1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run 11 // both before and after the DAG is legalized. 12 // 13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is 14 // primarily intended to handle simplification opportunities that are implicit 15 // in the LLVM IR and exposed by the various codegen lowering phases. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetOptions.h" 39 #include "llvm/Target/TargetRegisterInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 #define DEBUG_TYPE "dagcombine" 45 46 STATISTIC(NodesCombined , "Number of dag nodes combined"); 47 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); 48 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); 49 STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); 50 STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); 51 STATISTIC(SlicedLoads, "Number of load sliced"); 52 53 namespace { 54 static cl::opt<bool> 55 CombinerAA("combiner-alias-analysis", cl::Hidden, 56 cl::desc("Enable DAG combiner alias-analysis heuristics")); 57 58 static cl::opt<bool> 59 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, 60 cl::desc("Enable DAG combiner's use of IR alias analysis")); 61 62 static cl::opt<bool> 63 UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), 64 cl::desc("Enable DAG combiner's use of TBAA")); 65 66 #ifndef NDEBUG 67 static cl::opt<std::string> 68 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, 69 cl::desc("Only use DAG-combiner alias analysis in this" 70 " function")); 71 #endif 72 73 /// Hidden option to stress test load slicing, i.e., when this option 74 /// is enabled, load slicing bypasses most of its profitability guards. 75 static cl::opt<bool> 76 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, 77 cl::desc("Bypass the profitability model of load " 78 "slicing"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), 83 cl::desc("DAG combiner may split indexing from loads")); 84 85 //------------------------------ DAGCombiner ---------------------------------// 86 87 class DAGCombiner { 88 SelectionDAG &DAG; 89 const TargetLowering &TLI; 90 CombineLevel Level; 91 CodeGenOpt::Level OptLevel; 92 bool LegalOperations; 93 bool LegalTypes; 94 bool ForCodeSize; 95 96 /// \brief Worklist of all of the nodes that need to be simplified. 97 /// 98 /// This must behave as a stack -- new nodes to process are pushed onto the 99 /// back and when processing we pop off of the back. 100 /// 101 /// The worklist will not contain duplicates but may contain null entries 102 /// due to nodes being deleted from the underlying DAG. 103 SmallVector<SDNode *, 64> Worklist; 104 105 /// \brief Mapping from an SDNode to its position on the worklist. 106 /// 107 /// This is used to find and remove nodes from the worklist (by nulling 108 /// them) when they are deleted from the underlying DAG. It relies on 109 /// stable indices of nodes within the worklist. 110 DenseMap<SDNode *, unsigned> WorklistMap; 111 112 /// \brief Set of nodes which have been combined (at least once). 113 /// 114 /// This is used to allow us to reliably add any operands of a DAG node 115 /// which have not yet been combined to the worklist. 116 SmallPtrSet<SDNode *, 32> CombinedNodes; 117 118 // AA - Used for DAG load/store alias analysis. 119 AliasAnalysis &AA; 120 121 /// When an instruction is simplified, add all users of the instruction to 122 /// the work lists because they might get more simplified now. 123 void AddUsersToWorklist(SDNode *N) { 124 for (SDNode *Node : N->uses()) 125 AddToWorklist(Node); 126 } 127 128 /// Call the node-specific routine that folds each particular type of node. 129 SDValue visit(SDNode *N); 130 131 public: 132 /// Add to the worklist making sure its instance is at the back (next to be 133 /// processed.) 134 void AddToWorklist(SDNode *N) { 135 // Skip handle nodes as they can't usefully be combined and confuse the 136 // zero-use deletion strategy. 137 if (N->getOpcode() == ISD::HANDLENODE) 138 return; 139 140 if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) 141 Worklist.push_back(N); 142 } 143 144 /// Remove all instances of N from the worklist. 145 void removeFromWorklist(SDNode *N) { 146 CombinedNodes.erase(N); 147 148 auto It = WorklistMap.find(N); 149 if (It == WorklistMap.end()) 150 return; // Not in the worklist. 151 152 // Null out the entry rather than erasing it to avoid a linear operation. 153 Worklist[It->second] = nullptr; 154 WorklistMap.erase(It); 155 } 156 157 void deleteAndRecombine(SDNode *N); 158 bool recursivelyDeleteUnusedNodes(SDNode *N); 159 160 /// Replaces all uses of the results of one DAG node with new values. 161 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 162 bool AddTo = true); 163 164 /// Replaces all uses of the results of one DAG node with new values. 165 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { 166 return CombineTo(N, &Res, 1, AddTo); 167 } 168 169 /// Replaces all uses of the results of one DAG node with new values. 170 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, 171 bool AddTo = true) { 172 SDValue To[] = { Res0, Res1 }; 173 return CombineTo(N, To, 2, AddTo); 174 } 175 176 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); 177 178 private: 179 180 /// Check the specified integer node value to see if it can be simplified or 181 /// if things it uses can be simplified by bit propagation. 182 /// If so, return true. 183 bool SimplifyDemandedBits(SDValue Op) { 184 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); 185 APInt Demanded = APInt::getAllOnesValue(BitWidth); 186 return SimplifyDemandedBits(Op, Demanded); 187 } 188 189 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); 190 191 bool CombineToPreIndexedLoadStore(SDNode *N); 192 bool CombineToPostIndexedLoadStore(SDNode *N); 193 SDValue SplitIndexingFromLoad(LoadSDNode *LD); 194 bool SliceUpLoad(SDNode *N); 195 196 /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed 197 /// load. 198 /// 199 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. 200 /// \param InVecVT type of the input vector to EVE with bitcasts resolved. 201 /// \param EltNo index of the vector element to load. 202 /// \param OriginalLoad load that EVE came from to be replaced. 203 /// \returns EVE on success SDValue() on failure. 204 SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 205 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad); 206 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); 207 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); 208 SDValue SExtPromoteOperand(SDValue Op, EVT PVT); 209 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); 210 SDValue PromoteIntBinOp(SDValue Op); 211 SDValue PromoteIntShiftOp(SDValue Op); 212 SDValue PromoteExtend(SDValue Op); 213 bool PromoteLoad(SDValue Op); 214 215 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, SDValue Trunc, 216 SDValue ExtLoad, const SDLoc &DL, 217 ISD::NodeType ExtType); 218 219 /// Call the node-specific routine that knows how to fold each 220 /// particular type of node. If that doesn't do anything, try the 221 /// target-specific DAG combines. 222 SDValue combine(SDNode *N); 223 224 // Visitation implementation - Implement dag node combining for different 225 // node types. The semantics are as follows: 226 // Return Value: 227 // SDValue.getNode() == 0 - No change was made 228 // SDValue.getNode() == N - N was replaced, is dead and has been handled. 229 // otherwise - N should be replaced by the returned Operand. 230 // 231 SDValue visitTokenFactor(SDNode *N); 232 SDValue visitMERGE_VALUES(SDNode *N); 233 SDValue visitADD(SDNode *N); 234 SDValue visitSUB(SDNode *N); 235 SDValue visitADDC(SDNode *N); 236 SDValue visitSUBC(SDNode *N); 237 SDValue visitADDE(SDNode *N); 238 SDValue visitSUBE(SDNode *N); 239 SDValue visitMUL(SDNode *N); 240 SDValue useDivRem(SDNode *N); 241 SDValue visitSDIV(SDNode *N); 242 SDValue visitUDIV(SDNode *N); 243 SDValue visitREM(SDNode *N); 244 SDValue visitMULHU(SDNode *N); 245 SDValue visitMULHS(SDNode *N); 246 SDValue visitSMUL_LOHI(SDNode *N); 247 SDValue visitUMUL_LOHI(SDNode *N); 248 SDValue visitSMULO(SDNode *N); 249 SDValue visitUMULO(SDNode *N); 250 SDValue visitIMINMAX(SDNode *N); 251 SDValue visitAND(SDNode *N); 252 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference); 253 SDValue visitOR(SDNode *N); 254 SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference); 255 SDValue visitXOR(SDNode *N); 256 SDValue SimplifyVBinOp(SDNode *N); 257 SDValue visitSHL(SDNode *N); 258 SDValue visitSRA(SDNode *N); 259 SDValue visitSRL(SDNode *N); 260 SDValue visitRotate(SDNode *N); 261 SDValue visitBSWAP(SDNode *N); 262 SDValue visitBITREVERSE(SDNode *N); 263 SDValue visitCTLZ(SDNode *N); 264 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); 265 SDValue visitCTTZ(SDNode *N); 266 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); 267 SDValue visitCTPOP(SDNode *N); 268 SDValue visitSELECT(SDNode *N); 269 SDValue visitVSELECT(SDNode *N); 270 SDValue visitSELECT_CC(SDNode *N); 271 SDValue visitSETCC(SDNode *N); 272 SDValue visitSETCCE(SDNode *N); 273 SDValue visitSIGN_EXTEND(SDNode *N); 274 SDValue visitZERO_EXTEND(SDNode *N); 275 SDValue visitANY_EXTEND(SDNode *N); 276 SDValue visitSIGN_EXTEND_INREG(SDNode *N); 277 SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); 278 SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); 279 SDValue visitTRUNCATE(SDNode *N); 280 SDValue visitBITCAST(SDNode *N); 281 SDValue visitBUILD_PAIR(SDNode *N); 282 SDValue visitFADD(SDNode *N); 283 SDValue visitFSUB(SDNode *N); 284 SDValue visitFMUL(SDNode *N); 285 SDValue visitFMA(SDNode *N); 286 SDValue visitFDIV(SDNode *N); 287 SDValue visitFREM(SDNode *N); 288 SDValue visitFSQRT(SDNode *N); 289 SDValue visitFCOPYSIGN(SDNode *N); 290 SDValue visitSINT_TO_FP(SDNode *N); 291 SDValue visitUINT_TO_FP(SDNode *N); 292 SDValue visitFP_TO_SINT(SDNode *N); 293 SDValue visitFP_TO_UINT(SDNode *N); 294 SDValue visitFP_ROUND(SDNode *N); 295 SDValue visitFP_ROUND_INREG(SDNode *N); 296 SDValue visitFP_EXTEND(SDNode *N); 297 SDValue visitFNEG(SDNode *N); 298 SDValue visitFABS(SDNode *N); 299 SDValue visitFCEIL(SDNode *N); 300 SDValue visitFTRUNC(SDNode *N); 301 SDValue visitFFLOOR(SDNode *N); 302 SDValue visitFMINNUM(SDNode *N); 303 SDValue visitFMAXNUM(SDNode *N); 304 SDValue visitBRCOND(SDNode *N); 305 SDValue visitBR_CC(SDNode *N); 306 SDValue visitLOAD(SDNode *N); 307 308 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); 309 SDValue replaceStoreOfFPConstant(StoreSDNode *ST); 310 311 SDValue visitSTORE(SDNode *N); 312 SDValue visitINSERT_VECTOR_ELT(SDNode *N); 313 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); 314 SDValue visitBUILD_VECTOR(SDNode *N); 315 SDValue visitCONCAT_VECTORS(SDNode *N); 316 SDValue visitEXTRACT_SUBVECTOR(SDNode *N); 317 SDValue visitVECTOR_SHUFFLE(SDNode *N); 318 SDValue visitSCALAR_TO_VECTOR(SDNode *N); 319 SDValue visitINSERT_SUBVECTOR(SDNode *N); 320 SDValue visitMLOAD(SDNode *N); 321 SDValue visitMSTORE(SDNode *N); 322 SDValue visitMGATHER(SDNode *N); 323 SDValue visitMSCATTER(SDNode *N); 324 SDValue visitFP_TO_FP16(SDNode *N); 325 SDValue visitFP16_TO_FP(SDNode *N); 326 327 SDValue visitFADDForFMACombine(SDNode *N); 328 SDValue visitFSUBForFMACombine(SDNode *N); 329 SDValue visitFMULForFMACombine(SDNode *N); 330 331 SDValue XformToShuffleWithZero(SDNode *N); 332 SDValue ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue LHS, 333 SDValue RHS); 334 335 SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt); 336 337 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); 338 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); 339 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); 340 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 341 SDValue N2, SDValue N3, ISD::CondCode CC, 342 bool NotExtCompare = false); 343 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, 344 const SDLoc &DL, bool foldBooleans = true); 345 346 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 347 SDValue &CC) const; 348 bool isOneUseSetCC(SDValue N) const; 349 350 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 351 unsigned HiOp); 352 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); 353 SDValue CombineExtLoad(SDNode *N); 354 SDValue combineRepeatedFPDivisors(SDNode *N); 355 SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); 356 SDValue BuildSDIV(SDNode *N); 357 SDValue BuildSDIVPow2(SDNode *N); 358 SDValue BuildUDIV(SDNode *N); 359 SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags); 360 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags); 361 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags); 362 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, bool Recip); 363 SDValue buildSqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations, 364 SDNodeFlags *Flags, bool Reciprocal); 365 SDValue buildSqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations, 366 SDNodeFlags *Flags, bool Reciprocal); 367 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 368 bool DemandHighBits = true); 369 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); 370 SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, 371 SDValue InnerPos, SDValue InnerNeg, 372 unsigned PosOpcode, unsigned NegOpcode, 373 const SDLoc &DL); 374 SDNode *MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); 375 SDValue ReduceLoadWidth(SDNode *N); 376 SDValue ReduceLoadOpStoreWidth(SDNode *N); 377 SDValue TransformFPLoadStorePair(SDNode *N); 378 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); 379 SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N); 380 381 SDValue GetDemandedBits(SDValue V, const APInt &Mask); 382 383 /// Walk up chain skipping non-aliasing memory nodes, 384 /// looking for aliasing nodes and adding them to the Aliases vector. 385 void GatherAllAliases(SDNode *N, SDValue OriginalChain, 386 SmallVectorImpl<SDValue> &Aliases); 387 388 /// Return true if there is any possibility that the two addresses overlap. 389 bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const; 390 391 /// Walk up chain skipping non-aliasing memory nodes, looking for a better 392 /// chain (aliasing node.) 393 SDValue FindBetterChain(SDNode *N, SDValue Chain); 394 395 /// Try to replace a store and any possibly adjacent stores on 396 /// consecutive chains with better chains. Return true only if St is 397 /// replaced. 398 /// 399 /// Notice that other chains may still be replaced even if the function 400 /// returns false. 401 bool findBetterNeighborChains(StoreSDNode *St); 402 403 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 404 bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask); 405 406 /// Holds a pointer to an LSBaseSDNode as well as information on where it 407 /// is located in a sequence of memory operations connected by a chain. 408 struct MemOpLink { 409 MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq): 410 MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { } 411 // Ptr to the mem node. 412 LSBaseSDNode *MemNode; 413 // Offset from the base ptr. 414 int64_t OffsetFromBase; 415 // What is the sequence number of this mem node. 416 // Lowest mem operand in the DAG starts at zero. 417 unsigned SequenceNum; 418 }; 419 420 /// This is a helper function for visitMUL to check the profitability 421 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 422 /// MulNode is the original multiply, AddNode is (add x, c1), 423 /// and ConstNode is c2. 424 bool isMulAddWithConstProfitable(SDNode *MulNode, 425 SDValue &AddNode, 426 SDValue &ConstNode); 427 428 /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a 429 /// constant build_vector of the stored constant values in Stores. 430 SDValue getMergedConstantVectorStore(SelectionDAG &DAG, const SDLoc &SL, 431 ArrayRef<MemOpLink> Stores, 432 SmallVectorImpl<SDValue> &Chains, 433 EVT Ty) const; 434 435 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns 436 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns 437 /// the type of the loaded value to be extended. LoadedVT returns the type 438 /// of the original loaded value. NarrowLoad returns whether the load would 439 /// need to be narrowed in order to match. 440 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 441 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 442 bool &NarrowLoad); 443 444 /// This is a helper function for MergeConsecutiveStores. When the source 445 /// elements of the consecutive stores are all constants or all extracted 446 /// vector elements, try to merge them into one larger store. 447 /// \return True if a merged store was created. 448 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, 449 EVT MemVT, unsigned NumStores, 450 bool IsConstantSrc, bool UseVector); 451 452 /// This is a helper function for MergeConsecutiveStores. 453 /// Stores that may be merged are placed in StoreNodes. 454 /// Loads that may alias with those stores are placed in AliasLoadNodes. 455 void getStoreMergeAndAliasCandidates( 456 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 457 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes); 458 459 /// Helper function for MergeConsecutiveStores. Checks if 460 /// Candidate stores have indirect dependency through their 461 /// operands. \return True if safe to merge 462 bool checkMergeStoreCandidatesForDependencies( 463 SmallVectorImpl<MemOpLink> &StoreNodes); 464 465 /// Merge consecutive store operations into a wide store. 466 /// This optimization uses wide integers or vectors when possible. 467 /// \return True if some memory operations were changed. 468 bool MergeConsecutiveStores(StoreSDNode *N); 469 470 /// \brief Try to transform a truncation where C is a constant: 471 /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) 472 /// 473 /// \p N needs to be a truncation and its first operand an AND. Other 474 /// requirements are checked by the function (e.g. that trunc is 475 /// single-use) and if missed an empty SDValue is returned. 476 SDValue distributeTruncateThroughAnd(SDNode *N); 477 478 public: 479 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) 480 : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes), 481 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) { 482 ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize(); 483 } 484 485 /// Runs the dag combiner on all nodes in the work list 486 void Run(CombineLevel AtLevel); 487 488 SelectionDAG &getDAG() const { return DAG; } 489 490 /// Returns a type large enough to hold any valid shift amount - before type 491 /// legalization these can be huge. 492 EVT getShiftAmountTy(EVT LHSTy) { 493 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 494 if (LHSTy.isVector()) 495 return LHSTy; 496 auto &DL = DAG.getDataLayout(); 497 return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy) 498 : TLI.getPointerTy(DL); 499 } 500 501 /// This method returns true if we are running before type legalization or 502 /// if the specified VT is legal. 503 bool isTypeLegal(const EVT &VT) { 504 if (!LegalTypes) return true; 505 return TLI.isTypeLegal(VT); 506 } 507 508 /// Convenience wrapper around TargetLowering::getSetCCResultType 509 EVT getSetCCResultType(EVT VT) const { 510 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 511 } 512 }; 513 } 514 515 516 namespace { 517 /// This class is a DAGUpdateListener that removes any deleted 518 /// nodes from the worklist. 519 class WorklistRemover : public SelectionDAG::DAGUpdateListener { 520 DAGCombiner &DC; 521 public: 522 explicit WorklistRemover(DAGCombiner &dc) 523 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} 524 525 void NodeDeleted(SDNode *N, SDNode *E) override { 526 DC.removeFromWorklist(N); 527 } 528 }; 529 } 530 531 //===----------------------------------------------------------------------===// 532 // TargetLowering::DAGCombinerInfo implementation 533 //===----------------------------------------------------------------------===// 534 535 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { 536 ((DAGCombiner*)DC)->AddToWorklist(N); 537 } 538 539 void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) { 540 ((DAGCombiner*)DC)->removeFromWorklist(N); 541 } 542 543 SDValue TargetLowering::DAGCombinerInfo:: 544 CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { 545 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); 546 } 547 548 SDValue TargetLowering::DAGCombinerInfo:: 549 CombineTo(SDNode *N, SDValue Res, bool AddTo) { 550 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); 551 } 552 553 554 SDValue TargetLowering::DAGCombinerInfo:: 555 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { 556 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); 557 } 558 559 void TargetLowering::DAGCombinerInfo:: 560 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 561 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); 562 } 563 564 //===----------------------------------------------------------------------===// 565 // Helper Functions 566 //===----------------------------------------------------------------------===// 567 568 void DAGCombiner::deleteAndRecombine(SDNode *N) { 569 removeFromWorklist(N); 570 571 // If the operands of this node are only used by the node, they will now be 572 // dead. Make sure to re-visit them and recursively delete dead nodes. 573 for (const SDValue &Op : N->ops()) 574 // For an operand generating multiple values, one of the values may 575 // become dead allowing further simplification (e.g. split index 576 // arithmetic from an indexed load). 577 if (Op->hasOneUse() || Op->getNumValues() > 1) 578 AddToWorklist(Op.getNode()); 579 580 DAG.DeleteNode(N); 581 } 582 583 /// Return 1 if we can compute the negated form of the specified expression for 584 /// the same cost as the expression itself, or 2 if we can compute the negated 585 /// form more cheaply than the expression itself. 586 static char isNegatibleForFree(SDValue Op, bool LegalOperations, 587 const TargetLowering &TLI, 588 const TargetOptions *Options, 589 unsigned Depth = 0) { 590 // fneg is removable even if it has multiple uses. 591 if (Op.getOpcode() == ISD::FNEG) return 2; 592 593 // Don't allow anything with multiple uses. 594 if (!Op.hasOneUse()) return 0; 595 596 // Don't recurse exponentially. 597 if (Depth > 6) return 0; 598 599 switch (Op.getOpcode()) { 600 default: return false; 601 case ISD::ConstantFP: 602 // Don't invert constant FP values after legalize. The negated constant 603 // isn't necessarily legal. 604 return LegalOperations ? 0 : 1; 605 case ISD::FADD: 606 // FIXME: determine better conditions for this xform. 607 if (!Options->UnsafeFPMath) return 0; 608 609 // After operation legalization, it might not be legal to create new FSUBs. 610 if (LegalOperations && 611 !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) 612 return 0; 613 614 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 615 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 616 Options, Depth + 1)) 617 return V; 618 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 619 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 620 Depth + 1); 621 case ISD::FSUB: 622 // We can't turn -(A-B) into B-A when we honor signed zeros. 623 if (!Options->UnsafeFPMath) return 0; 624 625 // fold (fneg (fsub A, B)) -> (fsub B, A) 626 return 1; 627 628 case ISD::FMUL: 629 case ISD::FDIV: 630 if (Options->HonorSignDependentRoundingFPMath()) return 0; 631 632 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 633 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, 634 Options, Depth + 1)) 635 return V; 636 637 return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options, 638 Depth + 1); 639 640 case ISD::FP_EXTEND: 641 case ISD::FP_ROUND: 642 case ISD::FSIN: 643 return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options, 644 Depth + 1); 645 } 646 } 647 648 /// If isNegatibleForFree returns true, return the newly negated expression. 649 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, 650 bool LegalOperations, unsigned Depth = 0) { 651 const TargetOptions &Options = DAG.getTarget().Options; 652 // fneg is removable even if it has multiple uses. 653 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); 654 655 // Don't allow anything with multiple uses. 656 assert(Op.hasOneUse() && "Unknown reuse!"); 657 658 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); 659 660 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 661 662 switch (Op.getOpcode()) { 663 default: llvm_unreachable("Unknown code"); 664 case ISD::ConstantFP: { 665 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 666 V.changeSign(); 667 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 668 } 669 case ISD::FADD: 670 // FIXME: determine better conditions for this xform. 671 assert(Options.UnsafeFPMath); 672 673 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 674 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 675 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 676 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 677 GetNegatedExpression(Op.getOperand(0), DAG, 678 LegalOperations, Depth+1), 679 Op.getOperand(1), Flags); 680 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 681 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 682 GetNegatedExpression(Op.getOperand(1), DAG, 683 LegalOperations, Depth+1), 684 Op.getOperand(0), Flags); 685 case ISD::FSUB: 686 // We can't turn -(A-B) into B-A when we honor signed zeros. 687 assert(Options.UnsafeFPMath); 688 689 // fold (fneg (fsub 0, B)) -> B 690 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) 691 if (N0CFP->isZero()) 692 return Op.getOperand(1); 693 694 // fold (fneg (fsub A, B)) -> (fsub B, A) 695 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 696 Op.getOperand(1), Op.getOperand(0), Flags); 697 698 case ISD::FMUL: 699 case ISD::FDIV: 700 assert(!Options.HonorSignDependentRoundingFPMath()); 701 702 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 703 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, 704 DAG.getTargetLoweringInfo(), &Options, Depth+1)) 705 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 706 GetNegatedExpression(Op.getOperand(0), DAG, 707 LegalOperations, Depth+1), 708 Op.getOperand(1), Flags); 709 710 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 711 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 712 Op.getOperand(0), 713 GetNegatedExpression(Op.getOperand(1), DAG, 714 LegalOperations, Depth+1), Flags); 715 716 case ISD::FP_EXTEND: 717 case ISD::FSIN: 718 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 719 GetNegatedExpression(Op.getOperand(0), DAG, 720 LegalOperations, Depth+1)); 721 case ISD::FP_ROUND: 722 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 723 GetNegatedExpression(Op.getOperand(0), DAG, 724 LegalOperations, Depth+1), 725 Op.getOperand(1)); 726 } 727 } 728 729 // Return true if this node is a setcc, or is a select_cc 730 // that selects between the target values used for true and false, making it 731 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to 732 // the appropriate nodes based on the type of node we are checking. This 733 // simplifies life a bit for the callers. 734 bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, 735 SDValue &CC) const { 736 if (N.getOpcode() == ISD::SETCC) { 737 LHS = N.getOperand(0); 738 RHS = N.getOperand(1); 739 CC = N.getOperand(2); 740 return true; 741 } 742 743 if (N.getOpcode() != ISD::SELECT_CC || 744 !TLI.isConstTrueVal(N.getOperand(2).getNode()) || 745 !TLI.isConstFalseVal(N.getOperand(3).getNode())) 746 return false; 747 748 if (TLI.getBooleanContents(N.getValueType()) == 749 TargetLowering::UndefinedBooleanContent) 750 return false; 751 752 LHS = N.getOperand(0); 753 RHS = N.getOperand(1); 754 CC = N.getOperand(4); 755 return true; 756 } 757 758 /// Return true if this is a SetCC-equivalent operation with only one use. 759 /// If this is true, it allows the users to invert the operation for free when 760 /// it is profitable to do so. 761 bool DAGCombiner::isOneUseSetCC(SDValue N) const { 762 SDValue N0, N1, N2; 763 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) 764 return true; 765 return false; 766 } 767 768 // \brief Returns the SDNode if it is a constant float BuildVector 769 // or constant float. 770 static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) { 771 if (isa<ConstantFPSDNode>(N)) 772 return N.getNode(); 773 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 774 return N.getNode(); 775 return nullptr; 776 } 777 778 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 779 // int. 780 static ConstantSDNode *isConstOrConstSplat(SDValue N) { 781 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 782 return CN; 783 784 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 785 BitVector UndefElements; 786 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 787 788 // BuildVectors can truncate their operands. Ignore that case here. 789 // FIXME: We blindly ignore splats which include undef which is overly 790 // pessimistic. 791 if (CN && UndefElements.none() && 792 CN->getValueType(0) == N.getValueType().getScalarType()) 793 return CN; 794 } 795 796 return nullptr; 797 } 798 799 // \brief Returns the SDNode if it is a constant splat BuildVector or constant 800 // float. 801 static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) { 802 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 803 return CN; 804 805 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 806 BitVector UndefElements; 807 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 808 809 if (CN && UndefElements.none()) 810 return CN; 811 } 812 813 return nullptr; 814 } 815 816 SDValue DAGCombiner::ReassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, 817 SDValue N1) { 818 EVT VT = N0.getValueType(); 819 if (N0.getOpcode() == Opc) { 820 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { 821 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 822 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) 823 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R)) 824 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); 825 return SDValue(); 826 } 827 if (N0.hasOneUse()) { 828 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one 829 // use 830 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); 831 if (!OpNode.getNode()) 832 return SDValue(); 833 AddToWorklist(OpNode.getNode()); 834 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); 835 } 836 } 837 } 838 839 if (N1.getOpcode() == Opc) { 840 if (SDNode *R = DAG.isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) { 841 if (SDNode *L = DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 842 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) 843 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L)) 844 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); 845 return SDValue(); 846 } 847 if (N1.hasOneUse()) { 848 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one 849 // use 850 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0, N1.getOperand(0)); 851 if (!OpNode.getNode()) 852 return SDValue(); 853 AddToWorklist(OpNode.getNode()); 854 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); 855 } 856 } 857 } 858 859 return SDValue(); 860 } 861 862 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, 863 bool AddTo) { 864 assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); 865 ++NodesCombined; 866 DEBUG(dbgs() << "\nReplacing.1 "; 867 N->dump(&DAG); 868 dbgs() << "\nWith: "; 869 To[0].getNode()->dump(&DAG); 870 dbgs() << " and " << NumTo-1 << " other values\n"); 871 for (unsigned i = 0, e = NumTo; i != e; ++i) 872 assert((!To[i].getNode() || 873 N->getValueType(i) == To[i].getValueType()) && 874 "Cannot combine value to value of different type!"); 875 876 WorklistRemover DeadNodes(*this); 877 DAG.ReplaceAllUsesWith(N, To); 878 if (AddTo) { 879 // Push the new nodes and any users onto the worklist 880 for (unsigned i = 0, e = NumTo; i != e; ++i) { 881 if (To[i].getNode()) { 882 AddToWorklist(To[i].getNode()); 883 AddUsersToWorklist(To[i].getNode()); 884 } 885 } 886 } 887 888 // Finally, if the node is now dead, remove it from the graph. The node 889 // may not be dead if the replacement process recursively simplified to 890 // something else needing this node. 891 if (N->use_empty()) 892 deleteAndRecombine(N); 893 return SDValue(N, 0); 894 } 895 896 void DAGCombiner:: 897 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { 898 // Replace all uses. If any nodes become isomorphic to other nodes and 899 // are deleted, make sure to remove them from our worklist. 900 WorklistRemover DeadNodes(*this); 901 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); 902 903 // Push the new node and any (possibly new) users onto the worklist. 904 AddToWorklist(TLO.New.getNode()); 905 AddUsersToWorklist(TLO.New.getNode()); 906 907 // Finally, if the node is now dead, remove it from the graph. The node 908 // may not be dead if the replacement process recursively simplified to 909 // something else needing this node. 910 if (TLO.Old.getNode()->use_empty()) 911 deleteAndRecombine(TLO.Old.getNode()); 912 } 913 914 /// Check the specified integer node value to see if it can be simplified or if 915 /// things it uses can be simplified by bit propagation. If so, return true. 916 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { 917 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); 918 APInt KnownZero, KnownOne; 919 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 920 return false; 921 922 // Revisit the node. 923 AddToWorklist(Op.getNode()); 924 925 // Replace the old value with the new one. 926 ++NodesCombined; 927 DEBUG(dbgs() << "\nReplacing.2 "; 928 TLO.Old.getNode()->dump(&DAG); 929 dbgs() << "\nWith: "; 930 TLO.New.getNode()->dump(&DAG); 931 dbgs() << '\n'); 932 933 CommitTargetLoweringOpt(TLO); 934 return true; 935 } 936 937 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { 938 SDLoc dl(Load); 939 EVT VT = Load->getValueType(0); 940 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); 941 942 DEBUG(dbgs() << "\nReplacing.9 "; 943 Load->dump(&DAG); 944 dbgs() << "\nWith: "; 945 Trunc.getNode()->dump(&DAG); 946 dbgs() << '\n'); 947 WorklistRemover DeadNodes(*this); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); 949 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); 950 deleteAndRecombine(Load); 951 AddToWorklist(Trunc.getNode()); 952 } 953 954 SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { 955 Replace = false; 956 SDLoc dl(Op); 957 if (ISD::isUNINDEXEDLoad(Op.getNode())) { 958 LoadSDNode *LD = cast<LoadSDNode>(Op); 959 EVT MemVT = LD->getMemoryVT(); 960 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 961 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 962 : ISD::EXTLOAD) 963 : LD->getExtensionType(); 964 Replace = true; 965 return DAG.getExtLoad(ExtType, dl, PVT, 966 LD->getChain(), LD->getBasePtr(), 967 MemVT, LD->getMemOperand()); 968 } 969 970 unsigned Opc = Op.getOpcode(); 971 switch (Opc) { 972 default: break; 973 case ISD::AssertSext: 974 return DAG.getNode(ISD::AssertSext, dl, PVT, 975 SExtPromoteOperand(Op.getOperand(0), PVT), 976 Op.getOperand(1)); 977 case ISD::AssertZext: 978 return DAG.getNode(ISD::AssertZext, dl, PVT, 979 ZExtPromoteOperand(Op.getOperand(0), PVT), 980 Op.getOperand(1)); 981 case ISD::Constant: { 982 unsigned ExtOpc = 983 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 984 return DAG.getNode(ExtOpc, dl, PVT, Op); 985 } 986 } 987 988 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) 989 return SDValue(); 990 return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); 991 } 992 993 SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { 994 if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) 995 return SDValue(); 996 EVT OldVT = Op.getValueType(); 997 SDLoc dl(Op); 998 bool Replace = false; 999 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1000 if (!NewOp.getNode()) 1001 return SDValue(); 1002 AddToWorklist(NewOp.getNode()); 1003 1004 if (Replace) 1005 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1006 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, 1007 DAG.getValueType(OldVT)); 1008 } 1009 1010 SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { 1011 EVT OldVT = Op.getValueType(); 1012 SDLoc dl(Op); 1013 bool Replace = false; 1014 SDValue NewOp = PromoteOperand(Op, PVT, Replace); 1015 if (!NewOp.getNode()) 1016 return SDValue(); 1017 AddToWorklist(NewOp.getNode()); 1018 1019 if (Replace) 1020 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); 1021 return DAG.getZeroExtendInReg(NewOp, dl, OldVT); 1022 } 1023 1024 /// Promote the specified integer binary operation if the target indicates it is 1025 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1026 /// i32 since i16 instructions are longer. 1027 SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { 1028 if (!LegalOperations) 1029 return SDValue(); 1030 1031 EVT VT = Op.getValueType(); 1032 if (VT.isVector() || !VT.isInteger()) 1033 return SDValue(); 1034 1035 // If operation type is 'undesirable', e.g. i16 on x86, consider 1036 // promoting it. 1037 unsigned Opc = Op.getOpcode(); 1038 if (TLI.isTypeDesirableForOp(Opc, VT)) 1039 return SDValue(); 1040 1041 EVT PVT = VT; 1042 // Consult target whether it is a good idea to promote this operation and 1043 // what's the right type to promote it to. 1044 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1045 assert(PVT != VT && "Don't know what type to promote to!"); 1046 1047 bool Replace0 = false; 1048 SDValue N0 = Op.getOperand(0); 1049 SDValue NN0 = PromoteOperand(N0, PVT, Replace0); 1050 if (!NN0.getNode()) 1051 return SDValue(); 1052 1053 bool Replace1 = false; 1054 SDValue N1 = Op.getOperand(1); 1055 SDValue NN1; 1056 if (N0 == N1) 1057 NN1 = NN0; 1058 else { 1059 NN1 = PromoteOperand(N1, PVT, Replace1); 1060 if (!NN1.getNode()) 1061 return SDValue(); 1062 } 1063 1064 AddToWorklist(NN0.getNode()); 1065 if (NN1.getNode()) 1066 AddToWorklist(NN1.getNode()); 1067 1068 if (Replace0) 1069 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); 1070 if (Replace1) 1071 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); 1072 1073 DEBUG(dbgs() << "\nPromoting "; 1074 Op.getNode()->dump(&DAG)); 1075 SDLoc dl(Op); 1076 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1077 DAG.getNode(Opc, dl, PVT, NN0, NN1)); 1078 } 1079 return SDValue(); 1080 } 1081 1082 /// Promote the specified integer shift operation if the target indicates it is 1083 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to 1084 /// i32 since i16 instructions are longer. 1085 SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { 1086 if (!LegalOperations) 1087 return SDValue(); 1088 1089 EVT VT = Op.getValueType(); 1090 if (VT.isVector() || !VT.isInteger()) 1091 return SDValue(); 1092 1093 // If operation type is 'undesirable', e.g. i16 on x86, consider 1094 // promoting it. 1095 unsigned Opc = Op.getOpcode(); 1096 if (TLI.isTypeDesirableForOp(Opc, VT)) 1097 return SDValue(); 1098 1099 EVT PVT = VT; 1100 // Consult target whether it is a good idea to promote this operation and 1101 // what's the right type to promote it to. 1102 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1103 assert(PVT != VT && "Don't know what type to promote to!"); 1104 1105 bool Replace = false; 1106 SDValue N0 = Op.getOperand(0); 1107 if (Opc == ISD::SRA) 1108 N0 = SExtPromoteOperand(Op.getOperand(0), PVT); 1109 else if (Opc == ISD::SRL) 1110 N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); 1111 else 1112 N0 = PromoteOperand(N0, PVT, Replace); 1113 if (!N0.getNode()) 1114 return SDValue(); 1115 1116 AddToWorklist(N0.getNode()); 1117 if (Replace) 1118 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); 1119 1120 DEBUG(dbgs() << "\nPromoting "; 1121 Op.getNode()->dump(&DAG)); 1122 SDLoc dl(Op); 1123 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1124 DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); 1125 } 1126 return SDValue(); 1127 } 1128 1129 SDValue DAGCombiner::PromoteExtend(SDValue Op) { 1130 if (!LegalOperations) 1131 return SDValue(); 1132 1133 EVT VT = Op.getValueType(); 1134 if (VT.isVector() || !VT.isInteger()) 1135 return SDValue(); 1136 1137 // If operation type is 'undesirable', e.g. i16 on x86, consider 1138 // promoting it. 1139 unsigned Opc = Op.getOpcode(); 1140 if (TLI.isTypeDesirableForOp(Opc, VT)) 1141 return SDValue(); 1142 1143 EVT PVT = VT; 1144 // Consult target whether it is a good idea to promote this operation and 1145 // what's the right type to promote it to. 1146 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1147 assert(PVT != VT && "Don't know what type to promote to!"); 1148 // fold (aext (aext x)) -> (aext x) 1149 // fold (aext (zext x)) -> (zext x) 1150 // fold (aext (sext x)) -> (sext x) 1151 DEBUG(dbgs() << "\nPromoting "; 1152 Op.getNode()->dump(&DAG)); 1153 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); 1154 } 1155 return SDValue(); 1156 } 1157 1158 bool DAGCombiner::PromoteLoad(SDValue Op) { 1159 if (!LegalOperations) 1160 return false; 1161 1162 if (!ISD::isUNINDEXEDLoad(Op.getNode())) 1163 return false; 1164 1165 EVT VT = Op.getValueType(); 1166 if (VT.isVector() || !VT.isInteger()) 1167 return false; 1168 1169 // If operation type is 'undesirable', e.g. i16 on x86, consider 1170 // promoting it. 1171 unsigned Opc = Op.getOpcode(); 1172 if (TLI.isTypeDesirableForOp(Opc, VT)) 1173 return false; 1174 1175 EVT PVT = VT; 1176 // Consult target whether it is a good idea to promote this operation and 1177 // what's the right type to promote it to. 1178 if (TLI.IsDesirableToPromoteOp(Op, PVT)) { 1179 assert(PVT != VT && "Don't know what type to promote to!"); 1180 1181 SDLoc dl(Op); 1182 SDNode *N = Op.getNode(); 1183 LoadSDNode *LD = cast<LoadSDNode>(N); 1184 EVT MemVT = LD->getMemoryVT(); 1185 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) 1186 ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD 1187 : ISD::EXTLOAD) 1188 : LD->getExtensionType(); 1189 SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT, 1190 LD->getChain(), LD->getBasePtr(), 1191 MemVT, LD->getMemOperand()); 1192 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); 1193 1194 DEBUG(dbgs() << "\nPromoting "; 1195 N->dump(&DAG); 1196 dbgs() << "\nTo: "; 1197 Result.getNode()->dump(&DAG); 1198 dbgs() << '\n'); 1199 WorklistRemover DeadNodes(*this); 1200 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1201 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); 1202 deleteAndRecombine(N); 1203 AddToWorklist(Result.getNode()); 1204 return true; 1205 } 1206 return false; 1207 } 1208 1209 /// \brief Recursively delete a node which has no uses and any operands for 1210 /// which it is the only use. 1211 /// 1212 /// Note that this both deletes the nodes and removes them from the worklist. 1213 /// It also adds any nodes who have had a user deleted to the worklist as they 1214 /// may now have only one use and subject to other combines. 1215 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { 1216 if (!N->use_empty()) 1217 return false; 1218 1219 SmallSetVector<SDNode *, 16> Nodes; 1220 Nodes.insert(N); 1221 do { 1222 N = Nodes.pop_back_val(); 1223 if (!N) 1224 continue; 1225 1226 if (N->use_empty()) { 1227 for (const SDValue &ChildN : N->op_values()) 1228 Nodes.insert(ChildN.getNode()); 1229 1230 removeFromWorklist(N); 1231 DAG.DeleteNode(N); 1232 } else { 1233 AddToWorklist(N); 1234 } 1235 } while (!Nodes.empty()); 1236 return true; 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // Main DAG Combiner implementation 1241 //===----------------------------------------------------------------------===// 1242 1243 void DAGCombiner::Run(CombineLevel AtLevel) { 1244 // set the instance variables, so that the various visit routines may use it. 1245 Level = AtLevel; 1246 LegalOperations = Level >= AfterLegalizeVectorOps; 1247 LegalTypes = Level >= AfterLegalizeTypes; 1248 1249 // Add all the dag nodes to the worklist. 1250 for (SDNode &Node : DAG.allnodes()) 1251 AddToWorklist(&Node); 1252 1253 // Create a dummy node (which is not added to allnodes), that adds a reference 1254 // to the root node, preventing it from being deleted, and tracking any 1255 // changes of the root. 1256 HandleSDNode Dummy(DAG.getRoot()); 1257 1258 // While the worklist isn't empty, find a node and try to combine it. 1259 while (!WorklistMap.empty()) { 1260 SDNode *N; 1261 // The Worklist holds the SDNodes in order, but it may contain null entries. 1262 do { 1263 N = Worklist.pop_back_val(); 1264 } while (!N); 1265 1266 bool GoodWorklistEntry = WorklistMap.erase(N); 1267 (void)GoodWorklistEntry; 1268 assert(GoodWorklistEntry && 1269 "Found a worklist entry without a corresponding map entry!"); 1270 1271 // If N has no uses, it is dead. Make sure to revisit all N's operands once 1272 // N is deleted from the DAG, since they too may now be dead or may have a 1273 // reduced number of uses, allowing other xforms. 1274 if (recursivelyDeleteUnusedNodes(N)) 1275 continue; 1276 1277 WorklistRemover DeadNodes(*this); 1278 1279 // If this combine is running after legalizing the DAG, re-legalize any 1280 // nodes pulled off the worklist. 1281 if (Level == AfterLegalizeDAG) { 1282 SmallSetVector<SDNode *, 16> UpdatedNodes; 1283 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); 1284 1285 for (SDNode *LN : UpdatedNodes) { 1286 AddToWorklist(LN); 1287 AddUsersToWorklist(LN); 1288 } 1289 if (!NIsValid) 1290 continue; 1291 } 1292 1293 DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); 1294 1295 // Add any operands of the new node which have not yet been combined to the 1296 // worklist as well. Because the worklist uniques things already, this 1297 // won't repeatedly process the same operand. 1298 CombinedNodes.insert(N); 1299 for (const SDValue &ChildN : N->op_values()) 1300 if (!CombinedNodes.count(ChildN.getNode())) 1301 AddToWorklist(ChildN.getNode()); 1302 1303 SDValue RV = combine(N); 1304 1305 if (!RV.getNode()) 1306 continue; 1307 1308 ++NodesCombined; 1309 1310 // If we get back the same node we passed in, rather than a new node or 1311 // zero, we know that the node must have defined multiple values and 1312 // CombineTo was used. Since CombineTo takes care of the worklist 1313 // mechanics for us, we have no work to do in this case. 1314 if (RV.getNode() == N) 1315 continue; 1316 1317 assert(N->getOpcode() != ISD::DELETED_NODE && 1318 RV.getNode()->getOpcode() != ISD::DELETED_NODE && 1319 "Node was deleted but visit returned new node!"); 1320 1321 DEBUG(dbgs() << " ... into: "; 1322 RV.getNode()->dump(&DAG)); 1323 1324 if (N->getNumValues() == RV.getNode()->getNumValues()) 1325 DAG.ReplaceAllUsesWith(N, RV.getNode()); 1326 else { 1327 assert(N->getValueType(0) == RV.getValueType() && 1328 N->getNumValues() == 1 && "Type mismatch"); 1329 SDValue OpV = RV; 1330 DAG.ReplaceAllUsesWith(N, &OpV); 1331 } 1332 1333 // Push the new node and any users onto the worklist 1334 AddToWorklist(RV.getNode()); 1335 AddUsersToWorklist(RV.getNode()); 1336 1337 // Finally, if the node is now dead, remove it from the graph. The node 1338 // may not be dead if the replacement process recursively simplified to 1339 // something else needing this node. This will also take care of adding any 1340 // operands which have lost a user to the worklist. 1341 recursivelyDeleteUnusedNodes(N); 1342 } 1343 1344 // If the root changed (e.g. it was a dead load, update the root). 1345 DAG.setRoot(Dummy.getValue()); 1346 DAG.RemoveDeadNodes(); 1347 } 1348 1349 SDValue DAGCombiner::visit(SDNode *N) { 1350 switch (N->getOpcode()) { 1351 default: break; 1352 case ISD::TokenFactor: return visitTokenFactor(N); 1353 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); 1354 case ISD::ADD: return visitADD(N); 1355 case ISD::SUB: return visitSUB(N); 1356 case ISD::ADDC: return visitADDC(N); 1357 case ISD::SUBC: return visitSUBC(N); 1358 case ISD::ADDE: return visitADDE(N); 1359 case ISD::SUBE: return visitSUBE(N); 1360 case ISD::MUL: return visitMUL(N); 1361 case ISD::SDIV: return visitSDIV(N); 1362 case ISD::UDIV: return visitUDIV(N); 1363 case ISD::SREM: 1364 case ISD::UREM: return visitREM(N); 1365 case ISD::MULHU: return visitMULHU(N); 1366 case ISD::MULHS: return visitMULHS(N); 1367 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); 1368 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); 1369 case ISD::SMULO: return visitSMULO(N); 1370 case ISD::UMULO: return visitUMULO(N); 1371 case ISD::SMIN: 1372 case ISD::SMAX: 1373 case ISD::UMIN: 1374 case ISD::UMAX: return visitIMINMAX(N); 1375 case ISD::AND: return visitAND(N); 1376 case ISD::OR: return visitOR(N); 1377 case ISD::XOR: return visitXOR(N); 1378 case ISD::SHL: return visitSHL(N); 1379 case ISD::SRA: return visitSRA(N); 1380 case ISD::SRL: return visitSRL(N); 1381 case ISD::ROTR: 1382 case ISD::ROTL: return visitRotate(N); 1383 case ISD::BSWAP: return visitBSWAP(N); 1384 case ISD::BITREVERSE: return visitBITREVERSE(N); 1385 case ISD::CTLZ: return visitCTLZ(N); 1386 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); 1387 case ISD::CTTZ: return visitCTTZ(N); 1388 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); 1389 case ISD::CTPOP: return visitCTPOP(N); 1390 case ISD::SELECT: return visitSELECT(N); 1391 case ISD::VSELECT: return visitVSELECT(N); 1392 case ISD::SELECT_CC: return visitSELECT_CC(N); 1393 case ISD::SETCC: return visitSETCC(N); 1394 case ISD::SETCCE: return visitSETCCE(N); 1395 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); 1396 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); 1397 case ISD::ANY_EXTEND: return visitANY_EXTEND(N); 1398 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); 1399 case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); 1400 case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); 1401 case ISD::TRUNCATE: return visitTRUNCATE(N); 1402 case ISD::BITCAST: return visitBITCAST(N); 1403 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); 1404 case ISD::FADD: return visitFADD(N); 1405 case ISD::FSUB: return visitFSUB(N); 1406 case ISD::FMUL: return visitFMUL(N); 1407 case ISD::FMA: return visitFMA(N); 1408 case ISD::FDIV: return visitFDIV(N); 1409 case ISD::FREM: return visitFREM(N); 1410 case ISD::FSQRT: return visitFSQRT(N); 1411 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); 1412 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); 1413 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); 1414 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); 1415 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); 1416 case ISD::FP_ROUND: return visitFP_ROUND(N); 1417 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); 1418 case ISD::FP_EXTEND: return visitFP_EXTEND(N); 1419 case ISD::FNEG: return visitFNEG(N); 1420 case ISD::FABS: return visitFABS(N); 1421 case ISD::FFLOOR: return visitFFLOOR(N); 1422 case ISD::FMINNUM: return visitFMINNUM(N); 1423 case ISD::FMAXNUM: return visitFMAXNUM(N); 1424 case ISD::FCEIL: return visitFCEIL(N); 1425 case ISD::FTRUNC: return visitFTRUNC(N); 1426 case ISD::BRCOND: return visitBRCOND(N); 1427 case ISD::BR_CC: return visitBR_CC(N); 1428 case ISD::LOAD: return visitLOAD(N); 1429 case ISD::STORE: return visitSTORE(N); 1430 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); 1431 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); 1432 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); 1433 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); 1434 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); 1435 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); 1436 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); 1437 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); 1438 case ISD::MGATHER: return visitMGATHER(N); 1439 case ISD::MLOAD: return visitMLOAD(N); 1440 case ISD::MSCATTER: return visitMSCATTER(N); 1441 case ISD::MSTORE: return visitMSTORE(N); 1442 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); 1443 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); 1444 } 1445 return SDValue(); 1446 } 1447 1448 SDValue DAGCombiner::combine(SDNode *N) { 1449 SDValue RV = visit(N); 1450 1451 // If nothing happened, try a target-specific DAG combine. 1452 if (!RV.getNode()) { 1453 assert(N->getOpcode() != ISD::DELETED_NODE && 1454 "Node was deleted but visit returned NULL!"); 1455 1456 if (N->getOpcode() >= ISD::BUILTIN_OP_END || 1457 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { 1458 1459 // Expose the DAG combiner to the target combiner impls. 1460 TargetLowering::DAGCombinerInfo 1461 DagCombineInfo(DAG, Level, false, this); 1462 1463 RV = TLI.PerformDAGCombine(N, DagCombineInfo); 1464 } 1465 } 1466 1467 // If nothing happened still, try promoting the operation. 1468 if (!RV.getNode()) { 1469 switch (N->getOpcode()) { 1470 default: break; 1471 case ISD::ADD: 1472 case ISD::SUB: 1473 case ISD::MUL: 1474 case ISD::AND: 1475 case ISD::OR: 1476 case ISD::XOR: 1477 RV = PromoteIntBinOp(SDValue(N, 0)); 1478 break; 1479 case ISD::SHL: 1480 case ISD::SRA: 1481 case ISD::SRL: 1482 RV = PromoteIntShiftOp(SDValue(N, 0)); 1483 break; 1484 case ISD::SIGN_EXTEND: 1485 case ISD::ZERO_EXTEND: 1486 case ISD::ANY_EXTEND: 1487 RV = PromoteExtend(SDValue(N, 0)); 1488 break; 1489 case ISD::LOAD: 1490 if (PromoteLoad(SDValue(N, 0))) 1491 RV = SDValue(N, 0); 1492 break; 1493 } 1494 } 1495 1496 // If N is a commutative binary node, try commuting it to enable more 1497 // sdisel CSE. 1498 if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) && 1499 N->getNumValues() == 1) { 1500 SDValue N0 = N->getOperand(0); 1501 SDValue N1 = N->getOperand(1); 1502 1503 // Constant operands are canonicalized to RHS. 1504 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { 1505 SDValue Ops[] = {N1, N0}; 1506 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, 1507 N->getFlags()); 1508 if (CSENode) 1509 return SDValue(CSENode, 0); 1510 } 1511 } 1512 1513 return RV; 1514 } 1515 1516 /// Given a node, return its input chain if it has one, otherwise return a null 1517 /// sd operand. 1518 static SDValue getInputChainForNode(SDNode *N) { 1519 if (unsigned NumOps = N->getNumOperands()) { 1520 if (N->getOperand(0).getValueType() == MVT::Other) 1521 return N->getOperand(0); 1522 if (N->getOperand(NumOps-1).getValueType() == MVT::Other) 1523 return N->getOperand(NumOps-1); 1524 for (unsigned i = 1; i < NumOps-1; ++i) 1525 if (N->getOperand(i).getValueType() == MVT::Other) 1526 return N->getOperand(i); 1527 } 1528 return SDValue(); 1529 } 1530 1531 SDValue DAGCombiner::visitTokenFactor(SDNode *N) { 1532 // If N has two operands, where one has an input chain equal to the other, 1533 // the 'other' chain is redundant. 1534 if (N->getNumOperands() == 2) { 1535 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) 1536 return N->getOperand(0); 1537 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) 1538 return N->getOperand(1); 1539 } 1540 1541 SmallVector<SDNode *, 8> TFs; // List of token factors to visit. 1542 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. 1543 SmallPtrSet<SDNode*, 16> SeenOps; 1544 bool Changed = false; // If we should replace this token factor. 1545 1546 // Start out with this token factor. 1547 TFs.push_back(N); 1548 1549 // Iterate through token factors. The TFs grows when new token factors are 1550 // encountered. 1551 for (unsigned i = 0; i < TFs.size(); ++i) { 1552 SDNode *TF = TFs[i]; 1553 1554 // Check each of the operands. 1555 for (const SDValue &Op : TF->op_values()) { 1556 1557 switch (Op.getOpcode()) { 1558 case ISD::EntryToken: 1559 // Entry tokens don't need to be added to the list. They are 1560 // redundant. 1561 Changed = true; 1562 break; 1563 1564 case ISD::TokenFactor: 1565 if (Op.hasOneUse() && 1566 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { 1567 // Queue up for processing. 1568 TFs.push_back(Op.getNode()); 1569 // Clean up in case the token factor is removed. 1570 AddToWorklist(Op.getNode()); 1571 Changed = true; 1572 break; 1573 } 1574 // Fall thru 1575 1576 default: 1577 // Only add if it isn't already in the list. 1578 if (SeenOps.insert(Op.getNode()).second) 1579 Ops.push_back(Op); 1580 else 1581 Changed = true; 1582 break; 1583 } 1584 } 1585 } 1586 1587 SDValue Result; 1588 1589 // If we've changed things around then replace token factor. 1590 if (Changed) { 1591 if (Ops.empty()) { 1592 // The entry token is the only possible outcome. 1593 Result = DAG.getEntryNode(); 1594 } else { 1595 // New and improved token factor. 1596 Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops); 1597 } 1598 1599 // Add users to worklist if AA is enabled, since it may introduce 1600 // a lot of new chained token factors while removing memory deps. 1601 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 1602 : DAG.getSubtarget().useAA(); 1603 return CombineTo(N, Result, UseAA /*add to worklist*/); 1604 } 1605 1606 return Result; 1607 } 1608 1609 /// MERGE_VALUES can always be eliminated. 1610 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { 1611 WorklistRemover DeadNodes(*this); 1612 // Replacing results may cause a different MERGE_VALUES to suddenly 1613 // be CSE'd with N, and carry its uses with it. Iterate until no 1614 // uses remain, to ensure that the node can be safely deleted. 1615 // First add the users of this node to the work list so that they 1616 // can be tried again once they have new operands. 1617 AddUsersToWorklist(N); 1618 do { 1619 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1620 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i)); 1621 } while (!N->use_empty()); 1622 deleteAndRecombine(N); 1623 return SDValue(N, 0); // Return N so it doesn't get rechecked! 1624 } 1625 1626 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a 1627 /// ConstantSDNode pointer else nullptr. 1628 static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { 1629 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); 1630 return Const != nullptr && !Const->isOpaque() ? Const : nullptr; 1631 } 1632 1633 SDValue DAGCombiner::visitADD(SDNode *N) { 1634 SDValue N0 = N->getOperand(0); 1635 SDValue N1 = N->getOperand(1); 1636 EVT VT = N0.getValueType(); 1637 1638 // fold vector ops 1639 if (VT.isVector()) { 1640 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1641 return FoldedVOp; 1642 1643 // fold (add x, 0) -> x, vector edition 1644 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1645 return N0; 1646 if (ISD::isBuildVectorAllZeros(N0.getNode())) 1647 return N1; 1648 } 1649 1650 // fold (add x, undef) -> undef 1651 if (N0.isUndef()) 1652 return N0; 1653 if (N1.isUndef()) 1654 return N1; 1655 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { 1656 // canonicalize constant to RHS 1657 if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) 1658 return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0); 1659 // fold (add c1, c2) -> c1+c2 1660 return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, 1661 N0.getNode(), N1.getNode()); 1662 } 1663 // fold (add x, 0) -> x 1664 if (isNullConstant(N1)) 1665 return N0; 1666 // fold ((c1-A)+c2) -> (c1+c2)-A 1667 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1)) { 1668 if (N0.getOpcode() == ISD::SUB) 1669 if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) { 1670 SDLoc DL(N); 1671 return DAG.getNode(ISD::SUB, DL, VT, 1672 DAG.getConstant(N1C->getAPIntValue()+ 1673 N0C->getAPIntValue(), DL, VT), 1674 N0.getOperand(1)); 1675 } 1676 } 1677 // reassociate add 1678 if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1)) 1679 return RADD; 1680 // fold ((0-A) + B) -> B-A 1681 if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0))) 1682 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1)); 1683 // fold (A + (0-B)) -> A-B 1684 if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0))) 1685 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1)); 1686 // fold (A+(B-A)) -> B 1687 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) 1688 return N1.getOperand(0); 1689 // fold ((B-A)+A) -> B 1690 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) 1691 return N0.getOperand(0); 1692 // fold (A+(B-(A+C))) to (B-C) 1693 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1694 N0 == N1.getOperand(1).getOperand(0)) 1695 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1696 N1.getOperand(1).getOperand(1)); 1697 // fold (A+(B-(C+A))) to (B-C) 1698 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && 1699 N0 == N1.getOperand(1).getOperand(1)) 1700 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0), 1701 N1.getOperand(1).getOperand(0)); 1702 // fold (A+((B-A)+or-C)) to (B+or-C) 1703 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && 1704 N1.getOperand(0).getOpcode() == ISD::SUB && 1705 N0 == N1.getOperand(0).getOperand(1)) 1706 return DAG.getNode(N1.getOpcode(), SDLoc(N), VT, 1707 N1.getOperand(0).getOperand(0), N1.getOperand(1)); 1708 1709 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant 1710 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { 1711 SDValue N00 = N0.getOperand(0); 1712 SDValue N01 = N0.getOperand(1); 1713 SDValue N10 = N1.getOperand(0); 1714 SDValue N11 = N1.getOperand(1); 1715 1716 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) 1717 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1718 DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), 1719 DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); 1720 } 1721 1722 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) 1723 return SDValue(N, 0); 1724 1725 // fold (a+b) -> (a|b) iff a and b share no bits. 1726 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && 1727 VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1)) 1728 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1); 1729 1730 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) 1731 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && 1732 isNullConstant(N1.getOperand(0).getOperand(0))) 1733 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, 1734 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1735 N1.getOperand(0).getOperand(1), 1736 N1.getOperand(1))); 1737 if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB && 1738 isNullConstant(N0.getOperand(0).getOperand(0))) 1739 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, 1740 DAG.getNode(ISD::SHL, SDLoc(N), VT, 1741 N0.getOperand(0).getOperand(1), 1742 N0.getOperand(1))); 1743 1744 if (N1.getOpcode() == ISD::AND) { 1745 SDValue AndOp0 = N1.getOperand(0); 1746 unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0); 1747 unsigned DestBits = VT.getScalarType().getSizeInBits(); 1748 1749 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x)) 1750 // and similar xforms where the inner op is either ~0 or 0. 1751 if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) { 1752 SDLoc DL(N); 1753 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0); 1754 } 1755 } 1756 1757 // add (sext i1), X -> sub X, (zext i1) 1758 if (N0.getOpcode() == ISD::SIGN_EXTEND && 1759 N0.getOperand(0).getValueType() == MVT::i1 && 1760 !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) { 1761 SDLoc DL(N); 1762 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); 1763 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); 1764 } 1765 1766 // add X, (sextinreg Y i1) -> sub X, (and Y 1) 1767 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1768 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1769 if (TN->getVT() == MVT::i1) { 1770 SDLoc DL(N); 1771 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1772 DAG.getConstant(1, DL, VT)); 1773 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); 1774 } 1775 } 1776 1777 return SDValue(); 1778 } 1779 1780 SDValue DAGCombiner::visitADDC(SDNode *N) { 1781 SDValue N0 = N->getOperand(0); 1782 SDValue N1 = N->getOperand(1); 1783 EVT VT = N0.getValueType(); 1784 1785 // If the flag result is dead, turn this into an ADD. 1786 if (!N->hasAnyUseOfValue(1)) 1787 return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1), 1788 DAG.getNode(ISD::CARRY_FALSE, 1789 SDLoc(N), MVT::Glue)); 1790 1791 // canonicalize constant to RHS. 1792 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1793 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1794 if (N0C && !N1C) 1795 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0); 1796 1797 // fold (addc x, 0) -> x + no carry out 1798 if (isNullConstant(N1)) 1799 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, 1800 SDLoc(N), MVT::Glue)); 1801 1802 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. 1803 APInt LHSZero, LHSOne; 1804 APInt RHSZero, RHSOne; 1805 DAG.computeKnownBits(N0, LHSZero, LHSOne); 1806 1807 if (LHSZero.getBoolValue()) { 1808 DAG.computeKnownBits(N1, RHSZero, RHSOne); 1809 1810 // If all possibly-set bits on the LHS are clear on the RHS, return an OR. 1811 // If all possibly-set bits on the RHS are clear on the LHS, return an OR. 1812 if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero) 1813 return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1), 1814 DAG.getNode(ISD::CARRY_FALSE, 1815 SDLoc(N), MVT::Glue)); 1816 } 1817 1818 return SDValue(); 1819 } 1820 1821 SDValue DAGCombiner::visitADDE(SDNode *N) { 1822 SDValue N0 = N->getOperand(0); 1823 SDValue N1 = N->getOperand(1); 1824 SDValue CarryIn = N->getOperand(2); 1825 1826 // canonicalize constant to RHS 1827 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1828 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1829 if (N0C && !N1C) 1830 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), 1831 N1, N0, CarryIn); 1832 1833 // fold (adde x, y, false) -> (addc x, y) 1834 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1835 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); 1836 1837 return SDValue(); 1838 } 1839 1840 // Since it may not be valid to emit a fold to zero for vector initializers 1841 // check if we can before folding. 1842 static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, 1843 SelectionDAG &DAG, bool LegalOperations, 1844 bool LegalTypes) { 1845 if (!VT.isVector()) 1846 return DAG.getConstant(0, DL, VT); 1847 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 1848 return DAG.getConstant(0, DL, VT); 1849 return SDValue(); 1850 } 1851 1852 SDValue DAGCombiner::visitSUB(SDNode *N) { 1853 SDValue N0 = N->getOperand(0); 1854 SDValue N1 = N->getOperand(1); 1855 EVT VT = N0.getValueType(); 1856 1857 // fold vector ops 1858 if (VT.isVector()) { 1859 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 1860 return FoldedVOp; 1861 1862 // fold (sub x, 0) -> x, vector edition 1863 if (ISD::isBuildVectorAllZeros(N1.getNode())) 1864 return N0; 1865 } 1866 1867 // fold (sub x, x) -> 0 1868 // FIXME: Refactor this and xor and other similar operations together. 1869 if (N0 == N1) 1870 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 1871 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 1872 DAG.isConstantIntBuildVectorOrConstantInt(N1)) { 1873 // fold (sub c1, c2) -> c1-c2 1874 return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, 1875 N0.getNode(), N1.getNode()); 1876 } 1877 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 1878 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 1879 // fold (sub x, c) -> (add x, -c) 1880 if (N1C) { 1881 SDLoc DL(N); 1882 return DAG.getNode(ISD::ADD, DL, VT, N0, 1883 DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); 1884 } 1885 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) 1886 if (isAllOnesConstant(N0)) 1887 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 1888 // fold A-(A-B) -> B 1889 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) 1890 return N1.getOperand(1); 1891 // fold (A+B)-A -> B 1892 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) 1893 return N0.getOperand(1); 1894 // fold (A+B)-B -> A 1895 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) 1896 return N0.getOperand(0); 1897 // fold C2-(A+C1) -> (C2-C1)-A 1898 ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr : 1899 dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode()); 1900 if (N1.getOpcode() == ISD::ADD && N0C && N1C1) { 1901 SDLoc DL(N); 1902 SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(), 1903 DL, VT); 1904 return DAG.getNode(ISD::SUB, DL, VT, NewC, 1905 N1.getOperand(0)); 1906 } 1907 // fold ((A+(B+or-C))-B) -> A+or-C 1908 if (N0.getOpcode() == ISD::ADD && 1909 (N0.getOperand(1).getOpcode() == ISD::SUB || 1910 N0.getOperand(1).getOpcode() == ISD::ADD) && 1911 N0.getOperand(1).getOperand(0) == N1) 1912 return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT, 1913 N0.getOperand(0), N0.getOperand(1).getOperand(1)); 1914 // fold ((A+(C+B))-B) -> A+C 1915 if (N0.getOpcode() == ISD::ADD && 1916 N0.getOperand(1).getOpcode() == ISD::ADD && 1917 N0.getOperand(1).getOperand(1) == N1) 1918 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 1919 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1920 // fold ((A-(B-C))-C) -> A-B 1921 if (N0.getOpcode() == ISD::SUB && 1922 N0.getOperand(1).getOpcode() == ISD::SUB && 1923 N0.getOperand(1).getOperand(1) == N1) 1924 return DAG.getNode(ISD::SUB, SDLoc(N), VT, 1925 N0.getOperand(0), N0.getOperand(1).getOperand(0)); 1926 1927 // If either operand of a sub is undef, the result is undef 1928 if (N0.isUndef()) 1929 return N0; 1930 if (N1.isUndef()) 1931 return N1; 1932 1933 // If the relocation model supports it, consider symbol offsets. 