1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // InstructionCombining - Combine instructions to form fewer, simple 11 // instructions. This pass does not modify the CFG. This pass is where 12 // algebraic simplification happens. 13 // 14 // This pass combines things like: 15 // %Y = add i32 %X, 1 16 // %Z = add i32 %Y, 1 17 // into: 18 // %Z = add i32 %X, 2 19 // 20 // This is a simple worklist driven algorithm. 21 // 22 // This pass guarantees that the following canonicalizations are performed on 23 // the program: 24 // 1. If a binary operator has a constant operand, it is moved to the RHS 25 // 2. Bitwise operators with constant operands are always grouped so that 26 // shifts are performed first, then or's, then and's, then xor's. 27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 28 // 4. All cmp instructions on boolean values are replaced with logical ops 29 // 5. add X, X is represented as (X*2) => (X << 1) 30 // 6. Multiplies with a power-of-two constant argument are transformed into 31 // shifts. 32 // ... etc. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #define DEBUG_TYPE "instcombine" 37 #include "llvm/Transforms/Scalar.h" 38 #include "InstCombine.h" 39 #include "llvm/IntrinsicInst.h" 40 #include "llvm/Analysis/ConstantFolding.h" 41 #include "llvm/Analysis/InstructionSimplify.h" 42 #include "llvm/Analysis/MemoryBuiltins.h" 43 #include "llvm/Target/TargetData.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Support/CFG.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/GetElementPtrTypeIterator.h" 48 #include "llvm/Support/PatternMatch.h" 49 #include "llvm/Support/ValueHandle.h" 50 #include "llvm/ADT/SmallPtrSet.h" 51 #include "llvm/ADT/Statistic.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm-c/Initialization.h" 54 #include <algorithm> 55 #include <climits> 56 using namespace llvm; 57 using namespace llvm::PatternMatch; 58 59 STATISTIC(NumCombined , "Number of insts combined"); 60 STATISTIC(NumConstProp, "Number of constant folds"); 61 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 62 STATISTIC(NumSunkInst , "Number of instructions sunk"); 63 STATISTIC(NumExpand, "Number of expansions"); 64 STATISTIC(NumFactor , "Number of factorizations"); 65 STATISTIC(NumReassoc , "Number of reassociations"); 66 67 // Initialization Routines 68 void llvm::initializeInstCombine(PassRegistry &Registry) { 69 initializeInstCombinerPass(Registry); 70 } 71 72 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 73 initializeInstCombine(*unwrap(R)); 74 } 75 76 char InstCombiner::ID = 0; 77 INITIALIZE_PASS(InstCombiner, "instcombine", 78 "Combine redundant instructions", false, false) 79 80 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 81 AU.setPreservesCFG(); 82 } 83 84 85 /// ShouldChangeType - Return true if it is desirable to convert a computation 86 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal 87 /// type for example, or from a smaller to a larger illegal type. 88 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { 89 assert(From->isIntegerTy() && To->isIntegerTy()); 90 91 // If we don't have TD, we don't know if the source/dest are legal. 92 if (!TD) return false; 93 94 unsigned FromWidth = From->getPrimitiveSizeInBits(); 95 unsigned ToWidth = To->getPrimitiveSizeInBits(); 96 bool FromLegal = TD->isLegalInteger(FromWidth); 97 bool ToLegal = TD->isLegalInteger(ToWidth); 98 99 // If this is a legal integer from type, and the result would be an illegal 100 // type, don't do the transformation. 101 if (FromLegal && !ToLegal) 102 return false; 103 104 // Otherwise, if both are illegal, do not increase the size of the result. We 105 // do allow things like i160 -> i64, but not i64 -> i160. 106 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 107 return false; 108 109 return true; 110 } 111 112 // Return true, if No Signed Wrap should be maintained for I. 113 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 114 // where both B and C should be ConstantInts, results in a constant that does 115 // not overflow. This function only handles the Add and Sub opcodes. For 116 // all other opcodes, the function conservatively returns false. 117 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 118 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 119 if (!OBO || !OBO->hasNoSignedWrap()) { 120 return false; 121 } 122 123 // We reason about Add and Sub Only. 124 Instruction::BinaryOps Opcode = I.getOpcode(); 125 if (Opcode != Instruction::Add && 126 Opcode != Instruction::Sub) { 127 return false; 128 } 129 130 ConstantInt *CB = dyn_cast<ConstantInt>(B); 131 ConstantInt *CC = dyn_cast<ConstantInt>(C); 132 133 if (!CB || !CC) { 134 return false; 135 } 136 137 const APInt &BVal = CB->getValue(); 138 const APInt &CVal = CC->getValue(); 139 bool Overflow = false; 140 141 if (Opcode == Instruction::Add) { 142 BVal.sadd_ov(CVal, Overflow); 143 } else { 144 BVal.ssub_ov(CVal, Overflow); 145 } 146 147 return !Overflow; 148 } 149 150 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for 151 /// operators which are associative or commutative: 152 // 153 // Commutative operators: 154 // 155 // 1. Order operands such that they are listed from right (least complex) to 156 // left (most complex). This puts constants before unary operators before 157 // binary operators. 158 // 159 // Associative operators: 160 // 161 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 162 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 163 // 164 // Associative and commutative operators: 165 // 166 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 167 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 168 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 169 // if C1 and C2 are constants. 170 // 171 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 172 Instruction::BinaryOps Opcode = I.getOpcode(); 173 bool Changed = false; 174 175 do { 176 // Order operands such that they are listed from right (least complex) to 177 // left (most complex). This puts constants before unary operators before 178 // binary operators. 179 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 180 getComplexity(I.getOperand(1))) 181 Changed = !I.swapOperands(); 182 183 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 184 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 185 186 if (I.isAssociative()) { 187 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 188 if (Op0 && Op0->getOpcode() == Opcode) { 189 Value *A = Op0->getOperand(0); 190 Value *B = Op0->getOperand(1); 191 Value *C = I.getOperand(1); 192 193 // Does "B op C" simplify? 194 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) { 195 // It simplifies to V. Form "A op V". 196 I.setOperand(0, A); 197 I.setOperand(1, V); 198 // Conservatively clear the optional flags, since they may not be 199 // preserved by the reassociation. 200 if (MaintainNoSignedWrap(I, B, C) && 201 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { 202 // Note: this is only valid because SimplifyBinOp doesn't look at 203 // the operands to Op0. 204 I.clearSubclassOptionalData(); 205 I.setHasNoSignedWrap(true); 206 } else { 207 I.clearSubclassOptionalData(); 208 } 209 210 Changed = true; 211 ++NumReassoc; 212 continue; 213 } 214 } 215 216 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 217 if (Op1 && Op1->getOpcode() == Opcode) { 218 Value *A = I.getOperand(0); 219 Value *B = Op1->getOperand(0); 220 Value *C = Op1->getOperand(1); 221 222 // Does "A op B" simplify? 223 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) { 224 // It simplifies to V. Form "V op C". 225 I.setOperand(0, V); 226 I.setOperand(1, C); 227 // Conservatively clear the optional flags, since they may not be 228 // preserved by the reassociation. 229 I.clearSubclassOptionalData(); 230 Changed = true; 231 ++NumReassoc; 232 continue; 233 } 234 } 235 } 236 237 if (I.isAssociative() && I.isCommutative()) { 238 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 239 if (Op0 && Op0->getOpcode() == Opcode) { 240 Value *A = Op0->getOperand(0); 241 Value *B = Op0->getOperand(1); 242 Value *C = I.getOperand(1); 243 244 // Does "C op A" simplify? 245 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { 246 // It simplifies to V. Form "V op B". 247 I.setOperand(0, V); 248 I.setOperand(1, B); 249 // Conservatively clear the optional flags, since they may not be 250 // preserved by the reassociation. 251 I.clearSubclassOptionalData(); 252 Changed = true; 253 ++NumReassoc; 254 continue; 255 } 256 } 257 258 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 259 if (Op1 && Op1->getOpcode() == Opcode) { 260 Value *A = I.getOperand(0); 261 Value *B = Op1->getOperand(0); 262 Value *C = Op1->getOperand(1); 263 264 // Does "C op A" simplify? 265 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { 266 // It simplifies to V. Form "B op V". 267 I.setOperand(0, B); 268 I.setOperand(1, V); 269 // Conservatively clear the optional flags, since they may not be 270 // preserved by the reassociation. 271 I.clearSubclassOptionalData(); 272 Changed = true; 273 ++NumReassoc; 274 continue; 275 } 276 } 277 278 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 279 // if C1 and C2 are constants. 280 if (Op0 && Op1 && 281 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 282 isa<Constant>(Op0->getOperand(1)) && 283 isa<Constant>(Op1->getOperand(1)) && 284 Op0->hasOneUse() && Op1->hasOneUse()) { 285 Value *A = Op0->getOperand(0); 286 Constant *C1 = cast<Constant>(Op0->getOperand(1)); 287 Value *B = Op1->getOperand(0); 288 Constant *C2 = cast<Constant>(Op1->getOperand(1)); 289 290 Constant *Folded = ConstantExpr::get(Opcode, C1, C2); 291 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); 292 InsertNewInstWith(New, I); 293 New->takeName(Op1); 294 I.setOperand(0, New); 295 I.setOperand(1, Folded); 296 // Conservatively clear the optional flags, since they may not be 297 // preserved by the reassociation. 