1 //===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 29 #define DEBUG_TYPE "si-insert-waits" 30 31 using namespace llvm; 32 33 namespace { 34 35 /// \brief One variable for each of the hardware counters 36 typedef union { 37 struct { 38 unsigned VM; 39 unsigned EXP; 40 unsigned LGKM; 41 } Named; 42 unsigned Array[3]; 43 44 } Counters; 45 46 typedef enum { 47 OTHER, 48 SMEM, 49 VMEM 50 } InstType; 51 52 typedef Counters RegCounters[512]; 53 typedef std::pair<unsigned, unsigned> RegInterval; 54 55 class SIInsertWaits : public MachineFunctionPass { 56 57 private: 58 const SISubtarget *ST; 59 const SIInstrInfo *TII; 60 const SIRegisterInfo *TRI; 61 const MachineRegisterInfo *MRI; 62 63 /// \brief Constant hardware limits 64 static const Counters WaitCounts; 65 66 /// \brief Constant zero value 67 static const Counters ZeroCounts; 68 69 /// \brief Counter values we have already waited on. 70 Counters WaitedOn; 71 72 /// \brief Counter values that we must wait on before the next counter 73 /// increase. 74 Counters DelayedWaitOn; 75 76 /// \brief Counter values for last instruction issued. 77 Counters LastIssued; 78 79 /// \brief Registers used by async instructions. 80 RegCounters UsedRegs; 81 82 /// \brief Registers defined by async instructions. 83 RegCounters DefinedRegs; 84 85 /// \brief Different export instruction types seen since last wait. 86 unsigned ExpInstrTypesSeen; 87 88 /// \brief Type of the last opcode. 89 InstType LastOpcodeType; 90 91 bool LastInstWritesM0; 92 93 /// \brief Whether the machine function returns void 94 bool ReturnsVoid; 95 96 /// Whether the VCCZ bit is possibly corrupt 97 bool VCCZCorrupt; 98 99 /// \brief Get increment/decrement amount for this instruction. 100 Counters getHwCounts(MachineInstr &MI); 101 102 /// \brief Is operand relevant for async execution? 103 bool isOpRelevant(MachineOperand &Op); 104 105 /// \brief Get register interval an operand affects. 106 RegInterval getRegInterval(const TargetRegisterClass *RC, 107 const MachineOperand &Reg) const; 108 109 /// \brief Handle instructions async components 110 void pushInstruction(MachineBasicBlock &MBB, 111 MachineBasicBlock::iterator I, 112 const Counters& Increment); 113 114 /// \brief Insert the actual wait instruction 115 bool insertWait(MachineBasicBlock &MBB, 116 MachineBasicBlock::iterator I, 117 const Counters &Counts); 118 119 /// \brief Handle existing wait instructions (from intrinsics) 120 void handleExistingWait(MachineBasicBlock::iterator I); 121 122 /// \brief Do we need def2def checks? 123 bool unorderedDefines(MachineInstr &MI); 124 125 /// \brief Resolve all operand dependencies to counter requirements 126 Counters handleOperands(MachineInstr &MI); 127 128 /// \brief Insert S_NOP between an instruction writing M0 and S_SENDMSG. 129 void handleSendMsg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I); 130 131 /// Return true if there are LGKM instrucitons that haven't been waited on 132 /// yet. 133 bool hasOutstandingLGKM() const; 134 135 public: 136 static char ID; 137 138 SIInsertWaits() : 139 MachineFunctionPass(ID), 140 ST(nullptr), 141 TII(nullptr), 142 TRI(nullptr), 143 ExpInstrTypesSeen(0), 144 VCCZCorrupt(false) { } 145 146 bool runOnMachineFunction(MachineFunction &MF) override; 147 148 const char *getPassName() const override { 149 return "SI insert wait instructions"; 150 } 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.setPreservesCFG(); 154 MachineFunctionPass::getAnalysisUsage(AU); 155 } 156 }; 157 158 } // End anonymous namespace 159 