1934 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) 1935 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { 1936 // fold (sub Sym, c) -> Sym-c 1937 if (N1C && GA->getOpcode() == ISD::GlobalAddress) 1938 return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, 1939 GA->getOffset() - 1940 (uint64_t)N1C->getSExtValue()); 1941 // fold (sub Sym+c1, Sym+c2) -> c1-c2 1942 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) 1943 if (GA->getGlobal() == GB->getGlobal()) 1944 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), 1945 SDLoc(N), VT); 1946 } 1947 1948 // sub X, (sextinreg Y i1) -> add X, (and Y 1) 1949 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { 1950 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); 1951 if (TN->getVT() == MVT::i1) { 1952 SDLoc DL(N); 1953 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), 1954 DAG.getConstant(1, DL, VT)); 1955 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); 1956 } 1957 } 1958 1959 return SDValue(); 1960 } 1961 1962 SDValue DAGCombiner::visitSUBC(SDNode *N) { 1963 SDValue N0 = N->getOperand(0); 1964 SDValue N1 = N->getOperand(1); 1965 EVT VT = N0.getValueType(); 1966 SDLoc DL(N); 1967 1968 // If the flag result is dead, turn this into an SUB. 1969 if (!N->hasAnyUseOfValue(1)) 1970 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), 1971 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1972 1973 // fold (subc x, x) -> 0 + no borrow 1974 if (N0 == N1) 1975 return CombineTo(N, DAG.getConstant(0, DL, VT), 1976 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1977 1978 // fold (subc x, 0) -> x + no borrow 1979 if (isNullConstant(N1)) 1980 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1981 1982 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow 1983 if (isAllOnesConstant(N0)) 1984 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), 1985 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); 1986 1987 return SDValue(); 1988 } 1989 1990 SDValue DAGCombiner::visitSUBE(SDNode *N) { 1991 SDValue N0 = N->getOperand(0); 1992 SDValue N1 = N->getOperand(1); 1993 SDValue CarryIn = N->getOperand(2); 1994 1995 // fold (sube x, y, false) -> (subc x, y) 1996 if (CarryIn.getOpcode() == ISD::CARRY_FALSE) 1997 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); 1998 1999 return SDValue(); 2000 } 2001 2002 SDValue DAGCombiner::visitMUL(SDNode *N) { 2003 SDValue N0 = N->getOperand(0); 2004 SDValue N1 = N->getOperand(1); 2005 EVT VT = N0.getValueType(); 2006 2007 // fold (mul x, undef) -> 0 2008 if (N0.isUndef() || N1.isUndef()) 2009 return DAG.getConstant(0, SDLoc(N), VT); 2010 2011 bool N0IsConst = false; 2012 bool N1IsConst = false; 2013 bool N1IsOpaqueConst = false; 2014 bool N0IsOpaqueConst = false; 2015 APInt ConstValue0, ConstValue1; 2016 // fold vector ops 2017 if (VT.isVector()) { 2018 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2019 return FoldedVOp; 2020 2021 N0IsConst = ISD::isConstantSplatVector(N0.getNode(), ConstValue0); 2022 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); 2023 } else { 2024 N0IsConst = isa<ConstantSDNode>(N0); 2025 if (N0IsConst) { 2026 ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue(); 2027 N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque(); 2028 } 2029 N1IsConst = isa<ConstantSDNode>(N1); 2030 if (N1IsConst) { 2031 ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); 2032 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); 2033 } 2034 } 2035 2036 // fold (mul c1, c2) -> c1*c2 2037 if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst) 2038 return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, 2039 N0.getNode(), N1.getNode()); 2040 2041 // canonicalize constant to RHS (vector doesn't have to splat) 2042 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2043 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2044 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); 2045 // fold (mul x, 0) -> 0 2046 if (N1IsConst && ConstValue1 == 0) 2047 return N1; 2048 // We require a splat of the entire scalar bit width for non-contiguous 2049 // bit patterns. 2050 bool IsFullSplat = 2051 ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits(); 2052 // fold (mul x, 1) -> x 2053 if (N1IsConst && ConstValue1 == 1 && IsFullSplat) 2054 return N0; 2055 // fold (mul x, -1) -> 0-x 2056 if (N1IsConst && ConstValue1.isAllOnesValue()) { 2057 SDLoc DL(N); 2058 return DAG.getNode(ISD::SUB, DL, VT, 2059 DAG.getConstant(0, DL, VT), N0); 2060 } 2061 // fold (mul x, (1 << c)) -> x << c 2062 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() && 2063 IsFullSplat) { 2064 SDLoc DL(N); 2065 return DAG.getNode(ISD::SHL, DL, VT, N0, 2066 DAG.getConstant(ConstValue1.logBase2(), DL, 2067 getShiftAmountTy(N0.getValueType()))); 2068 } 2069 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c 2070 if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() && 2071 IsFullSplat) { 2072 unsigned Log2Val = (-ConstValue1).logBase2(); 2073 SDLoc DL(N); 2074 // FIXME: If the input is something that is easily negated (e.g. a 2075 // single-use add), we should put the negate there. 2076 return DAG.getNode(ISD::SUB, DL, VT, 2077 DAG.getConstant(0, DL, VT), 2078 DAG.getNode(ISD::SHL, DL, VT, N0, 2079 DAG.getConstant(Log2Val, DL, 2080 getShiftAmountTy(N0.getValueType())))); 2081 } 2082 2083 APInt Val; 2084 // (mul (shl X, c1), c2) -> (mul X, c2 << c1) 2085 if (N1IsConst && N0.getOpcode() == ISD::SHL && 2086 (ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2087 isa<ConstantSDNode>(N0.getOperand(1)))) { 2088 SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); 2089 AddToWorklist(C3.getNode()); 2090 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); 2091 } 2092 2093 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one 2094 // use. 2095 { 2096 SDValue Sh(nullptr, 0), Y(nullptr, 0); 2097 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). 2098 if (N0.getOpcode() == ISD::SHL && 2099 (ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val) || 2100 isa<ConstantSDNode>(N0.getOperand(1))) && 2101 N0.getNode()->hasOneUse()) { 2102 Sh = N0; Y = N1; 2103 } else if (N1.getOpcode() == ISD::SHL && 2104 isa<ConstantSDNode>(N1.getOperand(1)) && 2105 N1.getNode()->hasOneUse()) { 2106 Sh = N1; Y = N0; 2107 } 2108 2109 if (Sh.getNode()) { 2110 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); 2111 return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); 2112 } 2113 } 2114 2115 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) 2116 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 2117 N0.getOpcode() == ISD::ADD && 2118 DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && 2119 isMulAddWithConstProfitable(N, N0, N1)) 2120 return DAG.getNode(ISD::ADD, SDLoc(N), VT, 2121 DAG.getNode(ISD::MUL, SDLoc(N0), VT, 2122 N0.getOperand(0), N1), 2123 DAG.getNode(ISD::MUL, SDLoc(N1), VT, 2124 N0.getOperand(1), N1)); 2125 2126 // reassociate mul 2127 if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1)) 2128 return RMUL; 2129 2130 return SDValue(); 2131 } 2132 2133 /// Return true if divmod libcall is available. 2134 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, 2135 const TargetLowering &TLI) { 2136 RTLIB::Libcall LC; 2137 EVT NodeType = Node->getValueType(0); 2138 if (!NodeType.isSimple()) 2139 return false; 2140 switch (NodeType.getSimpleVT().SimpleTy) { 2141 default: return false; // No libcall for vector types. 2142 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2143 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2144 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2145 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2146 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2147 } 2148 2149 return TLI.getLibcallName(LC) != nullptr; 2150 } 2151 2152 /// Issue divrem if both quotient and remainder are needed. 2153 SDValue DAGCombiner::useDivRem(SDNode *Node) { 2154 if (Node->use_empty()) 2155 return SDValue(); // This is a dead node, leave it alone. 2156 2157 unsigned Opcode = Node->getOpcode(); 2158 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); 2159 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 2160 2161 // DivMod lib calls can still work on non-legal types if using lib-calls. 2162 EVT VT = Node->getValueType(0); 2163 if (VT.isVector() || !VT.isInteger()) 2164 return SDValue(); 2165 2166 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) 2167 return SDValue(); 2168 2169 // If DIVREM is going to get expanded into a libcall, 2170 // but there is no libcall available, then don't combine. 2171 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && 2172 !isDivRemLibcallAvailable(Node, isSigned, TLI)) 2173 return SDValue(); 2174 2175 // If div is legal, it's better to do the normal expansion 2176 unsigned OtherOpcode = 0; 2177 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { 2178 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; 2179 if (TLI.isOperationLegalOrCustom(Opcode, VT)) 2180 return SDValue(); 2181 } else { 2182 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2183 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) 2184 return SDValue(); 2185 } 2186 2187 SDValue Op0 = Node->getOperand(0); 2188 SDValue Op1 = Node->getOperand(1); 2189 SDValue combined; 2190 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2191 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2192 SDNode *User = *UI; 2193 if (User == Node || User->use_empty()) 2194 continue; 2195 // Convert the other matching node(s), too; 2196 // otherwise, the DIVREM may get target-legalized into something 2197 // target-specific that we won't be able to recognize. 2198 unsigned UserOpc = User->getOpcode(); 2199 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && 2200 User->getOperand(0) == Op0 && 2201 User->getOperand(1) == Op1) { 2202 if (!combined) { 2203 if (UserOpc == OtherOpcode) { 2204 SDVTList VTs = DAG.getVTList(VT, VT); 2205 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); 2206 } else if (UserOpc == DivRemOpc) { 2207 combined = SDValue(User, 0); 2208 } else { 2209 assert(UserOpc == Opcode); 2210 continue; 2211 } 2212 } 2213 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) 2214 CombineTo(User, combined); 2215 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) 2216 CombineTo(User, combined.getValue(1)); 2217 } 2218 } 2219 return combined; 2220 } 2221 2222 SDValue DAGCombiner::visitSDIV(SDNode *N) { 2223 SDValue N0 = N->getOperand(0); 2224 SDValue N1 = N->getOperand(1); 2225 EVT VT = N->getValueType(0); 2226 2227 // fold vector ops 2228 if (VT.isVector()) 2229 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2230 return FoldedVOp; 2231 2232 SDLoc DL(N); 2233 2234 // fold (sdiv c1, c2) -> c1/c2 2235 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2236 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2237 if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque()) 2238 return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C); 2239 // fold (sdiv X, 1) -> X 2240 if (N1C && N1C->isOne()) 2241 return N0; 2242 // fold (sdiv X, -1) -> 0-X 2243 if (N1C && N1C->isAllOnesValue()) 2244 return DAG.getNode(ISD::SUB, DL, VT, 2245 DAG.getConstant(0, DL, VT), N0); 2246 2247 // If we know the sign bits of both operands are zero, strength reduce to a 2248 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 2249 if (!VT.isVector()) { 2250 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2251 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); 2252 } 2253 2254 // fold (sdiv X, pow2) -> simple ops after legalize 2255 // FIXME: We check for the exact bit here because the generic lowering gives 2256 // better results in that case. The target-specific lowering should learn how 2257 // to handle exact sdivs efficiently. 2258 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2259 !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() && 2260 (N1C->getAPIntValue().isPowerOf2() || 2261 (-N1C->getAPIntValue()).isPowerOf2())) { 2262 // Target-specific implementation of sdiv x, pow2. 2263 if (SDValue Res = BuildSDIVPow2(N)) 2264 return Res; 2265 2266 unsigned lg2 = N1C->getAPIntValue().countTrailingZeros(); 2267 2268 // Splat the sign bit into the register 2269 SDValue SGN = 2270 DAG.getNode(ISD::SRA, DL, VT, N0, 2271 DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, 2272 getShiftAmountTy(N0.getValueType()))); 2273 AddToWorklist(SGN.getNode()); 2274 2275 // Add (N0 < 0) ? abs2 - 1 : 0; 2276 SDValue SRL = 2277 DAG.getNode(ISD::SRL, DL, VT, SGN, 2278 DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL, 2279 getShiftAmountTy(SGN.getValueType()))); 2280 SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL); 2281 AddToWorklist(SRL.getNode()); 2282 AddToWorklist(ADD.getNode()); // Divide by pow2 2283 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD, 2284 DAG.getConstant(lg2, DL, 2285 getShiftAmountTy(ADD.getValueType()))); 2286 2287 // If we're dividing by a positive value, we're done. Otherwise, we must 2288 // negate the result. 2289 if (N1C->getAPIntValue().isNonNegative()) 2290 return SRA; 2291 2292 AddToWorklist(SRA.getNode()); 2293 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); 2294 } 2295 2296 // If integer divide is expensive and we satisfy the requirements, emit an 2297 // alternate sequence. Targets may check function attributes for size/speed 2298 // trade-offs. 2299 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2300 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2301 if (SDValue Op = BuildSDIV(N)) 2302 return Op; 2303 2304 // sdiv, srem -> sdivrem 2305 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2306 // Otherwise, we break the simplification logic in visitREM(). 2307 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2308 if (SDValue DivRem = useDivRem(N)) 2309 return DivRem; 2310 2311 // undef / X -> 0 2312 if (N0.isUndef()) 2313 return DAG.getConstant(0, DL, VT); 2314 // X / undef -> undef 2315 if (N1.isUndef()) 2316 return N1; 2317 2318 return SDValue(); 2319 } 2320 2321 SDValue DAGCombiner::visitUDIV(SDNode *N) { 2322 SDValue N0 = N->getOperand(0); 2323 SDValue N1 = N->getOperand(1); 2324 EVT VT = N->getValueType(0); 2325 2326 // fold vector ops 2327 if (VT.isVector()) 2328 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2329 return FoldedVOp; 2330 2331 SDLoc DL(N); 2332 2333 // fold (udiv c1, c2) -> c1/c2 2334 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2335 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2336 if (N0C && N1C) 2337 if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, 2338 N0C, N1C)) 2339 return Folded; 2340 // fold (udiv x, (1 << c)) -> x >>u c 2341 if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) 2342 return DAG.getNode(ISD::SRL, DL, VT, N0, 2343 DAG.getConstant(N1C->getAPIntValue().logBase2(), DL, 2344 getShiftAmountTy(N0.getValueType()))); 2345 2346 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 2347 if (N1.getOpcode() == ISD::SHL) { 2348 if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) { 2349 if (SHC->getAPIntValue().isPowerOf2()) { 2350 EVT ADDVT = N1.getOperand(1).getValueType(); 2351 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, 2352 N1.getOperand(1), 2353 DAG.getConstant(SHC->getAPIntValue() 2354 .logBase2(), 2355 DL, ADDVT)); 2356 AddToWorklist(Add.getNode()); 2357 return DAG.getNode(ISD::SRL, DL, VT, N0, Add); 2358 } 2359 } 2360 } 2361 2362 // fold (udiv x, c) -> alternate 2363 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2364 if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr)) 2365 if (SDValue Op = BuildUDIV(N)) 2366 return Op; 2367 2368 // sdiv, srem -> sdivrem 2369 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true. 2370 // Otherwise, we break the simplification logic in visitREM(). 2371 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) 2372 if (SDValue DivRem = useDivRem(N)) 2373 return DivRem; 2374 2375 // undef / X -> 0 2376 if (N0.isUndef()) 2377 return DAG.getConstant(0, DL, VT); 2378 // X / undef -> undef 2379 if (N1.isUndef()) 2380 return N1; 2381 2382 return SDValue(); 2383 } 2384 2385 // handles ISD::SREM and ISD::UREM 2386 SDValue DAGCombiner::visitREM(SDNode *N) { 2387 unsigned Opcode = N->getOpcode(); 2388 SDValue N0 = N->getOperand(0); 2389 SDValue N1 = N->getOperand(1); 2390 EVT VT = N->getValueType(0); 2391 bool isSigned = (Opcode == ISD::SREM); 2392 SDLoc DL(N); 2393 2394 // fold (rem c1, c2) -> c1%c2 2395 ConstantSDNode *N0C = isConstOrConstSplat(N0); 2396 ConstantSDNode *N1C = isConstOrConstSplat(N1); 2397 if (N0C && N1C) 2398 if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C)) 2399 return Folded; 2400 2401 if (isSigned) { 2402 // If we know the sign bits of both operands are zero, strength reduce to a 2403 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 2404 if (!VT.isVector()) { 2405 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) 2406 return DAG.getNode(ISD::UREM, DL, VT, N0, N1); 2407 } 2408 } else { 2409 // fold (urem x, pow2) -> (and x, pow2-1) 2410 if (N1C && !N1C->isNullValue() && !N1C->isOpaque() && 2411 N1C->getAPIntValue().isPowerOf2()) { 2412 return DAG.getNode(ISD::AND, DL, VT, N0, 2413 DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT)); 2414 } 2415 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) 2416 if (N1.getOpcode() == ISD::SHL) { 2417 ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0)); 2418 if (SHC && SHC->getAPIntValue().isPowerOf2()) { 2419 APInt NegOne = APInt::getAllOnesValue(VT.getSizeInBits()); 2420 SDValue Add = 2421 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getConstant(NegOne, DL, VT)); 2422 AddToWorklist(Add.getNode()); 2423 return DAG.getNode(ISD::AND, DL, VT, N0, Add); 2424 } 2425 } 2426 } 2427 2428 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2429 2430 // If X/C can be simplified by the division-by-constant logic, lower 2431 // X%C to the equivalent of X-X/C*C. 2432 // To avoid mangling nodes, this simplification requires that the combine() 2433 // call for the speculative DIV must not cause a DIVREM conversion. We guard 2434 // against this by skipping the simplification if isIntDivCheap(). When 2435 // div is not cheap, combine will not return a DIVREM. Regardless, 2436 // checking cheapness here makes sense since the simplification results in 2437 // fatter code. 2438 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) { 2439 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; 2440 SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1); 2441 AddToWorklist(Div.getNode()); 2442 SDValue OptimizedDiv = combine(Div.getNode()); 2443 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { 2444 assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) && 2445 (OptimizedDiv.getOpcode() != ISD::SDIVREM)); 2446 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); 2447 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); 2448 AddToWorklist(Mul.getNode()); 2449 return Sub; 2450 } 2451 } 2452 2453 // sdiv, srem -> sdivrem 2454 if (SDValue DivRem = useDivRem(N)) 2455 return DivRem.getValue(1); 2456 2457 // undef % X -> 0 2458 if (N0.isUndef()) 2459 return DAG.getConstant(0, DL, VT); 2460 // X % undef -> undef 2461 if (N1.isUndef()) 2462 return N1; 2463 2464 return SDValue(); 2465 } 2466 2467 SDValue DAGCombiner::visitMULHS(SDNode *N) { 2468 SDValue N0 = N->getOperand(0); 2469 SDValue N1 = N->getOperand(1); 2470 EVT VT = N->getValueType(0); 2471 SDLoc DL(N); 2472 2473 // fold (mulhs x, 0) -> 0 2474 if (isNullConstant(N1)) 2475 return N1; 2476 // fold (mulhs x, 1) -> (sra x, size(x)-1) 2477 if (isOneConstant(N1)) { 2478 SDLoc DL(N); 2479 return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, 2480 DAG.getConstant(N0.getValueType().getSizeInBits() - 1, 2481 DL, 2482 getShiftAmountTy(N0.getValueType()))); 2483 } 2484 // fold (mulhs x, undef) -> 0 2485 if (N0.isUndef() || N1.isUndef()) 2486 return DAG.getConstant(0, SDLoc(N), VT); 2487 2488 // If the type twice as wide is legal, transform the mulhs to a wider multiply 2489 // plus a shift. 2490 if (VT.isSimple() && !VT.isVector()) { 2491 MVT Simple = VT.getSimpleVT(); 2492 unsigned SimpleSize = Simple.getSizeInBits(); 2493 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2494 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2495 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); 2496 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); 2497 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2498 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2499 DAG.getConstant(SimpleSize, DL, 2500 getShiftAmountTy(N1.getValueType()))); 2501 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2502 } 2503 } 2504 2505 return SDValue(); 2506 } 2507 2508 SDValue DAGCombiner::visitMULHU(SDNode *N) { 2509 SDValue N0 = N->getOperand(0); 2510 SDValue N1 = N->getOperand(1); 2511 EVT VT = N->getValueType(0); 2512 SDLoc DL(N); 2513 2514 // fold (mulhu x, 0) -> 0 2515 if (isNullConstant(N1)) 2516 return N1; 2517 // fold (mulhu x, 1) -> 0 2518 if (isOneConstant(N1)) 2519 return DAG.getConstant(0, DL, N0.getValueType()); 2520 // fold (mulhu x, undef) -> 0 2521 if (N0.isUndef() || N1.isUndef()) 2522 return DAG.getConstant(0, DL, VT); 2523 2524 // If the type twice as wide is legal, transform the mulhu to a wider multiply 2525 // plus a shift. 2526 if (VT.isSimple() && !VT.isVector()) { 2527 MVT Simple = VT.getSimpleVT(); 2528 unsigned SimpleSize = Simple.getSizeInBits(); 2529 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2530 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2531 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); 2532 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); 2533 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); 2534 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, 2535 DAG.getConstant(SimpleSize, DL, 2536 getShiftAmountTy(N1.getValueType()))); 2537 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); 2538 } 2539 } 2540 2541 return SDValue(); 2542 } 2543 2544 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp 2545 /// give the opcodes for the two computations that are being performed. Return 2546 /// true if a simplification was made. 2547 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, 2548 unsigned HiOp) { 2549 // If the high half is not needed, just compute the low half. 2550 bool HiExists = N->hasAnyUseOfValue(1); 2551 if (!HiExists && 2552 (!LegalOperations || 2553 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { 2554 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2555 return CombineTo(N, Res, Res); 2556 } 2557 2558 // If the low half is not needed, just compute the high half. 2559 bool LoExists = N->hasAnyUseOfValue(0); 2560 if (!LoExists && 2561 (!LegalOperations || 2562 TLI.isOperationLegal(HiOp, N->getValueType(1)))) { 2563 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2564 return CombineTo(N, Res, Res); 2565 } 2566 2567 // If both halves are used, return as it is. 2568 if (LoExists && HiExists) 2569 return SDValue(); 2570 2571 // If the two computed results can be simplified separately, separate them. 2572 if (LoExists) { 2573 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); 2574 AddToWorklist(Lo.getNode()); 2575 SDValue LoOpt = combine(Lo.getNode()); 2576 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && 2577 (!LegalOperations || 2578 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) 2579 return CombineTo(N, LoOpt, LoOpt); 2580 } 2581 2582 if (HiExists) { 2583 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); 2584 AddToWorklist(Hi.getNode()); 2585 SDValue HiOpt = combine(Hi.getNode()); 2586 if (HiOpt.getNode() && HiOpt != Hi && 2587 (!LegalOperations || 2588 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) 2589 return CombineTo(N, HiOpt, HiOpt); 2590 } 2591 2592 return SDValue(); 2593 } 2594 2595 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { 2596 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) 2597 return Res; 2598 2599 EVT VT = N->getValueType(0); 2600 SDLoc DL(N); 2601 2602 // If the type is twice as wide is legal, transform the mulhu to a wider 2603 // multiply plus a shift. 2604 if (VT.isSimple() && !VT.isVector()) { 2605 MVT Simple = VT.getSimpleVT(); 2606 unsigned SimpleSize = Simple.getSizeInBits(); 2607 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2608 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2609 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); 2610 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); 2611 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2612 // Compute the high part as N1. 2613 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2614 DAG.getConstant(SimpleSize, DL, 2615 getShiftAmountTy(Lo.getValueType()))); 2616 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2617 // Compute the low part as N0. 2618 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2619 return CombineTo(N, Lo, Hi); 2620 } 2621 } 2622 2623 return SDValue(); 2624 } 2625 2626 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { 2627 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) 2628 return Res; 2629 2630 EVT VT = N->getValueType(0); 2631 SDLoc DL(N); 2632 2633 // If the type is twice as wide is legal, transform the mulhu to a wider 2634 // multiply plus a shift. 2635 if (VT.isSimple() && !VT.isVector()) { 2636 MVT Simple = VT.getSimpleVT(); 2637 unsigned SimpleSize = Simple.getSizeInBits(); 2638 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); 2639 if (TLI.isOperationLegal(ISD::MUL, NewVT)) { 2640 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); 2641 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); 2642 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); 2643 // Compute the high part as N1. 2644 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, 2645 DAG.getConstant(SimpleSize, DL, 2646 getShiftAmountTy(Lo.getValueType()))); 2647 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); 2648 // Compute the low part as N0. 2649 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); 2650 return CombineTo(N, Lo, Hi); 2651 } 2652 } 2653 2654 return SDValue(); 2655 } 2656 2657 SDValue DAGCombiner::visitSMULO(SDNode *N) { 2658 // (smulo x, 2) -> (saddo x, x) 2659 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2660 if (C2->getAPIntValue() == 2) 2661 return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(), 2662 N->getOperand(0), N->getOperand(0)); 2663 2664 return SDValue(); 2665 } 2666 2667 SDValue DAGCombiner::visitUMULO(SDNode *N) { 2668 // (umulo x, 2) -> (uaddo x, x) 2669 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2670 if (C2->getAPIntValue() == 2) 2671 return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(), 2672 N->getOperand(0), N->getOperand(0)); 2673 2674 return SDValue(); 2675 } 2676 2677 SDValue DAGCombiner::visitIMINMAX(SDNode *N) { 2678 SDValue N0 = N->getOperand(0); 2679 SDValue N1 = N->getOperand(1); 2680 EVT VT = N0.getValueType(); 2681 2682 // fold vector ops 2683 if (VT.isVector()) 2684 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 2685 return FoldedVOp; 2686 2687 // fold (add c1, c2) -> c1+c2 2688 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 2689 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 2690 if (N0C && N1C) 2691 return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C); 2692 2693 // canonicalize constant to RHS 2694 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 2695 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 2696 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); 2697 2698 return SDValue(); 2699 } 2700 2701 /// If this is a binary operator with two operands of the same opcode, try to 2702 /// simplify it. 2703 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { 2704 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); 2705 EVT VT = N0.getValueType(); 2706 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); 2707 2708 // Bail early if none of these transforms apply. 2709 if (N0.getNode()->getNumOperands() == 0) return SDValue(); 2710 2711 // For each of OP in AND/OR/XOR: 2712 // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) 2713 // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) 2714 // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) 2715 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y)) 2716 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) 2717 // 2718 // do not sink logical op inside of a vector extend, since it may combine 2719 // into a vsetcc. 2720 EVT Op0VT = N0.getOperand(0).getValueType(); 2721 if ((N0.getOpcode() == ISD::ZERO_EXTEND || 2722 N0.getOpcode() == ISD::SIGN_EXTEND || 2723 N0.getOpcode() == ISD::BSWAP || 2724 // Avoid infinite looping with PromoteIntBinOp. 2725 (N0.getOpcode() == ISD::ANY_EXTEND && 2726 (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || 2727 (N0.getOpcode() == ISD::TRUNCATE && 2728 (!TLI.isZExtFree(VT, Op0VT) || 2729 !TLI.isTruncateFree(Op0VT, VT)) && 2730 TLI.isTypeLegal(Op0VT))) && 2731 !VT.isVector() && 2732 Op0VT == N1.getOperand(0).getValueType() && 2733 (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { 2734 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2735 N0.getOperand(0).getValueType(), 2736 N0.getOperand(0), N1.getOperand(0)); 2737 AddToWorklist(ORNode.getNode()); 2738 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode); 2739 } 2740 2741 // For each of OP in SHL/SRL/SRA/AND... 2742 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) 2743 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z) 2744 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) 2745 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || 2746 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && 2747 N0.getOperand(1) == N1.getOperand(1)) { 2748 SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0), 2749 N0.getOperand(0).getValueType(), 2750 N0.getOperand(0), N1.getOperand(0)); 2751 AddToWorklist(ORNode.getNode()); 2752 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, 2753 ORNode, N0.getOperand(1)); 2754 } 2755 2756 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) 2757 // Only perform this optimization up until type legalization, before 2758 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by 2759 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and 2760 // we don't want to undo this promotion. 2761 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper 2762 // on scalars. 2763 if ((N0.getOpcode() == ISD::BITCAST || 2764 N0.getOpcode() == ISD::SCALAR_TO_VECTOR) && 2765 Level <= AfterLegalizeTypes) { 2766 SDValue In0 = N0.getOperand(0); 2767 SDValue In1 = N1.getOperand(0); 2768 EVT In0Ty = In0.getValueType(); 2769 EVT In1Ty = In1.getValueType(); 2770 SDLoc DL(N); 2771 // If both incoming values are integers, and the original types are the 2772 // same. 2773 if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) { 2774 SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1); 2775 SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op); 2776 AddToWorklist(Op.getNode()); 2777 return BC; 2778 } 2779 } 2780 2781 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). 2782 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) 2783 // If both shuffles use the same mask, and both shuffle within a single 2784 // vector, then it is worthwhile to move the swizzle after the operation. 2785 // The type-legalizer generates this pattern when loading illegal 2786 // vector types from memory. In many cases this allows additional shuffle 2787 // optimizations. 2788 // There are other cases where moving the shuffle after the xor/and/or 2789 // is profitable even if shuffles don't perform a swizzle. 2790 // If both shuffles use the same mask, and both shuffles have the same first 2791 // or second operand, then it might still be profitable to move the shuffle 2792 // after the xor/and/or operation. 2793 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { 2794 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0); 2795 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1); 2796 2797 assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() && 2798 "Inputs to shuffles are not the same type"); 2799 2800 // Check that both shuffles use the same mask. The masks are known to be of 2801 // the same length because the result vector type is the same. 2802 // Check also that shuffles have only one use to avoid introducing extra 2803 // instructions. 2804 if (SVN0->hasOneUse() && SVN1->hasOneUse() && 2805 SVN0->getMask().equals(SVN1->getMask())) { 2806 SDValue ShOp = N0->getOperand(1); 2807 2808 // Don't try to fold this node if it requires introducing a 2809 // build vector of all zeros that might be illegal at this stage. 2810 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2811 if (!LegalTypes) 2812 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2813 else 2814 ShOp = SDValue(); 2815 } 2816 2817 // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C) 2818 // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C) 2819 // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0) 2820 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { 2821 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2822 N0->getOperand(0), N1->getOperand(0)); 2823 AddToWorklist(NewNode.getNode()); 2824 return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp, 2825 SVN0->getMask()); 2826 } 2827 2828 // Don't try to fold this node if it requires introducing a 2829 // build vector of all zeros that might be illegal at this stage. 2830 ShOp = N0->getOperand(0); 2831 if (N->getOpcode() == ISD::XOR && !ShOp.isUndef()) { 2832 if (!LegalTypes) 2833 ShOp = DAG.getConstant(0, SDLoc(N), VT); 2834 else 2835 ShOp = SDValue(); 2836 } 2837 2838 // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B)) 2839 // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B)) 2840 // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B)) 2841 if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) { 2842 SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 2843 N0->getOperand(1), N1->getOperand(1)); 2844 AddToWorklist(NewNode.getNode()); 2845 return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode, 2846 SVN0->getMask()); 2847 } 2848 } 2849 } 2850 2851 return SDValue(); 2852 } 2853 2854 /// This contains all DAGCombine rules which reduce two values combined by 2855 /// an And operation to a single value. This makes them reusable in the context 2856 /// of visitSELECT(). Rules involving constants are not included as 2857 /// visitSELECT() already handles those cases. 2858 SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, 2859 SDNode *LocReference) { 2860 EVT VT = N1.getValueType(); 2861 2862 // fold (and x, undef) -> 0 2863 if (N0.isUndef() || N1.isUndef()) 2864 return DAG.getConstant(0, SDLoc(LocReference), VT); 2865 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) 2866 SDValue LL, LR, RL, RR, CC0, CC1; 2867 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 2868 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 2869 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 2870 2871 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && 2872 LL.getValueType().isInteger()) { 2873 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) 2874 if (isNullConstant(LR) && Op1 == ISD::SETEQ) { 2875 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2876 LR.getValueType(), LL, RL); 2877 AddToWorklist(ORNode.getNode()); 2878 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2879 } 2880 if (isAllOnesConstant(LR)) { 2881 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) 2882 if (Op1 == ISD::SETEQ) { 2883 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0), 2884 LR.getValueType(), LL, RL); 2885 AddToWorklist(ANDNode.getNode()); 2886 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 2887 } 2888 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1) 2889 if (Op1 == ISD::SETGT) { 2890 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0), 2891 LR.getValueType(), LL, RL); 2892 AddToWorklist(ORNode.getNode()); 2893 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 2894 } 2895 } 2896 } 2897 // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2) 2898 if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) && 2899 Op0 == Op1 && LL.getValueType().isInteger() && 2900 Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) || 2901 (isAllOnesConstant(LR) && isNullConstant(RR)))) { 2902 SDLoc DL(N0); 2903 SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(), 2904 LL, DAG.getConstant(1, DL, 2905 LL.getValueType())); 2906 AddToWorklist(ADDNode.getNode()); 2907 return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode, 2908 DAG.getConstant(2, DL, LL.getValueType()), 2909 ISD::SETUGE); 2910 } 2911 // canonicalize equivalent to ll == rl 2912 if (LL == RR && LR == RL) { 2913 Op1 = ISD::getSetCCSwappedOperands(Op1); 2914 std::swap(RL, RR); 2915 } 2916 if (LL == RL && LR == RR) { 2917 bool isInteger = LL.getValueType().isInteger(); 2918 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); 2919 if (Result != ISD::SETCC_INVALID && 2920 (!LegalOperations || 2921 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 2922 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 2923 EVT CCVT = getSetCCResultType(LL.getValueType()); 2924 if (N0.getValueType() == CCVT || 2925 (!LegalOperations && N0.getValueType() == MVT::i1)) 2926 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 2927 LL, LR, Result); 2928 } 2929 } 2930 } 2931 2932 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && 2933 VT.getSizeInBits() <= 64) { 2934 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2935 APInt ADDC = ADDI->getAPIntValue(); 2936 if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2937 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal 2938 // immediate for an add, but it is legal if its top c2 bits are set, 2939 // transform the ADD so the immediate doesn't need to be materialized 2940 // in a register. 2941 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { 2942 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 2943 SRLI->getZExtValue()); 2944 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { 2945 ADDC |= Mask; 2946 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { 2947 SDLoc DL(N0); 2948 SDValue NewAdd = 2949 DAG.getNode(ISD::ADD, DL, VT, 2950 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); 2951 CombineTo(N0.getNode(), NewAdd); 2952 // Return N so it doesn't get rechecked! 2953 return SDValue(LocReference, 0); 2954 } 2955 } 2956 } 2957 } 2958 } 2959 } 2960 2961 // Reduce bit extract of low half of an integer to the narrower type. 2962 // (and (srl i64:x, K), KMask) -> 2963 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) 2964 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 2965 if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { 2966 if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2967 unsigned Size = VT.getSizeInBits(); 2968 const APInt &AndMask = CAnd->getAPIntValue(); 2969 unsigned ShiftBits = CShift->getZExtValue(); 2970 unsigned MaskBits = AndMask.countTrailingOnes(); 2971 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); 2972 2973 if (APIntOps::isMask(AndMask) && 2974 // Required bits must not span the two halves of the integer and 2975 // must fit in the half size type. 2976 (ShiftBits + MaskBits <= Size / 2) && 2977 TLI.isNarrowingProfitable(VT, HalfVT) && 2978 TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && 2979 TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && 2980 TLI.isTruncateFree(VT, HalfVT) && 2981 TLI.isZExtFree(HalfVT, VT)) { 2982 // The isNarrowingProfitable is to avoid regressions on PPC and 2983 // AArch64 which match a few 64-bit bit insert / bit extract patterns 2984 // on downstream users of this. Those patterns could probably be 2985 // extended to handle extensions mixed in. 2986 2987 SDValue SL(N0); 2988 assert(ShiftBits != 0 && MaskBits <= Size); 2989 2990 // Extracting the highest bit of the low half. 2991 EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); 2992 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, 2993 N0.getOperand(0)); 2994 2995 SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); 2996 SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); 2997 SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); 2998 SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); 2999 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); 3000 } 3001 } 3002 } 3003 } 3004 3005 return SDValue(); 3006 } 3007 3008 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, 3009 EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT, 3010 bool &NarrowLoad) { 3011 uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits(); 3012 3013 if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue())) 3014 return false; 3015 3016 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); 3017 LoadedVT = LoadN->getMemoryVT(); 3018 3019 if (ExtVT == LoadedVT && 3020 (!LegalOperations || 3021 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { 3022 // ZEXTLOAD will match without needing to change the size of the value being 3023 // loaded. 3024 NarrowLoad = false; 3025 return true; 3026 } 3027 3028 // Do not change the width of a volatile load. 3029 if (LoadN->isVolatile()) 3030 return false; 3031 3032 // Do not generate loads of non-round integer types since these can 3033 // be expensive (and would be wrong if the type is not byte sized). 3034 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) 3035 return false; 3036 3037 if (LegalOperations && 3038 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) 3039 return false; 3040 3041 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) 3042 return false; 3043 3044 NarrowLoad = true; 3045 return true; 3046 } 3047 3048 SDValue DAGCombiner::visitAND(SDNode *N) { 3049 SDValue N0 = N->getOperand(0); 3050 SDValue N1 = N->getOperand(1); 3051 EVT VT = N1.getValueType(); 3052 3053 // fold vector ops 3054 if (VT.isVector()) { 3055 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3056 return FoldedVOp; 3057 3058 // fold (and x, 0) -> 0, vector edition 3059 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3060 // do not return N0, because undef node may exist in N0 3061 return DAG.getConstant( 3062 APInt::getNullValue( 3063 N0.getValueType().getScalarType().getSizeInBits()), 3064 SDLoc(N), N0.getValueType()); 3065 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3066 // do not return N1, because undef node may exist in N1 3067 return DAG.getConstant( 3068 APInt::getNullValue( 3069 N1.getValueType().getScalarType().getSizeInBits()), 3070 SDLoc(N), N1.getValueType()); 3071 3072 // fold (and x, -1) -> x, vector edition 3073 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3074 return N1; 3075 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3076 return N0; 3077 } 3078 3079 // fold (and c1, c2) -> c1&c2 3080 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3081 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3082 if (N0C && N1C && !N1C->isOpaque()) 3083 return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C); 3084 // canonicalize constant to RHS 3085 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3086 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3087 return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); 3088 // fold (and x, -1) -> x 3089 if (isAllOnesConstant(N1)) 3090 return N0; 3091 // if (and x, c) is known to be zero, return 0 3092 unsigned BitWidth = VT.getScalarType().getSizeInBits(); 3093 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 3094 APInt::getAllOnesValue(BitWidth))) 3095 return DAG.getConstant(0, SDLoc(N), VT); 3096 // reassociate and 3097 if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1)) 3098 return RAND; 3099 // fold (and (or x, C), D) -> D if (C & D) == D 3100 if (N1C && N0.getOpcode() == ISD::OR) 3101 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 3102 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) 3103 return N1; 3104 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. 3105 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 3106 SDValue N0Op0 = N0.getOperand(0); 3107 APInt Mask = ~N1C->getAPIntValue(); 3108 Mask = Mask.trunc(N0Op0.getValueSizeInBits()); 3109 if (DAG.MaskedValueIsZero(N0Op0, Mask)) { 3110 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), 3111 N0.getValueType(), N0Op0); 3112 3113 // Replace uses of the AND with uses of the Zero extend node. 3114 CombineTo(N, Zext); 3115 3116 // We actually want to replace all uses of the any_extend with the 3117 // zero_extend, to avoid duplicating things. This will later cause this 3118 // AND to be folded. 3119 CombineTo(N0.getNode(), Zext); 3120 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3121 } 3122 } 3123 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> 3124 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must 3125 // already be zero by virtue of the width of the base type of the load. 3126 // 3127 // the 'X' node here can either be nothing or an extract_vector_elt to catch 3128 // more cases. 3129 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3130 N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && 3131 N0.getOperand(0).getOpcode() == ISD::LOAD && 3132 N0.getOperand(0).getResNo() == 0) || 3133 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { 3134 LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? 3135 N0 : N0.getOperand(0) ); 3136 3137 // Get the constant (if applicable) the zero'th operand is being ANDed with. 3138 // This can be a pure constant or a vector splat, in which case we treat the 3139 // vector as a scalar and use the splat value. 3140 APInt Constant = APInt::getNullValue(1); 3141 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 3142 Constant = C->getAPIntValue(); 3143 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { 3144 APInt SplatValue, SplatUndef; 3145 unsigned SplatBitSize; 3146 bool HasAnyUndefs; 3147 bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, 3148 SplatBitSize, HasAnyUndefs); 3149 if (IsSplat) { 3150 // Undef bits can contribute to a possible optimisation if set, so 3151 // set them. 3152 SplatValue |= SplatUndef; 3153 3154 // The splat value may be something like "0x00FFFFFF", which means 0 for 3155 // the first vector value and FF for the rest, repeating. We need a mask 3156 // that will apply equally to all members of the vector, so AND all the 3157 // lanes of the constant together. 3158 EVT VT = Vector->getValueType(0); 3159 unsigned BitWidth = VT.getVectorElementType().getSizeInBits(); 3160 3161 // If the splat value has been compressed to a bitlength lower 3162 // than the size of the vector lane, we need to re-expand it to 3163 // the lane size. 3164 if (BitWidth > SplatBitSize) 3165 for (SplatValue = SplatValue.zextOrTrunc(BitWidth); 3166 SplatBitSize < BitWidth; 3167 SplatBitSize = SplatBitSize * 2) 3168 SplatValue |= SplatValue.shl(SplatBitSize); 3169 3170 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a 3171 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. 3172 if (SplatBitSize % BitWidth == 0) { 3173 Constant = APInt::getAllOnesValue(BitWidth); 3174 for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i) 3175 Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth); 3176 } 3177 } 3178 } 3179 3180 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is 3181 // actually legal and isn't going to get expanded, else this is a false 3182 // optimisation. 3183 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, 3184 Load->getValueType(0), 3185 Load->getMemoryVT()); 3186 3187 // Resize the constant to the same size as the original memory access before 3188 // extension. If it is still the AllOnesValue then this AND is completely 3189 // unneeded. 3190 Constant = 3191 Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits()); 3192 3193 bool B; 3194 switch (Load->getExtensionType()) { 3195 default: B = false; break; 3196 case ISD::EXTLOAD: B = CanZextLoadProfitably; break; 3197 case ISD::ZEXTLOAD: 3198 case ISD::NON_EXTLOAD: B = true; break; 3199 } 3200 3201 if (B && Constant.isAllOnesValue()) { 3202 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to 3203 // preserve semantics once we get rid of the AND. 3204 SDValue NewLoad(Load, 0); 3205 if (Load->getExtensionType() == ISD::EXTLOAD) { 3206 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, 3207 Load->getValueType(0), SDLoc(Load), 3208 Load->getChain(), Load->getBasePtr(), 3209 Load->getOffset(), Load->getMemoryVT(), 3210 Load->getMemOperand()); 3211 // Replace uses of the EXTLOAD with the new ZEXTLOAD. 3212 if (Load->getNumValues() == 3) { 3213 // PRE/POST_INC loads have 3 values. 3214 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), 3215 NewLoad.getValue(2) }; 3216 CombineTo(Load, To, 3, true); 3217 } else { 3218 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); 3219 } 3220 } 3221 3222 // Fold the AND away, taking care not to fold to the old load node if we 3223 // replaced it. 3224 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); 3225 3226 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3227 } 3228 } 3229 3230 // fold (and (load x), 255) -> (zextload x, i8) 3231 // fold (and (extload x, i16), 255) -> (zextload x, i8) 3232 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) 3233 if (N1C && (N0.getOpcode() == ISD::LOAD || 3234 (N0.getOpcode() == ISD::ANY_EXTEND && 3235 N0.getOperand(0).getOpcode() == ISD::LOAD))) { 3236 bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; 3237 LoadSDNode *LN0 = HasAnyExt 3238 ? cast<LoadSDNode>(N0.getOperand(0)) 3239 : cast<LoadSDNode>(N0); 3240 if (LN0->getExtensionType() != ISD::SEXTLOAD && 3241 LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) { 3242 auto NarrowLoad = false; 3243 EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; 3244 EVT ExtVT, LoadedVT; 3245 if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT, 3246 NarrowLoad)) { 3247 if (!NarrowLoad) { 3248 SDValue NewLoad = 3249 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3250 LN0->getChain(), LN0->getBasePtr(), ExtVT, 3251 LN0->getMemOperand()); 3252 AddToWorklist(N); 3253 CombineTo(LN0, NewLoad, NewLoad.getValue(1)); 3254 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3255 } else { 3256 EVT PtrType = LN0->getOperand(1).getValueType(); 3257 3258 unsigned Alignment = LN0->getAlignment(); 3259 SDValue NewPtr = LN0->getBasePtr(); 3260 3261 // For big endian targets, we need to add an offset to the pointer 3262 // to load the correct bytes. For little endian systems, we merely 3263 // need to read fewer bytes from the same pointer. 3264 if (DAG.getDataLayout().isBigEndian()) { 3265 unsigned LVTStoreBytes = LoadedVT.getStoreSize(); 3266 unsigned EVTStoreBytes = ExtVT.getStoreSize(); 3267 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; 3268 SDLoc DL(LN0); 3269 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, 3270 NewPtr, DAG.getConstant(PtrOff, DL, PtrType)); 3271 Alignment = MinAlign(Alignment, PtrOff); 3272 } 3273 3274 AddToWorklist(NewPtr.getNode()); 3275 3276 SDValue Load = 3277 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy, 3278 LN0->getChain(), NewPtr, 3279 LN0->getPointerInfo(), 3280 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 3281 LN0->isInvariant(), Alignment, LN0->getAAInfo()); 3282 AddToWorklist(N); 3283 CombineTo(LN0, Load, Load.getValue(1)); 3284 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3285 } 3286 } 3287 } 3288 } 3289 3290 if (SDValue Combined = visitANDLike(N0, N1, N)) 3291 return Combined; 3292 3293 // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) 3294 if (N0.getOpcode() == N1.getOpcode()) 3295 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3296 return Tmp; 3297 3298 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) 3299 // fold (and (sra)) -> (and (srl)) when possible. 3300 if (!VT.isVector() && 3301 SimplifyDemandedBits(SDValue(N, 0))) 3302 return SDValue(N, 0); 3303 3304 // fold (zext_inreg (extload x)) -> (zextload x) 3305 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { 3306 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3307 EVT MemVT = LN0->getMemoryVT(); 3308 // If we zero all the possible extended bits, then we can turn this into 3309 // a zextload if we are running before legalize or the operation is legal. 3310 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3311 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3312 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3313 ((!LegalOperations && !LN0->isVolatile()) || 3314 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3315 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3316 LN0->getChain(), LN0->getBasePtr(), 3317 MemVT, LN0->getMemOperand()); 3318 AddToWorklist(N); 3319 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3320 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3321 } 3322 } 3323 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use 3324 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 3325 N0.hasOneUse()) { 3326 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 3327 EVT MemVT = LN0->getMemoryVT(); 3328 // If we zero all the possible extended bits, then we can turn this into 3329 // a zextload if we are running before legalize or the operation is legal. 3330 unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); 3331 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, 3332 BitWidth - MemVT.getScalarType().getSizeInBits())) && 3333 ((!LegalOperations && !LN0->isVolatile()) || 3334 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { 3335 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, 3336 LN0->getChain(), LN0->getBasePtr(), 3337 MemVT, LN0->getMemOperand()); 3338 AddToWorklist(N); 3339 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 3340 return SDValue(N, 0); // Return N so it doesn't get rechecked! 3341 } 3342 } 3343 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) 3344 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { 3345 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 3346 N0.getOperand(1), false)) 3347 return BSwap; 3348 } 3349 3350 return SDValue(); 3351 } 3352 3353 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16. 3354 SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, 3355 bool DemandHighBits) { 3356 if (!LegalOperations) 3357 return SDValue(); 3358 3359 EVT VT = N->getValueType(0); 3360 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) 3361 return SDValue(); 3362 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3363 return SDValue(); 3364 3365 // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00) 3366 bool LookPassAnd0 = false; 3367 bool LookPassAnd1 = false; 3368 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) 3369 std::swap(N0, N1); 3370 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) 3371 std::swap(N0, N1); 3372 if (N0.getOpcode() == ISD::AND) { 3373 if (!N0.getNode()->hasOneUse()) 3374 return SDValue(); 3375 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3376 if (!N01C || N01C->getZExtValue() != 0xFF00) 3377 return SDValue(); 3378 N0 = N0.getOperand(0); 3379 LookPassAnd0 = true; 3380 } 3381 3382 if (N1.getOpcode() == ISD::AND) { 3383 if (!N1.getNode()->hasOneUse()) 3384 return SDValue(); 3385 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3386 if (!N11C || N11C->getZExtValue() != 0xFF) 3387 return SDValue(); 3388 N1 = N1.getOperand(0); 3389 LookPassAnd1 = true; 3390 } 3391 3392 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 3393 std::swap(N0, N1); 3394 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 3395 return SDValue(); 3396 if (!N0.getNode()->hasOneUse() || 3397 !N1.getNode()->hasOneUse()) 3398 return SDValue(); 3399 3400 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3401 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 3402 if (!N01C || !N11C) 3403 return SDValue(); 3404 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) 3405 return SDValue(); 3406 3407 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) 3408 SDValue N00 = N0->getOperand(0); 3409 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { 3410 if (!N00.getNode()->hasOneUse()) 3411 return SDValue(); 3412 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); 3413 if (!N001C || N001C->getZExtValue() != 0xFF) 3414 return SDValue(); 3415 N00 = N00.getOperand(0); 3416 LookPassAnd0 = true; 3417 } 3418 3419 SDValue N10 = N1->getOperand(0); 3420 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { 3421 if (!N10.getNode()->hasOneUse()) 3422 return SDValue(); 3423 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); 3424 if (!N101C || N101C->getZExtValue() != 0xFF00) 3425 return SDValue(); 3426 N10 = N10.getOperand(0); 3427 LookPassAnd1 = true; 3428 } 3429 3430 if (N00 != N10) 3431 return SDValue(); 3432 3433 // Make sure everything beyond the low halfword gets set to zero since the SRL 3434 // 16 will clear the top bits. 3435 unsigned OpSizeInBits = VT.getSizeInBits(); 3436 if (DemandHighBits && OpSizeInBits > 16) { 3437 // If the left-shift isn't masked out then the only way this is a bswap is 3438 // if all bits beyond the low 8 are 0. In that case the entire pattern 3439 // reduces to a left shift anyway: leave it for other parts of the combiner. 3440 if (!LookPassAnd0) 3441 return SDValue(); 3442 3443 // However, if the right shift isn't masked out then it might be because 3444 // it's not needed. See if we can spot that too. 3445 if (!LookPassAnd1 && 3446 !DAG.MaskedValueIsZero( 3447 N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) 3448 return SDValue(); 3449 } 3450 3451 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); 3452 if (OpSizeInBits > 16) { 3453 SDLoc DL(N); 3454 Res = DAG.getNode(ISD::SRL, DL, VT, Res, 3455 DAG.getConstant(OpSizeInBits - 16, DL, 3456 getShiftAmountTy(VT))); 3457 } 3458 return Res; 3459 } 3460 3461 /// Return true if the specified node is an element that makes up a 32-bit 3462 /// packed halfword byteswap. 3463 /// ((x & 0x000000ff) << 8) | 3464 /// ((x & 0x0000ff00) >> 8) | 3465 /// ((x & 0x00ff0000) << 8) | 3466 /// ((x & 0xff000000) >> 8) 3467 static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { 3468 if (!N.getNode()->hasOneUse()) 3469 return false; 3470 3471 unsigned Opc = N.getOpcode(); 3472 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) 3473 return false; 3474 3475 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3476 if (!N1C) 3477 return false; 3478 3479 unsigned Num; 3480 switch (N1C->getZExtValue()) { 3481 default: 3482 return false; 3483 case 0xFF: Num = 0; break; 3484 case 0xFF00: Num = 1; break; 3485 case 0xFF0000: Num = 2; break; 3486 case 0xFF000000: Num = 3; break; 3487 } 3488 3489 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). 3490 SDValue N0 = N.getOperand(0); 3491 if (Opc == ISD::AND) { 3492 if (Num == 0 || Num == 2) { 3493 // (x >> 8) & 0xff 3494 // (x >> 8) & 0xff0000 3495 if (N0.getOpcode() != ISD::SRL) 3496 return false; 3497 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3498 if (!C || C->getZExtValue() != 8) 3499 return false; 3500 } else { 3501 // (x << 8) & 0xff00 3502 // (x << 8) & 0xff000000 3503 if (N0.getOpcode() != ISD::SHL) 3504 return false; 3505 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3506 if (!C || C->getZExtValue() != 8) 3507 return false; 3508 } 3509 } else if (Opc == ISD::SHL) { 3510 // (x & 0xff) << 8 3511 // (x & 0xff0000) << 8 3512 if (Num != 0 && Num != 2) 3513 return false; 3514 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3515 if (!C || C->getZExtValue() != 8) 3516 return false; 3517 } else { // Opc == ISD::SRL 3518 // (x & 0xff00) >> 8 3519 // (x & 0xff000000) >> 8 3520 if (Num != 1 && Num != 3) 3521 return false; 3522 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); 3523 if (!C || C->getZExtValue() != 8) 3524 return false; 3525 } 3526 3527 if (Parts[Num]) 3528 return false; 3529 3530 Parts[Num] = N0.getOperand(0).getNode(); 3531 return true; 3532 } 3533 3534 /// Match a 32-bit packed halfword bswap. That is 3535 /// ((x & 0x000000ff) << 8) | 3536 /// ((x & 0x0000ff00) >> 8) | 3537 /// ((x & 0x00ff0000) << 8) | 3538 /// ((x & 0xff000000) >> 8) 3539 /// => (rotl (bswap x), 16) 3540 SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { 3541 if (!LegalOperations) 3542 return SDValue(); 3543 3544 EVT VT = N->getValueType(0); 3545 if (VT != MVT::i32) 3546 return SDValue(); 3547 if (!TLI.isOperationLegal(ISD::BSWAP, VT)) 3548 return SDValue(); 3549 3550 // Look for either 3551 // (or (or (and), (and)), (or (and), (and))) 3552 // (or (or (or (and), (and)), (and)), (and)) 3553 if (N0.getOpcode() != ISD::OR) 3554 return SDValue(); 3555 SDValue N00 = N0.getOperand(0); 3556 SDValue N01 = N0.getOperand(1); 3557 SDNode *Parts[4] = {}; 3558 3559 if (N1.getOpcode() == ISD::OR && 3560 N00.getNumOperands() == 2 && N01.getNumOperands() == 2) { 3561 // (or (or (and), (and)), (or (and), (and))) 3562 SDValue N000 = N00.getOperand(0); 3563 if (!isBSwapHWordElement(N000, Parts)) 3564 return SDValue(); 3565 3566 SDValue N001 = N00.getOperand(1); 3567 if (!isBSwapHWordElement(N001, Parts)) 3568 return SDValue(); 3569 SDValue N010 = N01.getOperand(0); 3570 if (!isBSwapHWordElement(N010, Parts)) 3571 return SDValue(); 3572 SDValue N011 = N01.getOperand(1); 3573 if (!isBSwapHWordElement(N011, Parts)) 3574 return SDValue(); 3575 } else { 3576 // (or (or (or (and), (and)), (and)), (and)) 3577 if (!isBSwapHWordElement(N1, Parts)) 3578 return SDValue(); 3579 if (!isBSwapHWordElement(N01, Parts)) 3580 return SDValue(); 3581 if (N00.getOpcode() != ISD::OR) 3582 return SDValue(); 3583 SDValue N000 = N00.getOperand(0); 3584 if (!isBSwapHWordElement(N000, Parts)) 3585 return SDValue(); 3586 SDValue N001 = N00.getOperand(1); 3587 if (!isBSwapHWordElement(N001, Parts)) 3588 return SDValue(); 3589 } 3590 3591 // Make sure the parts are all coming from the same node. 3592 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) 3593 return SDValue(); 3594 3595 SDLoc DL(N); 3596 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, 3597 SDValue(Parts[0], 0)); 3598 3599 // Result of the bswap should be rotated by 16. If it's not legal, then 3600 // do (x << 16) | (x >> 16). 3601 SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); 3602 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) 3603 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); 3604 if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) 3605 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); 3606 return DAG.getNode(ISD::OR, DL, VT, 3607 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), 3608 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); 3609 } 3610 3611 /// This contains all DAGCombine rules which reduce two values combined by 3612 /// an Or operation to a single value \see visitANDLike(). 3613 SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) { 3614 EVT VT = N1.getValueType(); 3615 // fold (or x, undef) -> -1 3616 if (!LegalOperations && 3617 (N0.isUndef() || N1.isUndef())) { 3618 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; 3619 return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), 3620 SDLoc(LocReference), VT); 3621 } 3622 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) 3623 SDValue LL, LR, RL, RR, CC0, CC1; 3624 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ 3625 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); 3626 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); 3627 3628 if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) { 3629 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) 3630 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) 3631 if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { 3632 SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR), 3633 LR.getValueType(), LL, RL); 3634 AddToWorklist(ORNode.getNode()); 3635 return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1); 3636 } 3637 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) 3638 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1) 3639 if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { 3640 SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR), 3641 LR.getValueType(), LL, RL); 3642 AddToWorklist(ANDNode.getNode()); 3643 return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1); 3644 } 3645 } 3646 // canonicalize equivalent to ll == rl 3647 if (LL == RR && LR == RL) { 3648 Op1 = ISD::getSetCCSwappedOperands(Op1); 3649 std::swap(RL, RR); 3650 } 3651 if (LL == RL && LR == RR) { 3652 bool isInteger = LL.getValueType().isInteger(); 3653 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); 3654 if (Result != ISD::SETCC_INVALID && 3655 (!LegalOperations || 3656 (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) && 3657 TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) { 3658 EVT CCVT = getSetCCResultType(LL.getValueType()); 3659 if (N0.getValueType() == CCVT || 3660 (!LegalOperations && N0.getValueType() == MVT::i1)) 3661 return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(), 3662 LL, LR, Result); 3663 } 3664 } 3665 } 3666 3667 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. 3668 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && 3669 // Don't increase # computations. 3670 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3671 // We can only do this xform if we know that bits from X that are set in C2 3672 // but not in C1 are already zero. Likewise for Y. 3673 if (const ConstantSDNode *N0O1C = 3674 getAsNonOpaqueConstant(N0.getOperand(1))) { 3675 if (const ConstantSDNode *N1O1C = 3676 getAsNonOpaqueConstant(N1.getOperand(1))) { 3677 // We can only do this xform if we know that bits from X that are set in 3678 // C2 but not in C1 are already zero. Likewise for Y. 3679 const APInt &LHSMask = N0O1C->getAPIntValue(); 3680 const APInt &RHSMask = N1O1C->getAPIntValue(); 3681 3682 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && 3683 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { 3684 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3685 N0.getOperand(0), N1.getOperand(0)); 3686 SDLoc DL(LocReference); 3687 return DAG.getNode(ISD::AND, DL, VT, X, 3688 DAG.getConstant(LHSMask | RHSMask, DL, VT)); 3689 } 3690 } 3691 } 3692 } 3693 3694 // (or (and X, M), (and X, N)) -> (and X, (or M, N)) 3695 if (N0.getOpcode() == ISD::AND && 3696 N1.getOpcode() == ISD::AND && 3697 N0.getOperand(0) == N1.getOperand(0) && 3698 // Don't increase # computations. 3699 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { 3700 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, 3701 N0.getOperand(1), N1.getOperand(1)); 3702 return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X); 3703 } 3704 3705 return SDValue(); 3706 } 3707 3708 SDValue DAGCombiner::visitOR(SDNode *N) { 3709 SDValue N0 = N->getOperand(0); 3710 SDValue N1 = N->getOperand(1); 3711 EVT VT = N1.getValueType(); 3712 3713 // fold vector ops 3714 if (VT.isVector()) { 3715 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 3716 return FoldedVOp; 3717 3718 // fold (or x, 0) -> x, vector edition 3719 if (ISD::isBuildVectorAllZeros(N0.getNode())) 3720 return N1; 3721 if (ISD::isBuildVectorAllZeros(N1.getNode())) 3722 return N0; 3723 3724 // fold (or x, -1) -> -1, vector edition 3725 if (ISD::isBuildVectorAllOnes(N0.getNode())) 3726 // do not return N0, because undef node may exist in N0 3727 return DAG.getConstant( 3728 APInt::getAllOnesValue( 3729 N0.getValueType().getScalarType().getSizeInBits()), 3730 SDLoc(N), N0.getValueType()); 3731 if (ISD::isBuildVectorAllOnes(N1.getNode())) 3732 // do not return N1, because undef node may exist in N1 3733 return DAG.getConstant( 3734 APInt::getAllOnesValue( 3735 N1.getValueType().getScalarType().getSizeInBits()), 3736 SDLoc(N), N1.getValueType()); 3737 3738 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) 3739 // Do this only if the resulting shuffle is legal. 3740 if (isa<ShuffleVectorSDNode>(N0) && 3741 isa<ShuffleVectorSDNode>(N1) && 3742 // Avoid folding a node with illegal type. 3743 TLI.isTypeLegal(VT)) { 3744 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); 3745 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); 3746 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 3747 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); 3748 // Ensure both shuffles have a zero input. 3749 if ((ZeroN00 || ZeroN01) && (ZeroN10 || ZeroN11)) { 3750 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); 3751 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); 3752 const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); 3753 const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); 3754 bool CanFold = true; 3755 int NumElts = VT.getVectorNumElements(); 3756 SmallVector<int, 4> Mask(NumElts); 3757 3758 for (int i = 0; i != NumElts; ++i) { 3759 int M0 = SV0->getMaskElt(i); 3760 int M1 = SV1->getMaskElt(i); 3761 3762 // Determine if either index is pointing to a zero vector. 3763 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); 3764 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); 3765 3766 // If one element is zero and the otherside is undef, keep undef. 3767 // This also handles the case that both are undef. 3768 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { 3769 Mask[i] = -1; 3770 continue; 3771 } 3772 3773 // Make sure only one of the elements is zero. 3774 if (M0Zero == M1Zero) { 3775 CanFold = false; 3776 break; 3777 } 3778 3779 assert((M0 >= 0 || M1 >= 0) && "Undef index!"); 3780 3781 // We have a zero and non-zero element. If the non-zero came from 3782 // SV0 make the index a LHS index. If it came from SV1, make it 3783 // a RHS index. We need to mod by NumElts because we don't care 3784 // which operand it came from in the original shuffles. 3785 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; 3786 } 3787 3788 if (CanFold) { 3789 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); 3790 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); 3791 3792 bool LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 3793 if (!LegalMask) { 3794 std::swap(NewLHS, NewRHS); 3795 ShuffleVectorSDNode::commuteMask(Mask); 3796 LegalMask = TLI.isShuffleMaskLegal(Mask, VT); 3797 } 3798 3799 if (LegalMask) 3800 return DAG.getVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, Mask); 3801 } 3802 } 3803 } 3804 } 3805 3806 // fold (or c1, c2) -> c1|c2 3807 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 3808 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 3809 if (N0C && N1C && !N1C->isOpaque()) 3810 return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C); 3811 // canonicalize constant to RHS 3812 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 3813 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 3814 return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); 3815 // fold (or x, 0) -> x 3816 if (isNullConstant(N1)) 3817 return N0; 3818 // fold (or x, -1) -> -1 3819 if (isAllOnesConstant(N1)) 3820 return N1; 3821 // fold (or x, c) -> c iff (x & ~c) == 0 3822 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) 3823 return N1; 3824 3825 if (SDValue Combined = visitORLike(N0, N1, N)) 3826 return Combined; 3827 3828 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) 3829 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) 3830 return BSwap; 3831 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) 3832 return BSwap; 3833 3834 // reassociate or 3835 if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1)) 3836 return ROR; 3837 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) 3838 // iff (c1 & c2) == 0. 