Home | History | Annotate | Download | only in state_tracker
      1 /*
      2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
      3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
      4  * Copyright  2010 Intel Corporation
      5  * Copyright  2011 Bryan Cain
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the "Software"),
      9  * to deal in the Software without restriction, including without limitation
     10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11  * and/or sell copies of the Software, and to permit persons to whom the
     12  * Software is furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the next
     15  * paragraph) shall be included in all copies or substantial portions of the
     16  * Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     24  * DEALINGS IN THE SOFTWARE.
     25  */
     26 
     27 /**
     28  * \file glsl_to_tgsi.cpp
     29  *
     30  * Translate GLSL IR to TGSI.
     31  */
     32 
     33 #include "st_glsl_to_tgsi.h"
     34 
     35 #include "compiler/glsl/glsl_parser_extras.h"
     36 #include "compiler/glsl/ir_optimization.h"
     37 #include "compiler/glsl/program.h"
     38 
     39 #include "main/errors.h"
     40 #include "main/shaderobj.h"
     41 #include "main/uniforms.h"
     42 #include "main/shaderapi.h"
     43 #include "main/shaderimage.h"
     44 #include "program/prog_instruction.h"
     45 
     46 #include "pipe/p_context.h"
     47 #include "pipe/p_screen.h"
     48 #include "tgsi/tgsi_ureg.h"
     49 #include "tgsi/tgsi_info.h"
     50 #include "util/u_math.h"
     51 #include "util/u_memory.h"
     52 #include "st_program.h"
     53 #include "st_mesa_to_tgsi.h"
     54 #include "st_format.h"
     55 #include "st_glsl_types.h"
     56 #include "st_nir.h"
     57 
     58 #include <algorithm>
     59 
     60 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) |    \
     61                            (1 << PROGRAM_CONSTANT) |     \
     62                            (1 << PROGRAM_UNIFORM))
     63 
     64 #define MAX_GLSL_TEXTURE_OFFSET 4
     65 
     66 class st_src_reg;
     67 class st_dst_reg;
     68 
     69 static int swizzle_for_size(int size);
     70 
     71 static int swizzle_for_type(const glsl_type *type, int component = 0)
     72 {
     73    unsigned num_elements = 4;
     74 
     75    if (type) {
     76       type = type->without_array();
     77       if (type->is_scalar() || type->is_vector() || type->is_matrix())
     78          num_elements = type->vector_elements;
     79    }
     80 
     81    int swizzle = swizzle_for_size(num_elements);
     82    assert(num_elements + component <= 4);
     83 
     84    swizzle += component * MAKE_SWIZZLE4(1, 1, 1, 1);
     85    return swizzle;
     86 }
     87 
     88 /**
     89  * This struct is a corresponding struct to TGSI ureg_src.
     90  */
     91 class st_src_reg {
     92 public:
     93    st_src_reg(gl_register_file file, int index, const glsl_type *type,
     94               int component = 0, unsigned array_id = 0)
     95    {
     96       assert(file != PROGRAM_ARRAY || array_id != 0);
     97       this->file = file;
     98       this->index = index;
     99       this->swizzle = swizzle_for_type(type, component);
    100       this->negate = 0;
    101       this->abs = 0;
    102       this->index2D = 0;
    103       this->type = type ? type->base_type : GLSL_TYPE_ERROR;
    104       this->reladdr = NULL;
    105       this->reladdr2 = NULL;
    106       this->has_index2 = false;
    107       this->double_reg2 = false;
    108       this->array_id = array_id;
    109       this->is_double_vertex_input = false;
    110    }
    111 
    112    st_src_reg(gl_register_file file, int index, enum glsl_base_type type)
    113    {
    114       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
    115       this->type = type;
    116       this->file = file;
    117       this->index = index;
    118       this->index2D = 0;
    119       this->swizzle = SWIZZLE_XYZW;
    120       this->negate = 0;
    121       this->abs = 0;
    122       this->reladdr = NULL;
    123       this->reladdr2 = NULL;
    124       this->has_index2 = false;
    125       this->double_reg2 = false;
    126       this->array_id = 0;
    127       this->is_double_vertex_input = false;
    128    }
    129 
    130    st_src_reg(gl_register_file file, int index, enum glsl_base_type type, int index2D)
    131    {
    132       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
    133       this->type = type;
    134       this->file = file;
    135       this->index = index;
    136       this->index2D = index2D;
    137       this->swizzle = SWIZZLE_XYZW;
    138       this->negate = 0;
    139       this->abs = 0;
    140       this->reladdr = NULL;
    141       this->reladdr2 = NULL;
    142       this->has_index2 = false;
    143       this->double_reg2 = false;
    144       this->array_id = 0;
    145       this->is_double_vertex_input = false;
    146    }
    147 
    148    st_src_reg()
    149    {
    150       this->type = GLSL_TYPE_ERROR;
    151       this->file = PROGRAM_UNDEFINED;
    152       this->index = 0;
    153       this->index2D = 0;
    154       this->swizzle = 0;
    155       this->negate = 0;
    156       this->abs = 0;
    157       this->reladdr = NULL;
    158       this->reladdr2 = NULL;
    159       this->has_index2 = false;
    160       this->double_reg2 = false;
    161       this->array_id = 0;
    162       this->is_double_vertex_input = false;
    163    }
    164 
    165    explicit st_src_reg(st_dst_reg reg);
    166 
    167    int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
    168    int16_t index2D;
    169    uint16_t swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
    170    int negate:4; /**< NEGATE_XYZW mask from mesa */
    171    unsigned abs:1;
    172    enum glsl_base_type type:4; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
    173    unsigned has_index2:1;
    174    gl_register_file file:5; /**< PROGRAM_* from Mesa */
    175    /*
    176     * Is this the second half of a double register pair?
    177     * currently used for input mapping only.