160 INITIALIZE_PASS_BEGIN(SIInsertWaits, DEBUG_TYPE, 161 "SI Insert Waits", false, false) 162 INITIALIZE_PASS_END(SIInsertWaits, DEBUG_TYPE, 163 "SI Insert Waits", false, false) 164 165 char SIInsertWaits::ID = 0; 166 167 char &llvm::SIInsertWaitsID = SIInsertWaits::ID; 168 169 FunctionPass *llvm::createSIInsertWaitsPass() { 170 return new SIInsertWaits(); 171 } 172 173 const Counters SIInsertWaits::WaitCounts = { { 15, 7, 15 } }; 174 const Counters SIInsertWaits::ZeroCounts = { { 0, 0, 0 } }; 175 176 static bool readsVCCZ(unsigned Opcode) { 177 return Opcode == AMDGPU::S_CBRANCH_VCCNZ || Opcode == AMDGPU::S_CBRANCH_VCCZ; 178 } 179 180 bool SIInsertWaits::hasOutstandingLGKM() const { 181 return WaitedOn.Named.LGKM != LastIssued.Named.LGKM; 182 } 183 184 Counters SIInsertWaits::getHwCounts(MachineInstr &MI) { 185 uint64_t TSFlags = MI.getDesc().TSFlags; 186 Counters Result = { { 0, 0, 0 } }; 187 188 Result.Named.VM = !!(TSFlags & SIInstrFlags::VM_CNT); 189 190 // Only consider stores or EXP for EXP_CNT 191 Result.Named.EXP = !!(TSFlags & SIInstrFlags::EXP_CNT && 192 (MI.getOpcode() == AMDGPU::EXP || MI.getDesc().mayStore())); 193 194 // LGKM may uses larger values 195 if (TSFlags & SIInstrFlags::LGKM_CNT) { 196 197 if (TII->isSMRD(MI)) { 198 199 if (MI.getNumOperands() != 0) { 200 assert(MI.getOperand(0).isReg() && 201 "First LGKM operand must be a register!"); 202 203 // XXX - What if this is a write into a super register? 204 const TargetRegisterClass *RC = TII->getOpRegClass(MI, 0); 205 unsigned Size = RC->getSize(); 206 Result.Named.LGKM = Size > 4 ? 2 : 1; 207 } else { 208 // s_dcache_inv etc. do not have a a destination register. Assume we 209 // want a wait on these. 210 // XXX - What is the right value? 211 Result.Named.LGKM = 1; 212 } 213 } else { 214 // DS 215 Result.Named.LGKM = 1; 216 } 217 218 } else { 219 Result.Named.LGKM = 0; 220 } 221 222 return Result; 223 } 224 225 bool SIInsertWaits::isOpRelevant(MachineOperand &Op) { 226 // Constants are always irrelevant 227 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg())) 228 return false; 229 230 // Defines are always relevant 231 if (Op.isDef()) 232 return true; 233 234 // For exports all registers are relevant 235 MachineInstr &MI = *Op.getParent(); 236 if (MI.getOpcode() == AMDGPU::EXP) 237 return true; 238 239 // For stores the stored value is also relevant 240 if (!MI.getDesc().mayStore()) 241 return false; 242 243 // Check if this operand is the value being stored. 244 // Special case for DS/FLAT instructions, since the address 245 // operand comes before the value operand and it may have 246 // multiple data operands. 247 248 if (TII->isDS(MI) || TII->isFLAT(MI)) { 249 MachineOperand *Data = TII->getNamedOperand(MI, AMDGPU::OpName::data); 250 if (Data && Op.isIdenticalTo(*Data)) 251 return true; 252 } 253 254 if (TII->isDS(MI)) { 255 MachineOperand *Data0 = TII->getNamedOperand(MI, AMDGPU::OpName::data0); 256 if (Data0 && Op.isIdenticalTo(*Data0)) 257 return true; 258 259 MachineOperand *Data1 = TII->getNamedOperand(MI, AMDGPU::OpName::data1); 260 return Data1 && Op.isIdenticalTo(*Data1); 261 } 262 263 // NOTE: This assumes that the value operand is before the 264 // address operand, and that there is only one value operand. 