298 I.clearSubclassOptionalData(); 299 300 Changed = true; 301 continue; 302 } 303 } 304 305 // No further simplifications. 306 return Changed; 307 } while (1); 308 } 309 310 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to 311 /// "(X LOp Y) ROp (X LOp Z)". 312 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, 313 Instruction::BinaryOps ROp) { 314 switch (LOp) { 315 default: 316 return false; 317 318 case Instruction::And: 319 // And distributes over Or and Xor. 320 switch (ROp) { 321 default: 322 return false; 323 case Instruction::Or: 324 case Instruction::Xor: 325 return true; 326 } 327 328 case Instruction::Mul: 329 // Multiplication distributes over addition and subtraction. 330 switch (ROp) { 331 default: 332 return false; 333 case Instruction::Add: 334 case Instruction::Sub: 335 return true; 336 } 337 338 case Instruction::Or: 339 // Or distributes over And. 340 switch (ROp) { 341 default: 342 return false; 343 case Instruction::And: 344 return true; 345 } 346 } 347 } 348 349 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to 350 /// "(X ROp Z) LOp (Y ROp Z)". 351 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, 352 Instruction::BinaryOps ROp) { 353 if (Instruction::isCommutative(ROp)) 354 return LeftDistributesOverRight(ROp, LOp); 355 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 356 // but this requires knowing that the addition does not overflow and other 357 // such subtleties. 358 return false; 359 } 360 361 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations 362 /// which some other binary operation distributes over either by factorizing 363 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this 364 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is 365 /// a win). Returns the simplified value, or null if it didn't simplify. 366 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 367 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 368 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 369 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 370 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op 371 372 // Factorization. 373 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { 374 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 375 // a common term. 376 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 377 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 378 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 379 380 // Does "X op' Y" always equal "Y op' X"? 381 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 382 383 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 384 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 385 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 386 // commutative case, "(A op' B) op (C op' A)"? 387 if (A == C || (InnerCommutative && A == D)) { 388 if (A != C) 389 std::swap(C, D); 390 // Consider forming "A op' (B op D)". 391 // If "B op D" simplifies then it can be formed with no cost. 392 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD); 393 // If "B op D" doesn't simplify then only go on if both of the existing 394 // operations "A op' B" and "C op' D" will be zapped as no longer used. 395 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 396 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); 397 if (V) { 398 ++NumFactor; 399 V = Builder->CreateBinOp(InnerOpcode, A, V); 400 V->takeName(&I); 401 return V; 402 } 403 } 404 405 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 406 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 407 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 408 // commutative case, "(A op' B) op (B op' D)"? 409 if (B == D || (InnerCommutative && B == C)) { 410 if (B != D) 411 std::swap(C, D); 412 // Consider forming "(A op C) op' B". 413 // If "A op C" simplifies then it can be formed with no cost. 414 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD); 415 // If "A op C" doesn't simplify then only go on if both of the existing 416 // operations "A op' B" and "C op' D" will be zapped as no longer used. 417 if (!V && Op0->hasOneUse() && Op1->hasOneUse()) 418 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); 419 if (V) { 420 ++NumFactor; 421 V = Builder->CreateBinOp(InnerOpcode, V, B); 422 V->takeName(&I); 423 return V; 424 } 425 } 426 } 427 428 // Expansion. 429 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 430 // The instruction has the form "(A op' B) op C". See if expanding it out 431 // to "(A op C) op' (B op C)" results in simplifications. 432 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 433 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 434 435 // Do "A op C" and "B op C" both simplify? 436 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD)) 437 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) { 438 // They do! Return "L op' R". 439 ++NumExpand; 440 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 441 if ((L == A && R == B) || 442 (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) 443 return Op0; 444 // Otherwise return "L op' R" if it simplifies. 445 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) 446 return V; 447 // Otherwise, create a new instruction. 448 C = Builder->CreateBinOp(InnerOpcode, L, R); 449 C->takeName(&I); 450 return C; 451 } 452 } 453 454 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 455 // The instruction has the form "A op (B op' C)". See if expanding it out 456 // to "(A op B) op' (A op C)" results in simplifications. 457 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 458 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 459 460 // Do "A op B" and "A op C" both simplify? 461 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD)) 462 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) { 463 // They do! Return "L op' R". 464 ++NumExpand; 465 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 466 if ((L == B && R == C) || 467 (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) 468 return Op1; 469 // Otherwise return "L op' R" if it simplifies. 470 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) 471 return V; 472 // Otherwise, create a new instruction. 473 A = Builder->CreateBinOp(InnerOpcode, L, R); 474 A->takeName(&I); 475 return A; 476 } 477 } 478 479 return 0; 480 } 481 482 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction 483 // if the LHS is a constant zero (which is the 'negate' form). 484 // 485 Value *InstCombiner::dyn_castNegVal(Value *V) const { 486 if (BinaryOperator::isNeg(V)) 487 return BinaryOperator::getNegArgument(V); 488 489 // Constants can be considered to be negated values if they can be folded. 490 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 491 return ConstantExpr::getNeg(C); 492 493 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) 494 if (C->getType()->getElementType()->isIntegerTy()) 495 return ConstantExpr::getNeg(C); 496 497 return 0; 498 } 499 500 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the 501 // instruction if the LHS is a constant negative zero (which is the 'negate' 502 // form). 503 // 504 Value *InstCombiner::dyn_castFNegVal(Value *V) const { 505 if (BinaryOperator::isFNeg(V)) 506 return BinaryOperator::getFNegArgument(V); 507 508 // Constants can be considered to be negated values if they can be folded. 509 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 510 return ConstantExpr::getFNeg(C); 511 512 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) 513 if (C->getType()->getElementType()->isFloatingPointTy()) 514 return ConstantExpr::getFNeg(C); 515 516 return 0; 517 } 518 519 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, 520 InstCombiner *IC) { 521 if (CastInst *CI = dyn_cast<CastInst>(&I)) { 522 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); 523 } 524 525 // Figure out if the constant is the left or the right argument. 526 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 527 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 528 529 if (Constant *SOC = dyn_cast<Constant>(SO)) { 530 if (ConstIsRHS) 531 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 532 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 533 } 534 535 Value *Op0 = SO, *Op1 = ConstOperand; 536 if (!ConstIsRHS) 537 std::swap(Op0, Op1); 538 539 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 540 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, 541 SO->getName()+".op"); 542 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) 543 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 544 SO->getName()+".cmp"); 545 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) 546 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, 547 SO->getName()+".cmp"); 548 llvm_unreachable("Unknown binary instruction type!"); 549 } 550 551 // FoldOpIntoSelect - Given an instruction with a select as one operand and a 552 // constant as the other operand, try to fold the binary operator into the 553 // select arguments. This also works for Cast instructions, which obviously do 554 // not have a second operand. 555 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 556 // Don't modify shared select instructions 557 if (!SI->hasOneUse()) return 0; 558 Value *TV = SI->getOperand(1); 559 Value *FV = SI->getOperand(2); 560 561 if (isa<Constant>(TV) || isa<Constant>(FV)) { 562 // Bool selects with constant operands can be folded to logical ops. 563 if (SI->getType()->isIntegerTy(1)) return 0; 564 565 // If it's a bitcast involving vectors, make sure it has the same number of 566 // elements on both sides. 