Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/AsmPrinter.h"
     15 #include "CodeViewDebug.h"
     16 #include "DwarfDebug.h"
     17 #include "DwarfException.h"
     18 #include "WinException.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/ConstantFolding.h"
     21 #include "llvm/CodeGen/Analysis.h"
     22 #include "llvm/CodeGen/GCMetadataPrinter.h"
     23 #include "llvm/CodeGen/MachineConstantPool.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunction.h"
     26 #include "llvm/CodeGen/MachineInstrBundle.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineLoopInfo.h"
     29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DebugInfo.h"
     32 #include "llvm/IR/Mangler.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/MC/MCAsmInfo.h"
     36 #include "llvm/MC/MCContext.h"
     37 #include "llvm/MC/MCExpr.h"
     38 #include "llvm/MC/MCInst.h"
     39 #include "llvm/MC/MCSection.h"
     40 #include "llvm/MC/MCStreamer.h"
     41 #include "llvm/MC/MCSymbolELF.h"
     42 #include "llvm/MC/MCValue.h"
     43 #include "llvm/Support/ErrorHandling.h"
     44 #include "llvm/Support/Format.h"
     45 #include "llvm/Support/MathExtras.h"
     46 #include "llvm/Support/TargetRegistry.h"
     47 #include "llvm/Support/Timer.h"
     48 #include "llvm/Target/TargetFrameLowering.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetLowering.h"
     51 #include "llvm/Target/TargetLoweringObjectFile.h"
     52 #include "llvm/Target/TargetRegisterInfo.h"
     53 #include "llvm/Target/TargetSubtargetInfo.h"
     54 using namespace llvm;
     55 
     56 #define DEBUG_TYPE "asm-printer"
     57 
     58 static const char *const DWARFGroupName = "DWARF Emission";
     59 static const char *const DbgTimerName = "Debug Info Emission";
     60 static const char *const EHTimerName = "DWARF Exception Writer";
     61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
     62 
     63 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     64 
     65 char AsmPrinter::ID = 0;
     66 
     67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
     68 static gcp_map_type &getGCMap(void *&P) {
     69   if (!P)
     70     P = new gcp_map_type();
     71   return *(gcp_map_type*)P;
     72 }
     73 
     74 
     75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     76 /// value in log2 form.  This rounds up to the preferred alignment if possible
     77 /// and legal.
     78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
     79                                    unsigned InBits = 0) {
     80   unsigned NumBits = 0;
     81   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     82     NumBits = DL.getPreferredAlignmentLog(GVar);
     83 
     84   // If InBits is specified, round it to it.
     85   if (InBits > NumBits)
     86     NumBits = InBits;
     87 
     88   // If the GV has a specified alignment, take it into account.
     89   if (GV->getAlignment() == 0)
     90     return NumBits;
     91 
     92   unsigned GVAlign = Log2_32(GV->getAlignment());
     93 
     94   // If the GVAlign is larger than NumBits, or if we are required to obey
     95   // NumBits because the GV has an assigned section, obey it.
     96   if (GVAlign > NumBits || GV->hasSection())
     97     NumBits = GVAlign;
     98   return NumBits;
     99 }
    100 
    101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
    102     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
    103       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
    104       LastMI(nullptr), LastFn(0), Counter(~0U) {
    105   DD = nullptr;
    106   MMI = nullptr;
    107   LI = nullptr;
    108   MF = nullptr;
    109   CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
    110   CurrentFnBegin = nullptr;
    111   CurrentFnEnd = nullptr;
    112   GCMetadataPrinters = nullptr;
    113   VerboseAsm = OutStreamer->isVerboseAsm();
    114 }
    115 
    116 AsmPrinter::~AsmPrinter() {
    117   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
    118 
    119   if (GCMetadataPrinters) {
    120     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    121 
    122     delete &GCMap;
    123     GCMetadataPrinters = nullptr;
    124   }
    125 }
    126 
    127 bool AsmPrinter::isPositionIndependent() const {
    128   return TM.isPositionIndependent();
    129 }
    130 
    131 /// getFunctionNumber - Return a unique ID for the current function.
    132 ///
    133 unsigned AsmPrinter::getFunctionNumber() const {
    134   return MF->getFunctionNumber();
    135 }
    136 
    137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    138   return *TM.getObjFileLowering();
    139 }
    140 
    141 const DataLayout &AsmPrinter::getDataLayout() const {
    142   return MMI->getModule()->getDataLayout();
    143 }
    144 
    145 // Do not use the cached DataLayout because some client use it without a Module
    146 // (llmv-dsymutil, llvm-dwarfdump).
    147 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
    148 
    149 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
    150   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
    151   return MF->getSubtarget<MCSubtargetInfo>();
    152 }
    153 
    154 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
    155   S.EmitInstruction(Inst, getSubtargetInfo());
    156 }
    157 
    158 StringRef AsmPrinter::getTargetTriple() const {
    159   return TM.getTargetTriple().str();
    160 }
    161 
    162 /// getCurrentSection() - Return the current section we are emitting to.
    163 const MCSection *AsmPrinter::getCurrentSection() const {
    164   return OutStreamer->getCurrentSection().first;
    165 }
    166 
    167 
    168 
    169 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    170   AU.setPreservesAll();
    171   MachineFunctionPass::getAnalysisUsage(AU);
    172   AU.addRequired<MachineModuleInfo>();
    173   AU.addRequired<GCModuleInfo>();
    174   if (isVerbose())
    175     AU.addRequired<MachineLoopInfo>();
    176 }
    177 
    178 bool AsmPrinter::doInitialization(Module &M) {
    179   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    180 
    181   // Initialize TargetLoweringObjectFile.
    182   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    183     .Initialize(OutContext, TM);
    184 
    185   OutStreamer->InitSections(false);
    186 
    187   Mang = new Mangler();
    188 
    189   // Emit the version-min deplyment target directive if needed.
    190   //
    191   // FIXME: If we end up with a collection of these sorts of Darwin-specific
    192   // or ELF-specific things, it may make sense to have a platform helper class
    193   // that will work with the target helper class. For now keep it here, as the
    194   // alternative is duplicated code in each of the target asm printers that
    195   // use the directive, where it would need the same conditionalization
    196   // anyway.
    197   Triple TT(getTargetTriple());
    198   // If there is a version specified, Major will be non-zero.
    199   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
    200     unsigned Major, Minor, Update;
    201     MCVersionMinType VersionType;
    202     if (TT.isWatchOS()) {
    203       VersionType = MCVM_WatchOSVersionMin;
    204       TT.getWatchOSVersion(Major, Minor, Update);
    205     } else if (TT.isTvOS()) {
    206       VersionType = MCVM_TvOSVersionMin;
    207       TT.getiOSVersion(Major, Minor, Update);
    208     } else if (TT.isMacOSX()) {
    209       VersionType = MCVM_OSXVersionMin;
    210       if (!TT.getMacOSXVersion(Major, Minor, Update))
    211         Major = 0;
    212     } else {
    213       VersionType = MCVM_IOSVersionMin;
    214       TT.getiOSVersion(Major, Minor, Update);
    215     }
    216     if (Major != 0)
    217       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
    218   }
    219 
    220   // Allow the target to emit any magic that it wants at the start of the file.
    221   EmitStartOfAsmFile(M);
    222 
    223   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    224   // don't, this at least helps the user find where a global came from.
    225   if (MAI->hasSingleParameterDotFile()) {
    226     // .file "foo.c"
    227     OutStreamer->EmitFileDirective(M.getModuleIdentifier());
    228   }
    229 
    230   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    231   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    232   for (auto &I : *MI)
    233     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    234       MP->beginAssembly(M, *MI, *this);
    235 
    236   // Emit module-level inline asm if it exists.
    237   if (!M.getModuleInlineAsm().empty()) {
    238     // We're at the module level. Construct MCSubtarget from the default CPU
    239     // and target triple.
    240     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
    241         TM.getTargetTriple().str(), TM.getTargetCPU(),
    242         TM.getTargetFeatureString()));
    243     OutStreamer->AddComment("Start of file scope inline assembly");
    244     OutStreamer->AddBlankLine();
    245     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
    246                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
    247     OutStreamer->AddComment("End of file scope inline assembly");
    248     OutStreamer->AddBlankLine();
    249   }
    250 
    251   if (MAI->doesSupportDebugInformation()) {
    252     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
    253     if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) {
    254       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
    255                                      DbgTimerName,
    256                                      CodeViewLineTablesGroupName));
    257     }
    258     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
    259       DD = new DwarfDebug(this, &M);
    260       DD->beginModule();
    261       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
    262     }
    263   }
    264 
    265   EHStreamer *ES = nullptr;
    266   switch (MAI->getExceptionHandlingType()) {
    267   case ExceptionHandling::None:
    268     break;
    269   case ExceptionHandling::SjLj:
    270   case ExceptionHandling::DwarfCFI:
    271     ES = new DwarfCFIException(this);
    272     break;
    273   case ExceptionHandling::ARM:
    274     ES = new ARMException(this);
    275     break;
    276   case ExceptionHandling::WinEH:
    277     switch (MAI->getWinEHEncodingType()) {
    278     default: llvm_unreachable("unsupported unwinding information encoding");
    279     case WinEH::EncodingType::Invalid:
    280       break;
    281     case WinEH::EncodingType::X86:
    282     case WinEH::EncodingType::Itanium:
    283       ES = new WinException(this);
    284       break;
    285     }
    286     break;
    287   }
    288   if (ES)
    289     Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
    290   return false;
    291 }
    292 
    293 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
    294   if (!MAI.hasWeakDefCanBeHiddenDirective())
    295     return false;
    296 
    297   return canBeOmittedFromSymbolTable(GV);
    298 }
    299 
    300 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
    301   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
    302   switch (Linkage) {
    303   case GlobalValue::CommonLinkage:
    304   case GlobalValue::LinkOnceAnyLinkage:
    305   case GlobalValue::LinkOnceODRLinkage:
    306   case GlobalValue::WeakAnyLinkage:
    307   case GlobalValue::WeakODRLinkage:
    308     if (MAI->hasWeakDefDirective()) {
    309       // .globl _foo
    310       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
    311 
    312       if (!canBeHidden(GV, *MAI))
    313         // .weak_definition _foo
    314         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    315       else
    316         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    317     } else if (MAI->hasLinkOnceDirective()) {
    318       // .globl _foo
    319       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
    320       //NOTE: linkonce is handled by the section the symbol was assigned to.
    321     } else {
    322       // .weak _foo
    323       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
    324     }
    325     return;
    326   case GlobalValue::ExternalLinkage:
    327     // If external, declare as a global symbol: .globl _foo
    328     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
    329     return;
    330   case GlobalValue::PrivateLinkage:
    331   case GlobalValue::InternalLinkage:
    332     return;
    333   case GlobalValue::AppendingLinkage:
    334   case GlobalValue::AvailableExternallyLinkage:
    335   case GlobalValue::ExternalWeakLinkage:
    336     llvm_unreachable("Should never emit this");
    337   }
    338   llvm_unreachable("Unknown linkage type!");
    339 }
    340 
    341 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
    342                                    const GlobalValue *GV) const {
    343   TM.getNameWithPrefix(Name, GV, *Mang);
    344 }
    345 
    346 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
    347   return TM.getSymbol(GV, *Mang);
    348 }
    349 
    350 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    351 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    352   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
    353   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
    354          "No emulated TLS variables in the common section");
    355 
    356   // Never emit TLS variable xyz in emulated TLS model.