3839 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 3840 isa<ConstantSDNode>(N0.getOperand(1))) { 3841 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); 3842 if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) { 3843 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, 3844 N1C, C1)) 3845 return DAG.getNode( 3846 ISD::AND, SDLoc(N), VT, 3847 DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR); 3848 return SDValue(); 3849 } 3850 } 3851 // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) 3852 if (N0.getOpcode() == N1.getOpcode()) 3853 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 3854 return Tmp; 3855 3856 // See if this is some rotate idiom. 3857 if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N))) 3858 return SDValue(Rot, 0); 3859 3860 // Simplify the operands using demanded-bits information. 3861 if (!VT.isVector() && 3862 SimplifyDemandedBits(SDValue(N, 0))) 3863 return SDValue(N, 0); 3864 3865 return SDValue(); 3866 } 3867 3868 /// Match "(X shl/srl V1) & V2" where V2 may not be present. 3869 bool DAGCombiner::MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { 3870 if (Op.getOpcode() == ISD::AND) { 3871 if (DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { 3872 Mask = Op.getOperand(1); 3873 Op = Op.getOperand(0); 3874 } else { 3875 return false; 3876 } 3877 } 3878 3879 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { 3880 Shift = Op; 3881 return true; 3882 } 3883 3884 return false; 3885 } 3886 3887 // Return true if we can prove that, whenever Neg and Pos are both in the 3888 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that 3889 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits: 3890 // 3891 // (or (shift1 X, Neg), (shift2 X, Pos)) 3892 // 3893 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate 3894 // in direction shift1 by Neg. The range [0, EltSize) means that we only need 3895 // to consider shift amounts with defined behavior. 3896 static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) { 3897 // If EltSize is a power of 2 then: 3898 // 3899 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) 3900 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). 3901 // 3902 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check 3903 // for the stronger condition: 3904 // 3905 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] 3906 // 3907 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) 3908 // we can just replace Neg with Neg' for the rest of the function. 3909 // 3910 // In other cases we check for the even stronger condition: 3911 // 3912 // Neg == EltSize - Pos [B] 3913 // 3914 // for all Neg and Pos. Note that the (or ...) then invokes undefined 3915 // behavior if Pos == 0 (and consequently Neg == EltSize). 3916 // 3917 // We could actually use [A] whenever EltSize is a power of 2, but the 3918 // only extra cases that it would match are those uninteresting ones 3919 // where Neg and Pos are never in range at the same time. E.g. for 3920 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) 3921 // as well as (sub 32, Pos), but: 3922 // 3923 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) 3924 // 3925 // always invokes undefined behavior for 32-bit X. 3926 // 3927 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. 3928 unsigned MaskLoBits = 0; 3929 if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { 3930 if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { 3931 if (NegC->getAPIntValue() == EltSize - 1) { 3932 Neg = Neg.getOperand(0); 3933 MaskLoBits = Log2_64(EltSize); 3934 } 3935 } 3936 } 3937 3938 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. 3939 if (Neg.getOpcode() != ISD::SUB) 3940 return false; 3941 ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); 3942 if (!NegC) 3943 return false; 3944 SDValue NegOp1 = Neg.getOperand(1); 3945 3946 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with 3947 // Pos'. The truncation is redundant for the purpose of the equality. 3948 if (MaskLoBits && Pos.getOpcode() == ISD::AND) 3949 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3950 if (PosC->getAPIntValue() == EltSize - 1) 3951 Pos = Pos.getOperand(0); 3952 3953 // The condition we need is now: 3954 // 3955 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask 3956 // 3957 // If NegOp1 == Pos then we need: 3958 // 3959 // EltSize & Mask == NegC & Mask 3960 // 3961 // (because "x & Mask" is a truncation and distributes through subtraction). 3962 APInt Width; 3963 if (Pos == NegOp1) 3964 Width = NegC->getAPIntValue(); 3965 3966 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. 3967 // Then the condition we want to prove becomes: 3968 // 3969 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask 3970 // 3971 // which, again because "x & Mask" is a truncation, becomes: 3972 // 3973 // NegC & Mask == (EltSize - PosC) & Mask 3974 // EltSize & Mask == (NegC + PosC) & Mask 3975 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { 3976 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) 3977 Width = PosC->getAPIntValue() + NegC->getAPIntValue(); 3978 else 3979 return false; 3980 } else 3981 return false; 3982 3983 // Now we just need to check that EltSize & Mask == Width & Mask. 3984 if (MaskLoBits) 3985 // EltSize & Mask is 0 since Mask is EltSize - 1. 3986 return Width.getLoBits(MaskLoBits) == 0; 3987 return Width == EltSize; 3988 } 3989 3990 // A subroutine of MatchRotate used once we have found an OR of two opposite 3991 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces 3992 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the 3993 // former being preferred if supported. InnerPos and InnerNeg are Pos and 3994 // Neg with outer conversions stripped away. 3995 SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, 3996 SDValue Neg, SDValue InnerPos, 3997 SDValue InnerNeg, unsigned PosOpcode, 3998 unsigned NegOpcode, const SDLoc &DL) { 3999 // fold (or (shl x, (*ext y)), 4000 // (srl x, (*ext (sub 32, y)))) -> 4001 // (rotl x, y) or (rotr x, (sub 32, y)) 4002 // 4003 // fold (or (shl x, (*ext (sub 32, y))), 4004 // (srl x, (*ext y))) -> 4005 // (rotr x, y) or (rotl x, (sub 32, y)) 4006 EVT VT = Shifted.getValueType(); 4007 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) { 4008 bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); 4009 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, 4010 HasPos ? Pos : Neg).getNode(); 4011 } 4012 4013 return nullptr; 4014 } 4015 4016 // MatchRotate - Handle an 'or' of two operands. If this is one of the many 4017 // idioms for rotate, and if the target supports rotation instructions, generate 4018 // a rot[lr]. 4019 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { 4020 // Must be a legal type. Expanded 'n promoted things won't work with rotates. 4021 EVT VT = LHS.getValueType(); 4022 if (!TLI.isTypeLegal(VT)) return nullptr; 4023 4024 // The target must have at least one rotate flavor. 4025 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); 4026 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); 4027 if (!HasROTL && !HasROTR) return nullptr; 4028 4029 // Match "(X shl/srl V1) & V2" where V2 may not be present. 4030 SDValue LHSShift; // The shift. 4031 SDValue LHSMask; // AND value if any. 4032 if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) 4033 return nullptr; // Not part of a rotate. 4034 4035 SDValue RHSShift; // The shift. 4036 SDValue RHSMask; // AND value if any. 4037 if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) 4038 return nullptr; // Not part of a rotate. 4039 4040 if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) 4041 return nullptr; // Not shifting the same value. 4042 4043 if (LHSShift.getOpcode() == RHSShift.getOpcode()) 4044 return nullptr; // Shifts must disagree. 4045 4046 // Canonicalize shl to left side in a shl/srl pair. 4047 if (RHSShift.getOpcode() == ISD::SHL) { 4048 std::swap(LHS, RHS); 4049 std::swap(LHSShift, RHSShift); 4050 std::swap(LHSMask, RHSMask); 4051 } 4052 4053 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4054 SDValue LHSShiftArg = LHSShift.getOperand(0); 4055 SDValue LHSShiftAmt = LHSShift.getOperand(1); 4056 SDValue RHSShiftArg = RHSShift.getOperand(0); 4057 SDValue RHSShiftAmt = RHSShift.getOperand(1); 4058 4059 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) 4060 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) 4061 if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) { 4062 uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue(); 4063 uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue(); 4064 if ((LShVal + RShVal) != EltSizeInBits) 4065 return nullptr; 4066 4067 SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, 4068 LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt); 4069 4070 // If there is an AND of either shifted operand, apply it to the result. 4071 if (LHSMask.getNode() || RHSMask.getNode()) { 4072 APInt AllBits = APInt::getAllOnesValue(EltSizeInBits); 4073 SDValue Mask = DAG.getConstant(AllBits, DL, VT); 4074 4075 if (LHSMask.getNode()) { 4076 APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal); 4077 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4078 DAG.getNode(ISD::OR, DL, VT, LHSMask, 4079 DAG.getConstant(RHSBits, DL, VT))); 4080 } 4081 if (RHSMask.getNode()) { 4082 APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal); 4083 Mask = DAG.getNode(ISD::AND, DL, VT, Mask, 4084 DAG.getNode(ISD::OR, DL, VT, RHSMask, 4085 DAG.getConstant(LHSBits, DL, VT))); 4086 } 4087 4088 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask); 4089 } 4090 4091 return Rot.getNode(); 4092 } 4093 4094 // If there is a mask here, and we have a variable shift, we can't be sure 4095 // that we're masking out the right stuff. 4096 if (LHSMask.getNode() || RHSMask.getNode()) 4097 return nullptr; 4098 4099 // If the shift amount is sign/zext/any-extended just peel it off. 4100 SDValue LExtOp0 = LHSShiftAmt; 4101 SDValue RExtOp0 = RHSShiftAmt; 4102 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4103 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4104 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4105 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && 4106 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || 4107 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || 4108 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || 4109 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { 4110 LExtOp0 = LHSShiftAmt.getOperand(0); 4111 RExtOp0 = RHSShiftAmt.getOperand(0); 4112 } 4113 4114 SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, 4115 LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL); 4116 if (TryL) 4117 return TryL; 4118 4119 SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, 4120 RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL); 4121 if (TryR) 4122 return TryR; 4123 4124 return nullptr; 4125 } 4126 4127 SDValue DAGCombiner::visitXOR(SDNode *N) { 4128 SDValue N0 = N->getOperand(0); 4129 SDValue N1 = N->getOperand(1); 4130 EVT VT = N0.getValueType(); 4131 4132 // fold vector ops 4133 if (VT.isVector()) { 4134 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4135 return FoldedVOp; 4136 4137 // fold (xor x, 0) -> x, vector edition 4138 if (ISD::isBuildVectorAllZeros(N0.getNode())) 4139 return N1; 4140 if (ISD::isBuildVectorAllZeros(N1.getNode())) 4141 return N0; 4142 } 4143 4144 // fold (xor undef, undef) -> 0. This is a common idiom (misuse). 4145 if (N0.isUndef() && N1.isUndef()) 4146 return DAG.getConstant(0, SDLoc(N), VT); 4147 // fold (xor x, undef) -> undef 4148 if (N0.isUndef()) 4149 return N0; 4150 if (N1.isUndef()) 4151 return N1; 4152 // fold (xor c1, c2) -> c1^c2 4153 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4154 ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); 4155 if (N0C && N1C) 4156 return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C); 4157 // canonicalize constant to RHS 4158 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 4159 !DAG.isConstantIntBuildVectorOrConstantInt(N1)) 4160 return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0); 4161 // fold (xor x, 0) -> x 4162 if (isNullConstant(N1)) 4163 return N0; 4164 // reassociate xor 4165 if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1)) 4166 return RXOR; 4167 4168 // fold !(x cc y) -> (x !cc y) 4169 SDValue LHS, RHS, CC; 4170 if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) { 4171 bool isInt = LHS.getValueType().isInteger(); 4172 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), 4173 isInt); 4174 4175 if (!LegalOperations || 4176 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { 4177 switch (N0.getOpcode()) { 4178 default: 4179 llvm_unreachable("Unhandled SetCC Equivalent!"); 4180 case ISD::SETCC: 4181 return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC); 4182 case ISD::SELECT_CC: 4183 return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2), 4184 N0.getOperand(3), NotCC); 4185 } 4186 } 4187 } 4188 4189 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) 4190 if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND && 4191 N0.getNode()->hasOneUse() && 4192 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ 4193 SDValue V = N0.getOperand(0); 4194 SDLoc DL(N0); 4195 V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V, 4196 DAG.getConstant(1, DL, V.getValueType())); 4197 AddToWorklist(V.getNode()); 4198 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V); 4199 } 4200 4201 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc 4202 if (isOneConstant(N1) && VT == MVT::i1 && 4203 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4204 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4205 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { 4206 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4207 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4208 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4209 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4210 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4211 } 4212 } 4213 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants 4214 if (isAllOnesConstant(N1) && 4215 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { 4216 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 4217 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { 4218 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; 4219 LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS 4220 RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS 4221 AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode()); 4222 return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); 4223 } 4224 } 4225 // fold (xor (and x, y), y) -> (and (not x), y) 4226 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 4227 N0->getOperand(1) == N1) { 4228 SDValue X = N0->getOperand(0); 4229 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); 4230 AddToWorklist(NotX.getNode()); 4231 return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1); 4232 } 4233 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) 4234 if (N1C && N0.getOpcode() == ISD::XOR) { 4235 if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) { 4236 SDLoc DL(N); 4237 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), 4238 DAG.getConstant(N1C->getAPIntValue() ^ 4239 N00C->getAPIntValue(), DL, VT)); 4240 } 4241 if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) { 4242 SDLoc DL(N); 4243 return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), 4244 DAG.getConstant(N1C->getAPIntValue() ^ 4245 N01C->getAPIntValue(), DL, VT)); 4246 } 4247 } 4248 // fold (xor x, x) -> 0 4249 if (N0 == N1) 4250 return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes); 4251 4252 // fold (xor (shl 1, x), -1) -> (rotl ~1, x) 4253 // Here is a concrete example of this equivalence: 4254 // i16 x == 14 4255 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 4256 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 4257 // 4258 // => 4259 // 4260 // i16 ~1 == 0b1111111111111110 4261 // i16 rol(~1, 14) == 0b1011111111111111 4262 // 4263 // Some additional tips to help conceptualize this transform: 4264 // - Try to see the operation as placing a single zero in a value of all ones. 4265 // - There exists no value for x which would allow the result to contain zero. 4266 // - Values of x larger than the bitwidth are undefined and do not require a 4267 // consistent result. 4268 // - Pushing the zero left requires shifting one bits in from the right. 4269 // A rotate left of ~1 is a nice way of achieving the desired result. 4270 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL 4271 && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { 4272 SDLoc DL(N); 4273 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), 4274 N0.getOperand(1)); 4275 } 4276 4277 // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) 4278 if (N0.getOpcode() == N1.getOpcode()) 4279 if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N)) 4280 return Tmp; 4281 4282 // Simplify the expression using non-local knowledge. 4283 if (!VT.isVector() && 4284 SimplifyDemandedBits(SDValue(N, 0))) 4285 return SDValue(N, 0); 4286 4287 return SDValue(); 4288 } 4289 4290 /// Handle transforms common to the three shifts, when the shift amount is a 4291 /// constant. 4292 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) { 4293 SDNode *LHS = N->getOperand(0).getNode(); 4294 if (!LHS->hasOneUse()) return SDValue(); 4295 4296 // We want to pull some binops through shifts, so that we have (and (shift)) 4297 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of 4298 // thing happens with address calculations, so it's important to canonicalize 4299 // it. 4300 bool HighBitSet = false; // Can we transform this if the high bit is set? 4301 4302 switch (LHS->getOpcode()) { 4303 default: return SDValue(); 4304 case ISD::OR: 4305 case ISD::XOR: 4306 HighBitSet = false; // We can only transform sra if the high bit is clear. 4307 break; 4308 case ISD::AND: 4309 HighBitSet = true; // We can only transform sra if the high bit is set. 4310 break; 4311 case ISD::ADD: 4312 if (N->getOpcode() != ISD::SHL) 4313 return SDValue(); // only shl(add) not sr[al](add). 4314 HighBitSet = false; // We can only transform sra if the high bit is clear. 4315 break; 4316 } 4317 4318 // We require the RHS of the binop to be a constant and not opaque as well. 4319 ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1)); 4320 if (!BinOpCst) return SDValue(); 4321 4322 // FIXME: disable this unless the input to the binop is a shift by a constant. 4323 // If it is not a shift, it pessimizes some common cases like: 4324 // 4325 // void foo(int *X, int i) { X[i & 1235] = 1; } 4326 // int bar(int *X, int i) { return X[i & 255]; } 4327 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); 4328 if ((BinOpLHSVal->getOpcode() != ISD::SHL && 4329 BinOpLHSVal->getOpcode() != ISD::SRA && 4330 BinOpLHSVal->getOpcode() != ISD::SRL) || 4331 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) 4332 return SDValue(); 4333 4334 EVT VT = N->getValueType(0); 4335 4336 // If this is a signed shift right, and the high bit is modified by the 4337 // logical operation, do not perform the transformation. The highBitSet 4338 // boolean indicates the value of the high bit of the constant which would 4339 // cause it to be modified for this operation. 4340 if (N->getOpcode() == ISD::SRA) { 4341 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); 4342 if (BinOpRHSSignSet != HighBitSet) 4343 return SDValue(); 4344 } 4345 4346 if (!TLI.isDesirableToCommuteWithShift(LHS)) 4347 return SDValue(); 4348 4349 // Fold the constants, shifting the binop RHS by the shift amount. 4350 SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)), 4351 N->getValueType(0), 4352 LHS->getOperand(1), N->getOperand(1)); 4353 assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); 4354 4355 // Create the new shift. 4356 SDValue NewShift = DAG.getNode(N->getOpcode(), 4357 SDLoc(LHS->getOperand(0)), 4358 VT, LHS->getOperand(0), N->getOperand(1)); 4359 4360 // Create the new binop. 4361 return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS); 4362 } 4363 4364 SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { 4365 assert(N->getOpcode() == ISD::TRUNCATE); 4366 assert(N->getOperand(0).getOpcode() == ISD::AND); 4367 4368 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) 4369 if (N->hasOneUse() && N->getOperand(0).hasOneUse()) { 4370 SDValue N01 = N->getOperand(0).getOperand(1); 4371 4372 if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) { 4373 if (!N01C->isOpaque()) { 4374 EVT TruncVT = N->getValueType(0); 4375 SDValue N00 = N->getOperand(0).getOperand(0); 4376 APInt TruncC = N01C->getAPIntValue(); 4377 TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits()); 4378 SDLoc DL(N); 4379 4380 return DAG.getNode(ISD::AND, DL, TruncVT, 4381 DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00), 4382 DAG.getConstant(TruncC, DL, TruncVT)); 4383 } 4384 } 4385 } 4386 4387 return SDValue(); 4388 } 4389 4390 SDValue DAGCombiner::visitRotate(SDNode *N) { 4391 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). 4392 if (N->getOperand(1).getOpcode() == ISD::TRUNCATE && 4393 N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) { 4394 if (SDValue NewOp1 = 4395 distributeTruncateThroughAnd(N->getOperand(1).getNode())) 4396 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), 4397 N->getOperand(0), NewOp1); 4398 } 4399 return SDValue(); 4400 } 4401 4402 SDValue DAGCombiner::visitSHL(SDNode *N) { 4403 SDValue N0 = N->getOperand(0); 4404 SDValue N1 = N->getOperand(1); 4405 EVT VT = N0.getValueType(); 4406 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 4407 4408 // fold vector ops 4409 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4410 if (VT.isVector()) { 4411 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4412 return FoldedVOp; 4413 4414 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); 4415 // If setcc produces all-one true value then: 4416 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) 4417 if (N1CV && N1CV->isConstant()) { 4418 if (N0.getOpcode() == ISD::AND) { 4419 SDValue N00 = N0->getOperand(0); 4420 SDValue N01 = N0->getOperand(1); 4421 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); 4422 4423 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && 4424 TLI.getBooleanContents(N00.getOperand(0).getValueType()) == 4425 TargetLowering::ZeroOrNegativeOneBooleanContent) { 4426 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, 4427 N01CV, N1CV)) 4428 return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); 4429 } 4430 } else { 4431 N1C = isConstOrConstSplat(N1); 4432 } 4433 } 4434 } 4435 4436 // fold (shl c1, c2) -> c1<<c2 4437 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4438 if (N0C && N1C && !N1C->isOpaque()) 4439 return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C); 4440 // fold (shl 0, x) -> 0 4441 if (isNullConstant(N0)) 4442 return N0; 4443 // fold (shl x, c >= size(x)) -> undef 4444 if (N1C && N1C->getAPIntValue().uge(OpSizeInBits)) 4445 return DAG.getUNDEF(VT); 4446 // fold (shl x, 0) -> x 4447 if (N1C && N1C->isNullValue()) 4448 return N0; 4449 // fold (shl undef, x) -> 0 4450 if (N0.isUndef()) 4451 return DAG.getConstant(0, SDLoc(N), VT); 4452 // if (shl x, c) is known to be zero, return 0 4453 if (DAG.MaskedValueIsZero(SDValue(N, 0), 4454 APInt::getAllOnesValue(OpSizeInBits))) 4455 return DAG.getConstant(0, SDLoc(N), VT); 4456 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). 4457 if (N1.getOpcode() == ISD::TRUNCATE && 4458 N1.getOperand(0).getOpcode() == ISD::AND) { 4459 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4460 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); 4461 } 4462 4463 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4464 return SDValue(N, 0); 4465 4466 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) 4467 if (N1C && N0.getOpcode() == ISD::SHL) { 4468 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4469 uint64_t c1 = N0C1->getZExtValue(); 4470 uint64_t c2 = N1C->getZExtValue(); 4471 SDLoc DL(N); 4472 if (c1 + c2 >= OpSizeInBits) 4473 return DAG.getConstant(0, DL, VT); 4474 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4475 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4476 } 4477 } 4478 4479 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2))) 4480 // For this to be valid, the second form must not preserve any of the bits 4481 // that are shifted out by the inner shift in the first form. This means 4482 // the outer shift size must be >= the number of bits added by the ext. 4483 // As a corollary, we don't care what kind of ext it is. 4484 if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND || 4485 N0.getOpcode() == ISD::ANY_EXTEND || 4486 N0.getOpcode() == ISD::SIGN_EXTEND) && 4487 N0.getOperand(0).getOpcode() == ISD::SHL) { 4488 SDValue N0Op0 = N0.getOperand(0); 4489 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4490 uint64_t c1 = N0Op0C1->getZExtValue(); 4491 uint64_t c2 = N1C->getZExtValue(); 4492 EVT InnerShiftVT = N0Op0.getValueType(); 4493 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); 4494 if (c2 >= OpSizeInBits - InnerShiftSize) { 4495 SDLoc DL(N0); 4496 if (c1 + c2 >= OpSizeInBits) 4497 return DAG.getConstant(0, DL, VT); 4498 return DAG.getNode(ISD::SHL, DL, VT, 4499 DAG.getNode(N0.getOpcode(), DL, VT, 4500 N0Op0->getOperand(0)), 4501 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4502 } 4503 } 4504 } 4505 4506 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) 4507 // Only fold this if the inner zext has no other uses to avoid increasing 4508 // the total number of instructions. 4509 if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && 4510 N0.getOperand(0).getOpcode() == ISD::SRL) { 4511 SDValue N0Op0 = N0.getOperand(0); 4512 if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) { 4513 uint64_t c1 = N0Op0C1->getZExtValue(); 4514 if (c1 < VT.getScalarSizeInBits()) { 4515 uint64_t c2 = N1C->getZExtValue(); 4516 if (c1 == c2) { 4517 SDValue NewOp0 = N0.getOperand(0); 4518 EVT CountVT = NewOp0.getOperand(1).getValueType(); 4519 SDLoc DL(N); 4520 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(), 4521 NewOp0, 4522 DAG.getConstant(c2, DL, CountVT)); 4523 AddToWorklist(NewSHL.getNode()); 4524 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); 4525 } 4526 } 4527 } 4528 } 4529 4530 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 4531 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 4532 if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && 4533 cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) { 4534 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4535 uint64_t C1 = N0C1->getZExtValue(); 4536 uint64_t C2 = N1C->getZExtValue(); 4537 SDLoc DL(N); 4538 if (C1 <= C2) 4539 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4540 DAG.getConstant(C2 - C1, DL, N1.getValueType())); 4541 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), 4542 DAG.getConstant(C1 - C2, DL, N1.getValueType())); 4543 } 4544 } 4545 4546 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or 4547 // (and (srl x, (sub c1, c2), MASK) 4548 // Only fold this if the inner shift has no other uses -- if it does, folding 4549 // this will increase the total number of instructions. 4550 if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 4551 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4552 uint64_t c1 = N0C1->getZExtValue(); 4553 if (c1 < OpSizeInBits) { 4554 uint64_t c2 = N1C->getZExtValue(); 4555 APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); 4556 SDValue Shift; 4557 if (c2 > c1) { 4558 Mask = Mask.shl(c2 - c1); 4559 SDLoc DL(N); 4560 Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), 4561 DAG.getConstant(c2 - c1, DL, N1.getValueType())); 4562 } else { 4563 Mask = Mask.lshr(c1 - c2); 4564 SDLoc DL(N); 4565 Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4566 DAG.getConstant(c1 - c2, DL, N1.getValueType())); 4567 } 4568 SDLoc DL(N0); 4569 return DAG.getNode(ISD::AND, DL, VT, Shift, 4570 DAG.getConstant(Mask, DL, VT)); 4571 } 4572 } 4573 } 4574 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) 4575 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { 4576 unsigned BitSize = VT.getScalarSizeInBits(); 4577 SDLoc DL(N); 4578 SDValue HiBitsMask = 4579 DAG.getConstant(APInt::getHighBitsSet(BitSize, 4580 BitSize - N1C->getZExtValue()), 4581 DL, VT); 4582 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4583 HiBitsMask); 4584 } 4585 4586 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 4587 // Variant of version done on multiply, except mul by a power of 2 is turned 4588 // into a shift. 4589 APInt Val; 4590 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && 4591 (isa<ConstantSDNode>(N0.getOperand(1)) || 4592 ISD::isConstantSplatVector(N0.getOperand(1).getNode(), Val))) { 4593 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); 4594 SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); 4595 return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1); 4596 } 4597 4598 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) 4599 if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) { 4600 if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { 4601 if (SDValue Folded = 4602 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C)) 4603 return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded); 4604 } 4605 } 4606 4607 if (N1C && !N1C->isOpaque()) 4608 if (SDValue NewSHL = visitShiftByConstant(N, N1C)) 4609 return NewSHL; 4610 4611 return SDValue(); 4612 } 4613 4614 SDValue DAGCombiner::visitSRA(SDNode *N) { 4615 SDValue N0 = N->getOperand(0); 4616 SDValue N1 = N->getOperand(1); 4617 EVT VT = N0.getValueType(); 4618 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4619 4620 // fold vector ops 4621 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4622 if (VT.isVector()) { 4623 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4624 return FoldedVOp; 4625 4626 N1C = isConstOrConstSplat(N1); 4627 } 4628 4629 // fold (sra c1, c2) -> (sra c1, c2) 4630 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4631 if (N0C && N1C && !N1C->isOpaque()) 4632 return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C); 4633 // fold (sra 0, x) -> 0 4634 if (isNullConstant(N0)) 4635 return N0; 4636 // fold (sra -1, x) -> -1 4637 if (isAllOnesConstant(N0)) 4638 return N0; 4639 // fold (sra x, (setge c, size(x))) -> undef 4640 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4641 return DAG.getUNDEF(VT); 4642 // fold (sra x, 0) -> x 4643 if (N1C && N1C->isNullValue()) 4644 return N0; 4645 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports 4646 // sext_inreg. 4647 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { 4648 unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); 4649 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); 4650 if (VT.isVector()) 4651 ExtVT = EVT::getVectorVT(*DAG.getContext(), 4652 ExtVT, VT.getVectorNumElements()); 4653 if ((!LegalOperations || 4654 TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) 4655 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 4656 N0.getOperand(0), DAG.getValueType(ExtVT)); 4657 } 4658 4659 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) 4660 if (N1C && N0.getOpcode() == ISD::SRA) { 4661 if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) { 4662 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); 4663 if (Sum >= OpSizeInBits) 4664 Sum = OpSizeInBits - 1; 4665 SDLoc DL(N); 4666 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), 4667 DAG.getConstant(Sum, DL, N1.getValueType())); 4668 } 4669 } 4670 4671 // fold (sra (shl X, m), (sub result_size, n)) 4672 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for 4673 // result_size - n != m. 4674 // If truncate is free for the target sext(shl) is likely to result in better 4675 // code. 4676 if (N0.getOpcode() == ISD::SHL && N1C) { 4677 // Get the two constanst of the shifts, CN0 = m, CN = n. 4678 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); 4679 if (N01C) { 4680 LLVMContext &Ctx = *DAG.getContext(); 4681 // Determine what the truncate's result bitsize and type would be. 4682 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); 4683 4684 if (VT.isVector()) 4685 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); 4686 4687 // Determine the residual right-shift amount. 4688 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); 4689 4690 // If the shift is not a no-op (in which case this should be just a sign 4691 // extend already), the truncated to type is legal, sign_extend is legal 4692 // on that type, and the truncate to that type is both legal and free, 4693 // perform the transform. 4694 if ((ShiftAmt > 0) && 4695 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && 4696 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && 4697 TLI.isTruncateFree(VT, TruncVT)) { 4698 4699 SDLoc DL(N); 4700 SDValue Amt = DAG.getConstant(ShiftAmt, DL, 4701 getShiftAmountTy(N0.getOperand(0).getValueType())); 4702 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, 4703 N0.getOperand(0), Amt); 4704 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, 4705 Shift); 4706 return DAG.getNode(ISD::SIGN_EXTEND, DL, 4707 N->getValueType(0), Trunc); 4708 } 4709 } 4710 } 4711 4712 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). 4713 if (N1.getOpcode() == ISD::TRUNCATE && 4714 N1.getOperand(0).getOpcode() == ISD::AND) { 4715 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4716 return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); 4717 } 4718 4719 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) 4720 // if c1 is equal to the number of bits the trunc removes 4721 if (N0.getOpcode() == ISD::TRUNCATE && 4722 (N0.getOperand(0).getOpcode() == ISD::SRL || 4723 N0.getOperand(0).getOpcode() == ISD::SRA) && 4724 N0.getOperand(0).hasOneUse() && 4725 N0.getOperand(0).getOperand(1).hasOneUse() && 4726 N1C) { 4727 SDValue N0Op0 = N0.getOperand(0); 4728 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { 4729 unsigned LargeShiftVal = LargeShift->getZExtValue(); 4730 EVT LargeVT = N0Op0.getValueType(); 4731 4732 if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) { 4733 SDLoc DL(N); 4734 SDValue Amt = 4735 DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL, 4736 getShiftAmountTy(N0Op0.getOperand(0).getValueType())); 4737 SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT, 4738 N0Op0.getOperand(0), Amt); 4739 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); 4740 } 4741 } 4742 } 4743 4744 // Simplify, based on bits shifted out of the LHS. 4745 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4746 return SDValue(N, 0); 4747 4748 4749 // If the sign bit is known to be zero, switch this to a SRL. 4750 if (DAG.SignBitIsZero(N0)) 4751 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); 4752 4753 if (N1C && !N1C->isOpaque()) 4754 if (SDValue NewSRA = visitShiftByConstant(N, N1C)) 4755 return NewSRA; 4756 4757 return SDValue(); 4758 } 4759 4760 SDValue DAGCombiner::visitSRL(SDNode *N) { 4761 SDValue N0 = N->getOperand(0); 4762 SDValue N1 = N->getOperand(1); 4763 EVT VT = N0.getValueType(); 4764 unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); 4765 4766 // fold vector ops 4767 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 4768 if (VT.isVector()) { 4769 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 4770 return FoldedVOp; 4771 4772 N1C = isConstOrConstSplat(N1); 4773 } 4774 4775 // fold (srl c1, c2) -> c1 >>u c2 4776 ConstantSDNode *N0C = getAsNonOpaqueConstant(N0); 4777 if (N0C && N1C && !N1C->isOpaque()) 4778 return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C); 4779 // fold (srl 0, x) -> 0 4780 if (isNullConstant(N0)) 4781 return N0; 4782 // fold (srl x, c >= size(x)) -> undef 4783 if (N1C && N1C->getZExtValue() >= OpSizeInBits) 4784 return DAG.getUNDEF(VT); 4785 // fold (srl x, 0) -> x 4786 if (N1C && N1C->isNullValue()) 4787 return N0; 4788 // if (srl x, c) is known to be zero, return 0 4789 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), 4790 APInt::getAllOnesValue(OpSizeInBits))) 4791 return DAG.getConstant(0, SDLoc(N), VT); 4792 4793 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) 4794 if (N1C && N0.getOpcode() == ISD::SRL) { 4795 if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) { 4796 uint64_t c1 = N01C->getZExtValue(); 4797 uint64_t c2 = N1C->getZExtValue(); 4798 SDLoc DL(N); 4799 if (c1 + c2 >= OpSizeInBits) 4800 return DAG.getConstant(0, DL, VT); 4801 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), 4802 DAG.getConstant(c1 + c2, DL, N1.getValueType())); 4803 } 4804 } 4805 4806 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2))) 4807 if (N1C && N0.getOpcode() == ISD::TRUNCATE && 4808 N0.getOperand(0).getOpcode() == ISD::SRL && 4809 isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) { 4810 uint64_t c1 = 4811 cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue(); 4812 uint64_t c2 = N1C->getZExtValue(); 4813 EVT InnerShiftVT = N0.getOperand(0).getValueType(); 4814 EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType(); 4815 uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits(); 4816 // This is only valid if the OpSizeInBits + c1 = size of inner shift. 4817 if (c1 + OpSizeInBits == InnerShiftSize) { 4818 SDLoc DL(N0); 4819 if (c1 + c2 >= InnerShiftSize) 4820 return DAG.getConstant(0, DL, VT); 4821 return DAG.getNode(ISD::TRUNCATE, DL, VT, 4822 DAG.getNode(ISD::SRL, DL, InnerShiftVT, 4823 N0.getOperand(0)->getOperand(0), 4824 DAG.getConstant(c1 + c2, DL, 4825 ShiftCountVT))); 4826 } 4827 } 4828 4829 // fold (srl (shl x, c), c) -> (and x, cst2) 4830 if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) { 4831 unsigned BitSize = N0.getScalarValueSizeInBits(); 4832 if (BitSize <= 64) { 4833 uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize; 4834 SDLoc DL(N); 4835 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), 4836 DAG.getConstant(~0ULL >> ShAmt, DL, VT)); 4837 } 4838 } 4839 4840 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) 4841 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { 4842 // Shifting in all undef bits? 4843 EVT SmallVT = N0.getOperand(0).getValueType(); 4844 unsigned BitSize = SmallVT.getScalarSizeInBits(); 4845 if (N1C->getZExtValue() >= BitSize) 4846 return DAG.getUNDEF(VT); 4847 4848 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { 4849 uint64_t ShiftAmt = N1C->getZExtValue(); 4850 SDLoc DL0(N0); 4851 SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, 4852 N0.getOperand(0), 4853 DAG.getConstant(ShiftAmt, DL0, 4854 getShiftAmountTy(SmallVT))); 4855 AddToWorklist(SmallShift.getNode()); 4856 APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt); 4857 SDLoc DL(N); 4858 return DAG.getNode(ISD::AND, DL, VT, 4859 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), 4860 DAG.getConstant(Mask, DL, VT)); 4861 } 4862 } 4863 4864 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign 4865 // bit, which is unmodified by sra. 4866 if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) { 4867 if (N0.getOpcode() == ISD::SRA) 4868 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); 4869 } 4870 4871 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). 4872 if (N1C && N0.getOpcode() == ISD::CTLZ && 4873 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { 4874 APInt KnownZero, KnownOne; 4875 DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne); 4876 4877 // If any of the input bits are KnownOne, then the input couldn't be all 4878 // zeros, thus the result of the srl will always be zero. 4879 if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); 4880 4881 // If all of the bits input the to ctlz node are known to be zero, then 4882 // the result of the ctlz is "32" and the result of the shift is one. 4883 APInt UnknownBits = ~KnownZero; 4884 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); 4885 4886 // Otherwise, check to see if there is exactly one bit input to the ctlz. 4887 if ((UnknownBits & (UnknownBits - 1)) == 0) { 4888 // Okay, we know that only that the single bit specified by UnknownBits 4889 // could be set on input to the CTLZ node. If this bit is set, the SRL 4890 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair 4891 // to an SRL/XOR pair, which is likely to simplify more. 4892 unsigned ShAmt = UnknownBits.countTrailingZeros(); 4893 SDValue Op = N0.getOperand(0); 4894 4895 if (ShAmt) { 4896 SDLoc DL(N0); 4897 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4898 DAG.getConstant(ShAmt, DL, 4899 getShiftAmountTy(Op.getValueType()))); 4900 AddToWorklist(Op.getNode()); 4901 } 4902 4903 SDLoc DL(N); 4904 return DAG.getNode(ISD::XOR, DL, VT, 4905 Op, DAG.getConstant(1, DL, VT)); 4906 } 4907 } 4908 4909 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). 4910 if (N1.getOpcode() == ISD::TRUNCATE && 4911 N1.getOperand(0).getOpcode() == ISD::AND) { 4912 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) 4913 return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); 4914 } 4915 4916 // fold operands of srl based on knowledge that the low bits are not 4917 // demanded. 4918 if (N1C && SimplifyDemandedBits(SDValue(N, 0))) 4919 return SDValue(N, 0); 4920 4921 if (N1C && !N1C->isOpaque()) 4922 if (SDValue NewSRL = visitShiftByConstant(N, N1C)) 4923 return NewSRL; 4924 4925 // Attempt to convert a srl of a load into a narrower zero-extending load. 4926 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 4927 return NarrowLoad; 4928 4929 // Here is a common situation. We want to optimize: 4930 // 4931 // %a = ... 4932 // %b = and i32 %a, 2 4933 // %c = srl i32 %b, 1 4934 // brcond i32 %c ... 4935 // 4936 // into 4937 // 4938 // %a = ... 4939 // %b = and %a, 2 4940 // %c = setcc eq %b, 0 4941 // brcond %c ... 4942 // 4943 // However when after the source operand of SRL is optimized into AND, the SRL 4944 // itself may not be optimized further. Look for it and add the BRCOND into 4945 // the worklist. 4946 if (N->hasOneUse()) { 4947 SDNode *Use = *N->use_begin(); 4948 if (Use->getOpcode() == ISD::BRCOND) 4949 AddToWorklist(Use); 4950 else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { 4951 // Also look pass the truncate. 4952 Use = *Use->use_begin(); 4953 if (Use->getOpcode() == ISD::BRCOND) 4954 AddToWorklist(Use); 4955 } 4956 } 4957 4958 return SDValue(); 4959 } 4960 4961 SDValue DAGCombiner::visitBSWAP(SDNode *N) { 4962 SDValue N0 = N->getOperand(0); 4963 EVT VT = N->getValueType(0); 4964 4965 // fold (bswap c1) -> c2 4966 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4967 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); 4968 // fold (bswap (bswap x)) -> x 4969 if (N0.getOpcode() == ISD::BSWAP) 4970 return N0->getOperand(0); 4971 return SDValue(); 4972 } 4973 4974 SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { 4975 SDValue N0 = N->getOperand(0); 4976 4977 // fold (bitreverse (bitreverse x)) -> x 4978 if (N0.getOpcode() == ISD::BITREVERSE) 4979 return N0.getOperand(0); 4980 return SDValue(); 4981 } 4982 4983 SDValue DAGCombiner::visitCTLZ(SDNode *N) { 4984 SDValue N0 = N->getOperand(0); 4985 EVT VT = N->getValueType(0); 4986 4987 // fold (ctlz c1) -> c2 4988 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4989 return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); 4990 return SDValue(); 4991 } 4992 4993 SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { 4994 SDValue N0 = N->getOperand(0); 4995 EVT VT = N->getValueType(0); 4996 4997 // fold (ctlz_zero_undef c1) -> c2 4998 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 4999 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5000 return SDValue(); 5001 } 5002 5003 SDValue DAGCombiner::visitCTTZ(SDNode *N) { 5004 SDValue N0 = N->getOperand(0); 5005 EVT VT = N->getValueType(0); 5006 5007 // fold (cttz c1) -> c2 5008 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5009 return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); 5010 return SDValue(); 5011 } 5012 5013 SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { 5014 SDValue N0 = N->getOperand(0); 5015 EVT VT = N->getValueType(0); 5016 5017 // fold (cttz_zero_undef c1) -> c2 5018 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5019 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); 5020 return SDValue(); 5021 } 5022 5023 SDValue DAGCombiner::visitCTPOP(SDNode *N) { 5024 SDValue N0 = N->getOperand(0); 5025 EVT VT = N->getValueType(0); 5026 5027 // fold (ctpop c1) -> c2 5028 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 5029 return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); 5030 return SDValue(); 5031 } 5032 5033 5034 /// \brief Generate Min/Max node 5035 static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, 5036 SDValue RHS, SDValue True, SDValue False, 5037 ISD::CondCode CC, const TargetLowering &TLI, 5038 SelectionDAG &DAG) { 5039 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 5040 return SDValue(); 5041 5042 switch (CC) { 5043 case ISD::SETOLT: 5044 case ISD::SETOLE: 5045 case ISD::SETLT: 5046 case ISD::SETLE: 5047 case ISD::SETULT: 5048 case ISD::SETULE: { 5049 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; 5050 if (TLI.isOperationLegal(Opcode, VT)) 5051 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5052 return SDValue(); 5053 } 5054 case ISD::SETOGT: 5055 case ISD::SETOGE: 5056 case ISD::SETGT: 5057 case ISD::SETGE: 5058 case ISD::SETUGT: 5059 case ISD::SETUGE: { 5060 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; 5061 if (TLI.isOperationLegal(Opcode, VT)) 5062 return DAG.getNode(Opcode, DL, VT, LHS, RHS); 5063 return SDValue(); 5064 } 5065 default: 5066 return SDValue(); 5067 } 5068 } 5069 5070 SDValue DAGCombiner::visitSELECT(SDNode *N) { 5071 SDValue N0 = N->getOperand(0); 5072 SDValue N1 = N->getOperand(1); 5073 SDValue N2 = N->getOperand(2); 5074 EVT VT = N->getValueType(0); 5075 EVT VT0 = N0.getValueType(); 5076 5077 // fold (select C, X, X) -> X 5078 if (N1 == N2) 5079 return N1; 5080 if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) { 5081 // fold (select true, X, Y) -> X 5082 // fold (select false, X, Y) -> Y 5083 return !N0C->isNullValue() ? N1 : N2; 5084 } 5085 // fold (select C, 1, X) -> (or C, X) 5086 if (VT == MVT::i1 && isOneConstant(N1)) 5087 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5088 // fold (select C, 0, 1) -> (xor C, 1) 5089 // We can't do this reliably if integer based booleans have different contents 5090 // to floating point based booleans. This is because we can't tell whether we 5091 // have an integer-based boolean or a floating-point-based boolean unless we 5092 // can find the SETCC that produced it and inspect its operands. This is 5093 // fairly easy if C is the SETCC node, but it can potentially be 5094 // undiscoverable (or not reasonably discoverable). For example, it could be 5095 // in another basic block or it could require searching a complicated 5096 // expression. 5097 if (VT.isInteger() && 5098 (VT0 == MVT::i1 || (VT0.isInteger() && 5099 TLI.getBooleanContents(false, false) == 5100 TLI.getBooleanContents(false, true) && 5101 TLI.getBooleanContents(false, false) == 5102 TargetLowering::ZeroOrOneBooleanContent)) && 5103 isNullConstant(N1) && isOneConstant(N2)) { 5104 SDValue XORNode; 5105 if (VT == VT0) { 5106 SDLoc DL(N); 5107 return DAG.getNode(ISD::XOR, DL, VT0, 5108 N0, DAG.getConstant(1, DL, VT0)); 5109 } 5110 SDLoc DL0(N0); 5111 XORNode = DAG.getNode(ISD::XOR, DL0, VT0, 5112 N0, DAG.getConstant(1, DL0, VT0)); 5113 AddToWorklist(XORNode.getNode()); 5114 if (VT.bitsGT(VT0)) 5115 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode); 5116 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode); 5117 } 5118 // fold (select C, 0, X) -> (and (not C), X) 5119 if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { 5120 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5121 AddToWorklist(NOTNode.getNode()); 5122 return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2); 5123 } 5124 // fold (select C, X, 1) -> (or (not C), X) 5125 if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { 5126 SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); 5127 AddToWorklist(NOTNode.getNode()); 5128 return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1); 5129 } 5130 // fold (select C, X, 0) -> (and C, X) 5131 if (VT == MVT::i1 && isNullConstant(N2)) 5132 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5133 // fold (select X, X, Y) -> (or X, Y) 5134 // fold (select X, 1, Y) -> (or X, Y) 5135 if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) 5136 return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2); 5137 // fold (select X, Y, X) -> (and X, Y) 5138 // fold (select X, Y, 0) -> (and X, Y) 5139 if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) 5140 return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1); 5141 5142 // If we can fold this based on the true/false value, do so. 5143 if (SimplifySelectOps(N, N1, N2)) 5144 return SDValue(N, 0); // Don't revisit N. 5145 5146 if (VT0 == MVT::i1) { 5147 // The code in this block deals with the following 2 equivalences: 5148 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) 5149 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) 5150 // The target can specify its prefered form with the 5151 // shouldNormalizeToSelectSequence() callback. However we always transform 5152 // to the right anyway if we find the inner select exists in the DAG anyway 5153 // and we always transform to the left side if we know that we can further 5154 // optimize the combination of the conditions. 5155 bool normalizeToSequence 5156 = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); 5157 // select (and Cond0, Cond1), X, Y 5158 // -> select Cond0, (select Cond1, X, Y), Y 5159 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { 5160 SDValue Cond0 = N0->getOperand(0); 5161 SDValue Cond1 = N0->getOperand(1); 5162 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5163 N1.getValueType(), Cond1, N1, N2); 5164 if (normalizeToSequence || !InnerSelect.use_empty()) 5165 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, 5166 InnerSelect, N2); 5167 } 5168 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) 5169 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { 5170 SDValue Cond0 = N0->getOperand(0); 5171 SDValue Cond1 = N0->getOperand(1); 5172 SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N), 5173 N1.getValueType(), Cond1, N1, N2); 5174 if (normalizeToSequence || !InnerSelect.use_empty()) 5175 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1, 5176 InnerSelect); 5177 } 5178 5179 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y 5180 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { 5181 SDValue N1_0 = N1->getOperand(0); 5182 SDValue N1_1 = N1->getOperand(1); 5183 SDValue N1_2 = N1->getOperand(2); 5184 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { 5185 // Create the actual and node if we can generate good code for it. 5186 if (!normalizeToSequence) { 5187 SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(), 5188 N0, N1_0); 5189 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And, 5190 N1_1, N2); 5191 } 5192 // Otherwise see if we can optimize the "and" to a better pattern. 5193 if (SDValue Combined = visitANDLike(N0, N1_0, N)) 5194 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5195 N1_1, N2); 5196 } 5197 } 5198 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y 5199 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { 5200 SDValue N2_0 = N2->getOperand(0); 5201 SDValue N2_1 = N2->getOperand(1); 5202 SDValue N2_2 = N2->getOperand(2); 5203 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { 5204 // Create the actual or node if we can generate good code for it. 5205 if (!normalizeToSequence) { 5206 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(), 5207 N0, N2_0); 5208 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or, 5209 N1, N2_2); 5210 } 5211 // Otherwise see if we can optimize to a better pattern. 5212 if (SDValue Combined = visitORLike(N0, N2_0, N)) 5213 return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined, 5214 N1, N2_2); 5215 } 5216 } 5217 } 5218 5219 // fold selects based on a setcc into other things, such as min/max/abs 5220 if (N0.getOpcode() == ISD::SETCC) { 5221 // select x, y (fcmp lt x, y) -> fminnum x, y 5222 // select x, y (fcmp gt x, y) -> fmaxnum x, y 5223 // 5224 // This is OK if we don't care about what happens if either operand is a 5225 // NaN. 5226 // 5227 5228 // FIXME: Instead of testing for UnsafeFPMath, this should be checking for 5229 // no signed zeros as well as no nans. 5230 const TargetOptions &Options = DAG.getTarget().Options; 5231 if (Options.UnsafeFPMath && 5232 VT.isFloatingPoint() && N0.hasOneUse() && 5233 DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) { 5234 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5235 5236 if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), 5237 N0.getOperand(1), N1, N2, CC, 5238 TLI, DAG)) 5239 return FMinMax; 5240 } 5241 5242 if ((!LegalOperations && 5243 TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) || 5244 TLI.isOperationLegal(ISD::SELECT_CC, VT)) 5245 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, 5246 N0.getOperand(0), N0.getOperand(1), 5247 N1, N2, N0.getOperand(2)); 5248 return SimplifySelect(SDLoc(N), N0, N1, N2); 5249 } 5250 5251 return SDValue(); 5252 } 5253 5254 static 5255 std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) { 5256 SDLoc DL(N); 5257 EVT LoVT, HiVT; 5258 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); 5259 5260 // Split the inputs. 5261 SDValue Lo, Hi, LL, LH, RL, RH; 5262 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); 5263 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); 5264 5265 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); 5266 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); 5267 5268 return std::make_pair(Lo, Hi); 5269 } 5270 5271 // This function assumes all the vselect's arguments are CONCAT_VECTOR 5272 // nodes and that the condition is a BV of ConstantSDNodes (or undefs). 5273 static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { 5274 SDLoc dl(N); 5275 SDValue Cond = N->getOperand(0); 5276 SDValue LHS = N->getOperand(1); 5277 SDValue RHS = N->getOperand(2); 5278 EVT VT = N->getValueType(0); 5279 int NumElems = VT.getVectorNumElements(); 5280 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && 5281 RHS.getOpcode() == ISD::CONCAT_VECTORS && 5282 Cond.getOpcode() == ISD::BUILD_VECTOR); 5283 5284 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about 5285 // binary ones here. 5286 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) 5287 return SDValue(); 5288 5289 // We're sure we have an even number of elements due to the 5290 // concat_vectors we have as arguments to vselect. 5291 // Skip BV elements until we find one that's not an UNDEF 5292 // After we find an UNDEF element, keep looping until we get to half the 5293 // length of the BV and see if all the non-undef nodes are the same. 5294 ConstantSDNode *BottomHalf = nullptr; 5295 for (int i = 0; i < NumElems / 2; ++i) { 5296 if (Cond->getOperand(i)->isUndef()) 5297 continue; 5298 5299 if (BottomHalf == nullptr) 5300 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5301 else if (Cond->getOperand(i).getNode() != BottomHalf) 5302 return SDValue(); 5303 } 5304 5305 // Do the same for the second half of the BuildVector 5306 ConstantSDNode *TopHalf = nullptr; 5307 for (int i = NumElems / 2; i < NumElems; ++i) { 5308 if (Cond->getOperand(i)->isUndef()) 5309 continue; 5310 5311 if (TopHalf == nullptr) 5312 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); 5313 else if (Cond->getOperand(i).getNode() != TopHalf) 5314 return SDValue(); 5315 } 5316 5317 assert(TopHalf && BottomHalf && 5318 "One half of the selector was all UNDEFs and the other was all the " 5319 "same value. This should have been addressed before this function."); 5320 return DAG.getNode( 5321 ISD::CONCAT_VECTORS, dl, VT, 5322 BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), 5323 TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); 5324 } 5325 5326 SDValue DAGCombiner::visitMSCATTER(SDNode *N) { 5327 5328 if (Level >= AfterLegalizeTypes) 5329 return SDValue(); 5330 5331 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); 5332 SDValue Mask = MSC->getMask(); 5333 SDValue Data = MSC->getValue(); 5334 SDLoc DL(N); 5335 5336 // If the MSCATTER data type requires splitting and the mask is provided by a 5337 // SETCC, then split both nodes and its operands before legalization. This 5338 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5339 // and enables future optimizations (e.g. min/max pattern matching on X86). 5340 if (Mask.getOpcode() != ISD::SETCC) 5341 return SDValue(); 5342 5343 // Check if any splitting is required. 5344 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5345 TargetLowering::TypeSplitVector) 5346 return SDValue(); 5347 SDValue MaskLo, MaskHi, Lo, Hi; 5348 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5349 5350 EVT LoVT, HiVT; 5351 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0)); 5352 5353 SDValue Chain = MSC->getChain(); 5354 5355 EVT MemoryVT = MSC->getMemoryVT(); 5356 unsigned Alignment = MSC->getOriginalAlignment(); 5357 5358 EVT LoMemVT, HiMemVT; 5359 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5360 5361 SDValue DataLo, DataHi; 5362 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5363 5364 SDValue BasePtr = MSC->getBasePtr(); 5365 SDValue IndexLo, IndexHi; 5366 std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL); 5367 5368 MachineMemOperand *MMO = DAG.getMachineFunction(). 5369 getMachineMemOperand(MSC->getPointerInfo(), 5370 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5371 Alignment, MSC->getAAInfo(), MSC->getRanges()); 5372 5373 SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo }; 5374 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(), 5375 DL, OpsLo, MMO); 5376 5377 SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi}; 5378 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(), 5379 DL, OpsHi, MMO); 5380 5381 AddToWorklist(Lo.getNode()); 5382 AddToWorklist(Hi.getNode()); 5383 5384 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5385 } 5386 5387 SDValue DAGCombiner::visitMSTORE(SDNode *N) { 5388 5389 if (Level >= AfterLegalizeTypes) 5390 return SDValue(); 5391 5392 MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); 5393 SDValue Mask = MST->getMask(); 5394 SDValue Data = MST->getValue(); 5395 SDLoc DL(N); 5396 5397 // If the MSTORE data type requires splitting and the mask is provided by a 5398 // SETCC, then split both nodes and its operands before legalization. This 5399 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5400 // and enables future optimizations (e.g. min/max pattern matching on X86). 5401 if (Mask.getOpcode() == ISD::SETCC) { 5402 5403 // Check if any splitting is required. 5404 if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != 5405 TargetLowering::TypeSplitVector) 5406 return SDValue(); 5407 5408 SDValue MaskLo, MaskHi, Lo, Hi; 5409 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5410 5411 EVT LoVT, HiVT; 5412 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); 5413 5414 SDValue Chain = MST->getChain(); 5415 SDValue Ptr = MST->getBasePtr(); 5416 5417 EVT MemoryVT = MST->getMemoryVT(); 5418 unsigned Alignment = MST->getOriginalAlignment(); 5419 5420 // if Alignment is equal to the vector size, 5421 // take the half of it for the second part 5422 unsigned SecondHalfAlignment = 5423 (Alignment == Data->getValueType(0).getSizeInBits()/8) ? 5424 Alignment/2 : Alignment; 5425 5426 EVT LoMemVT, HiMemVT; 5427 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5428 5429 SDValue DataLo, DataHi; 5430 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); 5431 5432 MachineMemOperand *MMO = DAG.getMachineFunction(). 5433 getMachineMemOperand(MST->getPointerInfo(), 5434 MachineMemOperand::MOStore, LoMemVT.getStoreSize(), 5435 Alignment, MST->getAAInfo(), MST->getRanges()); 5436 5437 Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO, 5438 MST->isTruncatingStore()); 5439 5440 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5441 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5442 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5443 5444 MMO = DAG.getMachineFunction(). 5445 getMachineMemOperand(MST->getPointerInfo(), 5446 MachineMemOperand::MOStore, HiMemVT.getStoreSize(), 5447 SecondHalfAlignment, MST->getAAInfo(), 5448 MST->getRanges()); 5449 5450 Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO, 5451 MST->isTruncatingStore()); 5452 5453 AddToWorklist(Lo.getNode()); 5454 AddToWorklist(Hi.getNode()); 5455 5456 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 5457 } 5458 return SDValue(); 5459 } 5460 5461 SDValue DAGCombiner::visitMGATHER(SDNode *N) { 5462 5463 if (Level >= AfterLegalizeTypes) 5464 return SDValue(); 5465 5466 MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N); 5467 SDValue Mask = MGT->getMask(); 5468 SDLoc DL(N); 5469 5470 // If the MGATHER result requires splitting and the mask is provided by a 5471 // SETCC, then split both nodes and its operands before legalization. This 5472 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5473 // and enables future optimizations (e.g. min/max pattern matching on X86). 5474 5475 if (Mask.getOpcode() != ISD::SETCC) 5476 return SDValue(); 5477 5478 EVT VT = N->getValueType(0); 5479 5480 // Check if any splitting is required. 5481 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5482 TargetLowering::TypeSplitVector) 5483 return SDValue(); 5484 5485 SDValue MaskLo, MaskHi, Lo, Hi; 5486 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5487 5488 SDValue Src0 = MGT->getValue(); 5489 SDValue Src0Lo, Src0Hi; 5490 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5491 5492 EVT LoVT, HiVT; 5493 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 5494 5495 SDValue Chain = MGT->getChain(); 5496 EVT MemoryVT = MGT->getMemoryVT(); 5497 unsigned Alignment = MGT->getOriginalAlignment(); 5498 5499 EVT LoMemVT, HiMemVT; 5500 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5501 5502 SDValue BasePtr = MGT->getBasePtr(); 5503 SDValue Index = MGT->getIndex(); 5504 SDValue IndexLo, IndexHi; 5505 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL); 5506 5507 MachineMemOperand *MMO = DAG.getMachineFunction(). 5508 getMachineMemOperand(MGT->getPointerInfo(), 5509 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5510 Alignment, MGT->getAAInfo(), MGT->getRanges()); 5511 5512 SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo }; 5513 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo, 5514 MMO); 5515 5516 SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi}; 5517 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi, 5518 MMO); 5519 5520 AddToWorklist(Lo.getNode()); 5521 AddToWorklist(Hi.getNode()); 5522 5523 // Build a factor node to remember that this load is independent of the 5524 // other one. 5525 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5526 Hi.getValue(1)); 5527 5528 // Legalized the chain result - switch anything that used the old chain to 5529 // use the new one. 5530 DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain); 5531 5532 SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5533 5534 SDValue RetOps[] = { GatherRes, Chain }; 5535 return DAG.getMergeValues(RetOps, DL); 5536 } 5537 5538 SDValue DAGCombiner::visitMLOAD(SDNode *N) { 5539 5540 if (Level >= AfterLegalizeTypes) 5541 return SDValue(); 5542 5543 MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); 5544 SDValue Mask = MLD->getMask(); 5545 SDLoc DL(N); 5546 5547 // If the MLOAD result requires splitting and the mask is provided by a 5548 // SETCC, then split both nodes and its operands before legalization. This 5549 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5550 // and enables future optimizations (e.g. min/max pattern matching on X86). 5551 5552 if (Mask.getOpcode() == ISD::SETCC) { 5553 EVT VT = N->getValueType(0); 5554 5555 // Check if any splitting is required. 5556 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5557 TargetLowering::TypeSplitVector) 5558 return SDValue(); 5559 5560 SDValue MaskLo, MaskHi, Lo, Hi; 5561 std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); 5562 5563 SDValue Src0 = MLD->getSrc0(); 5564 SDValue Src0Lo, Src0Hi; 5565 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); 5566 5567 EVT LoVT, HiVT; 5568 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); 5569 5570 SDValue Chain = MLD->getChain(); 5571 SDValue Ptr = MLD->getBasePtr(); 5572 EVT MemoryVT = MLD->getMemoryVT(); 5573 unsigned Alignment = MLD->getOriginalAlignment(); 5574 5575 // if Alignment is equal to the vector size, 5576 // take the half of it for the second part 5577 unsigned SecondHalfAlignment = 5578 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? 5579 Alignment/2 : Alignment; 5580 5581 EVT LoMemVT, HiMemVT; 5582 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); 5583 5584 MachineMemOperand *MMO = DAG.getMachineFunction(). 5585 getMachineMemOperand(MLD->getPointerInfo(), 5586 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), 5587 Alignment, MLD->getAAInfo(), MLD->getRanges()); 5588 5589 Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO, 5590 ISD::NON_EXTLOAD); 5591 5592 unsigned IncrementSize = LoMemVT.getSizeInBits()/8; 5593 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 5594 DAG.getConstant(IncrementSize, DL, Ptr.getValueType())); 5595 5596 MMO = DAG.getMachineFunction(). 5597 getMachineMemOperand(MLD->getPointerInfo(), 5598 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), 5599 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); 5600 5601 Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO, 5602 ISD::NON_EXTLOAD); 5603 5604 AddToWorklist(Lo.getNode()); 5605 AddToWorklist(Hi.getNode()); 5606 5607 // Build a factor node to remember that this load is independent of the 5608 // other one. 5609 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), 5610 Hi.getValue(1)); 5611 5612 // Legalized the chain result - switch anything that used the old chain to 5613 // use the new one. 5614 DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); 5615 5616 SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5617 5618 SDValue RetOps[] = { LoadRes, Chain }; 5619 return DAG.getMergeValues(RetOps, DL); 5620 } 5621 return SDValue(); 5622 } 5623 5624 SDValue DAGCombiner::visitVSELECT(SDNode *N) { 5625 SDValue N0 = N->getOperand(0); 5626 SDValue N1 = N->getOperand(1); 5627 SDValue N2 = N->getOperand(2); 5628 SDLoc DL(N); 5629 5630 // Canonicalize integer abs. 5631 // vselect (setg[te] X, 0), X, -X -> 5632 // vselect (setgt X, -1), X, -X -> 5633 // vselect (setl[te] X, 0), -X, X -> 5634 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 5635 if (N0.getOpcode() == ISD::SETCC) { 5636 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); 5637 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 5638 bool isAbs = false; 5639 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); 5640 5641 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || 5642 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && 5643 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) 5644 isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); 5645 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && 5646 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) 5647 isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); 5648 5649 if (isAbs) { 5650 EVT VT = LHS.getValueType(); 5651 SDValue Shift = DAG.getNode( 5652 ISD::SRA, DL, VT, LHS, 5653 DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT)); 5654 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); 5655 AddToWorklist(Shift.getNode()); 5656 AddToWorklist(Add.getNode()); 5657 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); 5658 } 5659 } 5660 5661 if (SimplifySelectOps(N, N1, N2)) 5662 return SDValue(N, 0); // Don't revisit N. 5663 5664 // If the VSELECT result requires splitting and the mask is provided by a 5665 // SETCC, then split both nodes and its operands before legalization. This 5666 // prevents the type legalizer from unrolling SETCC into scalar comparisons 5667 // and enables future optimizations (e.g. min/max pattern matching on X86). 5668 if (N0.getOpcode() == ISD::SETCC) { 5669 EVT VT = N->getValueType(0); 5670 5671 // Check if any splitting is required. 5672 if (TLI.getTypeAction(*DAG.getContext(), VT) != 5673 TargetLowering::TypeSplitVector) 5674 return SDValue(); 5675 5676 SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH; 5677 std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG); 5678 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1); 5679 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2); 5680 5681 Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL); 5682 Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH); 5683 5684 // Add the new VSELECT nodes to the work list in case they need to be split 5685 // again. 5686 AddToWorklist(Lo.getNode()); 5687 AddToWorklist(Hi.getNode()); 5688 5689 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); 5690 } 5691 5692 // Fold (vselect (build_vector all_ones), N1, N2) -> N1 5693 if (ISD::isBuildVectorAllOnes(N0.getNode())) 5694 return N1; 5695 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 5696 if (ISD::isBuildVectorAllZeros(N0.getNode())) 5697 return N2; 5698 5699 // The ConvertSelectToConcatVector function is assuming both the above 5700 // checks for (vselect (build_vector all{ones,zeros) ...) have been made 5701 // and addressed. 