Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCInstrInfo.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPC.h"
     17 #include "PPCHazardRecognizers.h"
     18 #include "PPCInstrBuilder.h"
     19 #include "PPCMachineFunctionInfo.h"
     20 #include "PPCTargetMachine.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunctionPass.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/PseudoSourceValue.h"
     30 #include "llvm/CodeGen/ScheduleDAG.h"
     31 #include "llvm/CodeGen/SlotIndexes.h"
     32 #include "llvm/CodeGen/StackMaps.h"
     33 #include "llvm/MC/MCAsmInfo.h"
     34 #include "llvm/MC/MCInst.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 #include "llvm/Support/TargetRegistry.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "ppc-instr-info"
     44 
     45 #define GET_INSTRMAP_INFO
     46 #define GET_INSTRINFO_CTOR_DTOR
     47 #include "PPCGenInstrInfo.inc"
     48 
     49 static cl::
     50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
     51             cl::desc("Disable analysis for CTR loops"));
     52 
     53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
     54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
     55 
     56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
     57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
     58 cl::Hidden);
     59 
     60 static cl::opt<bool>
     61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
     62   cl::desc("Use the old (incorrect) instruction latency calculation"));
     63 
     64 // Pin the vtable to this file.
     65 void PPCInstrInfo::anchor() {}
     66 
     67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
     68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
     69       Subtarget(STI), RI(STI.getTargetMachine()) {}
     70 
     71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
     72 /// this target when scheduling the DAG.
     73 ScheduleHazardRecognizer *
     74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
     75                                            const ScheduleDAG *DAG) const {
     76   unsigned Directive =
     77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
     78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
     79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
     80     const InstrItineraryData *II =
     81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
     82     return new ScoreboardHazardRecognizer(II, DAG);
     83   }
     84 
     85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
     86 }
     87 
     88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
     89 /// to use for this target when scheduling the DAG.
     90 ScheduleHazardRecognizer *
     91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
     92                                                  const ScheduleDAG *DAG) const {
     93   unsigned Directive =
     94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
     95 
     96   // FIXME: Leaving this as-is until we have POWER9 scheduling info
     97   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
     98     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
     99 
    100   // Most subtargets use a PPC970 recognizer.
    101   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
    102       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
    103     assert(DAG->TII && "No InstrInfo?");
    104 
    105     return new PPCHazardRecognizer970(*DAG);
    106   }
    107 
    108   return new ScoreboardHazardRecognizer(II, DAG);
    109 }
    110 
    111 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
    112                                        const MachineInstr &MI,
    113                                        unsigned *PredCost) const {
    114   if (!ItinData || UseOldLatencyCalc)
    115     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
    116 
    117   // The default implementation of getInstrLatency calls getStageLatency, but
    118   // getStageLatency does not do the right thing for us. While we have
    119   // itinerary, most cores are fully pipelined, and so the itineraries only
    120   // express the first part of the pipeline, not every stage. Instead, we need
    121   // to use the listed output operand cycle number (using operand 0 here, which
    122   // is an output).
    123 
    124   unsigned Latency = 1;
    125   unsigned DefClass = MI.getDesc().getSchedClass();
    126   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    127     const MachineOperand &MO = MI.getOperand(i);
    128     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
    129       continue;
    130 
    131     int Cycle = ItinData->getOperandCycle(DefClass, i);
    132     if (Cycle < 0)
    133       continue;
    134 
    135     Latency = std::max(Latency, (unsigned) Cycle);
    136   }
    137 
    138   return Latency;
    139 }
    140 
    141 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
    142                                     const MachineInstr &DefMI, unsigned DefIdx,
    143                                     const MachineInstr &UseMI,
    144                                     unsigned UseIdx) const {
    145   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
    146                                                    UseMI, UseIdx);
    147 
    148   if (!DefMI.getParent())
    149     return Latency;
    150 
    151   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
    152   unsigned Reg = DefMO.getReg();
    153 
    154   bool IsRegCR;
    155   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    156     const MachineRegisterInfo *MRI =
    157         &DefMI.getParent()->getParent()->getRegInfo();
    158     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
    159               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
    160   } else {
    161     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
    162               PPC::CRBITRCRegClass.contains(Reg);
    163   }
    164 
    165   if (UseMI.isBranch() && IsRegCR) {
    166     if (Latency < 0)
    167       Latency = getInstrLatency(ItinData, DefMI);
    168 
    169     // On some cores, there is an additional delay between writing to a condition
    170     // register, and using it from a branch.
    171     unsigned Directive = Subtarget.getDarwinDirective();
    172     switch (Directive) {
    173     default: break;
    174     case PPC::DIR_7400:
    175     case PPC::DIR_750:
    176     case PPC::DIR_970:
    177     case PPC::DIR_E5500:
    178     case PPC::DIR_PWR4:
    179     case PPC::DIR_PWR5:
    180     case PPC::DIR_PWR5X:
    181     case PPC::DIR_PWR6:
    182     case PPC::DIR_PWR6X:
    183     case PPC::DIR_PWR7:
    184     case PPC::DIR_PWR8:
    185     // FIXME: Is this needed for POWER9?
    186       Latency += 2;
    187       break;
    188     }
    189   }
    190 
    191   return Latency;
    192 }
    193 
    194 // This function does not list all associative and commutative operations, but
    195 // only those worth feeding through the machine combiner in an attempt to
    196 // reduce the critical path. Mostly, this means floating-point operations,
    197 // because they have high latencies (compared to other operations, such and
    198 // and/or, which are also associative and commutative, but have low latencies).
    199 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
    200   switch (Inst.getOpcode()) {
    201   // FP Add:
    202   case PPC::FADD:
    203   case PPC::FADDS:
    204   // FP Multiply:
    205   case PPC::FMUL:
    206   case PPC::FMULS:
    207   // Altivec Add:
    208   case PPC::VADDFP:
    209   // VSX Add:
    210   case PPC::XSADDDP:
    211   case PPC::XVADDDP:
    212   case PPC::XVADDSP:
    213   case PPC::XSADDSP:
    214   // VSX Multiply:
    215   case PPC::XSMULDP:
    216   case PPC::XVMULDP:
    217   case PPC::XVMULSP:
    218   case PPC::XSMULSP:
    219   // QPX Add:
    220   case PPC::QVFADD:
    221   case PPC::QVFADDS:
    222   case PPC::QVFADDSs:
    223   // QPX Multiply:
    224   case PPC::QVFMUL:
    225   case PPC::QVFMULS:
    226   case PPC::QVFMULSs:
    227     return true;
    228   default:
    229     return false;
    230   }
    231 }
    232 
    233 bool PPCInstrInfo::getMachineCombinerPatterns(
    234     MachineInstr &Root,
    235     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
    236   // Using the machine combiner in this way is potentially expensive, so
    237   // restrict to when aggressive optimizations are desired.
    238   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
    239     return false;
    240 
    241   // FP reassociation is only legal when we don't need strict IEEE semantics.
    242   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
    243     return false;
    244 
    245   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
    246 }
    247 
    248 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
    249 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
    250                                          unsigned &SrcReg, unsigned &DstReg,
    251                                          unsigned &SubIdx) const {
    252   switch (MI.getOpcode()) {
    253   default: return false;
    254   case PPC::EXTSW:
    255   case PPC::EXTSW_32_64:
    256     SrcReg = MI.getOperand(1).getReg();
    257     DstReg = MI.getOperand(0).getReg();
    258     SubIdx = PPC::sub_32;
    259     return true;
    260   }
    261 }
    262 
    263 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
    264                                            int &FrameIndex) const {
    265   // Note: This list must be kept consistent with LoadRegFromStackSlot.