567 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { 568 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 569 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 570 571 // Verify that either both or neither are vectors. 572 if ((SrcTy == NULL) != (DestTy == NULL)) return 0; 573 // If vectors, verify that they have the same number of elements. 574 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 575 return 0; 576 } 577 578 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); 579 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); 580 581 return SelectInst::Create(SI->getCondition(), 582 SelectTrueVal, SelectFalseVal); 583 } 584 return 0; 585 } 586 587 588 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which 589 /// has a PHI node as operand #0, see if we can fold the instruction into the 590 /// PHI (which is only possible if all operands to the PHI are constants). 591 /// 592 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { 593 PHINode *PN = cast<PHINode>(I.getOperand(0)); 594 unsigned NumPHIValues = PN->getNumIncomingValues(); 595 if (NumPHIValues == 0) 596 return 0; 597 598 // We normally only transform phis with a single use. However, if a PHI has 599 // multiple uses and they are all the same operation, we can fold *all* of the 600 // uses into the PHI. 601 if (!PN->hasOneUse()) { 602 // Walk the use list for the instruction, comparing them to I. 603 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 604 UI != E; ++UI) { 605 Instruction *User = cast<Instruction>(*UI); 606 if (User != &I && !I.isIdenticalTo(User)) 607 return 0; 608 } 609 // Otherwise, we can replace *all* users with the new PHI we form. 610 } 611 612 // Check to see if all of the operands of the PHI are simple constants 613 // (constantint/constantfp/undef). If there is one non-constant value, 614 // remember the BB it is in. If there is more than one or if *it* is a PHI, 615 // bail out. We don't do arbitrary constant expressions here because moving 616 // their computation can be expensive without a cost model. 617 BasicBlock *NonConstBB = 0; 618 for (unsigned i = 0; i != NumPHIValues; ++i) { 619 Value *InVal = PN->getIncomingValue(i); 620 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 621 continue; 622 623 if (isa<PHINode>(InVal)) return 0; // Itself a phi. 624 if (NonConstBB) return 0; // More than one non-const value. 625 626 NonConstBB = PN->getIncomingBlock(i); 627 628 // If the InVal is an invoke at the end of the pred block, then we can't 629 // insert a computation after it without breaking the edge. 630 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) 631 if (II->getParent() == NonConstBB) 632 return 0; 633 634 // If the incoming non-constant value is in I's block, we will remove one 635 // instruction, but insert another equivalent one, leading to infinite 636 // instcombine. 637 if (NonConstBB == I.getParent()) 638 return 0; 639 } 640 641 // If there is exactly one non-constant value, we can insert a copy of the 642 // operation in that block. However, if this is a critical edge, we would be 643 // inserting the computation one some other paths (e.g. inside a loop). Only 644 // do this if the pred block is unconditionally branching into the phi block. 645 if (NonConstBB != 0) { 646 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 647 if (!BI || !BI->isUnconditional()) return 0; 648 } 649 650 // Okay, we can do the transformation: create the new PHI node. 651 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 652 InsertNewInstBefore(NewPN, *PN); 653 NewPN->takeName(PN); 654 655 // If we are going to have to insert a new computation, do so right before the 656 // predecessors terminator. 657 if (NonConstBB) 658 Builder->SetInsertPoint(NonConstBB->getTerminator()); 659 660 // Next, add all of the operands to the PHI. 661 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 662 // We only currently try to fold the condition of a select when it is a phi, 663 // not the true/false values. 664 Value *TrueV = SI->getTrueValue(); 665 Value *FalseV = SI->getFalseValue(); 666 BasicBlock *PhiTransBB = PN->getParent(); 667 for (unsigned i = 0; i != NumPHIValues; ++i) { 668 BasicBlock *ThisBB = PN->getIncomingBlock(i); 669 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 670 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 671 Value *InV = 0; 672 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 673 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 674 else 675 InV = Builder->CreateSelect(PN->getIncomingValue(i), 676 TrueVInPred, FalseVInPred, "phitmp"); 677 NewPN->addIncoming(InV, ThisBB); 678 } 679 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 680 Constant *C = cast<Constant>(I.getOperand(1)); 681 for (unsigned i = 0; i != NumPHIValues; ++i) { 682 Value *InV = 0; 683 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 684 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 685 else if (isa<ICmpInst>(CI)) 686 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 687 C, "phitmp"); 688 else 689 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 690 C, "phitmp"); 691 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 692 } 693 } else if (I.getNumOperands() == 2) { 694 Constant *C = cast<Constant>(I.getOperand(1)); 695 for (unsigned i = 0; i != NumPHIValues; ++i) { 696 Value *InV = 0; 697 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 698 InV = ConstantExpr::get(I.getOpcode(), InC, C); 699 else 700 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), 701 PN->getIncomingValue(i), C, "phitmp"); 702 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 703 } 704 } else { 705 CastInst *CI = cast<CastInst>(&I); 706 Type *RetTy = CI->getType(); 707 for (unsigned i = 0; i != NumPHIValues; ++i) { 708 Value *InV; 709 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 710 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 711 else 712 InV = Builder->CreateCast(CI->getOpcode(), 713 PN->getIncomingValue(i), I.getType(), "phitmp"); 714 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 715 } 716 } 717 718 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 719 UI != E; ) { 720 Instruction *User = cast<Instruction>(*UI++); 721 if (User == &I) continue; 722 ReplaceInstUsesWith(*User, NewPN); 723 EraseInstFromFunction(*User); 724 } 725 return ReplaceInstUsesWith(I, NewPN); 726 } 727 728 /// FindElementAtOffset - Given a type and a constant offset, determine whether 729 /// or not there is a sequence of GEP indices into the type that will land us at 730 /// the specified offset. If so, fill them into NewIndices and return the 731 /// resultant element type, otherwise return null. 732 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, 733 SmallVectorImpl<Value*> &NewIndices) { 734 if (!TD) return 0; 735 if (!Ty->isSized()) return 0; 736 737 // Start with the index over the outer type. Note that the type size 738 // might be zero (even if the offset isn't zero) if the indexed type 739 // is something like [0 x {int, int}] 740 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); 741 int64_t FirstIdx = 0; 742 if (int64_t TySize = TD->getTypeAllocSize(Ty)) { 743 FirstIdx = Offset/TySize; 744 Offset -= FirstIdx*TySize; 745 746 // Handle hosts where % returns negative instead of values [0..TySize). 747 if (Offset < 0) { 748 --FirstIdx; 749 Offset += TySize; 750 assert(Offset >= 0); 751 } 752 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 753 } 754 755 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); 756 757 // Index into the types. If we fail, set OrigBase to null. 758 while (Offset) { 759 // Indexing into tail padding between struct/array elements. 760 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) 761 return 0; 762 763 if (StructType *STy = dyn_cast<StructType>(Ty)) { 764 const StructLayout *SL = TD->getStructLayout(STy); 765 assert(Offset < (int64_t)SL->getSizeInBytes() && 766 "Offset must stay within the indexed type"); 767 768 unsigned Elt = SL->getElementContainingOffset(Offset); 769 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 770 Elt)); 771 772 Offset -= SL->getElementOffset(Elt); 773 Ty = STy->getElementType(Elt); 774 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 775 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); 776 assert(EltSize && "Cannot index into a zero-sized array"); 777 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); 778 Offset %= EltSize; 779 Ty = AT->getElementType(); 780 } else { 781 // Otherwise, we can't index into the middle of this atomic type, bail. 782 return 0; 783 } 784 } 785 786 return Ty; 787 } 788 789 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 790 // If this GEP has only 0 indices, it is the same pointer as 791 // Src. If Src is not a trivial GEP too, don't combine 792 // the indices. 793 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 794 !Src.hasOneUse()) 795 return false; 796 return true; 797 } 798 799 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 800 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 801 802 if (Value *V = SimplifyGEPInst(Ops, TD)) 803 return ReplaceInstUsesWith(GEP, V); 804 805 Value *PtrOp = GEP.getOperand(0); 806 807 // Eliminate unneeded casts for indices, and replace indices which displace 808 // by multiples of a zero size type with zero. 809 if (TD) { 810 bool MadeChange = false; 811 Type *IntPtrTy = TD->getIntPtrType(GEP.getContext()); 812 813 gep_type_iterator GTI = gep_type_begin(GEP); 814 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); 815 I != E; ++I, ++GTI) { 816 // Skip indices into struct types. 