1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbolELF.h" 42 #include "llvm/MC/MCValue.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = DL.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 103 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 104 LastMI(nullptr), LastFn(0), Counter(~0U) { 105 DD = nullptr; 106 MMI = nullptr; 107 LI = nullptr; 108 MF = nullptr; 109 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 110 CurrentFnBegin = nullptr; 111 CurrentFnEnd = nullptr; 112 GCMetadataPrinters = nullptr; 113 VerboseAsm = OutStreamer->isVerboseAsm(); 114 } 115 116 AsmPrinter::~AsmPrinter() { 117 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 118 119 if (GCMetadataPrinters) { 120 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 121 122 delete &GCMap; 123 GCMetadataPrinters = nullptr; 124 } 125 } 126 127 bool AsmPrinter::isPositionIndependent() const { 128 return TM.isPositionIndependent(); 129 } 130 131 /// getFunctionNumber - Return a unique ID for the current function. 132 /// 133 unsigned AsmPrinter::getFunctionNumber() const { 134 return MF->getFunctionNumber(); 135 } 136 137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 138 return *TM.getObjFileLowering(); 139 } 140 141 const DataLayout &AsmPrinter::getDataLayout() const { 142 return MMI->getModule()->getDataLayout(); 143 } 144 145 // Do not use the cached DataLayout because some client use it without a Module 146 // (llmv-dsymutil, llvm-dwarfdump). 147 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 148 149 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 150 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 151 return MF->getSubtarget<MCSubtargetInfo>(); 152 } 153 154 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 155 S.EmitInstruction(Inst, getSubtargetInfo()); 156 } 157 158 StringRef AsmPrinter::getTargetTriple() const { 159 return TM.getTargetTriple().str(); 160 } 161 162 /// getCurrentSection() - Return the current section we are emitting to. 163 const MCSection *AsmPrinter::getCurrentSection() const { 164 return OutStreamer->getCurrentSection().first; 165 } 166 167 168 169 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 170 AU.setPreservesAll(); 171 MachineFunctionPass::getAnalysisUsage(AU); 172 AU.addRequired<MachineModuleInfo>(); 173 AU.addRequired<GCModuleInfo>(); 174 if (isVerbose()) 175 AU.addRequired<MachineLoopInfo>(); 176 } 177 178 bool AsmPrinter::doInitialization(Module &M) { 179 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 180 181 // Initialize TargetLoweringObjectFile. 182 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 183 .Initialize(OutContext, TM); 184 185 OutStreamer->InitSections(false); 186 187 Mang = new Mangler(); 188 189 // Emit the version-min deplyment target directive if needed. 190 // 191 // FIXME: If we end up with a collection of these sorts of Darwin-specific 192 // or ELF-specific things, it may make sense to have a platform helper class 193 // that will work with the target helper class. For now keep it here, as the 194 // alternative is duplicated code in each of the target asm printers that 195 // use the directive, where it would need the same conditionalization 196 // anyway. 197 Triple TT(getTargetTriple()); 198 // If there is a version specified, Major will be non-zero. 199 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 200 unsigned Major, Minor, Update; 201 MCVersionMinType VersionType; 202 if (TT.isWatchOS()) { 203 VersionType = MCVM_WatchOSVersionMin; 204 TT.getWatchOSVersion(Major, Minor, Update); 205 } else if (TT.isTvOS()) { 206 VersionType = MCVM_TvOSVersionMin; 207 TT.getiOSVersion(Major, Minor, Update); 208 } else if (TT.isMacOSX()) { 209 VersionType = MCVM_OSXVersionMin; 210 if (!TT.getMacOSXVersion(Major, Minor, Update)) 211 Major = 0; 212 } else { 213 VersionType = MCVM_IOSVersionMin; 214 TT.getiOSVersion(Major, Minor, Update); 215 } 216 if (Major != 0) 217 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 218 } 219 220 // Allow the target to emit any magic that it wants at the start of the file. 221 EmitStartOfAsmFile(M); 222 223 // Very minimal debug info. It is ignored if we emit actual debug info. If we 224 // don't, this at least helps the user find where a global came from. 225 if (MAI->hasSingleParameterDotFile()) { 226 // .file "foo.c" 227 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 228 } 229 230 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 231 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 232 for (auto &I : *MI) 233 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 234 MP->beginAssembly(M, *MI, *this); 235 236 // Emit module-level inline asm if it exists. 237 if (!M.getModuleInlineAsm().empty()) { 238 // We're at the module level. Construct MCSubtarget from the default CPU 239 // and target triple. 240 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 241 TM.getTargetTriple().str(), TM.getTargetCPU(), 242 TM.getTargetFeatureString())); 243 OutStreamer->AddComment("Start of file scope inline assembly"); 244 OutStreamer->AddBlankLine(); 245 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 246 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 247 OutStreamer->AddComment("End of file scope inline assembly"); 248 OutStreamer->AddBlankLine(); 249 } 250 251 if (MAI->doesSupportDebugInformation()) { 252 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 253 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 254 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 255 DbgTimerName, 256 CodeViewLineTablesGroupName)); 257 } 258 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 259 DD = new DwarfDebug(this, &M); 260 DD->beginModule(); 261 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 262 } 263 } 264 265 EHStreamer *ES = nullptr; 266 switch (MAI->getExceptionHandlingType()) { 267 case ExceptionHandling::None: 268 break; 269 case ExceptionHandling::SjLj: 270 case ExceptionHandling::DwarfCFI: 271 ES = new DwarfCFIException(this); 272 break; 273 case ExceptionHandling::ARM: 274 ES = new ARMException(this); 275 break; 276 case ExceptionHandling::WinEH: 277 switch (MAI->getWinEHEncodingType()) { 278 default: llvm_unreachable("unsupported unwinding information encoding"); 279 case WinEH::EncodingType::Invalid: 280 break; 281 case WinEH::EncodingType::X86: 282 case WinEH::EncodingType::Itanium: 283 ES = new WinException(this); 284 break; 285 } 286 break; 287 } 288 if (ES) 289 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 290 return false; 291 } 292 293 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 294 if (!MAI.hasWeakDefCanBeHiddenDirective()) 295 return false; 296 297 return canBeOmittedFromSymbolTable(GV); 298 } 299 300 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 301 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 302 switch (Linkage) { 303 case GlobalValue::CommonLinkage: 304 case GlobalValue::LinkOnceAnyLinkage: 305 case GlobalValue::LinkOnceODRLinkage: 306 case GlobalValue::WeakAnyLinkage: 307 case GlobalValue::WeakODRLinkage: 308 if (MAI->hasWeakDefDirective()) { 309 // .globl _foo 310 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 311 312 if (!canBeHidden(GV, *MAI)) 313 // .weak_definition _foo 314 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 315 else 316 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 317 } else if (MAI->hasLinkOnceDirective()) { 318 // .globl _foo 319 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 320 //NOTE: linkonce is handled by the section the symbol was assigned to. 321 } else { 322 // .weak _foo 323 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 324 } 325 return; 326 case GlobalValue::ExternalLinkage: 327 // If external, declare as a global symbol: .globl _foo 328 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 329 return; 330 case GlobalValue::PrivateLinkage: 331 case GlobalValue::InternalLinkage: 332 return; 333 case GlobalValue::AppendingLinkage: 334 case GlobalValue::AvailableExternallyLinkage: 335 case GlobalValue::ExternalWeakLinkage: 336 llvm_unreachable("Should never emit this"); 337 } 338 llvm_unreachable("Unknown linkage type!"); 339 } 340 341 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 342 const GlobalValue *GV) const { 343 TM.getNameWithPrefix(Name, GV, *Mang); 344 } 345 346 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 347 return TM.getSymbol(GV, *Mang); 348 } 349 350 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 351 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 352 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 353 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 354 "No emulated TLS variables in the common section"); 355 356 // Never emit TLS variable xyz in emulated TLS model. 357 // The initialization value is in __emutls_t.xyz instead of xyz. 358 if (IsEmuTLSVar) 359 return; 360 361 if (GV->hasInitializer()) { 362 // Check to see if this is a special global used by LLVM, if so, emit it. 363 if (EmitSpecialLLVMGlobal(GV)) 364 return; 365 366 // Skip the emission of global equivalents. The symbol can be emitted later 367 // on by emitGlobalGOTEquivs in case it turns out to be needed. 368 if (GlobalGOTEquivs.count(getSymbol(GV))) 369 return; 370 371 if (isVerbose()) { 372 // When printing the control variable __emutls_v.*, 373 // we don't need to print the original TLS variable name. 374 GV->printAsOperand(OutStreamer->GetCommentOS(), 375 /*PrintType=*/false, GV->getParent()); 376 OutStreamer->GetCommentOS() << '\n'; 377 } 378 } 379 380 MCSymbol *GVSym = getSymbol(GV); 381 MCSymbol *EmittedSym = GVSym; 382 383 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 384 // attributes. 385 // GV's or GVSym's attributes will be used for the EmittedSym. 386 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 387 388 if (!GV->hasInitializer()) // External globals require no extra code. 389 return; 390 391 GVSym->redefineIfPossible(); 392 if (GVSym->isDefined() || GVSym->isVariable()) 393 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 394 "' is already defined"); 395 396 if (MAI->hasDotTypeDotSizeDirective()) 397 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 398 399 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 400 401 const DataLayout &DL = GV->getParent()->getDataLayout(); 402 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 403 404 // If the alignment is specified, we *must* obey it. Overaligning a global 405 // with a specified alignment is a prompt way to break globals emitted to 406 // sections and expected to be contiguous (e.g. ObjC metadata). 407 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 408 409 for (const HandlerInfo &HI : Handlers) { 410 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 411 HI.Handler->setSymbolSize(GVSym, Size); 412 } 413 414 // Handle common symbols 415 if (GVKind.isCommon()) { 416 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 417 unsigned Align = 1 << AlignLog; 418 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 419 Align = 0; 420 421 // .comm _foo, 42, 4 422 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 423 return; 424 } 425 426 // Determine to which section this global should be emitted. 