    266   switch (MI.getOpcode()) {
    267   default: break;
    268   case PPC::LD:
    269   case PPC::LWZ:
    270   case PPC::LFS:
    271   case PPC::LFD:
    272   case PPC::RESTORE_CR:
    273   case PPC::RESTORE_CRBIT:
    274   case PPC::LVX:
    275   case PPC::LXVD2X:
    276   case PPC::QVLFDX:
    277   case PPC::QVLFSXs:
    278   case PPC::QVLFDXb:
    279   case PPC::RESTORE_VRSAVE:
    280     // Check for the operands added by addFrameReference (the immediate is the
    281     // offset which defaults to 0).
    282     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
    283         MI.getOperand(2).isFI()) {
    284       FrameIndex = MI.getOperand(2).getIndex();
    285       return MI.getOperand(0).getReg();
    286     }
    287     break;
    288   }
    289   return 0;
    290 }
    291 
    292 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
    293                                           int &FrameIndex) const {
    294   // Note: This list must be kept consistent with StoreRegToStackSlot.
    295   switch (MI.getOpcode()) {
    296   default: break;
    297   case PPC::STD:
    298   case PPC::STW:
    299   case PPC::STFS:
    300   case PPC::STFD:
    301   case PPC::SPILL_CR:
    302   case PPC::SPILL_CRBIT:
    303   case PPC::STVX:
    304   case PPC::STXVD2X:
    305   case PPC::QVSTFDX:
    306   case PPC::QVSTFSXs:
    307   case PPC::QVSTFDXb:
    308   case PPC::SPILL_VRSAVE:
    309     // Check for the operands added by addFrameReference (the immediate is the
    310     // offset which defaults to 0).
    311     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
    312         MI.getOperand(2).isFI()) {
    313       FrameIndex = MI.getOperand(2).getIndex();
    314       return MI.getOperand(0).getReg();
    315     }
    316     break;
    317   }
    318   return 0;
    319 }
    320 
    321 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
    322                                                    unsigned OpIdx1,
    323                                                    unsigned OpIdx2) const {
    324   MachineFunction &MF = *MI.getParent()->getParent();
    325 
    326   // Normal instructions can be commuted the obvious way.
    327   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
    328     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
    329   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
    330   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
    331   // changing the relative order of the mask operands might change what happens
    332   // to the high-bits of the mask (and, thus, the result).
    333 
    334   // Cannot commute if it has a non-zero rotate count.
    335   if (MI.getOperand(3).getImm() != 0)
    336     return nullptr;
    337 
    338   // If we have a zero rotate count, we have:
    339   //   M = mask(MB,ME)
    340   //   Op0 = (Op1 & ~M) | (Op2 & M)
    341   // Change this to:
    342   //   M = mask((ME+1)&31, (MB-1)&31)
    343   //   Op0 = (Op2 & ~M) | (Op1 & M)
    344 
    345   // Swap op1/op2
    346   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
    347          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
    348   unsigned Reg0 = MI.getOperand(0).getReg();
    349   unsigned Reg1 = MI.getOperand(1).getReg();
    350   unsigned Reg2 = MI.getOperand(2).getReg();
    351   unsigned SubReg1 = MI.getOperand(1).getSubReg();
    352   unsigned SubReg2 = MI.getOperand(2).getSubReg();
    353   bool Reg1IsKill = MI.getOperand(1).isKill();
    354   bool Reg2IsKill = MI.getOperand(2).isKill();
    355   bool ChangeReg0 = false;
    356   // If machine instrs are no longer in two-address forms, update
    357   // destination register as well.
    358   if (Reg0 == Reg1) {
    359     // Must be two address instruction!
    360     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
    361            "Expecting a two-address instruction!");
    362     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
    363     Reg2IsKill = false;
    364     ChangeReg0 = true;
    365   }
    366 
    367   // Masks.
    368   unsigned MB = MI.getOperand(4).getImm();
    369   unsigned ME = MI.getOperand(5).getImm();
    370 
    371   // We can't commute a trivial mask (there is no way to represent an all-zero
    372   // mask).
    373   if (MB == 0 && ME == 31)
    374     return nullptr;
    375 
    376   if (NewMI) {
    377     // Create a new instruction.
    378     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
    379     bool Reg0IsDead = MI.getOperand(0).isDead();
    380     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
    381         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
    382         .addReg(Reg2, getKillRegState(Reg2IsKill))
    383         .addReg(Reg1, getKillRegState(Reg1IsKill))
    384         .addImm((ME + 1) & 31)
    385         .addImm((MB - 1) & 31);
    386   }
    387 
    388   if (ChangeReg0) {
    389     MI.getOperand(0).setReg(Reg2);
    390     MI.getOperand(0).setSubReg(SubReg2);
    391   }
    392   MI.getOperand(2).setReg(Reg1);
    393   MI.getOperand(1).setReg(Reg2);
    394   MI.getOperand(2).setSubReg(SubReg1);
    395   MI.getOperand(1).setSubReg(SubReg2);
    396   MI.getOperand(2).setIsKill(Reg1IsKill);
    397   MI.getOperand(1).setIsKill(Reg2IsKill);
    398 
    399   // Swap the mask around.
    400   MI.getOperand(4).setImm((ME + 1) & 31);
    401   MI.getOperand(5).setImm((MB - 1) & 31);
    402   return &MI;
    403 }
    404 
    405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
    406                                          unsigned &SrcOpIdx2) const {
    407   // For VSX A-Type FMA instructions, it is the first two operands that can be
    408   // commuted, however, because the non-encoded tied input operand is listed
    409   // first, the operands to swap are actually the second and third.
    410 
    411   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
    412   if (AltOpc == -1)
    413     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
    414 
    415   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
    416   // and SrcOpIdx2.
    417   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
    418 }
    419 
    420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
    421                               MachineBasicBlock::iterator MI) const {
    422   // This function is used for scheduling, and the nop wanted here is the type
    423   // that terminates dispatch groups on the POWER cores.
    424   unsigned Directive = Subtarget.getDarwinDirective();
    425   unsigned Opcode;
    426   switch (Directive) {
    427   default:            Opcode = PPC::NOP; break;
    428   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
    429   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
    430   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
    431   // FIXME: Update when POWER9 scheduling model is ready.
    432   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
    433   }
    434 
    435   DebugLoc DL;
    436   BuildMI(MBB, MI, DL, get(Opcode));
    437 }
    438 
    439 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
    440 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
    441   NopInst.setOpcode(PPC::NOP);
    442 }
    443 
    444 // Branch analysis.
    445 // Note: If the condition register is set to CTR or CTR8 then this is a
    446 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
    447 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
    448                                  MachineBasicBlock *&TBB,
    449                                  MachineBasicBlock *&FBB,
    450                                  SmallVectorImpl<MachineOperand> &Cond,
    451                                  bool AllowModify) const {
    452   bool isPPC64 = Subtarget.isPPC64();
    453 
    454   // If the block has no terminators, it just falls into the block after it.
    455   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
    456   if (I == MBB.end())
    457     return false;
    458 
    459   if (!isUnpredicatedTerminator(*I))
    460     return false;
    461 
    462   // Get the last instruction in the block.
    463   MachineInstr *LastInst = I;
    464 
    465   // If there is only one terminator instruction, process it.
    466   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
    467     if (LastInst->getOpcode() == PPC::B) {
    468       if (!LastInst->getOperand(0).isMBB())
    469         return true;
    470       TBB = LastInst->getOperand(0).getMBB();
    471       return false;
    472     } else if (LastInst->getOpcode() == PPC::BCC) {
    473       if (!LastInst->getOperand(2).isMBB())
    474         return true;
    475       // Block ends with fall-through condbranch.
    476       TBB = LastInst->getOperand(2).getMBB();
    477       Cond.push_back(LastInst->getOperand(0));
    478       Cond.push_back(LastInst->getOperand(1));
    479       return false;
    480     } else if (LastInst->getOpcode() == PPC::BC) {
    481       if (!LastInst->getOperand(1).isMBB())
    482         return true;
    483       // Block ends with fall-through condbranch.