    357   // The initialization value is in __emutls_t.xyz instead of xyz.
    358   if (IsEmuTLSVar)
    359     return;
    360 
    361   if (GV->hasInitializer()) {
    362     // Check to see if this is a special global used by LLVM, if so, emit it.
    363     if (EmitSpecialLLVMGlobal(GV))
    364       return;
    365 
    366     // Skip the emission of global equivalents. The symbol can be emitted later
    367     // on by emitGlobalGOTEquivs in case it turns out to be needed.
    368     if (GlobalGOTEquivs.count(getSymbol(GV)))
    369       return;
    370 
    371     if (isVerbose()) {
    372       // When printing the control variable __emutls_v.*,
    373       // we don't need to print the original TLS variable name.
    374       GV->printAsOperand(OutStreamer->GetCommentOS(),
    375                      /*PrintType=*/false, GV->getParent());
    376       OutStreamer->GetCommentOS() << '\n';
    377     }
    378   }
    379 
    380   MCSymbol *GVSym = getSymbol(GV);
    381   MCSymbol *EmittedSym = GVSym;
    382 
    383   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
    384   // attributes.
    385   // GV's or GVSym's attributes will be used for the EmittedSym.
    386   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
    387 
    388   if (!GV->hasInitializer())   // External globals require no extra code.
    389     return;
    390 
    391   GVSym->redefineIfPossible();
    392   if (GVSym->isDefined() || GVSym->isVariable())
    393     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
    394                        "' is already defined");
    395 
    396   if (MAI->hasDotTypeDotSizeDirective())
    397     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
    398 
    399   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    400 
    401   const DataLayout &DL = GV->getParent()->getDataLayout();
    402   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
    403 
    404   // If the alignment is specified, we *must* obey it.  Overaligning a global
    405   // with a specified alignment is a prompt way to break globals emitted to
    406   // sections and expected to be contiguous (e.g. ObjC metadata).
    407   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
    408 
    409   for (const HandlerInfo &HI : Handlers) {
    410     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    411     HI.Handler->setSymbolSize(GVSym, Size);
    412   }
    413 
    414   // Handle common symbols
    415   if (GVKind.isCommon()) {
    416     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    417     unsigned Align = 1 << AlignLog;
    418     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    419       Align = 0;
    420 
    421     // .comm _foo, 42, 4
    422     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
    423     return;
    424   }
    425 
    426   // Determine to which section this global should be emitted.
    427   MCSection *TheSection =
    428       getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
    429 
    430   // If we have a bss global going to a section that supports the
    431   // zerofill directive, do so here.
    432   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
    433       TheSection->isVirtualSection()) {
    434     if (Size == 0)
    435       Size = 1; // zerofill of 0 bytes is undefined.
    436     unsigned Align = 1 << AlignLog;
    437     EmitLinkage(GV, GVSym);
    438     // .zerofill __DATA, __bss, _foo, 400, 5
    439     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
    440     return;
    441   }
    442 
    443   // If this is a BSS local symbol and we are emitting in the BSS
    444   // section use .lcomm/.comm directive.
    445   if (GVKind.isBSSLocal() &&
    446       getObjFileLowering().getBSSSection() == TheSection) {
    447     if (Size == 0)
    448       Size = 1; // .comm Foo, 0 is undefined, avoid it.
    449     unsigned Align = 1 << AlignLog;
    450 
    451     // Use .lcomm only if it supports user-specified alignment.
    452     // Otherwise, while it would still be correct to use .lcomm in some
    453     // cases (e.g. when Align == 1), the external assembler might enfore
    454     // some -unknown- default alignment behavior, which could cause
    455     // spurious differences between external and integrated assembler.
    456     // Prefer to simply fall back to .local / .comm in this case.
    457     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
    458       // .lcomm _foo, 42
    459       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
    460       return;
    461     }
    462 
    463     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    464       Align = 0;
    465 
    466     // .local _foo
    467     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
    468     // .comm _foo, 42, 4
    469     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
    470     return;
    471   }
    472 
    473   // Handle thread local data for mach-o which requires us to output an
    474   // additional structure of data and mangle the original symbol so that we
    475   // can reference it later.
    476   //
    477   // TODO: This should become an "emit thread local global" method on TLOF.
    478   // All of this macho specific stuff should be sunk down into TLOFMachO and
    479   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    480   // TLOF class.  This will also make it more obvious that stuff like
    481   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    482   // specific code.
    483   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    484     // Emit the .tbss symbol
    485     MCSymbol *MangSym =
    486       OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    487 
    488     if (GVKind.isThreadBSS()) {
    489       TheSection = getObjFileLowering().getTLSBSSSection();
    490       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    491     } else if (GVKind.isThreadData()) {
    492       OutStreamer->SwitchSection(TheSection);
    493 
    494       EmitAlignment(AlignLog, GV);
    495       OutStreamer->EmitLabel(MangSym);
    496 
    497       EmitGlobalConstant(GV->getParent()->getDataLayout(),
    498                          GV->getInitializer());
    499     }
    500 
    501     OutStreamer->AddBlankLine();
    502 
    503     // Emit the variable struct for the runtime.
    504     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
    505 
    506     OutStreamer->SwitchSection(TLVSect);
    507     // Emit the linkage here.
    508     EmitLinkage(GV, GVSym);
    509     OutStreamer->EmitLabel(GVSym);
    510 
    511     // Three pointers in size:
    512     //   - __tlv_bootstrap - used to make sure support exists
    513     //   - spare pointer, used when mapped by the runtime
    514     //   - pointer to mangled symbol above with initializer
    515     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
    516     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    517                                 PtrSize);
    518     OutStreamer->EmitIntValue(0, PtrSize);
    519     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
    520 
    521     OutStreamer->AddBlankLine();
    522     return;
    523   }
    524 
    525   MCSymbol *EmittedInitSym = GVSym;
    526 
    527   OutStreamer->SwitchSection(TheSection);
    528 
    529   EmitLinkage(GV, EmittedInitSym);
    530   EmitAlignment(AlignLog, GV);
    531 
    532   OutStreamer->EmitLabel(EmittedInitSym);
    533 
    534   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
    535 
    536   if (MAI->hasDotTypeDotSizeDirective())
    537     // .size foo, 42
    538     OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
    539                              MCConstantExpr::create(Size, OutContext));
    540 
    541   OutStreamer->AddBlankLine();
    542 }
    543 
    544 /// EmitFunctionHeader - This method emits the header for the current
    545 /// function.
    546 void AsmPrinter::EmitFunctionHeader() {
    547   // Print out constants referenced by the function
    548   EmitConstantPool();
    549 
    550   // Print the 'header' of function.
    551   const Function *F = MF->getFunction();
    552 
    553   OutStreamer->SwitchSection(
    554       getObjFileLowering().SectionForGlobal(F, *Mang, TM));
    555   EmitVisibility(CurrentFnSym, F->getVisibility());
    556 
    557   EmitLinkage(F, CurrentFnSym);
    558   if (MAI->hasFunctionAlignment())
    559     EmitAlignment(MF->getAlignment(), F);
    560 
    561   if (MAI->hasDotTypeDotSizeDirective())
    562     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    563 
    564   if (isVerbose()) {
    565     F->printAsOperand(OutStreamer->GetCommentOS(),
    566                    /*PrintType=*/false, F->getParent());
    567     OutStreamer->GetCommentOS() << '\n';
    568   }
    569 
    570   // Emit the prefix data.
    571   if (F->hasPrefixData())
    572     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
    573 
    574   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    575   // do their wild and crazy things as required.
    576   EmitFunctionEntryLabel();
    577 
    578   // If the function had address-taken blocks that got deleted, then we have
    579   // references to the dangling symbols.  Emit them at the start of the function
    580   // so that we don't get references to undefined symbols.
    581   std::vector<MCSymbol*> DeadBlockSyms;
    582   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    583   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    584     OutStreamer->AddComment("Address taken block that was later removed");
    585     OutStreamer->EmitLabel(DeadBlockSyms[i]);
    586   }
    587 
    588   if (CurrentFnBegin) {
    589     if (MAI->useAssignmentForEHBegin()) {
    590       MCSymbol *CurPos = OutContext.createTempSymbol();
    591       OutStreamer->EmitLabel(CurPos);
    592       OutStreamer->EmitAssignment(CurrentFnBegin,
    593                                  MCSymbolRefExpr::create(CurPos, OutContext));
    594     } else {
    595       OutStreamer->EmitLabel(CurrentFnBegin);
    596     }
    597   }
    598 
    599   // Emit pre-function debug and/or EH information.
    600   for (const HandlerInfo &HI : Handlers) {
    601     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    602     HI.Handler->beginFunction(MF);
    603   }
    604 
    605   // Emit the prologue data.
    606   if (F->hasPrologueData())
    607     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
    608 }
    609 
    610 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    611 /// function.  This can be overridden by targets as required to do custom stuff.
    612 void AsmPrinter::EmitFunctionEntryLabel() {
    613   CurrentFnSym->redefineIfPossible();
    614 
    615   // The function label could have already been emitted if two symbols end up
    616   // conflicting due to asm renaming.  Detect this and emit an error.
    617   if (CurrentFnSym->isVariable())
    618     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    619                        "' is a protected alias");
    620   if (CurrentFnSym->isDefined())
    621     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    622                        "' label emitted multiple times to assembly file");
    623 
    624   return OutStreamer->EmitLabel(CurrentFnSym);
    625 }
    626 
    627 /// emitComments - Pretty-print comments for instructions.
    628 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    629   const MachineFunction *MF = MI.getParent()->getParent();
    630   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    631 
    632   // Check for spills and reloads
    633   int FI;
    634 
    635   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    636 
    637   // We assume a single instruction only has a spill or reload, not
    638   // both.
    639   const MachineMemOperand *MMO;
    640   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
    641     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    642       MMO = *MI.memoperands_begin();
    643       CommentOS << MMO->getSize() << "-byte Reload\n";
    644     }
    645   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
    646     if (FrameInfo->isSpillSlotObjectIndex(FI))
    647       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    648   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
    649     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    650       MMO = *MI.memoperands_begin();
    651       CommentOS << MMO->getSize() << "-byte Spill\n";
    652     }
    653   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
    654     if (FrameInfo->isSpillSlotObjectIndex(FI))
    655       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    656   }
    657 
    658   // Check for spill-induced copies
    659   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    660     CommentOS << " Reload Reuse\n";
    661 }
    662 
    663 /// emitImplicitDef - This method emits the specified machine instruction
    664 /// that is an implicit def.