427 MCSection *TheSection = 428 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 429 430 // If we have a bss global going to a section that supports the 431 // zerofill directive, do so here. 432 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 433 TheSection->isVirtualSection()) { 434 if (Size == 0) 435 Size = 1; // zerofill of 0 bytes is undefined. 436 unsigned Align = 1 << AlignLog; 437 EmitLinkage(GV, GVSym); 438 // .zerofill __DATA, __bss, _foo, 400, 5 439 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 440 return; 441 } 442 443 // If this is a BSS local symbol and we are emitting in the BSS 444 // section use .lcomm/.comm directive. 445 if (GVKind.isBSSLocal() && 446 getObjFileLowering().getBSSSection() == TheSection) { 447 if (Size == 0) 448 Size = 1; // .comm Foo, 0 is undefined, avoid it. 449 unsigned Align = 1 << AlignLog; 450 451 // Use .lcomm only if it supports user-specified alignment. 452 // Otherwise, while it would still be correct to use .lcomm in some 453 // cases (e.g. when Align == 1), the external assembler might enfore 454 // some -unknown- default alignment behavior, which could cause 455 // spurious differences between external and integrated assembler. 456 // Prefer to simply fall back to .local / .comm in this case. 457 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 458 // .lcomm _foo, 42 459 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 460 return; 461 } 462 463 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 464 Align = 0; 465 466 // .local _foo 467 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 468 // .comm _foo, 42, 4 469 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 470 return; 471 } 472 473 // Handle thread local data for mach-o which requires us to output an 474 // additional structure of data and mangle the original symbol so that we 475 // can reference it later. 476 // 477 // TODO: This should become an "emit thread local global" method on TLOF. 478 // All of this macho specific stuff should be sunk down into TLOFMachO and 479 // stuff like "TLSExtraDataSection" should no longer be part of the parent 480 // TLOF class. This will also make it more obvious that stuff like 481 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 482 // specific code. 483 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 484 // Emit the .tbss symbol 485 MCSymbol *MangSym = 486 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 487 488 if (GVKind.isThreadBSS()) { 489 TheSection = getObjFileLowering().getTLSBSSSection(); 490 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 491 } else if (GVKind.isThreadData()) { 492 OutStreamer->SwitchSection(TheSection); 493 494 EmitAlignment(AlignLog, GV); 495 OutStreamer->EmitLabel(MangSym); 496 497 EmitGlobalConstant(GV->getParent()->getDataLayout(), 498 GV->getInitializer()); 499 } 500 501 OutStreamer->AddBlankLine(); 502 503 // Emit the variable struct for the runtime. 504 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 505 506 OutStreamer->SwitchSection(TLVSect); 507 // Emit the linkage here. 508 EmitLinkage(GV, GVSym); 509 OutStreamer->EmitLabel(GVSym); 510 511 // Three pointers in size: 512 // - __tlv_bootstrap - used to make sure support exists 513 // - spare pointer, used when mapped by the runtime 514 // - pointer to mangled symbol above with initializer 515 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 516 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 517 PtrSize); 518 OutStreamer->EmitIntValue(0, PtrSize); 519 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 520 521 OutStreamer->AddBlankLine(); 522 return; 523 } 524 525 MCSymbol *EmittedInitSym = GVSym; 526 527 OutStreamer->SwitchSection(TheSection); 528 529 EmitLinkage(GV, EmittedInitSym); 530 EmitAlignment(AlignLog, GV); 531 532 OutStreamer->EmitLabel(EmittedInitSym); 533 534 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 535 536 if (MAI->hasDotTypeDotSizeDirective()) 537 // .size foo, 42 538 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 539 MCConstantExpr::create(Size, OutContext)); 540 541 OutStreamer->AddBlankLine(); 542 } 543 544 /// EmitFunctionHeader - This method emits the header for the current 545 /// function. 546 void AsmPrinter::EmitFunctionHeader() { 547 // Print out constants referenced by the function 548 EmitConstantPool(); 549 550 // Print the 'header' of function. 551 const Function *F = MF->getFunction(); 552 553 OutStreamer->SwitchSection( 554 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 555 EmitVisibility(CurrentFnSym, F->getVisibility()); 556 557 EmitLinkage(F, CurrentFnSym); 558 if (MAI->hasFunctionAlignment()) 559 EmitAlignment(MF->getAlignment(), F); 560 561 if (MAI->hasDotTypeDotSizeDirective()) 562 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 563 564 if (isVerbose()) { 565 F->printAsOperand(OutStreamer->GetCommentOS(), 566 /*PrintType=*/false, F->getParent()); 567 OutStreamer->GetCommentOS() << '\n'; 568 } 569 570 // Emit the prefix data. 571 if (F->hasPrefixData()) 572 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 573 574 // Emit the CurrentFnSym. This is a virtual function to allow targets to 575 // do their wild and crazy things as required. 576 EmitFunctionEntryLabel(); 577 578 // If the function had address-taken blocks that got deleted, then we have 579 // references to the dangling symbols. Emit them at the start of the function 580 // so that we don't get references to undefined symbols. 581 std::vector<MCSymbol*> DeadBlockSyms; 582 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 583 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 584 OutStreamer->AddComment("Address taken block that was later removed"); 585 OutStreamer->EmitLabel(DeadBlockSyms[i]); 586 } 587 588 if (CurrentFnBegin) { 589 if (MAI->useAssignmentForEHBegin()) { 590 MCSymbol *CurPos = OutContext.createTempSymbol(); 591 OutStreamer->EmitLabel(CurPos); 592 OutStreamer->EmitAssignment(CurrentFnBegin, 593 MCSymbolRefExpr::create(CurPos, OutContext)); 594 } else { 595 OutStreamer->EmitLabel(CurrentFnBegin); 596 } 597 } 598 599 // Emit pre-function debug and/or EH information. 600 for (const HandlerInfo &HI : Handlers) { 601 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 602 HI.Handler->beginFunction(MF); 603 } 604 605 // Emit the prologue data. 606 if (F->hasPrologueData()) 607 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 608 } 609 610 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 611 /// function. This can be overridden by targets as required to do custom stuff. 612 void AsmPrinter::EmitFunctionEntryLabel() { 613 CurrentFnSym->redefineIfPossible(); 614 615 // The function label could have already been emitted if two symbols end up 616 // conflicting due to asm renaming. Detect this and emit an error. 617 if (CurrentFnSym->isVariable()) 618 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 619 "' is a protected alias"); 620 if (CurrentFnSym->isDefined()) 621 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 622 "' label emitted multiple times to assembly file"); 623 624 return OutStreamer->EmitLabel(CurrentFnSym); 625 } 626 627 /// emitComments - Pretty-print comments for instructions. 628 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 629 const MachineFunction *MF = MI.getParent()->getParent(); 630 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 631 632 // Check for spills and reloads 633 int FI; 634 635 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 636 637 // We assume a single instruction only has a spill or reload, not 638 // both. 639 const MachineMemOperand *MMO; 640 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 641 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 642 MMO = *MI.memoperands_begin(); 643 CommentOS << MMO->getSize() << "-byte Reload\n"; 644 } 645 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 646 if (FrameInfo->isSpillSlotObjectIndex(FI)) 647 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 648 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 649 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 650 MMO = *MI.memoperands_begin(); 651 CommentOS << MMO->getSize() << "-byte Spill\n"; 652 } 653 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 654 if (FrameInfo->isSpillSlotObjectIndex(FI)) 655 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 656 } 657 658 // Check for spill-induced copies 659 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 660 CommentOS << " Reload Reuse\n"; 661 } 662 663 /// emitImplicitDef - This method emits the specified machine instruction 664 /// that is an implicit def. 665 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 666 unsigned RegNo = MI->getOperand(0).getReg(); 667 668 SmallString<128> Str; 669 raw_svector_ostream OS(Str); 670 OS << "implicit-def: " 671 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 672 673 OutStreamer->AddComment(OS.str()); 674 OutStreamer->AddBlankLine(); 675 } 676 677 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 678 std::string Str; 679 raw_string_ostream OS(Str); 680 OS << "kill:"; 681 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 682 const MachineOperand &Op = MI->getOperand(i); 683 assert(Op.isReg() && "KILL instruction must have only register operands"); 684 OS << ' ' 685 << PrintReg(Op.getReg(), 686 AP.MF->getSubtarget().getRegisterInfo()) 687 << (Op.isDef() ? "<def>" : "<kill>"); 688 } 689 AP.OutStreamer->AddComment(OS.str()); 690 AP.OutStreamer->AddBlankLine(); 691 } 692 693 /// emitDebugValueComment - This method handles the target-independent form 694 /// of DBG_VALUE, returning true if it was able to do so. A false return 695 /// means the target will need to handle MI in EmitInstruction. 696 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 697 // This code handles only the 4-operand target-independent form. 698 if (MI->getNumOperands() != 4) 699 return false; 700 701 SmallString<128> Str; 702 raw_svector_ostream OS(Str); 703 OS << "DEBUG_VALUE: "; 704 705 const DILocalVariable *V = MI->getDebugVariable(); 706 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 707 StringRef Name = SP->getDisplayName(); 708 if (!Name.empty()) 709 OS << Name << ":"; 710 } 711 OS << V->getName(); 712 713 const DIExpression *Expr = MI->getDebugExpression(); 714 if (Expr->isBitPiece()) 715 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 716 << " size=" << Expr->getBitPieceSize() << "]"; 717 OS << " <- "; 718 719 // The second operand is only an offset if it's an immediate. 720 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 721 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 722 723 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 724 if (Deref) { 725 // We currently don't support extra Offsets or derefs after the first 726 // one. Bail out early instead of emitting an incorrect comment 727 OS << " [complex expression]"; 728 AP.OutStreamer->emitRawComment(OS.str()); 729 return true; 730 } 731 uint64_t Op = Expr->getElement(i); 732 if (Op == dwarf::DW_OP_deref) { 733 Deref = true; 734 continue; 735 } else if (Op == dwarf::DW_OP_bit_piece) { 736 // There can't be any operands after this in a valid expression 737 break; 738 } 739 uint64_t ExtraOffset = Expr->getElement(i++); 740 if (Op == dwarf::DW_OP_plus) 741 Offset += ExtraOffset; 742 else { 743 assert(Op == dwarf::DW_OP_minus); 744 Offset -= ExtraOffset; 745 } 746 } 747 748 // Register or immediate value. Register 0 means undef. 