817 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); 818 if (!SeqTy) continue; 819 820 // If the element type has zero size then any index over it is equivalent 821 // to an index of zero, so replace it with zero if it is not zero already. 822 if (SeqTy->getElementType()->isSized() && 823 TD->getTypeAllocSize(SeqTy->getElementType()) == 0) 824 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { 825 *I = Constant::getNullValue(IntPtrTy); 826 MadeChange = true; 827 } 828 829 if ((*I)->getType() != IntPtrTy) { 830 // If we are using a wider index than needed for this platform, shrink 831 // it to what we need. If narrower, sign-extend it to what we need. 832 // This explicit cast can make subsequent optimizations more obvious. 833 *I = Builder->CreateIntCast(*I, IntPtrTy, true); 834 MadeChange = true; 835 } 836 } 837 if (MadeChange) return &GEP; 838 } 839 840 // Combine Indices - If the source pointer to this getelementptr instruction 841 // is a getelementptr instruction, combine the indices of the two 842 // getelementptr instructions into a single instruction. 843 // 844 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { 845 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 846 return 0; 847 848 // Note that if our source is a gep chain itself that we wait for that 849 // chain to be resolved before we perform this transformation. This 850 // avoids us creating a TON of code in some cases. 851 if (GEPOperator *SrcGEP = 852 dyn_cast<GEPOperator>(Src->getOperand(0))) 853 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 854 return 0; // Wait until our source is folded to completion. 855 856 SmallVector<Value*, 8> Indices; 857 858 // Find out whether the last index in the source GEP is a sequential idx. 859 bool EndsWithSequential = false; 860 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 861 I != E; ++I) 862 EndsWithSequential = !(*I)->isStructTy(); 863 864 // Can we combine the two pointer arithmetics offsets? 865 if (EndsWithSequential) { 866 // Replace: gep (gep %P, long B), long A, ... 867 // With: T = long A+B; gep %P, T, ... 868 // 869 Value *Sum; 870 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 871 Value *GO1 = GEP.getOperand(1); 872 if (SO1 == Constant::getNullValue(SO1->getType())) { 873 Sum = GO1; 874 } else if (GO1 == Constant::getNullValue(GO1->getType())) { 875 Sum = SO1; 876 } else { 877 // If they aren't the same type, then the input hasn't been processed 878 // by the loop above yet (which canonicalizes sequential index types to 879 // intptr_t). Just avoid transforming this until the input has been 880 // normalized. 881 if (SO1->getType() != GO1->getType()) 882 return 0; 883 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); 884 } 885 886 // Update the GEP in place if possible. 887 if (Src->getNumOperands() == 2) { 888 GEP.setOperand(0, Src->getOperand(0)); 889 GEP.setOperand(1, Sum); 890 return &GEP; 891 } 892 Indices.append(Src->op_begin()+1, Src->op_end()-1); 893 Indices.push_back(Sum); 894 Indices.append(GEP.op_begin()+2, GEP.op_end()); 895 } else if (isa<Constant>(*GEP.idx_begin()) && 896 cast<Constant>(*GEP.idx_begin())->isNullValue() && 897 Src->getNumOperands() != 1) { 898 // Otherwise we can do the fold if the first index of the GEP is a zero 899 Indices.append(Src->op_begin()+1, Src->op_end()); 900 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 901 } 902 903 if (!Indices.empty()) 904 return (GEP.isInBounds() && Src->isInBounds()) ? 905 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices, 906 GEP.getName()) : 907 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName()); 908 } 909 910 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 911 Value *StrippedPtr = PtrOp->stripPointerCasts(); 912 PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType()); 913 if (StrippedPtr != PtrOp && 914 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 915 916 bool HasZeroPointerIndex = false; 917 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 918 HasZeroPointerIndex = C->isZero(); 919 920 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 921 // into : GEP [10 x i8]* X, i32 0, ... 922 // 923 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 924 // into : GEP i8* X, ... 925 // 926 // This occurs when the program declares an array extern like "int X[];" 927 if (HasZeroPointerIndex) { 928 PointerType *CPTy = cast<PointerType>(PtrOp->getType()); 929 if (ArrayType *CATy = 930 dyn_cast<ArrayType>(CPTy->getElementType())) { 931 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 932 if (CATy->getElementType() == StrippedPtrTy->getElementType()) { 933 // -> GEP i8* X, ... 934 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 935 GetElementPtrInst *Res = 936 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName()); 937 Res->setIsInBounds(GEP.isInBounds()); 938 return Res; 939 } 940 941 if (ArrayType *XATy = 942 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ 943 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 944 if (CATy->getElementType() == XATy->getElementType()) { 945 // -> GEP [10 x i8]* X, i32 0, ... 946 // At this point, we know that the cast source type is a pointer 947 // to an array of the same type as the destination pointer 948 // array. Because the array type is never stepped over (there 949 // is a leading zero) we can fold the cast into this GEP. 950 GEP.setOperand(0, StrippedPtr); 951 return &GEP; 952 } 953 } 954 } 955 } else if (GEP.getNumOperands() == 2) { 956 // Transform things like: 957 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 958 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 959 Type *SrcElTy = StrippedPtrTy->getElementType(); 960 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); 961 if (TD && SrcElTy->isArrayTy() && 962 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == 963 TD->getTypeAllocSize(ResElTy)) { 964 Value *Idx[2]; 965 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); 966 Idx[1] = GEP.getOperand(1); 967 Value *NewGEP = GEP.isInBounds() ? 968 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : 969 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 970 // V and GEP are both pointer types --> BitCast 971 return new BitCastInst(NewGEP, GEP.getType()); 972 } 973 974 // Transform things like: 975 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 976 // (where tmp = 8*tmp2) into: 977 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 978 979 if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) { 980 uint64_t ArrayEltSize = 981 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); 982 983 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We 984 // allow either a mul, shift, or constant here. 985 Value *NewIdx = 0; 986 ConstantInt *Scale = 0; 987 if (ArrayEltSize == 1) { 988 NewIdx = GEP.getOperand(1); 989 Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); 990 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { 991 NewIdx = ConstantInt::get(CI->getType(), 1); 992 Scale = CI; 993 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ 994 if (Inst->getOpcode() == Instruction::Shl && 995 isa<ConstantInt>(Inst->getOperand(1))) { 996 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); 997 uint32_t ShAmtVal = ShAmt->getLimitedValue(64); 998 Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), 999 1ULL << ShAmtVal); 1000 NewIdx = Inst->getOperand(0); 1001 } else if (Inst->getOpcode() == Instruction::Mul && 1002 isa<ConstantInt>(Inst->getOperand(1))) { 1003 Scale = cast<ConstantInt>(Inst->getOperand(1)); 1004 NewIdx = Inst->getOperand(0); 1005 } 1006 } 1007 1008 // If the index will be to exactly the right offset with the scale taken 1009 // out, perform the transformation. Note, we don't know whether Scale is 1010 // signed or not. We'll use unsigned version of division/modulo 1011 // operation after making sure Scale doesn't have the sign bit set. 1012 if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && 1013 Scale->getZExtValue() % ArrayEltSize == 0) { 1014 Scale = ConstantInt::get(Scale->getType(), 1015 Scale->getZExtValue() / ArrayEltSize); 1016 if (Scale->getZExtValue() != 1) { 1017 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), 1018 false /*ZExt*/); 1019 NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); 1020 } 1021 1022 // Insert the new GEP instruction. 1023 Value *Idx[2]; 1024 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); 1025 Idx[1] = NewIdx; 1026 Value *NewGEP = GEP.isInBounds() ? 1027 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()): 1028 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); 1029 // The NewGEP must be pointer typed, so must the old one -> BitCast 1030 return new BitCastInst(NewGEP, GEP.getType()); 1031 } 1032 } 1033 } 1034 } 1035 1036 /// See if we can simplify: 1037 /// X = bitcast A* to B* 1038 /// Y = gep X, <...constant indices...> 1039 /// into a gep of the original struct. This is important for SROA and alias 1040 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 1041 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { 1042 if (TD && 1043 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() && 1044 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) { 1045 1046 // Determine how much the GEP moves the pointer. We are guaranteed to get 1047 // a constant back from EmitGEPOffset. 