i8*
   1671             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
   1672             Value *NewGEP = GEP.isInBounds()
   1673                                 ? Builder->CreateInBoundsGEP(
   1674                                       nullptr, StrippedPtr, Idx, GEP.getName())
   1675                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
   1676                                                      GEP.getName());
   1677             return new AddrSpaceCastInst(NewGEP, GEP.getType());
   1678           }
   1679         }
   1680       }
   1681     } else if (GEP.getNumOperands() == 2) {
   1682       // Transform things like:
   1683       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
   1684       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
   1685       Type *SrcElTy = StrippedPtrTy->getElementType();
   1686       Type *ResElTy = GEP.getSourceElementType();
   1687       if (SrcElTy->isArrayTy() &&
   1688           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
   1689               DL.getTypeAllocSize(ResElTy)) {
   1690         Type *IdxType = DL.getIntPtrType(GEP.getType());
   1691         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
   1692         Value *NewGEP =
   1693             GEP.isInBounds()
   1694                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
   1695                                              GEP.getName())
   1696                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
   1697 
   1698         // V and GEP are both pointer types --> BitCast
   1699         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
   1700                                                              GEP.getType());
   1701       }
   1702 
   1703       // Transform things like:
   1704       // %V = mul i64 %N, 4
   1705       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
   1706       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
   1707       if (ResElTy->isSized() && SrcElTy->isSized()) {
   1708         // Check that changing the type amounts to dividing the index by a scale
   1709         // factor.
   1710         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
   1711         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
   1712         if (ResSize && SrcSize % ResSize == 0) {
   1713           Value *Idx = GEP.getOperand(1);
   1714           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
   1715           uint64_t Scale = SrcSize / ResSize;
   1716 
   1717           // Earlier transforms ensure that the index has type IntPtrType, which
   1718           // considerably simplifies the logic by eliminating implicit casts.
   1719           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
   1720                  "Index not cast to pointer width?");
   1721 
   1722           bool NSW;
   1723           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
   1724             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
   1725             // If the multiplication NewIdx * Scale may overflow then the new
   1726             // GEP may not be "inbounds".
   1727             Value *NewGEP =
   1728                 GEP.isInBounds() && NSW
   1729                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
   1730                                                  GEP.getName())
   1731                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
   1732                                          GEP.getName());
   1733 
   1734             // The NewGEP must be pointer typed, so must the old one -> BitCast
   1735             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
   1736                                                                  GEP.getType());
   1737           }
   1738         }
   1739       }
   1740 
   1741       // Similarly, transform things like:
   1742       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
   1743       //   (where tmp = 8*tmp2) into:
   1744       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
   1745       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
   1746         // Check that changing to the array element type amounts to dividing the
   1747         // index by a scale factor.
   1748         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
   1749         uint64_t ArrayEltSize =
   1750             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
   1751         if (ResSize && ArrayEltSize % ResSize == 0) {
   1752           Value *Idx = GEP.getOperand(1);
   1753           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
   1754           uint64_t Scale = ArrayEltSize / ResSize;
   1755 
   1756           // Earlier transforms ensure that the index has type IntPtrType, which
   1757           // considerably simplifies the logic by eliminating implicit casts.
   1758           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
   1759                  "Index not cast to pointer width?");
   1760 
   1761           bool NSW;
   1762           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
   1763             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
   1764             // If the multiplication NewIdx * Scale may overflow then the new
   1765             // GEP may not be "inbounds".
   1766             Value *Off[2] = {
   1767                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
   1768                 NewIdx};
   1769 
   1770             Value *NewGEP = GEP.isInBounds() && NSW
   1771                                 ? Builder->CreateInBoundsGEP(
   1772                                       SrcElTy, StrippedPtr, Off, GEP.getName())
   1773                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
   1774                                                      GEP.getName());
   1775             // The NewGEP must be pointer typed, so must the old one -> BitCast
   1776             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
   1777                                                                  GEP.getType());
   1778           }
   1779         }
   1780       }
   1781     }
   1782   }
   1783 
   1784   // addrspacecast between types is canonicalized as a bitcast, then an
   1785   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
   1786   // through the addrspacecast.
   1787   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
   1788     //   X = bitcast A addrspace(1)* to B addrspace(1)*
   1789     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
   1790     //   Z = gep Y, <...constant indices...>
   1791     // Into an addrspacecasted GEP of the struct.
   1792     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
   1793       PtrOp = BC;
   1794   }
   1795 
   1796   /// See if we can simplify:
   1797   ///   X = bitcast A* to B*
   1798   ///   Y = gep X, <...constant indices...>
   1799   /// into a gep of the original struct.  This is important for SROA and alias
   1800   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
   1801   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
   1802     Value *Operand = BCI->getOperand(0);
   1803     PointerType *OpType = cast<PointerType>(Operand->getType());
   1804     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
   1805     APInt Offset(OffsetBits, 0);
   1806     if (!isa<BitCastInst>(Operand) &&
   1807         GEP.accumulateConstantOffset(DL, Offset)) {
   1808 
   1809       // If this GEP instruction doesn't move the pointer, just replace the GEP
   1810       // with a bitcast of the real input to the dest type.
   1811       if (!Offset) {
   1812         // If the bitcast is of an allocation, and the allocation will be
   1813         // converted to match the type of the cast, don't touch this.
   1814         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
   1815           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
   1816           if (Instruction *I = visitBitCast(*BCI)) {
   1817             if (I != BCI) {
   1818               I->takeName(BCI);
   1819               BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
   1820               replaceInstUsesWith(*BCI, I);
   1821             }
   1822             return &GEP;
   1823           }
   1824         }
   1825 
   1826         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
   1827           return new AddrSpaceCastInst(Operand, GEP.getType());
   1828         return new BitCastInst(Operand, GEP.getType());
   1829       }
   1830 
   1831       // Otherwise, if the offset is non-zero, we need to find out if there is a
   1832       // field at Offset in 'A's type.  If so, we can pull the cast through the
   1833       // GEP.
   1834       SmallVector<Value*, 8> NewIndices;
   1835       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
   1836         Value *NGEP =
   1837             GEP.isInBounds()
   1838                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
   1839                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
   1840 
   1841         if (NGEP->getType() == GEP.getType())
   1842           return replaceInstUsesWith(GEP, NGEP);
   1843         NGEP->takeName(&GEP);
   1844 
   1845         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
   1846           return new AddrSpaceCastInst(NGEP, GEP.getType());
   1847         return new BitCastInst(NGEP, GEP.getType());
   1848       }
   1849     }
   1850   }
   1851 
   1852   return nullptr;
   1853 }
   1854 
   1855 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
   1856                                          Instruction *AI) {
   1857   if (isa<ConstantPointerNull>(V))
   1858     return true;
   1859   if (auto *LI = dyn_cast<LoadInst>(V))
   1860     return isa<GlobalVariable>(LI->getPointerOperand());
   1861   // Two distinct allocations will never be equal.
   1862   // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
   1863   // through bitcasts of V can cause
   1864   // the result statement below to be true, even when AI and V (ex:
   1865   // i8* ->i32* ->i8* of AI) are the same allocations.