749 if (MI->getOperand(0).isFPImm()) { 750 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 751 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 752 OS << (double)APF.convertToFloat(); 753 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 754 OS << APF.convertToDouble(); 755 } else { 756 // There is no good way to print long double. Convert a copy to 757 // double. Ah well, it's only a comment. 758 bool ignored; 759 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 760 &ignored); 761 OS << "(long double) " << APF.convertToDouble(); 762 } 763 } else if (MI->getOperand(0).isImm()) { 764 OS << MI->getOperand(0).getImm(); 765 } else if (MI->getOperand(0).isCImm()) { 766 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 767 } else { 768 unsigned Reg; 769 if (MI->getOperand(0).isReg()) { 770 Reg = MI->getOperand(0).getReg(); 771 } else { 772 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 773 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 774 Offset += TFI->getFrameIndexReference(*AP.MF, 775 MI->getOperand(0).getIndex(), Reg); 776 Deref = true; 777 } 778 if (Reg == 0) { 779 // Suppress offset, it is not meaningful here. 780 OS << "undef"; 781 // NOTE: Want this comment at start of line, don't emit with AddComment. 782 AP.OutStreamer->emitRawComment(OS.str()); 783 return true; 784 } 785 if (Deref) 786 OS << '['; 787 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 788 } 789 790 if (Deref) 791 OS << '+' << Offset << ']'; 792 793 // NOTE: Want this comment at start of line, don't emit with AddComment. 794 AP.OutStreamer->emitRawComment(OS.str()); 795 return true; 796 } 797 798 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 799 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 800 MF->getFunction()->needsUnwindTableEntry()) 801 return CFI_M_EH; 802 803 if (MMI->hasDebugInfo()) 804 return CFI_M_Debug; 805 806 return CFI_M_None; 807 } 808 809 bool AsmPrinter::needsSEHMoves() { 810 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 811 } 812 813 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 814 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 815 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 816 ExceptionHandlingType != ExceptionHandling::ARM) 817 return; 818 819 if (needsCFIMoves() == CFI_M_None) 820 return; 821 822 const MachineModuleInfo &MMI = MF->getMMI(); 823 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 824 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 825 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 826 emitCFIInstruction(CFI); 827 } 828 829 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 830 // The operands are the MCSymbol and the frame offset of the allocation. 831 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 832 int FrameOffset = MI.getOperand(1).getImm(); 833 834 // Emit a symbol assignment. 835 OutStreamer->EmitAssignment(FrameAllocSym, 836 MCConstantExpr::create(FrameOffset, OutContext)); 837 } 838 839 /// EmitFunctionBody - This method emits the body and trailer for a 840 /// function. 841 void AsmPrinter::EmitFunctionBody() { 842 EmitFunctionHeader(); 843 844 // Emit target-specific gunk before the function body. 845 EmitFunctionBodyStart(); 846 847 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 848 849 // Print out code for the function. 850 bool HasAnyRealCode = false; 851 for (auto &MBB : *MF) { 852 // Print a label for the basic block. 853 EmitBasicBlockStart(MBB); 854 for (auto &MI : MBB) { 855 856 // Print the assembly for the instruction. 857 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 858 !MI.isDebugValue()) { 859 HasAnyRealCode = true; 860 ++EmittedInsts; 861 } 862 863 if (ShouldPrintDebugScopes) { 864 for (const HandlerInfo &HI : Handlers) { 865 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 866 TimePassesIsEnabled); 867 HI.Handler->beginInstruction(&MI); 868 } 869 } 870 871 if (isVerbose()) 872 emitComments(MI, OutStreamer->GetCommentOS()); 873 874 switch (MI.getOpcode()) { 875 case TargetOpcode::CFI_INSTRUCTION: 876 emitCFIInstruction(MI); 877 break; 878 879 case TargetOpcode::LOCAL_ESCAPE: 880 emitFrameAlloc(MI); 881 break; 882 883 case TargetOpcode::EH_LABEL: 884 case TargetOpcode::GC_LABEL: 885 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 886 break; 887 case TargetOpcode::INLINEASM: 888 EmitInlineAsm(&MI); 889 break; 890 case TargetOpcode::DBG_VALUE: 891 if (isVerbose()) { 892 if (!emitDebugValueComment(&MI, *this)) 893 EmitInstruction(&MI); 894 } 895 break; 896 case TargetOpcode::IMPLICIT_DEF: 897 if (isVerbose()) emitImplicitDef(&MI); 898 break; 899 case TargetOpcode::KILL: 900 if (isVerbose()) emitKill(&MI, *this); 901 break; 902 default: 903 EmitInstruction(&MI); 904 break; 905 } 906 907 if (ShouldPrintDebugScopes) { 908 for (const HandlerInfo &HI : Handlers) { 909 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 910 TimePassesIsEnabled); 911 HI.Handler->endInstruction(); 912 } 913 } 914 } 915 916 EmitBasicBlockEnd(MBB); 917 } 918 919 // If the function is empty and the object file uses .subsections_via_symbols, 920 // then we need to emit *something* to the function body to prevent the 921 // labels from collapsing together. Just emit a noop. 922 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 923 MCInst Noop; 924 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 925 OutStreamer->AddComment("avoids zero-length function"); 926 927 // Targets can opt-out of emitting the noop here by leaving the opcode 928 // unspecified. 929 if (Noop.getOpcode()) 930 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 931 } 932 933 const Function *F = MF->getFunction(); 934 for (const auto &BB : *F) { 935 if (!BB.hasAddressTaken()) 936 continue; 937 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 938 if (Sym->isDefined()) 939 continue; 940 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 941 OutStreamer->EmitLabel(Sym); 942 } 943 944 // Emit target-specific gunk after the function body. 945 EmitFunctionBodyEnd(); 946 947 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 948 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 949 // Create a symbol for the end of function. 950 CurrentFnEnd = createTempSymbol("func_end"); 951 OutStreamer->EmitLabel(CurrentFnEnd); 952 } 953 954 // If the target wants a .size directive for the size of the function, emit 955 // it. 956 if (MAI->hasDotTypeDotSizeDirective()) { 957 // We can get the size as difference between the function label and the 958 // temp label. 959 const MCExpr *SizeExp = MCBinaryExpr::createSub( 960 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 961 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 962 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 963 OutStreamer->emitELFSize(Sym, SizeExp); 964 } 965 966 for (const HandlerInfo &HI : Handlers) { 967 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 968 HI.Handler->markFunctionEnd(); 969 } 970 971 // Print out jump tables referenced by the function. 972 EmitJumpTableInfo(); 973 974 // Emit post-function debug and/or EH information. 975 for (const HandlerInfo &HI : Handlers) { 976 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 977 HI.Handler->endFunction(MF); 978 } 979 MMI->EndFunction(); 980 981 OutStreamer->AddBlankLine(); 982 } 983 984 /// \brief Compute the number of Global Variables that uses a Constant. 985 static unsigned getNumGlobalVariableUses(const Constant *C) { 986 if (!C) 987 return 0; 988 989 if (isa<GlobalVariable>(C)) 990 return 1; 991 992 unsigned NumUses = 0; 993 for (auto *CU : C->users()) 994 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 995 996 return NumUses; 997 } 998 999 /// \brief Only consider global GOT equivalents if at least one user is a 1000 /// cstexpr inside an initializer of another global variables. Also, don't 1001 /// handle cstexpr inside instructions. During global variable emission, 1002 /// candidates are skipped and are emitted later in case at least one cstexpr 1003 /// isn't replaced by a PC relative GOT entry access. 1004 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1005 unsigned &NumGOTEquivUsers) { 1006 // Global GOT equivalents are unnamed private globals with a constant 1007 // pointer initializer to another global symbol. They must point to a 1008 // GlobalVariable or Function, i.e., as GlobalValue. 1009 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1010 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1011 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1012 return false; 1013 1014 // To be a got equivalent, at least one of its users need to be a constant 1015 // expression used by another global variable. 1016 for (auto *U : GV->users()) 1017 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1018 1019 return NumGOTEquivUsers > 0; 1020 } 1021 1022 /// \brief Unnamed constant global variables solely contaning a pointer to 1023 /// another globals variable is equivalent to a GOT table entry; it contains the 1024 /// the address of another symbol. Optimize it and replace accesses to these 1025 /// "GOT equivalents" by using the GOT entry for the final global instead. 1026 /// Compute GOT equivalent candidates among all global variables to avoid 1027 /// emitting them if possible later on, after it use is replaced by a GOT entry 1028 /// access. 1029 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1030 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1031 return; 1032 1033 for (const auto &G : M.globals()) { 1034 unsigned NumGOTEquivUsers = 0; 1035 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1036 continue; 1037 1038 const MCSymbol *GOTEquivSym = getSymbol(&G); 1039 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1040 } 1041 } 1042 1043 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1044 /// for PC relative GOT entry conversion, in such cases we need to emit such 1045 /// globals we previously omitted in EmitGlobalVariable. 1046 void AsmPrinter::emitGlobalGOTEquivs() { 1047 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1048 return; 1049 1050 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1051 for (auto &I : GlobalGOTEquivs) { 1052 const GlobalVariable *GV = I.second.first; 1053 unsigned Cnt = I.second.second; 1054 if (Cnt) 1055 FailedCandidates.push_back(GV); 1056 } 1057 GlobalGOTEquivs.clear(); 1058 1059 for (auto *GV : FailedCandidates) 1060 EmitGlobalVariable(GV); 1061 } 1062 1063 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1064 const GlobalIndirectSymbol& GIS) { 1065 MCSymbol *Name = getSymbol(&GIS); 1066 1067 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1068 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1069 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1070 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1071 else 1072 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1073 1074 // Set the symbol type to function if the alias has a function type. 1075 // This affects codegen when the aliasee is not a function. 