1048 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP)); 1049 int64_t Offset = OffsetV->getSExtValue(); 1050 1051 // If this GEP instruction doesn't move the pointer, just replace the GEP 1052 // with a bitcast of the real input to the dest type. 1053 if (Offset == 0) { 1054 // If the bitcast is of an allocation, and the allocation will be 1055 // converted to match the type of the cast, don't touch this. 1056 if (isa<AllocaInst>(BCI->getOperand(0)) || 1057 isMalloc(BCI->getOperand(0))) { 1058 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 1059 if (Instruction *I = visitBitCast(*BCI)) { 1060 if (I != BCI) { 1061 I->takeName(BCI); 1062 BCI->getParent()->getInstList().insert(BCI, I); 1063 ReplaceInstUsesWith(*BCI, I); 1064 } 1065 return &GEP; 1066 } 1067 } 1068 return new BitCastInst(BCI->getOperand(0), GEP.getType()); 1069 } 1070 1071 // Otherwise, if the offset is non-zero, we need to find out if there is a 1072 // field at Offset in 'A's type. If so, we can pull the cast through the 1073 // GEP. 1074 SmallVector<Value*, 8> NewIndices; 1075 Type *InTy = 1076 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); 1077 if (FindElementAtOffset(InTy, Offset, NewIndices)) { 1078 Value *NGEP = GEP.isInBounds() ? 1079 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) : 1080 Builder->CreateGEP(BCI->getOperand(0), NewIndices); 1081 1082 if (NGEP->getType() == GEP.getType()) 1083 return ReplaceInstUsesWith(GEP, NGEP); 1084 NGEP->takeName(&GEP); 1085 return new BitCastInst(NGEP, GEP.getType()); 1086 } 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 1094 1095 static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users, 1096 int Depth = 0) { 1097 if (Depth == 8) 1098 return false; 1099 1100 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); 1101 UI != UE; ++UI) { 1102 User *U = *UI; 1103 if (isFreeCall(U)) { 1104 Users.push_back(U); 1105 continue; 1106 } 1107 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { 1108 if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) { 1109 Users.push_back(ICI); 1110 continue; 1111 } 1112 } 1113 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 1114 if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) { 1115 Users.push_back(BCI); 1116 continue; 1117 } 1118 } 1119 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1120 if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) { 1121 Users.push_back(GEPI); 1122 continue; 1123 } 1124 } 1125 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 1126 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 1127 II->getIntrinsicID() == Intrinsic::lifetime_end) { 1128 Users.push_back(II); 1129 continue; 1130 } 1131 } 1132 return false; 1133 } 1134 return true; 1135 } 1136 1137 Instruction *InstCombiner::visitMalloc(Instruction &MI) { 1138 // If we have a malloc call which is only used in any amount of comparisons 1139 // to null and free calls, delete the calls and replace the comparisons with 1140 // true or false as appropriate. 1141 SmallVector<WeakVH, 64> Users; 1142 if (IsOnlyNullComparedAndFreed(&MI, Users)) { 1143 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 1144 Instruction *I = cast_or_null<Instruction>(&*Users[i]); 1145 if (!I) continue; 1146 1147 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 1148 ReplaceInstUsesWith(*C, 1149 ConstantInt::get(Type::getInt1Ty(C->getContext()), 1150 C->isFalseWhenEqual())); 1151 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { 1152 ReplaceInstUsesWith(*I, UndefValue::get(I->getType())); 1153 } 1154 EraseInstFromFunction(*I); 1155 } 1156 return EraseInstFromFunction(MI); 1157 } 1158 return 0; 1159 } 1160 1161 1162 1163 Instruction *InstCombiner::visitFree(CallInst &FI) { 1164 Value *Op = FI.getArgOperand(0); 1165 1166 // free undef -> unreachable. 1167 if (isa<UndefValue>(Op)) { 1168 // Insert a new store to null because we cannot modify the CFG here. 1169 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), 1170 UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); 1171 return EraseInstFromFunction(FI); 1172 } 1173 1174 // If we have 'free null' delete the instruction. This can happen in stl code 1175 // when lots of inlining happens. 1176 if (isa<ConstantPointerNull>(Op)) 1177 return EraseInstFromFunction(FI); 1178 1179 return 0; 1180 } 1181 1182 1183 1184 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 1185 // Change br (not X), label True, label False to: br X, label False, True 1186 Value *X = 0; 1187 BasicBlock *TrueDest; 1188 BasicBlock *FalseDest; 1189 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && 1190 !isa<Constant>(X)) { 1191 // Swap Destinations and condition... 1192 BI.setCondition(X); 1193 BI.swapSuccessors(); 1194 return &BI; 1195 } 1196 1197 // Cannonicalize fcmp_one -> fcmp_oeq 1198 FCmpInst::Predicate FPred; Value *Y; 1199 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 1200 TrueDest, FalseDest)) && 1201 BI.getCondition()->hasOneUse()) 1202 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || 1203 FPred == FCmpInst::FCMP_OGE) { 1204 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); 1205 Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); 1206 1207 // Swap Destinations and condition. 1208 BI.swapSuccessors(); 1209 Worklist.Add(Cond); 1210 return &BI; 1211 } 1212 1213 // Cannonicalize icmp_ne -> icmp_eq 1214 ICmpInst::Predicate IPred; 1215 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), 1216 TrueDest, FalseDest)) && 1217 BI.getCondition()->hasOneUse()) 1218 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || 1219 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || 1220 IPred == ICmpInst::ICMP_SGE) { 1221 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); 1222 Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); 1223 // Swap Destinations and condition. 1224 BI.swapSuccessors(); 1225 Worklist.Add(Cond); 1226 return &BI; 1227 } 1228 1229 return 0; 1230 } 1231 1232 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 1233 Value *Cond = SI.getCondition(); 1234 if (Instruction *I = dyn_cast<Instruction>(Cond)) { 1235 if (I->getOpcode() == Instruction::Add) 1236 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 1237 // change 'switch (X+4) case 1:' into 'switch (X) case -3' 1238 unsigned NumCases = SI.getNumCases(); 1239 // Skip the first item since that's the default case. 1240 for (unsigned i = 1; i < NumCases; ++i) { 1241 ConstantInt* CaseVal = SI.getCaseValue(i); 1242 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal), 1243 AddRHS); 1244 assert(isa<ConstantInt>(NewCaseVal) && 1245 "Result of expression should be constant"); 1246 SI.setSuccessorValue(i, cast<ConstantInt>(NewCaseVal)); 1247 } 1248 SI.setCondition(I->getOperand(0)); 1249 Worklist.Add(I); 1250 return &SI; 1251 } 1252 } 1253 return 0; 1254 } 1255 1256 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 1257 Value *Agg = EV.getAggregateOperand(); 1258 1259 if (!EV.hasIndices()) 1260 return ReplaceInstUsesWith(EV, Agg); 1261 1262 if (Constant *C = dyn_cast<Constant>(Agg)) { 1263 if (isa<UndefValue>(C)) 1264 return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); 1265 1266 if (isa<ConstantAggregateZero>(C)) 1267 return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); 1268 1269 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { 1270 // Extract the element indexed by the first index out of the constant 1271 Value *V = C->getOperand(*EV.idx_begin()); 1272 if (EV.getNumIndices() > 1) 1273 // Extract the remaining indices out of the constant indexed by the 1274 // first index 1275 return ExtractValueInst::Create(V, EV.getIndices().slice(1)); 1276 else 1277 return ReplaceInstUsesWith(EV, V); 1278 } 1279 return 0; // Can't handle other constants 1280 } 1281 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 1282 // We're extracting from an insertvalue instruction, compare the indices 1283 const unsigned *exti, *exte, *insi, *inse; 1284 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 1285 exte = EV.idx_end(), inse = IV->idx_end(); 1286 exti != exte && insi != inse; 1287 ++exti, ++insi) { 1288 if (*insi != *exti) 1289 // The insert and extract both reference distinctly different elements. 1290 // This means the extract is not influenced by the insert, and we can 1291 // replace the aggregate operand of the extract with the aggregate 1292 // operand of the insert. i.e., replace 1293 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1294 // %E = extractvalue { i32, { i32 } } %I, 0 1295 // with 1296 // %E = extractvalue { i32, { i32 } } %A, 0 1297 return ExtractValueInst::Create(IV->getAggregateOperand(), 1298 EV.getIndices()); 1299 } 1300 if (exti == exte && insi == inse) 1301 // Both iterators are at the end: Index lists are identical. Replace 1302 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1303 // %C = extractvalue { i32, { i32 } } %B, 1, 0 1304 // with "i32 42" 1305 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); 1306 if (exti == exte) { 1307 // The extract list is a prefix of the insert list. i.e. replace 1308 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 1309 // %E = extractvalue { i32, { i32 } } %I, 1 1310 // with 1311 // %X = extractvalue { i32, { i32 } } %A, 1 1312 // %E = insertvalue { i32 } %X, i32 42, 0 1313 // by switching the order of the insert and extract (though the 1314 // insertvalue should be left in, since it may have other uses). 1315 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), 1316 EV.getIndices()); 1317 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 1318 makeArrayRef(insi, inse)); 1319 } 1320 if (insi == inse) 1321 // The insert list is a prefix of the extract list 1322 // We can simply remove the common indices from the extract and make it 1323 // operate on the inserted value instead of the insertvalue result. 