   1866   return isAllocLikeFn(V, TLI) && V != AI;
   1867 }
   1868 
   1869 static bool
   1870 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
   1871                      const TargetLibraryInfo *TLI) {
   1872   SmallVector<Instruction*, 4> Worklist;
   1873   Worklist.push_back(AI);
   1874 
   1875   do {
   1876     Instruction *PI = Worklist.pop_back_val();
   1877     for (User *U : PI->users()) {
   1878       Instruction *I = cast<Instruction>(U);
   1879       switch (I->getOpcode()) {
   1880       default:
   1881         // Give up the moment we see something we can't handle.
   1882         return false;
   1883 
   1884       case Instruction::BitCast:
   1885       case Instruction::GetElementPtr:
   1886         Users.emplace_back(I);
   1887         Worklist.push_back(I);
   1888         continue;
   1889 
   1890       case Instruction::ICmp: {
   1891         ICmpInst *ICI = cast<ICmpInst>(I);
   1892         // We can fold eq/ne comparisons with null to false/true, respectively.
   1893         // We also fold comparisons in some conditions provided the alloc has
   1894         // not escaped (see isNeverEqualToUnescapedAlloc).
   1895         if (!ICI->isEquality())
   1896           return false;
   1897         unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
   1898         if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
   1899           return false;
   1900         Users.emplace_back(I);
   1901         continue;
   1902       }
   1903 
   1904       case Instruction::Call:
   1905         // Ignore no-op and store intrinsics.
   1906         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1907           switch (II->getIntrinsicID()) {
   1908           default:
   1909             return false;
   1910 
   1911           case Intrinsic::memmove:
   1912           case Intrinsic::memcpy:
   1913           case Intrinsic::memset: {
   1914             MemIntrinsic *MI = cast<MemIntrinsic>(II);
   1915             if (MI->isVolatile() || MI->getRawDest() != PI)
   1916               return false;
   1917           }
   1918           // fall through
   1919           case Intrinsic::dbg_declare:
   1920           case Intrinsic::dbg_value:
   1921           case Intrinsic::invariant_start:
   1922           case Intrinsic::invariant_end:
   1923           case Intrinsic::lifetime_start:
   1924           case Intrinsic::lifetime_end:
   1925           case Intrinsic::objectsize:
   1926             Users.emplace_back(I);
   1927             continue;
   1928           }
   1929         }
   1930 
   1931         if (isFreeCall(I, TLI)) {
   1932           Users.emplace_back(I);
   1933           continue;
   1934         }
   1935         return false;
   1936 
   1937       case Instruction::Store: {
   1938         StoreInst *SI = cast<StoreInst>(I);
   1939         if (SI->isVolatile() || SI->getPointerOperand() != PI)
   1940           return false;
   1941         Users.emplace_back(I);
   1942         continue;
   1943       }
   1944       }
   1945       llvm_unreachable("missing a return?");
   1946     }
   1947   } while (!Worklist.empty());
   1948   return true;
   1949 }
   1950 
   1951 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
   1952   // If we have a malloc call which is only used in any amount of comparisons
   1953   // to null and free calls, delete the calls and replace the comparisons with
   1954   // true or false as appropriate.
   1955   SmallVector<WeakVH, 64> Users;
   1956   if (isAllocSiteRemovable(&MI, Users, TLI)) {
   1957     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
   1958       // Lowering all @llvm.objectsize calls first because they may
   1959       // use a bitcast/GEP of the alloca we are removing.
   1960       if (!Users[i])
   1961        continue;
   1962 
   1963       Instruction *I = cast<Instruction>(&*Users[i]);
   1964 
   1965       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1966         if (II->getIntrinsicID() == Intrinsic::objectsize) {
   1967           uint64_t Size;
   1968           if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) {
   1969             ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
   1970             Size = CI->isZero() ? -1ULL : 0;
   1971           }
   1972           replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size));
   1973           eraseInstFromFunction(*I);
   1974           Users[i] = nullptr; // Skip examining in the next loop.
   1975         }
   1976       }
   1977     }
   1978     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
   1979       if (!Users[i])
   1980         continue;
   1981 
   1982       Instruction *I = cast<Instruction>(&*Users[i]);
   1983 
   1984       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
   1985         replaceInstUsesWith(*C,
   1986                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
   1987                                              C->isFalseWhenEqual()));
   1988       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
   1989         replaceInstUsesWith(*I, UndefValue::get(I->getType()));
   1990       }
   1991       eraseInstFromFunction(*I);
   1992     }
   1993 
   1994     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
   1995       // Replace invoke with a NOP intrinsic to maintain the original CFG
   1996       Module *M = II->getModule();
   1997       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
   1998       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
   1999                          None, "", II->getParent());
   2000     }
   2001     return eraseInstFromFunction(MI);
   2002   }
   2003   return nullptr;
   2004 }
   2005 
   2006 /// \brief Move the call to free before a NULL test.
   2007 ///
   2008 /// Check if this free is accessed after its argument has been test
   2009 /// against NULL (property 0).
   2010 /// If yes, it is legal to move this call in its predecessor block.
   2011 ///
   2012 /// The move is performed only if the block containing the call to free
   2013 /// will be removed, i.e.:
   2014 /// 1. it has only one predecessor P, and P has two successors
   2015 /// 2. it contains the call and an unconditional branch
   2016 /// 3. its successor is the same as its predecessor's successor
   2017 ///
   2018 /// The profitability is out-of concern here and this function should
   2019 /// be called only if the caller knows this transformation would be
   2020 /// profitable (e.g., for code size).
   2021 static Instruction *
   2022 tryToMoveFreeBeforeNullTest(CallInst &FI) {
   2023   Value *Op = FI.getArgOperand(0);
   2024   BasicBlock *FreeInstrBB = FI.getParent();
   2025   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
   2026 
   2027   // Validate part of constraint #1: Only one predecessor
   2028   // FIXME: We can extend the number of predecessor, but in that case, we
   2029   //        would duplicate the call to free in each predecessor and it may
   2030   //        not be profitable even for code size.
   2031   if (!PredBB)
   2032     return nullptr;
   2033 
   2034   // Validate constraint #2: Does this block contains only the call to
   2035   //                         free and an unconditional branch?
   2036   // FIXME: We could check if we can speculate everything in the
   2037   //        predecessor block
   2038   if (FreeInstrBB->size() != 2)
   2039     return nullptr;
   2040   BasicBlock *SuccBB;
   2041   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
   2042     return nullptr;
   2043 
   2044   // Validate the rest of constraint #1 by matching on the pred branch.
   2045   TerminatorInst *TI = PredBB->getTerminator();
   2046   BasicBlock *TrueBB, *FalseBB;
   2047   ICmpInst::Predicate Pred;
   2048   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
   2049     return nullptr;
   2050   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
   2051     return nullptr;
   2052 
   2053   // Validate constraint #3: Ensure the null case just falls through.