1076 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1077 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1078 if (isa<GlobalIFunc>(GIS)) 1079 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1080 } 1081 1082 EmitVisibility(Name, GIS.getVisibility()); 1083 1084 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1085 1086 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1087 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1088 1089 // Emit the directives as assignments aka .set: 1090 OutStreamer->EmitAssignment(Name, Expr); 1091 1092 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1093 // If the aliasee does not correspond to a symbol in the output, i.e. the 1094 // alias is not of an object or the aliased object is private, then set the 1095 // size of the alias symbol from the type of the alias. We don't do this in 1096 // other situations as the alias and aliasee having differing types but same 1097 // size may be intentional. 1098 const GlobalObject *BaseObject = GA->getBaseObject(); 1099 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1100 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1101 const DataLayout &DL = M.getDataLayout(); 1102 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1103 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1104 MCConstantExpr::create(Size, OutContext)); 1105 } 1106 } 1107 } 1108 1109 bool AsmPrinter::doFinalization(Module &M) { 1110 // Set the MachineFunction to nullptr so that we can catch attempted 1111 // accesses to MF specific features at the module level and so that 1112 // we can conditionalize accesses based on whether or not it is nullptr. 1113 MF = nullptr; 1114 1115 // Gather all GOT equivalent globals in the module. We really need two 1116 // passes over the globals: one to compute and another to avoid its emission 1117 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1118 // where the got equivalent shows up before its use. 1119 computeGlobalGOTEquivs(M); 1120 1121 // Emit global variables. 1122 for (const auto &G : M.globals()) 1123 EmitGlobalVariable(&G); 1124 1125 // Emit remaining GOT equivalent globals. 1126 emitGlobalGOTEquivs(); 1127 1128 // Emit visibility info for declarations 1129 for (const Function &F : M) { 1130 if (!F.isDeclarationForLinker()) 1131 continue; 1132 GlobalValue::VisibilityTypes V = F.getVisibility(); 1133 if (V == GlobalValue::DefaultVisibility) 1134 continue; 1135 1136 MCSymbol *Name = getSymbol(&F); 1137 EmitVisibility(Name, V, false); 1138 } 1139 1140 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1141 1142 // Emit module flags. 1143 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1144 M.getModuleFlagsMetadata(ModuleFlags); 1145 if (!ModuleFlags.empty()) 1146 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1147 1148 if (TM.getTargetTriple().isOSBinFormatELF()) { 1149 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1150 1151 // Output stubs for external and common global variables. 1152 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1153 if (!Stubs.empty()) { 1154 OutStreamer->SwitchSection(TLOF.getDataSection()); 1155 const DataLayout &DL = M.getDataLayout(); 1156 1157 for (const auto &Stub : Stubs) { 1158 OutStreamer->EmitLabel(Stub.first); 1159 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1160 DL.getPointerSize()); 1161 } 1162 } 1163 } 1164 1165 // Finalize debug and EH information. 1166 for (const HandlerInfo &HI : Handlers) { 1167 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1168 TimePassesIsEnabled); 1169 HI.Handler->endModule(); 1170 delete HI.Handler; 1171 } 1172 Handlers.clear(); 1173 DD = nullptr; 1174 1175 // If the target wants to know about weak references, print them all. 1176 if (MAI->getWeakRefDirective()) { 1177 // FIXME: This is not lazy, it would be nice to only print weak references 1178 // to stuff that is actually used. Note that doing so would require targets 1179 // to notice uses in operands (due to constant exprs etc). This should 1180 // happen with the MC stuff eventually. 1181 1182 // Print out module-level global objects here. 1183 for (const auto &GO : M.global_objects()) { 1184 if (!GO.hasExternalWeakLinkage()) 1185 continue; 1186 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1187 } 1188 } 1189 1190 OutStreamer->AddBlankLine(); 1191 1192 // Print aliases in topological order, that is, for each alias a = b, 1193 // b must be printed before a. 1194 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1195 // such an order to generate correct TOC information. 1196 SmallVector<const GlobalAlias *, 16> AliasStack; 1197 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1198 for (const auto &Alias : M.aliases()) { 1199 for (const GlobalAlias *Cur = &Alias; Cur; 1200 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1201 if (!AliasVisited.insert(Cur).second) 1202 break; 1203 AliasStack.push_back(Cur); 1204 } 1205 for (const GlobalAlias *AncestorAlias : reverse(AliasStack)) 1206 emitGlobalIndirectSymbol(M, *AncestorAlias); 1207 AliasStack.clear(); 1208 } 1209 for (const auto &IFunc : M.ifuncs()) 1210 emitGlobalIndirectSymbol(M, IFunc); 1211 1212 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1213 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1214 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1215 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1216 MP->finishAssembly(M, *MI, *this); 1217 1218 // Emit llvm.ident metadata in an '.ident' directive. 1219 EmitModuleIdents(M); 1220 1221 // Emit __morestack address if needed for indirect calls. 1222 if (MMI->usesMorestackAddr()) { 1223 unsigned Align = 1; 1224 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1225 getDataLayout(), SectionKind::getReadOnly(), 1226 /*C=*/nullptr, Align); 1227 OutStreamer->SwitchSection(ReadOnlySection); 1228 1229 MCSymbol *AddrSymbol = 1230 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1231 OutStreamer->EmitLabel(AddrSymbol); 1232 1233 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1234 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1235 PtrSize); 1236 } 1237 1238 // If we don't have any trampolines, then we don't require stack memory 1239 // to be executable. Some targets have a directive to declare this. 1240 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1241 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1242 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1243 OutStreamer->SwitchSection(S); 1244 1245 // Allow the target to emit any magic that it wants at the end of the file, 1246 // after everything else has gone out. 1247 EmitEndOfAsmFile(M); 1248 1249 delete Mang; Mang = nullptr; 1250 MMI = nullptr; 1251 1252 OutStreamer->Finish(); 1253 OutStreamer->reset(); 1254 1255 return false; 1256 } 1257 1258 MCSymbol *AsmPrinter::getCurExceptionSym() { 1259 if (!CurExceptionSym) 1260 CurExceptionSym = createTempSymbol("exception"); 1261 return CurExceptionSym; 1262 } 1263 1264 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1265 this->MF = &MF; 1266 // Get the function symbol. 1267 CurrentFnSym = getSymbol(MF.getFunction()); 1268 CurrentFnSymForSize = CurrentFnSym; 1269 CurrentFnBegin = nullptr; 1270 CurExceptionSym = nullptr; 1271 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1272 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1273 MMI->hasEHFunclets() || NeedsLocalForSize) { 1274 CurrentFnBegin = createTempSymbol("func_begin"); 1275 if (NeedsLocalForSize) 1276 CurrentFnSymForSize = CurrentFnBegin; 1277 } 1278 1279 if (isVerbose()) 1280 LI = &getAnalysis<MachineLoopInfo>(); 1281 } 1282 1283 namespace { 1284 // Keep track the alignment, constpool entries per Section. 1285 struct SectionCPs { 1286 MCSection *S; 1287 unsigned Alignment; 1288 SmallVector<unsigned, 4> CPEs; 1289 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1290 }; 1291 } 1292 1293 /// EmitConstantPool - Print to the current output stream assembly 1294 /// representations of the constants in the constant pool MCP. This is 1295 /// used to print out constants which have been "spilled to memory" by 1296 /// the code generator. 1297 /// 1298 void AsmPrinter::EmitConstantPool() { 1299 const MachineConstantPool *MCP = MF->getConstantPool(); 1300 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1301 if (CP.empty()) return; 1302 1303 // Calculate sections for constant pool entries. We collect entries to go into 1304 // the same section together to reduce amount of section switch statements. 1305 SmallVector<SectionCPs, 4> CPSections; 1306 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1307 const MachineConstantPoolEntry &CPE = CP[i]; 1308 unsigned Align = CPE.getAlignment(); 1309 1310 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1311 1312 const Constant *C = nullptr; 1313 if (!CPE.isMachineConstantPoolEntry()) 1314 C = CPE.Val.ConstVal; 1315 1316 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1317 Kind, C, Align); 1318 1319 // The number of sections are small, just do a linear search from the 1320 // last section to the first. 1321 bool Found = false; 1322 unsigned SecIdx = CPSections.size(); 1323 while (SecIdx != 0) { 1324 if (CPSections[--SecIdx].S == S) { 1325 Found = true; 1326 break; 1327 } 1328 } 1329 if (!Found) { 1330 SecIdx = CPSections.size(); 1331 CPSections.push_back(SectionCPs(S, Align)); 1332 } 1333 1334 if (Align > CPSections[SecIdx].Alignment) 1335 CPSections[SecIdx].Alignment = Align; 1336 CPSections[SecIdx].CPEs.push_back(i); 1337 } 1338 1339 // Now print stuff into the calculated sections. 1340 const MCSection *CurSection = nullptr; 1341 unsigned Offset = 0; 1342 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1343 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1344 unsigned CPI = CPSections[i].CPEs[j]; 1345 MCSymbol *Sym = GetCPISymbol(CPI); 1346 if (!Sym->isUndefined()) 1347 continue; 1348 1349 if (CurSection != CPSections[i].S) { 1350 OutStreamer->SwitchSection(CPSections[i].S); 1351 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1352 CurSection = CPSections[i].S; 1353 Offset = 0; 1354 } 1355 1356 MachineConstantPoolEntry CPE = CP[CPI]; 1357 1358 // Emit inter-object padding for alignment. 1359 unsigned AlignMask = CPE.getAlignment() - 1; 1360 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1361 OutStreamer->EmitZeros(NewOffset - Offset); 1362 1363 Type *Ty = CPE.getType(); 1364 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1365 1366 OutStreamer->EmitLabel(Sym); 1367 if (CPE.isMachineConstantPoolEntry()) 1368 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1369 else 1370 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1371 } 1372 } 1373 } 1374 1375 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1376 /// by the current function to the current output stream. 1377 /// 1378 void AsmPrinter::EmitJumpTableInfo() { 1379 const DataLayout &DL = MF->getDataLayout(); 1380 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1381 if (!MJTI) return; 1382 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1383 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1384 if (JT.empty()) return; 1385 1386 // Pick the directive to use to print the jump table entries, and switch to 1387 // the appropriate section. 