    178     */
    179    unsigned double_reg2:1;
    180    unsigned is_double_vertex_input:1;
    181    unsigned array_id:10;
    182 
    183    /** Register index should be offset by the integer in this reg. */
    184    st_src_reg *reladdr;
    185    st_src_reg *reladdr2;
    186 
    187    st_src_reg get_abs()
    188    {
    189       st_src_reg reg = *this;
    190       reg.negate = 0;
    191       reg.abs = 1;
    192       return reg;
    193    }
    194 };
    195 
    196 class st_dst_reg {
    197 public:
    198    st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type, int index)
    199    {
    200       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
    201       this->file = file;
    202       this->index = index;
    203       this->index2D = 0;
    204       this->writemask = writemask;
    205       this->reladdr = NULL;
    206       this->reladdr2 = NULL;
    207       this->has_index2 = false;
    208       this->type = type;
    209       this->array_id = 0;
    210    }
    211 
    212    st_dst_reg(gl_register_file file, int writemask, enum glsl_base_type type)
    213    {
    214       assert(file != PROGRAM_ARRAY); /* need array_id > 0 */
    215       this->file = file;
    216       this->index = 0;
    217       this->index2D = 0;
    218       this->writemask = writemask;
    219       this->reladdr = NULL;
    220       this->reladdr2 = NULL;
    221       this->has_index2 = false;
    222       this->type = type;
    223       this->array_id = 0;
    224    }
    225 
    226    st_dst_reg()
    227    {
    228       this->type = GLSL_TYPE_ERROR;
    229       this->file = PROGRAM_UNDEFINED;
    230       this->index = 0;
    231       this->index2D = 0;
    232       this->writemask = 0;
    233       this->reladdr = NULL;
    234       this->reladdr2 = NULL;
    235       this->has_index2 = false;
    236       this->array_id = 0;
    237    }
    238 
    239    explicit st_dst_reg(st_src_reg reg);
    240 
    241    int16_t index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
    242    int16_t index2D;
    243    gl_register_file file:5; /**< PROGRAM_* from Mesa */
    244    unsigned writemask:4; /**< Bitfield of WRITEMASK_[XYZW] */
    245    enum glsl_base_type type:4; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
    246    unsigned has_index2:1;
    247    unsigned array_id:10;
    248 
    249    /** Register index should be offset by the integer in this reg. */
    250    st_src_reg *reladdr;
    251    st_src_reg *reladdr2;
    252 };
    253 
    254 st_src_reg::st_src_reg(st_dst_reg reg)
    255 {
    256    this->type = reg.type;
    257    this->file = reg.file;
    258    this->index = reg.index;
    259    this->swizzle = SWIZZLE_XYZW;
    260    this->negate = 0;
    261    this->abs = 0;
    262    this->reladdr = reg.reladdr;
    263    this->index2D = reg.index2D;
    264    this->reladdr2 = reg.reladdr2;
    265    this->has_index2 = reg.has_index2;
    266    this->double_reg2 = false;
    267    this->array_id = reg.array_id;
    268    this->is_double_vertex_input = false;
    269 }
    270 
    271 st_dst_reg::st_dst_reg(st_src_reg reg)
    272 {
    273    this->type = reg.type;
    274    this->file = reg.file;
    275    this->index = reg.index;
    276    this->writemask = WRITEMASK_XYZW;
    277    this->reladdr = reg.reladdr;
    278    this->index2D = reg.index2D;
    279    this->reladdr2 = reg.reladdr2;
    280    this->has_index2 = reg.has_index2;
    281    this->array_id = reg.array_id;
    282 }
    283 
    284 class glsl_to_tgsi_instruction : public exec_node {
    285 public:
    286    DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
    287 
    288    st_dst_reg dst[2];
    289    st_src_reg src[4];
    290    st_src_reg resource; /**< sampler or buffer register */
    291    st_src_reg *tex_offsets;
    292 
    293    /** Pointer to the ir source this tree came from for debugging */
    294    ir_instruction *ir;
    295 
    296    unsigned op:8; /**< TGSI opcode */
    297    unsigned saturate:1;
    298    unsigned is_64bit_expanded:1;
    299    unsigned sampler_base:5;
    300    unsigned sampler_array_size:6; /**< 1-based size of sampler array, 1 if not array */
    301    unsigned tex_target:4; /**< One of TEXTURE_*_INDEX */
    302    glsl_base_type tex_type:4;
    303    unsigned tex_shadow:1;
    304    unsigned image_format:9;
    305    unsigned tex_offset_num_offset:3;
    306    unsigned dead_mask:4; /**< Used in dead code elimination */
    307    unsigned buffer_access:3; /**< buffer access type */
    308 
    309    const struct tgsi_opcode_info *info;
    310 };
    311 
    312 class variable_storage : public exec_node {
    313 public:
    314    variable_storage(ir_variable *var, gl_register_file file, int index,
    315                     unsigned array_id = 0)
    316       : file(file), index(index), component(0), var(var), array_id(array_id)
    317    {
    318       assert(file != PROGRAM_ARRAY || array_id != 0);
    319    }
    320 
    321    gl_register_file file;
    322    int index;
    323 
    324    /* Explicit component location. This is given in terms of the GLSL-style
    325     * swizzles where each double is a single component, i.e. for 64-bit types
    326     * it can only be 0 or 1.
    327     */
    328    int component;
    329    ir_variable *var; /* variable that maps to this, if any */
    330    unsigned array_id;
    331 };
    332 
    333 class immediate_storage : public exec_node {
    334 public:
    335    immediate_storage(gl_constant_value *values, int size32, int type)
    336    {
    337       memcpy(this->values, values, size32 * sizeof(gl_constant_value));
    338       this->size32 = size32;
    339       this->type = type;
    340    }
    341 
    342    /* doubles are stored across 2 gl_constant_values */
    343    gl_constant_value values[4];
    344    int size32; /**< Number of 32-bit components (1-4) */
    345    int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
    346 };
    347 
    348 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
    349 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
    350 
    351 struct inout_decl {
    352    unsigned mesa_index;
    353    unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
    354    unsigned size;
    355    unsigned interp_loc;
    356    unsigned gs_out_streams;
    357    enum glsl_interp_mode interp;
    358    enum glsl_base_type base_type;
    359    ubyte usage_mask; /* GLSL-style usage-mask,  i.e. single bit per double */
    360 };
    361 
    362 static struct inout_decl *
    363 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
    364 {
    365    assert(array_id != 0);
    366 
    367    for (unsigned i = 0; i < count; i++) {
    368       struct inout_decl *decl = &decls[i];
    369 
    370       if (array_id == decl->array_id) {
    371          return decl;
    372       }
    373    }
    374 
    375    return NULL;
    376 }
    377 
    378 static enum glsl_base_type
    379 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
    380 {
    381    if (!array_id)
    382       return GLSL_TYPE_ERROR;
    383    struct inout_decl *decl = find_inout_array(decls, count, array_id);
    384    if (decl)
    385       return decl->base_type;
    386    return GLSL_TYPE_ERROR;
    387 }
    388 
    389 struct rename_reg_pair {
    390    int old_reg;
    391    int new_reg;
    392 };
    393 
    394 struct glsl_to_tgsi_visitor : public ir_visitor {
    395 public:
    396    glsl_to_tgsi_visitor();
    397    ~glsl_to_tgsi_visitor();
    398 
    399    struct gl_context *ctx;
    400    struct gl_program *prog;
    401    struct gl_shader_program *shader_program;
    402    struct gl_linked_shader *shader;
    403    struct gl_shader_compiler_options *options;
    404 
    405    int next_temp;
    406 
    407    unsigned *array_sizes;
    408    unsigned max_num_arrays;
    409    unsigned next_array;
    410 
    411    struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
    412    unsigned num_inputs;
    413    unsigned num_input_arrays;
    414    struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
    415    unsigned num_outputs;
    416    unsigned num_output_arrays;
    417 
    418    int num_address_regs;
    419    uint32_t samplers_used;
    420    glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
    421    int sampler_targets[PIPE_MAX_SAMPLERS];   /**< One of TGSI_TEXTURE_* */
    422    int buffers_used;
    423    int images_used;
    424    int image_targets[PIPE_MAX_SHADER_IMAGES];
    425    unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
    426    bool indirect_addr_consts;
    427    int wpos_transform_const;
    428 
    429    int glsl_version;
    430    bool native_integers;
    431    bool have_sqrt;
    432    bool have_fma;
    433    bool use_shared_memory;
    434 
    435    variable_storage *find_variable_storage(ir_variable *var);
    436 
    437    int add_constant(gl_register_file file, gl_constant_value values[8],
    438                     int size, int datatype, uint16_t *swizzle_out);
    439 
    440    st_src_reg get_temp(const glsl_type *type);
    441    void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
    442 
    443    st_src_reg st_src_reg_for_double(double val);
    444    st_src_reg st_src_reg_for_float(float val);
    445    st_src_reg st_src_reg_for_int(int val);
    446    st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
    447 
    448    /**
    449     * \name Visit methods
    450     *
    451     * As typical for the visitor pattern, there must be one \c visit method for
    452     * each concrete subclass of \c ir_instruction.  Virtual base classes within
    453     * the hierarchy should not have \c visit methods.