    665 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
    666   unsigned RegNo = MI->getOperand(0).getReg();
    667 
    668   SmallString<128> Str;
    669   raw_svector_ostream OS(Str);
    670   OS << "implicit-def: "
    671      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
    672 
    673   OutStreamer->AddComment(OS.str());
    674   OutStreamer->AddBlankLine();
    675 }
    676 
    677 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
    678   std::string Str;
    679   raw_string_ostream OS(Str);
    680   OS << "kill:";
    681   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    682     const MachineOperand &Op = MI->getOperand(i);
    683     assert(Op.isReg() && "KILL instruction must have only register operands");
    684     OS << ' '
    685        << PrintReg(Op.getReg(),
    686                    AP.MF->getSubtarget().getRegisterInfo())
    687        << (Op.isDef() ? "<def>" : "<kill>");
    688   }
    689   AP.OutStreamer->AddComment(OS.str());
    690   AP.OutStreamer->AddBlankLine();
    691 }
    692 
    693 /// emitDebugValueComment - This method handles the target-independent form
    694 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    695 /// means the target will need to handle MI in EmitInstruction.
    696 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    697   // This code handles only the 4-operand target-independent form.
    698   if (MI->getNumOperands() != 4)
    699     return false;
    700 
    701   SmallString<128> Str;
    702   raw_svector_ostream OS(Str);
    703   OS << "DEBUG_VALUE: ";
    704 
    705   const DILocalVariable *V = MI->getDebugVariable();
    706   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
    707     StringRef Name = SP->getDisplayName();
    708     if (!Name.empty())
    709       OS << Name << ":";
    710   }
    711   OS << V->getName();
    712 
    713   const DIExpression *Expr = MI->getDebugExpression();
    714   if (Expr->isBitPiece())
    715     OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
    716        << " size=" << Expr->getBitPieceSize() << "]";
    717   OS << " <- ";
    718 
    719   // The second operand is only an offset if it's an immediate.
    720   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
    721   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
    722 
    723   for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
    724     if (Deref) {
    725       // We currently don't support extra Offsets or derefs after the first
    726       // one. Bail out early instead of emitting an incorrect comment
    727       OS << " [complex expression]";
    728       AP.OutStreamer->emitRawComment(OS.str());
    729       return true;
    730     }
    731     uint64_t Op = Expr->getElement(i);
    732     if (Op == dwarf::DW_OP_deref) {
    733       Deref = true;
    734       continue;
    735     } else if (Op == dwarf::DW_OP_bit_piece) {
    736       // There can't be any operands after this in a valid expression
    737       break;
    738     }
    739     uint64_t ExtraOffset = Expr->getElement(i++);
    740     if (Op == dwarf::DW_OP_plus)
    741       Offset += ExtraOffset;
    742     else {
    743       assert(Op == dwarf::DW_OP_minus);
    744       Offset -= ExtraOffset;
    745     }
    746   }
    747 
    748   // Register or immediate value. Register 0 means undef.
    749   if (MI->getOperand(0).isFPImm()) {
    750     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    751     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    752       OS << (double)APF.convertToFloat();
    753     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    754       OS << APF.convertToDouble();
    755     } else {
    756       // There is no good way to print long double.  Convert a copy to
    757       // double.  Ah well, it's only a comment.
    758       bool ignored;
    759       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    760                   &ignored);
    761       OS << "(long double) " << APF.convertToDouble();
    762     }
    763   } else if (MI->getOperand(0).isImm()) {
    764     OS << MI->getOperand(0).getImm();
    765   } else if (MI->getOperand(0).isCImm()) {
    766     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    767   } else {
    768     unsigned Reg;
    769     if (MI->getOperand(0).isReg()) {
    770       Reg = MI->getOperand(0).getReg();
    771     } else {
    772       assert(MI->getOperand(0).isFI() && "Unknown operand type");
    773       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
    774       Offset += TFI->getFrameIndexReference(*AP.MF,
    775                                             MI->getOperand(0).getIndex(), Reg);
    776       Deref = true;
    777     }
    778     if (Reg == 0) {
    779       // Suppress offset, it is not meaningful here.
    780       OS << "undef";
    781       // NOTE: Want this comment at start of line, don't emit with AddComment.
    782       AP.OutStreamer->emitRawComment(OS.str());
    783       return true;
    784     }
    785     if (Deref)
    786       OS << '[';
    787     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
    788   }
    789 
    790   if (Deref)
    791     OS << '+' << Offset << ']';
    792 
    793   // NOTE: Want this comment at start of line, don't emit with AddComment.
    794   AP.OutStreamer->emitRawComment(OS.str());
    795   return true;
    796 }
    797 
    798 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    799   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    800       MF->getFunction()->needsUnwindTableEntry())
    801     return CFI_M_EH;
    802 
    803   if (MMI->hasDebugInfo())
    804     return CFI_M_Debug;
    805 
    806   return CFI_M_None;
    807 }
    808 
    809 bool AsmPrinter::needsSEHMoves() {
    810   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
    811 }
    812 
    813 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
    814   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
    815   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
    816       ExceptionHandlingType != ExceptionHandling::ARM)
    817     return;
    818 
    819   if (needsCFIMoves() == CFI_M_None)
    820     return;
    821 
    822   const MachineModuleInfo &MMI = MF->getMMI();
    823   const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
    824   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
    825   const MCCFIInstruction &CFI = Instrs[CFIIndex];
    826   emitCFIInstruction(CFI);
    827 }
    828 
    829 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
    830   // The operands are the MCSymbol and the frame offset of the allocation.
    831   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
    832   int FrameOffset = MI.getOperand(1).getImm();
    833 
    834   // Emit a symbol assignment.
    835   OutStreamer->EmitAssignment(FrameAllocSym,
    836                              MCConstantExpr::create(FrameOffset, OutContext));
    837 }
    838 
    839 /// EmitFunctionBody - This method emits the body and trailer for a
    840 /// function.
    841 void AsmPrinter::EmitFunctionBody() {
    842   EmitFunctionHeader();
    843 
    844   // Emit target-specific gunk before the function body.
    845   EmitFunctionBodyStart();
    846 
    847   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
    848 
    849   // Print out code for the function.
    850   bool HasAnyRealCode = false;
    851   for (auto &MBB : *MF) {
    852     // Print a label for the basic block.
    853     EmitBasicBlockStart(MBB);
    854     for (auto &MI : MBB) {
    855 
    856       // Print the assembly for the instruction.
    857       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
    858           !MI.isDebugValue()) {
    859         HasAnyRealCode = true;
    860         ++EmittedInsts;
    861       }
    862 
    863       if (ShouldPrintDebugScopes) {
    864         for (const HandlerInfo &HI : Handlers) {
    865           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    866                              TimePassesIsEnabled);
    867           HI.Handler->beginInstruction(&MI);
    868         }
    869       }
    870 
    871       if (isVerbose())
    872         emitComments(MI, OutStreamer->GetCommentOS());
    873 
    874       switch (MI.getOpcode()) {
    875       case TargetOpcode::CFI_INSTRUCTION:
    876         emitCFIInstruction(MI);
    877         break;
    878 
    879       case TargetOpcode::LOCAL_ESCAPE:
    880         emitFrameAlloc(MI);
    881         break;
    882 
    883       case TargetOpcode::EH_LABEL:
    884       case TargetOpcode::GC_LABEL:
    885         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
    886         break;
    887       case TargetOpcode::INLINEASM:
    888         EmitInlineAsm(&MI);
    889         break;
    890       case TargetOpcode::DBG_VALUE:
    891         if (isVerbose()) {
    892           if (!emitDebugValueComment(&MI, *this))
    893             EmitInstruction(&MI);
    894         }
    895         break;
    896       case TargetOpcode::IMPLICIT_DEF:
    897         if (isVerbose()) emitImplicitDef(&MI);
    898         break;
    899       case TargetOpcode::KILL:
    900         if (isVerbose()) emitKill(&MI, *this);
    901         break;
    902       default:
    903         EmitInstruction(&MI);
    904         break;
    905       }
    906 
    907       if (ShouldPrintDebugScopes) {
    908         for (const HandlerInfo &HI : Handlers) {
    909           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
    910                              TimePassesIsEnabled);
    911           HI.Handler->endInstruction();
    912         }
    913       }
    914     }
    915 
    916     EmitBasicBlockEnd(MBB);
    917   }
    918 
    919   // If the function is empty and the object file uses .subsections_via_symbols,
    920   // then we need to emit *something* to the function body to prevent the
    921   // labels from collapsing together.  Just emit a noop.
    922   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
    923     MCInst Noop;
    924     MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
    925     OutStreamer->AddComment("avoids zero-length function");
    926 
    927     // Targets can opt-out of emitting the noop here by leaving the opcode
    928     // unspecified.
    929     if (Noop.getOpcode())
    930       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
    931   }
    932 
    933   const Function *F = MF->getFunction();
    934   for (const auto &BB : *F) {
    935     if (!BB.hasAddressTaken())
    936       continue;
    937     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
    938     if (Sym->isDefined())
    939       continue;
    940     OutStreamer->AddComment("Address of block that was removed by CodeGen");
    941     OutStreamer->EmitLabel(Sym);
    942   }
    943 
    944   // Emit target-specific gunk after the function body.
    945   EmitFunctionBodyEnd();
    946 
    947   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
    948       MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
    949     // Create a symbol for the end of function.
    950     CurrentFnEnd = createTempSymbol("func_end");
    951     OutStreamer->EmitLabel(CurrentFnEnd);
    952   }
    953 
    954   // If the target wants a .size directive for the size of the function, emit
    955   // it.
    956   if (MAI->hasDotTypeDotSizeDirective()) {
    957     // We can get the size as difference between the function label and the
    958     // temp label.
    959     const MCExpr *SizeExp = MCBinaryExpr::createSub(
    960         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
    961         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
    962     if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
    963       OutStreamer->emitELFSize(Sym, SizeExp);
    964   }
    965 
    966   for (const HandlerInfo &HI : Handlers) {
    967     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    968     HI.Handler->markFunctionEnd();
    969   }
    970 
    971   // Print out jump tables referenced by the function.
    972   EmitJumpTableInfo();
    973 
    974   // Emit post-function debug and/or EH information.
    975   for (const HandlerInfo &HI : Handlers) {
    976     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
    977     HI.Handler->endFunction(MF);
    978   }
    979   MMI->EndFunction();
    980 
    981   OutStreamer->AddBlankLine();
    982 }
    983 
    984 /// \brief Compute the number of Global Variables that uses a Constant.
    985 static unsigned getNumGlobalVariableUses(const Constant *C) {
    986   if (!C)
    987     return 0;
    988 
    989   if (isa<GlobalVariable>(C))
    990     return 1;
    991 
    992   unsigned NumUses = 0;
    993   for (auto *CU : C->users())
    994     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
    995 
    996   return NumUses;
    997 }
    998 
    999 /// \brief Only consider global GOT equivalents if at least one user is a
   1000 /// cstexpr inside an initializer of another global variables. Also, don't
   1001 /// handle cstexpr inside instructions. During global variable emission,
   1002 /// candidates are skipped and are emitted later in case at least one cstexpr
   1003 /// isn't replaced by a PC relative GOT entry access.