    484       TBB = LastInst->getOperand(1).getMBB();
    485       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    486       Cond.push_back(LastInst->getOperand(0));
    487       return false;
    488     } else if (LastInst->getOpcode() == PPC::BCn) {
    489       if (!LastInst->getOperand(1).isMBB())
    490         return true;
    491       // Block ends with fall-through condbranch.
    492       TBB = LastInst->getOperand(1).getMBB();
    493       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    494       Cond.push_back(LastInst->getOperand(0));
    495       return false;
    496     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
    497                LastInst->getOpcode() == PPC::BDNZ) {
    498       if (!LastInst->getOperand(0).isMBB())
    499         return true;
    500       if (DisableCTRLoopAnal)
    501         return true;
    502       TBB = LastInst->getOperand(0).getMBB();
    503       Cond.push_back(MachineOperand::CreateImm(1));
    504       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    505                                                true));
    506       return false;
    507     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
    508                LastInst->getOpcode() == PPC::BDZ) {
    509       if (!LastInst->getOperand(0).isMBB())
    510         return true;
    511       if (DisableCTRLoopAnal)
    512         return true;
    513       TBB = LastInst->getOperand(0).getMBB();
    514       Cond.push_back(MachineOperand::CreateImm(0));
    515       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    516                                                true));
    517       return false;
    518     }
    519 
    520     // Otherwise, don't know what this is.
    521     return true;
    522   }
    523 
    524   // Get the instruction before it if it's a terminator.
    525   MachineInstr *SecondLastInst = I;
    526 
    527   // If there are three terminators, we don't know what sort of block this is.
    528   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
    529     return true;
    530 
    531   // If the block ends with PPC::B and PPC:BCC, handle it.
    532   if (SecondLastInst->getOpcode() == PPC::BCC &&
    533       LastInst->getOpcode() == PPC::B) {
    534     if (!SecondLastInst->getOperand(2).isMBB() ||
    535         !LastInst->getOperand(0).isMBB())
    536       return true;
    537     TBB =  SecondLastInst->getOperand(2).getMBB();
    538     Cond.push_back(SecondLastInst->getOperand(0));
    539     Cond.push_back(SecondLastInst->getOperand(1));
    540     FBB = LastInst->getOperand(0).getMBB();
    541     return false;
    542   } else if (SecondLastInst->getOpcode() == PPC::BC &&
    543       LastInst->getOpcode() == PPC::B) {
    544     if (!SecondLastInst->getOperand(1).isMBB() ||
    545         !LastInst->getOperand(0).isMBB())
    546       return true;
    547     TBB =  SecondLastInst->getOperand(1).getMBB();
    548     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
    549     Cond.push_back(SecondLastInst->getOperand(0));
    550     FBB = LastInst->getOperand(0).getMBB();
    551     return false;
    552   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
    553       LastInst->getOpcode() == PPC::B) {
    554     if (!SecondLastInst->getOperand(1).isMBB() ||
    555         !LastInst->getOperand(0).isMBB())
    556       return true;
    557     TBB =  SecondLastInst->getOperand(1).getMBB();
    558     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
    559     Cond.push_back(SecondLastInst->getOperand(0));
    560     FBB = LastInst->getOperand(0).getMBB();
    561     return false;
    562   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
    563               SecondLastInst->getOpcode() == PPC::BDNZ) &&
    564       LastInst->getOpcode() == PPC::B) {
    565     if (!SecondLastInst->getOperand(0).isMBB() ||
    566         !LastInst->getOperand(0).isMBB())
    567       return true;
    568     if (DisableCTRLoopAnal)
    569       return true;
    570     TBB = SecondLastInst->getOperand(0).getMBB();
    571     Cond.push_back(MachineOperand::CreateImm(1));
    572     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    573                                              true));
    574     FBB = LastInst->getOperand(0).getMBB();
    575     return false;
    576   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
    577               SecondLastInst->getOpcode() == PPC::BDZ) &&
    578       LastInst->getOpcode() == PPC::B) {
    579     if (!SecondLastInst->getOperand(0).isMBB() ||
    580         !LastInst->getOperand(0).isMBB())
    581       return true;
    582     if (DisableCTRLoopAnal)
    583       return true;
    584     TBB = SecondLastInst->getOperand(0).getMBB();
    585     Cond.push_back(MachineOperand::CreateImm(0));
    586     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    587                                              true));
    588     FBB = LastInst->getOperand(0).getMBB();
    589     return false;
    590   }
    591 
    592   // If the block ends with two PPC:Bs, handle it.  The second one is not
    593   // executed, so remove it.
    594   if (SecondLastInst->getOpcode() == PPC::B &&
    595       LastInst->getOpcode() == PPC::B) {
    596     if (!SecondLastInst->getOperand(0).isMBB())
    597       return true;
    598     TBB = SecondLastInst->getOperand(0).getMBB();
    599     I = LastInst;
    600     if (AllowModify)
    601       I->eraseFromParent();
    602     return false;
    603   }
    604 
    605   // Otherwise, can't handle this.
    606   return true;
    607 }
    608 
    609 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    610   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
    611   if (I == MBB.end())
    612     return 0;
    613 
    614   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
    615       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
    616       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    617       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    618     return 0;
    619 
    620   // Remove the branch.
    621   I->eraseFromParent();
    622 
    623   I = MBB.end();
    624 
    625   if (I == MBB.begin()) return 1;
    626   --I;
    627   if (I->getOpcode() != PPC::BCC &&
    628       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
    629       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    630       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    631     return 1;
    632 
    633   // Remove the branch.
    634   I->eraseFromParent();
    635   return 2;
    636 }
    637 
    638 unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB,
    639                                     MachineBasicBlock *TBB,
    640                                     MachineBasicBlock *FBB,
    641                                     ArrayRef<MachineOperand> Cond,
    642                                     const DebugLoc &DL) const {
    643   // Shouldn't be a fall through.
    644   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    645   assert((Cond.size() == 2 || Cond.size() == 0) &&
    646          "PPC branch conditions have two components!");
    647 
    648   bool isPPC64 = Subtarget.isPPC64();
    649 
    650   // One-way branch.
    651   if (!FBB) {
    652     if (Cond.empty())   // Unconditional branch
    653       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
    654     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    655       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    656                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    657                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    658     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    659       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    660     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    661       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    662     else                // Conditional branch
    663       BuildMI(&MBB, DL, get(PPC::BCC))
    664         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    665     return 1;
    666   }
    667 
    668   // Two-way Conditional Branch.
    669   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    670     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    671                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    672                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    673   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
    674     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
    675   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
    676     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
    677   else
    678     BuildMI(&MBB, DL, get(PPC::BCC))
    679       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
    680   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
    681   return 2;
    682 }
    683 
    684 // Select analysis.
    685 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
    686                 ArrayRef<MachineOperand> Cond,
    687                 unsigned TrueReg, unsigned FalseReg,
    688                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
    689   if (!Subtarget.hasISEL())
    690     return false;
    691 
    692   if (Cond.size() != 2)
    693     return false;
    694 
    695   // If this is really a bdnz-like condition, then it cannot be turned into a
    696   // select.
    697   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    698     return false;
    699 
    700   // Check register classes.
    701   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    702   const TargetRegisterClass *RC =
    703     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    704   if (!RC)
    705     return false;
    706 
    707   // isel is for regular integer GPRs only.
    708   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
    709       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
    710       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
    711       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
    712     return false;
    713 
    714   // FIXME: These numbers are for the A2, how well they work for other cores is
    715   // an open question. On the A2, the isel instruction has a 2-cycle latency
    716   // but single-cycle throughput. These numbers are used in combination with
    717   // the MispredictPenalty setting from the active SchedMachineModel.