    454     */
    455    /*@{*/
    456    virtual void visit(ir_variable *);
    457    virtual void visit(ir_loop *);
    458    virtual void visit(ir_loop_jump *);
    459    virtual void visit(ir_function_signature *);
    460    virtual void visit(ir_function *);
    461    virtual void visit(ir_expression *);
    462    virtual void visit(ir_swizzle *);
    463    virtual void visit(ir_dereference_variable  *);
    464    virtual void visit(ir_dereference_array *);
    465    virtual void visit(ir_dereference_record *);
    466    virtual void visit(ir_assignment *);
    467    virtual void visit(ir_constant *);
    468    virtual void visit(ir_call *);
    469    virtual void visit(ir_return *);
    470    virtual void visit(ir_discard *);
    471    virtual void visit(ir_texture *);
    472    virtual void visit(ir_if *);
    473    virtual void visit(ir_emit_vertex *);
    474    virtual void visit(ir_end_primitive *);
    475    virtual void visit(ir_barrier *);
    476    /*@}*/
    477 
    478    void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
    479 
    480    void visit_atomic_counter_intrinsic(ir_call *);
    481    void visit_ssbo_intrinsic(ir_call *);
    482    void visit_membar_intrinsic(ir_call *);
    483    void visit_shared_intrinsic(ir_call *);
    484    void visit_image_intrinsic(ir_call *);
    485 
    486    st_src_reg result;
    487 
    488    /** List of variable_storage */
    489    exec_list variables;
    490 
    491    /** List of immediate_storage */
    492    exec_list immediates;
    493    unsigned num_immediates;
    494 
    495    /** List of glsl_to_tgsi_instruction */
    496    exec_list instructions;
    497 
    498    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
    499                                       st_dst_reg dst = undef_dst,
    500                                       st_src_reg src0 = undef_src,
    501                                       st_src_reg src1 = undef_src,
    502                                       st_src_reg src2 = undef_src,
    503                                       st_src_reg src3 = undef_src);
    504 
    505    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
    506                                       st_dst_reg dst, st_dst_reg dst1,
    507                                       st_src_reg src0 = undef_src,
    508                                       st_src_reg src1 = undef_src,
    509                                       st_src_reg src2 = undef_src,
    510                                       st_src_reg src3 = undef_src);
    511 
    512    unsigned get_opcode(unsigned op,
    513                     st_dst_reg dst,
    514                     st_src_reg src0, st_src_reg src1);
    515 
    516    /**
    517     * Emit the correct dot-product instruction for the type of arguments
    518     */
    519    glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
    520                                      st_dst_reg dst,
    521                                      st_src_reg src0,
    522                                      st_src_reg src1,
    523                                      unsigned elements);
    524 
    525    void emit_scalar(ir_instruction *ir, unsigned op,
    526                     st_dst_reg dst, st_src_reg src0);
    527 
    528    void emit_scalar(ir_instruction *ir, unsigned op,
    529                     st_dst_reg dst, st_src_reg src0, st_src_reg src1);
    530 
    531    void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
    532 
    533    void get_deref_offsets(ir_dereference *ir,
    534                           unsigned *array_size,
    535                           unsigned *base,
    536                           uint16_t *index,
    537                           st_src_reg *reladdr,
    538                           bool opaque);
    539   void calc_deref_offsets(ir_dereference *tail,
    540                           unsigned *array_elements,
    541                           uint16_t *index,
    542                           st_src_reg *indirect,
    543                           unsigned *location);
    544    st_src_reg canonicalize_gather_offset(st_src_reg offset);
    545 
    546    bool try_emit_mad(ir_expression *ir,
    547               int mul_operand);
    548    bool try_emit_mad_for_and_not(ir_expression *ir,
    549               int mul_operand);
    550 
    551    void emit_swz(ir_expression *ir);
    552 
    553    bool process_move_condition(ir_rvalue *ir);
    554 
    555    void simplify_cmp(void);
    556 
    557    void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
    558    void get_first_temp_read(int *first_reads);
    559    void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
    560    void get_last_temp_write(int *last_writes);
    561 
    562    void copy_propagate(void);
    563    int eliminate_dead_code(void);
    564 
    565    void merge_two_dsts(void);
    566    void merge_registers(void);
    567    void renumber_registers(void);
    568 
    569    void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
    570                        st_dst_reg *l, st_src_reg *r,
    571                        st_src_reg *cond, bool cond_swap);
    572 
    573    void *mem_ctx;
    574 };
    575 
    576 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
    577 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
    578 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
    579 
    580 static void
    581 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
    582 
    583 static void
    584 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
    585 {
    586    va_list args;
    587    va_start(args, fmt);
    588    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
    589    va_end(args);
    590 
    591    prog->data->LinkStatus = GL_FALSE;
    592 }
    593 
    594 static int
    595 swizzle_for_size(int size)
    596 {
    597    static const int size_swizzles[4] = {
    598       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
    599       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
    600       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
    601       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
    602    };
    603 
    604    assert((size >= 1) && (size <= 4));
    605    return size_swizzles[size - 1];
    606 }
    607 
    608 static bool
    609 is_resource_instruction(unsigned opcode)
    610 {
    611    switch (opcode) {
    612    case TGSI_OPCODE_RESQ:
    613    case TGSI_OPCODE_LOAD:
    614    case TGSI_OPCODE_ATOMUADD:
    615    case TGSI_OPCODE_ATOMXCHG:
    616    case TGSI_OPCODE_ATOMCAS:
    617    case TGSI_OPCODE_ATOMAND:
    618    case TGSI_OPCODE_ATOMOR:
    619    case TGSI_OPCODE_ATOMXOR:
    620    case TGSI_OPCODE_ATOMUMIN:
    621    case TGSI_OPCODE_ATOMUMAX:
    622    case TGSI_OPCODE_ATOMIMIN:
    623    case TGSI_OPCODE_ATOMIMAX:
    624       return true;
    625    default:
    626       return false;
    627    }
    628 }
    629 
    630 static unsigned
    631 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
    632 {
    633    return op->info->num_dst;
    634 }
    635 
    636 static unsigned
    637 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
    638 {
    639    return op->info->is_tex || is_resource_instruction(op->op) ?