   1004 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
   1005                                      unsigned &NumGOTEquivUsers) {
   1006   // Global GOT equivalents are unnamed private globals with a constant
   1007   // pointer initializer to another global symbol. They must point to a
   1008   // GlobalVariable or Function, i.e., as GlobalValue.
   1009   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
   1010       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
   1011       !dyn_cast<GlobalValue>(GV->getOperand(0)))
   1012     return false;
   1013 
   1014   // To be a got equivalent, at least one of its users need to be a constant
   1015   // expression used by another global variable.
   1016   for (auto *U : GV->users())
   1017     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
   1018 
   1019   return NumGOTEquivUsers > 0;
   1020 }
   1021 
   1022 /// \brief Unnamed constant global variables solely contaning a pointer to
   1023 /// another globals variable is equivalent to a GOT table entry; it contains the
   1024 /// the address of another symbol. Optimize it and replace accesses to these
   1025 /// "GOT equivalents" by using the GOT entry for the final global instead.
   1026 /// Compute GOT equivalent candidates among all global variables to avoid
   1027 /// emitting them if possible later on, after it use is replaced by a GOT entry
   1028 /// access.
   1029 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
   1030   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
   1031     return;
   1032 
   1033   for (const auto &G : M.globals()) {
   1034     unsigned NumGOTEquivUsers = 0;
   1035     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
   1036       continue;
   1037 
   1038     const MCSymbol *GOTEquivSym = getSymbol(&G);
   1039     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
   1040   }
   1041 }
   1042 
   1043 /// \brief Constant expressions using GOT equivalent globals may not be eligible
   1044 /// for PC relative GOT entry conversion, in such cases we need to emit such
   1045 /// globals we previously omitted in EmitGlobalVariable.
   1046 void AsmPrinter::emitGlobalGOTEquivs() {
   1047   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
   1048     return;
   1049 
   1050   SmallVector<const GlobalVariable *, 8> FailedCandidates;
   1051   for (auto &I : GlobalGOTEquivs) {
   1052     const GlobalVariable *GV = I.second.first;
   1053     unsigned Cnt = I.second.second;
   1054     if (Cnt)
   1055       FailedCandidates.push_back(GV);
   1056   }
   1057   GlobalGOTEquivs.clear();
   1058 
   1059   for (auto *GV : FailedCandidates)
   1060     EmitGlobalVariable(GV);
   1061 }
   1062 
   1063 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
   1064                                           const GlobalIndirectSymbol& GIS) {
   1065   MCSymbol *Name = getSymbol(&GIS);
   1066 
   1067   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
   1068     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
   1069   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
   1070     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
   1071   else
   1072     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
   1073 
   1074   // Set the symbol type to function if the alias has a function type.
   1075   // This affects codegen when the aliasee is not a function.
   1076   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
   1077     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
   1078     if (isa<GlobalIFunc>(GIS))
   1079       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
   1080   }
   1081 
   1082   EmitVisibility(Name, GIS.getVisibility());
   1083 
   1084   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
   1085 
   1086   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
   1087     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
   1088 
   1089   // Emit the directives as assignments aka .set:
   1090   OutStreamer->EmitAssignment(Name, Expr);
   1091 
   1092   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
   1093     // If the aliasee does not correspond to a symbol in the output, i.e. the
   1094     // alias is not of an object or the aliased object is private, then set the
   1095     // size of the alias symbol from the type of the alias. We don't do this in
   1096     // other situations as the alias and aliasee having differing types but same
   1097     // size may be intentional.
   1098     const GlobalObject *BaseObject = GA->getBaseObject();
   1099     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
   1100         (!BaseObject || BaseObject->hasPrivateLinkage())) {
   1101       const DataLayout &DL = M.getDataLayout();
   1102       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
   1103       OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
   1104                                MCConstantExpr::create(Size, OutContext));
   1105     }
   1106   }
   1107 }
   1108 
   1109 bool AsmPrinter::doFinalization(Module &M) {
   1110   // Set the MachineFunction to nullptr so that we can catch attempted
   1111   // accesses to MF specific features at the module level and so that
   1112   // we can conditionalize accesses based on whether or not it is nullptr.
   1113   MF = nullptr;
   1114 
   1115   // Gather all GOT equivalent globals in the module. We really need two
   1116   // passes over the globals: one to compute and another to avoid its emission
   1117   // in EmitGlobalVariable, otherwise we would not be able to handle cases
   1118   // where the got equivalent shows up before its use.
   1119   computeGlobalGOTEquivs(M);
   1120 
   1121   // Emit global variables.
   1122   for (const auto &G : M.globals())
   1123     EmitGlobalVariable(&G);
   1124 
   1125   // Emit remaining GOT equivalent globals.
   1126   emitGlobalGOTEquivs();
   1127 
   1128   // Emit visibility info for declarations
   1129   for (const Function &F : M) {
   1130     if (!F.isDeclarationForLinker())
   1131       continue;
   1132     GlobalValue::VisibilityTypes V = F.getVisibility();
   1133     if (V == GlobalValue::DefaultVisibility)
   1134       continue;
   1135 
   1136     MCSymbol *Name = getSymbol(&F);
   1137     EmitVisibility(Name, V, false);
   1138   }
   1139 
   1140   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
   1141 
   1142   // Emit module flags.
   1143   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
   1144   M.getModuleFlagsMetadata(ModuleFlags);
   1145   if (!ModuleFlags.empty())
   1146     TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM);
   1147 
   1148   if (TM.getTargetTriple().isOSBinFormatELF()) {
   1149     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
   1150 
   1151     // Output stubs for external and common global variables.
   1152     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
   1153     if (!Stubs.empty()) {
   1154       OutStreamer->SwitchSection(TLOF.getDataSection());
   1155       const DataLayout &DL = M.getDataLayout();
   1156 
   1157       for (const auto &Stub : Stubs) {
   1158         OutStreamer->EmitLabel(Stub.first);
   1159         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
   1160                                      DL.getPointerSize());
   1161       }
   1162     }
   1163   }
   1164 
   1165   // Finalize debug and EH information.
   1166   for (const HandlerInfo &HI : Handlers) {
   1167     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
   1168                        TimePassesIsEnabled);
   1169     HI.Handler->endModule();
   1170     delete HI.Handler;
   1171   }
   1172   Handlers.clear();
   1173   DD = nullptr;
   1174 
   1175   // If the target wants to know about weak references, print them all.
   1176   if (MAI->getWeakRefDirective()) {
   1177     // FIXME: This is not lazy, it would be nice to only print weak references
   1178     // to stuff that is actually used.  Note that doing so would require targets
   1179     // to notice uses in operands (due to constant exprs etc).  This should
   1180     // happen with the MC stuff eventually.
   1181 
   1182     // Print out module-level global objects here.
   1183     for (const auto &GO : M.global_objects()) {
   1184       if (!GO.hasExternalWeakLinkage())
   1185         continue;
   1186       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
   1187     }
   1188   }
   1189 
   1190   OutStreamer->AddBlankLine();
   1191 
   1192   // Print aliases in topological order, that is, for each alias a = b,
   1193   // b must be printed before a.
   1194   // This is because on some targets (e.g. PowerPC) linker expects aliases in
   1195   // such an order to generate correct TOC information.
   1196   SmallVector<const GlobalAlias *, 16> AliasStack;
   1197   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
   1198   for (const auto &Alias : M.aliases()) {
   1199     for (const GlobalAlias *Cur = &Alias; Cur;
   1200          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
   1201       if (!AliasVisited.insert(Cur).second)
   1202         break;
   1203       AliasStack.push_back(Cur);
   1204     }
   1205     for (const GlobalAlias *AncestorAlias : reverse(AliasStack))
   1206       emitGlobalIndirectSymbol(M, *AncestorAlias);
   1207     AliasStack.clear();
   1208   }
   1209   for (const auto &IFunc : M.ifuncs())
   1210     emitGlobalIndirectSymbol(M, IFunc);
   1211 
   1212   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
   1213   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
   1214   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
   1215     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
   1216       MP->finishAssembly(M, *MI, *this);
   1217 
   1218   // Emit llvm.ident metadata in an '.ident' directive.
   1219   EmitModuleIdents(M);
   1220 
   1221   // Emit __morestack address if needed for indirect calls.
   1222   if (MMI->usesMorestackAddr()) {
   1223     unsigned Align = 1;
   1224     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
   1225         getDataLayout(), SectionKind::getReadOnly(),
   1226         /*C=*/nullptr, Align);
   1227     OutStreamer->SwitchSection(ReadOnlySection);
   1228 
   1229     MCSymbol *AddrSymbol =
   1230         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
   1231     OutStreamer->EmitLabel(AddrSymbol);
   1232 
   1233     unsigned PtrSize = M.getDataLayout().getPointerSize(0);
   1234     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
   1235                                  PtrSize);
   1236   }
   1237 
   1238   // If we don't have any trampolines, then we don't require stack memory
   1239   // to be executable. Some targets have a directive to declare this.
   1240   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
   1241   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
   1242     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
   1243       OutStreamer->SwitchSection(S);
   1244 
   1245   // Allow the target to emit any magic that it wants at the end of the file,
   1246   // after everything else has gone out.
   1247   EmitEndOfAsmFile(M);
   1248 
   1249   delete Mang; Mang = nullptr;
   1250   MMI = nullptr;
   1251 
   1252   OutStreamer->Finish();
   1253   OutStreamer->reset();
   1254 
   1255   return false;
   1256 }
   1257 
   1258 MCSymbol *AsmPrinter::getCurExceptionSym() {
   1259   if (!CurExceptionSym)
   1260     CurExceptionSym = createTempSymbol("exception");
   1261   return CurExceptionSym;
   1262 }
   1263 
   1264 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
   1265   this->MF = &MF;
   1266   // Get the function symbol.
   1267   CurrentFnSym = getSymbol(MF.getFunction());
   1268   CurrentFnSymForSize = CurrentFnSym;
   1269   CurrentFnBegin = nullptr;
   1270   CurExceptionSym = nullptr;
   1271   bool NeedsLocalForSize = MAI->needsLocalForSize();
   1272   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
   1273       MMI->hasEHFunclets() || NeedsLocalForSize) {
   1274     CurrentFnBegin = createTempSymbol("func_begin");
   1275     if (NeedsLocalForSize)
   1276       CurrentFnSymForSize = CurrentFnBegin;
   1277   }
   1278 
   1279   if (isVerbose())
   1280     LI = &getAnalysis<MachineLoopInfo>();
   1281 }
   1282 
   1283 namespace {
   1284 // Keep track the alignment, constpool entries per Section.
   1285   struct SectionCPs {
   1286     MCSection *S;
   1287     unsigned Alignment;
   1288     SmallVector<unsigned, 4> CPEs;
   1289     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
   1290   };
   1291 }
   1292 
   1293 /// EmitConstantPool - Print to the current output stream assembly
   1294 /// representations of the constants in the constant pool MCP. This is
   1295 /// used to print out constants which have been "spilled to memory" by
   1296 /// the code generator.