    718   CondCycles = 1;
    719   TrueCycles = 1;
    720   FalseCycles = 1;
    721 
    722   return true;
    723 }
    724 
    725 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
    726                                 MachineBasicBlock::iterator MI,
    727                                 const DebugLoc &dl, unsigned DestReg,
    728                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
    729                                 unsigned FalseReg) const {
    730   assert(Cond.size() == 2 &&
    731          "PPC branch conditions have two components!");
    732 
    733   assert(Subtarget.hasISEL() &&
    734          "Cannot insert select on target without ISEL support");
    735 
    736   // Get the register classes.
    737   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    738   const TargetRegisterClass *RC =
    739     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    740   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
    741 
    742   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
    743                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
    744   assert((Is64Bit ||
    745           PPC::GPRCRegClass.hasSubClassEq(RC) ||
    746           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
    747          "isel is for regular integer GPRs only");
    748 
    749   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
    750   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
    751 
    752   unsigned SubIdx = 0;
    753   bool SwapOps = false;
    754   switch (SelectPred) {
    755   case PPC::PRED_EQ:
    756   case PPC::PRED_EQ_MINUS:
    757   case PPC::PRED_EQ_PLUS:
    758       SubIdx = PPC::sub_eq; SwapOps = false; break;
    759   case PPC::PRED_NE:
    760   case PPC::PRED_NE_MINUS:
    761   case PPC::PRED_NE_PLUS:
    762       SubIdx = PPC::sub_eq; SwapOps = true; break;
    763   case PPC::PRED_LT:
    764   case PPC::PRED_LT_MINUS:
    765   case PPC::PRED_LT_PLUS:
    766       SubIdx = PPC::sub_lt; SwapOps = false; break;
    767   case PPC::PRED_GE:
    768   case PPC::PRED_GE_MINUS:
    769   case PPC::PRED_GE_PLUS:
    770       SubIdx = PPC::sub_lt; SwapOps = true; break;
    771   case PPC::PRED_GT:
    772   case PPC::PRED_GT_MINUS:
    773   case PPC::PRED_GT_PLUS:
    774       SubIdx = PPC::sub_gt; SwapOps = false; break;
    775   case PPC::PRED_LE:
    776   case PPC::PRED_LE_MINUS:
    777   case PPC::PRED_LE_PLUS:
    778       SubIdx = PPC::sub_gt; SwapOps = true; break;
    779   case PPC::PRED_UN:
    780   case PPC::PRED_UN_MINUS:
    781   case PPC::PRED_UN_PLUS:
    782       SubIdx = PPC::sub_un; SwapOps = false; break;
    783   case PPC::PRED_NU:
    784   case PPC::PRED_NU_MINUS:
    785   case PPC::PRED_NU_PLUS:
    786       SubIdx = PPC::sub_un; SwapOps = true; break;
    787   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
    788   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
    789   }
    790 
    791   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
    792            SecondReg = SwapOps ? TrueReg  : FalseReg;
    793 
    794   // The first input register of isel cannot be r0. If it is a member
    795   // of a register class that can be r0, then copy it first (the
    796   // register allocator should eliminate the copy).
    797   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
    798       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
    799     const TargetRegisterClass *FirstRC =
    800       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
    801         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
    802     unsigned OldFirstReg = FirstReg;
    803     FirstReg = MRI.createVirtualRegister(FirstRC);
    804     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
    805       .addReg(OldFirstReg);
    806   }
    807 
    808   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
    809     .addReg(FirstReg).addReg(SecondReg)
    810     .addReg(Cond[1].getReg(), 0, SubIdx);
    811 }
    812 
    813 static unsigned getCRBitValue(unsigned CRBit) {
    814   unsigned Ret = 4;
    815   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
    816       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
    817       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
    818       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
    819     Ret = 3;
    820   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
    821       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
    822       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
    823       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
    824     Ret = 2;
    825   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
    826       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
    827       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
    828       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
    829     Ret = 1;
    830   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
    831       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
    832       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
    833       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
    834     Ret = 0;
    835 
    836   assert(Ret != 4 && "Invalid CR bit register");
    837   return Ret;
    838 }
    839 
    840 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    841                                MachineBasicBlock::iterator I,
    842                                const DebugLoc &DL, unsigned DestReg,
    843                                unsigned SrcReg, bool KillSrc) const {
    844   // We can end up with self copies and similar things as a result of VSX copy
    845   // legalization. Promote them here.
    846   const TargetRegisterInfo *TRI = &getRegisterInfo();
    847   if (PPC::F8RCRegClass.contains(DestReg) &&
    848       PPC::VSRCRegClass.contains(SrcReg)) {
    849     unsigned SuperReg =
    850       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
    851 
    852     if (VSXSelfCopyCrash && SrcReg == SuperReg)
    853       llvm_unreachable("nop VSX copy");
    854 
    855     DestReg = SuperReg;
    856   } else if (PPC::VRRCRegClass.contains(DestReg) &&
    857              PPC::VSRCRegClass.contains(SrcReg)) {
    858     unsigned SuperReg =
    859       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
    860 
    861     if (VSXSelfCopyCrash && SrcReg == SuperReg)
    862       llvm_unreachable("nop VSX copy");
    863 
    864     DestReg = SuperReg;
    865   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
    866              PPC::VSRCRegClass.contains(DestReg)) {
    867     unsigned SuperReg =
    868       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
    869 
    870     if (VSXSelfCopyCrash && DestReg == SuperReg)
    871       llvm_unreachable("nop VSX copy");
    872 
    873     SrcReg = SuperReg;
    874   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
    875              PPC::VSRCRegClass.contains(DestReg)) {
    876     unsigned SuperReg =
    877       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
    878 
    879     if (VSXSelfCopyCrash && DestReg == SuperReg)
    880       llvm_unreachable("nop VSX copy");
    881 
    882     SrcReg = SuperReg;
    883   }
    884 
    885   // Different class register copy
    886   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
    887       PPC::GPRCRegClass.contains(DestReg)) {
    888     unsigned CRReg = getCRFromCRBit(SrcReg);
    889     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
    890     getKillRegState(KillSrc);
    891     // Rotate the CR bit in the CR fields to be the least significant bit and
    892     // then mask with 0x1 (MB = ME = 31).
    893     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
    894        .addReg(DestReg, RegState::Kill)
    895        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
    896        .addImm(31)
    897        .addImm(31);
    898     return;
    899   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
    900       PPC::G8RCRegClass.contains(DestReg)) {
    901     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
    902     getKillRegState(KillSrc);
    903     return;
    904   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
    905       PPC::GPRCRegClass.contains(DestReg)) {
    906     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
    907     getKillRegState(KillSrc);
    908     return;
    909    }
    910 
    911   unsigned Opc;
    912   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
    913     Opc = PPC::OR;
    914   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
    915     Opc = PPC::OR8;
    916   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
    917     Opc = PPC::FMR;
    918   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
    919     Opc = PPC::MCRF;
    920   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
    921     Opc = PPC::VOR;
    922   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
    923     // There are two different ways this can be done:
    924     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
    925     //      issue in VSU pipeline 0.
    926     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
    927     //      can go to either pipeline.
    928     // We'll always use xxlor here, because in practically all cases where
    929     // copies are generated, they are close enough to some use that the
    930     // lower-latency form is preferable.
    931     Opc = PPC::XXLOR;
    932   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
    933            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
    934     Opc = PPC::XXLORf;
    935   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
    936     Opc = PPC::QVFMR;
    937   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
    938     Opc = PPC::QVFMRs;
    939   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
    940     Opc = PPC::QVFMRb;
    941   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
    942     Opc = PPC::CROR;
    943   else
    944     llvm_unreachable("Impossible reg-to-reg copy");
    945 
    946   const MCInstrDesc &MCID = get(Opc);
    947   if (MCID.getNumOperands() == 3)
    948     BuildMI(MBB, I, DL, MCID, DestReg)
    949       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
    950   else
    951     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
    952 }
    953 
    954 // This function returns true if a CR spill is necessary and false otherwise.