   2054   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
   2055     return nullptr;
   2056   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
   2057          "Broken CFG: missing edge from predecessor to successor");
   2058 
   2059   FI.moveBefore(TI);
   2060   return &FI;
   2061 }
   2062 
   2063 
   2064 Instruction *InstCombiner::visitFree(CallInst &FI) {
   2065   Value *Op = FI.getArgOperand(0);
   2066 
   2067   // free undef -> unreachable.
   2068   if (isa<UndefValue>(Op)) {
   2069     // Insert a new store to null because we cannot modify the CFG here.
   2070     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
   2071                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
   2072     return eraseInstFromFunction(FI);
   2073   }
   2074 
   2075   // If we have 'free null' delete the instruction.  This can happen in stl code
   2076   // when lots of inlining happens.
   2077   if (isa<ConstantPointerNull>(Op))
   2078     return eraseInstFromFunction(FI);
   2079 
   2080   // If we optimize for code size, try to move the call to free before the null
   2081   // test so that simplify cfg can remove the empty block and dead code
   2082   // elimination the branch. I.e., helps to turn something like:
   2083   // if (foo) free(foo);
   2084   // into
   2085   // free(foo);
   2086   if (MinimizeSize)
   2087     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
   2088       return I;
   2089 
   2090   return nullptr;
   2091 }
   2092 
   2093 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
   2094   if (RI.getNumOperands() == 0) // ret void
   2095     return nullptr;
   2096 
   2097   Value *ResultOp = RI.getOperand(0);
   2098   Type *VTy = ResultOp->getType();
   2099   if (!VTy->isIntegerTy())
   2100     return nullptr;
   2101 
   2102   // There might be assume intrinsics dominating this return that completely
   2103   // determine the value. If so, constant fold it.
   2104   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
   2105   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   2106   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
   2107   if ((KnownZero|KnownOne).isAllOnesValue())
   2108     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
   2109 
   2110   return nullptr;
   2111 }
   2112 
   2113 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
   2114   // Change br (not X), label True, label False to: br X, label False, True
   2115   Value *X = nullptr;
   2116   BasicBlock *TrueDest;
   2117   BasicBlock *FalseDest;
   2118   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
   2119       !isa<Constant>(X)) {
   2120     // Swap Destinations and condition...
   2121     BI.setCondition(X);
   2122     BI.swapSuccessors();
   2123     return &BI;
   2124   }
   2125 
   2126   // If the condition is irrelevant, remove the use so that other
   2127   // transforms on the condition become more effective.
   2128   if (BI.isConditional() &&
   2129       BI.getSuccessor(0) == BI.getSuccessor(1) &&
   2130       !isa<UndefValue>(BI.getCondition())) {
   2131     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
   2132     return &BI;
   2133   }
   2134 
   2135   // Canonicalize fcmp_one -> fcmp_oeq
   2136   FCmpInst::Predicate FPred; Value *Y;
   2137   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
   2138                              TrueDest, FalseDest)) &&
   2139       BI.getCondition()->hasOneUse())
   2140     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
   2141         FPred == FCmpInst::FCMP_OGE) {
   2142       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
   2143       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
   2144 
   2145       // Swap Destinations and condition.
   2146       BI.swapSuccessors();
   2147       Worklist.Add(Cond);
   2148       return &BI;
   2149     }
   2150 
   2151   // Canonicalize icmp_ne -> icmp_eq
   2152   ICmpInst::Predicate IPred;
   2153   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
   2154                       TrueDest, FalseDest)) &&
   2155       BI.getCondition()->hasOneUse())
   2156     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
   2157         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
   2158         IPred == ICmpInst::ICMP_SGE) {
   2159       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
   2160       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
   2161       // Swap Destinations and condition.
   2162       BI.swapSuccessors();
   2163       Worklist.Add(Cond);
   2164       return &BI;
   2165     }
   2166 
   2167   return nullptr;
   2168 }
   2169 
   2170 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
   2171   Value *Cond = SI.getCondition();
   2172   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
   2173   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   2174   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
   2175   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
   2176   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
   2177 
   2178   // Compute the number of leading bits we can ignore.
   2179   // TODO: A better way to determine this would use ComputeNumSignBits().
   2180   for (auto &C : SI.cases()) {
   2181     LeadingKnownZeros = std::min(
   2182         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
   2183     LeadingKnownOnes = std::min(
   2184         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
   2185   }
   2186 
   2187   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
   2188 
   2189   // Shrink the condition operand if the new type is smaller than the old type.
   2190   // This may produce a non-standard type for the switch, but that's ok because
   2191   // the backend should extend back to a legal type for the target.
   2192   bool TruncCond = false;
   2193   if (NewWidth > 0 && NewWidth < BitWidth) {
   2194     TruncCond = true;
   2195     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
   2196     Builder->SetInsertPoint(&SI);
   2197     Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc");
   2198     SI.setCondition(NewCond);
   2199 
   2200     for (auto &C : SI.cases())
   2201       static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
   2202           SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
   2203   }
   2204 
   2205   ConstantInt *AddRHS = nullptr;
   2206   if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) {
   2207     Instruction *I = cast<Instruction>(Cond);
   2208     // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
   2209     for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e;
   2210          ++i) {
   2211       ConstantInt *CaseVal = i.getCaseValue();
   2212       Constant *LHS = CaseVal;
   2213       if (TruncCond) {
   2214         LHS = LeadingKnownZeros
   2215                   ? ConstantExpr::getZExt(CaseVal, Cond->getType())
   2216                   : ConstantExpr::getSExt(CaseVal, Cond->getType());
   2217       }
   2218       Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
   2219       assert(isa<ConstantInt>(NewCaseVal) &&
   2220              "Result of expression should be constant");
   2221       i.setValue(cast<ConstantInt>(NewCaseVal));
   2222     }
   2223     SI.setCondition(I->getOperand(0));
   2224     Worklist.Add(I);
   2225     return &SI;
   2226   }
   2227 
   2228   return TruncCond ? &SI : nullptr;
   2229 }
   2230 
   2231 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
   2232   Value *Agg = EV.getAggregateOperand();
   2233 
   2234   if (!EV.hasIndices())
   2235     return replaceInstUsesWith(EV, Agg);
   2236 
   2237   if (Value *V =
   2238           SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC))
   2239     return replaceInstUsesWith(EV, V);
   2240 
   2241   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
   2242     // We're extracting from an insertvalue instruction, compare the indices
   2243     const unsigned *exti, *exte, *insi, *inse;
   2244     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
   2245          exte = EV.idx_end(), inse = IV->idx_end();
   2246          exti != exte && insi != inse;
   2247          ++exti, ++insi) {
   2248       if (*insi != *exti)
   2249         // The insert and extract both reference distinctly different elements.