   1297 ///
   1298 void AsmPrinter::EmitConstantPool() {
   1299   const MachineConstantPool *MCP = MF->getConstantPool();
   1300   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
   1301   if (CP.empty()) return;
   1302 
   1303   // Calculate sections for constant pool entries. We collect entries to go into
   1304   // the same section together to reduce amount of section switch statements.
   1305   SmallVector<SectionCPs, 4> CPSections;
   1306   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
   1307     const MachineConstantPoolEntry &CPE = CP[i];
   1308     unsigned Align = CPE.getAlignment();
   1309 
   1310     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
   1311 
   1312     const Constant *C = nullptr;
   1313     if (!CPE.isMachineConstantPoolEntry())
   1314       C = CPE.Val.ConstVal;
   1315 
   1316     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
   1317                                                               Kind, C, Align);
   1318 
   1319     // The number of sections are small, just do a linear search from the
   1320     // last section to the first.
   1321     bool Found = false;
   1322     unsigned SecIdx = CPSections.size();
   1323     while (SecIdx != 0) {
   1324       if (CPSections[--SecIdx].S == S) {
   1325         Found = true;
   1326         break;
   1327       }
   1328     }
   1329     if (!Found) {
   1330       SecIdx = CPSections.size();
   1331       CPSections.push_back(SectionCPs(S, Align));
   1332     }
   1333 
   1334     if (Align > CPSections[SecIdx].Alignment)
   1335       CPSections[SecIdx].Alignment = Align;
   1336     CPSections[SecIdx].CPEs.push_back(i);
   1337   }
   1338 
   1339   // Now print stuff into the calculated sections.
   1340   const MCSection *CurSection = nullptr;
   1341   unsigned Offset = 0;
   1342   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1343     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1344       unsigned CPI = CPSections[i].CPEs[j];
   1345       MCSymbol *Sym = GetCPISymbol(CPI);
   1346       if (!Sym->isUndefined())
   1347         continue;
   1348 
   1349       if (CurSection != CPSections[i].S) {
   1350         OutStreamer->SwitchSection(CPSections[i].S);
   1351         EmitAlignment(Log2_32(CPSections[i].Alignment));
   1352         CurSection = CPSections[i].S;
   1353         Offset = 0;
   1354       }
   1355 
   1356       MachineConstantPoolEntry CPE = CP[CPI];
   1357 
   1358       // Emit inter-object padding for alignment.
   1359       unsigned AlignMask = CPE.getAlignment() - 1;
   1360       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1361       OutStreamer->EmitZeros(NewOffset - Offset);
   1362 
   1363       Type *Ty = CPE.getType();
   1364       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
   1365 
   1366       OutStreamer->EmitLabel(Sym);
   1367       if (CPE.isMachineConstantPoolEntry())
   1368         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1369       else
   1370         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
   1371     }
   1372   }
   1373 }
   1374 
   1375 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1376 /// by the current function to the current output stream.
   1377 ///
   1378 void AsmPrinter::EmitJumpTableInfo() {
   1379   const DataLayout &DL = MF->getDataLayout();
   1380   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1381   if (!MJTI) return;
   1382   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1383   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1384   if (JT.empty()) return;
   1385 
   1386   // Pick the directive to use to print the jump table entries, and switch to
   1387   // the appropriate section.
   1388   const Function *F = MF->getFunction();
   1389   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
   1390   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
   1391       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
   1392       *F);
   1393   if (JTInDiffSection) {
   1394     // Drop it in the readonly section.
   1395     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM);
   1396     OutStreamer->SwitchSection(ReadOnlySection);
   1397   }
   1398 
   1399   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
   1400 
   1401   // Jump tables in code sections are marked with a data_region directive
   1402   // where that's supported.
   1403   if (!JTInDiffSection)
   1404     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
   1405 
   1406   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1407     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1408 
   1409     // If this jump table was deleted, ignore it.
   1410     if (JTBBs.empty()) continue;
   1411 
   1412     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
   1413     /// emit a .set directive for each unique entry.
   1414     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1415         MAI->doesSetDirectiveSuppressReloc()) {
   1416       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1417       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
   1418       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1419       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1420         const MachineBasicBlock *MBB = JTBBs[ii];
   1421         if (!EmittedSets.insert(MBB).second)
   1422           continue;
   1423 
   1424         // .set LJTSet, LBB32-base
   1425         const MCExpr *LHS =
   1426           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
   1427         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1428                                     MCBinaryExpr::createSub(LHS, Base,
   1429                                                             OutContext));
   1430       }
   1431     }
   1432 
   1433     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1434     // before each jump table.  The first label is never referenced, but tells
   1435     // the assembler and linker the extents of the jump table object.  The
   1436     // second label is actually referenced by the code.
   1437     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
   1438       // FIXME: This doesn't have to have any specific name, just any randomly
   1439       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1440       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
   1441 
   1442     OutStreamer->EmitLabel(GetJTISymbol(JTI));
   1443 
   1444     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1445       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1446   }
   1447   if (!JTInDiffSection)
   1448     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
   1449 }
   1450 
   1451 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1452 /// current stream.
   1453 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1454                                     const MachineBasicBlock *MBB,
   1455                                     unsigned UID) const {
   1456   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1457   const MCExpr *Value = nullptr;
   1458   switch (MJTI->getEntryKind()) {
   1459   case MachineJumpTableInfo::EK_Inline:
   1460     llvm_unreachable("Cannot emit EK_Inline jump table entry");
   1461   case MachineJumpTableInfo::EK_Custom32:
   1462     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
   1463         MJTI, MBB, UID, OutContext);
   1464     break;
   1465   case MachineJumpTableInfo::EK_BlockAddress:
   1466     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1467     //     .word LBB123
   1468     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
   1469     break;
   1470   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1471     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1472     // with a relocation as gp-relative, e.g.:
   1473     //     .gprel32 LBB123
   1474     MCSymbol *MBBSym = MBB->getSymbol();
   1475     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
   1476     return;
   1477   }
   1478 
   1479   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
   1480     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
   1481     // with a relocation as gp-relative, e.g.:
   1482     //     .gpdword LBB123
   1483     MCSymbol *MBBSym = MBB->getSymbol();
   1484     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
   1485     return;
   1486   }
   1487 
   1488   case MachineJumpTableInfo::EK_LabelDifference32: {
   1489     // Each entry is the address of the block minus the address of the jump
   1490     // table. This is used for PIC jump tables where gprel32 is not supported.
   1491     // e.g.:
   1492     //      .word LBB123 - LJTI1_2
   1493     // If the .set directive avoids relocations, this is emitted as:
   1494     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1495     //      .word L4_5_set_123
   1496     if (MAI->doesSetDirectiveSuppressReloc()) {
   1497       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
   1498                                       OutContext);
   1499       break;
   1500     }
   1501     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
   1502     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
   1503     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
   1504     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
   1505     break;
   1506   }
   1507   }
   1508 
   1509   assert(Value && "Unknown entry kind!");
   1510 
   1511   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
   1512   OutStreamer->EmitValue(Value, EntrySize);
   1513 }
   1514 
   1515 
   1516 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1517 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1518 /// do nothing and return false.
   1519 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1520   if (GV->getName() == "llvm.used") {
   1521     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1522       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
   1523     return true;
   1524   }
   1525 
   1526   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1527   if (GV->getSection() == "llvm.metadata" ||
   1528       GV->hasAvailableExternallyLinkage())
   1529     return true;
   1530 
   1531   if (!GV->hasAppendingLinkage()) return false;
   1532 
   1533   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1534 
   1535   if (GV->getName() == "llvm.global_ctors") {
   1536     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
   1537                        /* isCtor */ true);
   1538 
   1539     if (TM.getRelocationModel() == Reloc::Static &&
   1540         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1541       StringRef Sym(".constructors_used");
   1542       OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
   1543                                        MCSA_Reference);
   1544     }
   1545     return true;
   1546   }
   1547 
   1548   if (GV->getName() == "llvm.global_dtors") {
   1549     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
   1550                        /* isCtor */ false);
   1551 
   1552     if (TM.getRelocationModel() == Reloc::Static &&
   1553         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1554       StringRef Sym(".destructors_used");
   1555       OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
   1556                                        MCSA_Reference);
   1557     }
   1558     return true;
   1559   }
   1560 
   1561   report_fatal_error("unknown special variable");
   1562 }
   1563 
   1564 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1565 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1566 /// is true, as being used with this directive.
   1567 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
   1568   // Should be an array of 'i8*'.
   1569   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1570     const GlobalValue *GV =
   1571       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1572     if (GV)
   1573       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
   1574   }
   1575 }
   1576 
   1577 namespace {
   1578 struct Structor {
   1579   Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
   1580   int Priority;
   1581   llvm::Constant *Func;
   1582   llvm::GlobalValue *ComdatKey;
   1583 };
   1584 } // end namespace
   1585 
   1586 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1587 /// priority.
   1588 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
   1589                                     bool isCtor) {
   1590   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1591   // init priority.
   1592   if (!isa<ConstantArray>(List)) return;
   1593 
   1594   // Sanity check the structors list.
   1595   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1596   if (!InitList) return; // Not an array!
   1597   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1598   // FIXME: Only allow the 3-field form in LLVM 4.0.
   1599   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
   1600     return; // Not an array of two or three elements!
   1601   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1602       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1603   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
   1604     return; // Not (int, ptr, ptr).
   1605 
   1606   // Gather the structors in a form that's convenient for sorting by priority.
   1607   SmallVector<Structor, 8> Structors;
   1608   for (Value *O : InitList->operands()) {
   1609     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
   1610     if (!CS) continue; // Malformed.
   1611     if (CS->getOperand(1)->isNullValue())
   1612       break;  // Found a null terminator, skip the rest.
   1613     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1614     if (!Priority) continue; // Malformed.
   1615     Structors.push_back(Structor());
   1616     Structor &S = Structors.back();
   1617     S.Priority = Priority->getLimitedValue(65535);
   1618     S.Func = CS->getOperand(1);
   1619     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
   1620       S.ComdatKey =
   1621           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
   1622   }
   1623 
   1624   // Emit the function pointers in the target-specific order
   1625   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
   1626   std::stable_sort(Structors.begin(), Structors.end(),
   1627                    [](const Structor &L,
   1628                       const Structor &R) { return L.Priority < R.Priority; });
   1629   for (Structor &S : Structors) {
   1630     const TargetLoweringObjectFile &Obj = getObjFileLowering();
   1631     const MCSymbol *KeySym = nullptr;
   1632     if (GlobalValue *GV = S.ComdatKey) {
   1633       if (GV->hasAvailableExternallyLinkage())
   1634         // If the associated variable is available_externally, some other TU
   1635         // will provide its dynamic initializer.