    955 bool
    956 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
    957                                   unsigned SrcReg, bool isKill,
    958                                   int FrameIdx,
    959                                   const TargetRegisterClass *RC,
    960                                   SmallVectorImpl<MachineInstr*> &NewMIs,
    961                                   bool &NonRI, bool &SpillsVRS) const{
    962   // Note: If additional store instructions are added here,
    963   // update isStoreToStackSlot.
    964 
    965   DebugLoc DL;
    966   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
    967       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
    968     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
    969                                        .addReg(SrcReg,
    970                                                getKillRegState(isKill)),
    971                                        FrameIdx));
    972   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
    973              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
    974     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
    975                                        .addReg(SrcReg,
    976                                                getKillRegState(isKill)),
    977                                        FrameIdx));
    978   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    979     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
    980                                        .addReg(SrcReg,
    981                                                getKillRegState(isKill)),
    982                                        FrameIdx));
    983   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    984     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
    985                                        .addReg(SrcReg,
    986                                                getKillRegState(isKill)),
    987                                        FrameIdx));
    988   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    989     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
    990                                        .addReg(SrcReg,
    991                                                getKillRegState(isKill)),
    992                                        FrameIdx));
    993     return true;
    994   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    995     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
    996                                        .addReg(SrcReg,
    997                                                getKillRegState(isKill)),
    998                                        FrameIdx));
    999     return true;
   1000   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
   1001     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
   1002                                        .addReg(SrcReg,
   1003                                                getKillRegState(isKill)),
   1004                                        FrameIdx));
   1005     NonRI = true;
   1006   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
   1007     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
   1008                                        .addReg(SrcReg,
   1009                                                getKillRegState(isKill)),
   1010                                        FrameIdx));
   1011     NonRI = true;
   1012   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
   1013     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
   1014                                        .addReg(SrcReg,
   1015                                                getKillRegState(isKill)),
   1016                                        FrameIdx));
   1017     NonRI = true;
   1018   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
   1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
   1020                                        .addReg(SrcReg,
   1021                                                getKillRegState(isKill)),
   1022                                        FrameIdx));
   1023     NonRI = true;
   1024   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
   1025     assert(Subtarget.isDarwin() &&
   1026            "VRSAVE only needs spill/restore on Darwin");
   1027     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
   1028                                        .addReg(SrcReg,
   1029                                                getKillRegState(isKill)),
   1030                                        FrameIdx));
   1031     SpillsVRS = true;
   1032   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
   1033     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
   1034                                        .addReg(SrcReg,
   1035                                                getKillRegState(isKill)),
   1036                                        FrameIdx));
   1037     NonRI = true;
   1038   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
   1039     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
   1040                                        .addReg(SrcReg,
   1041                                                getKillRegState(isKill)),
   1042                                        FrameIdx));
   1043     NonRI = true;
   1044   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
   1045     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
   1046                                        .addReg(SrcReg,
   1047                                                getKillRegState(isKill)),
   1048                                        FrameIdx));
   1049     NonRI = true;
   1050   } else {
   1051     llvm_unreachable("Unknown regclass!");
   1052   }
   1053 
   1054   return false;
   1055 }
   1056 
   1057 void
   1058 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
   1059                                   MachineBasicBlock::iterator MI,
   1060                                   unsigned SrcReg, bool isKill, int FrameIdx,
   1061                                   const TargetRegisterClass *RC,
   1062                                   const TargetRegisterInfo *TRI) const {
   1063   MachineFunction &MF = *MBB.getParent();
   1064   SmallVector<MachineInstr*, 4> NewMIs;
   1065 
   1066   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1067   FuncInfo->setHasSpills();
   1068 
   1069   bool NonRI = false, SpillsVRS = false;
   1070   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
   1071                           NonRI, SpillsVRS))
   1072     FuncInfo->setSpillsCR();
   1073 
   1074   if (SpillsVRS)
   1075     FuncInfo->setSpillsVRSAVE();
   1076 
   1077   if (NonRI)
   1078     FuncInfo->setHasNonRISpills();
   1079 
   1080   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
   1081     MBB.insert(MI, NewMIs[i]);
   1082 
   1083   const MachineFrameInfo &MFI = *MF.getFrameInfo();
   1084   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1085       MachinePointerInfo::getFixedStack(MF, FrameIdx),
   1086       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
   1087       MFI.getObjectAlignment(FrameIdx));
   1088   NewMIs.back()->addMemOperand(MF, MMO);
   1089 }
   1090 
   1091 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
   1092                                         unsigned DestReg, int FrameIdx,
   1093                                         const TargetRegisterClass *RC,
   1094                                         SmallVectorImpl<MachineInstr *> &NewMIs,
   1095                                         bool &NonRI, bool &SpillsVRS) const {
   1096   // Note: If additional load instructions are added here,
   1097   // update isLoadFromStackSlot.
   1098 
   1099   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
   1100       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
   1101     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
   1102                                                DestReg), FrameIdx));
   1103   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
   1104              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
   1105     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
   1106                                        FrameIdx));
   1107   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
   1108     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
   1109                                        FrameIdx));
   1110   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
   1111     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
   1112                                        FrameIdx));
   1113   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
   1114     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
   1115                                                get(PPC::RESTORE_CR), DestReg),
   1116                                        FrameIdx));
   1117     return true;
   1118   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
   1119     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
   1120                                                get(PPC::RESTORE_CRBIT), DestReg),
   1121                                        FrameIdx));
   1122     return true;
   1123   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
   1124     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
   1125                                        FrameIdx));
   1126     NonRI = true;
   1127   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
   1128     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
   1129                                        FrameIdx));
   1130     NonRI = true;
   1131   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
   1132     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
   1133                                        FrameIdx));
   1134     NonRI = true;
   1135   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
   1136     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
   1137                                        FrameIdx));
   1138     NonRI = true;
   1139   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
   1140     assert(Subtarget.isDarwin() &&
   1141            "VRSAVE only needs spill/restore on Darwin");
   1142     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
   1143                                                get(PPC::RESTORE_VRSAVE),
   1144                                                DestReg),
   1145                                        FrameIdx));
   1146     SpillsVRS = true;
   1147   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
   1148     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
   1149                                        FrameIdx));
   1150     NonRI = true;
   1151   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
   1152     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
   1153                                        FrameIdx));
   1154     NonRI = true;
   1155   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
   1156     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
   1157                                        FrameIdx));
   1158     NonRI = true;
   1159   } else {
   1160     llvm_unreachable("Unknown regclass!");
   1161   }
   1162 
   1163   return false;
   1164 }
   1165 
   1166 void
   1167 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
   1168                                    MachineBasicBlock::iterator MI,
   1169                                    unsigned DestReg, int FrameIdx,
   1170                                    const TargetRegisterClass *RC,
   1171                                    const TargetRegisterInfo *TRI) const {
   1172   MachineFunction &MF = *MBB.getParent();
   1173   SmallVector<MachineInstr*, 4> NewMIs;
   1174   DebugLoc DL;
   1175   if (MI != MBB.end()) DL = MI->getDebugLoc();
   1176 
   1177   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
   1178   FuncInfo->setHasSpills();
   1179 
   1180   bool NonRI = false, SpillsVRS = false;
   1181   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
   1182                            NonRI, SpillsVRS))
   1183     FuncInfo->setSpillsCR();
   1184 
   1185   if (SpillsVRS)
   1186     FuncInfo->setSpillsVRSAVE();
   1187 
   1188   if (NonRI)
   1189     FuncInfo->setHasNonRISpills();
   1190 
   1191   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
   1192     MBB.insert(MI, NewMIs[i]);
   1193 
   1194   const MachineFrameInfo &MFI = *MF.getFrameInfo();
   1195   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1196       MachinePointerInfo::getFixedStack(MF, FrameIdx),
   1197       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
   1198       MFI.getObjectAlignment(FrameIdx));
   1199   NewMIs.back()->addMemOperand(MF, MMO);
   1200 }
   1201 
   1202 bool PPCInstrInfo::
   1203 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1204   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
   1205   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
   1206     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
   1207   else
   1208     // Leave the CR# the same, but invert the condition.