1388 const Function *F = MF->getFunction(); 1389 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1390 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1391 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1392 *F); 1393 if (JTInDiffSection) { 1394 // Drop it in the readonly section. 1395 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1396 OutStreamer->SwitchSection(ReadOnlySection); 1397 } 1398 1399 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1400 1401 // Jump tables in code sections are marked with a data_region directive 1402 // where that's supported. 1403 if (!JTInDiffSection) 1404 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1405 1406 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1407 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1408 1409 // If this jump table was deleted, ignore it. 1410 if (JTBBs.empty()) continue; 1411 1412 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1413 /// emit a .set directive for each unique entry. 1414 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1415 MAI->doesSetDirectiveSuppressReloc()) { 1416 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1417 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1418 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1419 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1420 const MachineBasicBlock *MBB = JTBBs[ii]; 1421 if (!EmittedSets.insert(MBB).second) 1422 continue; 1423 1424 // .set LJTSet, LBB32-base 1425 const MCExpr *LHS = 1426 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1427 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1428 MCBinaryExpr::createSub(LHS, Base, 1429 OutContext)); 1430 } 1431 } 1432 1433 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1434 // before each jump table. The first label is never referenced, but tells 1435 // the assembler and linker the extents of the jump table object. The 1436 // second label is actually referenced by the code. 1437 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1438 // FIXME: This doesn't have to have any specific name, just any randomly 1439 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1440 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1441 1442 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1443 1444 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1445 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1446 } 1447 if (!JTInDiffSection) 1448 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1449 } 1450 1451 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1452 /// current stream. 1453 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1454 const MachineBasicBlock *MBB, 1455 unsigned UID) const { 1456 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1457 const MCExpr *Value = nullptr; 1458 switch (MJTI->getEntryKind()) { 1459 case MachineJumpTableInfo::EK_Inline: 1460 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1461 case MachineJumpTableInfo::EK_Custom32: 1462 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1463 MJTI, MBB, UID, OutContext); 1464 break; 1465 case MachineJumpTableInfo::EK_BlockAddress: 1466 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1467 // .word LBB123 1468 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1469 break; 1470 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1471 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1472 // with a relocation as gp-relative, e.g.: 1473 // .gprel32 LBB123 1474 MCSymbol *MBBSym = MBB->getSymbol(); 1475 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1476 return; 1477 } 1478 1479 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1480 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1481 // with a relocation as gp-relative, e.g.: 1482 // .gpdword LBB123 1483 MCSymbol *MBBSym = MBB->getSymbol(); 1484 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1485 return; 1486 } 1487 1488 case MachineJumpTableInfo::EK_LabelDifference32: { 1489 // Each entry is the address of the block minus the address of the jump 1490 // table. This is used for PIC jump tables where gprel32 is not supported. 1491 // e.g.: 1492 // .word LBB123 - LJTI1_2 1493 // If the .set directive avoids relocations, this is emitted as: 1494 // .set L4_5_set_123, LBB123 - LJTI1_2 1495 // .word L4_5_set_123 1496 if (MAI->doesSetDirectiveSuppressReloc()) { 1497 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1498 OutContext); 1499 break; 1500 } 1501 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1502 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1503 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1504 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1505 break; 1506 } 1507 } 1508 1509 assert(Value && "Unknown entry kind!"); 1510 1511 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1512 OutStreamer->EmitValue(Value, EntrySize); 1513 } 1514 1515 1516 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1517 /// special global used by LLVM. If so, emit it and return true, otherwise 1518 /// do nothing and return false. 1519 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1520 if (GV->getName() == "llvm.used") { 1521 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1522 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1523 return true; 1524 } 1525 1526 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1527 if (GV->getSection() == "llvm.metadata" || 1528 GV->hasAvailableExternallyLinkage()) 1529 return true; 1530 1531 if (!GV->hasAppendingLinkage()) return false; 1532 1533 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1534 1535 if (GV->getName() == "llvm.global_ctors") { 1536 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1537 /* isCtor */ true); 1538 1539 if (TM.getRelocationModel() == Reloc::Static && 1540 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1541 StringRef Sym(".constructors_used"); 1542 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1543 MCSA_Reference); 1544 } 1545 return true; 1546 } 1547 1548 if (GV->getName() == "llvm.global_dtors") { 1549 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1550 /* isCtor */ false); 1551 1552 if (TM.getRelocationModel() == Reloc::Static && 1553 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1554 StringRef Sym(".destructors_used"); 1555 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1556 MCSA_Reference); 1557 } 1558 return true; 1559 } 1560 1561 report_fatal_error("unknown special variable"); 1562 } 1563 1564 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1565 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1566 /// is true, as being used with this directive. 1567 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1568 // Should be an array of 'i8*'. 1569 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1570 const GlobalValue *GV = 1571 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1572 if (GV) 1573 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1574 } 1575 } 1576 1577 namespace { 1578 struct Structor { 1579 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1580 int Priority; 1581 llvm::Constant *Func; 1582 llvm::GlobalValue *ComdatKey; 1583 }; 1584 } // end namespace 1585 1586 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1587 /// priority. 1588 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1589 bool isCtor) { 1590 // Should be an array of '{ int, void ()* }' structs. The first value is the 1591 // init priority. 1592 if (!isa<ConstantArray>(List)) return; 1593 1594 // Sanity check the structors list. 1595 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1596 if (!InitList) return; // Not an array! 1597 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1598 // FIXME: Only allow the 3-field form in LLVM 4.0. 1599 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1600 return; // Not an array of two or three elements! 1601 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1602 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1603 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1604 return; // Not (int, ptr, ptr). 1605 1606 // Gather the structors in a form that's convenient for sorting by priority. 1607 SmallVector<Structor, 8> Structors; 1608 for (Value *O : InitList->operands()) { 1609 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1610 if (!CS) continue; // Malformed. 1611 if (CS->getOperand(1)->isNullValue()) 1612 break; // Found a null terminator, skip the rest. 1613 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1614 if (!Priority) continue; // Malformed. 1615 Structors.push_back(Structor()); 1616 Structor &S = Structors.back(); 1617 S.Priority = Priority->getLimitedValue(65535); 1618 S.Func = CS->getOperand(1); 1619 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1620 S.ComdatKey = 1621 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1622 } 1623 1624 // Emit the function pointers in the target-specific order 1625 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1626 std::stable_sort(Structors.begin(), Structors.end(), 1627 [](const Structor &L, 1628 const Structor &R) { return L.Priority < R.Priority; }); 1629 for (Structor &S : Structors) { 1630 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1631 const MCSymbol *KeySym = nullptr; 1632 if (GlobalValue *GV = S.ComdatKey) { 1633 if (GV->hasAvailableExternallyLinkage()) 1634 // If the associated variable is available_externally, some other TU 1635 // will provide its dynamic initializer. 1636 continue; 1637 1638 KeySym = getSymbol(GV); 1639 } 1640 MCSection *OutputSection = 1641 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1642 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1643 OutStreamer->SwitchSection(OutputSection); 1644 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1645 EmitAlignment(Align); 1646 EmitXXStructor(DL, S.Func); 1647 } 1648 } 1649 1650 void AsmPrinter::EmitModuleIdents(Module &M) { 1651 if (!MAI->hasIdentDirective()) 1652 return; 1653 1654 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1655 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1656 const MDNode *N = NMD->getOperand(i); 1657 assert(N->getNumOperands() == 1 && 1658 "llvm.ident metadata entry can have only one operand"); 1659 const MDString *S = cast<MDString>(N->getOperand(0)); 1660 OutStreamer->EmitIdent(S->getString()); 1661 } 1662 } 1663 } 1664 1665 //===--------------------------------------------------------------------===// 1666 // Emission and print routines 1667 // 1668 1669 /// EmitInt8 - Emit a byte directive and value. 1670 /// 1671 void AsmPrinter::EmitInt8(int Value) const { 1672 OutStreamer->EmitIntValue(Value, 1); 1673 } 1674 1675 /// EmitInt16 - Emit a short directive and value. 1676 /// 1677 void AsmPrinter::EmitInt16(int Value) const { 1678 OutStreamer->EmitIntValue(Value, 2); 1679 } 1680 1681 /// EmitInt32 - Emit a long directive and value. 1682 /// 1683 void AsmPrinter::EmitInt32(int Value) const { 1684 OutStreamer->EmitIntValue(Value, 4); 1685 } 1686 1687 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1688 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1689 /// .set if it avoids relocations. 