   1636         continue;
   1637 
   1638       KeySym = getSymbol(GV);
   1639     }
   1640     MCSection *OutputSection =
   1641         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
   1642                 : Obj.getStaticDtorSection(S.Priority, KeySym));
   1643     OutStreamer->SwitchSection(OutputSection);
   1644     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
   1645       EmitAlignment(Align);
   1646     EmitXXStructor(DL, S.Func);
   1647   }
   1648 }
   1649 
   1650 void AsmPrinter::EmitModuleIdents(Module &M) {
   1651   if (!MAI->hasIdentDirective())
   1652     return;
   1653 
   1654   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
   1655     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
   1656       const MDNode *N = NMD->getOperand(i);
   1657       assert(N->getNumOperands() == 1 &&
   1658              "llvm.ident metadata entry can have only one operand");
   1659       const MDString *S = cast<MDString>(N->getOperand(0));
   1660       OutStreamer->EmitIdent(S->getString());
   1661     }
   1662   }
   1663 }
   1664 
   1665 //===--------------------------------------------------------------------===//
   1666 // Emission and print routines
   1667 //
   1668 
   1669 /// EmitInt8 - Emit a byte directive and value.
   1670 ///
   1671 void AsmPrinter::EmitInt8(int Value) const {
   1672   OutStreamer->EmitIntValue(Value, 1);
   1673 }
   1674 
   1675 /// EmitInt16 - Emit a short directive and value.
   1676 ///
   1677 void AsmPrinter::EmitInt16(int Value) const {
   1678   OutStreamer->EmitIntValue(Value, 2);
   1679 }
   1680 
   1681 /// EmitInt32 - Emit a long directive and value.
   1682 ///
   1683 void AsmPrinter::EmitInt32(int Value) const {
   1684   OutStreamer->EmitIntValue(Value, 4);
   1685 }
   1686 
   1687 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
   1688 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
   1689 /// .set if it avoids relocations.
   1690 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1691                                      unsigned Size) const {
   1692   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
   1693 }
   1694 
   1695 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1696 /// where the size in bytes of the directive is specified by Size and Label
   1697 /// specifies the label.  This implicitly uses .set if it is available.
   1698 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1699                                      unsigned Size,
   1700                                      bool IsSectionRelative) const {
   1701   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
   1702     OutStreamer->EmitCOFFSecRel32(Label);
   1703     return;
   1704   }
   1705 
   1706   // Emit Label+Offset (or just Label if Offset is zero)
   1707   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
   1708   if (Offset)
   1709     Expr = MCBinaryExpr::createAdd(
   1710         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
   1711 
   1712   OutStreamer->EmitValue(Expr, Size);
   1713 }
   1714 
   1715 //===----------------------------------------------------------------------===//
   1716 
   1717 // EmitAlignment - Emit an alignment directive to the specified power of
   1718 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1719 // byte alignment.  If a global value is specified, and if that global has
   1720 // an explicit alignment requested, it will override the alignment request
   1721 // if required for correctness.
   1722 //
   1723 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
   1724   if (GV)
   1725     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
   1726 
   1727   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1728 
   1729   assert(NumBits <
   1730              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
   1731          "undefined behavior");
   1732   if (getCurrentSection()->getKind().isText())
   1733     OutStreamer->EmitCodeAlignment(1u << NumBits);
   1734   else
   1735     OutStreamer->EmitValueToAlignment(1u << NumBits);
   1736 }
   1737 
   1738 //===----------------------------------------------------------------------===//
   1739 // Constant emission.
   1740 //===----------------------------------------------------------------------===//
   1741 
   1742 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
   1743   MCContext &Ctx = OutContext;
   1744 
   1745   if (CV->isNullValue() || isa<UndefValue>(CV))
   1746     return MCConstantExpr::create(0, Ctx);
   1747 
   1748   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1749     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
   1750 
   1751   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1752     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
   1753 
   1754   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1755     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
   1756 
   1757   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1758   if (!CE) {
   1759     llvm_unreachable("Unknown constant value to lower!");
   1760   }
   1761 
   1762   switch (CE->getOpcode()) {
   1763   default:
   1764     // If the code isn't optimized, there may be outstanding folding
   1765     // opportunities. Attempt to fold the expression using DataLayout as a
   1766     // last resort before giving up.
   1767     if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
   1768       if (C != CE)
   1769         return lowerConstant(C);
   1770 
   1771     // Otherwise report the problem to the user.
   1772     {
   1773       std::string S;
   1774       raw_string_ostream OS(S);
   1775       OS << "Unsupported expression in static initializer: ";
   1776       CE->printAsOperand(OS, /*PrintType=*/false,
   1777                      !MF ? nullptr : MF->getFunction()->getParent());
   1778       report_fatal_error(OS.str());
   1779     }
   1780   case Instruction::GetElementPtr: {
   1781     // Generate a symbolic expression for the byte address
   1782     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
   1783     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
   1784 
   1785     const MCExpr *Base = lowerConstant(CE->getOperand(0));
   1786     if (!OffsetAI)
   1787       return Base;
   1788 
   1789     int64_t Offset = OffsetAI.getSExtValue();
   1790     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
   1791                                    Ctx);
   1792   }
   1793 
   1794   case Instruction::Trunc:
   1795     // We emit the value and depend on the assembler to truncate the generated
   1796     // expression properly.  This is important for differences between
   1797     // blockaddress labels.  Since the two labels are in the same function, it
   1798     // is reasonable to treat their delta as a 32-bit value.
   1799     // FALL THROUGH.
   1800   case Instruction::BitCast:
   1801     return lowerConstant(CE->getOperand(0));
   1802 
   1803   case Instruction::IntToPtr: {
   1804     const DataLayout &DL = getDataLayout();
   1805 
   1806     // Handle casts to pointers by changing them into casts to the appropriate
   1807     // integer type.  This promotes constant folding and simplifies this code.
   1808     Constant *Op = CE->getOperand(0);
   1809     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
   1810                                       false/*ZExt*/);
   1811     return lowerConstant(Op);
   1812   }
   1813 
   1814   case Instruction::PtrToInt: {
   1815     const DataLayout &DL = getDataLayout();
   1816 
   1817     // Support only foldable casts to/from pointers that can be eliminated by
   1818     // changing the pointer to the appropriately sized integer type.
   1819     Constant *Op = CE->getOperand(0);
   1820     Type *Ty = CE->getType();
   1821 
   1822     const MCExpr *OpExpr = lowerConstant(Op);
   1823 
   1824     // We can emit the pointer value into this slot if the slot is an
   1825     // integer slot equal to the size of the pointer.
   1826     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
   1827       return OpExpr;
   1828 
   1829     // Otherwise the pointer is smaller than the resultant integer, mask off
   1830     // the high bits so we are sure to get a proper truncation if the input is
   1831     // a constant expr.
   1832     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
   1833     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
   1834     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
   1835   }
   1836 
   1837   case Instruction::Sub: {
   1838     GlobalValue *LHSGV;
   1839     APInt LHSOffset;
   1840     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
   1841                                    getDataLayout())) {
   1842       GlobalValue *RHSGV;
   1843       APInt RHSOffset;
   1844       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
   1845                                      getDataLayout())) {
   1846         const MCExpr *RelocExpr = getObjFileLowering().lowerRelativeReference(
   1847             LHSGV, RHSGV, *Mang, TM);
   1848         if (!RelocExpr)
   1849           RelocExpr = MCBinaryExpr::createSub(
   1850               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
   1851               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
   1852         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
   1853         if (Addend != 0)
   1854           RelocExpr = MCBinaryExpr::createAdd(
   1855               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
   1856         return RelocExpr;
   1857       }
   1858     }
   1859   }
   1860   // else fallthrough
   1861 
   1862   // The MC library also has a right-shift operator, but it isn't consistently
   1863   // signed or unsigned between different targets.
   1864   case Instruction::Add:
   1865   case Instruction::Mul:
   1866   case Instruction::SDiv:
   1867   case Instruction::SRem:
   1868   case Instruction::Shl:
   1869   case Instruction::And:
   1870   case Instruction::Or:
   1871   case Instruction::Xor: {
   1872     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
   1873     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
   1874     switch (CE->getOpcode()) {
   1875     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1876     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
   1877     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
   1878     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
   1879     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
   1880     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
   1881     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
   1882     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
   1883     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
   1884     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
   1885     }
   1886   }
   1887   }
   1888 }
   1889 
   1890 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
   1891                                    AsmPrinter &AP,
   1892                                    const Constant *BaseCV = nullptr,
   1893                                    uint64_t Offset = 0);
   1894 
   1895 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
   1896 
   1897 /// isRepeatedByteSequence - Determine whether the given value is
   1898 /// composed of a repeated sequence of identical bytes and return the
   1899 /// byte value.  If it is not a repeated sequence, return -1.
   1900 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
   1901   StringRef Data = V->getRawDataValues();
   1902   assert(!Data.empty() && "Empty aggregates should be CAZ node");
   1903   char C = Data[0];
   1904   for (unsigned i = 1, e = Data.size(); i != e; ++i)
   1905     if (Data[i] != C) return -1;
   1906   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
   1907 }
   1908 
   1909 
   1910 /// isRepeatedByteSequence - Determine whether the given value is
   1911 /// composed of a repeated sequence of identical bytes and return the
   1912 /// byte value.  If it is not a repeated sequence, return -1.
   1913 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
   1914   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1915     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
   1916     assert(Size % 8 == 0);
   1917 
   1918     // Extend the element to take zero padding into account.
   1919     APInt Value = CI->getValue().zextOrSelf(Size);
   1920     if (!Value.isSplat(8))
   1921       return -1;
   1922 
   1923     return Value.zextOrTrunc(8).getZExtValue();
   1924   }
   1925   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1926     // Make sure all array elements are sequences of the same repeated
   1927     // byte.
   1928     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
   1929     Constant *Op0 = CA->getOperand(0);
   1930     int Byte = isRepeatedByteSequence(Op0, DL);
   1931     if (Byte == -1)
   1932       return -1;
   1933 
   1934     // All array elements must be equal.
   1935     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
   1936       if (CA->getOperand(i) != Op0)
   1937         return -1;
   1938     return Byte;
   1939   }
   1940 
   1941   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
   1942     return isRepeatedByteSequence(CDS);
   1943 
   1944   return -1;
   1945 }
   1946 
   1947 static void emitGlobalConstantDataSequential(const DataLayout &DL,
   1948                                              const ConstantDataSequential *CDS,
   1949                                              AsmPrinter &AP) {
   1950 
   1951   // See if we can aggregate this into a .fill, if so, emit it as such.
   1952   int Value = isRepeatedByteSequence(CDS, DL);
   1953   if (Value != -1) {
   1954     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
   1955     // Don't emit a 1-byte object as a .fill.
   1956     if (Bytes > 1)
   1957       return AP.OutStreamer->emitFill(Bytes, Value);
   1958   }
   1959 
   1960   // If this can be emitted with .ascii/.asciz, emit it as such.
   1961   if (CDS->isString())
   1962     return AP.OutStreamer->EmitBytes(CDS->getAsString());
   1963 
   1964   // Otherwise, emit the values in successive locations.