1324 // i.e., replace 1325 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 1326 // %E = extractvalue { i32, { i32 } } %I, 1, 0 1327 // with 1328 // %E extractvalue { i32 } { i32 42 }, 0 1329 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 1330 makeArrayRef(exti, exte)); 1331 } 1332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { 1333 // We're extracting from an intrinsic, see if we're the only user, which 1334 // allows us to simplify multiple result intrinsics to simpler things that 1335 // just get one value. 1336 if (II->hasOneUse()) { 1337 // Check if we're grabbing the overflow bit or the result of a 'with 1338 // overflow' intrinsic. If it's the latter we can remove the intrinsic 1339 // and replace it with a traditional binary instruction. 1340 switch (II->getIntrinsicID()) { 1341 case Intrinsic::uadd_with_overflow: 1342 case Intrinsic::sadd_with_overflow: 1343 if (*EV.idx_begin() == 0) { // Normal result. 1344 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1345 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1346 EraseInstFromFunction(*II); 1347 return BinaryOperator::CreateAdd(LHS, RHS); 1348 } 1349 1350 // If the normal result of the add is dead, and the RHS is a constant, 1351 // we can transform this into a range comparison. 1352 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 1353 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) 1354 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) 1355 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), 1356 ConstantExpr::getNot(CI)); 1357 break; 1358 case Intrinsic::usub_with_overflow: 1359 case Intrinsic::ssub_with_overflow: 1360 if (*EV.idx_begin() == 0) { // Normal result. 1361 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1362 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1363 EraseInstFromFunction(*II); 1364 return BinaryOperator::CreateSub(LHS, RHS); 1365 } 1366 break; 1367 case Intrinsic::umul_with_overflow: 1368 case Intrinsic::smul_with_overflow: 1369 if (*EV.idx_begin() == 0) { // Normal result. 1370 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 1371 ReplaceInstUsesWith(*II, UndefValue::get(II->getType())); 1372 EraseInstFromFunction(*II); 1373 return BinaryOperator::CreateMul(LHS, RHS); 1374 } 1375 break; 1376 default: 1377 break; 1378 } 1379 } 1380 } 1381 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 1382 // If the (non-volatile) load only has one use, we can rewrite this to a 1383 // load from a GEP. This reduces the size of the load. 1384 // FIXME: If a load is used only by extractvalue instructions then this 1385 // could be done regardless of having multiple uses. 1386 if (L->isSimple() && L->hasOneUse()) { 1387 // extractvalue has integer indices, getelementptr has Value*s. Convert. 1388 SmallVector<Value*, 4> Indices; 1389 // Prefix an i32 0 since we need the first element. 1390 Indices.push_back(Builder->getInt32(0)); 1391 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 1392 I != E; ++I) 1393 Indices.push_back(Builder->getInt32(*I)); 1394 1395 // We need to insert these at the location of the old load, not at that of 1396 // the extractvalue. 1397 Builder->SetInsertPoint(L->getParent(), L); 1398 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices); 1399 // Returning the load directly will cause the main loop to insert it in 1400 // the wrong spot, so use ReplaceInstUsesWith(). 1401 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); 1402 } 1403 // We could simplify extracts from other values. Note that nested extracts may 1404 // already be simplified implicitly by the above: extract (extract (insert) ) 1405 // will be translated into extract ( insert ( extract ) ) first and then just 1406 // the value inserted, if appropriate. Similarly for extracts from single-use 1407 // loads: extract (extract (load)) will be translated to extract (load (gep)) 1408 // and if again single-use then via load (gep (gep)) to load (gep). 1409 // However, double extracts from e.g. function arguments or return values 1410 // aren't handled yet. 1411 return 0; 1412 } 1413 1414 enum Personality_Type { 1415 Unknown_Personality, 1416 GNU_Ada_Personality, 1417 GNU_CXX_Personality 1418 }; 1419 1420 /// RecognizePersonality - See if the given exception handling personality 1421 /// function is one that we understand. If so, return a description of it; 1422 /// otherwise return Unknown_Personality. 1423 static Personality_Type RecognizePersonality(Value *Pers) { 1424 Function *F = dyn_cast<Function>(Pers->stripPointerCasts()); 1425 if (!F) 1426 return Unknown_Personality; 1427 return StringSwitch<Personality_Type>(F->getName()) 1428 .Case("__gnat_eh_personality", GNU_Ada_Personality) 1429 .Case("__gxx_personality_v0", GNU_CXX_Personality) 1430 .Default(Unknown_Personality); 1431 } 1432 1433 /// isCatchAll - Return 'true' if the given typeinfo will match anything. 1434 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) { 1435 switch (Personality) { 1436 case Unknown_Personality: 1437 return false; 1438 case GNU_Ada_Personality: 1439 // While __gnat_all_others_value will match any Ada exception, it doesn't 1440 // match foreign exceptions (or didn't, before gcc-4.7). 1441 return false; 1442 case GNU_CXX_Personality: 1443 return TypeInfo->isNullValue(); 1444 } 1445 llvm_unreachable("Unknown personality!"); 1446 } 1447 1448 static bool shorter_filter(const Value *LHS, const Value *RHS) { 1449 return 1450 cast<ArrayType>(LHS->getType())->getNumElements() 1451 < 1452 cast<ArrayType>(RHS->getType())->getNumElements(); 1453 } 1454 1455 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 1456 // The logic here should be correct for any real-world personality function. 1457 // However if that turns out not to be true, the offending logic can always 1458 // be conditioned on the personality function, like the catch-all logic is. 1459 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn()); 1460 1461 // Simplify the list of clauses, eg by removing repeated catch clauses 1462 // (these are often created by inlining). 1463 bool MakeNewInstruction = false; // If true, recreate using the following: 1464 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction; 1465 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 1466 1467 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 1468 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 1469 bool isLastClause = i + 1 == e; 1470 if (LI.isCatch(i)) { 1471 // A catch clause. 1472 Value *CatchClause = LI.getClause(i); 1473 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts()); 1474 1475 // If we already saw this clause, there is no point in having a second 1476 // copy of it. 1477 if (AlreadyCaught.insert(TypeInfo)) { 1478 // This catch clause was not already seen. 1479 NewClauses.push_back(CatchClause); 1480 } else { 1481 // Repeated catch clause - drop the redundant copy. 1482 MakeNewInstruction = true; 1483 } 1484 1485 // If this is a catch-all then there is no point in keeping any following 1486 // clauses or marking the landingpad as having a cleanup. 1487 if (isCatchAll(Personality, TypeInfo)) { 1488 if (!isLastClause) 1489 MakeNewInstruction = true; 1490 CleanupFlag = false; 1491 break; 1492 } 1493 } else { 1494 // A filter clause. If any of the filter elements were already caught 1495 // then they can be dropped from the filter. It is tempting to try to 1496 // exploit the filter further by saying that any typeinfo that does not 1497 // occur in the filter can't be caught later (and thus can be dropped). 1498 // However this would be wrong, since typeinfos can match without being 1499 // equal (for example if one represents a C++ class, and the other some 1500 // class derived from it). 1501 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 1502 Value *FilterClause = LI.getClause(i); 1503 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 1504 unsigned NumTypeInfos = FilterType->getNumElements(); 1505 1506 // An empty filter catches everything, so there is no point in keeping any 1507 // following clauses or marking the landingpad as having a cleanup. By 1508 // dealing with this case here the following code is made a bit simpler. 1509 if (!NumTypeInfos) { 1510 NewClauses.push_back(FilterClause); 1511 if (!isLastClause) 1512 MakeNewInstruction = true; 1513 CleanupFlag = false; 1514 break; 1515 } 1516 1517 bool MakeNewFilter = false; // If true, make a new filter. 1518 SmallVector<Constant *, 16> NewFilterElts; // New elements. 1519 if (isa<ConstantAggregateZero>(FilterClause)) { 1520 // Not an empty filter - it contains at least one null typeinfo. 1521 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 1522 Constant *TypeInfo = 1523 Constant::getNullValue(FilterType->getElementType()); 1524 // If this typeinfo is a catch-all then the filter can never match. 1525 if (isCatchAll(Personality, TypeInfo)) { 1526 // Throw the filter away. 1527 MakeNewInstruction = true; 1528 continue; 1529 } 1530 1531 // There is no point in having multiple copies of this typeinfo, so 1532 // discard all but the first copy if there is more than one. 1533 NewFilterElts.push_back(TypeInfo); 1534 if (NumTypeInfos > 1) 1535 MakeNewFilter = true; 1536 } else { 1537 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 1538 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 1539 NewFilterElts.reserve(NumTypeInfos); 1540 1541 // Remove any filter elements that were already caught or that already 1542 // occurred in the filter. While there, see if any of the elements are 1543 // catch-alls. If so, the filter can be discarded. 1544 bool SawCatchAll = false; 1545 for (unsigned j = 0; j != NumTypeInfos; ++j) { 1546 Value *Elt = Filter->getOperand(j); 1547 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts()); 1548 if (isCatchAll(Personality, TypeInfo)) { 1549 // This element is a catch-all. Bail out, noting this fact. 1550 SawCatchAll = true; 1551 break; 1552 } 1553 if (AlreadyCaught.count(TypeInfo)) 1554 // Already caught by an earlier clause, so having it in the filter 1555 // is pointless. 