1690 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1691 unsigned Size) const { 1692 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1693 } 1694 1695 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1696 /// where the size in bytes of the directive is specified by Size and Label 1697 /// specifies the label. This implicitly uses .set if it is available. 1698 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1699 unsigned Size, 1700 bool IsSectionRelative) const { 1701 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1702 OutStreamer->EmitCOFFSecRel32(Label); 1703 return; 1704 } 1705 1706 // Emit Label+Offset (or just Label if Offset is zero) 1707 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1708 if (Offset) 1709 Expr = MCBinaryExpr::createAdd( 1710 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1711 1712 OutStreamer->EmitValue(Expr, Size); 1713 } 1714 1715 //===----------------------------------------------------------------------===// 1716 1717 // EmitAlignment - Emit an alignment directive to the specified power of 1718 // two boundary. For example, if you pass in 3 here, you will get an 8 1719 // byte alignment. If a global value is specified, and if that global has 1720 // an explicit alignment requested, it will override the alignment request 1721 // if required for correctness. 1722 // 1723 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1724 if (GV) 1725 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1726 1727 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1728 1729 assert(NumBits < 1730 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1731 "undefined behavior"); 1732 if (getCurrentSection()->getKind().isText()) 1733 OutStreamer->EmitCodeAlignment(1u << NumBits); 1734 else 1735 OutStreamer->EmitValueToAlignment(1u << NumBits); 1736 } 1737 1738 //===----------------------------------------------------------------------===// 1739 // Constant emission. 1740 //===----------------------------------------------------------------------===// 1741 1742 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1743 MCContext &Ctx = OutContext; 1744 1745 if (CV->isNullValue() || isa<UndefValue>(CV)) 1746 return MCConstantExpr::create(0, Ctx); 1747 1748 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1749 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1750 1751 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1752 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1753 1754 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1755 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1756 1757 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1758 if (!CE) { 1759 llvm_unreachable("Unknown constant value to lower!"); 1760 } 1761 1762 switch (CE->getOpcode()) { 1763 default: 1764 // If the code isn't optimized, there may be outstanding folding 1765 // opportunities. Attempt to fold the expression using DataLayout as a 1766 // last resort before giving up. 1767 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1768 if (C != CE) 1769 return lowerConstant(C); 1770 1771 // Otherwise report the problem to the user. 1772 { 1773 std::string S; 1774 raw_string_ostream OS(S); 1775 OS << "Unsupported expression in static initializer: "; 1776 CE->printAsOperand(OS, /*PrintType=*/false, 1777 !MF ? nullptr : MF->getFunction()->getParent()); 1778 report_fatal_error(OS.str()); 1779 } 1780 case Instruction::GetElementPtr: { 1781 // Generate a symbolic expression for the byte address 1782 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1783 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1784 1785 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1786 if (!OffsetAI) 1787 return Base; 1788 1789 int64_t Offset = OffsetAI.getSExtValue(); 1790 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1791 Ctx); 1792 } 1793 1794 case Instruction::Trunc: 1795 // We emit the value and depend on the assembler to truncate the generated 1796 // expression properly. This is important for differences between 1797 // blockaddress labels. Since the two labels are in the same function, it 1798 // is reasonable to treat their delta as a 32-bit value. 1799 // FALL THROUGH. 1800 case Instruction::BitCast: 1801 return lowerConstant(CE->getOperand(0)); 1802 1803 case Instruction::IntToPtr: { 1804 const DataLayout &DL = getDataLayout(); 1805 1806 // Handle casts to pointers by changing them into casts to the appropriate 1807 // integer type. This promotes constant folding and simplifies this code. 1808 Constant *Op = CE->getOperand(0); 1809 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1810 false/*ZExt*/); 1811 return lowerConstant(Op); 1812 } 1813 1814 case Instruction::PtrToInt: { 1815 const DataLayout &DL = getDataLayout(); 1816 1817 // Support only foldable casts to/from pointers that can be eliminated by 1818 // changing the pointer to the appropriately sized integer type. 1819 Constant *Op = CE->getOperand(0); 1820 Type *Ty = CE->getType(); 1821 1822 const MCExpr *OpExpr = lowerConstant(Op); 1823 1824 // We can emit the pointer value into this slot if the slot is an 1825 // integer slot equal to the size of the pointer. 1826 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1827 return OpExpr; 1828 1829 // Otherwise the pointer is smaller than the resultant integer, mask off 1830 // the high bits so we are sure to get a proper truncation if the input is 1831 // a constant expr. 1832 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1833 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1834 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1835 } 1836 1837 case Instruction::Sub: { 1838 GlobalValue *LHSGV; 1839 APInt LHSOffset; 1840 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1841 getDataLayout())) { 1842 GlobalValue *RHSGV; 1843 APInt RHSOffset; 1844 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1845 getDataLayout())) { 1846 const MCExpr *RelocExpr = getObjFileLowering().lowerRelativeReference( 1847 LHSGV, RHSGV, *Mang, TM); 1848 if (!RelocExpr) 1849 RelocExpr = MCBinaryExpr::createSub( 1850 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1851 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1852 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1853 if (Addend != 0) 1854 RelocExpr = MCBinaryExpr::createAdd( 1855 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1856 return RelocExpr; 1857 } 1858 } 1859 } 1860 // else fallthrough 1861 1862 // The MC library also has a right-shift operator, but it isn't consistently 1863 // signed or unsigned between different targets. 1864 case Instruction::Add: 1865 case Instruction::Mul: 1866 case Instruction::SDiv: 1867 case Instruction::SRem: 1868 case Instruction::Shl: 1869 case Instruction::And: 1870 case Instruction::Or: 1871 case Instruction::Xor: { 1872 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1873 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1874 switch (CE->getOpcode()) { 1875 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1876 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1877 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1878 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1879 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1880 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1881 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1882 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1883 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1884 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1885 } 1886 } 1887 } 1888 } 1889 1890 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1891 AsmPrinter &AP, 1892 const Constant *BaseCV = nullptr, 1893 uint64_t Offset = 0); 1894 1895 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1896 1897 /// isRepeatedByteSequence - Determine whether the given value is 1898 /// composed of a repeated sequence of identical bytes and return the 1899 /// byte value. If it is not a repeated sequence, return -1. 1900 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1901 StringRef Data = V->getRawDataValues(); 1902 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1903 char C = Data[0]; 1904 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1905 if (Data[i] != C) return -1; 1906 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1907 } 1908 1909 1910 /// isRepeatedByteSequence - Determine whether the given value is 1911 /// composed of a repeated sequence of identical bytes and return the 1912 /// byte value. If it is not a repeated sequence, return -1. 1913 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1914 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1915 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1916 assert(Size % 8 == 0); 1917 1918 // Extend the element to take zero padding into account. 1919 APInt Value = CI->getValue().zextOrSelf(Size); 1920 if (!Value.isSplat(8)) 1921 return -1; 1922 1923 return Value.zextOrTrunc(8).getZExtValue(); 1924 } 1925 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1926 // Make sure all array elements are sequences of the same repeated 1927 // byte. 1928 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1929 Constant *Op0 = CA->getOperand(0); 1930 int Byte = isRepeatedByteSequence(Op0, DL); 1931 if (Byte == -1) 1932 return -1; 1933 1934 // All array elements must be equal. 1935 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1936 if (CA->getOperand(i) != Op0) 1937 return -1; 1938 return Byte; 1939 } 1940 1941 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1942 return isRepeatedByteSequence(CDS); 1943 1944 return -1; 1945 } 1946 1947 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1948 const ConstantDataSequential *CDS, 1949 AsmPrinter &AP) { 1950 1951 // See if we can aggregate this into a .fill, if so, emit it as such. 1952 int Value = isRepeatedByteSequence(CDS, DL); 1953 if (Value != -1) { 1954 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1955 // Don't emit a 1-byte object as a .fill. 1956 if (Bytes > 1) 1957 return AP.OutStreamer->emitFill(Bytes, Value); 1958 } 1959 1960 // If this can be emitted with .ascii/.asciz, emit it as such. 1961 if (CDS->isString()) 1962 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1963 1964 // Otherwise, emit the values in successive locations. 1965 unsigned ElementByteSize = CDS->getElementByteSize(); 1966 if (isa<IntegerType>(CDS->getElementType())) { 1967 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1968 if (AP.isVerbose()) 1969 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1970 CDS->getElementAsInteger(i)); 1971 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1972 ElementByteSize); 1973 } 1974 } else { 1975 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1976 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1977 } 1978 1979 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1980 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1981 CDS->getNumElements(); 1982 if (unsigned Padding = Size - EmittedSize) 1983 AP.OutStreamer->EmitZeros(Padding); 1984 1985 } 1986 1987 static void emitGlobalConstantArray(const DataLayout &DL, 1988 const ConstantArray *CA, AsmPrinter &AP, 1989 const Constant *BaseCV, uint64_t Offset) { 1990 // See if we can aggregate some values. Make sure it can be 1991 // represented as a series of bytes of the constant value. 