    640       op->info->num_src - 1 : op->info->num_src;
    641 }
    642 
    643 glsl_to_tgsi_instruction *
    644 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
    645                                st_dst_reg dst, st_dst_reg dst1,
    646                                st_src_reg src0, st_src_reg src1,
    647                                st_src_reg src2, st_src_reg src3)
    648 {
    649    glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
    650    int num_reladdr = 0, i, j;
    651    bool dst_is_64bit[2];
    652 
    653    op = get_opcode(op, dst, src0, src1);
    654 
    655    /* If we have to do relative addressing, we want to load the ARL
    656     * reg directly for one of the regs, and preload the other reladdr
    657     * sources into temps.
    658     */
    659    num_reladdr += dst.reladdr != NULL || dst.reladdr2;
    660    num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
    661    num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
    662    num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
    663    num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
    664    num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
    665 
    666    reladdr_to_temp(ir, &src3, &num_reladdr);
    667    reladdr_to_temp(ir, &src2, &num_reladdr);
    668    reladdr_to_temp(ir, &src1, &num_reladdr);
    669    reladdr_to_temp(ir, &src0, &num_reladdr);
    670 
    671    if (dst.reladdr || dst.reladdr2) {
    672       if (dst.reladdr)
    673          emit_arl(ir, address_reg, *dst.reladdr);
    674       if (dst.reladdr2)
    675          emit_arl(ir, address_reg2, *dst.reladdr2);
    676       num_reladdr--;
    677    }
    678    if (dst1.reladdr) {
    679       emit_arl(ir, address_reg, *dst1.reladdr);
    680       num_reladdr--;
    681    }
    682    assert(num_reladdr == 0);
    683 
    684    /* inst->op has only 8 bits. */
    685    STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
    686 
    687    inst->op = op;
    688    inst->info = tgsi_get_opcode_info(op);
    689    inst->dst[0] = dst;
    690    inst->dst[1] = dst1;
    691    inst->src[0] = src0;
    692    inst->src[1] = src1;
    693    inst->src[2] = src2;
    694    inst->src[3] = src3;
    695    inst->is_64bit_expanded = false;
    696    inst->ir = ir;
    697    inst->dead_mask = 0;
    698    inst->tex_offsets = NULL;
    699    inst->tex_offset_num_offset = 0;
    700    inst->saturate = 0;
    701    inst->tex_shadow = 0;
    702    /* default to float, for paths where this is not initialized
    703     * (since 0==UINT which is likely wrong):
    704     */
    705    inst->tex_type = GLSL_TYPE_FLOAT;
    706 
    707    /* Update indirect addressing status used by TGSI */
    708    if (dst.reladdr || dst.reladdr2) {
    709       switch(dst.file) {
    710       case PROGRAM_STATE_VAR:
    711       case PROGRAM_CONSTANT:
    712       case PROGRAM_UNIFORM:
    713          this->indirect_addr_consts = true;
    714          break;
    715       case PROGRAM_IMMEDIATE:
    716          assert(!"immediates should not have indirect addressing");
    717          break;
    718       default:
    719          break;
    720       }
    721    }
    722    else {
    723       for (i = 0; i < 4; i++) {
    724          if(inst->src[i].reladdr) {
    725             switch(inst->src[i].file) {
    726             case PROGRAM_STATE_VAR:
    727             case PROGRAM_CONSTANT:
    728             case PROGRAM_UNIFORM:
    729                this->indirect_addr_consts = true;
    730                break;
    731             case PROGRAM_IMMEDIATE:
    732                assert(!"immediates should not have indirect addressing");
    733                break;
    734             default:
    735                break;
    736             }
    737          }
    738       }
    739    }
    740 
    741    /*
    742     * This section contains the double processing.
    743     * GLSL just represents doubles as single channel values,
    744     * however most HW and TGSI represent doubles as pairs of register channels.
    745     *
    746     * so we have to fixup destination writemask/index and src swizzle/indexes.
    747     * dest writemasks need to translate from single channel write mask
    748     * to a dual-channel writemask, but also need to modify the index,
    749     * if we are touching the Z,W fields in the pre-translated writemask.
    750     *
    751     * src channels have similiar index modifications along with swizzle
    752     * changes to we pick the XY, ZW pairs from the correct index.
    753     *
    754     * GLSL [0].x -> TGSI [0].xy
    755     * GLSL [0].y -> TGSI [0].zw
    756     * GLSL [0].z -> TGSI [1].xy
    757     * GLSL [0].w -> TGSI [1].zw
    758     */
    759    for (j = 0; j < 2; j++) {
    760       dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
    761       if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
    762          enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
    763          if (glsl_base_type_is_64bit(type))
    764             dst_is_64bit[j] = true;
    765       }
    766    }
    767 
    768    if (dst_is_64bit[0] || dst_is_64bit[1] ||
    769        glsl_base_type_is_64bit(inst->src[0].type)) {
    770       glsl_to_tgsi_instruction *dinst = NULL;
    771       int initial_src_swz[4], initial_src_idx[4];
    772       int initial_dst_idx[2], initial_dst_writemask[2];
    773       /* select the writemask for dst0 or dst1 */
    774       unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
    775 
    776       /* copy out the writemask, index and swizzles for all src/dsts. */
    777       for (j = 0; j < 2; j++) {
    778          initial_dst_writemask[j] = inst->dst[j].writemask;
    779          initial_dst_idx[j] = inst->dst[j].index;
    780       }
    781 
    782       for (j = 0; j < 4; j++) {
    783          initial_src_swz[j] = inst->src[j].swizzle;
    784          initial_src_idx[j] = inst->src[j].index;
    785       }
    786 
    787       /*
    788        * scan all the components in the dst writemask
    789        * generate an instruction for each of them if required.