265 for (MachineInstr::mop_iterator I = MI.operands_begin(), 266 E = MI.operands_end(); I != E; ++I) { 267 268 if (I->isReg() && I->isUse()) 269 return Op.isIdenticalTo(*I); 270 } 271 272 return false; 273 } 274 275 RegInterval SIInsertWaits::getRegInterval(const TargetRegisterClass *RC, 276 const MachineOperand &Reg) const { 277 unsigned Size = RC->getSize(); 278 assert(Size >= 4); 279 280 RegInterval Result; 281 Result.first = TRI->getEncodingValue(Reg.getReg()); 282 Result.second = Result.first + Size / 4; 283 284 return Result; 285 } 286 287 void SIInsertWaits::pushInstruction(MachineBasicBlock &MBB, 288 MachineBasicBlock::iterator I, 289 const Counters &Increment) { 290 291 // Get the hardware counter increments and sum them up 292 Counters Limit = ZeroCounts; 293 unsigned Sum = 0; 294 295 for (unsigned i = 0; i < 3; ++i) { 296 LastIssued.Array[i] += Increment.Array[i]; 297 if (Increment.Array[i]) 298 Limit.Array[i] = LastIssued.Array[i]; 299 Sum += Increment.Array[i]; 300 } 301 302 // If we don't increase anything then that's it 303 if (Sum == 0) { 304 LastOpcodeType = OTHER; 305 return; 306 } 307 308 if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 309 // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM 310 // or SMEM clause, respectively. 311 // 312 // The temporary workaround is to break the clauses with S_NOP. 313 // 314 // The proper solution would be to allocate registers such that all source 315 // and destination registers don't overlap, e.g. this is illegal: 316 // r0 = load r2 317 // r2 = load r0 318 if (LastOpcodeType == VMEM && Increment.Named.VM) { 319 // Insert a NOP to break the clause. 320 BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)) 321 .addImm(0); 322 LastInstWritesM0 = false; 323 } 324 325 if (TII->isSMRD(*I)) 326 LastOpcodeType = SMEM; 327 else if (Increment.Named.VM) 328 LastOpcodeType = VMEM; 329 } 330 331 // Remember which export instructions we have seen 332 if (Increment.Named.EXP) { 333 ExpInstrTypesSeen |= I->getOpcode() == AMDGPU::EXP ? 1 : 2; 334 } 335 336 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 337 MachineOperand &Op = I->getOperand(i); 338 if (!isOpRelevant(Op)) 339 continue; 340 341 const TargetRegisterClass *RC = TII->getOpRegClass(*I, i); 342 RegInterval Interval = getRegInterval(RC, Op); 343 for (unsigned j = Interval.first; j < Interval.second; ++j) { 344 345 // Remember which registers we define 346 if (Op.isDef()) 347 DefinedRegs[j] = Limit; 348 349 // and which one we are using 350 if (Op.isUse()) 351 UsedRegs[j] = Limit; 352 } 353 } 354 } 355 356 bool SIInsertWaits::insertWait(MachineBasicBlock &MBB, 357 MachineBasicBlock::iterator I, 358 const Counters &Required) { 359 360 // End of program? No need to wait on anything 361 // A function not returning void needs to wait, because other bytecode will 362 // be appended after it and we don't know what it will be. 363 if (I != MBB.end() && I->getOpcode() == AMDGPU::S_ENDPGM && ReturnsVoid) 364 return false; 365 366 // Figure out if the async instructions execute in order 367 bool Ordered[3]; 368 369 // VM_CNT is always ordered 370 Ordered[0] = true; 371 372 // EXP_CNT is unordered if we have both EXP & VM-writes 373 Ordered[1] = ExpInstrTypesSeen == 3; 374 375 // LGKM_CNT is handled as always unordered. TODO: Handle LDS and GDS 376 Ordered[2] = false; 377 378 // The values we are going to put into the S_WAITCNT instruction 379 Counters Counts = WaitCounts; 380 381 // Do we really need to wait? 382 bool NeedWait = false; 383 384 for (unsigned i = 0; i < 3; ++i) { 385 386 if (Required.Array[i] <= WaitedOn.Array[i]) 387 continue; 388 389 NeedWait = true; 390 391 if (Ordered[i]) { 392 unsigned Value = LastIssued.Array[i] - Required.Array[i]; 393 394 // Adjust the value to the real hardware possibilities. 