   1209     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
   1210   return false;
   1211 }
   1212 
   1213 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
   1214                                  unsigned Reg, MachineRegisterInfo *MRI) const {
   1215   // For some instructions, it is legal to fold ZERO into the RA register field.
   1216   // A zero immediate should always be loaded with a single li.
   1217   unsigned DefOpc = DefMI.getOpcode();
   1218   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
   1219     return false;
   1220   if (!DefMI.getOperand(1).isImm())
   1221     return false;
   1222   if (DefMI.getOperand(1).getImm() != 0)
   1223     return false;
   1224 
   1225   // Note that we cannot here invert the arguments of an isel in order to fold
   1226   // a ZERO into what is presented as the second argument. All we have here
   1227   // is the condition bit, and that might come from a CR-logical bit operation.
   1228 
   1229   const MCInstrDesc &UseMCID = UseMI.getDesc();
   1230 
   1231   // Only fold into real machine instructions.
   1232   if (UseMCID.isPseudo())
   1233     return false;
   1234 
   1235   unsigned UseIdx;
   1236   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
   1237     if (UseMI.getOperand(UseIdx).isReg() &&
   1238         UseMI.getOperand(UseIdx).getReg() == Reg)
   1239       break;
   1240 
   1241   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
   1242   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
   1243 
   1244   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
   1245 
   1246   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
   1247   // register (which might also be specified as a pointer class kind).
   1248   if (UseInfo->isLookupPtrRegClass()) {
   1249     if (UseInfo->RegClass /* Kind */ != 1)
   1250       return false;
   1251   } else {
   1252     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
   1253         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
   1254       return false;
   1255   }
   1256 
   1257   // Make sure this is not tied to an output register (or otherwise
   1258   // constrained). This is true for ST?UX registers, for example, which
   1259   // are tied to their output registers.
   1260   if (UseInfo->Constraints != 0)
   1261     return false;
   1262 
   1263   unsigned ZeroReg;
   1264   if (UseInfo->isLookupPtrRegClass()) {
   1265     bool isPPC64 = Subtarget.isPPC64();
   1266     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
   1267   } else {
   1268     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
   1269               PPC::ZERO8 : PPC::ZERO;
   1270   }
   1271 
   1272   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
   1273   UseMI.getOperand(UseIdx).setReg(ZeroReg);
   1274 
   1275   if (DeleteDef)
   1276     DefMI.eraseFromParent();
   1277 
   1278   return true;
   1279 }
   1280 
   1281 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
   1282   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
   1283        I != IE; ++I)
   1284     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
   1285       return true;
   1286   return false;
   1287 }
   1288 
   1289 // We should make sure that, if we're going to predicate both sides of a
   1290 // condition (a diamond), that both sides don't define the counter register. We
   1291 // can predicate counter-decrement-based branches, but while that predicates
   1292 // the branching, it does not predicate the counter decrement. If we tried to
   1293 // merge the triangle into one predicated block, we'd decrement the counter
   1294 // twice.
   1295 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1296                      unsigned NumT, unsigned ExtraT,
   1297                      MachineBasicBlock &FMBB,
   1298                      unsigned NumF, unsigned ExtraF,
   1299                      BranchProbability Probability) const {
   1300   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
   1301 }
   1302 
   1303 
   1304 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
   1305   // The predicated branches are identified by their type, not really by the
   1306   // explicit presence of a predicate. Furthermore, some of them can be
   1307   // predicated more than once. Because if conversion won't try to predicate
   1308   // any instruction which already claims to be predicated (by returning true
   1309   // here), always return false. In doing so, we let isPredicable() be the
   1310   // final word on whether not the instruction can be (further) predicated.
   1311 
   1312   return false;
   1313 }
   1314 
   1315 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
   1316   if (!MI.isTerminator())
   1317     return false;
   1318 
   1319   // Conditional branch is a special case.
   1320   if (MI.isBranch() && !MI.isBarrier())
   1321     return true;
   1322 
   1323   return !isPredicated(MI);
   1324 }
   1325 
   1326 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
   1327                                         ArrayRef<MachineOperand> Pred) const {
   1328   unsigned OpC = MI.getOpcode();
   1329   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
   1330     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
   1331       bool isPPC64 = Subtarget.isPPC64();
   1332       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
   1333                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
   1334     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1335       MI.setDesc(get(PPC::BCLR));
   1336       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1337           .addReg(Pred[1].getReg());
   1338     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1339       MI.setDesc(get(PPC::BCLRn));
   1340       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1341           .addReg(Pred[1].getReg());
   1342     } else {
   1343       MI.setDesc(get(PPC::BCCLR));
   1344       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1345           .addImm(Pred[0].getImm())
   1346           .addReg(Pred[1].getReg());
   1347     }
   1348 
   1349     return true;
   1350   } else if (OpC == PPC::B) {
   1351     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
   1352       bool isPPC64 = Subtarget.isPPC64();
   1353       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
   1354                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
   1355     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1356       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
   1357       MI.RemoveOperand(0);
   1358 
   1359       MI.setDesc(get(PPC::BC));
   1360       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1361           .addReg(Pred[1].getReg())
   1362           .addMBB(MBB);
   1363     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1364       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
   1365       MI.RemoveOperand(0);
   1366 
   1367       MI.setDesc(get(PPC::BCn));
   1368       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1369           .addReg(Pred[1].getReg())
   1370           .addMBB(MBB);
   1371     } else {
   1372       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
   1373       MI.RemoveOperand(0);
   1374 
   1375       MI.setDesc(get(PPC::BCC));
   1376       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1377           .addImm(Pred[0].getImm())
   1378           .addReg(Pred[1].getReg())
   1379           .addMBB(MBB);
   1380     }
   1381 
   1382     return true;
   1383   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
   1384              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
   1385     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
   1386       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
   1387 
   1388     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
   1389     bool isPPC64 = Subtarget.isPPC64();
   1390 
   1391     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
   1392       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
   1393                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
   1394       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1395           .addReg(Pred[1].getReg());
   1396       return true;
   1397     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
   1398       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
   1399                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
   1400       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1401           .addReg(Pred[1].getReg());
   1402       return true;
   1403     }
   1404 
   1405     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
   1406                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
   1407     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1408         .addImm(Pred[0].getImm())
   1409         .addReg(Pred[1].getReg());
   1410     return true;
   1411   }
   1412 
   1413   return false;
   1414 }
   1415 
   1416 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
   1417                                      ArrayRef<MachineOperand> Pred2) const {
   1418   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
   1419   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
   1420 
   1421   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
   1422     return false;
   1423   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
   1424     return false;
   1425 
   1426   // P1 can only subsume P2 if they test the same condition register.
   1427   if (Pred1[1].getReg() != Pred2[1].getReg())
   1428     return false;
   1429 
   1430   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
   1431   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
   1432 
   1433   if (P1 == P2)
   1434     return true;
   1435 
   1436   // Does P1 subsume P2, e.g. GE subsumes GT.
   1437   if (P1 == PPC::PRED_LE &&
   1438       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
   1439     return true;
   1440   if (P1 == PPC::PRED_GE &&
   1441       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
   1442     return true;
   1443 
   1444   return false;
   1445 }
   1446 
   1447 bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
   1448                                     std::vector<MachineOperand> &Pred) const {
   1449   // Note: At the present time, the contents of Pred from this function is
   1450   // unused by IfConversion. This implementation follows ARM by pushing the
   1451   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
   1452   // predicate, instructions defining CTR or CTR8 are also included as
   1453   // predicate-defining instructions.