    790        */
    791       st_src_reg addr;
    792       while (writemask) {
    793 
    794          int i = u_bit_scan(&writemask);
    795 
    796          /* before emitting the instruction, see if we have to adjust load / store
    797           * address */
    798          if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
    799              addr.file == PROGRAM_UNDEFINED) {
    800             /* We have to advance the buffer address by 16 */
    801             addr = get_temp(glsl_type::uint_type);
    802             emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
    803                      inst->src[0], st_src_reg_for_int(16));
    804          }
    805 
    806          /* first time use previous instruction */
    807          if (dinst == NULL) {
    808             dinst = inst;
    809          } else {
    810             /* create a new instructions for subsequent attempts */
    811             dinst = new(mem_ctx) glsl_to_tgsi_instruction();
    812             *dinst = *inst;
    813             dinst->next = NULL;
    814             dinst->prev = NULL;
    815          }
    816          this->instructions.push_tail(dinst);
    817          dinst->is_64bit_expanded = true;
    818 
    819          /* modify the destination if we are splitting */
    820          for (j = 0; j < 2; j++) {
    821             if (dst_is_64bit[j]) {
    822                dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
    823                dinst->dst[j].index = initial_dst_idx[j];
    824                if (i > 1) {
    825                   if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
    826                      dinst->src[0] = addr;
    827                   if (dinst->op != TGSI_OPCODE_STORE)
    828                      dinst->dst[j].index++;
    829                }
    830             } else {
    831                /* if we aren't writing to a double, just get the bit of the initial writemask
    832                   for this channel */
    833                dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
    834             }
    835          }
    836 
    837          /* modify the src registers */
    838          for (j = 0; j < 4; j++) {
    839             int swz = GET_SWZ(initial_src_swz[j], i);
    840 
    841             if (glsl_base_type_is_64bit(dinst->src[j].type)) {
    842                dinst->src[j].index = initial_src_idx[j];
    843                if (swz > 1) {
    844                   dinst->src[j].double_reg2 = true;
    845                   dinst->src[j].index++;
    846 	       }
    847 
    848                if (swz & 1)
    849                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
    850                else
    851                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
    852 
    853             } else {
    854                /* some opcodes are special case in what they use as sources
    855                   - [FUI]2D/[UI]2I64 is a float/[u]int src0, DLDEXP is integer src1 */
    856                if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
    857                    op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
    858                    op == TGSI_OPCODE_DLDEXP ||
    859                    (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
    860                   dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
    861                }
    862             }
    863          }
    864       }
    865       inst = dinst;
    866    } else {
    867       this->instructions.push_tail(inst);
    868    }
    869 
    870 
    871    return inst;
    872 }
    873 
    874 glsl_to_tgsi_instruction *
    875 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
    876                                st_dst_reg dst,
    877                                st_src_reg src0, st_src_reg src1,
    878                                st_src_reg src2, st_src_reg src3)
    879 {
    880    return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
    881 }
    882 
    883 /**
    884  * Determines whether to use an integer, unsigned integer, or float opcode
    885  * based on the operands and input opcode, then emits the result.
    886  */
    887 unsigned
    888 glsl_to_tgsi_visitor::get_opcode(unsigned op,
    889                                  st_dst_reg dst,
    890                                  st_src_reg src0, st_src_reg src1)
    891 {
    892    enum glsl_base_type type = GLSL_TYPE_FLOAT;
    893 
    894    if (op == TGSI_OPCODE_MOV)
    895        return op;
    896 
    897    assert(src0.type != GLSL_TYPE_ARRAY);
    898    assert(src0.type != GLSL_TYPE_STRUCT);
    899    assert(src1.type != GLSL_TYPE_ARRAY);
    900    assert(src1.type != GLSL_TYPE_STRUCT);
    901 
    902    if (is_resource_instruction(op))
    903       type = src1.type;
    904    else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
    905       type = GLSL_TYPE_DOUBLE;
    906    else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
    907       type = GLSL_TYPE_FLOAT;
    908    else if (native_integers)
    909       type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
    910 
    911 #define case5(c, f, i, u, d)                    \
    912    case TGSI_OPCODE_##c: \
    913       if (type == GLSL_TYPE_DOUBLE)           \
    914          op = TGSI_OPCODE_##d; \
    915       else if (type == GLSL_TYPE_INT)       \
    916          op = TGSI_OPCODE_##i; \
    917       else if (type == GLSL_TYPE_UINT) \
    918          op = TGSI_OPCODE_##u; \
    919       else \
    920          op = TGSI_OPCODE_##f; \
    921       break;
    922 
    923 #define case4(c, f, i, u)                    \
    924    case TGSI_OPCODE_##c: \
    925       if (type == GLSL_TYPE_INT) \
    926          op = TGSI_OPCODE_##i; \
    927       else if (type == GLSL_TYPE_UINT) \
    928          op = TGSI_OPCODE_##u; \
    929       else \
    930          op = TGSI_OPCODE_##f; \
    931       break;
    932 
    933 #define case3(f, i, u)  case4(f, f, i, u)
    934 #define case4d(f, i, u, d)  case5(f, f, i, u, d)
    935 #define case3fid(f, i, d) case5(f, f, i, i, d)
    936 #define case2fi(f, i)   case4(f, f, i, i)
    937 #define case2iu(i, u)   case4(i, LAST, i, u)
    938 
    939 #define casecomp(c, f, i, u, d)                   \
    940    case TGSI_OPCODE_##c: \
    941       if (type == GLSL_TYPE_DOUBLE) \
    942          op = TGSI_OPCODE_##d; \
    943       else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE)       \
    944          op = TGSI_OPCODE_##i; \
    945       else if (type == GLSL_TYPE_UINT) \
    946          op = TGSI_OPCODE_##u; \
    947       else if (native_integers) \
    948          op = TGSI_OPCODE_##f; \
    949       else \
    950          op = TGSI_OPCODE_##c; \
    951       break;
    952 
    953    switch(op) {
    954       case3fid(ADD, UADD, DADD);
    955       case3fid(MUL, UMUL, DMUL);
    956       case3fid(MAD, UMAD, DMAD);
    957       case3fid(FMA, UMAD, DFMA);
    958       case4d(DIV, IDIV, UDIV, DDIV);
    959       case4d(MAX, IMAX, UMAX, DMAX);
    960       case4d(MIN, IMIN, UMIN, DMIN);
    961       case2iu(MOD, UMOD);
    962 
    963       casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
    964       casecomp(SNE, FSNE, USNE, USNE, DSNE);
    965       casecomp(SGE, FSGE, ISGE, USGE, DSGE);
    966       casecomp(SLT, FSLT, ISLT, USLT, DSLT);
    967 
    968       case2iu(ISHR, USHR);
    969 
    970       case3fid(SSG, ISSG, DSSG);
    971 
    972       case2iu(IBFE, UBFE);
    973       case2iu(IMSB, UMSB);
    974       case2iu(IMUL_HI, UMUL_HI);
    975 
    976       case3fid(SQRT, SQRT, DSQRT);
    977 
    978       case3fid(RCP, RCP, DRCP);
    979       case3fid(RSQ, RSQ, DRSQ);
    980 
    981       case3fid(FRC, FRC, DFRAC);
    982       case3fid(TRUNC, TRUNC, DTRUNC);
    983       case3fid(CEIL, CEIL, DCEIL);
    984       case3fid(FLR, FLR, DFLR);
    985       case3fid(ROUND, ROUND, DROUND);
    986 
    987       case2iu(ATOMIMAX, ATOMUMAX);
    988       case2iu(ATOMIMIN, ATOMUMIN);
    989 
    990       default: break;
    991    }
    992 
    993    assert(op != TGSI_OPCODE_LAST);
    994    return op;
    995 }
    996 
    997 glsl_to_tgsi_instruction *
    998 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
    999                               st_dst_reg dst, st_src_reg src0, st_src_reg src1,
   1000                               unsigned elements)
   1001 {
   1002    static const unsigned dot_opcodes[] = {
   1003       TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
   1004    };
   1005 
   1006    return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
   1007 }
   1008 
   1009 /**
   1010  * Emits TGSI scalar opcodes to produce unique answers across channels.