395 Counts.Array[i] = std::min(Value, WaitCounts.Array[i]); 396 397 } else 398 Counts.Array[i] = 0; 399 400 // Remember on what we have waited on. 401 WaitedOn.Array[i] = LastIssued.Array[i] - Counts.Array[i]; 402 } 403 404 if (!NeedWait) 405 return false; 406 407 // Reset EXP_CNT instruction types 408 if (Counts.Named.EXP == 0) 409 ExpInstrTypesSeen = 0; 410 411 // Build the wait instruction 412 BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 413 .addImm((Counts.Named.VM & 0xF) | 414 ((Counts.Named.EXP & 0x7) << 4) | 415 ((Counts.Named.LGKM & 0xF) << 8)); 416 417 LastOpcodeType = OTHER; 418 LastInstWritesM0 = false; 419 return true; 420 } 421 422 /// \brief helper function for handleOperands 423 static void increaseCounters(Counters &Dst, const Counters &Src) { 424 425 for (unsigned i = 0; i < 3; ++i) 426 Dst.Array[i] = std::max(Dst.Array[i], Src.Array[i]); 427 } 428 429 /// \brief check whether any of the counters is non-zero 430 static bool countersNonZero(const Counters &Counter) { 431 for (unsigned i = 0; i < 3; ++i) 432 if (Counter.Array[i]) 433 return true; 434 return false; 435 } 436 437 void SIInsertWaits::handleExistingWait(MachineBasicBlock::iterator I) { 438 assert(I->getOpcode() == AMDGPU::S_WAITCNT); 439 440 unsigned Imm = I->getOperand(0).getImm(); 441 Counters Counts, WaitOn; 442 443 Counts.Named.VM = Imm & 0xF; 444 Counts.Named.EXP = (Imm >> 4) & 0x7; 445 Counts.Named.LGKM = (Imm >> 8) & 0xF; 446 447 for (unsigned i = 0; i < 3; ++i) { 448 if (Counts.Array[i] <= LastIssued.Array[i]) 449 WaitOn.Array[i] = LastIssued.Array[i] - Counts.Array[i]; 450 else 451 WaitOn.Array[i] = 0; 452 } 453 454 increaseCounters(DelayedWaitOn, WaitOn); 455 } 456 457 Counters SIInsertWaits::handleOperands(MachineInstr &MI) { 458 459 Counters Result = ZeroCounts; 460 461 // For each register affected by this instruction increase the result 462 // sequence. 463 // 464 // TODO: We could probably just look at explicit operands if we removed VCC / 465 // EXEC from SMRD dest reg classes. 466 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 467 MachineOperand &Op = MI.getOperand(i); 468 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg())) 469 continue; 470 471 const TargetRegisterClass *RC = TII->getOpRegClass(MI, i); 472 RegInterval Interval = getRegInterval(RC, Op); 473 for (unsigned j = Interval.first; j < Interval.second; ++j) { 474 475 if (Op.isDef()) { 476 increaseCounters(Result, UsedRegs[j]); 477 increaseCounters(Result, DefinedRegs[j]); 478 } 479 480 if (Op.isUse()) 481 increaseCounters(Result, DefinedRegs[j]); 482 } 483 } 484 485 return Result; 486 } 487 488 void SIInsertWaits::handleSendMsg(MachineBasicBlock &MBB, 489 MachineBasicBlock::iterator I) { 490 if (ST->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 491 return; 492 493 // There must be "S_NOP 0" between an instruction writing M0 and S_SENDMSG. 494 if (LastInstWritesM0 && I->getOpcode() == AMDGPU::S_SENDMSG) { 495 BuildMI(MBB, I, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0); 496 LastInstWritesM0 = false; 497 return; 498 } 499 500 // Set whether this instruction sets M0 501 LastInstWritesM0 = false; 502 503 unsigned NumOperands = I->getNumOperands(); 504 for (unsigned i = 0; i < NumOperands; i++) { 505 const MachineOperand &Op = I->getOperand(i); 506 507 if (Op.isReg() && Op.isDef() && Op.getReg() == AMDGPU::M0) 508 LastInstWritesM0 = true; 509 } 510 } 511 512 // FIXME: Insert waits listed in Table 4.2 "Required User-Inserted Wait States" 513 // around other non-memory instructions. 