5702 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 5703 N2.getOpcode() == ISD::CONCAT_VECTORS && 5704 ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { 5705 if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) 5706 return CV; 5707 } 5708 5709 return SDValue(); 5710 } 5711 5712 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { 5713 SDValue N0 = N->getOperand(0); 5714 SDValue N1 = N->getOperand(1); 5715 SDValue N2 = N->getOperand(2); 5716 SDValue N3 = N->getOperand(3); 5717 SDValue N4 = N->getOperand(4); 5718 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); 5719 5720 // fold select_cc lhs, rhs, x, x, cc -> x 5721 if (N2 == N3) 5722 return N2; 5723 5724 // Determine if the condition we're dealing with is constant 5725 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, 5726 CC, SDLoc(N), false)) { 5727 AddToWorklist(SCC.getNode()); 5728 5729 if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { 5730 if (!SCCC->isNullValue()) 5731 return N2; // cond always true -> true val 5732 else 5733 return N3; // cond always false -> false val 5734 } else if (SCC->isUndef()) { 5735 // When the condition is UNDEF, just return the first operand. This is 5736 // coherent the DAG creation, no setcc node is created in this case 5737 return N2; 5738 } else if (SCC.getOpcode() == ISD::SETCC) { 5739 // Fold to a simpler select_cc 5740 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(), 5741 SCC.getOperand(0), SCC.getOperand(1), N2, N3, 5742 SCC.getOperand(2)); 5743 } 5744 } 5745 5746 // If we can fold this based on the true/false value, do so. 5747 if (SimplifySelectOps(N, N2, N3)) 5748 return SDValue(N, 0); // Don't revisit N. 5749 5750 // fold select_cc into other things, such as min/max/abs 5751 return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); 5752 } 5753 5754 SDValue DAGCombiner::visitSETCC(SDNode *N) { 5755 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), 5756 cast<CondCodeSDNode>(N->getOperand(2))->get(), 5757 SDLoc(N)); 5758 } 5759 5760 SDValue DAGCombiner::visitSETCCE(SDNode *N) { 5761 SDValue LHS = N->getOperand(0); 5762 SDValue RHS = N->getOperand(1); 5763 SDValue Carry = N->getOperand(2); 5764 SDValue Cond = N->getOperand(3); 5765 5766 // If Carry is false, fold to a regular SETCC. 5767 if (Carry.getOpcode() == ISD::CARRY_FALSE) 5768 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); 5769 5770 return SDValue(); 5771 } 5772 5773 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or 5774 /// a build_vector of constants. 5775 /// This function is called by the DAGCombiner when visiting sext/zext/aext 5776 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). 5777 /// Vector extends are not folded if operations are legal; this is to 5778 /// avoid introducing illegal build_vector dag nodes. 5779 static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, 5780 SelectionDAG &DAG, bool LegalTypes, 5781 bool LegalOperations) { 5782 unsigned Opcode = N->getOpcode(); 5783 SDValue N0 = N->getOperand(0); 5784 EVT VT = N->getValueType(0); 5785 5786 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || 5787 Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5788 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) 5789 && "Expected EXTEND dag node in input!"); 5790 5791 // fold (sext c1) -> c1 5792 // fold (zext c1) -> c1 5793 // fold (aext c1) -> c1 5794 if (isa<ConstantSDNode>(N0)) 5795 return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode(); 5796 5797 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) 5798 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) 5799 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) 5800 EVT SVT = VT.getScalarType(); 5801 if (!(VT.isVector() && 5802 (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) && 5803 ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) 5804 return nullptr; 5805 5806 // We can fold this node into a build_vector. 5807 unsigned VTBits = SVT.getSizeInBits(); 5808 unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits(); 5809 SmallVector<SDValue, 8> Elts; 5810 unsigned NumElts = VT.getVectorNumElements(); 5811 SDLoc DL(N); 5812 5813 for (unsigned i=0; i != NumElts; ++i) { 5814 SDValue Op = N0->getOperand(i); 5815 if (Op->isUndef()) { 5816 Elts.push_back(DAG.getUNDEF(SVT)); 5817 continue; 5818 } 5819 5820 SDLoc DL(Op); 5821 // Get the constant value and if needed trunc it to the size of the type. 5822 // Nodes like build_vector might have constants wider than the scalar type. 5823 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); 5824 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) 5825 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); 5826 else 5827 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); 5828 } 5829 5830 return DAG.getBuildVector(VT, DL, Elts).getNode(); 5831 } 5832 5833 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: 5834 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" 5835 // transformation. Returns true if extension are possible and the above 5836 // mentioned transformation is profitable. 5837 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, 5838 unsigned ExtOpc, 5839 SmallVectorImpl<SDNode *> &ExtendNodes, 5840 const TargetLowering &TLI) { 5841 bool HasCopyToRegUses = false; 5842 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); 5843 for (SDNode::use_iterator UI = N0.getNode()->use_begin(), 5844 UE = N0.getNode()->use_end(); 5845 UI != UE; ++UI) { 5846 SDNode *User = *UI; 5847 if (User == N) 5848 continue; 5849 if (UI.getUse().getResNo() != N0.getResNo()) 5850 continue; 5851 // FIXME: Only extend SETCC N, N and SETCC N, c for now. 5852 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { 5853 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); 5854 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) 5855 // Sign bits will be lost after a zext. 5856 return false; 5857 bool Add = false; 5858 for (unsigned i = 0; i != 2; ++i) { 5859 SDValue UseOp = User->getOperand(i); 5860 if (UseOp == N0) 5861 continue; 5862 if (!isa<ConstantSDNode>(UseOp)) 5863 return false; 5864 Add = true; 5865 } 5866 if (Add) 5867 ExtendNodes.push_back(User); 5868 continue; 5869 } 5870 // If truncates aren't free and there are users we can't 5871 // extend, it isn't worthwhile. 5872 if (!isTruncFree) 5873 return false; 5874 // Remember if this value is live-out. 5875 if (User->getOpcode() == ISD::CopyToReg) 5876 HasCopyToRegUses = true; 5877 } 5878 5879 if (HasCopyToRegUses) { 5880 bool BothLiveOut = false; 5881 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5882 UI != UE; ++UI) { 5883 SDUse &Use = UI.getUse(); 5884 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { 5885 BothLiveOut = true; 5886 break; 5887 } 5888 } 5889 if (BothLiveOut) 5890 // Both unextended and extended values are live out. There had better be 5891 // a good reason for the transformation. 5892 return ExtendNodes.size(); 5893 } 5894 return true; 5895 } 5896 5897 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, 5898 SDValue Trunc, SDValue ExtLoad, 5899 const SDLoc &DL, ISD::NodeType ExtType) { 5900 // Extend SetCC uses if necessary. 5901 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { 5902 SDNode *SetCC = SetCCs[i]; 5903 SmallVector<SDValue, 4> Ops; 5904 5905 for (unsigned j = 0; j != 2; ++j) { 5906 SDValue SOp = SetCC->getOperand(j); 5907 if (SOp == Trunc) 5908 Ops.push_back(ExtLoad); 5909 else 5910 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); 5911 } 5912 5913 Ops.push_back(SetCC->getOperand(2)); 5914 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); 5915 } 5916 } 5917 5918 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). 5919 SDValue DAGCombiner::CombineExtLoad(SDNode *N) { 5920 SDValue N0 = N->getOperand(0); 5921 EVT DstVT = N->getValueType(0); 5922 EVT SrcVT = N0.getValueType(); 5923 5924 assert((N->getOpcode() == ISD::SIGN_EXTEND || 5925 N->getOpcode() == ISD::ZERO_EXTEND) && 5926 "Unexpected node type (not an extend)!"); 5927 5928 // fold (sext (load x)) to multiple smaller sextloads; same for zext. 5929 // For example, on a target with legal v4i32, but illegal v8i32, turn: 5930 // (v8i32 (sext (v8i16 (load x)))) 5931 // into: 5932 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5933 // (v4i32 (sextload (x + 16))))) 5934 // Where uses of the original load, i.e.: 5935 // (v8i16 (load x)) 5936 // are replaced with: 5937 // (v8i16 (truncate 5938 // (v8i32 (concat_vectors (v4i32 (sextload x)), 5939 // (v4i32 (sextload (x + 16))))))) 5940 // 5941 // This combine is only applicable to illegal, but splittable, vectors. 5942 // All legal types, and illegal non-vector types, are handled elsewhere. 5943 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. 5944 // 5945 if (N0->getOpcode() != ISD::LOAD) 5946 return SDValue(); 5947 5948 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 5949 5950 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || 5951 !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() || 5952 !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) 5953 return SDValue(); 5954 5955 SmallVector<SDNode *, 4> SetCCs; 5956 if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI)) 5957 return SDValue(); 5958 5959 ISD::LoadExtType ExtType = 5960 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 5961 5962 // Try to split the vector types to get down to legal types. 5963 EVT SplitSrcVT = SrcVT; 5964 EVT SplitDstVT = DstVT; 5965 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && 5966 SplitSrcVT.getVectorNumElements() > 1) { 5967 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; 5968 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; 5969 } 5970 5971 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) 5972 return SDValue(); 5973 5974 SDLoc DL(N); 5975 const unsigned NumSplits = 5976 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); 5977 const unsigned Stride = SplitSrcVT.getStoreSize(); 5978 SmallVector<SDValue, 4> Loads; 5979 SmallVector<SDValue, 4> Chains; 5980 5981 SDValue BasePtr = LN0->getBasePtr(); 5982 for (unsigned Idx = 0; Idx < NumSplits; Idx++) { 5983 const unsigned Offset = Idx * Stride; 5984 const unsigned Align = MinAlign(LN0->getAlignment(), Offset); 5985 5986 SDValue SplitLoad = DAG.getExtLoad( 5987 ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr, 5988 LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, 5989 LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(), 5990 Align, LN0->getAAInfo()); 5991 5992 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 5993 DAG.getConstant(Stride, DL, BasePtr.getValueType())); 5994 5995 Loads.push_back(SplitLoad.getValue(0)); 5996 Chains.push_back(SplitLoad.getValue(1)); 5997 } 5998 5999 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 6000 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); 6001 6002 CombineTo(N, NewValue); 6003 6004 // Replace uses of the original load (before extension) 6005 // with a truncate of the concatenated sextloaded vectors. 6006 SDValue Trunc = 6007 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); 6008 CombineTo(N0.getNode(), Trunc, NewChain); 6009 ExtendSetCCUses(SetCCs, Trunc, NewValue, DL, 6010 (ISD::NodeType)N->getOpcode()); 6011 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6012 } 6013 6014 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { 6015 SDValue N0 = N->getOperand(0); 6016 EVT VT = N->getValueType(0); 6017 6018 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6019 LegalOperations)) 6020 return SDValue(Res, 0); 6021 6022 // fold (sext (sext x)) -> (sext x) 6023 // fold (sext (aext x)) -> (sext x) 6024 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6025 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, 6026 N0.getOperand(0)); 6027 6028 if (N0.getOpcode() == ISD::TRUNCATE) { 6029 // fold (sext (truncate (load x))) -> (sext (smaller load x)) 6030 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) 6031 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6032 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6033 if (NarrowLoad.getNode() != N0.getNode()) { 6034 CombineTo(N0.getNode(), NarrowLoad); 6035 // CombineTo deleted the truncate, if needed, but not what's under it. 6036 AddToWorklist(oye); 6037 } 6038 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6039 } 6040 6041 // See if the value being truncated is already sign extended. If so, just 6042 // eliminate the trunc/sext pair. 6043 SDValue Op = N0.getOperand(0); 6044 unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits(); 6045 unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits(); 6046 unsigned DestBits = VT.getScalarType().getSizeInBits(); 6047 unsigned NumSignBits = DAG.ComputeNumSignBits(Op); 6048 6049 if (OpBits == DestBits) { 6050 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign 6051 // bits, it is already ready. 6052 if (NumSignBits > DestBits-MidBits) 6053 return Op; 6054 } else if (OpBits < DestBits) { 6055 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign 6056 // bits, just sext from i32. 6057 if (NumSignBits > OpBits-MidBits) 6058 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op); 6059 } else { 6060 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign 6061 // bits, just truncate to i32. 6062 if (NumSignBits > OpBits-MidBits) 6063 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6064 } 6065 6066 // fold (sext (truncate x)) -> (sextinreg x). 6067 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, 6068 N0.getValueType())) { 6069 if (OpBits < DestBits) 6070 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); 6071 else if (OpBits > DestBits) 6072 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); 6073 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op, 6074 DAG.getValueType(N0.getValueType())); 6075 } 6076 } 6077 6078 // fold (sext (load x)) -> (sext (truncate (sextload x))) 6079 // Only generate vector extloads when 1) they're legal, and 2) they are 6080 // deemed desirable by the target. 6081 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6082 ((!LegalOperations && !VT.isVector() && 6083 !cast<LoadSDNode>(N0)->isVolatile()) || 6084 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) { 6085 bool DoXform = true; 6086 SmallVector<SDNode*, 4> SetCCs; 6087 if (!N0.hasOneUse()) 6088 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); 6089 if (VT.isVector()) 6090 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6091 if (DoXform) { 6092 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6093 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6094 LN0->getChain(), 6095 LN0->getBasePtr(), N0.getValueType(), 6096 LN0->getMemOperand()); 6097 CombineTo(N, ExtLoad); 6098 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6099 N0.getValueType(), ExtLoad); 6100 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6101 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6102 ISD::SIGN_EXTEND); 6103 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6104 } 6105 } 6106 6107 // fold (sext (load x)) to multiple smaller sextloads. 6108 // Only on illegal but splittable vectors. 6109 if (SDValue ExtLoad = CombineExtLoad(N)) 6110 return ExtLoad; 6111 6112 // fold (sext (sextload x)) -> (sext (truncate (sextload x))) 6113 // fold (sext ( extload x)) -> (sext (truncate (sextload x))) 6114 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6115 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6116 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6117 EVT MemVT = LN0->getMemoryVT(); 6118 if ((!LegalOperations && !LN0->isVolatile()) || 6119 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) { 6120 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 6121 LN0->getChain(), 6122 LN0->getBasePtr(), MemVT, 6123 LN0->getMemOperand()); 6124 CombineTo(N, ExtLoad); 6125 CombineTo(N0.getNode(), 6126 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6127 N0.getValueType(), ExtLoad), 6128 ExtLoad.getValue(1)); 6129 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6130 } 6131 } 6132 6133 // fold (sext (and/or/xor (load x), cst)) -> 6134 // (and/or/xor (sextload x), (sext cst)) 6135 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6136 N0.getOpcode() == ISD::XOR) && 6137 isa<LoadSDNode>(N0.getOperand(0)) && 6138 N0.getOperand(1).getOpcode() == ISD::Constant && 6139 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) && 6140 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6141 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6142 if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) { 6143 bool DoXform = true; 6144 SmallVector<SDNode*, 4> SetCCs; 6145 if (!N0.hasOneUse()) 6146 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND, 6147 SetCCs, TLI); 6148 if (DoXform) { 6149 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT, 6150 LN0->getChain(), LN0->getBasePtr(), 6151 LN0->getMemoryVT(), 6152 LN0->getMemOperand()); 6153 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6154 Mask = Mask.sext(VT.getSizeInBits()); 6155 SDLoc DL(N); 6156 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6157 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6158 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6159 SDLoc(N0.getOperand(0)), 6160 N0.getOperand(0).getValueType(), ExtLoad); 6161 CombineTo(N, And); 6162 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6163 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6164 ISD::SIGN_EXTEND); 6165 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6166 } 6167 } 6168 } 6169 6170 if (N0.getOpcode() == ISD::SETCC) { 6171 EVT N0VT = N0.getOperand(0).getValueType(); 6172 // sext(setcc) -> sext_in_reg(vsetcc) for vectors. 6173 // Only do this before legalize for now. 6174 if (VT.isVector() && !LegalOperations && 6175 TLI.getBooleanContents(N0VT) == 6176 TargetLowering::ZeroOrNegativeOneBooleanContent) { 6177 // On some architectures (such as SSE/NEON/etc) the SETCC result type is 6178 // of the same size as the compared operands. Only optimize sext(setcc()) 6179 // if this is the case. 6180 EVT SVT = getSetCCResultType(N0VT); 6181 6182 // We know that the # elements of the results is the same as the 6183 // # elements of the compare (and the # elements of the compare result 6184 // for that matter). Check to see that they are the same size. If so, 6185 // we know that the element size of the sext'd result matches the 6186 // element size of the compare operands. 6187 if (VT.getSizeInBits() == SVT.getSizeInBits()) 6188 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6189 N0.getOperand(1), 6190 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6191 6192 // If the desired elements are smaller or larger than the source 6193 // elements we can use a matching integer vector type and then 6194 // truncate/sign extend 6195 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6196 if (SVT == MatchingVectorType) { 6197 SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType, 6198 N0.getOperand(0), N0.getOperand(1), 6199 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6200 return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT); 6201 } 6202 } 6203 6204 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0) 6205 unsigned ElementWidth = VT.getScalarType().getSizeInBits(); 6206 SDLoc DL(N); 6207 SDValue NegOne = 6208 DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT); 6209 if (SDValue SCC = SimplifySelectCC( 6210 DL, N0.getOperand(0), N0.getOperand(1), NegOne, 6211 DAG.getConstant(0, DL, VT), 6212 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6213 return SCC; 6214 6215 if (!VT.isVector()) { 6216 EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType()); 6217 if (!LegalOperations || 6218 TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) { 6219 SDLoc DL(N); 6220 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 6221 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, 6222 N0.getOperand(0), N0.getOperand(1), CC); 6223 return DAG.getSelect(DL, VT, SetCC, 6224 NegOne, DAG.getConstant(0, DL, VT)); 6225 } 6226 } 6227 } 6228 6229 // fold (sext x) -> (zext x) if the sign bit is known zero. 6230 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && 6231 DAG.SignBitIsZero(N0)) 6232 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0); 6233 6234 return SDValue(); 6235 } 6236 6237 // isTruncateOf - If N is a truncate of some other value, return true, record 6238 // the value being truncated in Op and which of Op's bits are zero in KnownZero. 6239 // This function computes KnownZero to avoid a duplicated call to 6240 // computeKnownBits in the caller. 6241 static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, 6242 APInt &KnownZero) { 6243 APInt KnownOne; 6244 if (N->getOpcode() == ISD::TRUNCATE) { 6245 Op = N->getOperand(0); 6246 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6247 return true; 6248 } 6249 6250 if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 || 6251 cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE) 6252 return false; 6253 6254 SDValue Op0 = N->getOperand(0); 6255 SDValue Op1 = N->getOperand(1); 6256 assert(Op0.getValueType() == Op1.getValueType()); 6257 6258 if (isNullConstant(Op0)) 6259 Op = Op1; 6260 else if (isNullConstant(Op1)) 6261 Op = Op0; 6262 else 6263 return false; 6264 6265 DAG.computeKnownBits(Op, KnownZero, KnownOne); 6266 6267 if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue()) 6268 return false; 6269 6270 return true; 6271 } 6272 6273 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { 6274 SDValue N0 = N->getOperand(0); 6275 EVT VT = N->getValueType(0); 6276 6277 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6278 LegalOperations)) 6279 return SDValue(Res, 0); 6280 6281 // fold (zext (zext x)) -> (zext x) 6282 // fold (zext (aext x)) -> (zext x) 6283 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) 6284 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, 6285 N0.getOperand(0)); 6286 6287 // fold (zext (truncate x)) -> (zext x) or 6288 // (zext (truncate x)) -> (truncate x) 6289 // This is valid when the truncated bits of x are already zero. 6290 // FIXME: We should extend this to work for vectors too. 6291 SDValue Op; 6292 APInt KnownZero; 6293 if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) { 6294 APInt TruncatedBits = 6295 (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ? 6296 APInt(Op.getValueSizeInBits(), 0) : 6297 APInt::getBitsSet(Op.getValueSizeInBits(), 6298 N0.getValueSizeInBits(), 6299 std::min(Op.getValueSizeInBits(), 6300 VT.getSizeInBits())); 6301 if (TruncatedBits == (KnownZero & TruncatedBits)) { 6302 if (VT.bitsGT(Op.getValueType())) 6303 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op); 6304 if (VT.bitsLT(Op.getValueType())) 6305 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6306 6307 return Op; 6308 } 6309 } 6310 6311 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6312 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) 6313 if (N0.getOpcode() == ISD::TRUNCATE) { 6314 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6315 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6316 if (NarrowLoad.getNode() != N0.getNode()) { 6317 CombineTo(N0.getNode(), NarrowLoad); 6318 // CombineTo deleted the truncate, if needed, but not what's under it. 6319 AddToWorklist(oye); 6320 } 6321 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6322 } 6323 } 6324 6325 // fold (zext (truncate x)) -> (and x, mask) 6326 if (N0.getOpcode() == ISD::TRUNCATE) { 6327 // fold (zext (truncate (load x))) -> (zext (smaller load x)) 6328 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) 6329 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6330 SDNode *oye = N0.getNode()->getOperand(0).getNode(); 6331 if (NarrowLoad.getNode() != N0.getNode()) { 6332 CombineTo(N0.getNode(), NarrowLoad); 6333 // CombineTo deleted the truncate, if needed, but not what's under it. 6334 AddToWorklist(oye); 6335 } 6336 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6337 } 6338 6339 EVT SrcVT = N0.getOperand(0).getValueType(); 6340 EVT MinVT = N0.getValueType(); 6341 6342 // Try to mask before the extension to avoid having to generate a larger mask, 6343 // possibly over several sub-vectors. 6344 if (SrcVT.bitsLT(VT)) { 6345 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && 6346 TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { 6347 SDValue Op = N0.getOperand(0); 6348 Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6349 AddToWorklist(Op.getNode()); 6350 return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); 6351 } 6352 } 6353 6354 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { 6355 SDValue Op = N0.getOperand(0); 6356 if (SrcVT.bitsLT(VT)) { 6357 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op); 6358 AddToWorklist(Op.getNode()); 6359 } else if (SrcVT.bitsGT(VT)) { 6360 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op); 6361 AddToWorklist(Op.getNode()); 6362 } 6363 return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType()); 6364 } 6365 } 6366 6367 // Fold (zext (and (trunc x), cst)) -> (and x, cst), 6368 // if either of the casts is not free. 6369 if (N0.getOpcode() == ISD::AND && 6370 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6371 N0.getOperand(1).getOpcode() == ISD::Constant && 6372 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6373 N0.getValueType()) || 6374 !TLI.isZExtFree(N0.getValueType(), VT))) { 6375 SDValue X = N0.getOperand(0).getOperand(0); 6376 if (X.getValueType().bitsLT(VT)) { 6377 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X); 6378 } else if (X.getValueType().bitsGT(VT)) { 6379 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6380 } 6381 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6382 Mask = Mask.zext(VT.getSizeInBits()); 6383 SDLoc DL(N); 6384 return DAG.getNode(ISD::AND, DL, VT, 6385 X, DAG.getConstant(Mask, DL, VT)); 6386 } 6387 6388 // fold (zext (load x)) -> (zext (truncate (zextload x))) 6389 // Only generate vector extloads when 1) they're legal, and 2) they are 6390 // deemed desirable by the target. 6391 if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6392 ((!LegalOperations && !VT.isVector() && 6393 !cast<LoadSDNode>(N0)->isVolatile()) || 6394 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) { 6395 bool DoXform = true; 6396 SmallVector<SDNode*, 4> SetCCs; 6397 if (!N0.hasOneUse()) 6398 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); 6399 if (VT.isVector()) 6400 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); 6401 if (DoXform) { 6402 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6403 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6404 LN0->getChain(), 6405 LN0->getBasePtr(), N0.getValueType(), 6406 LN0->getMemOperand()); 6407 CombineTo(N, ExtLoad); 6408 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6409 N0.getValueType(), ExtLoad); 6410 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6411 6412 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6413 ISD::ZERO_EXTEND); 6414 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6415 } 6416 } 6417 6418 // fold (zext (load x)) to multiple smaller zextloads. 6419 // Only on illegal but splittable vectors. 6420 if (SDValue ExtLoad = CombineExtLoad(N)) 6421 return ExtLoad; 6422 6423 // fold (zext (and/or/xor (load x), cst)) -> 6424 // (and/or/xor (zextload x), (zext cst)) 6425 // Unless (and (load x) cst) will match as a zextload already and has 6426 // additional users. 6427 if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || 6428 N0.getOpcode() == ISD::XOR) && 6429 isa<LoadSDNode>(N0.getOperand(0)) && 6430 N0.getOperand(1).getOpcode() == ISD::Constant && 6431 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) && 6432 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { 6433 LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0)); 6434 if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) { 6435 bool DoXform = true; 6436 SmallVector<SDNode*, 4> SetCCs; 6437 if (!N0.hasOneUse()) { 6438 if (N0.getOpcode() == ISD::AND) { 6439 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); 6440 auto NarrowLoad = false; 6441 EVT LoadResultTy = AndC->getValueType(0); 6442 EVT ExtVT, LoadedVT; 6443 if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT, 6444 NarrowLoad)) 6445 DoXform = false; 6446 } 6447 if (DoXform) 6448 DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), 6449 ISD::ZERO_EXTEND, SetCCs, TLI); 6450 } 6451 if (DoXform) { 6452 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT, 6453 LN0->getChain(), LN0->getBasePtr(), 6454 LN0->getMemoryVT(), 6455 LN0->getMemOperand()); 6456 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6457 Mask = Mask.zext(VT.getSizeInBits()); 6458 SDLoc DL(N); 6459 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, 6460 ExtLoad, DAG.getConstant(Mask, DL, VT)); 6461 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, 6462 SDLoc(N0.getOperand(0)), 6463 N0.getOperand(0).getValueType(), ExtLoad); 6464 CombineTo(N, And); 6465 CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1)); 6466 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL, 6467 ISD::ZERO_EXTEND); 6468 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6469 } 6470 } 6471 } 6472 6473 // fold (zext (zextload x)) -> (zext (truncate (zextload x))) 6474 // fold (zext ( extload x)) -> (zext (truncate (zextload x))) 6475 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && 6476 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { 6477 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6478 EVT MemVT = LN0->getMemoryVT(); 6479 if ((!LegalOperations && !LN0->isVolatile()) || 6480 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) { 6481 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, 6482 LN0->getChain(), 6483 LN0->getBasePtr(), MemVT, 6484 LN0->getMemOperand()); 6485 CombineTo(N, ExtLoad); 6486 CombineTo(N0.getNode(), 6487 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), 6488 ExtLoad), 6489 ExtLoad.getValue(1)); 6490 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6491 } 6492 } 6493 6494 if (N0.getOpcode() == ISD::SETCC) { 6495 // Only do this before legalize for now. 6496 if (!LegalOperations && VT.isVector() && 6497 N0.getValueType().getVectorElementType() == MVT::i1) { 6498 EVT N00VT = N0.getOperand(0).getValueType(); 6499 if (getSetCCResultType(N00VT) == N0.getValueType()) 6500 return SDValue(); 6501 6502 // We know that the # elements of the results is the same as the # 6503 // elements of the compare (and the # elements of the compare result for 6504 // that matter). Check to see that they are the same size. If so, we know 6505 // that the element size of the sext'd result matches the element size of 6506 // the compare operands. 6507 SDLoc DL(N); 6508 SDValue VecOnes = DAG.getConstant(1, DL, VT); 6509 if (VT.getSizeInBits() == N00VT.getSizeInBits()) { 6510 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. 6511 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), 6512 N0.getOperand(1), N0.getOperand(2)); 6513 return DAG.getNode(ISD::AND, DL, VT, VSetCC, VecOnes); 6514 } 6515 6516 // If the desired elements are smaller or larger than the source 6517 // elements we can use a matching integer vector type and then 6518 // truncate/sign extend. 6519 EVT MatchingElementType = EVT::getIntegerVT( 6520 *DAG.getContext(), N00VT.getScalarType().getSizeInBits()); 6521 EVT MatchingVectorType = EVT::getVectorVT( 6522 *DAG.getContext(), MatchingElementType, N00VT.getVectorNumElements()); 6523 SDValue VsetCC = 6524 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), 6525 N0.getOperand(1), N0.getOperand(2)); 6526 return DAG.getNode(ISD::AND, DL, VT, DAG.getSExtOrTrunc(VsetCC, DL, VT), 6527 VecOnes); 6528 } 6529 6530 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6531 SDLoc DL(N); 6532 if (SDValue SCC = SimplifySelectCC( 6533 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6534 DAG.getConstant(0, DL, VT), 6535 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6536 return SCC; 6537 } 6538 6539 // (zext (shl (zext x), cst)) -> (shl (zext x), cst) 6540 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && 6541 isa<ConstantSDNode>(N0.getOperand(1)) && 6542 N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && 6543 N0.hasOneUse()) { 6544 SDValue ShAmt = N0.getOperand(1); 6545 unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 6546 if (N0.getOpcode() == ISD::SHL) { 6547 SDValue InnerZExt = N0.getOperand(0); 6548 // If the original shl may be shifting out bits, do not perform this 6549 // transformation. 6550 unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() - 6551 InnerZExt.getOperand(0).getValueType().getSizeInBits(); 6552 if (ShAmtVal > KnownZeroBits) 6553 return SDValue(); 6554 } 6555 6556 SDLoc DL(N); 6557 6558 // Ensure that the shift amount is wide enough for the shifted value. 6559 if (VT.getSizeInBits() >= 256) 6560 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); 6561 6562 return DAG.getNode(N0.getOpcode(), DL, VT, 6563 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), 6564 ShAmt); 6565 } 6566 6567 return SDValue(); 6568 } 6569 6570 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { 6571 SDValue N0 = N->getOperand(0); 6572 EVT VT = N->getValueType(0); 6573 6574 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 6575 LegalOperations)) 6576 return SDValue(Res, 0); 6577 6578 // fold (aext (aext x)) -> (aext x) 6579 // fold (aext (zext x)) -> (zext x) 6580 // fold (aext (sext x)) -> (sext x) 6581 if (N0.getOpcode() == ISD::ANY_EXTEND || 6582 N0.getOpcode() == ISD::ZERO_EXTEND || 6583 N0.getOpcode() == ISD::SIGN_EXTEND) 6584 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 6585 6586 // fold (aext (truncate (load x))) -> (aext (smaller load x)) 6587 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) 6588 if (N0.getOpcode() == ISD::TRUNCATE) { 6589 if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { 6590 SDNode* oye = N0.getNode()->getOperand(0).getNode(); 6591 if (NarrowLoad.getNode() != N0.getNode()) { 6592 CombineTo(N0.getNode(), NarrowLoad); 6593 // CombineTo deleted the truncate, if needed, but not what's under it. 6594 AddToWorklist(oye); 6595 } 6596 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6597 } 6598 } 6599 6600 // fold (aext (truncate x)) 6601 if (N0.getOpcode() == ISD::TRUNCATE) { 6602 SDValue TruncOp = N0.getOperand(0); 6603 if (TruncOp.getValueType() == VT) 6604 return TruncOp; // x iff x size == zext size. 6605 if (TruncOp.getValueType().bitsGT(VT)) 6606 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp); 6607 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp); 6608 } 6609 6610 // Fold (aext (and (trunc x), cst)) -> (and x, cst) 6611 // if the trunc is not free. 6612 if (N0.getOpcode() == ISD::AND && 6613 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6614 N0.getOperand(1).getOpcode() == ISD::Constant && 6615 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), 6616 N0.getValueType())) { 6617 SDValue X = N0.getOperand(0).getOperand(0); 6618 if (X.getValueType().bitsLT(VT)) { 6619 X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X); 6620 } else if (X.getValueType().bitsGT(VT)) { 6621 X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X); 6622 } 6623 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 6624 Mask = Mask.zext(VT.getSizeInBits()); 6625 SDLoc DL(N); 6626 return DAG.getNode(ISD::AND, DL, VT, 6627 X, DAG.getConstant(Mask, DL, VT)); 6628 } 6629 6630 // fold (aext (load x)) -> (aext (truncate (extload x))) 6631 // None of the supported targets knows how to perform load and any_ext 6632 // on vectors in one instruction. We only perform this transformation on 6633 // scalars. 6634 if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() && 6635 ISD::isUNINDEXEDLoad(N0.getNode()) && 6636 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 6637 bool DoXform = true; 6638 SmallVector<SDNode*, 4> SetCCs; 6639 if (!N0.hasOneUse()) 6640 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); 6641 if (DoXform) { 6642 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6643 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 6644 LN0->getChain(), 6645 LN0->getBasePtr(), N0.getValueType(), 6646 LN0->getMemOperand()); 6647 CombineTo(N, ExtLoad); 6648 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6649 N0.getValueType(), ExtLoad); 6650 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); 6651 ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N), 6652 ISD::ANY_EXTEND); 6653 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6654 } 6655 } 6656 6657 // fold (aext (zextload x)) -> (aext (truncate (zextload x))) 6658 // fold (aext (sextload x)) -> (aext (truncate (sextload x))) 6659 // fold (aext ( extload x)) -> (aext (truncate (extload x))) 6660 if (N0.getOpcode() == ISD::LOAD && 6661 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 6662 N0.hasOneUse()) { 6663 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6664 ISD::LoadExtType ExtType = LN0->getExtensionType(); 6665 EVT MemVT = LN0->getMemoryVT(); 6666 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { 6667 SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), 6668 VT, LN0->getChain(), LN0->getBasePtr(), 6669 MemVT, LN0->getMemOperand()); 6670 CombineTo(N, ExtLoad); 6671 CombineTo(N0.getNode(), 6672 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), 6673 N0.getValueType(), ExtLoad), 6674 ExtLoad.getValue(1)); 6675 return SDValue(N, 0); // Return N so it doesn't get rechecked! 6676 } 6677 } 6678 6679 if (N0.getOpcode() == ISD::SETCC) { 6680 // For vectors: 6681 // aext(setcc) -> vsetcc 6682 // aext(setcc) -> truncate(vsetcc) 6683 // aext(setcc) -> aext(vsetcc) 6684 // Only do this before legalize for now. 6685 if (VT.isVector() && !LegalOperations) { 6686 EVT N0VT = N0.getOperand(0).getValueType(); 6687 // We know that the # elements of the results is the same as the 6688 // # elements of the compare (and the # elements of the compare result 6689 // for that matter). Check to see that they are the same size. If so, 6690 // we know that the element size of the sext'd result matches the 6691 // element size of the compare operands. 6692 if (VT.getSizeInBits() == N0VT.getSizeInBits()) 6693 return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), 6694 N0.getOperand(1), 6695 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6696 // If the desired elements are smaller or larger than the source 6697 // elements we can use a matching integer vector type and then 6698 // truncate/any extend 6699 else { 6700 EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger(); 6701 SDValue VsetCC = 6702 DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), 6703 N0.getOperand(1), 6704 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 6705 return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); 6706 } 6707 } 6708 6709 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc 6710 SDLoc DL(N); 6711 if (SDValue SCC = SimplifySelectCC( 6712 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), 6713 DAG.getConstant(0, DL, VT), 6714 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) 6715 return SCC; 6716 } 6717 6718 return SDValue(); 6719 } 6720 6721 /// See if the specified operand can be simplified with the knowledge that only 6722 /// the bits specified by Mask are used. If so, return the simpler operand, 6723 /// otherwise return a null SDValue. 6724 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { 6725 switch (V.getOpcode()) { 6726 default: break; 6727 case ISD::Constant: { 6728 const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode()); 6729 assert(CV && "Const value should be ConstSDNode."); 6730 const APInt &CVal = CV->getAPIntValue(); 6731 APInt NewVal = CVal & Mask; 6732 if (NewVal != CVal) 6733 return DAG.getConstant(NewVal, SDLoc(V), V.getValueType()); 6734 break; 6735 } 6736 case ISD::OR: 6737 case ISD::XOR: 6738 // If the LHS or RHS don't contribute bits to the or, drop them. 6739 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) 6740 return V.getOperand(1); 6741 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) 6742 return V.getOperand(0); 6743 break; 6744 case ISD::SRL: 6745 // Only look at single-use SRLs. 6746 if (!V.getNode()->hasOneUse()) 6747 break; 6748 if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) { 6749 // See if we can recursively simplify the LHS. 6750 unsigned Amt = RHSC->getZExtValue(); 6751 6752 // Watch out for shift count overflow though. 6753 if (Amt >= Mask.getBitWidth()) break; 6754 APInt NewMask = Mask << Amt; 6755 if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask)) 6756 return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(), 6757 SimplifyLHS, V.getOperand(1)); 6758 } 6759 } 6760 return SDValue(); 6761 } 6762 6763 /// If the result of a wider load is shifted to right of N bits and then 6764 /// truncated to a narrower type and where N is a multiple of number of bits of 6765 /// the narrower type, transform it to a narrower load from address + N / num of 6766 /// bits of new type. If the result is to be extended, also fold the extension 6767 /// to form a extending load. 6768 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { 6769 unsigned Opc = N->getOpcode(); 6770 6771 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 6772 SDValue N0 = N->getOperand(0); 6773 EVT VT = N->getValueType(0); 6774 EVT ExtVT = VT; 6775 6776 // This transformation isn't valid for vector loads. 6777 if (VT.isVector()) 6778 return SDValue(); 6779 6780 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then 6781 // extended to VT. 6782 if (Opc == ISD::SIGN_EXTEND_INREG) { 6783 ExtType = ISD::SEXTLOAD; 6784 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6785 } else if (Opc == ISD::SRL) { 6786 // Another special-case: SRL is basically zero-extending a narrower value. 6787 ExtType = ISD::ZEXTLOAD; 6788 N0 = SDValue(N, 0); 6789 ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6790 if (!N01) return SDValue(); 6791 ExtVT = EVT::getIntegerVT(*DAG.getContext(), 6792 VT.getSizeInBits() - N01->getZExtValue()); 6793 } 6794 if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT)) 6795 return SDValue(); 6796 6797 unsigned EVTBits = ExtVT.getSizeInBits(); 6798 6799 // Do not generate loads of non-round integer types since these can 6800 // be expensive (and would be wrong if the type is not byte sized). 6801 if (!ExtVT.isRound()) 6802 return SDValue(); 6803 6804 unsigned ShAmt = 0; 6805 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { 6806 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6807 ShAmt = N01->getZExtValue(); 6808 // Is the shift amount a multiple of size of VT? 6809 if ((ShAmt & (EVTBits-1)) == 0) { 6810 N0 = N0.getOperand(0); 6811 // Is the load width a multiple of size of VT? 6812 if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) 6813 return SDValue(); 6814 } 6815 6816 // At this point, we must have a load or else we can't do the transform. 6817 if (!isa<LoadSDNode>(N0)) return SDValue(); 6818 6819 // Because a SRL must be assumed to *need* to zero-extend the high bits 6820 // (as opposed to anyext the high bits), we can't combine the zextload 6821 // lowering of SRL and an sextload. 6822 if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD) 6823 return SDValue(); 6824 6825 // If the shift amount is larger than the input type then we're not 6826 // accessing any of the loaded bytes. If the load was a zextload/extload 6827 // then the result of the shift+trunc is zero/undef (handled elsewhere). 6828 if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits()) 6829 return SDValue(); 6830 } 6831 } 6832 6833 // If the load is shifted left (and the result isn't shifted back right), 6834 // we can fold the truncate through the shift. 6835 unsigned ShLeftAmt = 0; 6836 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 6837 ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { 6838 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 6839 ShLeftAmt = N01->getZExtValue(); 6840 N0 = N0.getOperand(0); 6841 } 6842 } 6843 6844 // If we haven't found a load, we can't narrow it. Don't transform one with 6845 // multiple uses, this would require adding a new load. 6846 if (!isa<LoadSDNode>(N0) || !N0.hasOneUse()) 6847 return SDValue(); 6848 6849 // Don't change the width of a volatile load. 6850 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 6851 if (LN0->isVolatile()) 6852 return SDValue(); 6853 6854 // Verify that we are actually reducing a load width here. 6855 if (LN0->getMemoryVT().getSizeInBits() < EVTBits) 6856 return SDValue(); 6857 6858 // For the transform to be legal, the load must produce only two values 6859 // (the value loaded and the chain). Don't transform a pre-increment 6860 // load, for example, which produces an extra value. Otherwise the 6861 // transformation is not equivalent, and the downstream logic to replace 6862 // uses gets things wrong. 6863 if (LN0->getNumValues() > 2) 6864 return SDValue(); 6865 6866 // If the load that we're shrinking is an extload and we're not just 6867 // discarding the extension we can't simply shrink the load. Bail. 6868 // TODO: It would be possible to merge the extensions in some cases. 6869 if (LN0->getExtensionType() != ISD::NON_EXTLOAD && 6870 LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt) 6871 return SDValue(); 6872 6873 if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT)) 6874 return SDValue(); 6875 6876 EVT PtrType = N0.getOperand(1).getValueType(); 6877 6878 if (PtrType == MVT::Untyped || PtrType.isExtended()) 6879 // It's not possible to generate a constant of extended or untyped type. 6880 return SDValue(); 6881 6882 // For big endian targets, we need to adjust the offset to the pointer to 6883 // load the correct bytes. 6884 if (DAG.getDataLayout().isBigEndian()) { 6885 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); 6886 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); 6887 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; 6888 } 6889 6890 uint64_t PtrOff = ShAmt / 8; 6891 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); 6892 SDLoc DL(LN0); 6893 // The original load itself didn't wrap, so an offset within it doesn't. 6894 SDNodeFlags Flags; 6895 Flags.setNoUnsignedWrap(true); 6896 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, 6897 PtrType, LN0->getBasePtr(), 6898 DAG.getConstant(PtrOff, DL, PtrType), 6899 &Flags); 6900 AddToWorklist(NewPtr.getNode()); 6901 6902 SDValue Load; 6903 if (ExtType == ISD::NON_EXTLOAD) 6904 Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr, 6905 LN0->getPointerInfo().getWithOffset(PtrOff), 6906 LN0->isVolatile(), LN0->isNonTemporal(), 6907 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6908 else 6909 Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr, 6910 LN0->getPointerInfo().getWithOffset(PtrOff), 6911 ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), 6912 LN0->isInvariant(), NewAlign, LN0->getAAInfo()); 6913 6914 // Replace the old load's chain with the new load's chain. 6915 WorklistRemover DeadNodes(*this); 6916 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 6917 6918 // Shift the result left, if we've swallowed a left shift. 6919 SDValue Result = Load; 6920 if (ShLeftAmt != 0) { 6921 EVT ShImmTy = getShiftAmountTy(Result.getValueType()); 6922 if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt)) 6923 ShImmTy = VT; 6924 // If the shift amount is as large as the result size (but, presumably, 6925 // no larger than the source) then the useful bits of the result are 6926 // zero; we can't simply return the shortened shift, because the result 6927 // of that operation is undefined. 6928 SDLoc DL(N0); 6929 if (ShLeftAmt >= VT.getSizeInBits()) 6930 Result = DAG.getConstant(0, DL, VT); 6931 else 6932 Result = DAG.getNode(ISD::SHL, DL, VT, 6933 Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); 6934 } 6935 6936 // Return the new loaded value. 6937 return Result; 6938 } 6939 6940 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { 6941 SDValue N0 = N->getOperand(0); 6942 SDValue N1 = N->getOperand(1); 6943 EVT VT = N->getValueType(0); 6944 EVT EVT = cast<VTSDNode>(N1)->getVT(); 6945 unsigned VTBits = VT.getScalarType().getSizeInBits(); 6946 unsigned EVTBits = EVT.getScalarType().getSizeInBits(); 6947 6948 if (N0.isUndef()) 6949 return DAG.getUNDEF(VT); 6950 6951 // fold (sext_in_reg c1) -> c1 6952 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 6953 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); 6954 6955 // If the input is already sign extended, just drop the extension. 6956 if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) 6957 return N0; 6958 6959 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 6960 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 6961 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) 6962 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 6963 N0.getOperand(0), N1); 6964 6965 // fold (sext_in_reg (sext x)) -> (sext x) 6966 // fold (sext_in_reg (aext x)) -> (sext x) 6967 // if x is small enough. 6968 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { 6969 SDValue N00 = N0.getOperand(0); 6970 if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && 6971 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) 6972 return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); 6973 } 6974 6975 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. 6976 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) 6977 return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT); 6978 6979 // fold operands of sext_in_reg based on knowledge that the top bits are not 6980 // demanded. 6981 if (SimplifyDemandedBits(SDValue(N, 0))) 6982 return SDValue(N, 0); 6983 6984 // fold (sext_in_reg (load x)) -> (smaller sextload x) 6985 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) 6986 if (SDValue NarrowLoad = ReduceLoadWidth(N)) 6987 return NarrowLoad; 6988 6989 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) 6990 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. 6991 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. 6992 if (N0.getOpcode() == ISD::SRL) { 6993 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) 6994 if (ShAmt->getZExtValue()+EVTBits <= VTBits) { 6995 // We can turn this into an SRA iff the input to the SRL is already sign 6996 // extended enough. 6997 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); 6998 if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) 6999 return DAG.getNode(ISD::SRA, SDLoc(N), VT, 7000 N0.getOperand(0), N0.getOperand(1)); 7001 } 7002 } 7003 7004 // fold (sext_inreg (extload x)) -> (sextload x) 7005 if (ISD::isEXTLoad(N0.getNode()) && 7006 ISD::isUNINDEXEDLoad(N0.getNode()) && 7007 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7008 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7009 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7010 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7011 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7012 LN0->getChain(), 7013 LN0->getBasePtr(), EVT, 7014 LN0->getMemOperand()); 7015 CombineTo(N, ExtLoad); 7016 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7017 AddToWorklist(ExtLoad.getNode()); 7018 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7019 } 7020 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use 7021 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && 7022 N0.hasOneUse() && 7023 EVT == cast<LoadSDNode>(N0)->getMemoryVT() && 7024 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || 7025 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) { 7026 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7027 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, 7028 LN0->getChain(), 7029 LN0->getBasePtr(), EVT, 7030 LN0->getMemOperand()); 7031 CombineTo(N, ExtLoad); 7032 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); 7033 return SDValue(N, 0); // Return N so it doesn't get rechecked! 7034 } 7035 7036 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) 7037 if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) { 7038 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), 7039 N0.getOperand(1), false)) 7040 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, 7041 BSwap, N1); 7042 } 7043 7044 return SDValue(); 7045 } 7046 7047 SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { 7048 SDValue N0 = N->getOperand(0); 7049 EVT VT = N->getValueType(0); 7050 7051 if (N0.isUndef()) 7052 return DAG.getUNDEF(VT); 7053 7054 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7055 LegalOperations)) 7056 return SDValue(Res, 0); 7057 7058 return SDValue(); 7059 } 7060 7061 SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { 7062 SDValue N0 = N->getOperand(0); 7063 EVT VT = N->getValueType(0); 7064 7065 if (N0.isUndef()) 7066 return DAG.getUNDEF(VT); 7067 7068 if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes, 7069 LegalOperations)) 7070 return SDValue(Res, 0); 7071 7072 return SDValue(); 7073 } 7074 7075 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { 7076 SDValue N0 = N->getOperand(0); 7077 EVT VT = N->getValueType(0); 7078 bool isLE = DAG.getDataLayout().isLittleEndian(); 7079 7080 // noop truncate 7081 if (N0.getValueType() == N->getValueType(0)) 7082 return N0; 7083 // fold (truncate c1) -> c1 7084 if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) 7085 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); 7086 // fold (truncate (truncate x)) -> (truncate x) 7087 if (N0.getOpcode() == ISD::TRUNCATE) 7088 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7089 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x 7090 if (N0.getOpcode() == ISD::ZERO_EXTEND || 7091 N0.getOpcode() == ISD::SIGN_EXTEND || 7092 N0.getOpcode() == ISD::ANY_EXTEND) { 7093 // if the source is smaller than the dest, we still need an extend. 7094 if (N0.getOperand(0).getValueType().bitsLT(VT)) 7095 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); 7096 // if the source is larger than the dest, than we just need the truncate. 7097 if (N0.getOperand(0).getValueType().bitsGT(VT)) 7098 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); 7099 // if the source and dest are the same type, we can drop both the extend 7100 // and the truncate. 7101 return N0.getOperand(0); 7102 } 7103 7104 // Fold extract-and-trunc into a narrow extract. For example: 7105 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) 7106 // i32 y = TRUNCATE(i64 x) 7107 // -- becomes -- 7108 // v16i8 b = BITCAST (v2i64 val) 7109 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) 7110 // 7111 // Note: We only run this optimization after type legalization (which often 7112 // creates this pattern) and before operation legalization after which 7113 // we need to be more careful about the vector instructions that we generate. 7114 if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7115 LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { 7116 7117 EVT VecTy = N0.getOperand(0).getValueType(); 7118 EVT ExTy = N0.getValueType(); 7119 EVT TrTy = N->getValueType(0); 7120 7121 unsigned NumElem = VecTy.getVectorNumElements(); 7122 unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); 7123 7124 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem); 7125 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); 7126 7127 SDValue EltNo = N0->getOperand(1); 7128 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { 7129 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 7130 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7131 int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); 7132 7133 SDLoc DL(N); 7134 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, 7135 DAG.getBitcast(NVT, N0.getOperand(0)), 7136 DAG.getConstant(Index, DL, IndexTy)); 7137 } 7138 } 7139 7140 // trunc (select c, a, b) -> select c, (trunc a), (trunc b) 7141 if (N0.getOpcode() == ISD::SELECT) { 7142 EVT SrcVT = N0.getValueType(); 7143 if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && 7144 TLI.isTruncateFree(SrcVT, VT)) { 7145 SDLoc SL(N0); 7146 SDValue Cond = N0.getOperand(0); 7147 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); 7148 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); 7149 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); 7150 } 7151 } 7152 7153 // trunc (shl x, K) -> shl (trunc x), K => K < vt.size / 2 7154 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && 7155 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) && 7156 TLI.isTypeDesirableForOp(ISD::SHL, VT)) { 7157 if (const ConstantSDNode *CAmt = isConstOrConstSplat(N0.getOperand(1))) { 7158 uint64_t Amt = CAmt->getZExtValue(); 7159 unsigned Size = VT.getSizeInBits(); 7160 7161 if (Amt < Size / 2) { 7162 SDLoc SL(N); 7163 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 7164 7165 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); 7166 return DAG.getNode(ISD::SHL, SL, VT, Trunc, 7167 DAG.getConstant(Amt, SL, AmtVT)); 7168 } 7169 } 7170 } 7171 7172 // Fold a series of buildvector, bitcast, and truncate if possible. 7173 // For example fold 7174 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to 7175 // (2xi32 (buildvector x, y)). 7176 if (Level == AfterLegalizeVectorOps && VT.isVector() && 7177 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 7178 N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 7179 N0.getOperand(0).hasOneUse()) { 7180 7181 SDValue BuildVect = N0.getOperand(0); 7182 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); 7183 EVT TruncVecEltTy = VT.getVectorElementType(); 7184 7185 // Check that the element types match. 7186 if (BuildVectEltTy == TruncVecEltTy) { 7187 // Now we only need to compute the offset of the truncated elements. 7188 unsigned BuildVecNumElts = BuildVect.getNumOperands(); 7189 unsigned TruncVecNumElts = VT.getVectorNumElements(); 7190 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; 7191 7192 assert((BuildVecNumElts % TruncVecNumElts) == 0 && 7193 "Invalid number of elements"); 7194 7195 SmallVector<SDValue, 8> Opnds; 7196 for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) 7197 Opnds.push_back(BuildVect.getOperand(i)); 7198 7199 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 7200 } 7201 } 7202 7203 // See if we can simplify the input to this truncate through knowledge that 7204 // only the low bits are being used. 7205 // For example "trunc (or (shl x, 8), y)" // -> trunc y 7206 // Currently we only perform this optimization on scalars because vectors 7207 // may have different active low bits. 7208 if (!VT.isVector()) { 7209 if (SDValue Shorter = 7210 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), 7211 VT.getSizeInBits()))) 7212 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); 7213 } 7214 // fold (truncate (load x)) -> (smaller load x) 7215 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) 7216 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { 7217 if (SDValue Reduced = ReduceLoadWidth(N)) 7218 return Reduced; 7219 7220 // Handle the case where the load remains an extending load even 7221 // after truncation. 7222 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { 7223 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7224 if (!LN0->isVolatile() && 7225 LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) { 7226 SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), 7227 VT, LN0->getChain(), LN0->getBasePtr(), 7228 LN0->getMemoryVT(), 7229 LN0->getMemOperand()); 7230 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); 7231 return NewLoad; 7232 } 7233 } 7234 } 7235 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), 7236 // where ... are all 'undef'. 7237 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { 7238 SmallVector<EVT, 8> VTs; 7239 SDValue V; 7240 unsigned Idx = 0; 7241 unsigned NumDefs = 0; 7242 7243 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { 7244 SDValue X = N0.getOperand(i); 7245 if (!X.isUndef()) { 7246 V = X; 7247 Idx = i; 7248 NumDefs++; 7249 } 7250 // Stop if more than one members are non-undef. 7251 if (NumDefs > 1) 7252 break; 7253 VTs.push_back(EVT::getVectorVT(*DAG.getContext(), 7254 VT.getVectorElementType(), 7255 X.getValueType().getVectorNumElements())); 7256 } 7257 7258 if (NumDefs == 0) 7259 return DAG.getUNDEF(VT); 7260 7261 if (NumDefs == 1) { 7262 assert(V.getNode() && "The single defined operand is empty!"); 7263 SmallVector<SDValue, 8> Opnds; 7264 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 7265 if (i != Idx) { 7266 Opnds.push_back(DAG.getUNDEF(VTs[i])); 7267 continue; 7268 } 7269 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); 7270 AddToWorklist(NV.getNode()); 7271 Opnds.push_back(NV); 7272 } 7273 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); 7274 } 7275 } 7276 7277 // Fold truncate of a bitcast of a vector to an extract of the low vector 7278 // element. 7279 // 7280 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, 0 7281 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { 7282 SDValue VecSrc = N0.getOperand(0); 7283 EVT SrcVT = VecSrc.getValueType(); 7284 if (SrcVT.isVector() && SrcVT.getScalarType() == VT && 7285 (!LegalOperations || 7286 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, SrcVT))) { 7287 SDLoc SL(N); 7288 7289 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 7290 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, 7291 VecSrc, DAG.getConstant(0, SL, IdxVT)); 7292 } 7293 } 7294 7295 // Simplify the operands using demanded-bits information. 7296 if (!VT.isVector() && 7297 SimplifyDemandedBits(SDValue(N, 0))) 7298 return SDValue(N, 0); 7299 7300 return SDValue(); 7301 } 7302 7303 static SDNode *getBuildPairElt(SDNode *N, unsigned i) { 7304 SDValue Elt = N->getOperand(i); 7305 if (Elt.getOpcode() != ISD::MERGE_VALUES) 7306 return Elt.getNode(); 7307 return Elt.getOperand(Elt.getResNo()).getNode(); 7308 } 7309 7310 /// build_pair (load, load) -> load 7311 /// if load locations are consecutive. 7312 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { 7313 assert(N->getOpcode() == ISD::BUILD_PAIR); 7314 7315 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); 7316 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); 7317 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || 7318 LD1->getAddressSpace() != LD2->getAddressSpace()) 7319 return SDValue(); 7320 EVT LD1VT = LD1->getValueType(0); 7321 unsigned LD1Bytes = LD1VT.getSizeInBits() / 8; 7322 if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && 7323 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { 7324 unsigned Align = LD1->getAlignment(); 7325 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 7326 VT.getTypeForEVT(*DAG.getContext())); 7327 7328 if (NewAlign <= Align && 7329 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) 7330 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), 7331 LD1->getBasePtr(), LD1->getPointerInfo(), 7332 false, false, false, Align); 7333 } 7334 7335 return SDValue(); 7336 } 7337 7338 static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { 7339 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi 7340 // and Lo parts; on big-endian machines it doesn't. 7341 return DAG.getDataLayout().isBigEndian() ? 1 : 0; 7342 } 7343 7344 static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, 7345 const TargetLowering &TLI) { 7346 // If this is not a bitcast to an FP type or if the target doesn't have 7347 // IEEE754-compliant FP logic, we're done. 7348 EVT VT = N->getValueType(0); 7349 if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) 7350 return SDValue(); 7351 7352 // TODO: Use splat values for the constant-checking below and remove this 7353 // restriction. 7354 SDValue N0 = N->getOperand(0); 7355 EVT SourceVT = N0.getValueType(); 7356 if (SourceVT.isVector()) 7357 return SDValue(); 7358 7359 unsigned FPOpcode; 7360 APInt SignMask; 7361 switch (N0.getOpcode()) { 7362 case ISD::AND: 7363 FPOpcode = ISD::FABS; 7364 SignMask = ~APInt::getSignBit(SourceVT.getSizeInBits()); 7365 break; 7366 case ISD::XOR: 7367 FPOpcode = ISD::FNEG; 7368 SignMask = APInt::getSignBit(SourceVT.getSizeInBits()); 7369 break; 7370 // TODO: ISD::OR --> ISD::FNABS? 7371 default: 7372 return SDValue(); 7373 } 7374 7375 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X 7376 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X 7377 SDValue LogicOp0 = N0.getOperand(0); 7378 ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 7379 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && 7380 LogicOp0.getOpcode() == ISD::BITCAST && 7381 LogicOp0->getOperand(0).getValueType() == VT) 7382 return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0)); 7383 7384 return SDValue(); 7385 } 7386 7387 SDValue DAGCombiner::visitBITCAST(SDNode *N) { 7388 SDValue N0 = N->getOperand(0); 7389 EVT VT = N->getValueType(0); 7390 7391 // If the input is a BUILD_VECTOR with all constant elements, fold this now. 7392 // Only do this before legalize, since afterward the target may be depending 7393 // on the bitconvert. 7394 // First check to see if this is all constant. 7395 if (!LegalTypes && 7396 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && 7397 VT.isVector()) { 7398 bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant(); 7399 7400 EVT DestEltVT = N->getValueType(0).getVectorElementType(); 7401 assert(!DestEltVT.isVector() && 7402 "Element type of vector ValueType must not be vector!"); 7403 if (isSimple) 7404 return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT); 7405 } 7406 7407 // If the input is a constant, let getNode fold it. 7408 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { 7409 // If we can't allow illegal operations, we need to check that this is just 7410 // a fp -> int or int -> conversion and that the resulting operation will 7411 // be legal. 7412 if (!LegalOperations || 7413 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && 7414 TLI.isOperationLegal(ISD::ConstantFP, VT)) || 7415 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && 7416 TLI.isOperationLegal(ISD::Constant, VT))) 7417 return DAG.getBitcast(VT, N0); 7418 } 7419 7420 // (conv (conv x, t1), t2) -> (conv x, t2) 7421 if (N0.getOpcode() == ISD::BITCAST) 7422 return DAG.getBitcast(VT, N0.getOperand(0)); 7423 7424 // fold (conv (load x)) -> (load (conv*)x) 7425 // If the resultant load doesn't need a higher alignment than the original! 7426 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 7427 // Do not change the width of a volatile load. 7428 !cast<LoadSDNode>(N0)->isVolatile() && 7429 // Do not remove the cast if the types differ in endian layout. 7430 TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == 7431 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && 7432 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) && 7433 TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) { 7434 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 7435 unsigned OrigAlign = LN0->getAlignment(); 7436 7437 bool Fast = false; 7438 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, 7439 LN0->getAddressSpace(), OrigAlign, &Fast) && 7440 Fast) { 7441 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), 7442 LN0->getBasePtr(), LN0->getPointerInfo(), 7443 LN0->isVolatile(), LN0->isNonTemporal(), 7444 LN0->isInvariant(), OrigAlign, 7445 LN0->getAAInfo()); 7446 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); 7447 return Load; 7448 } 7449 } 7450 7451 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) 7452 return V; 7453 7454 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 7455 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 7456 // 7457 // For ppc_fp128: 7458 // fold (bitcast (fneg x)) -> 7459 // flipbit = signbit 7460 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7461 // 7462 // fold (bitcast (fabs x)) -> 7463 // flipbit = (and (extract_element (bitcast x), 0), signbit) 7464 // (xor (bitcast x) (build_pair flipbit, flipbit)) 7465 // This often reduces constant pool loads. 7466 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || 7467 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && 7468 N0.getNode()->hasOneUse() && VT.isInteger() && 7469 !VT.isVector() && !N0.getValueType().isVector()) { 7470 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); 7471 AddToWorklist(NewConv.getNode()); 7472 7473 SDLoc DL(N); 7474 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7475 assert(VT.getSizeInBits() == 128); 7476 SDValue SignBit = DAG.getConstant( 7477 APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); 7478 SDValue FlipBit; 7479 if (N0.getOpcode() == ISD::FNEG) { 7480 FlipBit = SignBit; 7481 AddToWorklist(FlipBit.getNode()); 7482 } else { 7483 assert(N0.getOpcode() == ISD::FABS); 7484 SDValue Hi = 7485 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, 7486 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7487 SDLoc(NewConv))); 7488 AddToWorklist(Hi.getNode()); 7489 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); 7490 AddToWorklist(FlipBit.getNode()); 7491 } 7492 SDValue FlipBits = 7493 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7494 AddToWorklist(FlipBits.getNode()); 7495 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); 7496 } 7497 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7498 if (N0.getOpcode() == ISD::FNEG) 7499 return DAG.getNode(ISD::XOR, DL, VT, 7500 NewConv, DAG.getConstant(SignBit, DL, VT)); 7501 assert(N0.getOpcode() == ISD::FABS); 7502 return DAG.getNode(ISD::AND, DL, VT, 7503 NewConv, DAG.getConstant(~SignBit, DL, VT)); 7504 } 7505 7506 // fold (bitconvert (fcopysign cst, x)) -> 7507 // (or (and (bitconvert x), sign), (and cst, (not sign))) 7508 // Note that we don't handle (copysign x, cst) because this can always be 7509 // folded to an fneg or fabs. 7510 // 7511 // For ppc_fp128: 7512 // fold (bitcast (fcopysign cst, x)) -> 7513 // flipbit = (and (extract_element 7514 // (xor (bitcast cst), (bitcast x)), 0), 7515 // signbit) 7516 // (xor (bitcast cst) (build_pair flipbit, flipbit)) 7517 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && 7518 isa<ConstantFPSDNode>(N0.getOperand(0)) && 7519 VT.isInteger() && !VT.isVector()) { 7520 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); 7521 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); 7522 if (isTypeLegal(IntXVT)) { 7523 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); 7524 AddToWorklist(X.getNode()); 7525 7526 // If X has a different width than the result/lhs, sext it or truncate it. 7527 unsigned VTWidth = VT.getSizeInBits(); 7528 if (OrigXWidth < VTWidth) { 7529 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); 7530 AddToWorklist(X.getNode()); 7531 } else if (OrigXWidth > VTWidth) { 7532 // To get the sign bit in the right place, we have to shift it right 7533 // before truncating. 