   1965   unsigned ElementByteSize = CDS->getElementByteSize();
   1966   if (isa<IntegerType>(CDS->getElementType())) {
   1967     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1968       if (AP.isVerbose())
   1969         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
   1970                                                  CDS->getElementAsInteger(i));
   1971       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
   1972                                    ElementByteSize);
   1973     }
   1974   } else {
   1975     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
   1976       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
   1977   }
   1978 
   1979   unsigned Size = DL.getTypeAllocSize(CDS->getType());
   1980   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
   1981                         CDS->getNumElements();
   1982   if (unsigned Padding = Size - EmittedSize)
   1983     AP.OutStreamer->EmitZeros(Padding);
   1984 
   1985 }
   1986 
   1987 static void emitGlobalConstantArray(const DataLayout &DL,
   1988                                     const ConstantArray *CA, AsmPrinter &AP,
   1989                                     const Constant *BaseCV, uint64_t Offset) {
   1990   // See if we can aggregate some values.  Make sure it can be
   1991   // represented as a series of bytes of the constant value.
   1992   int Value = isRepeatedByteSequence(CA, DL);
   1993 
   1994   if (Value != -1) {
   1995     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
   1996     AP.OutStreamer->emitFill(Bytes, Value);
   1997   }
   1998   else {
   1999     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
   2000       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
   2001       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
   2002     }
   2003   }
   2004 }
   2005 
   2006 static void emitGlobalConstantVector(const DataLayout &DL,
   2007                                      const ConstantVector *CV, AsmPrinter &AP) {
   2008   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   2009     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
   2010 
   2011   unsigned Size = DL.getTypeAllocSize(CV->getType());
   2012   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
   2013                          CV->getType()->getNumElements();
   2014   if (unsigned Padding = Size - EmittedSize)
   2015     AP.OutStreamer->EmitZeros(Padding);
   2016 }
   2017 
   2018 static void emitGlobalConstantStruct(const DataLayout &DL,
   2019                                      const ConstantStruct *CS, AsmPrinter &AP,
   2020                                      const Constant *BaseCV, uint64_t Offset) {
   2021   // Print the fields in successive locations. Pad to align if needed!
   2022   unsigned Size = DL.getTypeAllocSize(CS->getType());
   2023   const StructLayout *Layout = DL.getStructLayout(CS->getType());
   2024   uint64_t SizeSoFar = 0;
   2025   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   2026     const Constant *Field = CS->getOperand(i);
   2027 
   2028     // Print the actual field value.
   2029     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
   2030 
   2031     // Check if padding is needed and insert one or more 0s.
   2032     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
   2033     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   2034                         - Layout->getElementOffset(i)) - FieldSize;
   2035     SizeSoFar += FieldSize + PadSize;
   2036 
   2037     // Insert padding - this may include padding to increase the size of the
   2038     // current field up to the ABI size (if the struct is not packed) as well
   2039     // as padding to ensure that the next field starts at the right offset.
   2040     AP.OutStreamer->EmitZeros(PadSize);
   2041   }
   2042   assert(SizeSoFar == Layout->getSizeInBytes() &&
   2043          "Layout of constant struct may be incorrect!");
   2044 }
   2045 
   2046 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
   2047   APInt API = CFP->getValueAPF().bitcastToAPInt();
   2048 
   2049   // First print a comment with what we think the original floating-point value
   2050   // should have been.
   2051   if (AP.isVerbose()) {
   2052     SmallString<8> StrVal;
   2053     CFP->getValueAPF().toString(StrVal);
   2054 
   2055     if (CFP->getType())
   2056       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
   2057     else
   2058       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
   2059     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
   2060   }
   2061 
   2062   // Now iterate through the APInt chunks, emitting them in endian-correct
   2063   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
   2064   // floats).
   2065   unsigned NumBytes = API.getBitWidth() / 8;
   2066   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
   2067   const uint64_t *p = API.getRawData();
   2068 
   2069   // PPC's long double has odd notions of endianness compared to how LLVM
   2070   // handles it: p[0] goes first for *big* endian on PPC.
   2071   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
   2072     int Chunk = API.getNumWords() - 1;
   2073 
   2074     if (TrailingBytes)
   2075       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
   2076 
   2077     for (; Chunk >= 0; --Chunk)
   2078       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
   2079   } else {
   2080     unsigned Chunk;
   2081     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
   2082       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
   2083 
   2084     if (TrailingBytes)
   2085       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
   2086   }
   2087 
   2088   // Emit the tail padding for the long double.
   2089   const DataLayout &DL = AP.getDataLayout();
   2090   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
   2091                             DL.getTypeStoreSize(CFP->getType()));
   2092 }
   2093 
   2094 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
   2095   const DataLayout &DL = AP.getDataLayout();
   2096   unsigned BitWidth = CI->getBitWidth();
   2097 
   2098   // Copy the value as we may massage the layout for constants whose bit width
   2099   // is not a multiple of 64-bits.
   2100   APInt Realigned(CI->getValue());
   2101   uint64_t ExtraBits = 0;
   2102   unsigned ExtraBitsSize = BitWidth & 63;
   2103 
   2104   if (ExtraBitsSize) {
   2105     // The bit width of the data is not a multiple of 64-bits.
   2106     // The extra bits are expected to be at the end of the chunk of the memory.
   2107     // Little endian:
   2108     // * Nothing to be done, just record the extra bits to emit.
   2109     // Big endian:
   2110     // * Record the extra bits to emit.
   2111     // * Realign the raw data to emit the chunks of 64-bits.
   2112     if (DL.isBigEndian()) {
   2113       // Basically the structure of the raw data is a chunk of 64-bits cells:
   2114       //    0        1         BitWidth / 64
   2115       // [chunk1][chunk2] ... [chunkN].
   2116       // The most significant chunk is chunkN and it should be emitted first.
   2117       // However, due to the alignment issue chunkN contains useless bits.
   2118       // Realign the chunks so that they contain only useless information:
   2119       // ExtraBits     0       1       (BitWidth / 64) - 1
   2120       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
   2121       ExtraBits = Realigned.getRawData()[0] &
   2122         (((uint64_t)-1) >> (64 - ExtraBitsSize));
   2123       Realigned = Realigned.lshr(ExtraBitsSize);
   2124     } else
   2125       ExtraBits = Realigned.getRawData()[BitWidth / 64];
   2126   }
   2127 
   2128   // We don't expect assemblers to support integer data directives
   2129   // for more than 64 bits, so we emit the data in at most 64-bit
   2130   // quantities at a time.
   2131   const uint64_t *RawData = Realigned.getRawData();
   2132   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   2133     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
   2134     AP.OutStreamer->EmitIntValue(Val, 8);
   2135   }
   2136 
   2137   if (ExtraBitsSize) {
   2138     // Emit the extra bits after the 64-bits chunks.
   2139 
   2140     // Emit a directive that fills the expected size.
   2141     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
   2142     Size -= (BitWidth / 64) * 8;
   2143     assert(Size && Size * 8 >= ExtraBitsSize &&
   2144            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
   2145            == ExtraBits && "Directive too small for extra bits.");
   2146     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
   2147   }
   2148 }
   2149 
   2150 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
   2151 /// equivalent global, by a target specific GOT pc relative access to the
   2152 /// final symbol.
   2153 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
   2154                                          const Constant *BaseCst,
   2155                                          uint64_t Offset) {
   2156   // The global @foo below illustrates a global that uses a got equivalent.
   2157   //
   2158   //  @bar = global i32 42
   2159   //  @gotequiv = private unnamed_addr constant i32* @bar
   2160   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
   2161   //                             i64 ptrtoint (i32* @foo to i64))
   2162   //                        to i32)
   2163   //
   2164   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
   2165   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
   2166   // form:
   2167   //
   2168   //  foo = cstexpr, where
   2169   //    cstexpr := <gotequiv> - "." + <cst>
   2170   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
   2171   //
   2172   // After canonicalization by evaluateAsRelocatable `ME` turns into:
   2173   //
   2174   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
   2175   //    gotpcrelcst := <offset from @foo base> + <cst>
   2176   //
   2177   MCValue MV;
   2178   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
   2179     return;
   2180   const MCSymbolRefExpr *SymA = MV.getSymA();
   2181   if (!SymA)
   2182     return;
   2183 
   2184   // Check that GOT equivalent symbol is cached.
   2185   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
   2186   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
   2187     return;
   2188 
   2189   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
   2190   if (!BaseGV)
   2191     return;
   2192 
   2193   // Check for a valid base symbol
   2194   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
   2195   const MCSymbolRefExpr *SymB = MV.getSymB();
   2196 
   2197   if (!SymB || BaseSym != &SymB->getSymbol())
   2198     return;
   2199 
   2200   // Make sure to match:
   2201   //
   2202   //    gotpcrelcst := <offset from @foo base> + <cst>
   2203   //
   2204   // If gotpcrelcst is positive it means that we can safely fold the pc rel
   2205   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
   2206   // if the target knows how to encode it.
   2207   //
   2208   int64_t GOTPCRelCst = Offset + MV.getConstant();
   2209   if (GOTPCRelCst < 0)
   2210     return;
   2211   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
   2212     return;
   2213 
   2214   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
   2215   //
   2216   //  bar:
   2217   //    .long 42
   2218   //  gotequiv:
   2219   //    .quad bar
   2220   //  foo:
   2221   //    .long gotequiv - "." + <cst>
   2222   //
   2223   // is replaced by the target specific equivalent to:
   2224   //
   2225   //  bar:
   2226   //    .long 42
   2227   //  foo:
   2228   //    .long bar@GOTPCREL+<gotpcrelcst>
   2229   //
   2230   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
   2231   const GlobalVariable *GV = Result.first;
   2232   int NumUses = (int)Result.second;
   2233   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
   2234   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
   2235   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
   2236       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
   2237 
   2238   // Update GOT equivalent usage information
   2239   --NumUses;
   2240   if (NumUses >= 0)
   2241     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
   2242 }
   2243 
   2244 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
   2245                                    AsmPrinter &AP, const Constant *BaseCV,
   2246                                    uint64_t Offset) {
   2247   uint64_t Size = DL.getTypeAllocSize(CV->getType());
   2248 
   2249   // Globals with sub-elements such as combinations of arrays and structs
   2250   // are handled recursively by emitGlobalConstantImpl. Keep track of the
   2251   // constant symbol base and the current position with BaseCV and Offset.
   2252   if (!BaseCV && CV->hasOneUse())
   2253     BaseCV = dyn_cast<Constant>(CV->user_back());
   2254 
   2255   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
   2256     return AP.OutStreamer->EmitZeros(Size);
   2257 
   2258   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   2259     switch (Size) {
   2260     case 1:
   2261     case 2:
   2262     case 4:
   2263     case 8:
   2264       if (AP.isVerbose())
   2265         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
   2266                                                  CI->getZExtValue());
   2267       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
   2268       return;
   2269     default:
   2270       emitGlobalConstantLargeInt(CI, AP);
   2271       return;
   2272     }
   2273   }
   2274 
   2275   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   2276     return emitGlobalConstantFP(CFP, AP);
   2277 
   2278   if (isa<ConstantPointerNull>(CV)) {
   2279     AP.OutStreamer->EmitIntValue(0, Size);
   2280     return;
   2281   }
   2282 
   2283   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
   2284     return emitGlobalConstantDataSequential(DL, CDS, AP);
   2285 
   2286   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   2287     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
   2288 
   2289   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   2290     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
   2291 
   2292   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
   2293     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
   2294     // vectors).