514 bool SIInsertWaits::runOnMachineFunction(MachineFunction &MF) { 515 bool Changes = false; 516 517 ST = &MF.getSubtarget<SISubtarget>(); 518 TII = ST->getInstrInfo(); 519 TRI = &TII->getRegisterInfo(); 520 MRI = &MF.getRegInfo(); 521 522 WaitedOn = ZeroCounts; 523 DelayedWaitOn = ZeroCounts; 524 LastIssued = ZeroCounts; 525 LastOpcodeType = OTHER; 526 LastInstWritesM0 = false; 527 ReturnsVoid = MF.getInfo<SIMachineFunctionInfo>()->returnsVoid(); 528 529 memset(&UsedRegs, 0, sizeof(UsedRegs)); 530 memset(&DefinedRegs, 0, sizeof(DefinedRegs)); 531 532 SmallVector<MachineInstr *, 4> RemoveMI; 533 534 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 535 BI != BE; ++BI) { 536 537 MachineBasicBlock &MBB = *BI; 538 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 539 I != E; ++I) { 540 541 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 542 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 543 // vccz bit, so when we detect that an instruction may read from a 544 // corrupt vccz bit, we need to: 545 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD operations to 546 // complete. 547 // 2. Restore the correct value of vccz by writing the current value 548 // of vcc back to vcc. 549 550 if (TII->isSMRD(I->getOpcode())) { 551 VCCZCorrupt = true; 552 } else if (!hasOutstandingLGKM() && I->modifiesRegister(AMDGPU::VCC, TRI)) { 553 // FIXME: We only care about SMRD instructions here, not LDS or GDS. 554 // Whenever we store a value in vcc, the correct value of vccz is 555 // restored. 556 VCCZCorrupt = false; 557 } 558 559 // Check if we need to apply the bug work-around 560 if (readsVCCZ(I->getOpcode()) && VCCZCorrupt) { 561 DEBUG(dbgs() << "Inserting vccz bug work-around before: " << *I << '\n'); 562 563 // Wait on everything, not just LGKM. vccz reads usually come from 564 // terminators, and we always wait on everything at the end of the 565 // block, so if we only wait on LGKM here, we might end up with 566 // another s_waitcnt inserted right after this if there are non-LGKM 567 // instructions still outstanding. 568 insertWait(MBB, I, LastIssued); 569 570 // Restore the vccz bit. Any time a value is written to vcc, the vcc 571 // bit is updated, so we can restore the bit by reading the value of 572 // vcc and then writing it back to the register. 573 BuildMI(MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 574 AMDGPU::VCC) 575 .addReg(AMDGPU::VCC); 576 } 577 } 578 579 // Record pre-existing, explicitly requested waits 580 if (I->getOpcode() == AMDGPU::S_WAITCNT) { 581 handleExistingWait(*I); 582 RemoveMI.push_back(&*I); 583 continue; 584 } 585 586 Counters Required; 587 588 // Wait for everything before a barrier. 589 // 590 // S_SENDMSG implicitly waits for all outstanding LGKM transfers to finish, 591 // but we also want to wait for any other outstanding transfers before 592 // signalling other hardware blocks 593 if (I->getOpcode() == AMDGPU::S_BARRIER || 594 I->getOpcode() == AMDGPU::S_SENDMSG) 595 Required = LastIssued; 596 else 597 Required = handleOperands(*I); 598 599 Counters Increment = getHwCounts(*I); 600 601 if (countersNonZero(Required) || countersNonZero(Increment)) 602 increaseCounters(Required, DelayedWaitOn); 603 604 Changes |= insertWait(MBB, I, Required); 605 606 pushInstruction(MBB, I, Increment); 607 handleSendMsg(MBB, I); 608 } 609 610 // Wait for everything at the end of the MBB 611 Changes |= insertWait(MBB, MBB.getFirstTerminator(), LastIssued); 612 } 613 614 for (MachineInstr *I : RemoveMI) 615 I->eraseFromParent(); 616 617 return Changes; 618 } 619