   2250         // This means the extract is not influenced by the insert, and we can
   2251         // replace the aggregate operand of the extract with the aggregate
   2252         // operand of the insert. i.e., replace
   2253         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   2254         // %E = extractvalue { i32, { i32 } } %I, 0
   2255         // with
   2256         // %E = extractvalue { i32, { i32 } } %A, 0
   2257         return ExtractValueInst::Create(IV->getAggregateOperand(),
   2258                                         EV.getIndices());
   2259     }
   2260     if (exti == exte && insi == inse)
   2261       // Both iterators are at the end: Index lists are identical. Replace
   2262       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   2263       // %C = extractvalue { i32, { i32 } } %B, 1, 0
   2264       // with "i32 42"
   2265       return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
   2266     if (exti == exte) {
   2267       // The extract list is a prefix of the insert list. i.e. replace
   2268       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   2269       // %E = extractvalue { i32, { i32 } } %I, 1
   2270       // with
   2271       // %X = extractvalue { i32, { i32 } } %A, 1
   2272       // %E = insertvalue { i32 } %X, i32 42, 0
   2273       // by switching the order of the insert and extract (though the
   2274       // insertvalue should be left in, since it may have other uses).
   2275       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
   2276                                                  EV.getIndices());
   2277       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
   2278                                      makeArrayRef(insi, inse));
   2279     }
   2280     if (insi == inse)
   2281       // The insert list is a prefix of the extract list
   2282       // We can simply remove the common indices from the extract and make it
   2283       // operate on the inserted value instead of the insertvalue result.
   2284       // i.e., replace
   2285       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   2286       // %E = extractvalue { i32, { i32 } } %I, 1, 0
   2287       // with
   2288       // %E extractvalue { i32 } { i32 42 }, 0
   2289       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
   2290                                       makeArrayRef(exti, exte));
   2291   }
   2292   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
   2293     // We're extracting from an intrinsic, see if we're the only user, which
   2294     // allows us to simplify multiple result intrinsics to simpler things that
   2295     // just get one value.
   2296     if (II->hasOneUse()) {
   2297       // Check if we're grabbing the overflow bit or the result of a 'with
   2298       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
   2299       // and replace it with a traditional binary instruction.
   2300       switch (II->getIntrinsicID()) {
   2301       case Intrinsic::uadd_with_overflow:
   2302       case Intrinsic::sadd_with_overflow:
   2303         if (*EV.idx_begin() == 0) {  // Normal result.
   2304           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2305           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2306           eraseInstFromFunction(*II);
   2307           return BinaryOperator::CreateAdd(LHS, RHS);
   2308         }
   2309 
   2310         // If the normal result of the add is dead, and the RHS is a constant,
   2311         // we can transform this into a range comparison.
   2312         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
   2313         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
   2314           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
   2315             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
   2316                                 ConstantExpr::getNot(CI));
   2317         break;
   2318       case Intrinsic::usub_with_overflow:
   2319       case Intrinsic::ssub_with_overflow:
   2320         if (*EV.idx_begin() == 0) {  // Normal result.
   2321           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2322           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2323           eraseInstFromFunction(*II);
   2324           return BinaryOperator::CreateSub(LHS, RHS);
   2325         }
   2326         break;
   2327       case Intrinsic::umul_with_overflow:
   2328       case Intrinsic::smul_with_overflow:
   2329         if (*EV.idx_begin() == 0) {  // Normal result.
   2330           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2331           replaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2332           eraseInstFromFunction(*II);
   2333           return BinaryOperator::CreateMul(LHS, RHS);
   2334         }
   2335         break;
   2336       default:
   2337         break;
   2338       }
   2339     }
   2340   }
   2341   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
   2342     // If the (non-volatile) load only has one use, we can rewrite this to a
   2343     // load from a GEP. This reduces the size of the load. If a load is used
   2344     // only by extractvalue instructions then this either must have been
   2345     // optimized before, or it is a struct with padding, in which case we
   2346     // don't want to do the transformation as it loses padding knowledge.
   2347     if (L->isSimple() && L->hasOneUse()) {
   2348       // extractvalue has integer indices, getelementptr has Value*s. Convert.
   2349       SmallVector<Value*, 4> Indices;
   2350       // Prefix an i32 0 since we need the first element.
   2351       Indices.push_back(Builder->getInt32(0));
   2352       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
   2353             I != E; ++I)
   2354         Indices.push_back(Builder->getInt32(*I));
   2355 
   2356       // We need to insert these at the location of the old load, not at that of
   2357       // the extractvalue.
   2358       Builder->SetInsertPoint(L);
   2359       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
   2360                                               L->getPointerOperand(), Indices);
   2361       // Returning the load directly will cause the main loop to insert it in
   2362       // the wrong spot, so use replaceInstUsesWith().
   2363       return replaceInstUsesWith(EV, Builder->CreateLoad(GEP));
   2364     }
   2365   // We could simplify extracts from other values. Note that nested extracts may
   2366   // already be simplified implicitly by the above: extract (extract (insert) )
   2367   // will be translated into extract ( insert ( extract ) ) first and then just
   2368   // the value inserted, if appropriate. Similarly for extracts from single-use
   2369   // loads: extract (extract (load)) will be translated to extract (load (gep))
   2370   // and if again single-use then via load (gep (gep)) to load (gep).
   2371   // However, double extracts from e.g. function arguments or return values
   2372   // aren't handled yet.
   2373   return nullptr;
   2374 }
   2375 
   2376 /// Return 'true' if the given typeinfo will match anything.
   2377 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
   2378   switch (Personality) {
   2379   case EHPersonality::GNU_C:
   2380   case EHPersonality::GNU_C_SjLj:
   2381   case EHPersonality::Rust:
   2382     // The GCC C EH and Rust personality only exists to support cleanups, so
   2383     // it's not clear what the semantics of catch clauses are.
   2384     return false;
   2385   case EHPersonality::Unknown:
   2386     return false;
   2387   case EHPersonality::GNU_Ada:
   2388     // While __gnat_all_others_value will match any Ada exception, it doesn't
   2389     // match foreign exceptions (or didn't, before gcc-4.7).
   2390     return false;
   2391   case EHPersonality::GNU_CXX:
   2392   case EHPersonality::GNU_CXX_SjLj:
   2393   case EHPersonality::GNU_ObjC:
   2394   case EHPersonality::MSVC_X86SEH:
   2395   case EHPersonality::MSVC_Win64SEH:
   2396   case EHPersonality::MSVC_CXX:
   2397   case EHPersonality::CoreCLR:
   2398     return TypeInfo->isNullValue();
   2399   }
   2400   llvm_unreachable("invalid enum");
   2401 }
   2402 
   2403 static bool shorter_filter(const Value *LHS, const Value *RHS) {
   2404   return
   2405     cast<ArrayType>(LHS->getType())->getNumElements()
   2406   <
   2407     cast<ArrayType>(RHS->getType())->getNumElements();
   2408 }
   2409 
   2410 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
   2411   // The logic here should be correct for any real-world personality function.
   2412   // However if that turns out not to be true, the offending logic can always
   2413   // be conditioned on the personality function, like the catch-all logic is.
   2414   EHPersonality Personality =
   2415       classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
   2416 
   2417   // Simplify the list of clauses, eg by removing repeated catch clauses
   2418   // (these are often created by inlining).
   2419   bool MakeNewInstruction = false; // If true, recreate using the following:
   2420   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
   2421   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
   2422 
   2423   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
   2424   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
   2425     bool isLastClause = i + 1 == e;
   2426     if (LI.isCatch(i)) {
   2427       // A catch clause.