   1011  *
   1012  * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
   1013  * channel determines the result across all channels.  So to do a vec4
   1014  * of this operation, we want to emit a scalar per source channel used
   1015  * to produce dest channels.
   1016  */
   1017 void
   1018 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
   1019                                   st_dst_reg dst,
   1020                                   st_src_reg orig_src0, st_src_reg orig_src1)
   1021 {
   1022    int i, j;
   1023    int done_mask = ~dst.writemask;
   1024 
   1025    /* TGSI RCP is a scalar operation splatting results to all channels,
   1026     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
   1027     * dst channels.
   1028     */
   1029    for (i = 0; i < 4; i++) {
   1030       GLuint this_mask = (1 << i);
   1031       st_src_reg src0 = orig_src0;
   1032       st_src_reg src1 = orig_src1;
   1033 
   1034       if (done_mask & this_mask)
   1035          continue;
   1036 
   1037       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
   1038       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
   1039       for (j = i + 1; j < 4; j++) {
   1040          /* If there is another enabled component in the destination that is
   1041           * derived from the same inputs, generate its value on this pass as
   1042           * well.
   1043           */
   1044          if (!(done_mask & (1 << j)) &&
   1045              GET_SWZ(src0.swizzle, j) == src0_swiz &&
   1046              GET_SWZ(src1.swizzle, j) == src1_swiz) {
   1047             this_mask |= (1 << j);
   1048          }
   1049       }
   1050       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
   1051                                    src0_swiz, src0_swiz);
   1052       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
   1053                                    src1_swiz, src1_swiz);
   1054 
   1055       dst.writemask = this_mask;
   1056       emit_asm(ir, op, dst, src0, src1);
   1057       done_mask |= this_mask;
   1058    }
   1059 }
   1060 
   1061 void
   1062 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
   1063                                   st_dst_reg dst, st_src_reg src0)
   1064 {
   1065    st_src_reg undef = undef_src;
   1066 
   1067    undef.swizzle = SWIZZLE_XXXX;
   1068 
   1069    emit_scalar(ir, op, dst, src0, undef);
   1070 }
   1071 
   1072 void
   1073 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
   1074                                st_dst_reg dst, st_src_reg src0)
   1075 {
   1076    int op = TGSI_OPCODE_ARL;
   1077 
   1078    if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
   1079       op = TGSI_OPCODE_UARL;
   1080 
   1081    assert(dst.file == PROGRAM_ADDRESS);
   1082    if (dst.index >= this->num_address_regs)
   1083       this->num_address_regs = dst.index + 1;
   1084 
   1085    emit_asm(NULL, op, dst, src0);
   1086 }
   1087 
   1088 int
   1089 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
   1090                                    gl_constant_value values[8], int size, int datatype,
   1091                                    uint16_t *swizzle_out)
   1092 {
   1093    if (file == PROGRAM_CONSTANT) {
   1094       GLuint swizzle = swizzle_out ? *swizzle_out : 0;
   1095       int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
   1096                                                     size, datatype, &swizzle);
   1097       if (swizzle_out)
   1098          *swizzle_out = swizzle;
   1099       return result;
   1100    }
   1101 
   1102    assert(file == PROGRAM_IMMEDIATE);
   1103 
   1104    int index = 0;
   1105    immediate_storage *entry;
   1106    int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
   1107    int i;
   1108 
   1109    /* Search immediate storage to see if we already have an identical
   1110     * immediate that we can use instead of adding a duplicate entry.
   1111     */
   1112    foreach_in_list(immediate_storage, entry, &this->immediates) {
   1113       immediate_storage *tmp = entry;
   1114 
   1115       for (i = 0; i * 4 < size32; i++) {
   1116          int slot_size = MIN2(size32 - (i * 4), 4);
   1117          if (tmp->type != datatype || tmp->size32 != slot_size)
   1118             break;
   1119          if (memcmp(tmp->values, &values[i * 4],
   1120                     slot_size * sizeof(gl_constant_value)))
   1121             break;
   1122 
   1123          /* Everything matches, keep going until the full size is matched */
   1124          tmp = (immediate_storage *)tmp->next;
   1125       }
   1126 
   1127       /* The full value matched */
   1128       if (i * 4 >= size32)
   1129          return index;
   1130 
   1131       index++;
   1132    }
   1133 
   1134    for (i = 0; i * 4 < size32; i++) {
   1135       int slot_size = MIN2(size32 - (i * 4), 4);
   1136       /* Add this immediate to the list. */
   1137       entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
   1138       this->immediates.push_tail(entry);
   1139       this->num_immediates++;
   1140    }
   1141    return index;
   1142 }
   1143 
   1144 st_src_reg
   1145 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
   1146 {
   1147    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
   1148    union gl_constant_value uval;
   1149 
   1150    uval.f = val;
   1151    src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
   1152 
   1153    return src;
   1154 }
   1155 
   1156 st_src_reg
   1157 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
   1158 {
   1159    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
   1160    union gl_constant_value uval[2];
   1161 
   1162    memcpy(uval, &val, sizeof(uval));
   1163    src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
   1164    src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
   1165    return src;
   1166 }
   1167 
   1168 st_src_reg
   1169 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
   1170 {
   1171    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
   1172    union gl_constant_value uval;
   1173 
   1174    assert(native_integers);
   1175 
   1176    uval.i = val;
   1177    src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
   1178 
   1179    return src;
   1180 }
   1181 
   1182 st_src_reg
   1183 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
   1184 {
   1185    if (native_integers)
   1186       return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
   1187                                        st_src_reg_for_int(val);
   1188    else
   1189       return st_src_reg_for_float(val);
   1190 }
   1191 
   1192 static int
   1193 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
   1194 {
   1195    return st_glsl_attrib_type_size(type, is_vs_input);
   1196 }
   1197 
   1198 static int
   1199 type_size(const struct glsl_type *type)
   1200 {
   1201    return st_glsl_type_size(type);
   1202 }
   1203 
   1204 /**
   1205  * If the given GLSL type is an array or matrix or a structure containing
   1206  * an array/matrix member, return true.  Else return false.