7534 SDLoc DL(X); 7535 X = DAG.getNode(ISD::SRL, DL, 7536 X.getValueType(), X, 7537 DAG.getConstant(OrigXWidth-VTWidth, DL, 7538 X.getValueType())); 7539 AddToWorklist(X.getNode()); 7540 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 7541 AddToWorklist(X.getNode()); 7542 } 7543 7544 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { 7545 APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2); 7546 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7547 AddToWorklist(Cst.getNode()); 7548 SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); 7549 AddToWorklist(X.getNode()); 7550 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); 7551 AddToWorklist(XorResult.getNode()); 7552 SDValue XorResult64 = DAG.getNode( 7553 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, 7554 DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), 7555 SDLoc(XorResult))); 7556 AddToWorklist(XorResult64.getNode()); 7557 SDValue FlipBit = 7558 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, 7559 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); 7560 AddToWorklist(FlipBit.getNode()); 7561 SDValue FlipBits = 7562 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); 7563 AddToWorklist(FlipBits.getNode()); 7564 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); 7565 } 7566 APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); 7567 X = DAG.getNode(ISD::AND, SDLoc(X), VT, 7568 X, DAG.getConstant(SignBit, SDLoc(X), VT)); 7569 AddToWorklist(X.getNode()); 7570 7571 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); 7572 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, 7573 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); 7574 AddToWorklist(Cst.getNode()); 7575 7576 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); 7577 } 7578 } 7579 7580 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. 7581 if (N0.getOpcode() == ISD::BUILD_PAIR) 7582 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) 7583 return CombineLD; 7584 7585 // Remove double bitcasts from shuffles - this is often a legacy of 7586 // XformToShuffleWithZero being used to combine bitmaskings (of 7587 // float vectors bitcast to integer vectors) into shuffles. 7588 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) 7589 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && 7590 N0->getOpcode() == ISD::VECTOR_SHUFFLE && 7591 VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && 7592 !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { 7593 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); 7594 7595 // If operands are a bitcast, peek through if it casts the original VT. 7596 // If operands are a constant, just bitcast back to original VT. 7597 auto PeekThroughBitcast = [&](SDValue Op) { 7598 if (Op.getOpcode() == ISD::BITCAST && 7599 Op.getOperand(0).getValueType() == VT) 7600 return SDValue(Op.getOperand(0)); 7601 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || 7602 ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) 7603 return DAG.getBitcast(VT, Op); 7604 return SDValue(); 7605 }; 7606 7607 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); 7608 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); 7609 if (!(SV0 && SV1)) 7610 return SDValue(); 7611 7612 int MaskScale = 7613 VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); 7614 SmallVector<int, 8> NewMask; 7615 for (int M : SVN->getMask()) 7616 for (int i = 0; i != MaskScale; ++i) 7617 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); 7618 7619 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7620 if (!LegalMask) { 7621 std::swap(SV0, SV1); 7622 ShuffleVectorSDNode::commuteMask(NewMask); 7623 LegalMask = TLI.isShuffleMaskLegal(NewMask, VT); 7624 } 7625 7626 if (LegalMask) 7627 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask); 7628 } 7629 7630 return SDValue(); 7631 } 7632 7633 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { 7634 EVT VT = N->getValueType(0); 7635 return CombineConsecutiveLoads(N, VT); 7636 } 7637 7638 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef 7639 /// operands. DstEltVT indicates the destination element value type. 7640 SDValue DAGCombiner:: 7641 ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { 7642 EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); 7643 7644 // If this is already the right type, we're done. 7645 if (SrcEltVT == DstEltVT) return SDValue(BV, 0); 7646 7647 unsigned SrcBitSize = SrcEltVT.getSizeInBits(); 7648 unsigned DstBitSize = DstEltVT.getSizeInBits(); 7649 7650 // If this is a conversion of N elements of one type to N elements of another 7651 // type, convert each element. This handles FP<->INT cases. 7652 if (SrcBitSize == DstBitSize) { 7653 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7654 BV->getValueType(0).getVectorNumElements()); 7655 7656 // Due to the FP element handling below calling this routine recursively, 7657 // we can end up with a scalar-to-vector node here. 7658 if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) 7659 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT, 7660 DAG.getBitcast(DstEltVT, BV->getOperand(0))); 7661 7662 SmallVector<SDValue, 8> Ops; 7663 for (SDValue Op : BV->op_values()) { 7664 // If the vector element type is not legal, the BUILD_VECTOR operands 7665 // are promoted and implicitly truncated. Make that explicit here. 7666 if (Op.getValueType() != SrcEltVT) 7667 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); 7668 Ops.push_back(DAG.getBitcast(DstEltVT, Op)); 7669 AddToWorklist(Ops.back().getNode()); 7670 } 7671 return DAG.getBuildVector(VT, SDLoc(BV), Ops); 7672 } 7673 7674 // Otherwise, we're growing or shrinking the elements. To avoid having to 7675 // handle annoying details of growing/shrinking FP values, we convert them to 7676 // int first. 7677 if (SrcEltVT.isFloatingPoint()) { 7678 // Convert the input float vector to a int vector where the elements are the 7679 // same sizes. 7680 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); 7681 BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); 7682 SrcEltVT = IntVT; 7683 } 7684 7685 // Now we know the input is an integer vector. If the output is a FP type, 7686 // convert to integer first, then to FP of the right size. 7687 if (DstEltVT.isFloatingPoint()) { 7688 EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); 7689 SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); 7690 7691 // Next, convert to FP elements of the same size. 7692 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); 7693 } 7694 7695 SDLoc DL(BV); 7696 7697 // Okay, we know the src/dst types are both integers of differing types. 7698 // Handling growing first. 7699 assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); 7700 if (SrcBitSize < DstBitSize) { 7701 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; 7702 7703 SmallVector<SDValue, 8> Ops; 7704 for (unsigned i = 0, e = BV->getNumOperands(); i != e; 7705 i += NumInputsPerOutput) { 7706 bool isLE = DAG.getDataLayout().isLittleEndian(); 7707 APInt NewBits = APInt(DstBitSize, 0); 7708 bool EltIsUndef = true; 7709 for (unsigned j = 0; j != NumInputsPerOutput; ++j) { 7710 // Shift the previously computed bits over. 7711 NewBits <<= SrcBitSize; 7712 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); 7713 if (Op.isUndef()) continue; 7714 EltIsUndef = false; 7715 7716 NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). 7717 zextOrTrunc(SrcBitSize).zext(DstBitSize); 7718 } 7719 7720 if (EltIsUndef) 7721 Ops.push_back(DAG.getUNDEF(DstEltVT)); 7722 else 7723 Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); 7724 } 7725 7726 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); 7727 return DAG.getBuildVector(VT, DL, Ops); 7728 } 7729 7730 // Finally, this must be the case where we are shrinking elements: each input 7731 // turns into multiple outputs. 7732 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; 7733 EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, 7734 NumOutputsPerInput*BV->getNumOperands()); 7735 SmallVector<SDValue, 8> Ops; 7736 7737 for (const SDValue &Op : BV->op_values()) { 7738 if (Op.isUndef()) { 7739 Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); 7740 continue; 7741 } 7742 7743 APInt OpVal = cast<ConstantSDNode>(Op)-> 7744 getAPIntValue().zextOrTrunc(SrcBitSize); 7745 7746 for (unsigned j = 0; j != NumOutputsPerInput; ++j) { 7747 APInt ThisVal = OpVal.trunc(DstBitSize); 7748 Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); 7749 OpVal = OpVal.lshr(DstBitSize); 7750 } 7751 7752 // For big endian targets, swap the order of the pieces of each element. 7753 if (DAG.getDataLayout().isBigEndian()) 7754 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); 7755 } 7756 7757 return DAG.getBuildVector(VT, DL, Ops); 7758 } 7759 7760 /// Try to perform FMA combining on a given FADD node. 7761 SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { 7762 SDValue N0 = N->getOperand(0); 7763 SDValue N1 = N->getOperand(1); 7764 EVT VT = N->getValueType(0); 7765 SDLoc SL(N); 7766 7767 const TargetOptions &Options = DAG.getTarget().Options; 7768 bool AllowFusion = 7769 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7770 7771 // Floating-point multiply-add with intermediate rounding. 7772 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7773 7774 // Floating-point multiply-add without intermediate rounding. 7775 bool HasFMA = 7776 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7777 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7778 7779 // No valid opcode, do not combine. 7780 if (!HasFMAD && !HasFMA) 7781 return SDValue(); 7782 7783 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7784 ; 7785 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7786 return SDValue(); 7787 7788 // Always prefer FMAD to FMA for precision. 7789 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7790 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7791 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7792 7793 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 7794 // prefer to fold the multiply with fewer uses. 7795 if (Aggressive && N0.getOpcode() == ISD::FMUL && 7796 N1.getOpcode() == ISD::FMUL) { 7797 if (N0.getNode()->use_size() > N1.getNode()->use_size()) 7798 std::swap(N0, N1); 7799 } 7800 7801 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 7802 if (N0.getOpcode() == ISD::FMUL && 7803 (Aggressive || N0->hasOneUse())) { 7804 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7805 N0.getOperand(0), N0.getOperand(1), N1); 7806 } 7807 7808 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 7809 // Note: Commutes FADD operands. 7810 if (N1.getOpcode() == ISD::FMUL && 7811 (Aggressive || N1->hasOneUse())) { 7812 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7813 N1.getOperand(0), N1.getOperand(1), N0); 7814 } 7815 7816 // Look through FP_EXTEND nodes to do more combining. 7817 if (AllowFusion && LookThroughFPExt) { 7818 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 7819 if (N0.getOpcode() == ISD::FP_EXTEND) { 7820 SDValue N00 = N0.getOperand(0); 7821 if (N00.getOpcode() == ISD::FMUL) 7822 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7823 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7824 N00.getOperand(0)), 7825 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7826 N00.getOperand(1)), N1); 7827 } 7828 7829 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) 7830 // Note: Commutes FADD operands. 7831 if (N1.getOpcode() == ISD::FP_EXTEND) { 7832 SDValue N10 = N1.getOperand(0); 7833 if (N10.getOpcode() == ISD::FMUL) 7834 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7835 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7836 N10.getOperand(0)), 7837 DAG.getNode(ISD::FP_EXTEND, SL, VT, 7838 N10.getOperand(1)), N0); 7839 } 7840 } 7841 7842 // More folding opportunities when target permits. 7843 if ((AllowFusion || HasFMAD) && Aggressive) { 7844 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z)) 7845 if (N0.getOpcode() == PreferredFusedOpcode && 7846 N0.getOperand(2).getOpcode() == ISD::FMUL) { 7847 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7848 N0.getOperand(0), N0.getOperand(1), 7849 DAG.getNode(PreferredFusedOpcode, SL, VT, 7850 N0.getOperand(2).getOperand(0), 7851 N0.getOperand(2).getOperand(1), 7852 N1)); 7853 } 7854 7855 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x)) 7856 if (N1->getOpcode() == PreferredFusedOpcode && 7857 N1.getOperand(2).getOpcode() == ISD::FMUL) { 7858 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7859 N1.getOperand(0), N1.getOperand(1), 7860 DAG.getNode(PreferredFusedOpcode, SL, VT, 7861 N1.getOperand(2).getOperand(0), 7862 N1.getOperand(2).getOperand(1), 7863 N0)); 7864 } 7865 7866 if (AllowFusion && LookThroughFPExt) { 7867 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 7868 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 7869 auto FoldFAddFMAFPExtFMul = [&] ( 7870 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7871 return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, 7872 DAG.getNode(PreferredFusedOpcode, SL, VT, 7873 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7874 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7875 Z)); 7876 }; 7877 if (N0.getOpcode() == PreferredFusedOpcode) { 7878 SDValue N02 = N0.getOperand(2); 7879 if (N02.getOpcode() == ISD::FP_EXTEND) { 7880 SDValue N020 = N02.getOperand(0); 7881 if (N020.getOpcode() == ISD::FMUL) 7882 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), 7883 N020.getOperand(0), N020.getOperand(1), 7884 N1); 7885 } 7886 } 7887 7888 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 7889 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 7890 // FIXME: This turns two single-precision and one double-precision 7891 // operation into two double-precision operations, which might not be 7892 // interesting for all targets, especially GPUs. 7893 auto FoldFAddFPExtFMAFMul = [&] ( 7894 SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { 7895 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7896 DAG.getNode(ISD::FP_EXTEND, SL, VT, X), 7897 DAG.getNode(ISD::FP_EXTEND, SL, VT, Y), 7898 DAG.getNode(PreferredFusedOpcode, SL, VT, 7899 DAG.getNode(ISD::FP_EXTEND, SL, VT, U), 7900 DAG.getNode(ISD::FP_EXTEND, SL, VT, V), 7901 Z)); 7902 }; 7903 if (N0.getOpcode() == ISD::FP_EXTEND) { 7904 SDValue N00 = N0.getOperand(0); 7905 if (N00.getOpcode() == PreferredFusedOpcode) { 7906 SDValue N002 = N00.getOperand(2); 7907 if (N002.getOpcode() == ISD::FMUL) 7908 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), 7909 N002.getOperand(0), N002.getOperand(1), 7910 N1); 7911 } 7912 } 7913 7914 // fold (fadd x, (fma y, z, (fpext (fmul u, v))) 7915 // -> (fma y, z, (fma (fpext u), (fpext v), x)) 7916 if (N1.getOpcode() == PreferredFusedOpcode) { 7917 SDValue N12 = N1.getOperand(2); 7918 if (N12.getOpcode() == ISD::FP_EXTEND) { 7919 SDValue N120 = N12.getOperand(0); 7920 if (N120.getOpcode() == ISD::FMUL) 7921 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), 7922 N120.getOperand(0), N120.getOperand(1), 7923 N0); 7924 } 7925 } 7926 7927 // fold (fadd x, (fpext (fma y, z, (fmul u, v))) 7928 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) 7929 // FIXME: This turns two single-precision and one double-precision 7930 // operation into two double-precision operations, which might not be 7931 // interesting for all targets, especially GPUs. 7932 if (N1.getOpcode() == ISD::FP_EXTEND) { 7933 SDValue N10 = N1.getOperand(0); 7934 if (N10.getOpcode() == PreferredFusedOpcode) { 7935 SDValue N102 = N10.getOperand(2); 7936 if (N102.getOpcode() == ISD::FMUL) 7937 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), 7938 N102.getOperand(0), N102.getOperand(1), 7939 N0); 7940 } 7941 } 7942 } 7943 } 7944 7945 return SDValue(); 7946 } 7947 7948 /// Try to perform FMA combining on a given FSUB node. 7949 SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { 7950 SDValue N0 = N->getOperand(0); 7951 SDValue N1 = N->getOperand(1); 7952 EVT VT = N->getValueType(0); 7953 SDLoc SL(N); 7954 7955 const TargetOptions &Options = DAG.getTarget().Options; 7956 bool AllowFusion = 7957 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 7958 7959 // Floating-point multiply-add with intermediate rounding. 7960 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 7961 7962 // Floating-point multiply-add without intermediate rounding. 7963 bool HasFMA = 7964 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 7965 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 7966 7967 // No valid opcode, do not combine. 7968 if (!HasFMAD && !HasFMA) 7969 return SDValue(); 7970 7971 const SelectionDAGTargetInfo *STI = DAG.getSubtarget().getSelectionDAGInfo(); 7972 if (AllowFusion && STI && STI->generateFMAsInMachineCombiner(OptLevel)) 7973 return SDValue(); 7974 7975 // Always prefer FMAD to FMA for precision. 7976 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 7977 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 7978 bool LookThroughFPExt = TLI.isFPExtFree(VT); 7979 7980 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) 7981 if (N0.getOpcode() == ISD::FMUL && 7982 (Aggressive || N0->hasOneUse())) { 7983 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7984 N0.getOperand(0), N0.getOperand(1), 7985 DAG.getNode(ISD::FNEG, SL, VT, N1)); 7986 } 7987 7988 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) 7989 // Note: Commutes FSUB operands. 7990 if (N1.getOpcode() == ISD::FMUL && 7991 (Aggressive || N1->hasOneUse())) 7992 return DAG.getNode(PreferredFusedOpcode, SL, VT, 7993 DAG.getNode(ISD::FNEG, SL, VT, 7994 N1.getOperand(0)), 7995 N1.getOperand(1), N0); 7996 7997 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) 7998 if (N0.getOpcode() == ISD::FNEG && 7999 N0.getOperand(0).getOpcode() == ISD::FMUL && 8000 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { 8001 SDValue N00 = N0.getOperand(0).getOperand(0); 8002 SDValue N01 = N0.getOperand(0).getOperand(1); 8003 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8004 DAG.getNode(ISD::FNEG, SL, VT, N00), N01, 8005 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8006 } 8007 8008 // Look through FP_EXTEND nodes to do more combining. 8009 if (AllowFusion && LookThroughFPExt) { 8010 // fold (fsub (fpext (fmul x, y)), z) 8011 // -> (fma (fpext x), (fpext y), (fneg z)) 8012 if (N0.getOpcode() == ISD::FP_EXTEND) { 8013 SDValue N00 = N0.getOperand(0); 8014 if (N00.getOpcode() == ISD::FMUL) 8015 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8016 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8017 N00.getOperand(0)), 8018 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8019 N00.getOperand(1)), 8020 DAG.getNode(ISD::FNEG, SL, VT, N1)); 8021 } 8022 8023 // fold (fsub x, (fpext (fmul y, z))) 8024 // -> (fma (fneg (fpext y)), (fpext z), x) 8025 // Note: Commutes FSUB operands. 8026 if (N1.getOpcode() == ISD::FP_EXTEND) { 8027 SDValue N10 = N1.getOperand(0); 8028 if (N10.getOpcode() == ISD::FMUL) 8029 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8030 DAG.getNode(ISD::FNEG, SL, VT, 8031 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8032 N10.getOperand(0))), 8033 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8034 N10.getOperand(1)), 8035 N0); 8036 } 8037 8038 // fold (fsub (fpext (fneg (fmul, x, y))), z) 8039 // -> (fneg (fma (fpext x), (fpext y), z)) 8040 // Note: This could be removed with appropriate canonicalization of the 8041 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8042 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8043 // from implementing the canonicalization in visitFSUB. 8044 if (N0.getOpcode() == ISD::FP_EXTEND) { 8045 SDValue N00 = N0.getOperand(0); 8046 if (N00.getOpcode() == ISD::FNEG) { 8047 SDValue N000 = N00.getOperand(0); 8048 if (N000.getOpcode() == ISD::FMUL) { 8049 return DAG.getNode(ISD::FNEG, SL, VT, 8050 DAG.getNode(PreferredFusedOpcode, SL, VT, 8051 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8052 N000.getOperand(0)), 8053 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8054 N000.getOperand(1)), 8055 N1)); 8056 } 8057 } 8058 } 8059 8060 // fold (fsub (fneg (fpext (fmul, x, y))), z) 8061 // -> (fneg (fma (fpext x)), (fpext y), z) 8062 // Note: This could be removed with appropriate canonicalization of the 8063 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the 8064 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent 8065 // from implementing the canonicalization in visitFSUB. 8066 if (N0.getOpcode() == ISD::FNEG) { 8067 SDValue N00 = N0.getOperand(0); 8068 if (N00.getOpcode() == ISD::FP_EXTEND) { 8069 SDValue N000 = N00.getOperand(0); 8070 if (N000.getOpcode() == ISD::FMUL) { 8071 return DAG.getNode(ISD::FNEG, SL, VT, 8072 DAG.getNode(PreferredFusedOpcode, SL, VT, 8073 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8074 N000.getOperand(0)), 8075 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8076 N000.getOperand(1)), 8077 N1)); 8078 } 8079 } 8080 } 8081 8082 } 8083 8084 // More folding opportunities when target permits. 8085 if ((AllowFusion || HasFMAD) && Aggressive) { 8086 // fold (fsub (fma x, y, (fmul u, v)), z) 8087 // -> (fma x, y (fma u, v, (fneg z))) 8088 if (N0.getOpcode() == PreferredFusedOpcode && 8089 N0.getOperand(2).getOpcode() == ISD::FMUL) { 8090 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8091 N0.getOperand(0), N0.getOperand(1), 8092 DAG.getNode(PreferredFusedOpcode, SL, VT, 8093 N0.getOperand(2).getOperand(0), 8094 N0.getOperand(2).getOperand(1), 8095 DAG.getNode(ISD::FNEG, SL, VT, 8096 N1))); 8097 } 8098 8099 // fold (fsub x, (fma y, z, (fmul u, v))) 8100 // -> (fma (fneg y), z, (fma (fneg u), v, x)) 8101 if (N1.getOpcode() == PreferredFusedOpcode && 8102 N1.getOperand(2).getOpcode() == ISD::FMUL) { 8103 SDValue N20 = N1.getOperand(2).getOperand(0); 8104 SDValue N21 = N1.getOperand(2).getOperand(1); 8105 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8106 DAG.getNode(ISD::FNEG, SL, VT, 8107 N1.getOperand(0)), 8108 N1.getOperand(1), 8109 DAG.getNode(PreferredFusedOpcode, SL, VT, 8110 DAG.getNode(ISD::FNEG, SL, VT, N20), 8111 8112 N21, N0)); 8113 } 8114 8115 if (AllowFusion && LookThroughFPExt) { 8116 // fold (fsub (fma x, y, (fpext (fmul u, v))), z) 8117 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) 8118 if (N0.getOpcode() == PreferredFusedOpcode) { 8119 SDValue N02 = N0.getOperand(2); 8120 if (N02.getOpcode() == ISD::FP_EXTEND) { 8121 SDValue N020 = N02.getOperand(0); 8122 if (N020.getOpcode() == ISD::FMUL) 8123 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8124 N0.getOperand(0), N0.getOperand(1), 8125 DAG.getNode(PreferredFusedOpcode, SL, VT, 8126 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8127 N020.getOperand(0)), 8128 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8129 N020.getOperand(1)), 8130 DAG.getNode(ISD::FNEG, SL, VT, 8131 N1))); 8132 } 8133 } 8134 8135 // fold (fsub (fpext (fma x, y, (fmul u, v))), z) 8136 // -> (fma (fpext x), (fpext y), 8137 // (fma (fpext u), (fpext v), (fneg z))) 8138 // FIXME: This turns two single-precision and one double-precision 8139 // operation into two double-precision operations, which might not be 8140 // interesting for all targets, especially GPUs. 8141 if (N0.getOpcode() == ISD::FP_EXTEND) { 8142 SDValue N00 = N0.getOperand(0); 8143 if (N00.getOpcode() == PreferredFusedOpcode) { 8144 SDValue N002 = N00.getOperand(2); 8145 if (N002.getOpcode() == ISD::FMUL) 8146 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8147 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8148 N00.getOperand(0)), 8149 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8150 N00.getOperand(1)), 8151 DAG.getNode(PreferredFusedOpcode, SL, VT, 8152 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8153 N002.getOperand(0)), 8154 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8155 N002.getOperand(1)), 8156 DAG.getNode(ISD::FNEG, SL, VT, 8157 N1))); 8158 } 8159 } 8160 8161 // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) 8162 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) 8163 if (N1.getOpcode() == PreferredFusedOpcode && 8164 N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) { 8165 SDValue N120 = N1.getOperand(2).getOperand(0); 8166 if (N120.getOpcode() == ISD::FMUL) { 8167 SDValue N1200 = N120.getOperand(0); 8168 SDValue N1201 = N120.getOperand(1); 8169 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8170 DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), 8171 N1.getOperand(1), 8172 DAG.getNode(PreferredFusedOpcode, SL, VT, 8173 DAG.getNode(ISD::FNEG, SL, VT, 8174 DAG.getNode(ISD::FP_EXTEND, SL, 8175 VT, N1200)), 8176 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8177 N1201), 8178 N0)); 8179 } 8180 } 8181 8182 // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) 8183 // -> (fma (fneg (fpext y)), (fpext z), 8184 // (fma (fneg (fpext u)), (fpext v), x)) 8185 // FIXME: This turns two single-precision and one double-precision 8186 // operation into two double-precision operations, which might not be 8187 // interesting for all targets, especially GPUs. 8188 if (N1.getOpcode() == ISD::FP_EXTEND && 8189 N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { 8190 SDValue N100 = N1.getOperand(0).getOperand(0); 8191 SDValue N101 = N1.getOperand(0).getOperand(1); 8192 SDValue N102 = N1.getOperand(0).getOperand(2); 8193 if (N102.getOpcode() == ISD::FMUL) { 8194 SDValue N1020 = N102.getOperand(0); 8195 SDValue N1021 = N102.getOperand(1); 8196 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8197 DAG.getNode(ISD::FNEG, SL, VT, 8198 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8199 N100)), 8200 DAG.getNode(ISD::FP_EXTEND, SL, VT, N101), 8201 DAG.getNode(PreferredFusedOpcode, SL, VT, 8202 DAG.getNode(ISD::FNEG, SL, VT, 8203 DAG.getNode(ISD::FP_EXTEND, SL, 8204 VT, N1020)), 8205 DAG.getNode(ISD::FP_EXTEND, SL, VT, 8206 N1021), 8207 N0)); 8208 } 8209 } 8210 } 8211 } 8212 8213 return SDValue(); 8214 } 8215 8216 /// Try to perform FMA combining on a given FMUL node. 8217 SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) { 8218 SDValue N0 = N->getOperand(0); 8219 SDValue N1 = N->getOperand(1); 8220 EVT VT = N->getValueType(0); 8221 SDLoc SL(N); 8222 8223 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); 8224 8225 const TargetOptions &Options = DAG.getTarget().Options; 8226 bool AllowFusion = 8227 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); 8228 8229 // Floating-point multiply-add with intermediate rounding. 8230 bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT)); 8231 8232 // Floating-point multiply-add without intermediate rounding. 8233 bool HasFMA = 8234 AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) && 8235 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); 8236 8237 // No valid opcode, do not combine. 8238 if (!HasFMAD && !HasFMA) 8239 return SDValue(); 8240 8241 // Always prefer FMAD to FMA for precision. 8242 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; 8243 bool Aggressive = TLI.enableAggressiveFMAFusion(VT); 8244 8245 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y) 8246 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y)) 8247 auto FuseFADD = [&](SDValue X, SDValue Y) { 8248 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { 8249 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8250 if (XC1 && XC1->isExactlyValue(+1.0)) 8251 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8252 if (XC1 && XC1->isExactlyValue(-1.0)) 8253 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8254 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8255 } 8256 return SDValue(); 8257 }; 8258 8259 if (SDValue FMA = FuseFADD(N0, N1)) 8260 return FMA; 8261 if (SDValue FMA = FuseFADD(N1, N0)) 8262 return FMA; 8263 8264 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y) 8265 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y)) 8266 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y)) 8267 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y) 8268 auto FuseFSUB = [&](SDValue X, SDValue Y) { 8269 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { 8270 auto XC0 = isConstOrConstSplatFP(X.getOperand(0)); 8271 if (XC0 && XC0->isExactlyValue(+1.0)) 8272 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8273 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8274 Y); 8275 if (XC0 && XC0->isExactlyValue(-1.0)) 8276 return DAG.getNode(PreferredFusedOpcode, SL, VT, 8277 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, 8278 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8279 8280 auto XC1 = isConstOrConstSplatFP(X.getOperand(1)); 8281 if (XC1 && XC1->isExactlyValue(+1.0)) 8282 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, 8283 DAG.getNode(ISD::FNEG, SL, VT, Y)); 8284 if (XC1 && XC1->isExactlyValue(-1.0)) 8285 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); 8286 } 8287 return SDValue(); 8288 }; 8289 8290 if (SDValue FMA = FuseFSUB(N0, N1)) 8291 return FMA; 8292 if (SDValue FMA = FuseFSUB(N1, N0)) 8293 return FMA; 8294 8295 return SDValue(); 8296 } 8297 8298 SDValue DAGCombiner::visitFADD(SDNode *N) { 8299 SDValue N0 = N->getOperand(0); 8300 SDValue N1 = N->getOperand(1); 8301 bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0); 8302 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 8303 EVT VT = N->getValueType(0); 8304 SDLoc DL(N); 8305 const TargetOptions &Options = DAG.getTarget().Options; 8306 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8307 8308 // fold vector ops 8309 if (VT.isVector()) 8310 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8311 return FoldedVOp; 8312 8313 // fold (fadd c1, c2) -> c1 + c2 8314 if (N0CFP && N1CFP) 8315 return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags); 8316 8317 // canonicalize constant to RHS 8318 if (N0CFP && !N1CFP) 8319 return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags); 8320 8321 // fold (fadd A, (fneg B)) -> (fsub A, B) 8322 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8323 isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2) 8324 return DAG.getNode(ISD::FSUB, DL, VT, N0, 8325 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8326 8327 // fold (fadd (fneg A), B) -> (fsub B, A) 8328 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) && 8329 isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2) 8330 return DAG.getNode(ISD::FSUB, DL, VT, N1, 8331 GetNegatedExpression(N0, DAG, LegalOperations), Flags); 8332 8333 // If 'unsafe math' is enabled, fold lots of things. 8334 if (Options.UnsafeFPMath) { 8335 // No FP constant should be created after legalization as Instruction 8336 // Selection pass has a hard time dealing with FP constants. 8337 bool AllowNewConst = (Level < AfterLegalizeDAG); 8338 8339 // fold (fadd A, 0) -> A 8340 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1)) 8341 if (N1C->isZero()) 8342 return N0; 8343 8344 // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) 8345 if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() && 8346 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) 8347 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), 8348 DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1, 8349 Flags), 8350 Flags); 8351 8352 // If allowed, fold (fadd (fneg x), x) -> 0.0 8353 if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) 8354 return DAG.getConstantFP(0.0, DL, VT); 8355 8356 // If allowed, fold (fadd x, (fneg x)) -> 0.0 8357 if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) 8358 return DAG.getConstantFP(0.0, DL, VT); 8359 8360 // We can fold chains of FADD's of the same value into multiplications. 8361 // This transform is not safe in general because we are reducing the number 8362 // of rounding steps. 8363 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { 8364 if (N0.getOpcode() == ISD::FMUL) { 8365 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8366 bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); 8367 8368 // (fadd (fmul x, c), x) -> (fmul x, c+1) 8369 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { 8370 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8371 DAG.getConstantFP(1.0, DL, VT), Flags); 8372 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags); 8373 } 8374 8375 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) 8376 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && 8377 N1.getOperand(0) == N1.getOperand(1) && 8378 N0.getOperand(0) == N1.getOperand(0)) { 8379 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), 8380 DAG.getConstantFP(2.0, DL, VT), Flags); 8381 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags); 8382 } 8383 } 8384 8385 if (N1.getOpcode() == ISD::FMUL) { 8386 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8387 bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); 8388 8389 // (fadd x, (fmul x, c)) -> (fmul x, c+1) 8390 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { 8391 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8392 DAG.getConstantFP(1.0, DL, VT), Flags); 8393 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags); 8394 } 8395 8396 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) 8397 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && 8398 N0.getOperand(0) == N0.getOperand(1) && 8399 N1.getOperand(0) == N0.getOperand(0)) { 8400 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), 8401 DAG.getConstantFP(2.0, DL, VT), Flags); 8402 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags); 8403 } 8404 } 8405 8406 if (N0.getOpcode() == ISD::FADD && AllowNewConst) { 8407 bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); 8408 // (fadd (fadd x, x), x) -> (fmul x, 3.0) 8409 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && 8410 (N0.getOperand(0) == N1)) { 8411 return DAG.getNode(ISD::FMUL, DL, VT, 8412 N1, DAG.getConstantFP(3.0, DL, VT), Flags); 8413 } 8414 } 8415 8416 if (N1.getOpcode() == ISD::FADD && AllowNewConst) { 8417 bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); 8418 // (fadd x, (fadd x, x)) -> (fmul x, 3.0) 8419 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && 8420 N1.getOperand(0) == N0) { 8421 return DAG.getNode(ISD::FMUL, DL, VT, 8422 N0, DAG.getConstantFP(3.0, DL, VT), Flags); 8423 } 8424 } 8425 8426 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) 8427 if (AllowNewConst && 8428 N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && 8429 N0.getOperand(0) == N0.getOperand(1) && 8430 N1.getOperand(0) == N1.getOperand(1) && 8431 N0.getOperand(0) == N1.getOperand(0)) { 8432 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), 8433 DAG.getConstantFP(4.0, DL, VT), Flags); 8434 } 8435 } 8436 } // enable-unsafe-fp-math 8437 8438 // FADD -> FMA combines: 8439 if (SDValue Fused = visitFADDForFMACombine(N)) { 8440 AddToWorklist(Fused.getNode()); 8441 return Fused; 8442 } 8443 return SDValue(); 8444 } 8445 8446 SDValue DAGCombiner::visitFSUB(SDNode *N) { 8447 SDValue N0 = N->getOperand(0); 8448 SDValue N1 = N->getOperand(1); 8449 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8450 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8451 EVT VT = N->getValueType(0); 8452 SDLoc dl(N); 8453 const TargetOptions &Options = DAG.getTarget().Options; 8454 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8455 8456 // fold vector ops 8457 if (VT.isVector()) 8458 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8459 return FoldedVOp; 8460 8461 // fold (fsub c1, c2) -> c1-c2 8462 if (N0CFP && N1CFP) 8463 return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags); 8464 8465 // fold (fsub A, (fneg B)) -> (fadd A, B) 8466 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8467 return DAG.getNode(ISD::FADD, dl, VT, N0, 8468 GetNegatedExpression(N1, DAG, LegalOperations), Flags); 8469 8470 // If 'unsafe math' is enabled, fold lots of things. 8471 if (Options.UnsafeFPMath) { 8472 // (fsub A, 0) -> A 8473 if (N1CFP && N1CFP->isZero()) 8474 return N0; 8475 8476 // (fsub 0, B) -> -B 8477 if (N0CFP && N0CFP->isZero()) { 8478 if (isNegatibleForFree(N1, LegalOperations, TLI, &Options)) 8479 return GetNegatedExpression(N1, DAG, LegalOperations); 8480 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8481 return DAG.getNode(ISD::FNEG, dl, VT, N1); 8482 } 8483 8484 // (fsub x, x) -> 0.0 8485 if (N0 == N1) 8486 return DAG.getConstantFP(0.0f, dl, VT); 8487 8488 // (fsub x, (fadd x, y)) -> (fneg y) 8489 // (fsub x, (fadd y, x)) -> (fneg y) 8490 if (N1.getOpcode() == ISD::FADD) { 8491 SDValue N10 = N1->getOperand(0); 8492 SDValue N11 = N1->getOperand(1); 8493 8494 if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options)) 8495 return GetNegatedExpression(N11, DAG, LegalOperations); 8496 8497 if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options)) 8498 return GetNegatedExpression(N10, DAG, LegalOperations); 8499 } 8500 } 8501 8502 // FSUB -> FMA combines: 8503 if (SDValue Fused = visitFSUBForFMACombine(N)) { 8504 AddToWorklist(Fused.getNode()); 8505 return Fused; 8506 } 8507 8508 return SDValue(); 8509 } 8510 8511 SDValue DAGCombiner::visitFMUL(SDNode *N) { 8512 SDValue N0 = N->getOperand(0); 8513 SDValue N1 = N->getOperand(1); 8514 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 8515 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 8516 EVT VT = N->getValueType(0); 8517 SDLoc DL(N); 8518 const TargetOptions &Options = DAG.getTarget().Options; 8519 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8520 8521 // fold vector ops 8522 if (VT.isVector()) { 8523 // This just handles C1 * C2 for vectors. Other vector folds are below. 8524 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8525 return FoldedVOp; 8526 } 8527 8528 // fold (fmul c1, c2) -> c1*c2 8529 if (N0CFP && N1CFP) 8530 return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags); 8531 8532 // canonicalize constant to RHS 8533 if (isConstantFPBuildVectorOrConstantFP(N0) && 8534 !isConstantFPBuildVectorOrConstantFP(N1)) 8535 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags); 8536 8537 // fold (fmul A, 1.0) -> A 8538 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8539 return N0; 8540 8541 if (Options.UnsafeFPMath) { 8542 // fold (fmul A, 0) -> 0 8543 if (N1CFP && N1CFP->isZero()) 8544 return N1; 8545 8546 // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) 8547 if (N0.getOpcode() == ISD::FMUL) { 8548 // Fold scalars or any vector constants (not just splats). 8549 // This fold is done in general by InstCombine, but extra fmul insts 8550 // may have been generated during lowering. 8551 SDValue N00 = N0.getOperand(0); 8552 SDValue N01 = N0.getOperand(1); 8553 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 8554 auto *BV00 = dyn_cast<BuildVectorSDNode>(N00); 8555 auto *BV01 = dyn_cast<BuildVectorSDNode>(N01); 8556 8557 // Check 1: Make sure that the first operand of the inner multiply is NOT 8558 // a constant. Otherwise, we may induce infinite looping. 8559 if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) { 8560 // Check 2: Make sure that the second operand of the inner multiply and 8561 // the second operand of the outer multiply are constants. 8562 if ((N1CFP && isConstOrConstSplatFP(N01)) || 8563 (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) { 8564 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags); 8565 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags); 8566 } 8567 } 8568 } 8569 8570 // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c)) 8571 // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs 8572 // during an early run of DAGCombiner can prevent folding with fmuls 8573 // inserted during lowering. 8574 if (N0.getOpcode() == ISD::FADD && 8575 (N0.getOperand(0) == N0.getOperand(1)) && 8576 N0.hasOneUse()) { 8577 const SDValue Two = DAG.getConstantFP(2.0, DL, VT); 8578 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags); 8579 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags); 8580 } 8581 } 8582 8583 // fold (fmul X, 2.0) -> (fadd X, X) 8584 if (N1CFP && N1CFP->isExactlyValue(+2.0)) 8585 return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags); 8586 8587 // fold (fmul X, -1.0) -> (fneg X) 8588 if (N1CFP && N1CFP->isExactlyValue(-1.0)) 8589 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8590 return DAG.getNode(ISD::FNEG, DL, VT, N0); 8591 8592 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) 8593 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8594 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8595 // Both can be negated for free, check to see if at least one is cheaper 8596 // negated. 8597 if (LHSNeg == 2 || RHSNeg == 2) 8598 return DAG.getNode(ISD::FMUL, DL, VT, 8599 GetNegatedExpression(N0, DAG, LegalOperations), 8600 GetNegatedExpression(N1, DAG, LegalOperations), 8601 Flags); 8602 } 8603 } 8604 8605 // FMUL -> FMA combines: 8606 if (SDValue Fused = visitFMULForFMACombine(N)) { 8607 AddToWorklist(Fused.getNode()); 8608 return Fused; 8609 } 8610 8611 return SDValue(); 8612 } 8613 8614 SDValue DAGCombiner::visitFMA(SDNode *N) { 8615 SDValue N0 = N->getOperand(0); 8616 SDValue N1 = N->getOperand(1); 8617 SDValue N2 = N->getOperand(2); 8618 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8619 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8620 EVT VT = N->getValueType(0); 8621 SDLoc dl(N); 8622 const TargetOptions &Options = DAG.getTarget().Options; 8623 8624 // Constant fold FMA. 8625 if (isa<ConstantFPSDNode>(N0) && 8626 isa<ConstantFPSDNode>(N1) && 8627 isa<ConstantFPSDNode>(N2)) { 8628 return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2); 8629 } 8630 8631 if (Options.UnsafeFPMath) { 8632 if (N0CFP && N0CFP->isZero()) 8633 return N2; 8634 if (N1CFP && N1CFP->isZero()) 8635 return N2; 8636 } 8637 // TODO: The FMA node should have flags that propagate to these nodes. 8638 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8639 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); 8640 if (N1CFP && N1CFP->isExactlyValue(1.0)) 8641 return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); 8642 8643 // Canonicalize (fma c, x, y) -> (fma x, c, y) 8644 if (isConstantFPBuildVectorOrConstantFP(N0) && 8645 !isConstantFPBuildVectorOrConstantFP(N1)) 8646 return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); 8647 8648 // TODO: FMA nodes should have flags that propagate to the created nodes. 8649 // For now, create a Flags object for use with all unsafe math transforms. 8650 SDNodeFlags Flags; 8651 Flags.setUnsafeAlgebra(true); 8652 8653 if (Options.UnsafeFPMath) { 8654 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) 8655 if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && 8656 isConstantFPBuildVectorOrConstantFP(N1) && 8657 isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { 8658 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8659 DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1), 8660 &Flags), &Flags); 8661 } 8662 8663 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) 8664 if (N0.getOpcode() == ISD::FMUL && 8665 isConstantFPBuildVectorOrConstantFP(N1) && 8666 isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { 8667 return DAG.getNode(ISD::FMA, dl, VT, 8668 N0.getOperand(0), 8669 DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1), 8670 &Flags), 8671 N2); 8672 } 8673 } 8674 8675 // (fma x, 1, y) -> (fadd x, y) 8676 // (fma x, -1, y) -> (fadd (fneg x), y) 8677 if (N1CFP) { 8678 if (N1CFP->isExactlyValue(1.0)) 8679 // TODO: The FMA node should have flags that propagate to this node. 8680 return DAG.getNode(ISD::FADD, dl, VT, N0, N2); 8681 8682 if (N1CFP->isExactlyValue(-1.0) && 8683 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { 8684 SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0); 8685 AddToWorklist(RHSNeg.getNode()); 8686 // TODO: The FMA node should have flags that propagate to this node. 8687 return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg); 8688 } 8689 } 8690 8691 if (Options.UnsafeFPMath) { 8692 // (fma x, c, x) -> (fmul x, (c+1)) 8693 if (N1CFP && N0 == N2) { 8694 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8695 DAG.getNode(ISD::FADD, dl, VT, 8696 N1, DAG.getConstantFP(1.0, dl, VT), 8697 &Flags), &Flags); 8698 } 8699 8700 // (fma x, c, (fneg x)) -> (fmul x, (c-1)) 8701 if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { 8702 return DAG.getNode(ISD::FMUL, dl, VT, N0, 8703 DAG.getNode(ISD::FADD, dl, VT, 8704 N1, DAG.getConstantFP(-1.0, dl, VT), 8705 &Flags), &Flags); 8706 } 8707 } 8708 8709 return SDValue(); 8710 } 8711 8712 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 8713 // reciprocal. 8714 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) 8715 // Notice that this is not always beneficial. One reason is different target 8716 // may have different costs for FDIV and FMUL, so sometimes the cost of two 8717 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason 8718 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". 8719 SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { 8720 bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; 8721 const SDNodeFlags *Flags = N->getFlags(); 8722 if (!UnsafeMath && !Flags->hasAllowReciprocal()) 8723 return SDValue(); 8724 8725 // Skip if current node is a reciprocal. 8726 SDValue N0 = N->getOperand(0); 8727 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8728 if (N0CFP && N0CFP->isExactlyValue(1.0)) 8729 return SDValue(); 8730 8731 // Exit early if the target does not want this transform or if there can't 8732 // possibly be enough uses of the divisor to make the transform worthwhile. 8733 SDValue N1 = N->getOperand(1); 8734 unsigned MinUses = TLI.combineRepeatedFPDivisors(); 8735 if (!MinUses || N1->use_size() < MinUses) 8736 return SDValue(); 8737 8738 // Find all FDIV users of the same divisor. 8739 // Use a set because duplicates may be present in the user list. 8740 SetVector<SDNode *> Users; 8741 for (auto *U : N1->uses()) { 8742 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { 8743 // This division is eligible for optimization only if global unsafe math 8744 // is enabled or if this division allows reciprocal formation. 8745 if (UnsafeMath || U->getFlags()->hasAllowReciprocal()) 8746 Users.insert(U); 8747 } 8748 } 8749 8750 // Now that we have the actual number of divisor uses, make sure it meets 8751 // the minimum threshold specified by the target. 8752 if (Users.size() < MinUses) 8753 return SDValue(); 8754 8755 EVT VT = N->getValueType(0); 8756 SDLoc DL(N); 8757 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 8758 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); 8759 8760 // Dividend / Divisor -> Dividend * Reciprocal 8761 for (auto *U : Users) { 8762 SDValue Dividend = U->getOperand(0); 8763 if (Dividend != FPOne) { 8764 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, 8765 Reciprocal, Flags); 8766 CombineTo(U, NewNode); 8767 } else if (U != Reciprocal.getNode()) { 8768 // In the absence of fast-math-flags, this user node is always the 8769 // same node as Reciprocal, but with FMF they may be different nodes. 8770 CombineTo(U, Reciprocal); 8771 } 8772 } 8773 return SDValue(N, 0); // N was replaced. 8774 } 8775 8776 SDValue DAGCombiner::visitFDIV(SDNode *N) { 8777 SDValue N0 = N->getOperand(0); 8778 SDValue N1 = N->getOperand(1); 8779 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8780 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8781 EVT VT = N->getValueType(0); 8782 SDLoc DL(N); 8783 const TargetOptions &Options = DAG.getTarget().Options; 8784 SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags; 8785 8786 // fold vector ops 8787 if (VT.isVector()) 8788 if (SDValue FoldedVOp = SimplifyVBinOp(N)) 8789 return FoldedVOp; 8790 8791 // fold (fdiv c1, c2) -> c1/c2 8792 if (N0CFP && N1CFP) 8793 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags); 8794 8795 if (Options.UnsafeFPMath) { 8796 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. 8797 if (N1CFP) { 8798 // Compute the reciprocal 1.0 / c2. 8799 const APFloat &N1APF = N1CFP->getValueAPF(); 8800 APFloat Recip(N1APF.getSemantics(), 1); // 1.0 8801 APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); 8802 // Only do the transform if the reciprocal is a legal fp immediate that 8803 // isn't too nasty (eg NaN, denormal, ...). 8804 if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty 8805 (!LegalOperations || 8806 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM 8807 // backend)... we should handle this gracefully after Legalize. 8808 // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) || 8809 TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) || 8810 TLI.isFPImmLegal(Recip, VT))) 8811 return DAG.getNode(ISD::FMUL, DL, VT, N0, 8812 DAG.getConstantFP(Recip, DL, VT), Flags); 8813 } 8814 8815 // If this FDIV is part of a reciprocal square root, it may be folded 8816 // into a target-specific square root estimate instruction. 8817 if (N1.getOpcode() == ISD::FSQRT) { 8818 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) { 8819 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8820 } 8821 } else if (N1.getOpcode() == ISD::FP_EXTEND && 8822 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8823 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8824 Flags)) { 8825 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); 8826 AddToWorklist(RV.getNode()); 8827 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8828 } 8829 } else if (N1.getOpcode() == ISD::FP_ROUND && 8830 N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8831 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), 8832 Flags)) { 8833 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); 8834 AddToWorklist(RV.getNode()); 8835 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8836 } 8837 } else if (N1.getOpcode() == ISD::FMUL) { 8838 // Look through an FMUL. Even though this won't remove the FDIV directly, 8839 // it's still worthwhile to get rid of the FSQRT if possible. 8840 SDValue SqrtOp; 8841 SDValue OtherOp; 8842 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { 8843 SqrtOp = N1.getOperand(0); 8844 OtherOp = N1.getOperand(1); 8845 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { 8846 SqrtOp = N1.getOperand(1); 8847 OtherOp = N1.getOperand(0); 8848 } 8849 if (SqrtOp.getNode()) { 8850 // We found a FSQRT, so try to make this fold: 8851 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y) 8852 if (SDValue RV = buildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) { 8853 RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags); 8854 AddToWorklist(RV.getNode()); 8855 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8856 } 8857 } 8858 } 8859 8860 // Fold into a reciprocal estimate and multiply instead of a real divide. 8861 if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) { 8862 AddToWorklist(RV.getNode()); 8863 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags); 8864 } 8865 } 8866 8867 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) 8868 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) { 8869 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) { 8870 // Both can be negated for free, check to see if at least one is cheaper 8871 // negated. 8872 if (LHSNeg == 2 || RHSNeg == 2) 8873 return DAG.getNode(ISD::FDIV, SDLoc(N), VT, 8874 GetNegatedExpression(N0, DAG, LegalOperations), 8875 GetNegatedExpression(N1, DAG, LegalOperations), 8876 Flags); 8877 } 8878 } 8879 8880 if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N)) 8881 return CombineRepeatedDivisors; 8882 8883 return SDValue(); 8884 } 8885 8886 SDValue DAGCombiner::visitFREM(SDNode *N) { 8887 SDValue N0 = N->getOperand(0); 8888 SDValue N1 = N->getOperand(1); 8889 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8890 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8891 EVT VT = N->getValueType(0); 8892 8893 // fold (frem c1, c2) -> fmod(c1,c2) 8894 if (N0CFP && N1CFP) 8895 return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1, 8896 &cast<BinaryWithFlagsSDNode>(N)->Flags); 8897 8898 return SDValue(); 8899 } 8900 8901 SDValue DAGCombiner::visitFSQRT(SDNode *N) { 8902 if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap()) 8903 return SDValue(); 8904 8905 // TODO: FSQRT nodes should have flags that propagate to the created nodes. 8906 // For now, create a Flags object for use with all unsafe math transforms. 8907 SDNodeFlags Flags; 8908 Flags.setUnsafeAlgebra(true); 8909 return buildSqrtEstimate(N->getOperand(0), &Flags); 8910 } 8911 8912 /// copysign(x, fp_extend(y)) -> copysign(x, y) 8913 /// copysign(x, fp_round(y)) -> copysign(x, y) 8914 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { 8915 SDValue N1 = N->getOperand(1); 8916 if ((N1.getOpcode() == ISD::FP_EXTEND || 8917 N1.getOpcode() == ISD::FP_ROUND)) { 8918 // Do not optimize out type conversion of f128 type yet. 8919 // For some targets like x86_64, configuration is changed to keep one f128 8920 // value in one SSE register, but instruction selection cannot handle 8921 // FCOPYSIGN on SSE registers yet. 8922 EVT N1VT = N1->getValueType(0); 8923 EVT N1Op0VT = N1->getOperand(0)->getValueType(0); 8924 return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); 8925 } 8926 return false; 8927 } 8928 8929 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { 8930 SDValue N0 = N->getOperand(0); 8931 SDValue N1 = N->getOperand(1); 8932 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 8933 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 8934 EVT VT = N->getValueType(0); 8935 8936 if (N0CFP && N1CFP) // Constant fold 8937 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); 8938 8939 if (N1CFP) { 8940 const APFloat& V = N1CFP->getValueAPF(); 8941 // copysign(x, c1) -> fabs(x) iff ispos(c1) 8942 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) 8943 if (!V.isNegative()) { 8944 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) 8945 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8946 } else { 8947 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) 8948 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, 8949 DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); 8950 } 8951 } 8952 8953 // copysign(fabs(x), y) -> copysign(x, y) 8954 // copysign(fneg(x), y) -> copysign(x, y) 8955 // copysign(copysign(x,z), y) -> copysign(x, y) 8956 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || 8957 N0.getOpcode() == ISD::FCOPYSIGN) 8958 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8959 N0.getOperand(0), N1); 8960 8961 // copysign(x, abs(y)) -> abs(x) 8962 if (N1.getOpcode() == ISD::FABS) 8963 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 8964 8965 // copysign(x, copysign(y,z)) -> copysign(x, z) 8966 if (N1.getOpcode() == ISD::FCOPYSIGN) 8967 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8968 N0, N1.getOperand(1)); 8969 8970 // copysign(x, fp_extend(y)) -> copysign(x, y) 8971 // copysign(x, fp_round(y)) -> copysign(x, y) 8972 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) 8973 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 8974 N0, N1.getOperand(0)); 8975 8976 return SDValue(); 8977 } 8978 8979 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { 8980 SDValue N0 = N->getOperand(0); 8981 EVT VT = N->getValueType(0); 8982 EVT OpVT = N0.getValueType(); 8983 8984 // fold (sint_to_fp c1) -> c1fp 8985 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 8986 // ...but only if the target supports immediate floating-point values 8987 (!LegalOperations || 8988 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 8989 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 8990 8991 // If the input is a legal type, and SINT_TO_FP is not legal on this target, 8992 // but UINT_TO_FP is legal on this target, try to convert. 8993 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && 8994 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { 8995 // If the sign bit is known to be zero, we can change this to UINT_TO_FP. 8996 if (DAG.SignBitIsZero(N0)) 8997 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 8998 } 8999 9000 // The next optimizations are desirable only if SELECT_CC can be lowered. 9001 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9002 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9003 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && 9004 !VT.isVector() && 9005 (!LegalOperations || 9006 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9007 SDLoc DL(N); 9008 SDValue Ops[] = 9009 { N0.getOperand(0), N0.getOperand(1), 9010 DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9011 N0.getOperand(2) }; 9012 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9013 } 9014 9015 // fold (sint_to_fp (zext (setcc x, y, cc))) -> 9016 // (select_cc x, y, 1.0, 0.0,, cc) 9017 if (N0.getOpcode() == ISD::ZERO_EXTEND && 9018 N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() && 9019 (!LegalOperations || 9020 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9021 SDLoc DL(N); 9022 SDValue Ops[] = 9023 { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1), 9024 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9025 N0.getOperand(0).getOperand(2) }; 9026 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9027 } 9028 } 9029 9030 return SDValue(); 9031 } 9032 9033 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { 9034 SDValue N0 = N->getOperand(0); 9035 EVT VT = N->getValueType(0); 9036 EVT OpVT = N0.getValueType(); 9037 9038 // fold (uint_to_fp c1) -> c1fp 9039 if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && 9040 // ...but only if the target supports immediate floating-point values 9041 (!LegalOperations || 9042 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) 9043 return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); 9044 9045 // If the input is a legal type, and UINT_TO_FP is not legal on this target, 9046 // but SINT_TO_FP is legal on this target, try to convert. 9047 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && 9048 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { 9049 // If the sign bit is known to be zero, we can change this to SINT_TO_FP. 9050 if (DAG.SignBitIsZero(N0)) 9051 return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); 9052 } 9053 9054 // The next optimizations are desirable only if SELECT_CC can be lowered. 9055 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) { 9056 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc) 9057 9058 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && 9059 (!LegalOperations || 9060 TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) { 9061 SDLoc DL(N); 9062 SDValue Ops[] = 9063 { N0.getOperand(0), N0.getOperand(1), 9064 DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT), 9065 N0.getOperand(2) }; 9066 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 9067 } 9068 } 9069 9070 return SDValue(); 9071 } 9072 9073 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x 9074 static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { 9075 SDValue N0 = N->getOperand(0); 9076 EVT VT = N->getValueType(0); 9077 9078 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) 9079 return SDValue(); 9080 9081 SDValue Src = N0.getOperand(0); 9082 EVT SrcVT = Src.getValueType(); 9083 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; 9084 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; 9085 9086 // We can safely assume the conversion won't overflow the output range, 9087 // because (for example) (uint8_t)18293.f is undefined behavior. 9088 9089 // Since we can assume the conversion won't overflow, our decision as to 9090 // whether the input will fit in the float should depend on the minimum 9091 // of the input range and output range. 9092 9093 // This means this is also safe for a signed input and unsigned output, since 9094 // a negative input would lead to undefined behavior. 9095 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; 9096 unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; 9097 unsigned ActualSize = std::min(InputSize, OutputSize); 9098 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); 9099 9100 // We can only fold away the float conversion if the input range can be 9101 // represented exactly in the float range. 9102 if (APFloat::semanticsPrecision(sem) >= ActualSize) { 9103 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { 9104 unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND 9105 : ISD::ZERO_EXTEND; 9106 return DAG.getNode(ExtOp, SDLoc(N), VT, Src); 9107 } 9108 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) 9109 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); 9110 return DAG.getBitcast(VT, Src); 9111 } 9112 return SDValue(); 9113 } 9114 9115 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { 9116 SDValue N0 = N->getOperand(0); 9117 EVT VT = N->getValueType(0); 9118 9119 // fold (fp_to_sint c1fp) -> c1 9120 if (isConstantFPBuildVectorOrConstantFP(N0)) 9121 return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); 9122 9123 return FoldIntToFPToInt(N, DAG); 9124 } 9125 9126 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { 9127 SDValue N0 = N->getOperand(0); 9128 EVT VT = N->getValueType(0); 9129 9130 // fold (fp_to_uint c1fp) -> c1 9131 if (isConstantFPBuildVectorOrConstantFP(N0)) 9132 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); 9133 9134 return FoldIntToFPToInt(N, DAG); 9135 } 9136 9137 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { 9138 SDValue N0 = N->getOperand(0); 9139 SDValue N1 = N->getOperand(1); 9140 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9141 EVT VT = N->getValueType(0); 9142 9143 // fold (fp_round c1fp) -> c1fp 9144 if (N0CFP) 9145 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); 9146 9147 // fold (fp_round (fp_extend x)) -> x 9148 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) 9149 return N0.getOperand(0); 9150 9151 // fold (fp_round (fp_round x)) -> (fp_round x) 9152 if (N0.getOpcode() == ISD::FP_ROUND) { 9153 const bool NIsTrunc = N->getConstantOperandVal(1) == 1; 9154 const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1; 9155 9156 // Skip this folding if it results in an fp_round from f80 to f16. 9157 // 9158 // f80 to f16 always generates an expensive (and as yet, unimplemented) 9159 // libcall to __truncxfhf2 instead of selecting native f16 conversion 9160 // instructions from f32 or f64. Moreover, the first (value-preserving) 9161 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like 9162 // x86. 9163 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) 9164 return SDValue(); 9165 9166 // If the first fp_round isn't a value preserving truncation, it might 9167 // introduce a tie in the second fp_round, that wouldn't occur in the 9168 // single-step fp_round we want to fold to. 9169 // In other words, double rounding isn't the same as rounding. 9170 // Also, this is a value preserving truncation iff both fp_round's are. 9171 if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { 9172 SDLoc DL(N); 9173 return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), 9174 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); 9175 } 9176 } 9177 9178 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) 9179 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { 9180 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, 9181 N0.getOperand(0), N1); 9182 AddToWorklist(Tmp.getNode()); 9183 return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, 9184 Tmp, N0.getOperand(1)); 9185 } 9186 9187 return SDValue(); 9188 } 9189 9190 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { 9191 SDValue N0 = N->getOperand(0); 9192 EVT VT = N->getValueType(0); 9193 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 9194 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); 9195 9196 // fold (fp_round_inreg c1fp) -> c1fp 9197 if (N0CFP && isTypeLegal(EVT)) { 9198 SDLoc DL(N); 9199 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT); 9200 return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round); 9201 } 9202 9203 return SDValue(); 9204 } 9205 9206 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { 9207 SDValue N0 = N->getOperand(0); 9208 EVT VT = N->getValueType(0); 9209 9210 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. 9211 if (N->hasOneUse() && 9212 N->use_begin()->getOpcode() == ISD::FP_ROUND) 9213 return SDValue(); 9214 9215 // fold (fp_extend c1fp) -> c1fp 9216 if (isConstantFPBuildVectorOrConstantFP(N0)) 9217 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); 9218 9219 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) 9220 if (N0.getOpcode() == ISD::FP16_TO_FP && 9221 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) 9222 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); 9223 9224 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the 9225 // value of X. 9226 if (N0.getOpcode() == ISD::FP_ROUND 9227 && N0.getNode()->getConstantOperandVal(1) == 1) { 9228 SDValue In = N0.getOperand(0); 9229 if (In.getValueType() == VT) return In; 9230 if (VT.bitsLT(In.getValueType())) 9231 return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, 9232 In, N0.getOperand(1)); 9233 return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); 9234 } 9235 9236 // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) 9237 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 9238 TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { 9239 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 9240 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, 9241 LN0->getChain(), 9242 LN0->getBasePtr(), N0.getValueType(), 9243 LN0->getMemOperand()); 9244 CombineTo(N, ExtLoad); 9245 CombineTo(N0.getNode(), 9246 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), 9247 N0.getValueType(), ExtLoad, 9248 DAG.getIntPtrConstant(1, SDLoc(N0))), 9249 ExtLoad.getValue(1)); 9250 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9251 } 9252 9253 return SDValue(); 9254 } 9255 9256 SDValue DAGCombiner::visitFCEIL(SDNode *N) { 9257 SDValue N0 = N->getOperand(0); 9258 EVT VT = N->getValueType(0); 9259 9260 // fold (fceil c1) -> fceil(c1) 9261 if (isConstantFPBuildVectorOrConstantFP(N0)) 9262 return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); 9263 9264 return SDValue(); 9265 } 9266 9267 SDValue DAGCombiner::visitFTRUNC(SDNode *N) { 9268 SDValue N0 = N->getOperand(0); 9269 EVT VT = N->getValueType(0); 9270 9271 // fold (ftrunc c1) -> ftrunc(c1) 9272 if (isConstantFPBuildVectorOrConstantFP(N0)) 9273 return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); 9274 9275 return SDValue(); 9276 } 9277 9278 SDValue DAGCombiner::visitFFLOOR(SDNode *N) { 9279 SDValue N0 = N->getOperand(0); 9280 EVT VT = N->getValueType(0); 9281 9282 // fold (ffloor c1) -> ffloor(c1) 9283 if (isConstantFPBuildVectorOrConstantFP(N0)) 9284 return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); 9285 9286 return SDValue(); 9287 } 9288 9289 // FIXME: FNEG and FABS have a lot in common; refactor. 9290 SDValue DAGCombiner::visitFNEG(SDNode *N) { 9291 SDValue N0 = N->getOperand(0); 9292 EVT VT = N->getValueType(0); 9293 9294 // Constant fold FNEG. 9295 if (isConstantFPBuildVectorOrConstantFP(N0)) 9296 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); 9297 9298 if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(), 9299 &DAG.getTarget().Options)) 9300 return GetNegatedExpression(N0, DAG, LegalOperations); 9301 9302 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading 9303 // constant pool values. 9304 if (!TLI.isFNegFree(VT) && 9305 N0.getOpcode() == ISD::BITCAST && 9306 N0.getNode()->hasOneUse()) { 9307 SDValue Int = N0.getOperand(0); 9308 EVT IntVT = Int.getValueType(); 9309 if (IntVT.isInteger() && !IntVT.isVector()) { 9310 APInt SignMask; 9311 if (N0.getValueType().isVector()) { 9312 // For a vector, get a mask such as 0x80... per scalar element 9313 // and splat it. 9314 SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9315 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9316 } else { 9317 // For a scalar, just generate 0x80... 9318 SignMask = APInt::getSignBit(IntVT.getSizeInBits()); 9319 } 9320 SDLoc DL0(N0); 9321 Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int, 9322 DAG.getConstant(SignMask, DL0, IntVT)); 9323 AddToWorklist(Int.getNode()); 9324 return DAG.getBitcast(VT, Int); 9325 } 9326 } 9327 9328 // (fneg (fmul c, x)) -> (fmul -c, x) 9329 if (N0.getOpcode() == ISD::FMUL && 9330 (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) { 9331 ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1)); 9332 if (CFP1) { 9333 APFloat CVal = CFP1->getValueAPF(); 9334 CVal.changeSign(); 9335 if (Level >= AfterLegalizeDAG && 9336 (TLI.isFPImmLegal(CVal, VT) || 9337 TLI.isOperationLegal(ISD::ConstantFP, VT))) 9338 return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0), 9339 DAG.getNode(ISD::FNEG, SDLoc(N), VT, 9340 N0.getOperand(1)), 9341 &cast<BinaryWithFlagsSDNode>(N0)->Flags); 9342 } 9343 } 9344 9345 return SDValue(); 9346 } 9347 9348 SDValue DAGCombiner::visitFMINNUM(SDNode *N) { 9349 SDValue N0 = N->getOperand(0); 9350 SDValue N1 = N->getOperand(1); 9351 EVT VT = N->getValueType(0); 9352 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9353 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9354 9355 if (N0CFP && N1CFP) { 9356 const APFloat &C0 = N0CFP->getValueAPF(); 9357 const APFloat &C1 = N1CFP->getValueAPF(); 9358 return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT); 9359 } 9360 9361 // Canonicalize to constant on RHS. 9362 if (isConstantFPBuildVectorOrConstantFP(N0) && 9363 !isConstantFPBuildVectorOrConstantFP(N1)) 9364 return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0); 9365 9366 return SDValue(); 9367 } 9368 9369 SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { 9370 SDValue N0 = N->getOperand(0); 9371 SDValue N1 = N->getOperand(1); 9372 EVT VT = N->getValueType(0); 9373 const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); 9374 const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); 9375 9376 if (N0CFP && N1CFP) { 9377 const APFloat &C0 = N0CFP->getValueAPF(); 9378 const APFloat &C1 = N1CFP->getValueAPF(); 9379 return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT); 9380 } 9381 9382 // Canonicalize to constant on RHS. 9383 if (isConstantFPBuildVectorOrConstantFP(N0) && 9384 !isConstantFPBuildVectorOrConstantFP(N1)) 9385 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0); 9386 9387 return SDValue(); 9388 } 9389 9390 SDValue DAGCombiner::visitFABS(SDNode *N) { 9391 SDValue N0 = N->getOperand(0); 9392 EVT VT = N->getValueType(0); 9393 9394 // fold (fabs c1) -> fabs(c1) 9395 if (isConstantFPBuildVectorOrConstantFP(N0)) 9396 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); 9397 9398 // fold (fabs (fabs x)) -> (fabs x) 9399 if (N0.getOpcode() == ISD::FABS) 9400 return N->getOperand(0); 9401 9402 // fold (fabs (fneg x)) -> (fabs x) 9403 // fold (fabs (fcopysign x, y)) -> (fabs x) 9404 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) 9405 return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); 9406 9407 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading 9408 // constant pool values. 