1556 continue; 1557 // There is no point in having multiple copies of the same typeinfo in 1558 // a filter, so only add it if we didn't already. 1559 if (SeenInFilter.insert(TypeInfo)) 1560 NewFilterElts.push_back(cast<Constant>(Elt)); 1561 } 1562 // A filter containing a catch-all cannot match anything by definition. 1563 if (SawCatchAll) { 1564 // Throw the filter away. 1565 MakeNewInstruction = true; 1566 continue; 1567 } 1568 1569 // If we dropped something from the filter, make a new one. 1570 if (NewFilterElts.size() < NumTypeInfos) 1571 MakeNewFilter = true; 1572 } 1573 if (MakeNewFilter) { 1574 FilterType = ArrayType::get(FilterType->getElementType(), 1575 NewFilterElts.size()); 1576 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 1577 MakeNewInstruction = true; 1578 } 1579 1580 NewClauses.push_back(FilterClause); 1581 1582 // If the new filter is empty then it will catch everything so there is 1583 // no point in keeping any following clauses or marking the landingpad 1584 // as having a cleanup. The case of the original filter being empty was 1585 // already handled above. 1586 if (MakeNewFilter && !NewFilterElts.size()) { 1587 assert(MakeNewInstruction && "New filter but not a new instruction!"); 1588 CleanupFlag = false; 1589 break; 1590 } 1591 } 1592 } 1593 1594 // If several filters occur in a row then reorder them so that the shortest 1595 // filters come first (those with the smallest number of elements). This is 1596 // advantageous because shorter filters are more likely to match, speeding up 1597 // unwinding, but mostly because it increases the effectiveness of the other 1598 // filter optimizations below. 1599 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 1600 unsigned j; 1601 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 1602 for (j = i; j != e; ++j) 1603 if (!isa<ArrayType>(NewClauses[j]->getType())) 1604 break; 1605 1606 // Check whether the filters are already sorted by length. We need to know 1607 // if sorting them is actually going to do anything so that we only make a 1608 // new landingpad instruction if it does. 1609 for (unsigned k = i; k + 1 < j; ++k) 1610 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 1611 // Not sorted, so sort the filters now. Doing an unstable sort would be 1612 // correct too but reordering filters pointlessly might confuse users. 1613 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 1614 shorter_filter); 1615 MakeNewInstruction = true; 1616 break; 1617 } 1618 1619 // Look for the next batch of filters. 1620 i = j + 1; 1621 } 1622 1623 // If typeinfos matched if and only if equal, then the elements of a filter L 1624 // that occurs later than a filter F could be replaced by the intersection of 1625 // the elements of F and L. In reality two typeinfos can match without being 1626 // equal (for example if one represents a C++ class, and the other some class 1627 // derived from it) so it would be wrong to perform this transform in general. 1628 // However the transform is correct and useful if F is a subset of L. In that 1629 // case L can be replaced by F, and thus removed altogether since repeating a 1630 // filter is pointless. So here we look at all pairs of filters F and L where 1631 // L follows F in the list of clauses, and remove L if every element of F is 1632 // an element of L. This can occur when inlining C++ functions with exception 1633 // specifications. 1634 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 1635 // Examine each filter in turn. 1636 Value *Filter = NewClauses[i]; 1637 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 1638 if (!FTy) 1639 // Not a filter - skip it. 1640 continue; 1641 unsigned FElts = FTy->getNumElements(); 1642 // Examine each filter following this one. Doing this backwards means that 1643 // we don't have to worry about filters disappearing under us when removed. 1644 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 1645 Value *LFilter = NewClauses[j]; 1646 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 1647 if (!LTy) 1648 // Not a filter - skip it. 1649 continue; 1650 // If Filter is a subset of LFilter, i.e. every element of Filter is also 1651 // an element of LFilter, then discard LFilter. 1652 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j; 1653 // If Filter is empty then it is a subset of LFilter. 1654 if (!FElts) { 1655 // Discard LFilter. 1656 NewClauses.erase(J); 1657 MakeNewInstruction = true; 1658 // Move on to the next filter. 1659 continue; 1660 } 1661 unsigned LElts = LTy->getNumElements(); 1662 // If Filter is longer than LFilter then it cannot be a subset of it. 1663 if (FElts > LElts) 1664 // Move on to the next filter. 1665 continue; 1666 // At this point we know that LFilter has at least one element. 1667 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 1668 // Filter is a subset of LFilter iff Filter contains only zeros (as we 1669 // already know that Filter is not longer than LFilter). 1670 if (isa<ConstantAggregateZero>(Filter)) { 1671 assert(FElts <= LElts && "Should have handled this case earlier!"); 1672 // Discard LFilter. 1673 NewClauses.erase(J); 1674 MakeNewInstruction = true; 1675 } 1676 // Move on to the next filter. 1677 continue; 1678 } 1679 ConstantArray *LArray = cast<ConstantArray>(LFilter); 1680 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 1681 // Since Filter is non-empty and contains only zeros, it is a subset of 1682 // LFilter iff LFilter contains a zero. 1683 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 1684 for (unsigned l = 0; l != LElts; ++l) 1685 if (LArray->getOperand(l)->isNullValue()) { 1686 // LFilter contains a zero - discard it. 1687 NewClauses.erase(J); 1688 MakeNewInstruction = true; 1689 break; 1690 } 1691 // Move on to the next filter. 1692 continue; 1693 } 1694 // At this point we know that both filters are ConstantArrays. Loop over 1695 // operands to see whether every element of Filter is also an element of 1696 // LFilter. Since filters tend to be short this is probably faster than 1697 // using a method that scales nicely. 1698 ConstantArray *FArray = cast<ConstantArray>(Filter); 1699 bool AllFound = true; 1700 for (unsigned f = 0; f != FElts; ++f) { 1701 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 1702 AllFound = false; 1703 for (unsigned l = 0; l != LElts; ++l) { 1704 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 1705 if (LTypeInfo == FTypeInfo) { 1706 AllFound = true; 1707 break; 1708 } 1709 } 1710 if (!AllFound) 1711 break; 1712 } 1713 if (AllFound) { 1714 // Discard LFilter. 1715 NewClauses.erase(J); 1716 MakeNewInstruction = true; 1717 } 1718 // Move on to the next filter. 1719 } 1720 } 1721 1722 // If we changed any of the clauses, replace the old landingpad instruction 1723 // with a new one. 1724 if (MakeNewInstruction) { 1725 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 1726 LI.getPersonalityFn(), 1727 NewClauses.size()); 1728 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 1729 NLI->addClause(NewClauses[i]); 1730 // A landing pad with no clauses must have the cleanup flag set. It is 1731 // theoretically possible, though highly unlikely, that we eliminated all 1732 // clauses. If so, force the cleanup flag to true. 1733 if (NewClauses.empty()) 1734 CleanupFlag = true; 1735 NLI->setCleanup(CleanupFlag); 1736 return NLI; 1737 } 1738 1739 // Even if none of the clauses changed, we may nonetheless have understood 1740 // that the cleanup flag is pointless. Clear it if so. 1741 if (LI.isCleanup() != CleanupFlag) { 1742 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 1743 LI.setCleanup(CleanupFlag); 1744 return &LI; 1745 } 1746 1747 return 0; 1748 } 1749 1750 1751 1752 1753 /// TryToSinkInstruction - Try to move the specified instruction from its 1754 /// current block into the beginning of DestBlock, which can only happen if it's 1755 /// safe to move the instruction past all of the instructions between it and the 1756 /// end of its block. 1757 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 1758 assert(I->hasOneUse() && "Invariants didn't hold!"); 1759 1760 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1761 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() || 1762 isa<TerminatorInst>(I)) 1763 return false; 1764 1765 // Do not sink alloca instructions out of the entry block. 1766 if (isa<AllocaInst>(I) && I->getParent() == 1767 &DestBlock->getParent()->getEntryBlock()) 1768 return false; 1769 1770 // We can only sink load instructions if there is nothing between the load and 1771 // the end of block that could change the value. 1772 if (I->mayReadFromMemory()) { 1773 for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); 1774 Scan != E; ++Scan) 1775 if (Scan->mayWriteToMemory()) 1776 return false; 1777 } 1778 1779 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 1780 I->moveBefore(InsertPos); 1781 ++NumSunkInst; 1782 return true; 1783 } 1784 1785 1786 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding 1787 /// all reachable code to the worklist. 1788 /// 1789 /// This has a couple of tricks to make the code faster and more powerful. In 1790 /// particular, we constant fold and DCE instructions as we go, to avoid adding 1791 /// them to the worklist (this significantly speeds up instcombine on code where 1792 /// many instructions are dead or constant). Additionally, if we find a branch 1793 /// whose condition is a known constant, we only visit the reachable successors. 