   1454 
   1455   const TargetRegisterClass *RCs[] =
   1456     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
   1457       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
   1458 
   1459   bool Found = false;
   1460   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1461     const MachineOperand &MO = MI.getOperand(i);
   1462     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
   1463       const TargetRegisterClass *RC = RCs[c];
   1464       if (MO.isReg()) {
   1465         if (MO.isDef() && RC->contains(MO.getReg())) {
   1466           Pred.push_back(MO);
   1467           Found = true;
   1468         }
   1469       } else if (MO.isRegMask()) {
   1470         for (TargetRegisterClass::iterator I = RC->begin(),
   1471              IE = RC->end(); I != IE; ++I)
   1472           if (MO.clobbersPhysReg(*I)) {
   1473             Pred.push_back(MO);
   1474             Found = true;
   1475           }
   1476       }
   1477     }
   1478   }
   1479 
   1480   return Found;
   1481 }
   1482 
   1483 bool PPCInstrInfo::isPredicable(MachineInstr &MI) const {
   1484   unsigned OpC = MI.getOpcode();
   1485   switch (OpC) {
   1486   default:
   1487     return false;
   1488   case PPC::B:
   1489   case PPC::BLR:
   1490   case PPC::BLR8:
   1491   case PPC::BCTR:
   1492   case PPC::BCTR8:
   1493   case PPC::BCTRL:
   1494   case PPC::BCTRL8:
   1495     return true;
   1496   }
   1497 }
   1498 
   1499 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
   1500                                   unsigned &SrcReg2, int &Mask,
   1501                                   int &Value) const {
   1502   unsigned Opc = MI.getOpcode();
   1503 
   1504   switch (Opc) {
   1505   default: return false;
   1506   case PPC::CMPWI:
   1507   case PPC::CMPLWI:
   1508   case PPC::CMPDI:
   1509   case PPC::CMPLDI:
   1510     SrcReg = MI.getOperand(1).getReg();
   1511     SrcReg2 = 0;
   1512     Value = MI.getOperand(2).getImm();
   1513     Mask = 0xFFFF;
   1514     return true;
   1515   case PPC::CMPW:
   1516   case PPC::CMPLW:
   1517   case PPC::CMPD:
   1518   case PPC::CMPLD:
   1519   case PPC::FCMPUS:
   1520   case PPC::FCMPUD:
   1521     SrcReg = MI.getOperand(1).getReg();
   1522     SrcReg2 = MI.getOperand(2).getReg();
   1523     return true;
   1524   }
   1525 }
   1526 
   1527 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
   1528                                         unsigned SrcReg2, int Mask, int Value,
   1529                                         const MachineRegisterInfo *MRI) const {
   1530   if (DisableCmpOpt)
   1531     return false;
   1532 
   1533   int OpC = CmpInstr.getOpcode();
   1534   unsigned CRReg = CmpInstr.getOperand(0).getReg();
   1535 
   1536   // FP record forms set CR1 based on the execption status bits, not a
   1537   // comparison with zero.
   1538   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
   1539     return false;
   1540 
   1541   // The record forms set the condition register based on a signed comparison
   1542   // with zero (so says the ISA manual). This is not as straightforward as it
   1543   // seems, however, because this is always a 64-bit comparison on PPC64, even
   1544   // for instructions that are 32-bit in nature (like slw for example).
   1545   // So, on PPC32, for unsigned comparisons, we can use the record forms only
   1546   // for equality checks (as those don't depend on the sign). On PPC64,
   1547   // we are restricted to equality for unsigned 64-bit comparisons and for
   1548   // signed 32-bit comparisons the applicability is more restricted.
   1549   bool isPPC64 = Subtarget.isPPC64();
   1550   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
   1551   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
   1552   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
   1553 
   1554   // Get the unique definition of SrcReg.
   1555   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   1556   if (!MI) return false;
   1557   int MIOpC = MI->getOpcode();
   1558 
   1559   bool equalityOnly = false;
   1560   bool noSub = false;
   1561   if (isPPC64) {
   1562     if (is32BitSignedCompare) {
   1563       // We can perform this optimization only if MI is sign-extending.
   1564       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
   1565           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
   1566           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
   1567           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
   1568           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
   1569         noSub = true;
   1570       } else
   1571         return false;
   1572     } else if (is32BitUnsignedCompare) {
   1573       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
   1574       bool isZeroExtendingRotate  =
   1575           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
   1576            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
   1577           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
   1578 
   1579       // We can perform this optimization, equality only, if MI is
   1580       // zero-extending.
   1581       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
   1582           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
   1583           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
   1584           isZeroExtendingRotate) {
   1585         noSub = true;
   1586         equalityOnly = true;
   1587       } else
   1588         return false;
   1589     } else
   1590       equalityOnly = is64BitUnsignedCompare;
   1591   } else
   1592     equalityOnly = is32BitUnsignedCompare;
   1593 
   1594   if (equalityOnly) {
   1595     // We need to check the uses of the condition register in order to reject
   1596     // non-equality comparisons.
   1597     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
   1598          IE = MRI->use_instr_end(); I != IE; ++I) {
   1599       MachineInstr *UseMI = &*I;
   1600       if (UseMI->getOpcode() == PPC::BCC) {
   1601         unsigned Pred = UseMI->getOperand(0).getImm();
   1602         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
   1603           return false;
   1604       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1605                  UseMI->getOpcode() == PPC::ISEL8) {
   1606         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
   1607         if (SubIdx != PPC::sub_eq)
   1608           return false;
   1609       } else
   1610         return false;
   1611     }
   1612   }
   1613 
   1614   MachineBasicBlock::iterator I = CmpInstr;
   1615 
   1616   // Scan forward to find the first use of the compare.
   1617   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
   1618        ++I) {
   1619     bool FoundUse = false;
   1620     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
   1621          JE = MRI->use_instr_end(); J != JE; ++J)
   1622       if (&*J == &*I) {
   1623         FoundUse = true;
   1624         break;
   1625       }
   1626 
   1627     if (FoundUse)
   1628       break;
   1629   }
   1630 
   1631   // There are two possible candidates which can be changed to set CR[01].
   1632   // One is MI, the other is a SUB instruction.
   1633   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   1634   MachineInstr *Sub = nullptr;
   1635   if (SrcReg2 != 0)
   1636     // MI is not a candidate for CMPrr.
   1637     MI = nullptr;
   1638   // FIXME: Conservatively refuse to convert an instruction which isn't in the
   1639   // same BB as the comparison. This is to allow the check below to avoid calls
   1640   // (and other explicit clobbers); instead we should really check for these
   1641   // more explicitly (in at least a few predecessors).
   1642   else if (MI->getParent() != CmpInstr.getParent() || Value != 0) {
   1643     // PPC does not have a record-form SUBri.
   1644     return false;
   1645   }
   1646 
   1647   // Search for Sub.
   1648   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1649   --I;
   1650 
   1651   // Get ready to iterate backward from CmpInstr.
   1652   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
   1653 
   1654   for (; I != E && !noSub; --I) {
   1655     const MachineInstr &Instr = *I;
   1656     unsigned IOpC = Instr.getOpcode();
   1657 
   1658     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
   1659                              Instr.readsRegister(PPC::CR0, TRI)))
   1660       // This instruction modifies or uses the record condition register after
   1661       // the one we want to change. While we could do this transformation, it
   1662       // would likely not be profitable. This transformation removes one
   1663       // instruction, and so even forcing RA to generate one move probably
   1664       // makes it unprofitable.
   1665       return false;
   1666 
   1667     // Check whether CmpInstr can be made redundant by the current instruction.