   2428       Constant *CatchClause = LI.getClause(i);
   2429       Constant *TypeInfo = CatchClause->stripPointerCasts();
   2430 
   2431       // If we already saw this clause, there is no point in having a second
   2432       // copy of it.
   2433       if (AlreadyCaught.insert(TypeInfo).second) {
   2434         // This catch clause was not already seen.
   2435         NewClauses.push_back(CatchClause);
   2436       } else {
   2437         // Repeated catch clause - drop the redundant copy.
   2438         MakeNewInstruction = true;
   2439       }
   2440 
   2441       // If this is a catch-all then there is no point in keeping any following
   2442       // clauses or marking the landingpad as having a cleanup.
   2443       if (isCatchAll(Personality, TypeInfo)) {
   2444         if (!isLastClause)
   2445           MakeNewInstruction = true;
   2446         CleanupFlag = false;
   2447         break;
   2448       }
   2449     } else {
   2450       // A filter clause.  If any of the filter elements were already caught
   2451       // then they can be dropped from the filter.  It is tempting to try to
   2452       // exploit the filter further by saying that any typeinfo that does not
   2453       // occur in the filter can't be caught later (and thus can be dropped).
   2454       // However this would be wrong, since typeinfos can match without being
   2455       // equal (for example if one represents a C++ class, and the other some
   2456       // class derived from it).
   2457       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
   2458       Constant *FilterClause = LI.getClause(i);
   2459       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
   2460       unsigned NumTypeInfos = FilterType->getNumElements();
   2461 
   2462       // An empty filter catches everything, so there is no point in keeping any
   2463       // following clauses or marking the landingpad as having a cleanup.  By
   2464       // dealing with this case here the following code is made a bit simpler.
   2465       if (!NumTypeInfos) {
   2466         NewClauses.push_back(FilterClause);
   2467         if (!isLastClause)
   2468           MakeNewInstruction = true;
   2469         CleanupFlag = false;
   2470         break;
   2471       }
   2472 
   2473       bool MakeNewFilter = false; // If true, make a new filter.
   2474       SmallVector<Constant *, 16> NewFilterElts; // New elements.
   2475       if (isa<ConstantAggregateZero>(FilterClause)) {
   2476         // Not an empty filter - it contains at least one null typeinfo.
   2477         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
   2478         Constant *TypeInfo =
   2479           Constant::getNullValue(FilterType->getElementType());
   2480         // If this typeinfo is a catch-all then the filter can never match.
   2481         if (isCatchAll(Personality, TypeInfo)) {
   2482           // Throw the filter away.
   2483           MakeNewInstruction = true;
   2484           continue;
   2485         }
   2486 
   2487         // There is no point in having multiple copies of this typeinfo, so
   2488         // discard all but the first copy if there is more than one.
   2489         NewFilterElts.push_back(TypeInfo);
   2490         if (NumTypeInfos > 1)
   2491           MakeNewFilter = true;
   2492       } else {
   2493         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
   2494         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
   2495         NewFilterElts.reserve(NumTypeInfos);
   2496 
   2497         // Remove any filter elements that were already caught or that already
   2498         // occurred in the filter.  While there, see if any of the elements are
   2499         // catch-alls.  If so, the filter can be discarded.
   2500         bool SawCatchAll = false;
   2501         for (unsigned j = 0; j != NumTypeInfos; ++j) {
   2502           Constant *Elt = Filter->getOperand(j);
   2503           Constant *TypeInfo = Elt->stripPointerCasts();
   2504           if (isCatchAll(Personality, TypeInfo)) {
   2505             // This element is a catch-all.  Bail out, noting this fact.
   2506             SawCatchAll = true;
   2507             break;
   2508           }
   2509 
   2510           // Even if we've seen a type in a catch clause, we don't want to
   2511           // remove it from the filter.  An unexpected type handler may be
   2512           // set up for a call site which throws an exception of the same
   2513           // type caught.  In order for the exception thrown by the unexpected
   2514           // handler to propogate correctly, the filter must be correctly
   2515           // described for the call site.
   2516           //
   2517           // Example:
   2518           //
   2519           // void unexpected() { throw 1;}
   2520           // void foo() throw (int) {
   2521           //   std::set_unexpected(unexpected);
   2522           //   try {
   2523           //     throw 2.0;
   2524           //   } catch (int i) {}
   2525           // }
   2526 
   2527           // There is no point in having multiple copies of the same typeinfo in
   2528           // a filter, so only add it if we didn't already.
   2529           if (SeenInFilter.insert(TypeInfo).second)
   2530             NewFilterElts.push_back(cast<Constant>(Elt));
   2531         }
   2532         // A filter containing a catch-all cannot match anything by definition.
   2533         if (SawCatchAll) {
   2534           // Throw the filter away.
   2535           MakeNewInstruction = true;
   2536           continue;
   2537         }
   2538 
   2539         // If we dropped something from the filter, make a new one.
   2540         if (NewFilterElts.size() < NumTypeInfos)
   2541           MakeNewFilter = true;
   2542       }
   2543       if (MakeNewFilter) {
   2544         FilterType = ArrayType::get(FilterType->getElementType(),
   2545                                     NewFilterElts.size());
   2546         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
   2547         MakeNewInstruction = true;
   2548       }
   2549 
   2550       NewClauses.push_back(FilterClause);
   2551 
   2552       // If the new filter is empty then it will catch everything so there is
   2553       // no point in keeping any following clauses or marking the landingpad
   2554       // as having a cleanup.  The case of the original filter being empty was
   2555       // already handled above.
   2556       if (MakeNewFilter && !NewFilterElts.size()) {
   2557         assert(MakeNewInstruction && "New filter but not a new instruction!");
   2558         CleanupFlag = false;
   2559         break;
   2560       }
   2561     }
   2562   }
   2563 
   2564   // If several filters occur in a row then reorder them so that the shortest
   2565   // filters come first (those with the smallest number of elements).  This is
   2566   // advantageous because shorter filters are more likely to match, speeding up
   2567   // unwinding, but mostly because it increases the effectiveness of the other
   2568   // filter optimizations below.
   2569   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
   2570     unsigned j;
   2571     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
   2572     for (j = i; j != e; ++j)
   2573       if (!isa<ArrayType>(NewClauses[j]->getType()))
   2574         break;
   2575 
   2576     // Check whether the filters are already sorted by length.  We need to know
   2577     // if sorting them is actually going to do anything so that we only make a
   2578     // new landingpad instruction if it does.
   2579     for (unsigned k = i; k + 1 < j; ++k)
   2580       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
   2581         // Not sorted, so sort the filters now.  Doing an unstable sort would be
   2582         // correct too but reordering filters pointlessly might confuse users.
   2583         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
   2584                          shorter_filter);
   2585         MakeNewInstruction = true;
   2586         break;
   2587       }
   2588 
   2589     // Look for the next batch of filters.
   2590     i = j + 1;
   2591   }
   2592 
   2593   // If typeinfos matched if and only if equal, then the elements of a filter L
   2594   // that occurs later than a filter F could be replaced by the intersection of
   2595   // the elements of F and L.  In reality two typeinfos can match without being
   2596   // equal (for example if one represents a C++ class, and the other some class
   2597   // derived from it) so it would be wrong to perform this transform in general.