9409 if (!TLI.isFAbsFree(VT) && 9410 N0.getOpcode() == ISD::BITCAST && 9411 N0.getNode()->hasOneUse()) { 9412 SDValue Int = N0.getOperand(0); 9413 EVT IntVT = Int.getValueType(); 9414 if (IntVT.isInteger() && !IntVT.isVector()) { 9415 APInt SignMask; 9416 if (N0.getValueType().isVector()) { 9417 // For a vector, get a mask such as 0x7f... per scalar element 9418 // and splat it. 9419 SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits()); 9420 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask); 9421 } else { 9422 // For a scalar, just generate 0x7f... 9423 SignMask = ~APInt::getSignBit(IntVT.getSizeInBits()); 9424 } 9425 SDLoc DL(N0); 9426 Int = DAG.getNode(ISD::AND, DL, IntVT, Int, 9427 DAG.getConstant(SignMask, DL, IntVT)); 9428 AddToWorklist(Int.getNode()); 9429 return DAG.getBitcast(N->getValueType(0), Int); 9430 } 9431 } 9432 9433 return SDValue(); 9434 } 9435 9436 SDValue DAGCombiner::visitBRCOND(SDNode *N) { 9437 SDValue Chain = N->getOperand(0); 9438 SDValue N1 = N->getOperand(1); 9439 SDValue N2 = N->getOperand(2); 9440 9441 // If N is a constant we could fold this into a fallthrough or unconditional 9442 // branch. However that doesn't happen very often in normal code, because 9443 // Instcombine/SimplifyCFG should have handled the available opportunities. 9444 // If we did this folding here, it would be necessary to update the 9445 // MachineBasicBlock CFG, which is awkward. 9446 9447 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal 9448 // on the target. 9449 if (N1.getOpcode() == ISD::SETCC && 9450 TLI.isOperationLegalOrCustom(ISD::BR_CC, 9451 N1.getOperand(0).getValueType())) { 9452 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9453 Chain, N1.getOperand(2), 9454 N1.getOperand(0), N1.getOperand(1), N2); 9455 } 9456 9457 if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) || 9458 ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) && 9459 (N1.getOperand(0).hasOneUse() && 9460 N1.getOperand(0).getOpcode() == ISD::SRL))) { 9461 SDNode *Trunc = nullptr; 9462 if (N1.getOpcode() == ISD::TRUNCATE) { 9463 // Look pass the truncate. 9464 Trunc = N1.getNode(); 9465 N1 = N1.getOperand(0); 9466 } 9467 9468 // Match this pattern so that we can generate simpler code: 9469 // 9470 // %a = ... 9471 // %b = and i32 %a, 2 9472 // %c = srl i32 %b, 1 9473 // brcond i32 %c ... 9474 // 9475 // into 9476 // 9477 // %a = ... 9478 // %b = and i32 %a, 2 9479 // %c = setcc eq %b, 0 9480 // brcond %c ... 9481 // 9482 // This applies only when the AND constant value has one bit set and the 9483 // SRL constant is equal to the log2 of the AND constant. The back-end is 9484 // smart enough to convert the result into a TEST/JMP sequence. 9485 SDValue Op0 = N1.getOperand(0); 9486 SDValue Op1 = N1.getOperand(1); 9487 9488 if (Op0.getOpcode() == ISD::AND && 9489 Op1.getOpcode() == ISD::Constant) { 9490 SDValue AndOp1 = Op0.getOperand(1); 9491 9492 if (AndOp1.getOpcode() == ISD::Constant) { 9493 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); 9494 9495 if (AndConst.isPowerOf2() && 9496 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { 9497 SDLoc DL(N); 9498 SDValue SetCC = 9499 DAG.getSetCC(DL, 9500 getSetCCResultType(Op0.getValueType()), 9501 Op0, DAG.getConstant(0, DL, Op0.getValueType()), 9502 ISD::SETNE); 9503 9504 SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL, 9505 MVT::Other, Chain, SetCC, N2); 9506 // Don't add the new BRCond into the worklist or else SimplifySelectCC 9507 // will convert it back to (X & C1) >> C2. 9508 CombineTo(N, NewBRCond, false); 9509 // Truncate is dead. 9510 if (Trunc) 9511 deleteAndRecombine(Trunc); 9512 // Replace the uses of SRL with SETCC 9513 WorklistRemover DeadNodes(*this); 9514 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9515 deleteAndRecombine(N1.getNode()); 9516 return SDValue(N, 0); // Return N so it doesn't get rechecked! 9517 } 9518 } 9519 } 9520 9521 if (Trunc) 9522 // Restore N1 if the above transformation doesn't match. 9523 N1 = N->getOperand(1); 9524 } 9525 9526 // Transform br(xor(x, y)) -> br(x != y) 9527 // Transform br(xor(xor(x,y), 1)) -> br (x == y) 9528 if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { 9529 SDNode *TheXor = N1.getNode(); 9530 SDValue Op0 = TheXor->getOperand(0); 9531 SDValue Op1 = TheXor->getOperand(1); 9532 if (Op0.getOpcode() == Op1.getOpcode()) { 9533 // Avoid missing important xor optimizations. 9534 if (SDValue Tmp = visitXOR(TheXor)) { 9535 if (Tmp.getNode() != TheXor) { 9536 DEBUG(dbgs() << "\nReplacing.8 "; 9537 TheXor->dump(&DAG); 9538 dbgs() << "\nWith: "; 9539 Tmp.getNode()->dump(&DAG); 9540 dbgs() << '\n'); 9541 WorklistRemover DeadNodes(*this); 9542 DAG.ReplaceAllUsesOfValueWith(N1, Tmp); 9543 deleteAndRecombine(TheXor); 9544 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9545 MVT::Other, Chain, Tmp, N2); 9546 } 9547 9548 // visitXOR has changed XOR's operands or replaced the XOR completely, 9549 // bail out. 9550 return SDValue(N, 0); 9551 } 9552 } 9553 9554 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { 9555 bool Equal = false; 9556 if (isOneConstant(Op0) && Op0.hasOneUse() && 9557 Op0.getOpcode() == ISD::XOR) { 9558 TheXor = Op0.getNode(); 9559 Equal = true; 9560 } 9561 9562 EVT SetCCVT = N1.getValueType(); 9563 if (LegalTypes) 9564 SetCCVT = getSetCCResultType(SetCCVT); 9565 SDValue SetCC = DAG.getSetCC(SDLoc(TheXor), 9566 SetCCVT, 9567 Op0, Op1, 9568 Equal ? ISD::SETEQ : ISD::SETNE); 9569 // Replace the uses of XOR with SETCC 9570 WorklistRemover DeadNodes(*this); 9571 DAG.ReplaceAllUsesOfValueWith(N1, SetCC); 9572 deleteAndRecombine(N1.getNode()); 9573 return DAG.getNode(ISD::BRCOND, SDLoc(N), 9574 MVT::Other, Chain, SetCC, N2); 9575 } 9576 } 9577 9578 return SDValue(); 9579 } 9580 9581 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. 9582 // 9583 SDValue DAGCombiner::visitBR_CC(SDNode *N) { 9584 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); 9585 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); 9586 9587 // If N is a constant we could fold this into a fallthrough or unconditional 9588 // branch. However that doesn't happen very often in normal code, because 9589 // Instcombine/SimplifyCFG should have handled the available opportunities. 9590 // If we did this folding here, it would be necessary to update the 9591 // MachineBasicBlock CFG, which is awkward. 9592 9593 // Use SimplifySetCC to simplify SETCC's. 9594 SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), 9595 CondLHS, CondRHS, CC->get(), SDLoc(N), 9596 false); 9597 if (Simp.getNode()) AddToWorklist(Simp.getNode()); 9598 9599 // fold to a simpler setcc 9600 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) 9601 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, 9602 N->getOperand(0), Simp.getOperand(2), 9603 Simp.getOperand(0), Simp.getOperand(1), 9604 N->getOperand(4)); 9605 9606 return SDValue(); 9607 } 9608 9609 /// Return true if 'Use' is a load or a store that uses N as its base pointer 9610 /// and that N may be folded in the load / store addressing mode. 9611 static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, 9612 SelectionDAG &DAG, 9613 const TargetLowering &TLI) { 9614 EVT VT; 9615 unsigned AS; 9616 9617 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) { 9618 if (LD->isIndexed() || LD->getBasePtr().getNode() != N) 9619 return false; 9620 VT = LD->getMemoryVT(); 9621 AS = LD->getAddressSpace(); 9622 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) { 9623 if (ST->isIndexed() || ST->getBasePtr().getNode() != N) 9624 return false; 9625 VT = ST->getMemoryVT(); 9626 AS = ST->getAddressSpace(); 9627 } else 9628 return false; 9629 9630 TargetLowering::AddrMode AM; 9631 if (N->getOpcode() == ISD::ADD) { 9632 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9633 if (Offset) 9634 // [reg +/- imm] 9635 AM.BaseOffs = Offset->getSExtValue(); 9636 else 9637 // [reg +/- reg] 9638 AM.Scale = 1; 9639 } else if (N->getOpcode() == ISD::SUB) { 9640 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 9641 if (Offset) 9642 // [reg +/- imm] 9643 AM.BaseOffs = -Offset->getSExtValue(); 9644 else 9645 // [reg +/- reg] 9646 AM.Scale = 1; 9647 } else 9648 return false; 9649 9650 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, 9651 VT.getTypeForEVT(*DAG.getContext()), AS); 9652 } 9653 9654 /// Try turning a load/store into a pre-indexed load/store when the base 9655 /// pointer is an add or subtract and it has other uses besides the load/store. 9656 /// After the transformation, the new indexed load/store has effectively folded 9657 /// the add/subtract in and all of its other uses are redirected to the 9658 /// new load/store. 9659 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { 9660 if (Level < AfterLegalizeDAG) 9661 return false; 9662 9663 bool isLoad = true; 9664 SDValue Ptr; 9665 EVT VT; 9666 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9667 if (LD->isIndexed()) 9668 return false; 9669 VT = LD->getMemoryVT(); 9670 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && 9671 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) 9672 return false; 9673 Ptr = LD->getBasePtr(); 9674 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9675 if (ST->isIndexed()) 9676 return false; 9677 VT = ST->getMemoryVT(); 9678 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && 9679 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) 9680 return false; 9681 Ptr = ST->getBasePtr(); 9682 isLoad = false; 9683 } else { 9684 return false; 9685 } 9686 9687 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail 9688 // out. There is no reason to make this a preinc/predec. 9689 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || 9690 Ptr.getNode()->hasOneUse()) 9691 return false; 9692 9693 // Ask the target to do addressing mode selection. 9694 SDValue BasePtr; 9695 SDValue Offset; 9696 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9697 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) 9698 return false; 9699 9700 // Backends without true r+i pre-indexed forms may need to pass a 9701 // constant base with a variable offset so that constant coercion 9702 // will work with the patterns in canonical form. 9703 bool Swapped = false; 9704 if (isa<ConstantSDNode>(BasePtr)) { 9705 std::swap(BasePtr, Offset); 9706 Swapped = true; 9707 } 9708 9709 // Don't create a indexed load / store with zero offset. 9710 if (isNullConstant(Offset)) 9711 return false; 9712 9713 // Try turning it into a pre-indexed load / store except when: 9714 // 1) The new base ptr is a frame index. 9715 // 2) If N is a store and the new base ptr is either the same as or is a 9716 // predecessor of the value being stored. 9717 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded 9718 // that would create a cycle. 9719 // 4) All uses are load / store ops that use it as old base ptr. 9720 9721 // Check #1. Preinc'ing a frame index would require copying the stack pointer 9722 // (plus the implicit offset) to a register to preinc anyway. 9723 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9724 return false; 9725 9726 // Check #2. 9727 if (!isLoad) { 9728 SDValue Val = cast<StoreSDNode>(N)->getValue(); 9729 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) 9730 return false; 9731 } 9732 9733 // Caches for hasPredecessorHelper. 9734 SmallPtrSet<const SDNode *, 32> Visited; 9735 SmallVector<const SDNode *, 16> Worklist; 9736 Worklist.push_back(N); 9737 9738 // If the offset is a constant, there may be other adds of constants that 9739 // can be folded with this one. We should do this to avoid having to keep 9740 // a copy of the original base pointer. 9741 SmallVector<SDNode *, 16> OtherUses; 9742 if (isa<ConstantSDNode>(Offset)) 9743 for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), 9744 UE = BasePtr.getNode()->use_end(); 9745 UI != UE; ++UI) { 9746 SDUse &Use = UI.getUse(); 9747 // Skip the use that is Ptr and uses of other results from BasePtr's 9748 // node (important for nodes that return multiple results). 9749 if (Use.getUser() == Ptr.getNode() || Use != BasePtr) 9750 continue; 9751 9752 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) 9753 continue; 9754 9755 if (Use.getUser()->getOpcode() != ISD::ADD && 9756 Use.getUser()->getOpcode() != ISD::SUB) { 9757 OtherUses.clear(); 9758 break; 9759 } 9760 9761 SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); 9762 if (!isa<ConstantSDNode>(Op1)) { 9763 OtherUses.clear(); 9764 break; 9765 } 9766 9767 // FIXME: In some cases, we can be smarter about this. 9768 if (Op1.getValueType() != Offset.getValueType()) { 9769 OtherUses.clear(); 9770 break; 9771 } 9772 9773 OtherUses.push_back(Use.getUser()); 9774 } 9775 9776 if (Swapped) 9777 std::swap(BasePtr, Offset); 9778 9779 // Now check for #3 and #4. 9780 bool RealUse = false; 9781 9782 for (SDNode *Use : Ptr.getNode()->uses()) { 9783 if (Use == N) 9784 continue; 9785 if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) 9786 return false; 9787 9788 // If Ptr may be folded in addressing mode of other use, then it's 9789 // not profitable to do this transformation. 9790 if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) 9791 RealUse = true; 9792 } 9793 9794 if (!RealUse) 9795 return false; 9796 9797 SDValue Result; 9798 if (isLoad) 9799 Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9800 BasePtr, Offset, AM); 9801 else 9802 Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9803 BasePtr, Offset, AM); 9804 ++PreIndexedNodes; 9805 ++NodesCombined; 9806 DEBUG(dbgs() << "\nReplacing.4 "; 9807 N->dump(&DAG); 9808 dbgs() << "\nWith: "; 9809 Result.getNode()->dump(&DAG); 9810 dbgs() << '\n'); 9811 WorklistRemover DeadNodes(*this); 9812 if (isLoad) { 9813 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9814 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9815 } else { 9816 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9817 } 9818 9819 // Finally, since the node is now dead, remove it from the graph. 9820 deleteAndRecombine(N); 9821 9822 if (Swapped) 9823 std::swap(BasePtr, Offset); 9824 9825 // Replace other uses of BasePtr that can be updated to use Ptr 9826 for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { 9827 unsigned OffsetIdx = 1; 9828 if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) 9829 OffsetIdx = 0; 9830 assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == 9831 BasePtr.getNode() && "Expected BasePtr operand"); 9832 9833 // We need to replace ptr0 in the following expression: 9834 // x0 * offset0 + y0 * ptr0 = t0 9835 // knowing that 9836 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) 9837 // 9838 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the 9839 // indexed load/store and the expresion that needs to be re-written. 9840 // 9841 // Therefore, we have: 9842 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 9843 9844 ConstantSDNode *CN = 9845 cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); 9846 int X0, X1, Y0, Y1; 9847 const APInt &Offset0 = CN->getAPIntValue(); 9848 APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); 9849 9850 X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; 9851 Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; 9852 X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; 9853 Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; 9854 9855 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; 9856 9857 APInt CNV = Offset0; 9858 if (X0 < 0) CNV = -CNV; 9859 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; 9860 else CNV = CNV - Offset1; 9861 9862 SDLoc DL(OtherUses[i]); 9863 9864 // We can now generate the new expression. 9865 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); 9866 SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0); 9867 9868 SDValue NewUse = DAG.getNode(Opcode, 9869 DL, 9870 OtherUses[i]->getValueType(0), NewOp1, NewOp2); 9871 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); 9872 deleteAndRecombine(OtherUses[i]); 9873 } 9874 9875 // Replace the uses of Ptr with uses of the updated base value. 9876 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0)); 9877 deleteAndRecombine(Ptr.getNode()); 9878 9879 return true; 9880 } 9881 9882 /// Try to combine a load/store with a add/sub of the base pointer node into a 9883 /// post-indexed load/store. The transformation folded the add/subtract into the 9884 /// new indexed load/store effectively and all of its uses are redirected to the 9885 /// new load/store. 9886 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { 9887 if (Level < AfterLegalizeDAG) 9888 return false; 9889 9890 bool isLoad = true; 9891 SDValue Ptr; 9892 EVT VT; 9893 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 9894 if (LD->isIndexed()) 9895 return false; 9896 VT = LD->getMemoryVT(); 9897 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && 9898 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) 9899 return false; 9900 Ptr = LD->getBasePtr(); 9901 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 9902 if (ST->isIndexed()) 9903 return false; 9904 VT = ST->getMemoryVT(); 9905 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && 9906 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) 9907 return false; 9908 Ptr = ST->getBasePtr(); 9909 isLoad = false; 9910 } else { 9911 return false; 9912 } 9913 9914 if (Ptr.getNode()->hasOneUse()) 9915 return false; 9916 9917 for (SDNode *Op : Ptr.getNode()->uses()) { 9918 if (Op == N || 9919 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) 9920 continue; 9921 9922 SDValue BasePtr; 9923 SDValue Offset; 9924 ISD::MemIndexedMode AM = ISD::UNINDEXED; 9925 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { 9926 // Don't create a indexed load / store with zero offset. 9927 if (isNullConstant(Offset)) 9928 continue; 9929 9930 // Try turning it into a post-indexed load / store except when 9931 // 1) All uses are load / store ops that use it as base ptr (and 9932 // it may be folded as addressing mmode). 9933 // 2) Op must be independent of N, i.e. Op is neither a predecessor 9934 // nor a successor of N. Otherwise, if Op is folded that would 9935 // create a cycle. 9936 9937 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) 9938 continue; 9939 9940 // Check for #1. 9941 bool TryNext = false; 9942 for (SDNode *Use : BasePtr.getNode()->uses()) { 9943 if (Use == Ptr.getNode()) 9944 continue; 9945 9946 // If all the uses are load / store addresses, then don't do the 9947 // transformation. 9948 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ 9949 bool RealUse = false; 9950 for (SDNode *UseUse : Use->uses()) { 9951 if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI)) 9952 RealUse = true; 9953 } 9954 9955 if (!RealUse) { 9956 TryNext = true; 9957 break; 9958 } 9959 } 9960 } 9961 9962 if (TryNext) 9963 continue; 9964 9965 // Check for #2 9966 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { 9967 SDValue Result = isLoad 9968 ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N), 9969 BasePtr, Offset, AM) 9970 : DAG.getIndexedStore(SDValue(N,0), SDLoc(N), 9971 BasePtr, Offset, AM); 9972 ++PostIndexedNodes; 9973 ++NodesCombined; 9974 DEBUG(dbgs() << "\nReplacing.5 "; 9975 N->dump(&DAG); 9976 dbgs() << "\nWith: "; 9977 Result.getNode()->dump(&DAG); 9978 dbgs() << '\n'); 9979 WorklistRemover DeadNodes(*this); 9980 if (isLoad) { 9981 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); 9982 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); 9983 } else { 9984 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); 9985 } 9986 9987 // Finally, since the node is now dead, remove it from the graph. 9988 deleteAndRecombine(N); 9989 9990 // Replace the uses of Use with uses of the updated base value. 9991 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), 9992 Result.getValue(isLoad ? 1 : 0)); 9993 deleteAndRecombine(Op); 9994 return true; 9995 } 9996 } 9997 } 9998 9999 return false; 10000 } 10001 10002 /// \brief Return the base-pointer arithmetic from an indexed \p LD. 10003 SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { 10004 ISD::MemIndexedMode AM = LD->getAddressingMode(); 10005 assert(AM != ISD::UNINDEXED); 10006 SDValue BP = LD->getOperand(1); 10007 SDValue Inc = LD->getOperand(2); 10008 10009 // Some backends use TargetConstants for load offsets, but don't expect 10010 // TargetConstants in general ADD nodes. We can convert these constants into 10011 // regular Constants (if the constant is not opaque). 10012 assert((Inc.getOpcode() != ISD::TargetConstant || 10013 !cast<ConstantSDNode>(Inc)->isOpaque()) && 10014 "Cannot split out indexing using opaque target constants"); 10015 if (Inc.getOpcode() == ISD::TargetConstant) { 10016 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); 10017 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), 10018 ConstInc->getValueType(0)); 10019 } 10020 10021 unsigned Opc = 10022 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); 10023 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); 10024 } 10025 10026 SDValue DAGCombiner::visitLOAD(SDNode *N) { 10027 LoadSDNode *LD = cast<LoadSDNode>(N); 10028 SDValue Chain = LD->getChain(); 10029 SDValue Ptr = LD->getBasePtr(); 10030 10031 // If load is not volatile and there are no uses of the loaded value (and 10032 // the updated indexed value in case of indexed loads), change uses of the 10033 // chain value into uses of the chain input (i.e. delete the dead load). 10034 if (!LD->isVolatile()) { 10035 if (N->getValueType(1) == MVT::Other) { 10036 // Unindexed loads. 10037 if (!N->hasAnyUseOfValue(0)) { 10038 // It's not safe to use the two value CombineTo variant here. e.g. 10039 // v1, chain2 = load chain1, loc 10040 // v2, chain3 = load chain2, loc 10041 // v3 = add v2, c 10042 // Now we replace use of chain2 with chain1. This makes the second load 10043 // isomorphic to the one we are deleting, and thus makes this load live. 10044 DEBUG(dbgs() << "\nReplacing.6 "; 10045 N->dump(&DAG); 10046 dbgs() << "\nWith chain: "; 10047 Chain.getNode()->dump(&DAG); 10048 dbgs() << "\n"); 10049 WorklistRemover DeadNodes(*this); 10050 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10051 10052 if (N->use_empty()) 10053 deleteAndRecombine(N); 10054 10055 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10056 } 10057 } else { 10058 // Indexed loads. 10059 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); 10060 10061 // If this load has an opaque TargetConstant offset, then we cannot split 10062 // the indexing into an add/sub directly (that TargetConstant may not be 10063 // valid for a different type of node, and we cannot convert an opaque 10064 // target constant into a regular constant). 10065 bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant && 10066 cast<ConstantSDNode>(LD->getOperand(2))->isOpaque(); 10067 10068 if (!N->hasAnyUseOfValue(0) && 10069 ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) { 10070 SDValue Undef = DAG.getUNDEF(N->getValueType(0)); 10071 SDValue Index; 10072 if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) { 10073 Index = SplitIndexingFromLoad(LD); 10074 // Try to fold the base pointer arithmetic into subsequent loads and 10075 // stores. 10076 AddUsersToWorklist(N); 10077 } else 10078 Index = DAG.getUNDEF(N->getValueType(1)); 10079 DEBUG(dbgs() << "\nReplacing.7 "; 10080 N->dump(&DAG); 10081 dbgs() << "\nWith: "; 10082 Undef.getNode()->dump(&DAG); 10083 dbgs() << " and 2 other values\n"); 10084 WorklistRemover DeadNodes(*this); 10085 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); 10086 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); 10087 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); 10088 deleteAndRecombine(N); 10089 return SDValue(N, 0); // Return N so it doesn't get rechecked! 10090 } 10091 } 10092 } 10093 10094 // If this load is directly stored, replace the load value with the stored 10095 // value. 10096 // TODO: Handle store large -> read small portion. 10097 // TODO: Handle TRUNCSTORE/LOADEXT 10098 if (ISD::isNormalLoad(N) && !LD->isVolatile()) { 10099 if (ISD::isNON_TRUNCStore(Chain.getNode())) { 10100 StoreSDNode *PrevST = cast<StoreSDNode>(Chain); 10101 if (PrevST->getBasePtr() == Ptr && 10102 PrevST->getValue().getValueType() == N->getValueType(0)) 10103 return CombineTo(N, Chain.getOperand(1), Chain); 10104 } 10105 } 10106 10107 // Try to infer better alignment information than the load already has. 10108 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { 10109 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 10110 if (Align > LD->getMemOperand()->getBaseAlignment()) { 10111 SDValue NewLoad = 10112 DAG.getExtLoad(LD->getExtensionType(), SDLoc(N), 10113 LD->getValueType(0), 10114 Chain, Ptr, LD->getPointerInfo(), 10115 LD->getMemoryVT(), 10116 LD->isVolatile(), LD->isNonTemporal(), 10117 LD->isInvariant(), Align, LD->getAAInfo()); 10118 if (NewLoad.getNode() != N) 10119 return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true); 10120 } 10121 } 10122 } 10123 10124 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 10125 : DAG.getSubtarget().useAA(); 10126 #ifndef NDEBUG 10127 if (CombinerAAOnlyFunc.getNumOccurrences() && 10128 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 10129 UseAA = false; 10130 #endif 10131 if (UseAA && LD->isUnindexed()) { 10132 // Walk up chain skipping non-aliasing memory nodes. 10133 SDValue BetterChain = FindBetterChain(N, Chain); 10134 10135 // If there is a better chain. 10136 if (Chain != BetterChain) { 10137 SDValue ReplLoad; 10138 10139 // Replace the chain to void dependency. 10140 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 10141 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), 10142 BetterChain, Ptr, LD->getMemOperand()); 10143 } else { 10144 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), 10145 LD->getValueType(0), 10146 BetterChain, Ptr, LD->getMemoryVT(), 10147 LD->getMemOperand()); 10148 } 10149 10150 // Create token factor to keep old chain connected. 10151 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), 10152 MVT::Other, Chain, ReplLoad.getValue(1)); 10153 10154 // Make sure the new and old chains are cleaned up. 10155 AddToWorklist(Token.getNode()); 10156 10157 // Replace uses with load result and token factor. Don't add users 10158 // to work list. 10159 return CombineTo(N, ReplLoad.getValue(0), Token, false); 10160 } 10161 } 10162 10163 // Try transforming N to an indexed load. 10164 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 10165 return SDValue(N, 0); 10166 10167 // Try to slice up N to more direct loads if the slices are mapped to 10168 // different register banks or pairing can take place. 10169 if (SliceUpLoad(N)) 10170 return SDValue(N, 0); 10171 10172 return SDValue(); 10173 } 10174 10175 namespace { 10176 /// \brief Helper structure used to slice a load in smaller loads. 10177 /// Basically a slice is obtained from the following sequence: 10178 /// Origin = load Ty1, Base 10179 /// Shift = srl Ty1 Origin, CstTy Amount 10180 /// Inst = trunc Shift to Ty2 10181 /// 10182 /// Then, it will be rewriten into: 10183 /// Slice = load SliceTy, Base + SliceOffset 10184 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 10185 /// 10186 /// SliceTy is deduced from the number of bits that are actually used to 10187 /// build Inst. 10188 struct LoadedSlice { 10189 /// \brief Helper structure used to compute the cost of a slice. 10190 struct Cost { 10191 /// Are we optimizing for code size. 10192 bool ForCodeSize; 10193 /// Various cost. 10194 unsigned Loads; 10195 unsigned Truncates; 10196 unsigned CrossRegisterBanksCopies; 10197 unsigned ZExts; 10198 unsigned Shift; 10199 10200 Cost(bool ForCodeSize = false) 10201 : ForCodeSize(ForCodeSize), Loads(0), Truncates(0), 10202 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {} 10203 10204 /// \brief Get the cost of one isolated slice. 10205 Cost(const LoadedSlice &LS, bool ForCodeSize = false) 10206 : ForCodeSize(ForCodeSize), Loads(1), Truncates(0), 10207 CrossRegisterBanksCopies(0), ZExts(0), Shift(0) { 10208 EVT TruncType = LS.Inst->getValueType(0); 10209 EVT LoadedType = LS.getLoadedType(); 10210 if (TruncType != LoadedType && 10211 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) 10212 ZExts = 1; 10213 } 10214 10215 /// \brief Account for slicing gain in the current cost. 10216 /// Slicing provide a few gains like removing a shift or a 10217 /// truncate. This method allows to grow the cost of the original 10218 /// load with the gain from this slice. 10219 void addSliceGain(const LoadedSlice &LS) { 10220 // Each slice saves a truncate. 10221 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); 10222 if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), 10223 LS.Inst->getValueType(0))) 10224 ++Truncates; 10225 // If there is a shift amount, this slice gets rid of it. 10226 if (LS.Shift) 10227 ++Shift; 10228 // If this slice can merge a cross register bank copy, account for it. 10229 if (LS.canMergeExpensiveCrossRegisterBankCopy()) 10230 ++CrossRegisterBanksCopies; 10231 } 10232 10233 Cost &operator+=(const Cost &RHS) { 10234 Loads += RHS.Loads; 10235 Truncates += RHS.Truncates; 10236 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; 10237 ZExts += RHS.ZExts; 10238 Shift += RHS.Shift; 10239 return *this; 10240 } 10241 10242 bool operator==(const Cost &RHS) const { 10243 return Loads == RHS.Loads && Truncates == RHS.Truncates && 10244 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && 10245 ZExts == RHS.ZExts && Shift == RHS.Shift; 10246 } 10247 10248 bool operator!=(const Cost &RHS) const { return !(*this == RHS); } 10249 10250 bool operator<(const Cost &RHS) const { 10251 // Assume cross register banks copies are as expensive as loads. 10252 // FIXME: Do we want some more target hooks? 10253 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; 10254 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; 10255 // Unless we are optimizing for code size, consider the 10256 // expensive operation first. 10257 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) 10258 return ExpensiveOpsLHS < ExpensiveOpsRHS; 10259 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < 10260 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); 10261 } 10262 10263 bool operator>(const Cost &RHS) const { return RHS < *this; } 10264 10265 bool operator<=(const Cost &RHS) const { return !(RHS < *this); } 10266 10267 bool operator>=(const Cost &RHS) const { return !(*this < RHS); } 10268 }; 10269 // The last instruction that represent the slice. This should be a 10270 // truncate instruction. 10271 SDNode *Inst; 10272 // The original load instruction. 10273 LoadSDNode *Origin; 10274 // The right shift amount in bits from the original load. 10275 unsigned Shift; 10276 // The DAG from which Origin came from. 10277 // This is used to get some contextual information about legal types, etc. 10278 SelectionDAG *DAG; 10279 10280 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, 10281 unsigned Shift = 0, SelectionDAG *DAG = nullptr) 10282 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} 10283 10284 /// \brief Get the bits used in a chunk of bits \p BitWidth large. 10285 /// \return Result is \p BitWidth and has used bits set to 1 and 10286 /// not used bits set to 0. 10287 APInt getUsedBits() const { 10288 // Reproduce the trunc(lshr) sequence: 10289 // - Start from the truncated value. 10290 // - Zero extend to the desired bit width. 10291 // - Shift left. 10292 assert(Origin && "No original load to compare against."); 10293 unsigned BitWidth = Origin->getValueSizeInBits(0); 10294 assert(Inst && "This slice is not bound to an instruction"); 10295 assert(Inst->getValueSizeInBits(0) <= BitWidth && 10296 "Extracted slice is bigger than the whole type!"); 10297 APInt UsedBits(Inst->getValueSizeInBits(0), 0); 10298 UsedBits.setAllBits(); 10299 UsedBits = UsedBits.zext(BitWidth); 10300 UsedBits <<= Shift; 10301 return UsedBits; 10302 } 10303 10304 /// \brief Get the size of the slice to be loaded in bytes. 10305 unsigned getLoadedSize() const { 10306 unsigned SliceSize = getUsedBits().countPopulation(); 10307 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); 10308 return SliceSize / 8; 10309 } 10310 10311 /// \brief Get the type that will be loaded for this slice. 10312 /// Note: This may not be the final type for the slice. 10313 EVT getLoadedType() const { 10314 assert(DAG && "Missing context"); 10315 LLVMContext &Ctxt = *DAG->getContext(); 10316 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); 10317 } 10318 10319 /// \brief Get the alignment of the load used for this slice. 10320 unsigned getAlignment() const { 10321 unsigned Alignment = Origin->getAlignment(); 10322 unsigned Offset = getOffsetFromBase(); 10323 if (Offset != 0) 10324 Alignment = MinAlign(Alignment, Alignment + Offset); 10325 return Alignment; 10326 } 10327 10328 /// \brief Check if this slice can be rewritten with legal operations. 10329 bool isLegal() const { 10330 // An invalid slice is not legal. 10331 if (!Origin || !Inst || !DAG) 10332 return false; 10333 10334 // Offsets are for indexed load only, we do not handle that. 10335 if (!Origin->getOffset().isUndef()) 10336 return false; 10337 10338 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10339 10340 // Check that the type is legal. 10341 EVT SliceType = getLoadedType(); 10342 if (!TLI.isTypeLegal(SliceType)) 10343 return false; 10344 10345 // Check that the load is legal for this type. 10346 if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) 10347 return false; 10348 10349 // Check that the offset can be computed. 10350 // 1. Check its type. 10351 EVT PtrType = Origin->getBasePtr().getValueType(); 10352 if (PtrType == MVT::Untyped || PtrType.isExtended()) 10353 return false; 10354 10355 // 2. Check that it fits in the immediate. 10356 if (!TLI.isLegalAddImmediate(getOffsetFromBase())) 10357 return false; 10358 10359 // 3. Check that the computation is legal. 10360 if (!TLI.isOperationLegal(ISD::ADD, PtrType)) 10361 return false; 10362 10363 // Check that the zext is legal if it needs one. 10364 EVT TruncateType = Inst->getValueType(0); 10365 if (TruncateType != SliceType && 10366 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) 10367 return false; 10368 10369 return true; 10370 } 10371 10372 /// \brief Get the offset in bytes of this slice in the original chunk of 10373 /// bits. 10374 /// \pre DAG != nullptr. 10375 uint64_t getOffsetFromBase() const { 10376 assert(DAG && "Missing context."); 10377 bool IsBigEndian = DAG->getDataLayout().isBigEndian(); 10378 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); 10379 uint64_t Offset = Shift / 8; 10380 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; 10381 assert(!(Origin->getValueSizeInBits(0) & 0x7) && 10382 "The size of the original loaded type is not a multiple of a" 10383 " byte."); 10384 // If Offset is bigger than TySizeInBytes, it means we are loading all 10385 // zeros. This should have been optimized before in the process. 10386 assert(TySizeInBytes > Offset && 10387 "Invalid shift amount for given loaded size"); 10388 if (IsBigEndian) 10389 Offset = TySizeInBytes - Offset - getLoadedSize(); 10390 return Offset; 10391 } 10392 10393 /// \brief Generate the sequence of instructions to load the slice 10394 /// represented by this object and redirect the uses of this slice to 10395 /// this new sequence of instructions. 10396 /// \pre this->Inst && this->Origin are valid Instructions and this 10397 /// object passed the legal check: LoadedSlice::isLegal returned true. 10398 /// \return The last instruction of the sequence used to load the slice. 10399 SDValue loadSlice() const { 10400 assert(Inst && Origin && "Unable to replace a non-existing slice."); 10401 const SDValue &OldBaseAddr = Origin->getBasePtr(); 10402 SDValue BaseAddr = OldBaseAddr; 10403 // Get the offset in that chunk of bytes w.r.t. the endianess. 10404 int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); 10405 assert(Offset >= 0 && "Offset too big to fit in int64_t!"); 10406 if (Offset) { 10407 // BaseAddr = BaseAddr + Offset. 10408 EVT ArithType = BaseAddr.getValueType(); 10409 SDLoc DL(Origin); 10410 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, 10411 DAG->getConstant(Offset, DL, ArithType)); 10412 } 10413 10414 // Create the type of the loaded slice according to its size. 10415 EVT SliceType = getLoadedType(); 10416 10417 // Create the load for the slice. 10418 SDValue LastInst = DAG->getLoad( 10419 SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, 10420 Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(), 10421 Origin->isNonTemporal(), Origin->isInvariant(), getAlignment()); 10422 // If the final type is not the same as the loaded type, this means that 10423 // we have to pad with zero. Create a zero extend for that. 10424 EVT FinalType = Inst->getValueType(0); 10425 if (SliceType != FinalType) 10426 LastInst = 10427 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); 10428 return LastInst; 10429 } 10430 10431 /// \brief Check if this slice can be merged with an expensive cross register 10432 /// bank copy. E.g., 10433 /// i = load i32 10434 /// f = bitcast i32 i to float 10435 bool canMergeExpensiveCrossRegisterBankCopy() const { 10436 if (!Inst || !Inst->hasOneUse()) 10437 return false; 10438 SDNode *Use = *Inst->use_begin(); 10439 if (Use->getOpcode() != ISD::BITCAST) 10440 return false; 10441 assert(DAG && "Missing context"); 10442 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 10443 EVT ResVT = Use->getValueType(0); 10444 const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT()); 10445 const TargetRegisterClass *ArgRC = 10446 TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT()); 10447 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) 10448 return false; 10449 10450 // At this point, we know that we perform a cross-register-bank copy. 10451 // Check if it is expensive. 10452 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); 10453 // Assume bitcasts are cheap, unless both register classes do not 10454 // explicitly share a common sub class. 10455 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) 10456 return false; 10457 10458 // Check if it will be merged with the load. 10459 // 1. Check the alignment constraint. 10460 unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment( 10461 ResVT.getTypeForEVT(*DAG->getContext())); 10462 10463 if (RequiredAlignment > getAlignment()) 10464 return false; 10465 10466 // 2. Check that the load is a legal operation for that type. 10467 if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) 10468 return false; 10469 10470 // 3. Check that we do not have a zext in the way. 10471 if (Inst->getValueType(0) != getLoadedType()) 10472 return false; 10473 10474 return true; 10475 } 10476 }; 10477 } 10478 10479 /// \brief Check that all bits set in \p UsedBits form a dense region, i.e., 10480 /// \p UsedBits looks like 0..0 1..1 0..0. 10481 static bool areUsedBitsDense(const APInt &UsedBits) { 10482 // If all the bits are one, this is dense! 10483 if (UsedBits.isAllOnesValue()) 10484 return true; 10485 10486 // Get rid of the unused bits on the right. 10487 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); 10488 // Get rid of the unused bits on the left. 10489 if (NarrowedUsedBits.countLeadingZeros()) 10490 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); 10491 // Check that the chunk of bits is completely used. 10492 return NarrowedUsedBits.isAllOnesValue(); 10493 } 10494 10495 /// \brief Check whether or not \p First and \p Second are next to each other 10496 /// in memory. This means that there is no hole between the bits loaded 10497 /// by \p First and the bits loaded by \p Second. 10498 static bool areSlicesNextToEachOther(const LoadedSlice &First, 10499 const LoadedSlice &Second) { 10500 assert(First.Origin == Second.Origin && First.Origin && 10501 "Unable to match different memory origins."); 10502 APInt UsedBits = First.getUsedBits(); 10503 assert((UsedBits & Second.getUsedBits()) == 0 && 10504 "Slices are not supposed to overlap."); 10505 UsedBits |= Second.getUsedBits(); 10506 return areUsedBitsDense(UsedBits); 10507 } 10508 10509 /// \brief Adjust the \p GlobalLSCost according to the target 10510 /// paring capabilities and the layout of the slices. 10511 /// \pre \p GlobalLSCost should account for at least as many loads as 10512 /// there is in the slices in \p LoadedSlices. 10513 static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10514 LoadedSlice::Cost &GlobalLSCost) { 10515 unsigned NumberOfSlices = LoadedSlices.size(); 10516 // If there is less than 2 elements, no pairing is possible. 10517 if (NumberOfSlices < 2) 10518 return; 10519 10520 // Sort the slices so that elements that are likely to be next to each 10521 // other in memory are next to each other in the list. 10522 std::sort(LoadedSlices.begin(), LoadedSlices.end(), 10523 [](const LoadedSlice &LHS, const LoadedSlice &RHS) { 10524 assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); 10525 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); 10526 }); 10527 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); 10528 // First (resp. Second) is the first (resp. Second) potentially candidate 10529 // to be placed in a paired load. 10530 const LoadedSlice *First = nullptr; 10531 const LoadedSlice *Second = nullptr; 10532 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, 10533 // Set the beginning of the pair. 10534 First = Second) { 10535 10536 Second = &LoadedSlices[CurrSlice]; 10537 10538 // If First is NULL, it means we start a new pair. 10539 // Get to the next slice. 10540 if (!First) 10541 continue; 10542 10543 EVT LoadedType = First->getLoadedType(); 10544 10545 // If the types of the slices are different, we cannot pair them. 10546 if (LoadedType != Second->getLoadedType()) 10547 continue; 10548 10549 // Check if the target supplies paired loads for this type. 10550 unsigned RequiredAlignment = 0; 10551 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { 10552 // move to the next pair, this type is hopeless. 10553 Second = nullptr; 10554 continue; 10555 } 10556 // Check if we meet the alignment requirement. 10557 if (RequiredAlignment > First->getAlignment()) 10558 continue; 10559 10560 // Check that both loads are next to each other in memory. 10561 if (!areSlicesNextToEachOther(*First, *Second)) 10562 continue; 10563 10564 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); 10565 --GlobalLSCost.Loads; 10566 // Move to the next pair. 10567 Second = nullptr; 10568 } 10569 } 10570 10571 /// \brief Check the profitability of all involved LoadedSlice. 10572 /// Currently, it is considered profitable if there is exactly two 10573 /// involved slices (1) which are (2) next to each other in memory, and 10574 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). 10575 /// 10576 /// Note: The order of the elements in \p LoadedSlices may be modified, but not 10577 /// the elements themselves. 10578 /// 10579 /// FIXME: When the cost model will be mature enough, we can relax 10580 /// constraints (1) and (2). 10581 static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, 10582 const APInt &UsedBits, bool ForCodeSize) { 10583 unsigned NumberOfSlices = LoadedSlices.size(); 10584 if (StressLoadSlicing) 10585 return NumberOfSlices > 1; 10586 10587 // Check (1). 10588 if (NumberOfSlices != 2) 10589 return false; 10590 10591 // Check (2). 10592 if (!areUsedBitsDense(UsedBits)) 10593 return false; 10594 10595 // Check (3). 10596 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); 10597 // The original code has one big load. 10598 OrigCost.Loads = 1; 10599 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { 10600 const LoadedSlice &LS = LoadedSlices[CurrSlice]; 10601 // Accumulate the cost of all the slices. 10602 LoadedSlice::Cost SliceCost(LS, ForCodeSize); 10603 GlobalSlicingCost += SliceCost; 10604 10605 // Account as cost in the original configuration the gain obtained 10606 // with the current slices. 10607 OrigCost.addSliceGain(LS); 10608 } 10609 10610 // If the target supports paired load, adjust the cost accordingly. 10611 adjustCostForPairing(LoadedSlices, GlobalSlicingCost); 10612 return OrigCost > GlobalSlicingCost; 10613 } 10614 10615 /// \brief If the given load, \p LI, is used only by trunc or trunc(lshr) 10616 /// operations, split it in the various pieces being extracted. 10617 /// 10618 /// This sort of thing is introduced by SROA. 10619 /// This slicing takes care not to insert overlapping loads. 10620 /// \pre LI is a simple load (i.e., not an atomic or volatile load). 10621 bool DAGCombiner::SliceUpLoad(SDNode *N) { 10622 if (Level < AfterLegalizeDAG) 10623 return false; 10624 10625 LoadSDNode *LD = cast<LoadSDNode>(N); 10626 if (LD->isVolatile() || !ISD::isNormalLoad(LD) || 10627 !LD->getValueType(0).isInteger()) 10628 return false; 10629 10630 // Keep track of already used bits to detect overlapping values. 10631 // In that case, we will just abort the transformation. 10632 APInt UsedBits(LD->getValueSizeInBits(0), 0); 10633 10634 SmallVector<LoadedSlice, 4> LoadedSlices; 10635 10636 // Check if this load is used as several smaller chunks of bits. 10637 // Basically, look for uses in trunc or trunc(lshr) and record a new chain 10638 // of computation for each trunc. 10639 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 10640 UI != UIEnd; ++UI) { 10641 // Skip the uses of the chain. 10642 if (UI.getUse().getResNo() != 0) 10643 continue; 10644 10645 SDNode *User = *UI; 10646 unsigned Shift = 0; 10647 10648 // Check if this is a trunc(lshr). 10649 if (User->getOpcode() == ISD::SRL && User->hasOneUse() && 10650 isa<ConstantSDNode>(User->getOperand(1))) { 10651 Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue(); 10652 User = *User->use_begin(); 10653 } 10654 10655 // At this point, User is a Truncate, iff we encountered, trunc or 10656 // trunc(lshr). 10657 if (User->getOpcode() != ISD::TRUNCATE) 10658 return false; 10659 10660 // The width of the type must be a power of 2 and greater than 8-bits. 10661 // Otherwise the load cannot be represented in LLVM IR. 10662 // Moreover, if we shifted with a non-8-bits multiple, the slice 10663 // will be across several bytes. We do not support that. 10664 unsigned Width = User->getValueSizeInBits(0); 10665 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) 10666 return 0; 10667 10668 // Build the slice for this chain of computations. 10669 LoadedSlice LS(User, LD, Shift, &DAG); 10670 APInt CurrentUsedBits = LS.getUsedBits(); 10671 10672 // Check if this slice overlaps with another. 10673 if ((CurrentUsedBits & UsedBits) != 0) 10674 return false; 10675 // Update the bits used globally. 10676 UsedBits |= CurrentUsedBits; 10677 10678 // Check if the new slice would be legal. 10679 if (!LS.isLegal()) 10680 return false; 10681 10682 // Record the slice. 10683 LoadedSlices.push_back(LS); 10684 } 10685 10686 // Abort slicing if it does not seem to be profitable. 10687 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) 10688 return false; 10689 10690 ++SlicedLoads; 10691 10692 // Rewrite each chain to use an independent load. 10693 // By construction, each chain can be represented by a unique load. 10694 10695 // Prepare the argument for the new token factor for all the slices. 10696 SmallVector<SDValue, 8> ArgChains; 10697 for (SmallVectorImpl<LoadedSlice>::const_iterator 10698 LSIt = LoadedSlices.begin(), 10699 LSItEnd = LoadedSlices.end(); 10700 LSIt != LSItEnd; ++LSIt) { 10701 SDValue SliceInst = LSIt->loadSlice(); 10702 CombineTo(LSIt->Inst, SliceInst, true); 10703 if (SliceInst.getNode()->getOpcode() != ISD::LOAD) 10704 SliceInst = SliceInst.getOperand(0); 10705 assert(SliceInst->getOpcode() == ISD::LOAD && 10706 "It takes more than a zext to get to the loaded slice!!"); 10707 ArgChains.push_back(SliceInst.getValue(1)); 10708 } 10709 10710 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, 10711 ArgChains); 10712 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 10713 return true; 10714 } 10715 10716 /// Check to see if V is (and load (ptr), imm), where the load is having 10717 /// specific bytes cleared out. If so, return the byte size being masked out 10718 /// and the shift amount. 10719 static std::pair<unsigned, unsigned> 10720 CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { 10721 std::pair<unsigned, unsigned> Result(0, 0); 10722 10723 // Check for the structure we're looking for. 10724 if (V->getOpcode() != ISD::AND || 10725 !isa<ConstantSDNode>(V->getOperand(1)) || 10726 !ISD::isNormalLoad(V->getOperand(0).getNode())) 10727 return Result; 10728 10729 // Check the chain and pointer. 10730 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); 10731 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. 10732 10733 // The store should be chained directly to the load or be an operand of a 10734 // tokenfactor. 10735 if (LD == Chain.getNode()) 10736 ; // ok. 10737 else if (Chain->getOpcode() != ISD::TokenFactor) 10738 return Result; // Fail. 10739 else { 10740 bool isOk = false; 10741 for (const SDValue &ChainOp : Chain->op_values()) 10742 if (ChainOp.getNode() == LD) { 10743 isOk = true; 10744 break; 10745 } 10746 if (!isOk) return Result; 10747 } 10748 10749 // This only handles simple types. 10750 if (V.getValueType() != MVT::i16 && 10751 V.getValueType() != MVT::i32 && 10752 V.getValueType() != MVT::i64) 10753 return Result; 10754 10755 // Check the constant mask. Invert it so that the bits being masked out are 10756 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits 10757 // follow the sign bit for uniformity. 10758 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); 10759 unsigned NotMaskLZ = countLeadingZeros(NotMask); 10760 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. 10761 unsigned NotMaskTZ = countTrailingZeros(NotMask); 10762 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. 10763 if (NotMaskLZ == 64) return Result; // All zero mask. 10764 10765 // See if we have a continuous run of bits. If so, we have 0*1+0* 10766 if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) 10767 return Result; 10768 10769 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. 10770 if (V.getValueType() != MVT::i64 && NotMaskLZ) 10771 NotMaskLZ -= 64-V.getValueSizeInBits(); 10772 10773 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; 10774 switch (MaskedBytes) { 10775 case 1: 10776 case 2: 10777 case 4: break; 10778 default: return Result; // All one mask, or 5-byte mask. 10779 } 10780 10781 // Verify that the first bit starts at a multiple of mask so that the access 10782 // is aligned the same as the access width. 10783 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; 10784 10785 Result.first = MaskedBytes; 10786 Result.second = NotMaskTZ/8; 10787 return Result; 10788 } 10789 10790 10791 /// Check to see if IVal is something that provides a value as specified by 10792 /// MaskInfo. If so, replace the specified store with a narrower store of 10793 /// truncated IVal. 10794 static SDNode * 10795 ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, 10796 SDValue IVal, StoreSDNode *St, 10797 DAGCombiner *DC) { 10798 unsigned NumBytes = MaskInfo.first; 10799 unsigned ByteShift = MaskInfo.second; 10800 SelectionDAG &DAG = DC->getDAG(); 10801 10802 // Check to see if IVal is all zeros in the part being masked in by the 'or' 10803 // that uses this. If not, this is not a replacement. 10804 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), 10805 ByteShift*8, (ByteShift+NumBytes)*8); 10806 if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr; 10807 10808 // Check that it is legal on the target to do this. It is legal if the new 10809 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type 10810 // legalization. 10811 MVT VT = MVT::getIntegerVT(NumBytes*8); 10812 if (!DC->isTypeLegal(VT)) 10813 return nullptr; 10814 10815 // Okay, we can do this! Replace the 'St' store with a store of IVal that is 10816 // shifted by ByteShift and truncated down to NumBytes. 10817 if (ByteShift) { 10818 SDLoc DL(IVal); 10819 IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, 10820 DAG.getConstant(ByteShift*8, DL, 10821 DC->getShiftAmountTy(IVal.getValueType()))); 10822 } 10823 10824 // Figure out the offset for the store and the alignment of the access. 10825 unsigned StOffset; 10826 unsigned NewAlign = St->getAlignment(); 10827 10828 if (DAG.getDataLayout().isLittleEndian()) 10829 StOffset = ByteShift; 10830 else 10831 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; 10832 10833 SDValue Ptr = St->getBasePtr(); 10834 if (StOffset) { 10835 SDLoc DL(IVal); 10836 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), 10837 Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType())); 10838 NewAlign = MinAlign(NewAlign, StOffset); 10839 } 10840 10841 // Truncate down to the new size. 10842 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); 10843 10844 ++OpsNarrowed; 10845 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr, 10846 St->getPointerInfo().getWithOffset(StOffset), 10847 false, false, NewAlign).getNode(); 10848 } 10849 10850 10851 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and 10852 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try 10853 /// narrowing the load and store if it would end up being a win for performance 10854 /// or code size. 10855 SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { 10856 StoreSDNode *ST = cast<StoreSDNode>(N); 10857 if (ST->isVolatile()) 10858 return SDValue(); 10859 10860 SDValue Chain = ST->getChain(); 10861 SDValue Value = ST->getValue(); 10862 SDValue Ptr = ST->getBasePtr(); 10863 EVT VT = Value.getValueType(); 10864 10865 if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) 10866 return SDValue(); 10867 10868 unsigned Opc = Value.getOpcode(); 10869 10870 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst 10871 // is a byte mask indicating a consecutive number of bytes, check to see if 10872 // Y is known to provide just those bytes. If so, we try to replace the 10873 // load + replace + store sequence with a single (narrower) store, which makes 10874 // the load dead. 10875 if (Opc == ISD::OR) { 10876 std::pair<unsigned, unsigned> MaskedLoad; 10877 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); 10878 if (MaskedLoad.first) 10879 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10880 Value.getOperand(1), ST,this)) 10881 return SDValue(NewST, 0); 10882 10883 // Or is commutative, so try swapping X and Y. 10884 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); 10885 if (MaskedLoad.first) 10886 if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, 10887 Value.getOperand(0), ST,this)) 10888 return SDValue(NewST, 0); 10889 } 10890 10891 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || 10892 Value.getOperand(1).getOpcode() != ISD::Constant) 10893 return SDValue(); 10894 10895 SDValue N0 = Value.getOperand(0); 10896 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 10897 Chain == SDValue(N0.getNode(), 1)) { 10898 LoadSDNode *LD = cast<LoadSDNode>(N0); 10899 if (LD->getBasePtr() != Ptr || 10900 LD->getPointerInfo().getAddrSpace() != 10901 ST->getPointerInfo().getAddrSpace()) 10902 return SDValue(); 10903 10904 // Find the type to narrow it the load / op / store to. 10905 SDValue N1 = Value.getOperand(1); 10906 unsigned BitWidth = N1.getValueSizeInBits(); 10907 APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); 10908 if (Opc == ISD::AND) 10909 Imm ^= APInt::getAllOnesValue(BitWidth); 10910 if (Imm == 0 || Imm.isAllOnesValue()) 10911 return SDValue(); 10912 unsigned ShAmt = Imm.countTrailingZeros(); 10913 unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; 10914 unsigned NewBW = NextPowerOf2(MSB - ShAmt); 10915 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10916 // The narrowing should be profitable, the load/store operation should be 10917 // legal (or custom) and the store size should be equal to the NewVT width. 10918 while (NewBW < BitWidth && 10919 (NewVT.getStoreSizeInBits() != NewBW || 10920 !TLI.isOperationLegalOrCustom(Opc, NewVT) || 10921 !TLI.isNarrowingProfitable(VT, NewVT))) { 10922 NewBW = NextPowerOf2(NewBW); 10923 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); 10924 } 10925 if (NewBW >= BitWidth) 10926 return SDValue(); 10927 10928 // If the lsb changed does not start at the type bitwidth boundary, 10929 // start at the previous one. 10930 if (ShAmt % NewBW) 10931 ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; 10932 APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, 10933 std::min(BitWidth, ShAmt + NewBW)); 10934 if ((Imm & Mask) == Imm) { 10935 APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); 10936 if (Opc == ISD::AND) 10937 NewImm ^= APInt::getAllOnesValue(NewBW); 10938 uint64_t PtrOff = ShAmt / 8; 10939 // For big endian targets, we need to adjust the offset to the pointer to 10940 // load the correct bytes. 10941 if (DAG.getDataLayout().isBigEndian()) 10942 PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; 10943 10944 unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); 10945 Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); 10946 if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy)) 10947 return SDValue(); 10948 10949 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD), 10950 Ptr.getValueType(), Ptr, 10951 DAG.getConstant(PtrOff, SDLoc(LD), 10952 Ptr.getValueType())); 10953 SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0), 10954 LD->getChain(), NewPtr, 10955 LD->getPointerInfo().getWithOffset(PtrOff), 10956 LD->isVolatile(), LD->isNonTemporal(), 10957 LD->isInvariant(), NewAlign, 10958 LD->getAAInfo()); 10959 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, 10960 DAG.getConstant(NewImm, SDLoc(Value), 10961 NewVT)); 10962 SDValue NewST = DAG.getStore(Chain, SDLoc(N), 10963 NewVal, NewPtr, 10964 ST->getPointerInfo().getWithOffset(PtrOff), 10965 false, false, NewAlign); 10966 10967 AddToWorklist(NewPtr.getNode()); 10968 AddToWorklist(NewLD.getNode()); 10969 AddToWorklist(NewVal.getNode()); 10970 WorklistRemover DeadNodes(*this); 10971 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); 10972 ++OpsNarrowed; 10973 return NewST; 10974 } 10975 } 10976 10977 return SDValue(); 10978 } 10979 10980 /// For a given floating point load / store pair, if the load value isn't used 10981 /// by any other operations, then consider transforming the pair to integer 10982 /// load / store operations if the target deems the transformation profitable. 10983 SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { 10984 StoreSDNode *ST = cast<StoreSDNode>(N); 10985 SDValue Chain = ST->getChain(); 10986 SDValue Value = ST->getValue(); 10987 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && 10988 Value.hasOneUse() && 10989 Chain == SDValue(Value.getNode(), 1)) { 10990 LoadSDNode *LD = cast<LoadSDNode>(Value); 10991 EVT VT = LD->getMemoryVT(); 10992 if (!VT.isFloatingPoint() || 10993 VT != ST->getMemoryVT() || 10994 LD->isNonTemporal() || 10995 ST->isNonTemporal() || 10996 LD->getPointerInfo().getAddrSpace() != 0 || 10997 ST->getPointerInfo().getAddrSpace() != 0) 10998 return SDValue(); 10999 11000 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 11001 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || 11002 !TLI.isOperationLegal(ISD::STORE, IntVT) || 11003 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || 11004 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) 11005 return SDValue(); 11006 11007 unsigned LDAlign = LD->getAlignment(); 11008 unsigned STAlign = ST->getAlignment(); 11009 Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); 11010 unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy); 11011 if (LDAlign < ABIAlign || STAlign < ABIAlign) 11012 return SDValue(); 11013 11014 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), 11015 LD->getChain(), LD->getBasePtr(), 11016 LD->getPointerInfo(), 11017 false, false, false, LDAlign); 11018 11019 SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N), 11020 NewLD, ST->getBasePtr(), 11021 ST->getPointerInfo(), 11022 false, false, STAlign); 11023 11024 AddToWorklist(NewLD.getNode()); 11025 AddToWorklist(NewST.getNode()); 11026 WorklistRemover DeadNodes(*this); 11027 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); 11028 ++LdStFP2Int; 11029 return NewST; 11030 } 11031 11032 return SDValue(); 11033 } 11034 11035 namespace { 11036 /// Helper struct to parse and store a memory address as base + index + offset. 11037 /// We ignore sign extensions when it is safe to do so. 11038 /// The following two expressions are not equivalent. To differentiate we need 11039 /// to store whether there was a sign extension involved in the index 11040 /// computation. 11041 /// (load (i64 add (i64 copyfromreg %c) 11042 /// (i64 signextend (add (i8 load %index) 11043 /// (i8 1)))) 11044 /// vs 11045 /// 11046 /// (load (i64 add (i64 copyfromreg %c) 11047 /// (i64 signextend (i32 add (i32 signextend (i8 load %index)) 11048 /// (i32 1))))) 11049 struct BaseIndexOffset { 11050 SDValue Base; 11051 SDValue Index; 11052 int64_t Offset; 11053 bool IsIndexSignExt; 11054 11055 BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {} 11056 11057 BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset, 11058 bool IsIndexSignExt) : 11059 Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {} 11060 11061 bool equalBaseIndex(const BaseIndexOffset &Other) { 11062 return Other.Base == Base && Other.Index == Index && 11063 Other.IsIndexSignExt == IsIndexSignExt; 11064 } 11065 11066 /// Parses tree in Ptr for base, index, offset addresses. 11067 static BaseIndexOffset match(SDValue Ptr, SelectionDAG &DAG) { 11068 bool IsIndexSignExt = false; 11069 11070 // Split up a folded GlobalAddress+Offset into its component parts. 11071 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ptr)) 11072 if (GA->getOpcode() == ISD::GlobalAddress && GA->getOffset() != 0) { 11073 return BaseIndexOffset(DAG.getGlobalAddress(GA->getGlobal(), 11074 SDLoc(GA), 11075 GA->getValueType(0), 11076 /*Offset=*/0, 11077 /*isTargetGA=*/false, 11078 GA->getTargetFlags()), 11079 SDValue(), 11080 GA->getOffset(), 11081 IsIndexSignExt); 11082 } 11083 11084 // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD 11085 // instruction, then it could be just the BASE or everything else we don't 11086 // know how to handle. Just use Ptr as BASE and give up. 11087 if (Ptr->getOpcode() != ISD::ADD) 11088 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11089 11090 // We know that we have at least an ADD instruction. Try to pattern match 11091 // the simple case of BASE + OFFSET. 11092 if (isa<ConstantSDNode>(Ptr->getOperand(1))) { 11093 int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue(); 11094 return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset, 11095 IsIndexSignExt); 11096 } 11097 11098 // Inside a loop the current BASE pointer is calculated using an ADD and a 11099 // MUL instruction. In this case Ptr is the actual BASE pointer. 11100 // (i64 add (i64 %array_ptr) 11101 // (i64 mul (i64 %induction_var) 11102 // (i64 %element_size))) 11103 if (Ptr->getOperand(1)->getOpcode() == ISD::MUL) 11104 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11105 11106 // Look at Base + Index + Offset cases. 11107 SDValue Base = Ptr->getOperand(0); 11108 SDValue IndexOffset = Ptr->getOperand(1); 11109 11110 // Skip signextends. 11111 if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) { 11112 IndexOffset = IndexOffset->getOperand(0); 11113 IsIndexSignExt = true; 11114 } 11115 11116 // Either the case of Base + Index (no offset) or something else. 11117 if (IndexOffset->getOpcode() != ISD::ADD) 11118 return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt); 11119 11120 // Now we have the case of Base + Index + offset. 11121 SDValue Index = IndexOffset->getOperand(0); 11122 SDValue Offset = IndexOffset->getOperand(1); 11123 11124 if (!isa<ConstantSDNode>(Offset)) 11125 return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt); 11126 11127 // Ignore signextends. 11128 if (Index->getOpcode() == ISD::SIGN_EXTEND) { 11129 Index = Index->getOperand(0); 11130 IsIndexSignExt = true; 11131 } else IsIndexSignExt = false; 11132 11133 int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue(); 11134 return BaseIndexOffset(Base, Index, Off, IsIndexSignExt); 11135 } 11136 }; 11137 } // namespace 11138 11139 // This is a helper function for visitMUL to check the profitability 11140 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). 11141 // MulNode is the original multiply, AddNode is (add x, c1), 11142 // and ConstNode is c2. 11143 // 11144 // If the (add x, c1) has multiple uses, we could increase 11145 // the number of adds if we make this transformation. 11146 // It would only be worth doing this if we can remove a 11147 // multiply in the process. Check for that here. 11148 // To illustrate: 11149 // (A + c1) * c3 11150 // (A + c2) * c3 11151 // We're checking for cases where we have common "c3 * A" expressions. 11152 bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, 11153 SDValue &AddNode, 11154 SDValue &ConstNode) { 11155 APInt Val; 11156 11157 // If the add only has one use, this would be OK to do. 11158 if (AddNode.getNode()->hasOneUse()) 11159 return true; 11160 11161 // Walk all the users of the constant with which we're multiplying. 11162 for (SDNode *Use : ConstNode->uses()) { 11163 11164 if (Use == MulNode) // This use is the one we're on right now. Skip it. 11165 continue; 11166 11167 if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. 11168 SDNode *OtherOp; 11169 SDNode *MulVar = AddNode.getOperand(0).getNode(); 11170 11171 // OtherOp is what we're multiplying against the constant. 11172 if (Use->getOperand(0) == ConstNode) 11173 OtherOp = Use->getOperand(1).getNode(); 11174 else 11175 OtherOp = Use->getOperand(0).getNode(); 11176 11177 // Check to see if multiply is with the same operand of our "add". 11178 // 11179 // ConstNode = CONST 11180 // Use = ConstNode * A <-- visiting Use. OtherOp is A. 11181 // ... 11182 // AddNode = (A + c1) <-- MulVar is A. 11183 // = AddNode * ConstNode <-- current visiting instruction. 11184 // 11185 // If we make this transformation, we will have a common 11186 // multiply (ConstNode * A) that we can save. 11187 if (OtherOp == MulVar) 11188 return true; 11189 11190 // Now check to see if a future expansion will give us a common 11191 // multiply. 11192 // 11193 // ConstNode = CONST 11194 // AddNode = (A + c1) 11195 // ... = AddNode * ConstNode <-- current visiting instruction. 11196 // ... 11197 // OtherOp = (A + c2) 11198 // Use = OtherOp * ConstNode <-- visiting Use. 11199 // 11200 // If we make this transformation, we will have a common 11201 // multiply (CONST * A) after we also do the same transformation 11202 // to the "t2" instruction. 11203 if (OtherOp->getOpcode() == ISD::ADD && 11204 DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && 11205 OtherOp->getOperand(0).getNode() == MulVar) 11206 return true; 11207 } 11208 } 11209 11210 // Didn't find a case where this would be profitable. 11211 return false; 11212 } 11213 11214 SDValue DAGCombiner::getMergedConstantVectorStore( 11215 SelectionDAG &DAG, const SDLoc &SL, ArrayRef<MemOpLink> Stores, 11216 SmallVectorImpl<SDValue> &Chains, EVT Ty) const { 11217 SmallVector<SDValue, 8> BuildVector; 11218 11219 for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) { 11220 StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode); 11221 Chains.push_back(St->getChain()); 11222 BuildVector.push_back(St->getValue()); 11223 } 11224 11225 return DAG.getBuildVector(Ty, SL, BuildVector); 11226 } 11227 11228 bool DAGCombiner::MergeStoresOfConstantsOrVecElts( 11229 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, 11230 unsigned NumStores, bool IsConstantSrc, bool UseVector) { 11231 // Make sure we have something to merge. 11232 if (NumStores < 2) 11233 return false; 11234 11235 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11236 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11237 unsigned LatestNodeUsed = 0; 11238 11239 for (unsigned i=0; i < NumStores; ++i) { 11240 // Find a chain for the new wide-store operand. Notice that some 11241 // of the store nodes that we found may not be selected for inclusion 11242 // in the wide store. The chain we use needs to be the chain of the 11243 // latest store node which is *used* and replaced by the wide store. 11244 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11245 LatestNodeUsed = i; 11246 } 11247 11248 SmallVector<SDValue, 8> Chains; 11249 11250 // The latest Node in the DAG. 11251 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11252 SDLoc DL(StoreNodes[0].MemNode); 11253 11254 SDValue StoredVal; 11255 if (UseVector) { 11256 bool IsVec = MemVT.isVector(); 11257 unsigned Elts = NumStores; 11258 if (IsVec) { 11259 // When merging vector stores, get the total number of elements. 11260 Elts *= MemVT.getVectorNumElements(); 11261 } 11262 // Get the type for the merged vector store. 11263 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11264 assert(TLI.isTypeLegal(Ty) && "Illegal vector store"); 11265 11266 if (IsConstantSrc) { 11267 StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty); 11268 } else { 11269 SmallVector<SDValue, 8> Ops; 11270 for (unsigned i = 0; i < NumStores; ++i) { 11271 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11272 SDValue Val = St->getValue(); 11273 // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type. 11274 if (Val.getValueType() != MemVT) 11275 return false; 11276 Ops.push_back(Val); 11277 Chains.push_back(St->getChain()); 11278 } 11279 11280 // Build the extracted vector elements back into a vector. 11281 StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, 11282 DL, Ty, Ops); } 11283 } else { 11284 // We should always use a vector store when merging extracted vector 11285 // elements, so this path implies a store of constants. 11286 assert(IsConstantSrc && "Merged vector elements should use vector store"); 11287 11288 unsigned SizeInBits = NumStores * ElementSizeBytes * 8; 11289 APInt StoreInt(SizeInBits, 0); 11290 11291 // Construct a single integer constant which is made of the smaller 11292 // constant inputs. 11293 bool IsLE = DAG.getDataLayout().isLittleEndian(); 11294 for (unsigned i = 0; i < NumStores; ++i) { 11295 unsigned Idx = IsLE ? (NumStores - 1 - i) : i; 11296 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); 11297 Chains.push_back(St->getChain()); 11298 11299 SDValue Val = St->getValue(); 11300 StoreInt <<= ElementSizeBytes * 8; 11301 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { 11302 StoreInt |= C->getAPIntValue().zext(SizeInBits); 11303 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { 11304 StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits); 11305 } else { 11306 llvm_unreachable("Invalid constant element type"); 11307 } 11308 } 11309 11310 // Create the new Load and Store operations. 