   1207  *
   1208  * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
   1209  * or PROGRAM_ARRAY) should be used for variables of this type.  Anytime
   1210  * we have an array that might be indexed with a variable, we need to use
   1211  * the later storage type.
   1212  */
   1213 static bool
   1214 type_has_array_or_matrix(const glsl_type *type)
   1215 {
   1216    if (type->is_array() || type->is_matrix())
   1217       return true;
   1218 
   1219    if (type->is_record()) {
   1220       for (unsigned i = 0; i < type->length; i++) {
   1221          if (type_has_array_or_matrix(type->fields.structure[i].type)) {
   1222             return true;
   1223          }
   1224       }
   1225    }
   1226 
   1227    return false;
   1228 }
   1229 
   1230 
   1231 /**
   1232  * In the initial pass of codegen, we assign temporary numbers to
   1233  * intermediate results.  (not SSA -- variable assignments will reuse
   1234  * storage).
   1235  */
   1236 st_src_reg
   1237 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
   1238 {
   1239    st_src_reg src;
   1240 
   1241    src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
   1242    src.reladdr = NULL;
   1243    src.negate = 0;
   1244    src.abs = 0;
   1245 
   1246    if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
   1247       if (next_array >= max_num_arrays) {
   1248          max_num_arrays += 32;
   1249          array_sizes = (unsigned*)
   1250             realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
   1251       }
   1252 
   1253       src.file = PROGRAM_ARRAY;
   1254       src.index = 0;
   1255       src.array_id = next_array + 1;
   1256       array_sizes[next_array] = type_size(type);
   1257       ++next_array;
   1258 
   1259    } else {
   1260       src.file = PROGRAM_TEMPORARY;
   1261       src.index = next_temp;
   1262       next_temp += type_size(type);
   1263    }
   1264 
   1265    if (type->is_array() || type->is_record()) {
   1266       src.swizzle = SWIZZLE_NOOP;
   1267    } else {
   1268       src.swizzle = swizzle_for_size(type->vector_elements);
   1269    }
   1270 
   1271    return src;
   1272 }
   1273 
   1274 variable_storage *
   1275 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
   1276 {
   1277 
   1278    foreach_in_list(variable_storage, entry, &this->variables) {
   1279       if (entry->var == var)
   1280          return entry;
   1281    }
   1282 
   1283    return NULL;
   1284 }
   1285 
   1286 void
   1287 glsl_to_tgsi_visitor::visit(ir_variable *ir)
   1288 {
   1289    if (strcmp(ir->name, "gl_FragCoord") == 0) {
   1290       this->prog->OriginUpperLeft = ir->data.origin_upper_left;
   1291       this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
   1292    }
   1293 
   1294    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
   1295       unsigned int i;
   1296       const ir_state_slot *const slots = ir->get_state_slots();
   1297       assert(slots != NULL);
   1298 
   1299       /* Check if this statevar's setup in the STATE file exactly
   1300        * matches how we'll want to reference it as a
   1301        * struct/array/whatever.  If not, then we need to move it into
   1302        * temporary storage and hope that it'll get copy-propagated
   1303        * out.
   1304        */
   1305       for (i = 0; i < ir->get_num_state_slots(); i++) {
   1306          if (slots[i].swizzle != SWIZZLE_XYZW) {
   1307             break;
   1308          }
   1309       }
   1310 
   1311       variable_storage *storage;
   1312       st_dst_reg dst;
   1313       if (i == ir->get_num_state_slots()) {
   1314          /* We'll set the index later. */
   1315          storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
   1316          this->variables.push_tail(storage);
   1317 
   1318          dst = undef_dst;
   1319       } else {
   1320          /* The variable_storage constructor allocates slots based on the size
   1321           * of the type.  However, this had better match the number of state
   1322           * elements that we're going to copy into the new temporary.
   1323           */
   1324          assert((int) ir->get_num_state_slots() == type_size(ir->type));
   1325 
   1326          dst = st_dst_reg(get_temp(ir->type));
   1327 
   1328          storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
   1329                                                  dst.array_id);
   1330 
   1331          this->variables.push_tail(storage);
   1332       }
   1333 
   1334 
   1335       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
   1336          int index = _mesa_add_state_reference(this->prog->Parameters,
   1337                                                (gl_state_index *)slots[i].tokens);
   1338 
   1339          if (storage->file == PROGRAM_STATE_VAR) {
   1340             if (storage->index == -1) {
   1341                storage->index = index;
   1342             } else {
   1343                assert(index == storage->index + (int)i);
   1344             }
   1345          } else {
   1346             /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
   1347              * the data being moved since MOV does not care about the type of
   1348              * data it is moving, and we don't want to declare registers with
   1349              * array or struct types.
   1350              */
   1351             st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
   1352             src.swizzle = slots[i].swizzle;
   1353             emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
   1354             /* even a float takes up a whole vec4 reg in a struct/array. */
   1355             dst.index++;
   1356          }
   1357       }
   1358 
   1359       if (storage->file == PROGRAM_TEMPORARY &&
   1360           dst.index != storage->index + (int) ir->get_num_state_slots()) {
   1361          fail_link(this->shader_program,
   1362                   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
   1363                   ir->name, dst.index - storage->index,
   1364                   type_size(ir->type));
   1365       }
   1366    }
   1367 }
   1368 
   1369 void
   1370 glsl_to_tgsi_visitor::visit(ir_loop *ir)
   1371 {
   1372    emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
   1373 
   1374    visit_exec_list(&ir->body_instructions, this);
   1375 
   1376    emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
   1377 }
   1378 
   1379 void
   1380 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
   1381 {
   1382    switch (ir->mode) {
   1383    case ir_loop_jump::jump_break:
   1384       emit_asm(NULL, TGSI_OPCODE_BRK);
   1385       break;
   1386    case ir_loop_jump::jump_continue:
   1387       emit_asm(NULL, TGSI_OPCODE_CONT);
   1388       break;
   1389    }
   1390 }
   1391 
   1392 
   1393 void
   1394 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
   1395 {
   1396    assert(0);
   1397    (void)ir;
   1398 }
   1399 
   1400 void
   1401 glsl_to_tgsi_visitor::visit(ir_function *ir)
   1402 {
   1403    /* Ignore function bodies other than main() -- we shouldn't see calls to
   1404     * them since they should all be inlined before we get to glsl_to_tgsi.