   2598   // However the transform is correct and useful if F is a subset of L.  In that
   2599   // case L can be replaced by F, and thus removed altogether since repeating a
   2600   // filter is pointless.  So here we look at all pairs of filters F and L where
   2601   // L follows F in the list of clauses, and remove L if every element of F is
   2602   // an element of L.  This can occur when inlining C++ functions with exception
   2603   // specifications.
   2604   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
   2605     // Examine each filter in turn.
   2606     Value *Filter = NewClauses[i];
   2607     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
   2608     if (!FTy)
   2609       // Not a filter - skip it.
   2610       continue;
   2611     unsigned FElts = FTy->getNumElements();
   2612     // Examine each filter following this one.  Doing this backwards means that
   2613     // we don't have to worry about filters disappearing under us when removed.
   2614     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
   2615       Value *LFilter = NewClauses[j];
   2616       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
   2617       if (!LTy)
   2618         // Not a filter - skip it.
   2619         continue;
   2620       // If Filter is a subset of LFilter, i.e. every element of Filter is also
   2621       // an element of LFilter, then discard LFilter.
   2622       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
   2623       // If Filter is empty then it is a subset of LFilter.
   2624       if (!FElts) {
   2625         // Discard LFilter.
   2626         NewClauses.erase(J);
   2627         MakeNewInstruction = true;
   2628         // Move on to the next filter.
   2629         continue;
   2630       }
   2631       unsigned LElts = LTy->getNumElements();
   2632       // If Filter is longer than LFilter then it cannot be a subset of it.
   2633       if (FElts > LElts)
   2634         // Move on to the next filter.
   2635         continue;
   2636       // At this point we know that LFilter has at least one element.
   2637       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
   2638         // Filter is a subset of LFilter iff Filter contains only zeros (as we
   2639         // already know that Filter is not longer than LFilter).
   2640         if (isa<ConstantAggregateZero>(Filter)) {
   2641           assert(FElts <= LElts && "Should have handled this case earlier!");
   2642           // Discard LFilter.
   2643           NewClauses.erase(J);
   2644           MakeNewInstruction = true;
   2645         }
   2646         // Move on to the next filter.
   2647         continue;
   2648       }
   2649       ConstantArray *LArray = cast<ConstantArray>(LFilter);
   2650       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
   2651         // Since Filter is non-empty and contains only zeros, it is a subset of
   2652         // LFilter iff LFilter contains a zero.
   2653         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
   2654         for (unsigned l = 0; l != LElts; ++l)
   2655           if (LArray->getOperand(l)->isNullValue()) {
   2656             // LFilter contains a zero - discard it.
   2657             NewClauses.erase(J);
   2658             MakeNewInstruction = true;
   2659             break;
   2660           }
   2661         // Move on to the next filter.
   2662         continue;
   2663       }
   2664       // At this point we know that both filters are ConstantArrays.  Loop over
   2665       // operands to see whether every element of Filter is also an element of
   2666       // LFilter.  Since filters tend to be short this is probably faster than
   2667       // using a method that scales nicely.
   2668       ConstantArray *FArray = cast<ConstantArray>(Filter);
   2669       bool AllFound = true;
   2670       for (unsigned f = 0; f != FElts; ++f) {
   2671         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
   2672         AllFound = false;
   2673         for (unsigned l = 0; l != LElts; ++l) {
   2674           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
   2675           if (LTypeInfo == FTypeInfo) {
   2676             AllFound = true;
   2677             break;
   2678           }
   2679         }
   2680         if (!AllFound)
   2681           break;
   2682       }
   2683       if (AllFound) {
   2684         // Discard LFilter.
   2685         NewClauses.erase(J);
   2686         MakeNewInstruction = true;
   2687       }
   2688       // Move on to the next filter.
   2689     }
   2690   }
   2691 
   2692   // If we changed any of the clauses, replace the old landingpad instruction
   2693   // with a new one.
   2694   if (MakeNewInstruction) {
   2695     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
   2696                                                  NewClauses.size());
   2697     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
   2698       NLI->addClause(NewClauses[i]);
   2699     // A landing pad with no clauses must have the cleanup flag set.  It is
   2700     // theoretically possible, though highly unlikely, that we eliminated all
   2701     // clauses.  If so, force the cleanup flag to true.
   2702     if (NewClauses.empty())
   2703       CleanupFlag = true;
   2704     NLI->setCleanup(CleanupFlag);
   2705     return NLI;
   2706   }
   2707 
   2708   // Even if none of the clauses changed, we may nonetheless have understood
   2709   // that the cleanup flag is pointless.  Clear it if so.
   2710   if (LI.isCleanup() != CleanupFlag) {
   2711     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
   2712     LI.setCleanup(CleanupFlag);
   2713     return &LI;
   2714   }
   2715 
   2716   return nullptr;
   2717 }
   2718 
   2719 /// Try to move the specified instruction from its current block into the
   2720 /// beginning of DestBlock, which can only happen if it's safe to move the
   2721 /// instruction past all of the instructions between it and the end of its
   2722 /// block.
   2723 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
   2724   assert(I->hasOneUse() && "Invariants didn't hold!");
   2725 
   2726   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   2727   if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
   2728       isa<TerminatorInst>(I))
   2729     return false;
   2730 
   2731   // Do not sink alloca instructions out of the entry block.
   2732   if (isa<AllocaInst>(I) && I->getParent() ==
   2733         &DestBlock->getParent()->getEntryBlock())
   2734     return false;
   2735 
   2736   // Do not sink into catchswitch blocks.
   2737   if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
   2738     return false;
   2739 
   2740   // Do not sink convergent call instructions.
   2741   if (auto *CI = dyn_cast<CallInst>(I)) {
   2742     if (CI->isConvergent())
   2743       return false;
   2744   }
   2745   // We can only sink load instructions if there is nothing between the load and
   2746   // the end of block that could change the value.
   2747   if (I->mayReadFromMemory()) {
   2748     for (BasicBlock::iterator Scan = I->getIterator(),
   2749                               E = I->getParent()->end();
   2750          Scan != E; ++Scan)
   2751       if (Scan->mayWriteToMemory())
   2752         return false;
   2753   }
   2754 
   2755   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
   2756   I->moveBefore(&*InsertPos);
   2757   ++NumSunkInst;
   2758   return true;
   2759 }
   2760 
   2761 bool InstCombiner::run() {
   2762   while (!Worklist.isEmpty()) {
   2763     Instruction *I = Worklist.RemoveOne();
   2764     if (I == nullptr) continue;  // skip null values.
   2765 
   2766     // Check to see if we can DCE the instruction.
   2767     if (isInstructionTriviallyDead(I, TLI)) {
   2768       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
   2769       eraseInstFromFunction(*I);
   2770       ++NumDeadInst;
   2771       MadeIRChange = true;
   2772       continue;
   2773     }
   2774 
   2775     // Instruction isn't dead, see if we can constant propagate it.