   1668     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
   1669          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
   1670         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
   1671         ((Instr.getOperand(1).getReg() == SrcReg &&
   1672           Instr.getOperand(2).getReg() == SrcReg2) ||
   1673         (Instr.getOperand(1).getReg() == SrcReg2 &&
   1674          Instr.getOperand(2).getReg() == SrcReg))) {
   1675       Sub = &*I;
   1676       break;
   1677     }
   1678 
   1679     if (I == B)
   1680       // The 'and' is below the comparison instruction.
   1681       return false;
   1682   }
   1683 
   1684   // Return false if no candidates exist.
   1685   if (!MI && !Sub)
   1686     return false;
   1687 
   1688   // The single candidate is called MI.
   1689   if (!MI) MI = Sub;
   1690 
   1691   int NewOpC = -1;
   1692   MIOpC = MI->getOpcode();
   1693   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
   1694     NewOpC = MIOpC;
   1695   else {
   1696     NewOpC = PPC::getRecordFormOpcode(MIOpC);
   1697     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
   1698       NewOpC = MIOpC;
   1699   }
   1700 
   1701   // FIXME: On the non-embedded POWER architectures, only some of the record
   1702   // forms are fast, and we should use only the fast ones.
   1703 
   1704   // The defining instruction has a record form (or is already a record
   1705   // form). It is possible, however, that we'll need to reverse the condition
   1706   // code of the users.
   1707   if (NewOpC == -1)
   1708     return false;
   1709 
   1710   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
   1711   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
   1712 
   1713   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
   1714   // needs to be updated to be based on SUB.  Push the condition code
   1715   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
   1716   // condition code of these operands will be modified.
   1717   bool ShouldSwap = false;
   1718   if (Sub) {
   1719     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   1720       Sub->getOperand(2).getReg() == SrcReg;
   1721 
   1722     // The operands to subf are the opposite of sub, so only in the fixed-point
   1723     // case, invert the order.
   1724     ShouldSwap = !ShouldSwap;
   1725   }
   1726 
   1727   if (ShouldSwap)
   1728     for (MachineRegisterInfo::use_instr_iterator
   1729          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
   1730          I != IE; ++I) {
   1731       MachineInstr *UseMI = &*I;
   1732       if (UseMI->getOpcode() == PPC::BCC) {
   1733         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
   1734         assert((!equalityOnly ||
   1735                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
   1736                "Invalid predicate for equality-only optimization");
   1737         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
   1738                                 PPC::getSwappedPredicate(Pred)));
   1739       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1740                  UseMI->getOpcode() == PPC::ISEL8) {
   1741         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
   1742         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
   1743                "Invalid CR bit for equality-only optimization");
   1744 
   1745         if (NewSubReg == PPC::sub_lt)
   1746           NewSubReg = PPC::sub_gt;
   1747         else if (NewSubReg == PPC::sub_gt)
   1748           NewSubReg = PPC::sub_lt;
   1749 
   1750         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
   1751                                                  NewSubReg));
   1752       } else // We need to abort on a user we don't understand.
   1753         return false;
   1754     }
   1755 
   1756   // Create a new virtual register to hold the value of the CR set by the
   1757   // record-form instruction. If the instruction was not previously in
   1758   // record form, then set the kill flag on the CR.
   1759   CmpInstr.eraseFromParent();
   1760 
   1761   MachineBasicBlock::iterator MII = MI;
   1762   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
   1763           get(TargetOpcode::COPY), CRReg)
   1764     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
   1765 
   1766   // Even if CR0 register were dead before, it is alive now since the
   1767   // instruction we just built uses it.
   1768   MI->clearRegisterDeads(PPC::CR0);
   1769 
   1770   if (MIOpC != NewOpC) {
   1771     // We need to be careful here: we're replacing one instruction with
   1772     // another, and we need to make sure that we get all of the right
   1773     // implicit uses and defs. On the other hand, the caller may be holding
   1774     // an iterator to this instruction, and so we can't delete it (this is
   1775     // specifically the case if this is the instruction directly after the
   1776     // compare).
   1777 
   1778     const MCInstrDesc &NewDesc = get(NewOpC);
   1779     MI->setDesc(NewDesc);
   1780 
   1781     if (NewDesc.ImplicitDefs)
   1782       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
   1783            *ImpDefs; ++ImpDefs)
   1784         if (!MI->definesRegister(*ImpDefs))
   1785           MI->addOperand(*MI->getParent()->getParent(),
   1786                          MachineOperand::CreateReg(*ImpDefs, true, true));
   1787     if (NewDesc.ImplicitUses)
   1788       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
   1789            *ImpUses; ++ImpUses)
   1790         if (!MI->readsRegister(*ImpUses))
   1791           MI->addOperand(*MI->getParent()->getParent(),
   1792                          MachineOperand::CreateReg(*ImpUses, false, true));
   1793   }
   1794   assert(MI->definesRegister(PPC::CR0) &&
   1795          "Record-form instruction does not define cr0?");
   1796 
   1797   // Modify the condition code of operands in OperandsToUpdate.
   1798   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   1799   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   1800   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
   1801     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
   1802 
   1803   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
   1804     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
   1805 
   1806   return true;
   1807 }
   1808 
   1809 /// GetInstSize - Return the number of bytes of code the specified
   1810 /// instruction may be.  This returns the maximum number of bytes.
   1811 ///
   1812 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const {
   1813   unsigned Opcode = MI.getOpcode();
   1814 
   1815   if (Opcode == PPC::INLINEASM) {
   1816     const MachineFunction *MF = MI.getParent()->getParent();
   1817     const char *AsmStr = MI.getOperand(0).getSymbolName();
   1818     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
   1819   } else if (Opcode == TargetOpcode::STACKMAP) {
   1820     return MI.getOperand(1).getImm();
   1821   } else if (Opcode == TargetOpcode::PATCHPOINT) {
   1822     PatchPointOpers Opers(&MI);
   1823     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
   1824   } else {
   1825     const MCInstrDesc &Desc = get(Opcode);
   1826     return Desc.getSize();
   1827   }
   1828 }
   1829 
   1830 std::pair<unsigned, unsigned>
   1831 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
   1832   const unsigned Mask = PPCII::MO_ACCESS_MASK;
   1833   return std::make_pair(TF & Mask, TF & ~Mask);
   1834 }
   1835 
   1836 ArrayRef<std::pair<unsigned, const char *>>
   1837 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
   1838   using namespace PPCII;
   1839   static const std::pair<unsigned, const char *> TargetFlags[] = {
   1840       {MO_LO, "ppc-lo"},
   1841       {MO_HA, "ppc-ha"},
   1842       {MO_TPREL_LO, "ppc-tprel-lo"},
   1843       {MO_TPREL_HA, "ppc-tprel-ha"},
   1844       {MO_DTPREL_LO, "ppc-dtprel-lo"},
   1845       {MO_TLSLD_LO, "ppc-tlsld-lo"},
   1846       {MO_TOC_LO, "ppc-toc-lo"},
   1847       {MO_TLS, "ppc-tls"}};
   1848   return makeArrayRef(TargetFlags);
   1849 }
   1850 
   1851 ArrayRef<std::pair<unsigned, const char *>>
   1852 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
   1853   using namespace PPCII;
   1854   static const std::pair<unsigned, const char *> TargetFlags[] = {
   1855       {MO_PLT, "ppc-plt"},
   1856       {MO_PIC_FLAG, "ppc-pic"},
   1857       {MO_NLP_FLAG, "ppc-nlp"},
   1858       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
   1859   return makeArrayRef(TargetFlags);
   1860 }
   1861 
   1862 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
   1863   switch (MI.getOpcode()) {
   1864   case TargetOpcode::LOAD_STACK_GUARD: {
   1865     assert(Subtarget.isTargetLinux() &&
   1866            "Only Linux target is expected to contain LOAD_STACK_GUARD");
   1867     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
   1868     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
   1869     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
   1870     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
   1871         .addImm(Offset)
   1872         .addReg(Reg);
   1873     return true;
   1874   }
   1875   }
   1876   return false;
   1877 }
   1878