   2295     if (CE->getOpcode() == Instruction::BitCast)
   2296       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
   2297 
   2298     if (Size > 8) {
   2299       // If the constant expression's size is greater than 64-bits, then we have
   2300       // to emit the value in chunks. Try to constant fold the value and emit it
   2301       // that way.
   2302       Constant *New = ConstantFoldConstantExpression(CE, DL);
   2303       if (New && New != CE)
   2304         return emitGlobalConstantImpl(DL, New, AP);
   2305     }
   2306   }
   2307 
   2308   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   2309     return emitGlobalConstantVector(DL, V, AP);
   2310 
   2311   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   2312   // thread the streamer with EmitValue.
   2313   const MCExpr *ME = AP.lowerConstant(CV);
   2314 
   2315   // Since lowerConstant already folded and got rid of all IR pointer and
   2316   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
   2317   // directly.
   2318   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
   2319     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
   2320 
   2321   AP.OutStreamer->EmitValue(ME, Size);
   2322 }
   2323 
   2324 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   2325 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
   2326   uint64_t Size = DL.getTypeAllocSize(CV->getType());
   2327   if (Size)
   2328     emitGlobalConstantImpl(DL, CV, *this);
   2329   else if (MAI->hasSubsectionsViaSymbols()) {
   2330     // If the global has zero size, emit a single byte so that two labels don't
   2331     // look like they are at the same location.
   2332     OutStreamer->EmitIntValue(0, 1);
   2333   }
   2334 }
   2335 
   2336 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   2337   // Target doesn't support this yet!
   2338   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   2339 }
   2340 
   2341 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   2342   if (Offset > 0)
   2343     OS << '+' << Offset;
   2344   else if (Offset < 0)
   2345     OS << Offset;
   2346 }
   2347 
   2348 //===----------------------------------------------------------------------===//
   2349 // Symbol Lowering Routines.
   2350 //===----------------------------------------------------------------------===//
   2351 
   2352 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
   2353   return OutContext.createTempSymbol(Name, true);
   2354 }
   2355 
   2356 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   2357   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   2358 }
   2359 
   2360 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   2361   return MMI->getAddrLabelSymbol(BB);
   2362 }
   2363 
   2364 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   2365 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   2366   const DataLayout &DL = getDataLayout();
   2367   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
   2368                                       "CPI" + Twine(getFunctionNumber()) + "_" +
   2369                                       Twine(CPID));
   2370 }
   2371 
   2372 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   2373 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   2374   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   2375 }
   2376 
   2377 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   2378 /// FIXME: privatize to AsmPrinter.
   2379 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   2380   const DataLayout &DL = getDataLayout();
   2381   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
   2382                                       Twine(getFunctionNumber()) + "_" +
   2383                                       Twine(UID) + "_set_" + Twine(MBBID));
   2384 }
   2385 
   2386 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
   2387                                                    StringRef Suffix) const {
   2388   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
   2389                                                            TM);
   2390 }
   2391 
   2392 /// Return the MCSymbol for the specified ExternalSymbol.
   2393 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   2394   SmallString<60> NameStr;
   2395   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
   2396   return OutContext.getOrCreateSymbol(NameStr);
   2397 }
   2398 
   2399 
   2400 
   2401 /// PrintParentLoopComment - Print comments about parent loops of this one.
   2402 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2403                                    unsigned FunctionNumber) {
   2404   if (!Loop) return;
   2405   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   2406   OS.indent(Loop->getLoopDepth()*2)
   2407     << "Parent Loop BB" << FunctionNumber << "_"
   2408     << Loop->getHeader()->getNumber()
   2409     << " Depth=" << Loop->getLoopDepth() << '\n';
   2410 }
   2411 
   2412 
   2413 /// PrintChildLoopComment - Print comments about child loops within
   2414 /// the loop for this basic block, with nesting.
   2415 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   2416                                   unsigned FunctionNumber) {
   2417   // Add child loop information
   2418   for (const MachineLoop *CL : *Loop) {
   2419     OS.indent(CL->getLoopDepth()*2)
   2420       << "Child Loop BB" << FunctionNumber << "_"
   2421       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
   2422       << '\n';
   2423     PrintChildLoopComment(OS, CL, FunctionNumber);
   2424   }
   2425 }
   2426 
   2427 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   2428 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   2429                                        const MachineLoopInfo *LI,
   2430                                        const AsmPrinter &AP) {
   2431   // Add loop depth information
   2432   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   2433   if (!Loop) return;
   2434 
   2435   MachineBasicBlock *Header = Loop->getHeader();
   2436   assert(Header && "No header for loop");
   2437 
   2438   // If this block is not a loop header, just print out what is the loop header
   2439   // and return.
   2440   if (Header != &MBB) {
   2441     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
   2442                                Twine(AP.getFunctionNumber())+"_" +
   2443                                Twine(Loop->getHeader()->getNumber())+
   2444                                " Depth="+Twine(Loop->getLoopDepth()));
   2445     return;
   2446   }
   2447 
   2448   // Otherwise, it is a loop header.  Print out information about child and
   2449   // parent loops.
   2450   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
   2451 
   2452   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   2453 
   2454   OS << "=>";
   2455   OS.indent(Loop->getLoopDepth()*2-2);
   2456 
   2457   OS << "This ";
   2458   if (Loop->empty())
   2459     OS << "Inner ";
   2460   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   2461 
   2462   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   2463 }
   2464 
   2465 
   2466 /// EmitBasicBlockStart - This method prints the label for the specified
   2467 /// MachineBasicBlock, an alignment (if present) and a comment describing
   2468 /// it if appropriate.
   2469 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
   2470   // End the previous funclet and start a new one.
   2471   if (MBB.isEHFuncletEntry()) {
   2472     for (const HandlerInfo &HI : Handlers) {
   2473       HI.Handler->endFunclet();
   2474       HI.Handler->beginFunclet(MBB);
   2475     }
   2476   }
   2477 
   2478   // Emit an alignment directive for this block, if needed.
   2479   if (unsigned Align = MBB.getAlignment())
   2480     EmitAlignment(Align);
   2481 
   2482   // If the block has its address taken, emit any labels that were used to
   2483   // reference the block.  It is possible that there is more than one label
   2484   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   2485   // the references were generated.
   2486   if (MBB.hasAddressTaken()) {
   2487     const BasicBlock *BB = MBB.getBasicBlock();
   2488     if (isVerbose())
   2489       OutStreamer->AddComment("Block address taken");
   2490 
   2491     // MBBs can have their address taken as part of CodeGen without having
   2492     // their corresponding BB's address taken in IR
   2493     if (BB->hasAddressTaken())
   2494       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
   2495         OutStreamer->EmitLabel(Sym);
   2496   }
   2497 
   2498   // Print some verbose block comments.
   2499   if (isVerbose()) {
   2500     if (const BasicBlock *BB = MBB.getBasicBlock()) {
   2501       if (BB->hasName()) {
   2502         BB->printAsOperand(OutStreamer->GetCommentOS(),
   2503                            /*PrintType=*/false, BB->getModule());
   2504         OutStreamer->GetCommentOS() << '\n';
   2505       }
   2506     }
   2507     emitBasicBlockLoopComments(MBB, LI, *this);
   2508   }
   2509 
   2510   // Print the main label for the block.
   2511   if (MBB.pred_empty() ||
   2512       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
   2513     if (isVerbose()) {
   2514       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2515       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
   2516     }
   2517   } else {
   2518     OutStreamer->EmitLabel(MBB.getSymbol());
   2519   }
   2520 }
   2521 
   2522 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2523                                 bool IsDefinition) const {
   2524   MCSymbolAttr Attr = MCSA_Invalid;
   2525 
   2526   switch (Visibility) {
   2527   default: break;
   2528   case GlobalValue::HiddenVisibility:
   2529     if (IsDefinition)
   2530       Attr = MAI->getHiddenVisibilityAttr();
   2531     else
   2532       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2533     break;
   2534   case GlobalValue::ProtectedVisibility:
   2535     Attr = MAI->getProtectedVisibilityAttr();
   2536     break;
   2537   }
   2538 
   2539   if (Attr != MCSA_Invalid)
   2540     OutStreamer->EmitSymbolAttribute(Sym, Attr);
   2541 }
   2542 
   2543 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2544 /// exactly one predecessor and the control transfer mechanism between
   2545 /// the predecessor and this block is a fall-through.
   2546 bool AsmPrinter::
   2547 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2548   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2549   // then nothing falls through to it.
   2550   if (MBB->isEHPad() || MBB->pred_empty())
   2551     return false;
   2552 
   2553   // If there isn't exactly one predecessor, it can't be a fall through.
   2554   if (MBB->pred_size() > 1)
   2555     return false;
   2556 
   2557   // The predecessor has to be immediately before this block.
   2558   MachineBasicBlock *Pred = *MBB->pred_begin();
   2559   if (!Pred->isLayoutSuccessor(MBB))
   2560     return false;
   2561 
   2562   // If the block is completely empty, then it definitely does fall through.
   2563   if (Pred->empty())
   2564     return true;
   2565 
   2566   // Check the terminators in the previous blocks
   2567   for (const auto &MI : Pred->terminators()) {
   2568     // If it is not a simple branch, we are in a table somewhere.
   2569     if (!MI.isBranch() || MI.isIndirectBranch())
   2570       return false;
   2571 
   2572     // If we are the operands of one of the branches, this is not a fall
   2573     // through. Note that targets with delay slots will usually bundle
   2574     // terminators with the delay slot instruction.
   2575     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
   2576       if (OP->isJTI())
   2577         return false;
   2578       if (OP->isMBB() && OP->getMBB() == MBB)
   2579         return false;
   2580     }
   2581   }
   2582 
   2583   return true;
   2584 }
   2585 
   2586 
   2587 
   2588 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
   2589   if (!S.usesMetadata())
   2590     return nullptr;
   2591 
   2592   assert(!S.useStatepoints() && "statepoints do not currently support custom"
   2593          " stackmap formats, please see the documentation for a description of"
   2594          " the default format.  If you really need a custom serialized format,"
   2595          " please file a bug");
   2596 
   2597   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2598   gcp_map_type::iterator GCPI = GCMap.find(&S);
   2599   if (GCPI != GCMap.end())
   2600     return GCPI->second.get();
   2601 
   2602   const char *Name = S.getName().c_str();
   2603 
   2604   for (GCMetadataPrinterRegistry::iterator
   2605          I = GCMetadataPrinterRegistry::begin(),
   2606          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2607     if (strcmp(Name, I->getName()) == 0) {
   2608       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
   2609       GMP->S = &S;
   2610       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
   2611       return IterBool.first->second.get();
   2612     }
   2613 
   2614   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2615 }
   2616 
   2617 /// Pin vtable to this file.
   2618 AsmPrinterHandler::~AsmPrinterHandler() {}
   2619 
   2620 void AsmPrinterHandler::markFunctionEnd() {}
   2621