11311 EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); 11312 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); 11313 } 11314 11315 assert(!Chains.empty()); 11316 11317 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 11318 SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal, 11319 FirstInChain->getBasePtr(), 11320 FirstInChain->getPointerInfo(), 11321 false, false, 11322 FirstInChain->getAlignment()); 11323 11324 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11325 : DAG.getSubtarget().useAA(); 11326 if (UseAA) { 11327 // Replace all merged stores with the new store. 11328 for (unsigned i = 0; i < NumStores; ++i) 11329 CombineTo(StoreNodes[i].MemNode, NewStore); 11330 } else { 11331 // Replace the last store with the new store. 11332 CombineTo(LatestOp, NewStore); 11333 // Erase all other stores. 11334 for (unsigned i = 0; i < NumStores; ++i) { 11335 if (StoreNodes[i].MemNode == LatestOp) 11336 continue; 11337 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11338 // ReplaceAllUsesWith will replace all uses that existed when it was 11339 // called, but graph optimizations may cause new ones to appear. For 11340 // example, the case in pr14333 looks like 11341 // 11342 // St's chain -> St -> another store -> X 11343 // 11344 // And the only difference from St to the other store is the chain. 11345 // When we change it's chain to be St's chain they become identical, 11346 // get CSEed and the net result is that X is now a use of St. 11347 // Since we know that St is redundant, just iterate. 11348 while (!St->use_empty()) 11349 DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain()); 11350 deleteAndRecombine(St); 11351 } 11352 } 11353 11354 return true; 11355 } 11356 11357 void DAGCombiner::getStoreMergeAndAliasCandidates( 11358 StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes, 11359 SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) { 11360 // This holds the base pointer, index, and the offset in bytes from the base 11361 // pointer. 11362 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 11363 11364 // We must have a base and an offset. 11365 if (!BasePtr.Base.getNode()) 11366 return; 11367 11368 // Do not handle stores to undef base pointers. 11369 if (BasePtr.Base.isUndef()) 11370 return; 11371 11372 // Walk up the chain and look for nodes with offsets from the same 11373 // base pointer. Stop when reaching an instruction with a different kind 11374 // or instruction which has a different base pointer. 11375 EVT MemVT = St->getMemoryVT(); 11376 unsigned Seq = 0; 11377 StoreSDNode *Index = St; 11378 11379 11380 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11381 : DAG.getSubtarget().useAA(); 11382 11383 if (UseAA) { 11384 // Look at other users of the same chain. Stores on the same chain do not 11385 // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized 11386 // to be on the same chain, so don't bother looking at adjacent chains. 11387 11388 SDValue Chain = St->getChain(); 11389 for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) { 11390 if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) { 11391 if (I.getOperandNo() != 0) 11392 continue; 11393 11394 if (OtherST->isVolatile() || OtherST->isIndexed()) 11395 continue; 11396 11397 if (OtherST->getMemoryVT() != MemVT) 11398 continue; 11399 11400 BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr(), DAG); 11401 11402 if (Ptr.equalBaseIndex(BasePtr)) 11403 StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++)); 11404 } 11405 } 11406 11407 return; 11408 } 11409 11410 while (Index) { 11411 // If the chain has more than one use, then we can't reorder the mem ops. 11412 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 11413 break; 11414 11415 // Find the base pointer and offset for this memory node. 11416 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 11417 11418 // Check that the base pointer is the same as the original one. 11419 if (!Ptr.equalBaseIndex(BasePtr)) 11420 break; 11421 11422 // The memory operands must not be volatile. 11423 if (Index->isVolatile() || Index->isIndexed()) 11424 break; 11425 11426 // No truncation. 11427 if (Index->isTruncatingStore()) 11428 break; 11429 11430 // The stored memory type must be the same. 11431 if (Index->getMemoryVT() != MemVT) 11432 break; 11433 11434 // We do not allow under-aligned stores in order to prevent 11435 // overriding stores. NOTE: this is a bad hack. Alignment SHOULD 11436 // be irrelevant here; what MATTERS is that we not move memory 11437 // operations that potentially overlap past each-other. 11438 if (Index->getAlignment() < MemVT.getStoreSize()) 11439 break; 11440 11441 // We found a potential memory operand to merge. 11442 StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++)); 11443 11444 // Find the next memory operand in the chain. If the next operand in the 11445 // chain is a store then move up and continue the scan with the next 11446 // memory operand. If the next operand is a load save it and use alias 11447 // information to check if it interferes with anything. 11448 SDNode *NextInChain = Index->getChain().getNode(); 11449 while (1) { 11450 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 11451 // We found a store node. Use it for the next iteration. 11452 Index = STn; 11453 break; 11454 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 11455 if (Ldn->isVolatile()) { 11456 Index = nullptr; 11457 break; 11458 } 11459 11460 // Save the load node for later. Continue the scan. 11461 AliasLoadNodes.push_back(Ldn); 11462 NextInChain = Ldn->getChain().getNode(); 11463 continue; 11464 } else { 11465 Index = nullptr; 11466 break; 11467 } 11468 } 11469 } 11470 } 11471 11472 // We need to check that merging these stores does not cause a loop 11473 // in the DAG. Any store candidate may depend on another candidate 11474 // indirectly through its operand (we already consider dependencies 11475 // through the chain). Check in parallel by searching up from 11476 // non-chain operands of candidates. 11477 bool DAGCombiner::checkMergeStoreCandidatesForDependencies( 11478 SmallVectorImpl<MemOpLink> &StoreNodes) { 11479 SmallPtrSet<const SDNode *, 16> Visited; 11480 SmallVector<const SDNode *, 8> Worklist; 11481 // search ops of store candidates 11482 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11483 SDNode *n = StoreNodes[i].MemNode; 11484 // Potential loops may happen only through non-chain operands 11485 for (unsigned j = 1; j < n->getNumOperands(); ++j) 11486 Worklist.push_back(n->getOperand(j).getNode()); 11487 } 11488 // search through DAG. We can stop early if we find a storenode 11489 for (unsigned i = 0; i < StoreNodes.size(); ++i) { 11490 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist)) 11491 return false; 11492 } 11493 return true; 11494 } 11495 11496 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) { 11497 if (OptLevel == CodeGenOpt::None) 11498 return false; 11499 11500 EVT MemVT = St->getMemoryVT(); 11501 int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8; 11502 bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute( 11503 Attribute::NoImplicitFloat); 11504 11505 // This function cannot currently deal with non-byte-sized memory sizes. 11506 if (ElementSizeBytes * 8 != MemVT.getSizeInBits()) 11507 return false; 11508 11509 if (!MemVT.isSimple()) 11510 return false; 11511 11512 // Perform an early exit check. Do not bother looking at stored values that 11513 // are not constants, loads, or extracted vector elements. 11514 SDValue StoredVal = St->getValue(); 11515 bool IsLoadSrc = isa<LoadSDNode>(StoredVal); 11516 bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) || 11517 isa<ConstantFPSDNode>(StoredVal); 11518 bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT || 11519 StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR); 11520 11521 if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc) 11522 return false; 11523 11524 // Don't merge vectors into wider vectors if the source data comes from loads. 11525 // TODO: This restriction can be lifted by using logic similar to the 11526 // ExtractVecSrc case. 11527 if (MemVT.isVector() && IsLoadSrc) 11528 return false; 11529 11530 // Only look at ends of store sequences. 11531 SDValue Chain = SDValue(St, 0); 11532 if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE) 11533 return false; 11534 11535 // Save the LoadSDNodes that we find in the chain. 11536 // We need to make sure that these nodes do not interfere with 11537 // any of the store nodes. 11538 SmallVector<LSBaseSDNode*, 8> AliasLoadNodes; 11539 11540 // Save the StoreSDNodes that we find in the chain. 11541 SmallVector<MemOpLink, 8> StoreNodes; 11542 11543 getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes); 11544 11545 // Check if there is anything to merge. 11546 if (StoreNodes.size() < 2) 11547 return false; 11548 11549 // only do dep endence check in AA case 11550 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 11551 : DAG.getSubtarget().useAA(); 11552 if (UseAA && !checkMergeStoreCandidatesForDependencies(StoreNodes)) 11553 return false; 11554 11555 // Sort the memory operands according to their distance from the 11556 // base pointer. As a secondary criteria: make sure stores coming 11557 // later in the code come first in the list. This is important for 11558 // the non-UseAA case, because we're merging stores into the FINAL 11559 // store along a chain which potentially contains aliasing stores. 11560 // Thus, if there are multiple stores to the same address, the last 11561 // one can be considered for merging but not the others. 11562 std::sort(StoreNodes.begin(), StoreNodes.end(), 11563 [](MemOpLink LHS, MemOpLink RHS) { 11564 return LHS.OffsetFromBase < RHS.OffsetFromBase || 11565 (LHS.OffsetFromBase == RHS.OffsetFromBase && 11566 LHS.SequenceNum < RHS.SequenceNum); 11567 }); 11568 11569 // Scan the memory operations on the chain and find the first non-consecutive 11570 // store memory address. 11571 unsigned LastConsecutiveStore = 0; 11572 int64_t StartAddress = StoreNodes[0].OffsetFromBase; 11573 for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) { 11574 11575 // Check that the addresses are consecutive starting from the second 11576 // element in the list of stores. 11577 if (i > 0) { 11578 int64_t CurrAddress = StoreNodes[i].OffsetFromBase; 11579 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11580 break; 11581 } 11582 11583 // Check if this store interferes with any of the loads that we found. 11584 // If we find a load that alias with this store. Stop the sequence. 11585 if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(), 11586 [&](LSBaseSDNode* Ldn) { 11587 return isAlias(Ldn, StoreNodes[i].MemNode); 11588 })) 11589 break; 11590 11591 // Mark this node as useful. 11592 LastConsecutiveStore = i; 11593 } 11594 11595 // The node with the lowest store address. 11596 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; 11597 unsigned FirstStoreAS = FirstInChain->getAddressSpace(); 11598 unsigned FirstStoreAlign = FirstInChain->getAlignment(); 11599 LLVMContext &Context = *DAG.getContext(); 11600 const DataLayout &DL = DAG.getDataLayout(); 11601 11602 // Store the constants into memory as one consecutive store. 11603 if (IsConstantSrc) { 11604 unsigned LastLegalType = 0; 11605 unsigned LastLegalVectorType = 0; 11606 bool NonZero = false; 11607 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11608 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11609 SDValue StoredVal = St->getValue(); 11610 11611 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) { 11612 NonZero |= !C->isNullValue(); 11613 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) { 11614 NonZero |= !C->getConstantFPValue()->isNullValue(); 11615 } else { 11616 // Non-constant. 11617 break; 11618 } 11619 11620 // Find a legal type for the constant store. 11621 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11622 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11623 bool IsFast; 11624 if (TLI.isTypeLegal(StoreTy) && 11625 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11626 FirstStoreAlign, &IsFast) && IsFast) { 11627 LastLegalType = i+1; 11628 // Or check whether a truncstore is legal. 11629 } else if (TLI.getTypeAction(Context, StoreTy) == 11630 TargetLowering::TypePromoteInteger) { 11631 EVT LegalizedStoredValueTy = 11632 TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); 11633 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11634 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11635 FirstStoreAS, FirstStoreAlign, &IsFast) && 11636 IsFast) { 11637 LastLegalType = i + 1; 11638 } 11639 } 11640 11641 // We only use vectors if the constant is known to be zero or the target 11642 // allows it and the function is not marked with the noimplicitfloat 11643 // attribute. 11644 if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1, 11645 FirstStoreAS)) && 11646 !NoVectors) { 11647 // Find a legal type for the vector store. 11648 EVT Ty = EVT::getVectorVT(Context, MemVT, i+1); 11649 if (TLI.isTypeLegal(Ty) && 11650 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11651 FirstStoreAlign, &IsFast) && IsFast) 11652 LastLegalVectorType = i + 1; 11653 } 11654 } 11655 11656 // Check if we found a legal integer type to store. 11657 if (LastLegalType == 0 && LastLegalVectorType == 0) 11658 return false; 11659 11660 bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors; 11661 unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType; 11662 11663 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem, 11664 true, UseVector); 11665 } 11666 11667 // When extracting multiple vector elements, try to store them 11668 // in one vector store rather than a sequence of scalar stores. 11669 if (IsExtractVecSrc) { 11670 unsigned NumStoresToMerge = 0; 11671 bool IsVec = MemVT.isVector(); 11672 for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) { 11673 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11674 unsigned StoreValOpcode = St->getValue().getOpcode(); 11675 // This restriction could be loosened. 11676 // Bail out if any stored values are not elements extracted from a vector. 11677 // It should be possible to handle mixed sources, but load sources need 11678 // more careful handling (see the block of code below that handles 11679 // consecutive loads). 11680 if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT && 11681 StoreValOpcode != ISD::EXTRACT_SUBVECTOR) 11682 return false; 11683 11684 // Find a legal type for the vector store. 11685 unsigned Elts = i + 1; 11686 if (IsVec) { 11687 // When merging vector stores, get the total number of elements. 11688 Elts *= MemVT.getVectorNumElements(); 11689 } 11690 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); 11691 bool IsFast; 11692 if (TLI.isTypeLegal(Ty) && 11693 TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS, 11694 FirstStoreAlign, &IsFast) && IsFast) 11695 NumStoresToMerge = i + 1; 11696 } 11697 11698 return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge, 11699 false, true); 11700 } 11701 11702 // Below we handle the case of multiple consecutive stores that 11703 // come from multiple consecutive loads. We merge them into a single 11704 // wide load and a single wide store. 11705 11706 // Look for load nodes which are used by the stored values. 11707 SmallVector<MemOpLink, 8> LoadNodes; 11708 11709 // Find acceptable loads. Loads need to have the same chain (token factor), 11710 // must not be zext, volatile, indexed, and they must be consecutive. 11711 BaseIndexOffset LdBasePtr; 11712 for (unsigned i=0; i<LastConsecutiveStore+1; ++i) { 11713 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11714 LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue()); 11715 if (!Ld) break; 11716 11717 // Loads must only have one use. 11718 if (!Ld->hasNUsesOfValue(1, 0)) 11719 break; 11720 11721 // The memory operands must not be volatile. 11722 if (Ld->isVolatile() || Ld->isIndexed()) 11723 break; 11724 11725 // We do not accept ext loads. 11726 if (Ld->getExtensionType() != ISD::NON_EXTLOAD) 11727 break; 11728 11729 // The stored memory type must be the same. 11730 if (Ld->getMemoryVT() != MemVT) 11731 break; 11732 11733 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr(), DAG); 11734 // If this is not the first ptr that we check. 11735 if (LdBasePtr.Base.getNode()) { 11736 // The base ptr must be the same. 11737 if (!LdPtr.equalBaseIndex(LdBasePtr)) 11738 break; 11739 } else { 11740 // Check that all other base pointers are the same as this one. 11741 LdBasePtr = LdPtr; 11742 } 11743 11744 // We found a potential memory operand to merge. 11745 LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0)); 11746 } 11747 11748 if (LoadNodes.size() < 2) 11749 return false; 11750 11751 // If we have load/store pair instructions and we only have two values, 11752 // don't bother. 11753 unsigned RequiredAlignment; 11754 if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) && 11755 St->getAlignment() >= RequiredAlignment) 11756 return false; 11757 11758 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); 11759 unsigned FirstLoadAS = FirstLoad->getAddressSpace(); 11760 unsigned FirstLoadAlign = FirstLoad->getAlignment(); 11761 11762 // Scan the memory operations on the chain and find the first non-consecutive 11763 // load memory address. These variables hold the index in the store node 11764 // array. 11765 unsigned LastConsecutiveLoad = 0; 11766 // This variable refers to the size and not index in the array. 11767 unsigned LastLegalVectorType = 0; 11768 unsigned LastLegalIntegerType = 0; 11769 StartAddress = LoadNodes[0].OffsetFromBase; 11770 SDValue FirstChain = FirstLoad->getChain(); 11771 for (unsigned i = 1; i < LoadNodes.size(); ++i) { 11772 // All loads must share the same chain. 11773 if (LoadNodes[i].MemNode->getChain() != FirstChain) 11774 break; 11775 11776 int64_t CurrAddress = LoadNodes[i].OffsetFromBase; 11777 if (CurrAddress - StartAddress != (ElementSizeBytes * i)) 11778 break; 11779 LastConsecutiveLoad = i; 11780 // Find a legal type for the vector store. 11781 EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1); 11782 bool IsFastSt, IsFastLd; 11783 if (TLI.isTypeLegal(StoreTy) && 11784 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11785 FirstStoreAlign, &IsFastSt) && IsFastSt && 11786 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11787 FirstLoadAlign, &IsFastLd) && IsFastLd) { 11788 LastLegalVectorType = i + 1; 11789 } 11790 11791 // Find a legal type for the integer store. 11792 unsigned SizeInBits = (i+1) * ElementSizeBytes * 8; 11793 StoreTy = EVT::getIntegerVT(Context, SizeInBits); 11794 if (TLI.isTypeLegal(StoreTy) && 11795 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS, 11796 FirstStoreAlign, &IsFastSt) && IsFastSt && 11797 TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS, 11798 FirstLoadAlign, &IsFastLd) && IsFastLd) 11799 LastLegalIntegerType = i + 1; 11800 // Or check whether a truncstore and extload is legal. 11801 else if (TLI.getTypeAction(Context, StoreTy) == 11802 TargetLowering::TypePromoteInteger) { 11803 EVT LegalizedStoredValueTy = 11804 TLI.getTypeToTransformTo(Context, StoreTy); 11805 if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) && 11806 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11807 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) && 11808 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) && 11809 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11810 FirstStoreAS, FirstStoreAlign, &IsFastSt) && 11811 IsFastSt && 11812 TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy, 11813 FirstLoadAS, FirstLoadAlign, &IsFastLd) && 11814 IsFastLd) 11815 LastLegalIntegerType = i+1; 11816 } 11817 } 11818 11819 // Only use vector types if the vector type is larger than the integer type. 11820 // If they are the same, use integers. 11821 bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors; 11822 unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType); 11823 11824 // We add +1 here because the LastXXX variables refer to location while 11825 // the NumElem refers to array/index size. 11826 unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1; 11827 NumElem = std::min(LastLegalType, NumElem); 11828 11829 if (NumElem < 2) 11830 return false; 11831 11832 // Collect the chains from all merged stores. 11833 SmallVector<SDValue, 8> MergeStoreChains; 11834 MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain()); 11835 11836 // The latest Node in the DAG. 11837 unsigned LatestNodeUsed = 0; 11838 for (unsigned i=1; i<NumElem; ++i) { 11839 // Find a chain for the new wide-store operand. Notice that some 11840 // of the store nodes that we found may not be selected for inclusion 11841 // in the wide store. The chain we use needs to be the chain of the 11842 // latest store node which is *used* and replaced by the wide store. 11843 if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum) 11844 LatestNodeUsed = i; 11845 11846 MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain()); 11847 } 11848 11849 LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode; 11850 11851 // Find if it is better to use vectors or integers to load and store 11852 // to memory. 11853 EVT JointMemOpVT; 11854 if (UseVectorTy) { 11855 JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem); 11856 } else { 11857 unsigned SizeInBits = NumElem * ElementSizeBytes * 8; 11858 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); 11859 } 11860 11861 SDLoc LoadDL(LoadNodes[0].MemNode); 11862 SDLoc StoreDL(StoreNodes[0].MemNode); 11863 11864 // The merged loads are required to have the same incoming chain, so 11865 // using the first's chain is acceptable. 11866 SDValue NewLoad = DAG.getLoad( 11867 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), 11868 FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign); 11869 11870 SDValue NewStoreChain = 11871 DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains); 11872 11873 SDValue NewStore = DAG.getStore( 11874 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), 11875 FirstInChain->getPointerInfo(), false, false, FirstStoreAlign); 11876 11877 // Transfer chain users from old loads to the new load. 11878 for (unsigned i = 0; i < NumElem; ++i) { 11879 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); 11880 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), 11881 SDValue(NewLoad.getNode(), 1)); 11882 } 11883 11884 if (UseAA) { 11885 // Replace the all stores with the new store. 11886 for (unsigned i = 0; i < NumElem; ++i) 11887 CombineTo(StoreNodes[i].MemNode, NewStore); 11888 } else { 11889 // Replace the last store with the new store. 11890 CombineTo(LatestOp, NewStore); 11891 // Erase all other stores. 11892 for (unsigned i = 0; i < NumElem; ++i) { 11893 // Remove all Store nodes. 11894 if (StoreNodes[i].MemNode == LatestOp) 11895 continue; 11896 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); 11897 DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain()); 11898 deleteAndRecombine(St); 11899 } 11900 } 11901 11902 return true; 11903 } 11904 11905 SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { 11906 SDLoc SL(ST); 11907 SDValue ReplStore; 11908 11909 // Replace the chain to avoid dependency. 11910 if (ST->isTruncatingStore()) { 11911 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), 11912 ST->getBasePtr(), ST->getMemoryVT(), 11913 ST->getMemOperand()); 11914 } else { 11915 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), 11916 ST->getMemOperand()); 11917 } 11918 11919 // Create token to keep both nodes around. 11920 SDValue Token = DAG.getNode(ISD::TokenFactor, SL, 11921 MVT::Other, ST->getChain(), ReplStore); 11922 11923 // Make sure the new and old chains are cleaned up. 11924 AddToWorklist(Token.getNode()); 11925 11926 // Don't add users to work list. 11927 return CombineTo(ST, Token, false); 11928 } 11929 11930 SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { 11931 SDValue Value = ST->getValue(); 11932 if (Value.getOpcode() == ISD::TargetConstantFP) 11933 return SDValue(); 11934 11935 SDLoc DL(ST); 11936 11937 SDValue Chain = ST->getChain(); 11938 SDValue Ptr = ST->getBasePtr(); 11939 11940 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); 11941 11942 // NOTE: If the original store is volatile, this transform must not increase 11943 // the number of stores. For example, on x86-32 an f64 can be stored in one 11944 // processor operation but an i64 (which is not legal) requires two. So the 11945 // transform should not be done in this case. 11946 11947 SDValue Tmp; 11948 switch (CFP->getSimpleValueType(0).SimpleTy) { 11949 default: 11950 llvm_unreachable("Unknown FP type"); 11951 case MVT::f16: // We don't do this for these yet. 11952 case MVT::f80: 11953 case MVT::f128: 11954 case MVT::ppcf128: 11955 return SDValue(); 11956 case MVT::f32: 11957 if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || 11958 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11959 ; 11960 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). 11961 bitcastToAPInt().getZExtValue(), SDLoc(CFP), 11962 MVT::i32); 11963 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); 11964 } 11965 11966 return SDValue(); 11967 case MVT::f64: 11968 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && 11969 !ST->isVolatile()) || 11970 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { 11971 ; 11972 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 11973 getZExtValue(), SDLoc(CFP), MVT::i64); 11974 return DAG.getStore(Chain, DL, Tmp, 11975 Ptr, ST->getMemOperand()); 11976 } 11977 11978 if (!ST->isVolatile() && 11979 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { 11980 // Many FP stores are not made apparent until after legalize, e.g. for 11981 // argument passing. Since this is so common, custom legalize the 11982 // 64-bit integer store into two 32-bit stores. 11983 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 11984 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); 11985 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); 11986 if (DAG.getDataLayout().isBigEndian()) 11987 std::swap(Lo, Hi); 11988 11989 unsigned Alignment = ST->getAlignment(); 11990 bool isVolatile = ST->isVolatile(); 11991 bool isNonTemporal = ST->isNonTemporal(); 11992 AAMDNodes AAInfo = ST->getAAInfo(); 11993 11994 SDValue St0 = DAG.getStore(Chain, DL, Lo, 11995 Ptr, ST->getPointerInfo(), 11996 isVolatile, isNonTemporal, 11997 ST->getAlignment(), AAInfo); 11998 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 11999 DAG.getConstant(4, DL, Ptr.getValueType())); 12000 Alignment = MinAlign(Alignment, 4U); 12001 SDValue St1 = DAG.getStore(Chain, DL, Hi, 12002 Ptr, ST->getPointerInfo().getWithOffset(4), 12003 isVolatile, isNonTemporal, 12004 Alignment, AAInfo); 12005 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 12006 St0, St1); 12007 } 12008 12009 return SDValue(); 12010 } 12011 } 12012 12013 SDValue DAGCombiner::visitSTORE(SDNode *N) { 12014 StoreSDNode *ST = cast<StoreSDNode>(N); 12015 SDValue Chain = ST->getChain(); 12016 SDValue Value = ST->getValue(); 12017 SDValue Ptr = ST->getBasePtr(); 12018 12019 // If this is a store of a bit convert, store the input value if the 12020 // resultant store does not need a higher alignment than the original. 12021 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && 12022 ST->isUnindexed()) { 12023 EVT SVT = Value.getOperand(0).getValueType(); 12024 if (((!LegalOperations && !ST->isVolatile()) || 12025 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)) && 12026 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT)) { 12027 unsigned OrigAlign = ST->getAlignment(); 12028 bool Fast = false; 12029 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), SVT, 12030 ST->getAddressSpace(), OrigAlign, &Fast) && 12031 Fast) { 12032 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), 12033 Ptr, ST->getPointerInfo(), ST->isVolatile(), 12034 ST->isNonTemporal(), OrigAlign, 12035 ST->getAAInfo()); 12036 } 12037 } 12038 } 12039 12040 // Turn 'store undef, Ptr' -> nothing. 12041 if (Value.isUndef() && ST->isUnindexed()) 12042 return Chain; 12043 12044 // Try to infer better alignment information than the store already has. 12045 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { 12046 if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { 12047 if (Align > ST->getAlignment()) { 12048 SDValue NewStore = 12049 DAG.getTruncStore(Chain, SDLoc(N), Value, 12050 Ptr, ST->getPointerInfo(), ST->getMemoryVT(), 12051 ST->isVolatile(), ST->isNonTemporal(), Align, 12052 ST->getAAInfo()); 12053 if (NewStore.getNode() != N) 12054 return CombineTo(ST, NewStore, true); 12055 } 12056 } 12057 } 12058 12059 // Try transforming a pair floating point load / store ops to integer 12060 // load / store ops. 12061 if (SDValue NewST = TransformFPLoadStorePair(N)) 12062 return NewST; 12063 12064 bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA 12065 : DAG.getSubtarget().useAA(); 12066 #ifndef NDEBUG 12067 if (CombinerAAOnlyFunc.getNumOccurrences() && 12068 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 12069 UseAA = false; 12070 #endif 12071 if (UseAA && ST->isUnindexed()) { 12072 // FIXME: We should do this even without AA enabled. AA will just allow 12073 // FindBetterChain to work in more situations. The problem with this is that 12074 // any combine that expects memory operations to be on consecutive chains 12075 // first needs to be updated to look for users of the same chain. 12076 12077 // Walk up chain skipping non-aliasing memory nodes, on this store and any 12078 // adjacent stores. 12079 if (findBetterNeighborChains(ST)) { 12080 // replaceStoreChain uses CombineTo, which handled all of the worklist 12081 // manipulation. Return the original node to not do anything else. 12082 return SDValue(ST, 0); 12083 } 12084 Chain = ST->getChain(); 12085 } 12086 12087 // Try transforming N to an indexed store. 12088 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) 12089 return SDValue(N, 0); 12090 12091 // FIXME: is there such a thing as a truncating indexed store? 12092 if (ST->isTruncatingStore() && ST->isUnindexed() && 12093 Value.getValueType().isInteger()) { 12094 // See if we can simplify the input to this truncstore with knowledge that 12095 // only the low bits are being used. For example: 12096 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" 12097 SDValue Shorter = 12098 GetDemandedBits(Value, 12099 APInt::getLowBitsSet( 12100 Value.getValueType().getScalarType().getSizeInBits(), 12101 ST->getMemoryVT().getScalarType().getSizeInBits())); 12102 AddToWorklist(Value.getNode()); 12103 if (Shorter.getNode()) 12104 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, 12105 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12106 12107 // Otherwise, see if we can simplify the operation with 12108 // SimplifyDemandedBits, which only works if the value has a single use. 12109 if (SimplifyDemandedBits(Value, 12110 APInt::getLowBitsSet( 12111 Value.getValueType().getScalarType().getSizeInBits(), 12112 ST->getMemoryVT().getScalarType().getSizeInBits()))) 12113 return SDValue(N, 0); 12114 } 12115 12116 // If this is a load followed by a store to the same location, then the store 12117 // is dead/noop. 12118 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { 12119 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && 12120 ST->isUnindexed() && !ST->isVolatile() && 12121 // There can't be any side effects between the load and store, such as 12122 // a call or store. 12123 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { 12124 // The store is dead, remove it. 12125 return Chain; 12126 } 12127 } 12128 12129 // If this is a store followed by a store with the same value to the same 12130 // location, then the store is dead/noop. 12131 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { 12132 if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() && 12133 ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() && 12134 ST1->isUnindexed() && !ST1->isVolatile()) { 12135 // The store is dead, remove it. 12136 return Chain; 12137 } 12138 } 12139 12140 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a 12141 // truncating store. We can do this even if this is already a truncstore. 12142 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) 12143 && Value.getNode()->hasOneUse() && ST->isUnindexed() && 12144 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), 12145 ST->getMemoryVT())) { 12146 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), 12147 Ptr, ST->getMemoryVT(), ST->getMemOperand()); 12148 } 12149 12150 // Only perform this optimization before the types are legal, because we 12151 // don't want to perform this optimization on every DAGCombine invocation. 12152 if (!LegalTypes) { 12153 bool EverChanged = false; 12154 12155 do { 12156 // There can be multiple store sequences on the same chain. 12157 // Keep trying to merge store sequences until we are unable to do so 12158 // or until we merge the last store on the chain. 12159 bool Changed = MergeConsecutiveStores(ST); 12160 EverChanged |= Changed; 12161 if (!Changed) break; 12162 } while (ST->getOpcode() != ISD::DELETED_NODE); 12163 12164 if (EverChanged) 12165 return SDValue(N, 0); 12166 } 12167 12168 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 12169 // 12170 // Make sure to do this only after attempting to merge stores in order to 12171 // avoid changing the types of some subset of stores due to visit order, 12172 // preventing their merging. 12173 if (isa<ConstantFPSDNode>(Value)) { 12174 if (SDValue NewSt = replaceStoreOfFPConstant(ST)) 12175 return NewSt; 12176 } 12177 12178 return ReduceLoadOpStoreWidth(N); 12179 } 12180 12181 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { 12182 SDValue InVec = N->getOperand(0); 12183 SDValue InVal = N->getOperand(1); 12184 SDValue EltNo = N->getOperand(2); 12185 SDLoc dl(N); 12186 12187 // If the inserted element is an UNDEF, just use the input vector. 12188 if (InVal.isUndef()) 12189 return InVec; 12190 12191 EVT VT = InVec.getValueType(); 12192 12193 // If we can't generate a legal BUILD_VECTOR, exit 12194 if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) 12195 return SDValue(); 12196 12197 // Check that we know which element is being inserted 12198 if (!isa<ConstantSDNode>(EltNo)) 12199 return SDValue(); 12200 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12201 12202 // Canonicalize insert_vector_elt dag nodes. 12203 // Example: 12204 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) 12205 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) 12206 // 12207 // Do this only if the child insert_vector node has one use; also 12208 // do this only if indices are both constants and Idx1 < Idx0. 12209 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() 12210 && isa<ConstantSDNode>(InVec.getOperand(2))) { 12211 unsigned OtherElt = 12212 cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue(); 12213 if (Elt < OtherElt) { 12214 // Swap nodes. 12215 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT, 12216 InVec.getOperand(0), InVal, EltNo); 12217 AddToWorklist(NewOp.getNode()); 12218 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), 12219 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); 12220 } 12221 } 12222 12223 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 12224 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 12225 // vector elements. 12226 SmallVector<SDValue, 8> Ops; 12227 // Do not combine these two vectors if the output vector will not replace 12228 // the input vector. 12229 if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { 12230 Ops.append(InVec.getNode()->op_begin(), 12231 InVec.getNode()->op_end()); 12232 } else if (InVec.isUndef()) { 12233 unsigned NElts = VT.getVectorNumElements(); 12234 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 12235 } else { 12236 return SDValue(); 12237 } 12238 12239 // Insert the element 12240 if (Elt < Ops.size()) { 12241 // All the operands of BUILD_VECTOR must have the same type; 12242 // we enforce that here. 12243 EVT OpVT = Ops[0].getValueType(); 12244 if (InVal.getValueType() != OpVT) 12245 InVal = OpVT.bitsGT(InVal.getValueType()) ? 12246 DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) : 12247 DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal); 12248 Ops[Elt] = InVal; 12249 } 12250 12251 // Return the new vector 12252 return DAG.getBuildVector(VT, dl, Ops); 12253 } 12254 12255 SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad( 12256 SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) { 12257 assert(!OriginalLoad->isVolatile()); 12258 12259 EVT ResultVT = EVE->getValueType(0); 12260 EVT VecEltVT = InVecVT.getVectorElementType(); 12261 unsigned Align = OriginalLoad->getAlignment(); 12262 unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( 12263 VecEltVT.getTypeForEVT(*DAG.getContext())); 12264 12265 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) 12266 return SDValue(); 12267 12268 Align = NewAlign; 12269 12270 SDValue NewPtr = OriginalLoad->getBasePtr(); 12271 SDValue Offset; 12272 EVT PtrType = NewPtr.getValueType(); 12273 MachinePointerInfo MPI; 12274 SDLoc DL(EVE); 12275 if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { 12276 int Elt = ConstEltNo->getZExtValue(); 12277 unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; 12278 Offset = DAG.getConstant(PtrOff, DL, PtrType); 12279 MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); 12280 } else { 12281 Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); 12282 Offset = DAG.getNode( 12283 ISD::MUL, DL, PtrType, Offset, 12284 DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); 12285 MPI = OriginalLoad->getPointerInfo(); 12286 } 12287 NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset); 12288 12289 // The replacement we need to do here is a little tricky: we need to 12290 // replace an extractelement of a load with a load. 12291 // Use ReplaceAllUsesOfValuesWith to do the replacement. 12292 // Note that this replacement assumes that the extractvalue is the only 12293 // use of the load; that's okay because we don't want to perform this 12294 // transformation in other cases anyway. 12295 SDValue Load; 12296 SDValue Chain; 12297 if (ResultVT.bitsGT(VecEltVT)) { 12298 // If the result type of vextract is wider than the load, then issue an 12299 // extending load instead. 12300 ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, 12301 VecEltVT) 12302 ? ISD::ZEXTLOAD 12303 : ISD::EXTLOAD; 12304 Load = DAG.getExtLoad( 12305 ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI, 12306 VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12307 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12308 Chain = Load.getValue(1); 12309 } else { 12310 Load = DAG.getLoad( 12311 VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, 12312 OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(), 12313 OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo()); 12314 Chain = Load.getValue(1); 12315 if (ResultVT.bitsLT(VecEltVT)) 12316 Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); 12317 else 12318 Load = DAG.getBitcast(ResultVT, Load); 12319 } 12320 WorklistRemover DeadNodes(*this); 12321 SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; 12322 SDValue To[] = { Load, Chain }; 12323 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 12324 // Since we're explicitly calling ReplaceAllUses, add the new node to the 12325 // worklist explicitly as well. 12326 AddToWorklist(Load.getNode()); 12327 AddUsersToWorklist(Load.getNode()); // Add users too 12328 // Make sure to revisit this node to clean it up; it will usually be dead. 12329 AddToWorklist(EVE); 12330 ++OpsNarrowed; 12331 return SDValue(EVE, 0); 12332 } 12333 12334 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { 12335 // (vextract (scalar_to_vector val, 0) -> val 12336 SDValue InVec = N->getOperand(0); 12337 EVT VT = InVec.getValueType(); 12338 EVT NVT = N->getValueType(0); 12339 12340 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 12341 // Check if the result type doesn't match the inserted element type. A 12342 // SCALAR_TO_VECTOR may truncate the inserted element and the 12343 // EXTRACT_VECTOR_ELT may widen the extracted vector. 12344 SDValue InOp = InVec.getOperand(0); 12345 if (InOp.getValueType() != NVT) { 12346 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12347 return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT); 12348 } 12349 return InOp; 12350 } 12351 12352 SDValue EltNo = N->getOperand(1); 12353 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 12354 12355 // extract_vector_elt (build_vector x, y), 1 -> y 12356 if (ConstEltNo && 12357 InVec.getOpcode() == ISD::BUILD_VECTOR && 12358 TLI.isTypeLegal(VT) && 12359 (InVec.hasOneUse() || 12360 TLI.aggressivelyPreferBuildVectorSources(VT))) { 12361 SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue()); 12362 EVT InEltVT = Elt.getValueType(); 12363 12364 // Sometimes build_vector's scalar input types do not match result type. 12365 if (NVT == InEltVT) 12366 return Elt; 12367 12368 // TODO: It may be useful to truncate if free if the build_vector implicitly 12369 // converts. 12370 } 12371 12372 // extract_vector_elt (v2i32 (bitcast i64:x)), 0 -> i32 (trunc i64:x) 12373 if (ConstEltNo && InVec.getOpcode() == ISD::BITCAST && InVec.hasOneUse() && 12374 ConstEltNo->isNullValue() && VT.isInteger()) { 12375 SDValue BCSrc = InVec.getOperand(0); 12376 if (BCSrc.getValueType().isScalarInteger()) 12377 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, BCSrc); 12378 } 12379 12380 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val 12381 // 12382 // This only really matters if the index is non-constant since other combines 12383 // on the constant elements already work. 12384 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && 12385 EltNo == InVec.getOperand(2)) { 12386 SDValue Elt = InVec.getOperand(1); 12387 return VT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, SDLoc(N), NVT) : Elt; 12388 } 12389 12390 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. 12391 // We only perform this optimization before the op legalization phase because 12392 // we may introduce new vector instructions which are not backed by TD 12393 // patterns. For example on AVX, extracting elements from a wide vector 12394 // without using extract_subvector. However, if we can find an underlying 12395 // scalar value, then we can always use that. 12396 if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) { 12397 int NumElem = VT.getVectorNumElements(); 12398 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec); 12399 // Find the new index to extract from. 12400 int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue()); 12401 12402 // Extracting an undef index is undef. 12403 if (OrigElt == -1) 12404 return DAG.getUNDEF(NVT); 12405 12406 // Select the right vector half to extract from. 12407 SDValue SVInVec; 12408 if (OrigElt < NumElem) { 12409 SVInVec = InVec->getOperand(0); 12410 } else { 12411 SVInVec = InVec->getOperand(1); 12412 OrigElt -= NumElem; 12413 } 12414 12415 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { 12416 SDValue InOp = SVInVec.getOperand(OrigElt); 12417 if (InOp.getValueType() != NVT) { 12418 assert(InOp.getValueType().isInteger() && NVT.isInteger()); 12419 InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT); 12420 } 12421 12422 return InOp; 12423 } 12424 12425 // FIXME: We should handle recursing on other vector shuffles and 12426 // scalar_to_vector here as well. 12427 12428 if (!LegalOperations) { 12429 EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 12430 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec, 12431 DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy)); 12432 } 12433 } 12434 12435 bool BCNumEltsChanged = false; 12436 EVT ExtVT = VT.getVectorElementType(); 12437 EVT LVT = ExtVT; 12438 12439 // If the result of load has to be truncated, then it's not necessarily 12440 // profitable. 12441 if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT)) 12442 return SDValue(); 12443 12444 if (InVec.getOpcode() == ISD::BITCAST) { 12445 // Don't duplicate a load with other uses. 12446 if (!InVec.hasOneUse()) 12447 return SDValue(); 12448 12449 EVT BCVT = InVec.getOperand(0).getValueType(); 12450 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) 12451 return SDValue(); 12452 if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) 12453 BCNumEltsChanged = true; 12454 InVec = InVec.getOperand(0); 12455 ExtVT = BCVT.getVectorElementType(); 12456 } 12457 12458 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size) 12459 if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() && 12460 ISD::isNormalLoad(InVec.getNode()) && 12461 !N->getOperand(1)->hasPredecessor(InVec.getNode())) { 12462 SDValue Index = N->getOperand(1); 12463 if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec)) { 12464 if (!OrigLoad->isVolatile()) { 12465 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index, 12466 OrigLoad); 12467 } 12468 } 12469 } 12470 12471 // Perform only after legalization to ensure build_vector / vector_shuffle 12472 // optimizations have already been done. 12473 if (!LegalOperations) return SDValue(); 12474 12475 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) 12476 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) 12477 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) 12478 12479 if (ConstEltNo) { 12480 int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 12481 12482 LoadSDNode *LN0 = nullptr; 12483 const ShuffleVectorSDNode *SVN = nullptr; 12484 if (ISD::isNormalLoad(InVec.getNode())) { 12485 LN0 = cast<LoadSDNode>(InVec); 12486 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && 12487 InVec.getOperand(0).getValueType() == ExtVT && 12488 ISD::isNormalLoad(InVec.getOperand(0).getNode())) { 12489 // Don't duplicate a load with other uses. 12490 if (!InVec.hasOneUse()) 12491 return SDValue(); 12492 12493 LN0 = cast<LoadSDNode>(InVec.getOperand(0)); 12494 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { 12495 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) 12496 // => 12497 // (load $addr+1*size) 12498 12499 // Don't duplicate a load with other uses. 12500 if (!InVec.hasOneUse()) 12501 return SDValue(); 12502 12503 // If the bit convert changed the number of elements, it is unsafe 12504 // to examine the mask. 12505 if (BCNumEltsChanged) 12506 return SDValue(); 12507 12508 // Select the input vector, guarding against out of range extract vector. 12509 unsigned NumElems = VT.getVectorNumElements(); 12510 int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt); 12511 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); 12512 12513 if (InVec.getOpcode() == ISD::BITCAST) { 12514 // Don't duplicate a load with other uses. 12515 if (!InVec.hasOneUse()) 12516 return SDValue(); 12517 12518 InVec = InVec.getOperand(0); 12519 } 12520 if (ISD::isNormalLoad(InVec.getNode())) { 12521 LN0 = cast<LoadSDNode>(InVec); 12522 Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; 12523 EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType()); 12524 } 12525 } 12526 12527 // Make sure we found a non-volatile load and the extractelement is 12528 // the only use. 12529 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile()) 12530 return SDValue(); 12531 12532 // If Idx was -1 above, Elt is going to be -1, so just return undef. 12533 if (Elt == -1) 12534 return DAG.getUNDEF(LVT); 12535 12536 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0); 12537 } 12538 12539 return SDValue(); 12540 } 12541 12542 // Simplify (build_vec (ext )) to (bitcast (build_vec )) 12543 SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { 12544 // We perform this optimization post type-legalization because 12545 // the type-legalizer often scalarizes integer-promoted vectors. 12546 // Performing this optimization before may create bit-casts which 12547 // will be type-legalized to complex code sequences. 12548 // We perform this optimization only before the operation legalizer because we 12549 // may introduce illegal operations. 12550 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) 12551 return SDValue(); 12552 12553 unsigned NumInScalars = N->getNumOperands(); 12554 SDLoc dl(N); 12555 EVT VT = N->getValueType(0); 12556 12557 // Check to see if this is a BUILD_VECTOR of a bunch of values 12558 // which come from any_extend or zero_extend nodes. If so, we can create 12559 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR 12560 // optimizations. We do not handle sign-extend because we can't fill the sign 12561 // using shuffles. 12562 EVT SourceType = MVT::Other; 12563 bool AllAnyExt = true; 12564 12565 for (unsigned i = 0; i != NumInScalars; ++i) { 12566 SDValue In = N->getOperand(i); 12567 // Ignore undef inputs. 12568 if (In.isUndef()) continue; 12569 12570 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; 12571 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; 12572 12573 // Abort if the element is not an extension. 12574 if (!ZeroExt && !AnyExt) { 12575 SourceType = MVT::Other; 12576 break; 12577 } 12578 12579 // The input is a ZeroExt or AnyExt. Check the original type. 12580 EVT InTy = In.getOperand(0).getValueType(); 12581 12582 // Check that all of the widened source types are the same. 12583 if (SourceType == MVT::Other) 12584 // First time. 12585 SourceType = InTy; 12586 else if (InTy != SourceType) { 12587 // Multiple income types. Abort. 12588 SourceType = MVT::Other; 12589 break; 12590 } 12591 12592 // Check if all of the extends are ANY_EXTENDs. 12593 AllAnyExt &= AnyExt; 12594 } 12595 12596 // In order to have valid types, all of the inputs must be extended from the 12597 // same source type and all of the inputs must be any or zero extend. 12598 // Scalar sizes must be a power of two. 12599 EVT OutScalarTy = VT.getScalarType(); 12600 bool ValidTypes = SourceType != MVT::Other && 12601 isPowerOf2_32(OutScalarTy.getSizeInBits()) && 12602 isPowerOf2_32(SourceType.getSizeInBits()); 12603 12604 // Create a new simpler BUILD_VECTOR sequence which other optimizations can 12605 // turn into a single shuffle instruction. 12606 if (!ValidTypes) 12607 return SDValue(); 12608 12609 bool isLE = DAG.getDataLayout().isLittleEndian(); 12610 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); 12611 assert(ElemRatio > 1 && "Invalid element size ratio"); 12612 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): 12613 DAG.getConstant(0, SDLoc(N), SourceType); 12614 12615 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); 12616 SmallVector<SDValue, 8> Ops(NewBVElems, Filler); 12617 12618 // Populate the new build_vector 12619 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 12620 SDValue Cast = N->getOperand(i); 12621 assert((Cast.getOpcode() == ISD::ANY_EXTEND || 12622 Cast.getOpcode() == ISD::ZERO_EXTEND || 12623 Cast.isUndef()) && "Invalid cast opcode"); 12624 SDValue In; 12625 if (Cast.isUndef()) 12626 In = DAG.getUNDEF(SourceType); 12627 else 12628 In = Cast->getOperand(0); 12629 unsigned Index = isLE ? (i * ElemRatio) : 12630 (i * ElemRatio + (ElemRatio - 1)); 12631 12632 assert(Index < Ops.size() && "Invalid index"); 12633 Ops[Index] = In; 12634 } 12635 12636 // The type of the new BUILD_VECTOR node. 12637 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); 12638 assert(VecVT.getSizeInBits() == VT.getSizeInBits() && 12639 "Invalid vector size"); 12640 // Check if the new vector type is legal. 12641 if (!isTypeLegal(VecVT)) return SDValue(); 12642 12643 // Make the new BUILD_VECTOR. 12644 SDValue BV = DAG.getBuildVector(VecVT, dl, Ops); 12645 12646 // The new BUILD_VECTOR node has the potential to be further optimized. 12647 AddToWorklist(BV.getNode()); 12648 // Bitcast to the desired type. 12649 return DAG.getBitcast(VT, BV); 12650 } 12651 12652 SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) { 12653 EVT VT = N->getValueType(0); 12654 12655 unsigned NumInScalars = N->getNumOperands(); 12656 SDLoc dl(N); 12657 12658 EVT SrcVT = MVT::Other; 12659 unsigned Opcode = ISD::DELETED_NODE; 12660 unsigned NumDefs = 0; 12661 12662 for (unsigned i = 0; i != NumInScalars; ++i) { 12663 SDValue In = N->getOperand(i); 12664 unsigned Opc = In.getOpcode(); 12665 12666 if (Opc == ISD::UNDEF) 12667 continue; 12668 12669 // If all scalar values are floats and converted from integers. 12670 if (Opcode == ISD::DELETED_NODE && 12671 (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) { 12672 Opcode = Opc; 12673 } 12674 12675 if (Opc != Opcode) 12676 return SDValue(); 12677 12678 EVT InVT = In.getOperand(0).getValueType(); 12679 12680 // If all scalar values are typed differently, bail out. It's chosen to 12681 // simplify BUILD_VECTOR of integer types. 12682 if (SrcVT == MVT::Other) 12683 SrcVT = InVT; 12684 if (SrcVT != InVT) 12685 return SDValue(); 12686 NumDefs++; 12687 } 12688 12689 // If the vector has just one element defined, it's not worth to fold it into 12690 // a vectorized one. 12691 if (NumDefs < 2) 12692 return SDValue(); 12693 12694 assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP) 12695 && "Should only handle conversion from integer to float."); 12696 assert(SrcVT != MVT::Other && "Cannot determine source type!"); 12697 12698 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars); 12699 12700 if (!TLI.isOperationLegalOrCustom(Opcode, NVT)) 12701 return SDValue(); 12702 12703 // Just because the floating-point vector type is legal does not necessarily 12704 // mean that the corresponding integer vector type is. 12705 if (!isTypeLegal(NVT)) 12706 return SDValue(); 12707 12708 SmallVector<SDValue, 8> Opnds; 12709 for (unsigned i = 0; i != NumInScalars; ++i) { 12710 SDValue In = N->getOperand(i); 12711 12712 if (In.isUndef()) 12713 Opnds.push_back(DAG.getUNDEF(SrcVT)); 12714 else 12715 Opnds.push_back(In.getOperand(0)); 12716 } 12717 SDValue BV = DAG.getBuildVector(NVT, dl, Opnds); 12718 AddToWorklist(BV.getNode()); 12719 12720 return DAG.getNode(Opcode, dl, VT, BV); 12721 } 12722 12723 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { 12724 unsigned NumInScalars = N->getNumOperands(); 12725 SDLoc dl(N); 12726 EVT VT = N->getValueType(0); 12727 12728 // A vector built entirely of undefs is undef. 12729 if (ISD::allOperandsUndef(N)) 12730 return DAG.getUNDEF(VT); 12731 12732 if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) 12733 return V; 12734 12735 if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N)) 12736 return V; 12737 12738 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT 12739 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from 12740 // at most two distinct vectors, turn this into a shuffle node. 12741 12742 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. 12743 if (!isTypeLegal(VT)) 12744 return SDValue(); 12745 12746 // May only combine to shuffle after legalize if shuffle is legal. 12747 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) 12748 return SDValue(); 12749 12750 SDValue VecIn1, VecIn2; 12751 bool UsesZeroVector = false; 12752 for (unsigned i = 0; i != NumInScalars; ++i) { 12753 SDValue Op = N->getOperand(i); 12754 // Ignore undef inputs. 12755 if (Op.isUndef()) continue; 12756 12757 // See if we can combine this build_vector into a blend with a zero vector. 12758 if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) { 12759 UsesZeroVector = true; 12760 continue; 12761 } 12762 12763 // If this input is something other than a EXTRACT_VECTOR_ELT with a 12764 // constant index, bail out. 12765 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 12766 !isa<ConstantSDNode>(Op.getOperand(1))) { 12767 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12768 break; 12769 } 12770 12771 // We allow up to two distinct input vectors. 12772 SDValue ExtractedFromVec = Op.getOperand(0); 12773 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) 12774 continue; 12775 12776 if (!VecIn1.getNode()) { 12777 VecIn1 = ExtractedFromVec; 12778 } else if (!VecIn2.getNode() && !UsesZeroVector) { 12779 VecIn2 = ExtractedFromVec; 12780 } else { 12781 // Too many inputs. 12782 VecIn1 = VecIn2 = SDValue(nullptr, 0); 12783 break; 12784 } 12785 } 12786 12787 // If everything is good, we can make a shuffle operation. 12788 if (VecIn1.getNode()) { 12789 unsigned InNumElements = VecIn1.getValueType().getVectorNumElements(); 12790 SmallVector<int, 8> Mask; 12791 for (unsigned i = 0; i != NumInScalars; ++i) { 12792 unsigned Opcode = N->getOperand(i).getOpcode(); 12793 if (Opcode == ISD::UNDEF) { 12794 Mask.push_back(-1); 12795 continue; 12796 } 12797 12798 // Operands can also be zero. 12799 if (Opcode != ISD::EXTRACT_VECTOR_ELT) { 12800 assert(UsesZeroVector && 12801 (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) && 12802 "Unexpected node found!"); 12803 Mask.push_back(NumInScalars+i); 12804 continue; 12805 } 12806 12807 // If extracting from the first vector, just use the index directly. 12808 SDValue Extract = N->getOperand(i); 12809 SDValue ExtVal = Extract.getOperand(1); 12810 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); 12811 if (Extract.getOperand(0) == VecIn1) { 12812 Mask.push_back(ExtIndex); 12813 continue; 12814 } 12815 12816 // Otherwise, use InIdx + InputVecSize 12817 Mask.push_back(InNumElements + ExtIndex); 12818 } 12819 12820 // Avoid introducing illegal shuffles with zero. 12821 if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT)) 12822 return SDValue(); 12823 12824 // We can't generate a shuffle node with mismatched input and output types. 12825 // Attempt to transform a single input vector to the correct type. 12826 if ((VT != VecIn1.getValueType())) { 12827 // If the input vector type has a different base type to the output 12828 // vector type, bail out. 12829 EVT VTElemType = VT.getVectorElementType(); 12830 if ((VecIn1.getValueType().getVectorElementType() != VTElemType) || 12831 (VecIn2.getNode() && 12832 (VecIn2.getValueType().getVectorElementType() != VTElemType))) 12833 return SDValue(); 12834 12835 // If the input vector is too small, widen it. 12836 // We only support widening of vectors which are half the size of the 12837 // output registers. For example XMM->YMM widening on X86 with AVX. 12838 EVT VecInT = VecIn1.getValueType(); 12839 if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) { 12840 // If we only have one small input, widen it by adding undef values. 12841 if (!VecIn2.getNode()) 12842 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, 12843 DAG.getUNDEF(VecIn1.getValueType())); 12844 else if (VecIn1.getValueType() == VecIn2.getValueType()) { 12845 // If we have two small inputs of the same type, try to concat them. 12846 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2); 12847 VecIn2 = SDValue(nullptr, 0); 12848 } else 12849 return SDValue(); 12850 } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) { 12851 // If the input vector is too large, try to split it. 12852 // We don't support having two input vectors that are too large. 12853 // If the zero vector was used, we can not split the vector, 12854 // since we'd need 3 inputs. 12855 if (UsesZeroVector || VecIn2.getNode()) 12856 return SDValue(); 12857 12858 if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements())) 12859 return SDValue(); 12860 12861 // Try to replace VecIn1 with two extract_subvectors 12862 // No need to update the masks, they should still be correct. 12863 VecIn2 = DAG.getNode( 12864 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12865 DAG.getConstant(VT.getVectorNumElements(), dl, 12866 TLI.getVectorIdxTy(DAG.getDataLayout()))); 12867 VecIn1 = DAG.getNode( 12868 ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1, 12869 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 12870 } else 12871 return SDValue(); 12872 } 12873 12874 if (UsesZeroVector) 12875 VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) : 12876 DAG.getConstantFP(0.0, dl, VT); 12877 else 12878 // If VecIn2 is unused then change it to undef. 12879 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); 12880 12881 // Check that we were able to transform all incoming values to the same 12882 // type. 12883 if (VecIn2.getValueType() != VecIn1.getValueType() || 12884 VecIn1.getValueType() != VT) 12885 return SDValue(); 12886 12887 // Return the new VECTOR_SHUFFLE node. 12888 SDValue Ops[2]; 12889 Ops[0] = VecIn1; 12890 Ops[1] = VecIn2; 12891 return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], Mask); 12892 } 12893 12894 return SDValue(); 12895 } 12896 12897 static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { 12898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12899 EVT OpVT = N->getOperand(0).getValueType(); 12900 12901 // If the operands are legal vectors, leave them alone. 12902 if (TLI.isTypeLegal(OpVT)) 12903 return SDValue(); 12904 12905 SDLoc DL(N); 12906 EVT VT = N->getValueType(0); 12907 SmallVector<SDValue, 8> Ops; 12908 12909 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); 12910 SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12911 12912 // Keep track of what we encounter. 12913 bool AnyInteger = false; 12914 bool AnyFP = false; 12915 for (const SDValue &Op : N->ops()) { 12916 if (ISD::BITCAST == Op.getOpcode() && 12917 !Op.getOperand(0).getValueType().isVector()) 12918 Ops.push_back(Op.getOperand(0)); 12919 else if (ISD::UNDEF == Op.getOpcode()) 12920 Ops.push_back(ScalarUndef); 12921 else 12922 return SDValue(); 12923 12924 // Note whether we encounter an integer or floating point scalar. 12925 // If it's neither, bail out, it could be something weird like x86mmx. 12926 EVT LastOpVT = Ops.back().getValueType(); 12927 if (LastOpVT.isFloatingPoint()) 12928 AnyFP = true; 12929 else if (LastOpVT.isInteger()) 12930 AnyInteger = true; 12931 else 12932 return SDValue(); 12933 } 12934 12935 // If any of the operands is a floating point scalar bitcast to a vector, 12936 // use floating point types throughout, and bitcast everything. 12937 // Replace UNDEFs by another scalar UNDEF node, of the final desired type. 12938 if (AnyFP) { 12939 SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); 12940 ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); 12941 if (AnyInteger) { 12942 for (SDValue &Op : Ops) { 12943 if (Op.getValueType() == SVT) 12944 continue; 12945 if (Op.isUndef()) 12946 Op = ScalarUndef; 12947 else 12948 Op = DAG.getBitcast(SVT, Op); 12949 } 12950 } 12951 } 12952 12953 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, 12954 VT.getSizeInBits() / SVT.getSizeInBits()); 12955 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); 12956 } 12957 12958 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR 12959 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at 12960 // most two distinct vectors the same size as the result, attempt to turn this 12961 // into a legal shuffle. 12962 static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { 12963 EVT VT = N->getValueType(0); 12964 EVT OpVT = N->getOperand(0).getValueType(); 12965 int NumElts = VT.getVectorNumElements(); 12966 int NumOpElts = OpVT.getVectorNumElements(); 12967 12968 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); 12969 SmallVector<int, 8> Mask; 12970 12971 for (SDValue Op : N->ops()) { 12972 // Peek through any bitcast. 12973 while (Op.getOpcode() == ISD::BITCAST) 12974 Op = Op.getOperand(0); 12975 12976 // UNDEF nodes convert to UNDEF shuffle mask values. 12977 if (Op.isUndef()) { 12978 Mask.append((unsigned)NumOpElts, -1); 12979 continue; 12980 } 12981 12982 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 12983 return SDValue(); 12984 12985 // What vector are we extracting the subvector from and at what index? 12986 SDValue ExtVec = Op.getOperand(0); 12987 12988 // We want the EVT of the original extraction to correctly scale the 12989 // extraction index. 12990 EVT ExtVT = ExtVec.getValueType(); 12991 12992 // Peek through any bitcast. 12993 while (ExtVec.getOpcode() == ISD::BITCAST) 12994 ExtVec = ExtVec.getOperand(0); 12995 12996 // UNDEF nodes convert to UNDEF shuffle mask values. 12997 if (ExtVec.isUndef()) { 12998 Mask.append((unsigned)NumOpElts, -1); 12999 continue; 13000 } 13001 13002 if (!isa<ConstantSDNode>(Op.getOperand(1))) 13003 return SDValue(); 13004 int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 13005 13006 // Ensure that we are extracting a subvector from a vector the same 13007 // size as the result. 13008 if (ExtVT.getSizeInBits() != VT.getSizeInBits()) 13009 return SDValue(); 13010 13011 // Scale the subvector index to account for any bitcast. 13012 int NumExtElts = ExtVT.getVectorNumElements(); 13013 if (0 == (NumExtElts % NumElts)) 13014 ExtIdx /= (NumExtElts / NumElts); 13015 else if (0 == (NumElts % NumExtElts)) 13016 ExtIdx *= (NumElts / NumExtElts); 13017 else 13018 return SDValue(); 13019 13020 // At most we can reference 2 inputs in the final shuffle. 13021 if (SV0.isUndef() || SV0 == ExtVec) { 13022 SV0 = ExtVec; 13023 for (int i = 0; i != NumOpElts; ++i) 13024 Mask.push_back(i + ExtIdx); 13025 } else if (SV1.isUndef() || SV1 == ExtVec) { 13026 SV1 = ExtVec; 13027 for (int i = 0; i != NumOpElts; ++i) 13028 Mask.push_back(i + ExtIdx + NumElts); 13029 } else { 13030 return SDValue(); 13031 } 13032 } 13033 13034 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT)) 13035 return SDValue(); 13036 13037 return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), 13038 DAG.getBitcast(VT, SV1), Mask); 13039 } 13040 13041 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { 13042 // If we only have one input vector, we don't need to do any concatenation. 13043 if (N->getNumOperands() == 1) 13044 return N->getOperand(0); 13045 13046 // Check if all of the operands are undefs. 13047 EVT VT = N->getValueType(0); 13048 if (ISD::allOperandsUndef(N)) 13049 return DAG.getUNDEF(VT); 13050 13051 // Optimize concat_vectors where all but the first of the vectors are undef. 13052 if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) { 13053 return Op.isUndef(); 13054 })) { 13055 SDValue In = N->getOperand(0); 13056 assert(In.getValueType().isVector() && "Must concat vectors"); 13057 13058 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr). 13059 if (In->getOpcode() == ISD::BITCAST && 13060 !In->getOperand(0)->getValueType(0).isVector()) { 13061 SDValue Scalar = In->getOperand(0); 13062 13063 // If the bitcast type isn't legal, it might be a trunc of a legal type; 13064 // look through the trunc so we can still do the transform: 13065 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) 13066 if (Scalar->getOpcode() == ISD::TRUNCATE && 13067 !TLI.isTypeLegal(Scalar.getValueType()) && 13068 TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) 13069 Scalar = Scalar->getOperand(0); 13070 13071 EVT SclTy = Scalar->getValueType(0); 13072 13073 if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) 13074 return SDValue(); 13075 13076 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, 13077 VT.getSizeInBits() / SclTy.getSizeInBits()); 13078 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) 13079 return SDValue(); 13080 13081 SDLoc dl = SDLoc(N); 13082 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar); 13083 return DAG.getBitcast(VT, Res); 13084 } 13085 } 13086 13087 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. 13088 // We have already tested above for an UNDEF only concatenation. 13089 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) 13090 // -> (BUILD_VECTOR A, B, ..., C, D, ...) 13091 auto IsBuildVectorOrUndef = [](const SDValue &Op) { 13092 return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); 13093 }; 13094 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { 13095 SmallVector<SDValue, 8> Opnds; 13096 EVT SVT = VT.getScalarType(); 13097 13098 EVT MinVT = SVT; 13099 if (!SVT.isFloatingPoint()) { 13100 // If BUILD_VECTOR are from built from integer, they may have different 13101 // operand types. Get the smallest type and truncate all operands to it. 13102 bool FoundMinVT = false; 13103 for (const SDValue &Op : N->ops()) 13104 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13105 EVT OpSVT = Op.getOperand(0)->getValueType(0); 13106 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; 13107 FoundMinVT = true; 13108 } 13109 assert(FoundMinVT && "Concat vector type mismatch"); 13110 } 13111 13112 for (const SDValue &Op : N->ops()) { 13113 EVT OpVT = Op.getValueType(); 13114 unsigned NumElts = OpVT.getVectorNumElements(); 13115 13116 if (ISD::UNDEF == Op.getOpcode()) 13117 Opnds.append(NumElts, DAG.getUNDEF(MinVT)); 13118 13119 if (ISD::BUILD_VECTOR == Op.getOpcode()) { 13120 if (SVT.isFloatingPoint()) { 13121 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); 13122 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); 13123 } else { 13124 for (unsigned i = 0; i != NumElts; ++i) 13125 Opnds.push_back( 13126 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); 13127 } 13128 } 13129 } 13130 13131 assert(VT.getVectorNumElements() == Opnds.size() && 13132 "Concat vector type mismatch"); 13133 return DAG.getBuildVector(VT, SDLoc(N), Opnds); 13134 } 13135 13136 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. 13137 if (SDValue V = combineConcatVectorOfScalars(N, DAG)) 13138 return V; 13139 13140 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. 13141 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) 13142 if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) 13143 return V; 13144 13145 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR 13146 // nodes often generate nop CONCAT_VECTOR nodes. 13147 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that 13148 // place the incoming vectors at the exact same location. 13149 SDValue SingleSource = SDValue(); 13150 unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements(); 13151 13152 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 13153 SDValue Op = N->getOperand(i); 13154 13155 if (Op.isUndef()) 13156 continue; 13157 13158 // Check if this is the identity extract: 13159 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) 13160 return SDValue(); 13161 13162 // Find the single incoming vector for the extract_subvector. 13163 if (SingleSource.getNode()) { 13164 if (Op.getOperand(0) != SingleSource) 13165 return SDValue(); 13166 } else { 13167 SingleSource = Op.getOperand(0); 13168 13169 // Check the source type is the same as the type of the result. 