   2776     if (!I->use_empty() &&
   2777         (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
   2778       if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
   2779         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
   2780 
   2781         // Add operands to the worklist.
   2782         replaceInstUsesWith(*I, C);
   2783         ++NumConstProp;
   2784         eraseInstFromFunction(*I);
   2785         MadeIRChange = true;
   2786         continue;
   2787       }
   2788     }
   2789 
   2790     // In general, it is possible for computeKnownBits to determine all bits in
   2791     // a value even when the operands are not all constants.
   2792     if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) {
   2793       unsigned BitWidth = I->getType()->getScalarSizeInBits();
   2794       APInt KnownZero(BitWidth, 0);
   2795       APInt KnownOne(BitWidth, 0);
   2796       computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
   2797       if ((KnownZero | KnownOne).isAllOnesValue()) {
   2798         Constant *C = ConstantInt::get(I->getContext(), KnownOne);
   2799         DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
   2800                         " from: " << *I << '\n');
   2801 
   2802         // Add operands to the worklist.
   2803         replaceInstUsesWith(*I, C);
   2804         ++NumConstProp;
   2805         eraseInstFromFunction(*I);
   2806         MadeIRChange = true;
   2807         continue;
   2808       }
   2809     }
   2810 
   2811     // See if we can trivially sink this instruction to a successor basic block.
   2812     if (I->hasOneUse()) {
   2813       BasicBlock *BB = I->getParent();
   2814       Instruction *UserInst = cast<Instruction>(*I->user_begin());
   2815       BasicBlock *UserParent;
   2816 
   2817       // Get the block the use occurs in.
   2818       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
   2819         UserParent = PN->getIncomingBlock(*I->use_begin());
   2820       else
   2821         UserParent = UserInst->getParent();
   2822 
   2823       if (UserParent != BB) {
   2824         bool UserIsSuccessor = false;
   2825         // See if the user is one of our successors.
   2826         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
   2827           if (*SI == UserParent) {
   2828             UserIsSuccessor = true;
   2829             break;
   2830           }
   2831 
   2832         // If the user is one of our immediate successors, and if that successor
   2833         // only has us as a predecessors (we'd have to split the critical edge
   2834         // otherwise), we can keep going.
   2835         if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
   2836           // Okay, the CFG is simple enough, try to sink this instruction.
   2837           if (TryToSinkInstruction(I, UserParent)) {
   2838             DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
   2839             MadeIRChange = true;
   2840             // We'll add uses of the sunk instruction below, but since sinking
   2841             // can expose opportunities for it's *operands* add them to the
   2842             // worklist
   2843             for (Use &U : I->operands())
   2844               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
   2845                 Worklist.Add(OpI);
   2846           }
   2847         }
   2848       }
   2849     }
   2850 
   2851     // Now that we have an instruction, try combining it to simplify it.
   2852     Builder->SetInsertPoint(I);
   2853     Builder->SetCurrentDebugLocation(I->getDebugLoc());
   2854 
   2855 #ifndef NDEBUG
   2856     std::string OrigI;
   2857 #endif
   2858     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
   2859     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
   2860 
   2861     if (Instruction *Result = visit(*I)) {
   2862       ++NumCombined;
   2863       // Should we replace the old instruction with a new one?
   2864       if (Result != I) {
   2865         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
   2866                      << "    New = " << *Result << '\n');
   2867 
   2868         if (I->getDebugLoc())
   2869           Result->setDebugLoc(I->getDebugLoc());
   2870         // Everything uses the new instruction now.
   2871         I->replaceAllUsesWith(Result);
   2872 
   2873         // Move the name to the new instruction first.
   2874         Result->takeName(I);
   2875 
   2876         // Push the new instruction and any users onto the worklist.
   2877         Worklist.Add(Result);
   2878         Worklist.AddUsersToWorkList(*Result);
   2879 
   2880         // Insert the new instruction into the basic block...
   2881         BasicBlock *InstParent = I->getParent();
   2882         BasicBlock::iterator InsertPos = I->getIterator();
   2883 
   2884         // If we replace a PHI with something that isn't a PHI, fix up the
   2885         // insertion point.
   2886         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
   2887           InsertPos = InstParent->getFirstInsertionPt();
   2888 
   2889         InstParent->getInstList().insert(InsertPos, Result);
   2890 
   2891         eraseInstFromFunction(*I);
   2892       } else {
   2893 #ifndef NDEBUG
   2894         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
   2895                      << "    New = " << *I << '\n');
   2896 #endif
   2897 
   2898         // If the instruction was modified, it's possible that it is now dead.
   2899         // if so, remove it.
   2900         if (isInstructionTriviallyDead(I, TLI)) {
   2901           eraseInstFromFunction(*I);
   2902         } else {
   2903           Worklist.Add(I);
   2904           Worklist.AddUsersToWorkList(*I);
   2905         }
   2906       }
   2907       MadeIRChange = true;
   2908     }
   2909   }
   2910 
   2911   Worklist.Zap();
   2912   return MadeIRChange;
   2913 }
   2914 
   2915 /// Walk the function in depth-first order, adding all reachable code to the
   2916 /// worklist.
   2917 ///
   2918 /// This has a couple of tricks to make the code faster and more powerful.  In
   2919 /// particular, we constant fold and DCE instructions as we go, to avoid adding
   2920 /// them to the worklist (this significantly speeds up instcombine on code where
   2921 /// many instructions are dead or constant).  Additionally, if we find a branch
   2922 /// whose condition is a known constant, we only visit the reachable successors.
   2923 ///
   2924 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
   2925                                        SmallPtrSetImpl<BasicBlock *> &Visited,
   2926                                        InstCombineWorklist &ICWorklist,
   2927                                        const TargetLibraryInfo *TLI) {
   2928   bool MadeIRChange = false;
   2929   SmallVector<BasicBlock*, 256> Worklist;
   2930   Worklist.push_back(BB);
   2931 
   2932   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
   2933   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
   2934 
   2935   do {
   2936     BB = Worklist.pop_back_val();
   2937 
   2938     // We have now visited this block!  If we've already been here, ignore it.
   2939     if (!Visited.insert(BB).second)
   2940       continue;
   2941 
   2942     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
   2943       Instruction *Inst = &*BBI++;
   2944 
   2945       // DCE instruction if trivially dead.
   2946       if (isInstructionTriviallyDead(Inst, TLI)) {
   2947         ++NumDeadInst;
   2948         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
   2949         Inst->eraseFromParent();
   2950         continue;
   2951       }
   2952 
   2953       // ConstantProp instruction if trivially constant.
   2954       if (!Inst->use_empty() &&
   2955           (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
   2956         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
   2957           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
   2958                        << *Inst << '\n');
   2959           Inst->replaceAllUsesWith(C);
   2960           ++NumConstProp;
   2961           Inst->eraseFromParent();
   2962           continue;
   2963         }
   2964 
   2965       // See if we can constant fold its operands.