1992 int Value = isRepeatedByteSequence(CA, DL); 1993 1994 if (Value != -1) { 1995 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1996 AP.OutStreamer->emitFill(Bytes, Value); 1997 } 1998 else { 1999 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2000 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2001 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2002 } 2003 } 2004 } 2005 2006 static void emitGlobalConstantVector(const DataLayout &DL, 2007 const ConstantVector *CV, AsmPrinter &AP) { 2008 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2009 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2010 2011 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2012 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2013 CV->getType()->getNumElements(); 2014 if (unsigned Padding = Size - EmittedSize) 2015 AP.OutStreamer->EmitZeros(Padding); 2016 } 2017 2018 static void emitGlobalConstantStruct(const DataLayout &DL, 2019 const ConstantStruct *CS, AsmPrinter &AP, 2020 const Constant *BaseCV, uint64_t Offset) { 2021 // Print the fields in successive locations. Pad to align if needed! 2022 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2023 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2024 uint64_t SizeSoFar = 0; 2025 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2026 const Constant *Field = CS->getOperand(i); 2027 2028 // Print the actual field value. 2029 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2030 2031 // Check if padding is needed and insert one or more 0s. 2032 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2033 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2034 - Layout->getElementOffset(i)) - FieldSize; 2035 SizeSoFar += FieldSize + PadSize; 2036 2037 // Insert padding - this may include padding to increase the size of the 2038 // current field up to the ABI size (if the struct is not packed) as well 2039 // as padding to ensure that the next field starts at the right offset. 2040 AP.OutStreamer->EmitZeros(PadSize); 2041 } 2042 assert(SizeSoFar == Layout->getSizeInBytes() && 2043 "Layout of constant struct may be incorrect!"); 2044 } 2045 2046 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2047 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2048 2049 // First print a comment with what we think the original floating-point value 2050 // should have been. 2051 if (AP.isVerbose()) { 2052 SmallString<8> StrVal; 2053 CFP->getValueAPF().toString(StrVal); 2054 2055 if (CFP->getType()) 2056 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2057 else 2058 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2059 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2060 } 2061 2062 // Now iterate through the APInt chunks, emitting them in endian-correct 2063 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2064 // floats). 2065 unsigned NumBytes = API.getBitWidth() / 8; 2066 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2067 const uint64_t *p = API.getRawData(); 2068 2069 // PPC's long double has odd notions of endianness compared to how LLVM 2070 // handles it: p[0] goes first for *big* endian on PPC. 2071 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2072 int Chunk = API.getNumWords() - 1; 2073 2074 if (TrailingBytes) 2075 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2076 2077 for (; Chunk >= 0; --Chunk) 2078 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2079 } else { 2080 unsigned Chunk; 2081 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2082 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2083 2084 if (TrailingBytes) 2085 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2086 } 2087 2088 // Emit the tail padding for the long double. 2089 const DataLayout &DL = AP.getDataLayout(); 2090 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2091 DL.getTypeStoreSize(CFP->getType())); 2092 } 2093 2094 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2095 const DataLayout &DL = AP.getDataLayout(); 2096 unsigned BitWidth = CI->getBitWidth(); 2097 2098 // Copy the value as we may massage the layout for constants whose bit width 2099 // is not a multiple of 64-bits. 2100 APInt Realigned(CI->getValue()); 2101 uint64_t ExtraBits = 0; 2102 unsigned ExtraBitsSize = BitWidth & 63; 2103 2104 if (ExtraBitsSize) { 2105 // The bit width of the data is not a multiple of 64-bits. 2106 // The extra bits are expected to be at the end of the chunk of the memory. 2107 // Little endian: 2108 // * Nothing to be done, just record the extra bits to emit. 2109 // Big endian: 2110 // * Record the extra bits to emit. 2111 // * Realign the raw data to emit the chunks of 64-bits. 2112 if (DL.isBigEndian()) { 2113 // Basically the structure of the raw data is a chunk of 64-bits cells: 2114 // 0 1 BitWidth / 64 2115 // [chunk1][chunk2] ... [chunkN]. 2116 // The most significant chunk is chunkN and it should be emitted first. 2117 // However, due to the alignment issue chunkN contains useless bits. 2118 // Realign the chunks so that they contain only useless information: 2119 // ExtraBits 0 1 (BitWidth / 64) - 1 2120 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2121 ExtraBits = Realigned.getRawData()[0] & 2122 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2123 Realigned = Realigned.lshr(ExtraBitsSize); 2124 } else 2125 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2126 } 2127 2128 // We don't expect assemblers to support integer data directives 2129 // for more than 64 bits, so we emit the data in at most 64-bit 2130 // quantities at a time. 2131 const uint64_t *RawData = Realigned.getRawData(); 2132 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2133 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2134 AP.OutStreamer->EmitIntValue(Val, 8); 2135 } 2136 2137 if (ExtraBitsSize) { 2138 // Emit the extra bits after the 64-bits chunks. 2139 2140 // Emit a directive that fills the expected size. 2141 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2142 Size -= (BitWidth / 64) * 8; 2143 assert(Size && Size * 8 >= ExtraBitsSize && 2144 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2145 == ExtraBits && "Directive too small for extra bits."); 2146 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2147 } 2148 } 2149 2150 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2151 /// equivalent global, by a target specific GOT pc relative access to the 2152 /// final symbol. 2153 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2154 const Constant *BaseCst, 2155 uint64_t Offset) { 2156 // The global @foo below illustrates a global that uses a got equivalent. 2157 // 2158 // @bar = global i32 42 2159 // @gotequiv = private unnamed_addr constant i32* @bar 2160 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2161 // i64 ptrtoint (i32* @foo to i64)) 2162 // to i32) 2163 // 2164 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2165 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2166 // form: 2167 // 2168 // foo = cstexpr, where 2169 // cstexpr := <gotequiv> - "." + <cst> 2170 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2171 // 2172 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2173 // 2174 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2175 // gotpcrelcst := <offset from @foo base> + <cst> 2176 // 2177 MCValue MV; 2178 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2179 return; 2180 const MCSymbolRefExpr *SymA = MV.getSymA(); 2181 if (!SymA) 2182 return; 2183 2184 // Check that GOT equivalent symbol is cached. 2185 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2186 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2187 return; 2188 2189 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2190 if (!BaseGV) 2191 return; 2192 2193 // Check for a valid base symbol 2194 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2195 const MCSymbolRefExpr *SymB = MV.getSymB(); 2196 2197 if (!SymB || BaseSym != &SymB->getSymbol()) 2198 return; 2199 2200 // Make sure to match: 2201 // 2202 // gotpcrelcst := <offset from @foo base> + <cst> 2203 // 2204 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2205 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2206 // if the target knows how to encode it. 2207 // 2208 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2209 if (GOTPCRelCst < 0) 2210 return; 2211 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2212 return; 2213 2214 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2215 // 2216 // bar: 2217 // .long 42 2218 // gotequiv: 2219 // .quad bar 2220 // foo: 2221 // .long gotequiv - "." + <cst> 2222 // 2223 // is replaced by the target specific equivalent to: 2224 // 2225 // bar: 2226 // .long 42 2227 // foo: 2228 // .long bar@GOTPCREL+<gotpcrelcst> 2229 // 2230 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2231 const GlobalVariable *GV = Result.first; 2232 int NumUses = (int)Result.second; 2233 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2234 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2235 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2236 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2237 2238 // Update GOT equivalent usage information 2239 --NumUses; 2240 if (NumUses >= 0) 2241 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2242 } 2243 2244 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2245 AsmPrinter &AP, const Constant *BaseCV, 2246 uint64_t Offset) { 2247 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2248 2249 // Globals with sub-elements such as combinations of arrays and structs 2250 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2251 // constant symbol base and the current position with BaseCV and Offset. 2252 if (!BaseCV && CV->hasOneUse()) 2253 BaseCV = dyn_cast<Constant>(CV->user_back()); 2254 2255 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2256 return AP.OutStreamer->EmitZeros(Size); 2257 2258 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2259 switch (Size) { 2260 case 1: 2261 case 2: 2262 case 4: 2263 case 8: 2264 if (AP.isVerbose()) 2265 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2266 CI->getZExtValue()); 2267 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2268 return; 2269 default: 2270 emitGlobalConstantLargeInt(CI, AP); 2271 return; 2272 } 2273 } 2274 2275 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2276 return emitGlobalConstantFP(CFP, AP); 2277 2278 if (isa<ConstantPointerNull>(CV)) { 2279 AP.OutStreamer->EmitIntValue(0, Size); 2280 return; 2281 } 2282 2283 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2284 return emitGlobalConstantDataSequential(DL, CDS, AP); 2285 2286 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2287 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2288 2289 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2290 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2291 2292 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2293 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2294 // vectors). 