13170 // If not, this concat may extend the vector, so we can not 13171 // optimize it away. 13172 if (SingleSource.getValueType() != N->getValueType(0)) 13173 return SDValue(); 13174 } 13175 13176 unsigned IdentityIndex = i * PartNumElem; 13177 ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 13178 // The extract index must be constant. 13179 if (!CS) 13180 return SDValue(); 13181 13182 // Check that we are reading from the identity index. 13183 if (CS->getZExtValue() != IdentityIndex) 13184 return SDValue(); 13185 } 13186 13187 if (SingleSource.getNode()) 13188 return SingleSource; 13189 13190 return SDValue(); 13191 } 13192 13193 SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) { 13194 EVT NVT = N->getValueType(0); 13195 SDValue V = N->getOperand(0); 13196 13197 if (V->getOpcode() == ISD::CONCAT_VECTORS) { 13198 // Combine: 13199 // (extract_subvec (concat V1, V2, ...), i) 13200 // Into: 13201 // Vi if possible 13202 // Only operand 0 is checked as 'concat' assumes all inputs of the same 13203 // type. 13204 if (V->getOperand(0).getValueType() != NVT) 13205 return SDValue(); 13206 unsigned Idx = N->getConstantOperandVal(1); 13207 unsigned NumElems = NVT.getVectorNumElements(); 13208 assert((Idx % NumElems) == 0 && 13209 "IDX in concat is not a multiple of the result vector length."); 13210 return V->getOperand(Idx / NumElems); 13211 } 13212 13213 // Skip bitcasting 13214 if (V->getOpcode() == ISD::BITCAST) 13215 V = V.getOperand(0); 13216 13217 if (V->getOpcode() == ISD::INSERT_SUBVECTOR) { 13218 SDLoc dl(N); 13219 // Handle only simple case where vector being inserted and vector 13220 // being extracted are of same type, and are half size of larger vectors. 13221 EVT BigVT = V->getOperand(0).getValueType(); 13222 EVT SmallVT = V->getOperand(1).getValueType(); 13223 if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits()) 13224 return SDValue(); 13225 13226 // Only handle cases where both indexes are constants with the same type. 13227 ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1)); 13228 ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13229 13230 if (InsIdx && ExtIdx && 13231 InsIdx->getValueType(0).getSizeInBits() <= 64 && 13232 ExtIdx->getValueType(0).getSizeInBits() <= 64) { 13233 // Combine: 13234 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) 13235 // Into: 13236 // indices are equal or bit offsets are equal => V1 13237 // otherwise => (extract_subvec V1, ExtIdx) 13238 if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() == 13239 ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits()) 13240 return DAG.getBitcast(NVT, V->getOperand(1)); 13241 return DAG.getNode( 13242 ISD::EXTRACT_SUBVECTOR, dl, NVT, 13243 DAG.getBitcast(N->getOperand(0).getValueType(), V->getOperand(0)), 13244 N->getOperand(1)); 13245 } 13246 } 13247 13248 return SDValue(); 13249 } 13250 13251 static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements, 13252 SDValue V, SelectionDAG &DAG) { 13253 SDLoc DL(V); 13254 EVT VT = V.getValueType(); 13255 13256 switch (V.getOpcode()) { 13257 default: 13258 return V; 13259 13260 case ISD::CONCAT_VECTORS: { 13261 EVT OpVT = V->getOperand(0).getValueType(); 13262 int OpSize = OpVT.getVectorNumElements(); 13263 SmallBitVector OpUsedElements(OpSize, false); 13264 bool FoundSimplification = false; 13265 SmallVector<SDValue, 4> NewOps; 13266 NewOps.reserve(V->getNumOperands()); 13267 for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) { 13268 SDValue Op = V->getOperand(i); 13269 bool OpUsed = false; 13270 for (int j = 0; j < OpSize; ++j) 13271 if (UsedElements[i * OpSize + j]) { 13272 OpUsedElements[j] = true; 13273 OpUsed = true; 13274 } 13275 NewOps.push_back( 13276 OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG) 13277 : DAG.getUNDEF(OpVT)); 13278 FoundSimplification |= Op == NewOps.back(); 13279 OpUsedElements.reset(); 13280 } 13281 if (FoundSimplification) 13282 V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps); 13283 return V; 13284 } 13285 13286 case ISD::INSERT_SUBVECTOR: { 13287 SDValue BaseV = V->getOperand(0); 13288 SDValue SubV = V->getOperand(1); 13289 auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2)); 13290 if (!IdxN) 13291 return V; 13292 13293 int SubSize = SubV.getValueType().getVectorNumElements(); 13294 int Idx = IdxN->getZExtValue(); 13295 bool SubVectorUsed = false; 13296 SmallBitVector SubUsedElements(SubSize, false); 13297 for (int i = 0; i < SubSize; ++i) 13298 if (UsedElements[i + Idx]) { 13299 SubVectorUsed = true; 13300 SubUsedElements[i] = true; 13301 UsedElements[i + Idx] = false; 13302 } 13303 13304 // Now recurse on both the base and sub vectors. 13305 SDValue SimplifiedSubV = 13306 SubVectorUsed 13307 ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG) 13308 : DAG.getUNDEF(SubV.getValueType()); 13309 SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG); 13310 if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV) 13311 V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 13312 SimplifiedBaseV, SimplifiedSubV, V->getOperand(2)); 13313 return V; 13314 } 13315 } 13316 } 13317 13318 static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0, 13319 SDValue N1, SelectionDAG &DAG) { 13320 EVT VT = SVN->getValueType(0); 13321 int NumElts = VT.getVectorNumElements(); 13322 SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false); 13323 for (int M : SVN->getMask()) 13324 if (M >= 0 && M < NumElts) 13325 N0UsedElements[M] = true; 13326 else if (M >= NumElts) 13327 N1UsedElements[M - NumElts] = true; 13328 13329 SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG); 13330 SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG); 13331 if (S0 == N0 && S1 == N1) 13332 return SDValue(); 13333 13334 return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask()); 13335 } 13336 13337 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, 13338 // or turn a shuffle of a single concat into simpler shuffle then concat. 13339 static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { 13340 EVT VT = N->getValueType(0); 13341 unsigned NumElts = VT.getVectorNumElements(); 13342 13343 SDValue N0 = N->getOperand(0); 13344 SDValue N1 = N->getOperand(1); 13345 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13346 13347 SmallVector<SDValue, 4> Ops; 13348 EVT ConcatVT = N0.getOperand(0).getValueType(); 13349 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); 13350 unsigned NumConcats = NumElts / NumElemsPerConcat; 13351 13352 // Special case: shuffle(concat(A,B)) can be more efficiently represented 13353 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high 13354 // half vector elements. 13355 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && 13356 std::all_of(SVN->getMask().begin() + NumElemsPerConcat, 13357 SVN->getMask().end(), [](int i) { return i == -1; })) { 13358 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1), 13359 makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat)); 13360 N1 = DAG.getUNDEF(ConcatVT); 13361 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); 13362 } 13363 13364 // Look at every vector that's inserted. We're looking for exact 13365 // subvector-sized copies from a concatenated vector 13366 for (unsigned I = 0; I != NumConcats; ++I) { 13367 // Make sure we're dealing with a copy. 13368 unsigned Begin = I * NumElemsPerConcat; 13369 bool AllUndef = true, NoUndef = true; 13370 for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) { 13371 if (SVN->getMaskElt(J) >= 0) 13372 AllUndef = false; 13373 else 13374 NoUndef = false; 13375 } 13376 13377 if (NoUndef) { 13378 if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0) 13379 return SDValue(); 13380 13381 for (unsigned J = 1; J != NumElemsPerConcat; ++J) 13382 if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J)) 13383 return SDValue(); 13384 13385 unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat; 13386 if (FirstElt < N0.getNumOperands()) 13387 Ops.push_back(N0.getOperand(FirstElt)); 13388 else 13389 Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands())); 13390 13391 } else if (AllUndef) { 13392 Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType())); 13393 } else { // Mixed with general masks and undefs, can't do optimization. 13394 return SDValue(); 13395 } 13396 } 13397 13398 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); 13399 } 13400 13401 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { 13402 EVT VT = N->getValueType(0); 13403 unsigned NumElts = VT.getVectorNumElements(); 13404 13405 SDValue N0 = N->getOperand(0); 13406 SDValue N1 = N->getOperand(1); 13407 13408 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); 13409 13410 // Canonicalize shuffle undef, undef -> undef 13411 if (N0.isUndef() && N1.isUndef()) 13412 return DAG.getUNDEF(VT); 13413 13414 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 13415 13416 // Canonicalize shuffle v, v -> v, undef 13417 if (N0 == N1) { 13418 SmallVector<int, 8> NewMask; 13419 for (unsigned i = 0; i != NumElts; ++i) { 13420 int Idx = SVN->getMaskElt(i); 13421 if (Idx >= (int)NumElts) Idx -= NumElts; 13422 NewMask.push_back(Idx); 13423 } 13424 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); 13425 } 13426 13427 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 13428 if (N0.isUndef()) 13429 return DAG.getCommutedVectorShuffle(*SVN); 13430 13431 // Remove references to rhs if it is undef 13432 if (N1.isUndef()) { 13433 bool Changed = false; 13434 SmallVector<int, 8> NewMask; 13435 for (unsigned i = 0; i != NumElts; ++i) { 13436 int Idx = SVN->getMaskElt(i); 13437 if (Idx >= (int)NumElts) { 13438 Idx = -1; 13439 Changed = true; 13440 } 13441 NewMask.push_back(Idx); 13442 } 13443 if (Changed) 13444 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); 13445 } 13446 13447 // If it is a splat, check if the argument vector is another splat or a 13448 // build_vector. 13449 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { 13450 SDNode *V = N0.getNode(); 13451 13452 // If this is a bit convert that changes the element type of the vector but 13453 // not the number of vector elements, look through it. Be careful not to 13454 // look though conversions that change things like v4f32 to v2f64. 13455 if (V->getOpcode() == ISD::BITCAST) { 13456 SDValue ConvInput = V->getOperand(0); 13457 if (ConvInput.getValueType().isVector() && 13458 ConvInput.getValueType().getVectorNumElements() == NumElts) 13459 V = ConvInput.getNode(); 13460 } 13461 13462 if (V->getOpcode() == ISD::BUILD_VECTOR) { 13463 assert(V->getNumOperands() == NumElts && 13464 "BUILD_VECTOR has wrong number of operands"); 13465 SDValue Base; 13466 bool AllSame = true; 13467 for (unsigned i = 0; i != NumElts; ++i) { 13468 if (!V->getOperand(i).isUndef()) { 13469 Base = V->getOperand(i); 13470 break; 13471 } 13472 } 13473 // Splat of <u, u, u, u>, return <u, u, u, u> 13474 if (!Base.getNode()) 13475 return N0; 13476 for (unsigned i = 0; i != NumElts; ++i) { 13477 if (V->getOperand(i) != Base) { 13478 AllSame = false; 13479 break; 13480 } 13481 } 13482 // Splat of <x, x, x, x>, return <x, x, x, x> 13483 if (AllSame) 13484 return N0; 13485 13486 // Canonicalize any other splat as a build_vector. 13487 const SDValue &Splatted = V->getOperand(SVN->getSplatIndex()); 13488 SmallVector<SDValue, 8> Ops(NumElts, Splatted); 13489 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); 13490 13491 // We may have jumped through bitcasts, so the type of the 13492 // BUILD_VECTOR may not match the type of the shuffle. 13493 if (V->getValueType(0) != VT) 13494 NewBV = DAG.getBitcast(VT, NewBV); 13495 return NewBV; 13496 } 13497 } 13498 13499 // There are various patterns used to build up a vector from smaller vectors, 13500 // subvectors, or elements. Scan chains of these and replace unused insertions 13501 // or components with undef. 13502 if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG)) 13503 return S; 13504 13505 if (N0.getOpcode() == ISD::CONCAT_VECTORS && 13506 Level < AfterLegalizeVectorOps && 13507 (N1.isUndef() || 13508 (N1.getOpcode() == ISD::CONCAT_VECTORS && 13509 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { 13510 if (SDValue V = partitionShuffleOfConcats(N, DAG)) 13511 return V; 13512 } 13513 13514 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - 13515 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. 13516 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) { 13517 SmallVector<SDValue, 8> Ops; 13518 for (int M : SVN->getMask()) { 13519 SDValue Op = DAG.getUNDEF(VT.getScalarType()); 13520 if (M >= 0) { 13521 int Idx = M % NumElts; 13522 SDValue &S = (M < (int)NumElts ? N0 : N1); 13523 if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) { 13524 Op = S.getOperand(Idx); 13525 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) { 13526 if (Idx == 0) 13527 Op = S.getOperand(0); 13528 } else { 13529 // Operand can't be combined - bail out. 13530 break; 13531 } 13532 } 13533 Ops.push_back(Op); 13534 } 13535 if (Ops.size() == VT.getVectorNumElements()) { 13536 // BUILD_VECTOR requires all inputs to be of the same type, find the 13537 // maximum type and extend them all. 13538 EVT SVT = VT.getScalarType(); 13539 if (SVT.isInteger()) 13540 for (SDValue &Op : Ops) 13541 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 13542 if (SVT != VT.getScalarType()) 13543 for (SDValue &Op : Ops) 13544 Op = TLI.isZExtFree(Op.getValueType(), SVT) 13545 ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT) 13546 : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT); 13547 return DAG.getBuildVector(VT, SDLoc(N), Ops); 13548 } 13549 } 13550 13551 // If this shuffle only has a single input that is a bitcasted shuffle, 13552 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output 13553 // back to their original types. 13554 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && 13555 N1.isUndef() && Level < AfterLegalizeVectorOps && 13556 TLI.isTypeLegal(VT)) { 13557 13558 // Peek through the bitcast only if there is one user. 13559 SDValue BC0 = N0; 13560 while (BC0.getOpcode() == ISD::BITCAST) { 13561 if (!BC0.hasOneUse()) 13562 break; 13563 BC0 = BC0.getOperand(0); 13564 } 13565 13566 auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) { 13567 if (Scale == 1) 13568 return SmallVector<int, 8>(Mask.begin(), Mask.end()); 13569 13570 SmallVector<int, 8> NewMask; 13571 for (int M : Mask) 13572 for (int s = 0; s != Scale; ++s) 13573 NewMask.push_back(M < 0 ? -1 : Scale * M + s); 13574 return NewMask; 13575 }; 13576 13577 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { 13578 EVT SVT = VT.getScalarType(); 13579 EVT InnerVT = BC0->getValueType(0); 13580 EVT InnerSVT = InnerVT.getScalarType(); 13581 13582 // Determine which shuffle works with the smaller scalar type. 13583 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; 13584 EVT ScaleSVT = ScaleVT.getScalarType(); 13585 13586 if (TLI.isTypeLegal(ScaleVT) && 13587 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && 13588 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { 13589 13590 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13591 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); 13592 13593 // Scale the shuffle masks to the smaller scalar type. 13594 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); 13595 SmallVector<int, 8> InnerMask = 13596 ScaleShuffleMask(InnerSVN->getMask(), InnerScale); 13597 SmallVector<int, 8> OuterMask = 13598 ScaleShuffleMask(SVN->getMask(), OuterScale); 13599 13600 // Merge the shuffle masks. 13601 SmallVector<int, 8> NewMask; 13602 for (int M : OuterMask) 13603 NewMask.push_back(M < 0 ? -1 : InnerMask[M]); 13604 13605 // Test for shuffle mask legality over both commutations. 13606 SDValue SV0 = BC0->getOperand(0); 13607 SDValue SV1 = BC0->getOperand(1); 13608 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13609 if (!LegalMask) { 13610 std::swap(SV0, SV1); 13611 ShuffleVectorSDNode::commuteMask(NewMask); 13612 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); 13613 } 13614 13615 if (LegalMask) { 13616 SV0 = DAG.getBitcast(ScaleVT, SV0); 13617 SV1 = DAG.getBitcast(ScaleVT, SV1); 13618 return DAG.getBitcast( 13619 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); 13620 } 13621 } 13622 } 13623 } 13624 13625 // Canonicalize shuffles according to rules: 13626 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) 13627 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B) 13628 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B) 13629 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE && 13630 N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG && 13631 TLI.isTypeLegal(VT)) { 13632 // The incoming shuffle must be of the same type as the result of the 13633 // current shuffle. 13634 assert(N1->getOperand(0).getValueType() == VT && 13635 "Shuffle types don't match"); 13636 13637 SDValue SV0 = N1->getOperand(0); 13638 SDValue SV1 = N1->getOperand(1); 13639 bool HasSameOp0 = N0 == SV0; 13640 bool IsSV1Undef = SV1.isUndef(); 13641 if (HasSameOp0 || IsSV1Undef || N0 == SV1) 13642 // Commute the operands of this shuffle so that next rule 13643 // will trigger. 13644 return DAG.getCommutedVectorShuffle(*SVN); 13645 } 13646 13647 // Try to fold according to rules: 13648 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13649 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13650 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13651 // Don't try to fold shuffles with illegal type. 13652 // Only fold if this shuffle is the only user of the other shuffle. 13653 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && 13654 Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { 13655 ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); 13656 13657 // The incoming shuffle must be of the same type as the result of the 13658 // current shuffle. 13659 assert(OtherSV->getOperand(0).getValueType() == VT && 13660 "Shuffle types don't match"); 13661 13662 SDValue SV0, SV1; 13663 SmallVector<int, 4> Mask; 13664 // Compute the combined shuffle mask for a shuffle with SV0 as the first 13665 // operand, and SV1 as the second operand. 13666 for (unsigned i = 0; i != NumElts; ++i) { 13667 int Idx = SVN->getMaskElt(i); 13668 if (Idx < 0) { 13669 // Propagate Undef. 13670 Mask.push_back(Idx); 13671 continue; 13672 } 13673 13674 SDValue CurrentVec; 13675 if (Idx < (int)NumElts) { 13676 // This shuffle index refers to the inner shuffle N0. Lookup the inner 13677 // shuffle mask to identify which vector is actually referenced. 13678 Idx = OtherSV->getMaskElt(Idx); 13679 if (Idx < 0) { 13680 // Propagate Undef. 13681 Mask.push_back(Idx); 13682 continue; 13683 } 13684 13685 CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0) 13686 : OtherSV->getOperand(1); 13687 } else { 13688 // This shuffle index references an element within N1. 13689 CurrentVec = N1; 13690 } 13691 13692 // Simple case where 'CurrentVec' is UNDEF. 13693 if (CurrentVec.isUndef()) { 13694 Mask.push_back(-1); 13695 continue; 13696 } 13697 13698 // Canonicalize the shuffle index. We don't know yet if CurrentVec 13699 // will be the first or second operand of the combined shuffle. 13700 Idx = Idx % NumElts; 13701 if (!SV0.getNode() || SV0 == CurrentVec) { 13702 // Ok. CurrentVec is the left hand side. 13703 // Update the mask accordingly. 13704 SV0 = CurrentVec; 13705 Mask.push_back(Idx); 13706 continue; 13707 } 13708 13709 // Bail out if we cannot convert the shuffle pair into a single shuffle. 13710 if (SV1.getNode() && SV1 != CurrentVec) 13711 return SDValue(); 13712 13713 // Ok. CurrentVec is the right hand side. 13714 // Update the mask accordingly. 13715 SV1 = CurrentVec; 13716 Mask.push_back(Idx + NumElts); 13717 } 13718 13719 // Check if all indices in Mask are Undef. In case, propagate Undef. 13720 bool isUndefMask = true; 13721 for (unsigned i = 0; i != NumElts && isUndefMask; ++i) 13722 isUndefMask &= Mask[i] < 0; 13723 13724 if (isUndefMask) 13725 return DAG.getUNDEF(VT); 13726 13727 if (!SV0.getNode()) 13728 SV0 = DAG.getUNDEF(VT); 13729 if (!SV1.getNode()) 13730 SV1 = DAG.getUNDEF(VT); 13731 13732 // Avoid introducing shuffles with illegal mask. 13733 if (!TLI.isShuffleMaskLegal(Mask, VT)) { 13734 ShuffleVectorSDNode::commuteMask(Mask); 13735 13736 if (!TLI.isShuffleMaskLegal(Mask, VT)) 13737 return SDValue(); 13738 13739 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2) 13740 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2) 13741 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) 13742 std::swap(SV0, SV1); 13743 } 13744 13745 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) 13746 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) 13747 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2) 13748 return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask); 13749 } 13750 13751 return SDValue(); 13752 } 13753 13754 SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { 13755 SDValue InVal = N->getOperand(0); 13756 EVT VT = N->getValueType(0); 13757 13758 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern 13759 // with a VECTOR_SHUFFLE. 13760 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 13761 SDValue InVec = InVal->getOperand(0); 13762 SDValue EltNo = InVal->getOperand(1); 13763 13764 // FIXME: We could support implicit truncation if the shuffle can be 13765 // scaled to a smaller vector scalar type. 13766 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo); 13767 if (C0 && VT == InVec.getValueType() && 13768 VT.getScalarType() == InVal.getValueType()) { 13769 SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1); 13770 int Elt = C0->getZExtValue(); 13771 NewMask[0] = Elt; 13772 13773 if (TLI.isShuffleMaskLegal(NewMask, VT)) 13774 return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT), 13775 NewMask); 13776 } 13777 } 13778 13779 return SDValue(); 13780 } 13781 13782 SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { 13783 SDValue N0 = N->getOperand(0); 13784 SDValue N1 = N->getOperand(1); 13785 SDValue N2 = N->getOperand(2); 13786 13787 if (N0.getValueType() != N1.getValueType()) 13788 return SDValue(); 13789 13790 // If the input vector is a concatenation, and the insert replaces 13791 // one of the halves, we can optimize into a single concat_vectors. 13792 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0->getNumOperands() == 2 && 13793 N2.getOpcode() == ISD::Constant) { 13794 APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue(); 13795 EVT VT = N->getValueType(0); 13796 13797 // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13798 // (concat_vectors Z, Y) 13799 if (InsIdx == 0) 13800 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N1, 13801 N0.getOperand(1)); 13802 13803 // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) -> 13804 // (concat_vectors X, Z) 13805 if (InsIdx == VT.getVectorNumElements() / 2) 13806 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0.getOperand(0), 13807 N1); 13808 } 13809 13810 return SDValue(); 13811 } 13812 13813 SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { 13814 SDValue N0 = N->getOperand(0); 13815 13816 // fold (fp_to_fp16 (fp16_to_fp op)) -> op 13817 if (N0->getOpcode() == ISD::FP16_TO_FP) 13818 return N0->getOperand(0); 13819 13820 return SDValue(); 13821 } 13822 13823 SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { 13824 SDValue N0 = N->getOperand(0); 13825 13826 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) 13827 if (N0->getOpcode() == ISD::AND) { 13828 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); 13829 if (AndConst && AndConst->getAPIntValue() == 0xffff) { 13830 return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), 13831 N0.getOperand(0)); 13832 } 13833 } 13834 13835 return SDValue(); 13836 } 13837 13838 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle 13839 /// with the destination vector and a zero vector. 13840 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> 13841 /// vector_shuffle V, Zero, <0, 4, 2, 4> 13842 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { 13843 EVT VT = N->getValueType(0); 13844 SDValue LHS = N->getOperand(0); 13845 SDValue RHS = N->getOperand(1); 13846 SDLoc dl(N); 13847 13848 // Make sure we're not running after operation legalization where it 13849 // may have custom lowered the vector shuffles. 13850 if (LegalOperations) 13851 return SDValue(); 13852 13853 if (N->getOpcode() != ISD::AND) 13854 return SDValue(); 13855 13856 if (RHS.getOpcode() == ISD::BITCAST) 13857 RHS = RHS.getOperand(0); 13858 13859 if (RHS.getOpcode() != ISD::BUILD_VECTOR) 13860 return SDValue(); 13861 13862 EVT RVT = RHS.getValueType(); 13863 unsigned NumElts = RHS.getNumOperands(); 13864 13865 // Attempt to create a valid clear mask, splitting the mask into 13866 // sub elements and checking to see if each is 13867 // all zeros or all ones - suitable for shuffle masking. 13868 auto BuildClearMask = [&](int Split) { 13869 int NumSubElts = NumElts * Split; 13870 int NumSubBits = RVT.getScalarSizeInBits() / Split; 13871 13872 SmallVector<int, 8> Indices; 13873 for (int i = 0; i != NumSubElts; ++i) { 13874 int EltIdx = i / Split; 13875 int SubIdx = i % Split; 13876 SDValue Elt = RHS.getOperand(EltIdx); 13877 if (Elt.isUndef()) { 13878 Indices.push_back(-1); 13879 continue; 13880 } 13881 13882 APInt Bits; 13883 if (isa<ConstantSDNode>(Elt)) 13884 Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); 13885 else if (isa<ConstantFPSDNode>(Elt)) 13886 Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); 13887 else 13888 return SDValue(); 13889 13890 // Extract the sub element from the constant bit mask. 13891 if (DAG.getDataLayout().isBigEndian()) { 13892 Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits); 13893 } else { 13894 Bits = Bits.lshr(SubIdx * NumSubBits); 13895 } 13896 13897 if (Split > 1) 13898 Bits = Bits.trunc(NumSubBits); 13899 13900 if (Bits.isAllOnesValue()) 13901 Indices.push_back(i); 13902 else if (Bits == 0) 13903 Indices.push_back(i + NumSubElts); 13904 else 13905 return SDValue(); 13906 } 13907 13908 // Let's see if the target supports this vector_shuffle. 13909 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); 13910 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); 13911 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) 13912 return SDValue(); 13913 13914 SDValue Zero = DAG.getConstant(0, dl, ClearVT); 13915 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl, 13916 DAG.getBitcast(ClearVT, LHS), 13917 Zero, Indices)); 13918 }; 13919 13920 // Determine maximum split level (byte level masking). 13921 int MaxSplit = 1; 13922 if (RVT.getScalarSizeInBits() % 8 == 0) 13923 MaxSplit = RVT.getScalarSizeInBits() / 8; 13924 13925 for (int Split = 1; Split <= MaxSplit; ++Split) 13926 if (RVT.getScalarSizeInBits() % Split == 0) 13927 if (SDValue S = BuildClearMask(Split)) 13928 return S; 13929 13930 return SDValue(); 13931 } 13932 13933 /// Visit a binary vector operation, like ADD. 13934 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { 13935 assert(N->getValueType(0).isVector() && 13936 "SimplifyVBinOp only works on vectors!"); 13937 13938 SDValue LHS = N->getOperand(0); 13939 SDValue RHS = N->getOperand(1); 13940 SDValue Ops[] = {LHS, RHS}; 13941 13942 // See if we can constant fold the vector operation. 13943 if (SDValue Fold = DAG.FoldConstantVectorArithmetic( 13944 N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) 13945 return Fold; 13946 13947 // Try to convert a constant mask AND into a shuffle clear mask. 13948 if (SDValue Shuffle = XformToShuffleWithZero(N)) 13949 return Shuffle; 13950 13951 // Type legalization might introduce new shuffles in the DAG. 13952 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask))) 13953 // -> (shuffle (VBinOp (A, B)), Undef, Mask). 13954 if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) && 13955 isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() && 13956 LHS.getOperand(1).isUndef() && 13957 RHS.getOperand(1).isUndef()) { 13958 ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS); 13959 ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS); 13960 13961 if (SVN0->getMask().equals(SVN1->getMask())) { 13962 EVT VT = N->getValueType(0); 13963 SDValue UndefVector = LHS.getOperand(1); 13964 SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 13965 LHS.getOperand(0), RHS.getOperand(0), 13966 N->getFlags()); 13967 AddUsersToWorklist(N); 13968 return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector, 13969 SVN0->getMask()); 13970 } 13971 } 13972 13973 return SDValue(); 13974 } 13975 13976 SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, 13977 SDValue N2) { 13978 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); 13979 13980 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, 13981 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 13982 13983 // If we got a simplified select_cc node back from SimplifySelectCC, then 13984 // break it down into a new SETCC node, and a new SELECT node, and then return 13985 // the SELECT node, since we were called with a SELECT node. 13986 if (SCC.getNode()) { 13987 // Check to see if we got a select_cc back (to turn into setcc/select). 13988 // Otherwise, just return whatever node we got back, like fabs. 13989 if (SCC.getOpcode() == ISD::SELECT_CC) { 13990 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), 13991 N0.getValueType(), 13992 SCC.getOperand(0), SCC.getOperand(1), 13993 SCC.getOperand(4)); 13994 AddToWorklist(SETCC.getNode()); 13995 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, 13996 SCC.getOperand(2), SCC.getOperand(3)); 13997 } 13998 13999 return SCC; 14000 } 14001 return SDValue(); 14002 } 14003 14004 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values 14005 /// being selected between, see if we can simplify the select. Callers of this 14006 /// should assume that TheSelect is deleted if this returns true. As such, they 14007 /// should return the appropriate thing (e.g. the node) back to the top-level of 14008 /// the DAG combiner loop to avoid it being looked at. 14009 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, 14010 SDValue RHS) { 14011 14012 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14013 // The select + setcc is redundant, because fsqrt returns NaN for X < 0. 14014 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { 14015 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { 14016 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) 14017 SDValue Sqrt = RHS; 14018 ISD::CondCode CC; 14019 SDValue CmpLHS; 14020 const ConstantFPSDNode *Zero = nullptr; 14021 14022 if (TheSelect->getOpcode() == ISD::SELECT_CC) { 14023 CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); 14024 CmpLHS = TheSelect->getOperand(0); 14025 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); 14026 } else { 14027 // SELECT or VSELECT 14028 SDValue Cmp = TheSelect->getOperand(0); 14029 if (Cmp.getOpcode() == ISD::SETCC) { 14030 CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); 14031 CmpLHS = Cmp.getOperand(0); 14032 Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); 14033 } 14034 } 14035 if (Zero && Zero->isZero() && 14036 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || 14037 CC == ISD::SETULT || CC == ISD::SETLT)) { 14038 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) 14039 CombineTo(TheSelect, Sqrt); 14040 return true; 14041 } 14042 } 14043 } 14044 // Cannot simplify select with vector condition 14045 if (TheSelect->getOperand(0).getValueType().isVector()) return false; 14046 14047 // If this is a select from two identical things, try to pull the operation 14048 // through the select. 14049 if (LHS.getOpcode() != RHS.getOpcode() || 14050 !LHS.hasOneUse() || !RHS.hasOneUse()) 14051 return false; 14052 14053 // If this is a load and the token chain is identical, replace the select 14054 // of two loads with a load through a select of the address to load from. 14055 // This triggers in things like "select bool X, 10.0, 123.0" after the FP 14056 // constants have been dropped into the constant pool. 14057 if (LHS.getOpcode() == ISD::LOAD) { 14058 LoadSDNode *LLD = cast<LoadSDNode>(LHS); 14059 LoadSDNode *RLD = cast<LoadSDNode>(RHS); 14060 14061 // Token chains must be identical. 14062 if (LHS.getOperand(0) != RHS.getOperand(0) || 14063 // Do not let this transformation reduce the number of volatile loads. 14064 LLD->isVolatile() || RLD->isVolatile() || 14065 // FIXME: If either is a pre/post inc/dec load, 14066 // we'd need to split out the address adjustment. 14067 LLD->isIndexed() || RLD->isIndexed() || 14068 // If this is an EXTLOAD, the VT's must match. 14069 LLD->getMemoryVT() != RLD->getMemoryVT() || 14070 // If this is an EXTLOAD, the kind of extension must match. 14071 (LLD->getExtensionType() != RLD->getExtensionType() && 14072 // The only exception is if one of the extensions is anyext. 14073 LLD->getExtensionType() != ISD::EXTLOAD && 14074 RLD->getExtensionType() != ISD::EXTLOAD) || 14075 // FIXME: this discards src value information. This is 14076 // over-conservative. It would be beneficial to be able to remember 14077 // both potential memory locations. Since we are discarding 14078 // src value info, don't do the transformation if the memory 14079 // locations are not in the default address space. 14080 LLD->getPointerInfo().getAddrSpace() != 0 || 14081 RLD->getPointerInfo().getAddrSpace() != 0 || 14082 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), 14083 LLD->getBasePtr().getValueType())) 14084 return false; 14085 14086 // Check that the select condition doesn't reach either load. If so, 14087 // folding this will induce a cycle into the DAG. If not, this is safe to 14088 // xform, so create a select of the addresses. 14089 SDValue Addr; 14090 if (TheSelect->getOpcode() == ISD::SELECT) { 14091 SDNode *CondNode = TheSelect->getOperand(0).getNode(); 14092 if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) || 14093 (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode))) 14094 return false; 14095 // The loads must not depend on one another. 14096 if (LLD->isPredecessorOf(RLD) || 14097 RLD->isPredecessorOf(LLD)) 14098 return false; 14099 Addr = DAG.getSelect(SDLoc(TheSelect), 14100 LLD->getBasePtr().getValueType(), 14101 TheSelect->getOperand(0), LLD->getBasePtr(), 14102 RLD->getBasePtr()); 14103 } else { // Otherwise SELECT_CC 14104 SDNode *CondLHS = TheSelect->getOperand(0).getNode(); 14105 SDNode *CondRHS = TheSelect->getOperand(1).getNode(); 14106 14107 if ((LLD->hasAnyUseOfValue(1) && 14108 (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) || 14109 (RLD->hasAnyUseOfValue(1) && 14110 (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS)))) 14111 return false; 14112 14113 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), 14114 LLD->getBasePtr().getValueType(), 14115 TheSelect->getOperand(0), 14116 TheSelect->getOperand(1), 14117 LLD->getBasePtr(), RLD->getBasePtr(), 14118 TheSelect->getOperand(4)); 14119 } 14120 14121 SDValue Load; 14122 // It is safe to replace the two loads if they have different alignments, 14123 // but the new load must be the minimum (most restrictive) alignment of the 14124 // inputs. 14125 bool isInvariant = LLD->isInvariant() & RLD->isInvariant(); 14126 unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment()); 14127 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { 14128 Load = DAG.getLoad(TheSelect->getValueType(0), 14129 SDLoc(TheSelect), 14130 // FIXME: Discards pointer and AA info. 14131 LLD->getChain(), Addr, MachinePointerInfo(), 14132 LLD->isVolatile(), LLD->isNonTemporal(), 14133 isInvariant, Alignment); 14134 } else { 14135 Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ? 14136 RLD->getExtensionType() : LLD->getExtensionType(), 14137 SDLoc(TheSelect), 14138 TheSelect->getValueType(0), 14139 // FIXME: Discards pointer and AA info. 14140 LLD->getChain(), Addr, MachinePointerInfo(), 14141 LLD->getMemoryVT(), LLD->isVolatile(), 14142 LLD->isNonTemporal(), isInvariant, Alignment); 14143 } 14144 14145 // Users of the select now use the result of the load. 14146 CombineTo(TheSelect, Load); 14147 14148 // Users of the old loads now use the new load's chain. We know the 14149 // old-load value is dead now. 14150 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); 14151 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); 14152 return true; 14153 } 14154 14155 return false; 14156 } 14157 14158 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3 14159 /// where 'cond' is the comparison specified by CC. 14160 SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, 14161 SDValue N2, SDValue N3, ISD::CondCode CC, 14162 bool NotExtCompare) { 14163 // (x ? y : y) -> y. 14164 if (N2 == N3) return N2; 14165 14166 EVT VT = N2.getValueType(); 14167 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); 14168 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); 14169 14170 // Determine if the condition we're dealing with is constant 14171 SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), 14172 N0, N1, CC, DL, false); 14173 if (SCC.getNode()) AddToWorklist(SCC.getNode()); 14174 14175 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { 14176 // fold select_cc true, x, y -> x 14177 // fold select_cc false, x, y -> y 14178 return !SCCC->isNullValue() ? N2 : N3; 14179 } 14180 14181 // Check to see if we can simplify the select into an fabs node 14182 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { 14183 // Allow either -0.0 or 0.0 14184 if (CFP->isZero()) { 14185 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs 14186 if ((CC == ISD::SETGE || CC == ISD::SETGT) && 14187 N0 == N2 && N3.getOpcode() == ISD::FNEG && 14188 N2 == N3.getOperand(0)) 14189 return DAG.getNode(ISD::FABS, DL, VT, N0); 14190 14191 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs 14192 if ((CC == ISD::SETLT || CC == ISD::SETLE) && 14193 N0 == N3 && N2.getOpcode() == ISD::FNEG && 14194 N2.getOperand(0) == N3) 14195 return DAG.getNode(ISD::FABS, DL, VT, N3); 14196 } 14197 } 14198 14199 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" 14200 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 14201 // in it. This is a win when the constant is not otherwise available because 14202 // it replaces two constant pool loads with one. We only do this if the FP 14203 // type is known to be legal, because if it isn't, then we are before legalize 14204 // types an we want the other legalization to happen first (e.g. to avoid 14205 // messing with soft float) and if the ConstantFP is not legal, because if 14206 // it is legal, we may not need to store the FP constant in a constant pool. 14207 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) 14208 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { 14209 if (TLI.isTypeLegal(N2.getValueType()) && 14210 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != 14211 TargetLowering::Legal && 14212 !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) && 14213 !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) && 14214 // If both constants have multiple uses, then we won't need to do an 14215 // extra load, they are likely around in registers for other users. 14216 (TV->hasOneUse() || FV->hasOneUse())) { 14217 Constant *Elts[] = { 14218 const_cast<ConstantFP*>(FV->getConstantFPValue()), 14219 const_cast<ConstantFP*>(TV->getConstantFPValue()) 14220 }; 14221 Type *FPTy = Elts[0]->getType(); 14222 const DataLayout &TD = DAG.getDataLayout(); 14223 14224 // Create a ConstantArray of the two constants. 14225 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); 14226 SDValue CPIdx = 14227 DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), 14228 TD.getPrefTypeAlignment(FPTy)); 14229 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 14230 14231 // Get the offsets to the 0 and 1 element of the array so that we can 14232 // select between them. 14233 SDValue Zero = DAG.getIntPtrConstant(0, DL); 14234 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); 14235 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); 14236 14237 SDValue Cond = DAG.getSetCC(DL, 14238 getSetCCResultType(N0.getValueType()), 14239 N0, N1, CC); 14240 AddToWorklist(Cond.getNode()); 14241 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), 14242 Cond, One, Zero); 14243 AddToWorklist(CstOffset.getNode()); 14244 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, 14245 CstOffset); 14246 AddToWorklist(CPIdx.getNode()); 14247 return DAG.getLoad( 14248 TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, 14249 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 14250 false, false, false, Alignment); 14251 } 14252 } 14253 14254 // Check to see if we can perform the "gzip trick", transforming 14255 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) 14256 if (isNullConstant(N3) && CC == ISD::SETLT && 14257 (isNullConstant(N1) || // (a < 0) ? b : 0 14258 (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0 14259 EVT XType = N0.getValueType(); 14260 EVT AType = N2.getValueType(); 14261 if (XType.bitsGE(AType)) { 14262 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a 14263 // single-bit constant. 14264 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { 14265 unsigned ShCtV = N2C->getAPIntValue().logBase2(); 14266 ShCtV = XType.getSizeInBits() - ShCtV - 1; 14267 SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0), 14268 getShiftAmountTy(N0.getValueType())); 14269 SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), 14270 XType, N0, ShCt); 14271 AddToWorklist(Shift.getNode()); 14272 14273 if (XType.bitsGT(AType)) { 14274 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14275 AddToWorklist(Shift.getNode()); 14276 } 14277 14278 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14279 } 14280 14281 SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), 14282 XType, N0, 14283 DAG.getConstant(XType.getSizeInBits() - 1, 14284 SDLoc(N0), 14285 getShiftAmountTy(N0.getValueType()))); 14286 AddToWorklist(Shift.getNode()); 14287 14288 if (XType.bitsGT(AType)) { 14289 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); 14290 AddToWorklist(Shift.getNode()); 14291 } 14292 14293 return DAG.getNode(ISD::AND, DL, AType, Shift, N2); 14294 } 14295 } 14296 14297 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) 14298 // where y is has a single bit set. 14299 // A plaintext description would be, we can turn the SELECT_CC into an AND 14300 // when the condition can be materialized as an all-ones register. Any 14301 // single bit-test can be materialized as an all-ones register with 14302 // shift-left and shift-right-arith. 14303 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && 14304 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { 14305 SDValue AndLHS = N0->getOperand(0); 14306 ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 14307 if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { 14308 // Shift the tested bit over the sign bit. 14309 const APInt &AndMask = ConstAndRHS->getAPIntValue(); 14310 SDValue ShlAmt = 14311 DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), 14312 getShiftAmountTy(AndLHS.getValueType())); 14313 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); 14314 14315 // Now arithmetic right shift it all the way over, so the result is either 14316 // all-ones, or zero. 14317 SDValue ShrAmt = 14318 DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl), 14319 getShiftAmountTy(Shl.getValueType())); 14320 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); 14321 14322 return DAG.getNode(ISD::AND, DL, VT, Shr, N3); 14323 } 14324 } 14325 14326 // fold select C, 16, 0 -> shl C, 4 14327 if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() && 14328 TLI.getBooleanContents(N0.getValueType()) == 14329 TargetLowering::ZeroOrOneBooleanContent) { 14330 14331 // If the caller doesn't want us to simplify this into a zext of a compare, 14332 // don't do it. 14333 if (NotExtCompare && N2C->isOne()) 14334 return SDValue(); 14335 14336 // Get a SetCC of the condition 14337 // NOTE: Don't create a SETCC if it's not legal on this target. 14338 if (!LegalOperations || 14339 TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) { 14340 SDValue Temp, SCC; 14341 // cast from setcc result type to select result type 14342 if (LegalTypes) { 14343 SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), 14344 N0, N1, CC); 14345 if (N2.getValueType().bitsLT(SCC.getValueType())) 14346 Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), 14347 N2.getValueType()); 14348 else 14349 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14350 N2.getValueType(), SCC); 14351 } else { 14352 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); 14353 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), 14354 N2.getValueType(), SCC); 14355 } 14356 14357 AddToWorklist(SCC.getNode()); 14358 AddToWorklist(Temp.getNode()); 14359 14360 if (N2C->isOne()) 14361 return Temp; 14362 14363 // shl setcc result by log2 n2c 14364 return DAG.getNode( 14365 ISD::SHL, DL, N2.getValueType(), Temp, 14366 DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp), 14367 getShiftAmountTy(Temp.getValueType()))); 14368 } 14369 } 14370 14371 // Check to see if this is an integer abs. 14372 // select_cc setg[te] X, 0, X, -X -> 14373 // select_cc setgt X, -1, X, -X -> 14374 // select_cc setl[te] X, 0, -X, X -> 14375 // select_cc setlt X, 1, -X, X -> 14376 // Y = sra (X, size(X)-1); xor (add (X, Y), Y) 14377 if (N1C) { 14378 ConstantSDNode *SubC = nullptr; 14379 if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || 14380 (N1C->isAllOnesValue() && CC == ISD::SETGT)) && 14381 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) 14382 SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); 14383 else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || 14384 (N1C->isOne() && CC == ISD::SETLT)) && 14385 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) 14386 SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); 14387 14388 EVT XType = N0.getValueType(); 14389 if (SubC && SubC->isNullValue() && XType.isInteger()) { 14390 SDLoc DL(N0); 14391 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, 14392 N0, 14393 DAG.getConstant(XType.getSizeInBits() - 1, DL, 14394 getShiftAmountTy(N0.getValueType()))); 14395 SDValue Add = DAG.getNode(ISD::ADD, DL, 14396 XType, N0, Shift); 14397 AddToWorklist(Shift.getNode()); 14398 AddToWorklist(Add.getNode()); 14399 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); 14400 } 14401 } 14402 14403 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) 14404 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) 14405 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) 14406 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) 14407 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) 14408 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) 14409 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) 14410 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) 14411 if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 14412 SDValue ValueOnZero = N2; 14413 SDValue Count = N3; 14414 // If the condition is NE instead of E, swap the operands. 14415 if (CC == ISD::SETNE) 14416 std::swap(ValueOnZero, Count); 14417 // Check if the value on zero is a constant equal to the bits in the type. 14418 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { 14419 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { 14420 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is 14421 // legal, combine to just cttz. 14422 if ((Count.getOpcode() == ISD::CTTZ || 14423 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && 14424 N0 == Count.getOperand(0) && 14425 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) 14426 return DAG.getNode(ISD::CTTZ, DL, VT, N0); 14427 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is 14428 // legal, combine to just ctlz. 14429 if ((Count.getOpcode() == ISD::CTLZ || 14430 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && 14431 N0 == Count.getOperand(0) && 14432 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) 14433 return DAG.getNode(ISD::CTLZ, DL, VT, N0); 14434 } 14435 } 14436 } 14437 14438 return SDValue(); 14439 } 14440 14441 /// This is a stub for TargetLowering::SimplifySetCC. 14442 SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 14443 ISD::CondCode Cond, const SDLoc &DL, 14444 bool foldBooleans) { 14445 TargetLowering::DAGCombinerInfo 14446 DagCombineInfo(DAG, Level, false, this); 14447 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); 14448 } 14449 14450 /// Given an ISD::SDIV node expressing a divide by constant, return 14451 /// a DAG expression to select that will generate the same value by multiplying 14452 /// by a magic number. 14453 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14454 SDValue DAGCombiner::BuildSDIV(SDNode *N) { 14455 // when optimising for minimum size, we don't want to expand a div to a mul 14456 // and a shift. 14457 if (DAG.getMachineFunction().getFunction()->optForMinSize()) 14458 return SDValue(); 14459 14460 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14461 if (!C) 14462 return SDValue(); 14463 14464 // Avoid division by zero. 14465 if (C->isNullValue()) 14466 return SDValue(); 14467 14468 std::vector<SDNode*> Built; 14469 SDValue S = 14470 TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14471 14472 for (SDNode *N : Built) 14473 AddToWorklist(N); 14474 return S; 14475 } 14476 14477 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a 14478 /// DAG expression that will generate the same value by right shifting. 14479 SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { 14480 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14481 if (!C) 14482 return SDValue(); 14483 14484 // Avoid division by zero. 14485 if (C->isNullValue()) 14486 return SDValue(); 14487 14488 std::vector<SDNode *> Built; 14489 SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built); 14490 14491 for (SDNode *N : Built) 14492 AddToWorklist(N); 14493 return S; 14494 } 14495 14496 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG 14497 /// expression that will generate the same value by multiplying by a magic 14498 /// number. 14499 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 14500 SDValue DAGCombiner::BuildUDIV(SDNode *N) { 14501 // when optimising for minimum size, we don't want to expand a div to a mul 14502 // and a shift. 14503 if (DAG.getMachineFunction().getFunction()->optForMinSize()) 14504 return SDValue(); 14505 14506 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); 14507 if (!C) 14508 return SDValue(); 14509 14510 // Avoid division by zero. 14511 if (C->isNullValue()) 14512 return SDValue(); 14513 14514 std::vector<SDNode*> Built; 14515 SDValue S = 14516 TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built); 14517 14518 for (SDNode *N : Built) 14519 AddToWorklist(N); 14520 return S; 14521 } 14522 14523 SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) { 14524 if (Level >= AfterLegalizeDAG) 14525 return SDValue(); 14526 14527 // Expose the DAG combiner to the target combiner implementations. 14528 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14529 14530 unsigned Iterations = 0; 14531 if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) { 14532 if (Iterations) { 14533 // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14534 // For the reciprocal, we need to find the zero of the function: 14535 // F(X) = A X - 1 [which has a zero at X = 1/A] 14536 // => 14537 // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form 14538 // does not require additional intermediate precision] 14539 EVT VT = Op.getValueType(); 14540 SDLoc DL(Op); 14541 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); 14542 14543 AddToWorklist(Est.getNode()); 14544 14545 // Newton iterations: Est = Est + Est (1 - Arg * Est) 14546 for (unsigned i = 0; i < Iterations; ++i) { 14547 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags); 14548 AddToWorklist(NewEst.getNode()); 14549 14550 NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags); 14551 AddToWorklist(NewEst.getNode()); 14552 14553 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14554 AddToWorklist(NewEst.getNode()); 14555 14556 Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags); 14557 AddToWorklist(Est.getNode()); 14558 } 14559 } 14560 return Est; 14561 } 14562 14563 return SDValue(); 14564 } 14565 14566 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14567 /// For the reciprocal sqrt, we need to find the zero of the function: 14568 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14569 /// => 14570 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2) 14571 /// As a result, we precompute A/2 prior to the iteration loop. 14572 SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, 14573 unsigned Iterations, 14574 SDNodeFlags *Flags, bool Reciprocal) { 14575 EVT VT = Arg.getValueType(); 14576 SDLoc DL(Arg); 14577 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); 14578 14579 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that 14580 // this entire sequence requires only one FP constant. 14581 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); 14582 AddToWorklist(HalfArg.getNode()); 14583 14584 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); 14585 AddToWorklist(HalfArg.getNode()); 14586 14587 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) 14588 for (unsigned i = 0; i < Iterations; ++i) { 14589 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); 14590 AddToWorklist(NewEst.getNode()); 14591 14592 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); 14593 AddToWorklist(NewEst.getNode()); 14594 14595 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); 14596 AddToWorklist(NewEst.getNode()); 14597 14598 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); 14599 AddToWorklist(Est.getNode()); 14600 } 14601 14602 // If non-reciprocal square root is requested, multiply the result by Arg. 14603 if (!Reciprocal) { 14604 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); 14605 AddToWorklist(Est.getNode()); 14606 } 14607 14608 return Est; 14609 } 14610 14611 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) 14612 /// For the reciprocal sqrt, we need to find the zero of the function: 14613 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] 14614 /// => 14615 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) 14616 SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, 14617 unsigned Iterations, 14618 SDNodeFlags *Flags, bool Reciprocal) { 14619 EVT VT = Arg.getValueType(); 14620 SDLoc DL(Arg); 14621 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); 14622 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); 14623 14624 // This routine must enter the loop below to work correctly 14625 // when (Reciprocal == false). 14626 assert(Iterations > 0); 14627 14628 // Newton iterations for reciprocal square root: 14629 // E = (E * -0.5) * ((A * E) * E + -3.0) 14630 for (unsigned i = 0; i < Iterations; ++i) { 14631 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); 14632 AddToWorklist(AE.getNode()); 14633 14634 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); 14635 AddToWorklist(AEE.getNode()); 14636 14637 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); 14638 AddToWorklist(RHS.getNode()); 14639 14640 // When calculating a square root at the last iteration build: 14641 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) 14642 // (notice a common subexpression) 14643 SDValue LHS; 14644 if (Reciprocal || (i + 1) < Iterations) { 14645 // RSQRT: LHS = (E * -0.5) 14646 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); 14647 } else { 14648 // SQRT: LHS = (A * E) * -0.5 14649 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); 14650 } 14651 AddToWorklist(LHS.getNode()); 14652 14653 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); 14654 AddToWorklist(Est.getNode()); 14655 } 14656 14657 return Est; 14658 } 14659 14660 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case 14661 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if 14662 /// Op can be zero. 14663 SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags *Flags, 14664 bool Reciprocal) { 14665 if (Level >= AfterLegalizeDAG) 14666 return SDValue(); 14667 14668 // Expose the DAG combiner to the target combiner implementations. 14669 TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this); 14670 unsigned Iterations = 0; 14671 bool UseOneConstNR = false; 14672 if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) { 14673 AddToWorklist(Est.getNode()); 14674 if (Iterations) { 14675 Est = UseOneConstNR 14676 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) 14677 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); 14678 } 14679 return Est; 14680 } 14681 14682 return SDValue(); 14683 } 14684 14685 SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14686 return buildSqrtEstimateImpl(Op, Flags, true); 14687 } 14688 14689 SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags *Flags) { 14690 SDValue Est = buildSqrtEstimateImpl(Op, Flags, false); 14691 if (!Est) 14692 return SDValue(); 14693 14694 // Unfortunately, Est is now NaN if the input was exactly 0. 14695 // Select out this case and force the answer to 0. 14696 EVT VT = Est.getValueType(); 14697 SDLoc DL(Op); 14698 SDValue Zero = DAG.getConstantFP(0.0, DL, VT); 14699 EVT CCVT = getSetCCResultType(VT); 14700 SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, Op, Zero, ISD::SETEQ); 14701 AddToWorklist(ZeroCmp.getNode()); 14702 14703 Est = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, ZeroCmp, 14704 Zero, Est); 14705 AddToWorklist(Est.getNode()); 14706 return Est; 14707 } 14708 14709 /// Return true if base is a frame index, which is known not to alias with 14710 /// anything but itself. Provides base object and offset as results. 14711 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, 14712 const GlobalValue *&GV, const void *&CV) { 14713 // Assume it is a primitive operation. 14714 Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr; 14715 14716 // If it's an adding a simple constant then integrate the offset. 14717 if (Base.getOpcode() == ISD::ADD) { 14718 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { 14719 Base = Base.getOperand(0); 14720 Offset += C->getZExtValue(); 14721 } 14722 } 14723 14724 // Return the underlying GlobalValue, and update the Offset. Return false 14725 // for GlobalAddressSDNode since the same GlobalAddress may be represented 14726 // by multiple nodes with different offsets. 14727 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { 14728 GV = G->getGlobal(); 14729 Offset += G->getOffset(); 14730 return false; 14731 } 14732 14733 // Return the underlying Constant value, and update the Offset. Return false 14734 // for ConstantSDNodes since the same constant pool entry may be represented 14735 // by multiple nodes with different offsets. 14736 if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { 14737 CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal() 14738 : (const void *)C->getConstVal(); 14739 Offset += C->getOffset(); 14740 return false; 14741 } 14742 // If it's any of the following then it can't alias with anything but itself. 14743 return isa<FrameIndexSDNode>(Base); 14744 } 14745 14746 /// Return true if there is any possibility that the two addresses overlap. 14747 bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const { 14748 // If they are the same then they must be aliases. 14749 if (Op0->getBasePtr() == Op1->getBasePtr()) return true; 14750 14751 // If they are both volatile then they cannot be reordered. 14752 if (Op0->isVolatile() && Op1->isVolatile()) return true; 14753 14754 // If one operation reads from invariant memory, and the other may store, they 14755 // cannot alias. These should really be checking the equivalent of mayWrite, 14756 // but it only matters for memory nodes other than load /store. 14757 if (Op0->isInvariant() && Op1->writeMem()) 14758 return false; 14759 14760 if (Op1->isInvariant() && Op0->writeMem()) 14761 return false; 14762 14763 // Gather base node and offset information. 14764 SDValue Base1, Base2; 14765 int64_t Offset1, Offset2; 14766 const GlobalValue *GV1, *GV2; 14767 const void *CV1, *CV2; 14768 bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(), 14769 Base1, Offset1, GV1, CV1); 14770 bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(), 14771 Base2, Offset2, GV2, CV2); 14772 14773 // If they have a same base address then check to see if they overlap. 14774 if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) 14775 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14776 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14777 14778 // It is possible for different frame indices to alias each other, mostly 14779 // when tail call optimization reuses return address slots for arguments. 14780 // To catch this case, look up the actual index of frame indices to compute 14781 // the real alias relationship. 14782 if (isFrameIndex1 && isFrameIndex2) { 14783 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 14784 Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex()); 14785 Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex()); 14786 return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 || 14787 (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1); 14788 } 14789 14790 // Otherwise, if we know what the bases are, and they aren't identical, then 14791 // we know they cannot alias. 14792 if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) 14793 return false; 14794 14795 // If we know required SrcValue1 and SrcValue2 have relatively large alignment 14796 // compared to the size and offset of the access, we may be able to prove they 14797 // do not alias. This check is conservative for now to catch cases created by 14798 // splitting vector types. 14799 if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) && 14800 (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) && 14801 (Op0->getMemoryVT().getSizeInBits() >> 3 == 14802 Op1->getMemoryVT().getSizeInBits() >> 3) && 14803 (Op0->getOriginalAlignment() > (Op0->getMemoryVT().getSizeInBits() >> 3))) { 14804 int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment(); 14805 int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment(); 14806 14807 // There is no overlap between these relatively aligned accesses of similar 14808 // size, return no alias. 14809 if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 || 14810 (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1) 14811 return false; 14812 } 14813 14814 bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 14815 ? CombinerGlobalAA 14816 : DAG.getSubtarget().useAA(); 14817 #ifndef NDEBUG 14818 if (CombinerAAOnlyFunc.getNumOccurrences() && 14819 CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) 14820 UseAA = false; 14821 #endif 14822 if (UseAA && 14823 Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) { 14824 // Use alias analysis information. 14825 int64_t MinOffset = std::min(Op0->getSrcValueOffset(), 14826 Op1->getSrcValueOffset()); 14827 int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) + 14828 Op0->getSrcValueOffset() - MinOffset; 14829 int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) + 14830 Op1->getSrcValueOffset() - MinOffset; 14831 AliasResult AAResult = 14832 AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1, 14833 UseTBAA ? Op0->getAAInfo() : AAMDNodes()), 14834 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2, 14835 UseTBAA ? Op1->getAAInfo() : AAMDNodes())); 14836 if (AAResult == NoAlias) 14837 return false; 14838 } 14839 14840 // Otherwise we have to assume they alias. 14841 return true; 14842 } 14843 14844 /// Walk up chain skipping non-aliasing memory nodes, 14845 /// looking for aliasing nodes and adding them to the Aliases vector. 14846 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, 14847 SmallVectorImpl<SDValue> &Aliases) { 14848 SmallVector<SDValue, 8> Chains; // List of chains to visit. 14849 SmallPtrSet<SDNode *, 16> Visited; // Visited node set. 14850 14851 // Get alias information for node. 14852 bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile(); 14853 14854 // Starting off. 14855 Chains.push_back(OriginalChain); 14856 unsigned Depth = 0; 14857 14858 // Look at each chain and determine if it is an alias. If so, add it to the 14859 // aliases list. If not, then continue up the chain looking for the next 14860 // candidate. 14861 while (!Chains.empty()) { 14862 SDValue Chain = Chains.pop_back_val(); 14863 14864 // For TokenFactor nodes, look at each operand and only continue up the 14865 // chain until we reach the depth limit. 14866 // 14867 // FIXME: The depth check could be made to return the last non-aliasing 14868 // chain we found before we hit a tokenfactor rather than the original 14869 // chain. 14870 if (Depth > TLI.getGatherAllAliasesMaxDepth()) { 14871 Aliases.clear(); 14872 Aliases.push_back(OriginalChain); 14873 return; 14874 } 14875 14876 // Don't bother if we've been before. 14877 if (!Visited.insert(Chain.getNode()).second) 14878 continue; 14879 14880 switch (Chain.getOpcode()) { 14881 case ISD::EntryToken: 14882 // Entry token is ideal chain operand, but handled in FindBetterChain. 14883 break; 14884 14885 case ISD::LOAD: 14886 case ISD::STORE: { 14887 // Get alias information for Chain. 14888 bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) && 14889 !cast<LSBaseSDNode>(Chain.getNode())->isVolatile(); 14890 14891 // If chain is alias then stop here. 14892 if (!(IsLoad && IsOpLoad) && 14893 isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) { 14894 Aliases.push_back(Chain); 14895 } else { 14896 // Look further up the chain. 14897 Chains.push_back(Chain.getOperand(0)); 14898 ++Depth; 14899 } 14900 break; 14901 } 14902 14903 case ISD::TokenFactor: 14904 // We have to check each of the operands of the token factor for "small" 14905 // token factors, so we queue them up. Adding the operands to the queue 14906 // (stack) in reverse order maintains the original order and increases the 14907 // likelihood that getNode will find a matching token factor (CSE.) 14908 if (Chain.getNumOperands() > 16) { 14909 Aliases.push_back(Chain); 14910 break; 14911 } 14912 for (unsigned n = Chain.getNumOperands(); n;) 14913 Chains.push_back(Chain.getOperand(--n)); 14914 ++Depth; 14915 break; 14916 14917 default: 14918 // For all other instructions we will just have to take what we can get. 14919 Aliases.push_back(Chain); 14920 break; 14921 } 14922 } 14923 } 14924 14925 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain 14926 /// (aliasing node.) 14927 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { 14928 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor. 14929 14930 // Accumulate all the aliases to this node. 14931 GatherAllAliases(N, OldChain, Aliases); 14932 14933 // If no operands then chain to entry token. 14934 if (Aliases.size() == 0) 14935 return DAG.getEntryNode(); 14936 14937 // If a single operand then chain to it. We don't need to revisit it. 14938 if (Aliases.size() == 1) 14939 return Aliases[0]; 14940 14941 // Construct a custom tailored token factor. 14942 return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases); 14943 } 14944 14945 bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { 14946 // This holds the base pointer, index, and the offset in bytes from the base 14947 // pointer. 14948 BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr(), DAG); 14949 14950 // We must have a base and an offset. 14951 if (!BasePtr.Base.getNode()) 14952 return false; 14953 14954 // Do not handle stores to undef base pointers. 14955 if (BasePtr.Base.isUndef()) 14956 return false; 14957 14958 SmallVector<StoreSDNode *, 8> ChainedStores; 14959 ChainedStores.push_back(St); 14960 14961 // Walk up the chain and look for nodes with offsets from the same 14962 // base pointer. Stop when reaching an instruction with a different kind 14963 // or instruction which has a different base pointer. 14964 StoreSDNode *Index = St; 14965 while (Index) { 14966 // If the chain has more than one use, then we can't reorder the mem ops. 14967 if (Index != St && !SDValue(Index, 0)->hasOneUse()) 14968 break; 14969 14970 if (Index->isVolatile() || Index->isIndexed()) 14971 break; 14972 14973 // Find the base pointer and offset for this memory node. 14974 BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr(), DAG); 14975 14976 // Check that the base pointer is the same as the original one. 14977 if (!Ptr.equalBaseIndex(BasePtr)) 14978 break; 14979 14980 // Find the next memory operand in the chain. If the next operand in the 14981 // chain is a store then move up and continue the scan with the next 14982 // memory operand. If the next operand is a load save it and use alias 14983 // information to check if it interferes with anything. 14984 SDNode *NextInChain = Index->getChain().getNode(); 14985 while (true) { 14986 if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) { 14987 // We found a store node. Use it for the next iteration. 14988 if (STn->isVolatile() || STn->isIndexed()) { 14989 Index = nullptr; 14990 break; 14991 } 14992 ChainedStores.push_back(STn); 14993 Index = STn; 14994 break; 14995 } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) { 14996 NextInChain = Ldn->getChain().getNode(); 14997 continue; 14998 } else { 14999 Index = nullptr; 15000 break; 15001 } 15002 } 15003 } 15004 15005 bool MadeChangeToSt = false; 15006 SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains; 15007 15008 for (StoreSDNode *ChainedStore : ChainedStores) { 15009 SDValue Chain = ChainedStore->getChain(); 15010 SDValue BetterChain = FindBetterChain(ChainedStore, Chain); 15011 15012 if (Chain != BetterChain) { 15013 if (ChainedStore == St) 15014 MadeChangeToSt = true; 15015 BetterChains.push_back(std::make_pair(ChainedStore, BetterChain)); 15016 } 15017 } 15018 15019 // Do all replacements after finding the replacements to make to avoid making 15020 // the chains more complicated by introducing new TokenFactors. 15021 for (auto Replacement : BetterChains) 15022 replaceStoreChain(Replacement.first, Replacement.second); 15023 15024 return MadeChangeToSt; 15025 } 15026 15027 /// This is the entry point for the file. 15028 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, 15029 CodeGenOpt::Level OptLevel) { 15030 /// This is the main entry point to this class. 15031 DAGCombiner(*this, AA, OptLevel).Run(Level); 15032 } 15033