1794 /// 1795 static bool AddReachableCodeToWorklist(BasicBlock *BB, 1796 SmallPtrSet<BasicBlock*, 64> &Visited, 1797 InstCombiner &IC, 1798 const TargetData *TD) { 1799 bool MadeIRChange = false; 1800 SmallVector<BasicBlock*, 256> Worklist; 1801 Worklist.push_back(BB); 1802 1803 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 1804 DenseMap<ConstantExpr*, Constant*> FoldedConstants; 1805 1806 do { 1807 BB = Worklist.pop_back_val(); 1808 1809 // We have now visited this block! If we've already been here, ignore it. 1810 if (!Visited.insert(BB)) continue; 1811 1812 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 1813 Instruction *Inst = BBI++; 1814 1815 // DCE instruction if trivially dead. 1816 if (isInstructionTriviallyDead(Inst)) { 1817 ++NumDeadInst; 1818 DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); 1819 Inst->eraseFromParent(); 1820 continue; 1821 } 1822 1823 // ConstantProp instruction if trivially constant. 1824 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) 1825 if (Constant *C = ConstantFoldInstruction(Inst, TD)) { 1826 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " 1827 << *Inst << '\n'); 1828 Inst->replaceAllUsesWith(C); 1829 ++NumConstProp; 1830 Inst->eraseFromParent(); 1831 continue; 1832 } 1833 1834 if (TD) { 1835 // See if we can constant fold its operands. 1836 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); 1837 i != e; ++i) { 1838 ConstantExpr *CE = dyn_cast<ConstantExpr>(i); 1839 if (CE == 0) continue; 1840 1841 Constant*& FoldRes = FoldedConstants[CE]; 1842 if (!FoldRes) 1843 FoldRes = ConstantFoldConstantExpression(CE, TD); 1844 if (!FoldRes) 1845 FoldRes = CE; 1846 1847 if (FoldRes != CE) { 1848 *i = FoldRes; 1849 MadeIRChange = true; 1850 } 1851 } 1852 } 1853 1854 InstrsForInstCombineWorklist.push_back(Inst); 1855 } 1856 1857 // Recursively visit successors. If this is a branch or switch on a 1858 // constant, only visit the reachable successor. 1859 TerminatorInst *TI = BB->getTerminator(); 1860 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1861 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 1862 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 1863 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 1864 Worklist.push_back(ReachableBB); 1865 continue; 1866 } 1867 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1868 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 1869 // See if this is an explicit destination. 1870 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) 1871 if (SI->getCaseValue(i) == Cond) { 1872 BasicBlock *ReachableBB = SI->getSuccessor(i); 1873 Worklist.push_back(ReachableBB); 1874 continue; 1875 } 1876 1877 // Otherwise it is the default destination. 1878 Worklist.push_back(SI->getSuccessor(0)); 1879 continue; 1880 } 1881 } 1882 1883 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 1884 Worklist.push_back(TI->getSuccessor(i)); 1885 } while (!Worklist.empty()); 1886 1887 // Once we've found all of the instructions to add to instcombine's worklist, 1888 // add them in reverse order. This way instcombine will visit from the top 1889 // of the function down. This jives well with the way that it adds all uses 1890 // of instructions to the worklist after doing a transformation, thus avoiding 1891 // some N^2 behavior in pathological cases. 1892 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], 1893 InstrsForInstCombineWorklist.size()); 1894 1895 return MadeIRChange; 1896 } 1897 1898 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { 1899 MadeIRChange = false; 1900 1901 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 1902 << F.getNameStr() << "\n"); 1903 1904 { 1905 // Do a depth-first traversal of the function, populate the worklist with 1906 // the reachable instructions. Ignore blocks that are not reachable. Keep 1907 // track of which blocks we visit. 1908 SmallPtrSet<BasicBlock*, 64> Visited; 1909 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); 1910 1911 // Do a quick scan over the function. If we find any blocks that are 1912 // unreachable, remove any instructions inside of them. This prevents 1913 // the instcombine code from having to deal with some bad special cases. 1914 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1915 if (Visited.count(BB)) continue; 1916 1917 // Delete the instructions backwards, as it has a reduced likelihood of 1918 // having to update as many def-use and use-def chains. 1919 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1920 while (EndInst != BB->begin()) { 1921 // Delete the next to last instruction. 1922 BasicBlock::iterator I = EndInst; 1923 Instruction *Inst = --I; 1924 if (!Inst->use_empty()) 1925 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1926 if (isa<LandingPadInst>(Inst)) { 1927 EndInst = Inst; 1928 continue; 1929 } 1930 if (!isa<DbgInfoIntrinsic>(Inst)) { 1931 ++NumDeadInst; 1932 MadeIRChange = true; 1933 } 1934 Inst->eraseFromParent(); 1935 } 1936 } 1937 } 1938 1939 while (!Worklist.isEmpty()) { 1940 Instruction *I = Worklist.RemoveOne(); 1941 if (I == 0) continue; // skip null values. 1942 1943 // Check to see if we can DCE the instruction. 1944 if (isInstructionTriviallyDead(I)) { 1945 DEBUG(errs() << "IC: DCE: " << *I << '\n'); 1946 EraseInstFromFunction(*I); 1947 ++NumDeadInst; 1948 MadeIRChange = true; 1949 continue; 1950 } 1951 1952 // Instruction isn't dead, see if we can constant propagate it. 1953 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) 1954 if (Constant *C = ConstantFoldInstruction(I, TD)) { 1955 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); 1956 1957 // Add operands to the worklist. 1958 ReplaceInstUsesWith(*I, C); 1959 ++NumConstProp; 1960 EraseInstFromFunction(*I); 1961 MadeIRChange = true; 1962 continue; 1963 } 1964 1965 // See if we can trivially sink this instruction to a successor basic block. 1966 if (I->hasOneUse()) { 1967 BasicBlock *BB = I->getParent(); 1968 Instruction *UserInst = cast<Instruction>(I->use_back()); 1969 BasicBlock *UserParent; 1970 1971 // Get the block the use occurs in. 1972 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 1973 UserParent = PN->getIncomingBlock(I->use_begin().getUse()); 1974 else 1975 UserParent = UserInst->getParent(); 1976 1977 if (UserParent != BB) { 1978 bool UserIsSuccessor = false; 1979 // See if the user is one of our successors. 1980 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 1981 if (*SI == UserParent) { 1982 UserIsSuccessor = true; 1983 break; 1984 } 1985 1986 // If the user is one of our immediate successors, and if that successor 1987 // only has us as a predecessors (we'd have to split the critical edge 1988 // otherwise), we can keep going. 1989 if (UserIsSuccessor && UserParent->getSinglePredecessor()) 1990 // Okay, the CFG is simple enough, try to sink this instruction. 1991 MadeIRChange |= TryToSinkInstruction(I, UserParent); 1992 } 1993 } 1994 1995 // Now that we have an instruction, try combining it to simplify it. 1996 Builder->SetInsertPoint(I->getParent(), I); 1997 Builder->SetCurrentDebugLocation(I->getDebugLoc()); 1998 1999 #ifndef NDEBUG 2000 std::string OrigI; 2001 #endif 2002 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 2003 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); 2004 2005 if (Instruction *Result = visit(*I)) { 2006 ++NumCombined; 2007 // Should we replace the old instruction with a new one? 2008 if (Result != I) { 2009 DEBUG(errs() << "IC: Old = " << *I << '\n' 2010 << " New = " << *Result << '\n'); 2011 2012 if (!I->getDebugLoc().isUnknown()) 2013 Result->setDebugLoc(I->getDebugLoc()); 2014 // Everything uses the new instruction now. 2015 I->replaceAllUsesWith(Result); 2016 2017 // Move the name to the new instruction first. 2018 Result->takeName(I); 2019 2020 // Push the new instruction and any users onto the worklist. 2021 Worklist.Add(Result); 2022 Worklist.AddUsersToWorkList(*Result); 2023 2024 // Insert the new instruction into the basic block... 2025 BasicBlock *InstParent = I->getParent(); 2026 BasicBlock::iterator InsertPos = I; 2027 2028 // If we replace a PHI with something that isn't a PHI, fix up the 2029 // insertion point. 2030 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 2031 InsertPos = InstParent->getFirstInsertionPt(); 2032 2033 InstParent->getInstList().insert(InsertPos, Result); 2034 2035 EraseInstFromFunction(*I); 2036 } else { 2037 #ifndef NDEBUG 2038 DEBUG(errs() << "IC: Mod = " << OrigI << '\n' 2039 << " New = " << *I << '\n'); 2040 #endif 2041 2042 // If the instruction was modified, it's possible that it is now dead. 2043 // if so, remove it. 2044 if (isInstructionTriviallyDead(I)) { 2045 EraseInstFromFunction(*I); 2046 } else { 2047 Worklist.Add(I); 2048 Worklist.AddUsersToWorkList(*I); 2049 } 2050 } 2051 MadeIRChange = true; 2052 } 2053 } 2054 2055 Worklist.Zap(); 2056 return MadeIRChange; 2057 } 2058 2059 2060 bool InstCombiner::runOnFunction(Function &F) { 2061 TD = getAnalysisIfAvailable<TargetData>(); 2062 2063 2064 /// Builder - This is an IRBuilder that automatically inserts new 2065 /// instructions into the worklist when they are created. 2066 IRBuilder<true, TargetFolder, InstCombineIRInserter> 2067 TheBuilder(F.getContext(), TargetFolder(TD), 2068 InstCombineIRInserter(Worklist)); 2069 Builder = &TheBuilder; 2070 2071 bool EverMadeChange = false; 2072 2073 // Lower dbg.declare intrinsics otherwise their value may be clobbered 2074 // by instcombiner. 2075 EverMadeChange = LowerDbgDeclare(F); 2076 2077 // Iterate while there is work to do. 2078 unsigned Iteration = 0; 2079 while (DoOneIteration(F, Iteration++)) 2080 EverMadeChange = true; 2081 2082 Builder = 0; 2083 return EverMadeChange; 2084 } 2085 2086 FunctionPass *llvm::createInstructionCombiningPass() { 2087 return new InstCombiner(); 2088 } 2089