   2966       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
   2967            ++i) {
   2968         ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
   2969         if (CE == nullptr)
   2970           continue;
   2971 
   2972         Constant *&FoldRes = FoldedConstants[CE];
   2973         if (!FoldRes)
   2974           FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
   2975         if (!FoldRes)
   2976           FoldRes = CE;
   2977 
   2978         if (FoldRes != CE) {
   2979           *i = FoldRes;
   2980           MadeIRChange = true;
   2981         }
   2982       }
   2983 
   2984       InstrsForInstCombineWorklist.push_back(Inst);
   2985     }
   2986 
   2987     // Recursively visit successors.  If this is a branch or switch on a
   2988     // constant, only visit the reachable successor.
   2989     TerminatorInst *TI = BB->getTerminator();
   2990     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2991       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
   2992         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
   2993         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
   2994         Worklist.push_back(ReachableBB);
   2995         continue;
   2996       }
   2997     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2998       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
   2999         // See if this is an explicit destination.
   3000         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   3001              i != e; ++i)
   3002           if (i.getCaseValue() == Cond) {
   3003             BasicBlock *ReachableBB = i.getCaseSuccessor();
   3004             Worklist.push_back(ReachableBB);
   3005             continue;
   3006           }
   3007 
   3008         // Otherwise it is the default destination.
   3009         Worklist.push_back(SI->getDefaultDest());
   3010         continue;
   3011       }
   3012     }
   3013 
   3014     for (BasicBlock *SuccBB : TI->successors())
   3015       Worklist.push_back(SuccBB);
   3016   } while (!Worklist.empty());
   3017 
   3018   // Once we've found all of the instructions to add to instcombine's worklist,
   3019   // add them in reverse order.  This way instcombine will visit from the top
   3020   // of the function down.  This jives well with the way that it adds all uses
   3021   // of instructions to the worklist after doing a transformation, thus avoiding
   3022   // some N^2 behavior in pathological cases.
   3023   ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
   3024 
   3025   return MadeIRChange;
   3026 }
   3027 
   3028 /// \brief Populate the IC worklist from a function, and prune any dead basic
   3029 /// blocks discovered in the process.
   3030 ///
   3031 /// This also does basic constant propagation and other forward fixing to make
   3032 /// the combiner itself run much faster.
   3033 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
   3034                                           TargetLibraryInfo *TLI,
   3035                                           InstCombineWorklist &ICWorklist) {
   3036   bool MadeIRChange = false;
   3037 
   3038   // Do a depth-first traversal of the function, populate the worklist with
   3039   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
   3040   // track of which blocks we visit.
   3041   SmallPtrSet<BasicBlock *, 32> Visited;
   3042   MadeIRChange |=
   3043       AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
   3044 
   3045   // Do a quick scan over the function.  If we find any blocks that are
   3046   // unreachable, remove any instructions inside of them.  This prevents
   3047   // the instcombine code from having to deal with some bad special cases.
   3048   for (BasicBlock &BB : F) {
   3049     if (Visited.count(&BB))
   3050       continue;
   3051 
   3052     unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
   3053     MadeIRChange |= NumDeadInstInBB > 0;
   3054     NumDeadInst += NumDeadInstInBB;
   3055   }
   3056 
   3057   return MadeIRChange;
   3058 }
   3059 
   3060 static bool
   3061 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
   3062                                 AliasAnalysis *AA, AssumptionCache &AC,
   3063                                 TargetLibraryInfo &TLI, DominatorTree &DT,
   3064                                 bool ExpensiveCombines = true,
   3065                                 LoopInfo *LI = nullptr) {
   3066   auto &DL = F.getParent()->getDataLayout();
   3067   ExpensiveCombines |= EnableExpensiveCombines;
   3068 
   3069   /// Builder - This is an IRBuilder that automatically inserts new
   3070   /// instructions into the worklist when they are created.
   3071   IRBuilder<TargetFolder, InstCombineIRInserter> Builder(
   3072       F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
   3073 
   3074   // Lower dbg.declare intrinsics otherwise their value may be clobbered
   3075   // by instcombiner.
   3076   bool DbgDeclaresChanged = LowerDbgDeclare(F);
   3077 
   3078   // Iterate while there is work to do.
   3079   int Iteration = 0;
   3080   for (;;) {
   3081     ++Iteration;
   3082     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
   3083                  << F.getName() << "\n");
   3084 
   3085     bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
   3086 
   3087     InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines,
   3088                     AA, &AC, &TLI, &DT, DL, LI);
   3089     Changed |= IC.run();
   3090 
   3091     if (!Changed)
   3092       break;
   3093   }
   3094 
   3095   return DbgDeclaresChanged || Iteration > 1;
   3096 }
   3097 
   3098 PreservedAnalyses InstCombinePass::run(Function &F,
   3099                                        AnalysisManager<Function> &AM) {
   3100   auto &AC = AM.getResult<AssumptionAnalysis>(F);
   3101   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
   3102   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
   3103 
   3104   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
   3105 
   3106   // FIXME: The AliasAnalysis is not yet supported in the new pass manager
   3107   if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT,
   3108                                        ExpensiveCombines, LI))
   3109     // No changes, all analyses are preserved.
   3110     return PreservedAnalyses::all();
   3111 
   3112   // Mark all the analyses that instcombine updates as preserved.
   3113   // FIXME: This should also 'preserve the CFG'.
   3114   PreservedAnalyses PA;
   3115   PA.preserve<DominatorTreeAnalysis>();
   3116   return PA;
   3117 }
   3118 
   3119 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
   3120   AU.setPreservesCFG();
   3121   AU.addRequired<AAResultsWrapperPass>();
   3122   AU.addRequired<AssumptionCacheTracker>();
   3123   AU.addRequired<TargetLibraryInfoWrapperPass>();
   3124   AU.addRequired<DominatorTreeWrapperPass>();
   3125   AU.addPreserved<DominatorTreeWrapperPass>();
   3126   AU.addPreserved<AAResultsWrapperPass>();
   3127   AU.addPreserved<BasicAAWrapperPass>();
   3128   AU.addPreserved<GlobalsAAWrapperPass>();
   3129 }
   3130 
   3131 bool InstructionCombiningPass::runOnFunction(Function &F) {
   3132   if (skipFunction(F))
   3133     return false;
   3134 
   3135   // Required analyses.
   3136   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   3137   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   3138   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   3139   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   3140 
   3141   // Optional analyses.
   3142   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
   3143   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
   3144 
   3145   return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT,
   3146                                          ExpensiveCombines, LI);
   3147 }
   3148 
   3149 char InstructionCombiningPass::ID = 0;
   3150 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
   3151                       "Combine redundant instructions", false, false)
   3152 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   3153 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   3154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   3155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   3156 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
   3157 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
   3158                     "Combine redundant instructions", false, false)
   3159 
   3160 // Initialization Routines
   3161 void llvm::initializeInstCombine(PassRegistry &Registry) {
   3162   initializeInstructionCombiningPassPass(Registry);
   3163 }
   3164 
   3165 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
   3166   initializeInstructionCombiningPassPass(*unwrap(R));
   3167 }
   3168 
   3169 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
   3170   return new InstructionCombiningPass(ExpensiveCombines);
   3171 }
   3172