2295 if (CE->getOpcode() == Instruction::BitCast) 2296 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2297 2298 if (Size > 8) { 2299 // If the constant expression's size is greater than 64-bits, then we have 2300 // to emit the value in chunks. Try to constant fold the value and emit it 2301 // that way. 2302 Constant *New = ConstantFoldConstantExpression(CE, DL); 2303 if (New && New != CE) 2304 return emitGlobalConstantImpl(DL, New, AP); 2305 } 2306 } 2307 2308 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2309 return emitGlobalConstantVector(DL, V, AP); 2310 2311 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2312 // thread the streamer with EmitValue. 2313 const MCExpr *ME = AP.lowerConstant(CV); 2314 2315 // Since lowerConstant already folded and got rid of all IR pointer and 2316 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2317 // directly. 2318 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2319 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2320 2321 AP.OutStreamer->EmitValue(ME, Size); 2322 } 2323 2324 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2325 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2326 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2327 if (Size) 2328 emitGlobalConstantImpl(DL, CV, *this); 2329 else if (MAI->hasSubsectionsViaSymbols()) { 2330 // If the global has zero size, emit a single byte so that two labels don't 2331 // look like they are at the same location. 2332 OutStreamer->EmitIntValue(0, 1); 2333 } 2334 } 2335 2336 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2337 // Target doesn't support this yet! 2338 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2339 } 2340 2341 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2342 if (Offset > 0) 2343 OS << '+' << Offset; 2344 else if (Offset < 0) 2345 OS << Offset; 2346 } 2347 2348 //===----------------------------------------------------------------------===// 2349 // Symbol Lowering Routines. 2350 //===----------------------------------------------------------------------===// 2351 2352 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2353 return OutContext.createTempSymbol(Name, true); 2354 } 2355 2356 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2357 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2358 } 2359 2360 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2361 return MMI->getAddrLabelSymbol(BB); 2362 } 2363 2364 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2365 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2366 const DataLayout &DL = getDataLayout(); 2367 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2368 "CPI" + Twine(getFunctionNumber()) + "_" + 2369 Twine(CPID)); 2370 } 2371 2372 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2373 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2374 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2375 } 2376 2377 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2378 /// FIXME: privatize to AsmPrinter. 2379 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2380 const DataLayout &DL = getDataLayout(); 2381 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2382 Twine(getFunctionNumber()) + "_" + 2383 Twine(UID) + "_set_" + Twine(MBBID)); 2384 } 2385 2386 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2387 StringRef Suffix) const { 2388 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2389 TM); 2390 } 2391 2392 /// Return the MCSymbol for the specified ExternalSymbol. 2393 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2394 SmallString<60> NameStr; 2395 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2396 return OutContext.getOrCreateSymbol(NameStr); 2397 } 2398 2399 2400 2401 /// PrintParentLoopComment - Print comments about parent loops of this one. 2402 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2403 unsigned FunctionNumber) { 2404 if (!Loop) return; 2405 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2406 OS.indent(Loop->getLoopDepth()*2) 2407 << "Parent Loop BB" << FunctionNumber << "_" 2408 << Loop->getHeader()->getNumber() 2409 << " Depth=" << Loop->getLoopDepth() << '\n'; 2410 } 2411 2412 2413 /// PrintChildLoopComment - Print comments about child loops within 2414 /// the loop for this basic block, with nesting. 2415 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2416 unsigned FunctionNumber) { 2417 // Add child loop information 2418 for (const MachineLoop *CL : *Loop) { 2419 OS.indent(CL->getLoopDepth()*2) 2420 << "Child Loop BB" << FunctionNumber << "_" 2421 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2422 << '\n'; 2423 PrintChildLoopComment(OS, CL, FunctionNumber); 2424 } 2425 } 2426 2427 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2428 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2429 const MachineLoopInfo *LI, 2430 const AsmPrinter &AP) { 2431 // Add loop depth information 2432 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2433 if (!Loop) return; 2434 2435 MachineBasicBlock *Header = Loop->getHeader(); 2436 assert(Header && "No header for loop"); 2437 2438 // If this block is not a loop header, just print out what is the loop header 2439 // and return. 2440 if (Header != &MBB) { 2441 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2442 Twine(AP.getFunctionNumber())+"_" + 2443 Twine(Loop->getHeader()->getNumber())+ 2444 " Depth="+Twine(Loop->getLoopDepth())); 2445 return; 2446 } 2447 2448 // Otherwise, it is a loop header. Print out information about child and 2449 // parent loops. 2450 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2451 2452 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2453 2454 OS << "=>"; 2455 OS.indent(Loop->getLoopDepth()*2-2); 2456 2457 OS << "This "; 2458 if (Loop->empty()) 2459 OS << "Inner "; 2460 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2461 2462 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2463 } 2464 2465 2466 /// EmitBasicBlockStart - This method prints the label for the specified 2467 /// MachineBasicBlock, an alignment (if present) and a comment describing 2468 /// it if appropriate. 2469 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2470 // End the previous funclet and start a new one. 2471 if (MBB.isEHFuncletEntry()) { 2472 for (const HandlerInfo &HI : Handlers) { 2473 HI.Handler->endFunclet(); 2474 HI.Handler->beginFunclet(MBB); 2475 } 2476 } 2477 2478 // Emit an alignment directive for this block, if needed. 2479 if (unsigned Align = MBB.getAlignment()) 2480 EmitAlignment(Align); 2481 2482 // If the block has its address taken, emit any labels that were used to 2483 // reference the block. It is possible that there is more than one label 2484 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2485 // the references were generated. 2486 if (MBB.hasAddressTaken()) { 2487 const BasicBlock *BB = MBB.getBasicBlock(); 2488 if (isVerbose()) 2489 OutStreamer->AddComment("Block address taken"); 2490 2491 // MBBs can have their address taken as part of CodeGen without having 2492 // their corresponding BB's address taken in IR 2493 if (BB->hasAddressTaken()) 2494 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2495 OutStreamer->EmitLabel(Sym); 2496 } 2497 2498 // Print some verbose block comments. 2499 if (isVerbose()) { 2500 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2501 if (BB->hasName()) { 2502 BB->printAsOperand(OutStreamer->GetCommentOS(), 2503 /*PrintType=*/false, BB->getModule()); 2504 OutStreamer->GetCommentOS() << '\n'; 2505 } 2506 } 2507 emitBasicBlockLoopComments(MBB, LI, *this); 2508 } 2509 2510 // Print the main label for the block. 2511 if (MBB.pred_empty() || 2512 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2513 if (isVerbose()) { 2514 // NOTE: Want this comment at start of line, don't emit with AddComment. 2515 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2516 } 2517 } else { 2518 OutStreamer->EmitLabel(MBB.getSymbol()); 2519 } 2520 } 2521 2522 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2523 bool IsDefinition) const { 2524 MCSymbolAttr Attr = MCSA_Invalid; 2525 2526 switch (Visibility) { 2527 default: break; 2528 case GlobalValue::HiddenVisibility: 2529 if (IsDefinition) 2530 Attr = MAI->getHiddenVisibilityAttr(); 2531 else 2532 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2533 break; 2534 case GlobalValue::ProtectedVisibility: 2535 Attr = MAI->getProtectedVisibilityAttr(); 2536 break; 2537 } 2538 2539 if (Attr != MCSA_Invalid) 2540 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2541 } 2542 2543 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2544 /// exactly one predecessor and the control transfer mechanism between 2545 /// the predecessor and this block is a fall-through. 2546 bool AsmPrinter:: 2547 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2548 // If this is a landing pad, it isn't a fall through. If it has no preds, 2549 // then nothing falls through to it. 2550 if (MBB->isEHPad() || MBB->pred_empty()) 2551 return false; 2552 2553 // If there isn't exactly one predecessor, it can't be a fall through. 2554 if (MBB->pred_size() > 1) 2555 return false; 2556 2557 // The predecessor has to be immediately before this block. 2558 MachineBasicBlock *Pred = *MBB->pred_begin(); 2559 if (!Pred->isLayoutSuccessor(MBB)) 2560 return false; 2561 2562 // If the block is completely empty, then it definitely does fall through. 2563 if (Pred->empty()) 2564 return true; 2565 2566 // Check the terminators in the previous blocks 2567 for (const auto &MI : Pred->terminators()) { 2568 // If it is not a simple branch, we are in a table somewhere. 2569 if (!MI.isBranch() || MI.isIndirectBranch()) 2570 return false; 2571 2572 // If we are the operands of one of the branches, this is not a fall 2573 // through. Note that targets with delay slots will usually bundle 2574 // terminators with the delay slot instruction. 2575 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2576 if (OP->isJTI()) 2577 return false; 2578 if (OP->isMBB() && OP->getMBB() == MBB) 2579 return false; 2580 } 2581 } 2582 2583 return true; 2584 } 2585 2586 2587 2588 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2589 if (!S.usesMetadata()) 2590 return nullptr; 2591 2592 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2593 " stackmap formats, please see the documentation for a description of" 2594 " the default format. If you really need a custom serialized format," 2595 " please file a bug"); 2596 2597 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2598 gcp_map_type::iterator GCPI = GCMap.find(&S); 2599 if (GCPI != GCMap.end()) 2600 return GCPI->second.get(); 2601 2602 const char *Name = S.getName().c_str(); 2603 2604 for (GCMetadataPrinterRegistry::iterator 2605 I = GCMetadataPrinterRegistry::begin(), 2606 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2607 if (strcmp(Name, I->getName()) == 0) { 2608 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2609 GMP->S = &S; 2610 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2611 return IterBool.first->second.get(); 2612 } 2613 2614 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2615 } 2616 2617 /// Pin vtable to this file. 2618 AsmPrinterHandler::~AsmPrinterHandler() {} 2619 2620 void AsmPrinterHandler::markFunctionEnd() {} 2621