   1405     */
   1406    if (strcmp(ir->name, "main") == 0) {
   1407       const ir_function_signature *sig;
   1408       exec_list empty;
   1409 
   1410       sig = ir->matching_signature(NULL, &empty, false);
   1411 
   1412       assert(sig);
   1413 
   1414       foreach_in_list(ir_instruction, ir, &sig->body) {
   1415          ir->accept(this);
   1416       }
   1417    }
   1418 }
   1419 
   1420 bool
   1421 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
   1422 {
   1423    int nonmul_operand = 1 - mul_operand;
   1424    st_src_reg a, b, c;
   1425    st_dst_reg result_dst;
   1426 
   1427    ir_expression *expr = ir->operands[mul_operand]->as_expression();
   1428    if (!expr || expr->operation != ir_binop_mul)
   1429       return false;
   1430 
   1431    expr->operands[0]->accept(this);
   1432    a = this->result;
   1433    expr->operands[1]->accept(this);
   1434    b = this->result;
   1435    ir->operands[nonmul_operand]->accept(this);
   1436    c = this->result;
   1437 
   1438    this->result = get_temp(ir->type);
   1439    result_dst = st_dst_reg(this->result);
   1440    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
   1441    emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
   1442 
   1443    return true;
   1444 }
   1445 
   1446 /**
   1447  * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
   1448  *
   1449  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
   1450  * implemented using multiplication, and logical-or is implemented using
   1451  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
   1452  * As result, the logical expression (a & !b) can be rewritten as:
   1453  *
   1454  *     - a * !b
   1455  *     - a * (1 - b)
   1456  *     - (a * 1) - (a * b)
   1457  *     - a + -(a * b)
   1458  *     - a + (a * -b)
   1459  *
   1460  * This final expression can be implemented as a single MAD(a, -b, a)
   1461  * instruction.
   1462  */
   1463 bool
   1464 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
   1465 {
   1466    const int other_operand = 1 - try_operand;
   1467    st_src_reg a, b;
   1468 
   1469    ir_expression *expr = ir->operands[try_operand]->as_expression();
   1470    if (!expr || expr->operation != ir_unop_logic_not)
   1471       return false;
   1472 
   1473    ir->operands[other_operand]->accept(this);
   1474    a = this->result;
   1475    expr->operands[0]->accept(this);
   1476    b = this->result;
   1477 
   1478    b.negate = ~b.negate;
   1479 
   1480    this->result = get_temp(ir->type);
   1481    emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
   1482 
   1483    return true;
   1484 }
   1485 
   1486 void
   1487 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
   1488                                       st_src_reg *reg, int *num_reladdr)
   1489 {
   1490    if (!reg->reladdr && !reg->reladdr2)
   1491       return;
   1492 
   1493    if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
   1494    if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
   1495 
   1496    if (*num_reladdr != 1) {
   1497       st_src_reg temp = get_temp(reg->type == GLSL_TYPE_DOUBLE ? glsl_type::dvec4_type : glsl_type::vec4_type);
   1498 
   1499       emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
   1500       *reg = temp;
   1501    }
   1502 
   1503    (*num_reladdr)--;
   1504 }
   1505 
   1506 void
   1507 glsl_to_tgsi_visitor::visit(ir_expression *ir)
   1508 {
   1509    st_src_reg op[ARRAY_SIZE(ir->operands)];
   1510 
   1511    /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
   1512     */
   1513    if (ir->operation == ir_binop_add) {
   1514       if (try_emit_mad(ir, 1))
   1515          return;
   1516       if (try_emit_mad(ir, 0))
   1517          return;
   1518    }
   1519 
   1520    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
   1521     */
   1522    if (!native_integers && ir->operation == ir_binop_logic_and) {
   1523       if (try_emit_mad_for_and_not(ir, 1))
   1524          return;
   1525       if (try_emit_mad_for_and_not(ir, 0))
   1526          return;
   1527    }
   1528 
   1529    if (ir->operation == ir_quadop_vector)
   1530       assert(!"ir_quadop_vector should have been lowered");
   1531 
   1532    for (unsigned int operand = 0; operand < ir->get_num_operands(); operand++) {
   1533       this->result.file = PROGRAM_UNDEFINED;
   1534       ir->operands[operand]->accept(this);
   1535       if (this->result.file == PROGRAM_UNDEFINED) {
   1536          printf("Failed to get tree for expression operand:\n");
   1537          ir->operands[operand]->print();
   1538          printf("\n");
   1539          exit(1);
   1540       }
   1541       op[operand] = this->result;
   1542 
   1543       /* Matrix expression operands should have been broken down to vector
   1544        * operations already.
   1545        */
   1546       assert(!ir->operands[operand]->type->is_matrix());
   1547    }
   1548 
   1549    visit_expression(ir, op);
   1550 }
   1551 
   1552 /* The non-recursive part of the expression visitor lives in a separate
   1553  * function and should be prevented from being inlined, to avoid a stack
   1554  * explosion when deeply nested expressions are visited.
   1555  */
   1556 void
   1557 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
   1558 {
   1559    st_src_reg result_src;
   1560    st_dst_reg result_dst;
   1561 
   1562    int vector_elements = ir->operands[0]->type->vector_elements;
   1563    if (ir->operands[1]) {
   1564       vector_elements = MAX2(vector_elements,
   1565                              ir->operands[1]->type->vector_elements);
   1566    }
   1567 
   1568    this->result.file = PROGRAM_UNDEFINED;
   1569 
   1570    /* Storage for our result.  Ideally for an assignment we'd be using
   1571     * the actual storage for the result here, instead.
   1572     */
   1573    result_src = get_temp(ir->type);
   1574    /* convenience for the emit functions below. */
   1575    result_dst = st_dst_reg(result_src);
   1576    /* Limit writes to the channels that will be used by result_src later.
   1577     * This does limit this temp's use as a temporary for multi-instruction
   1578     * sequences.
   1579     */
   1580    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
   1581 
   1582    switch (ir->operation) {
   1583    case ir_unop_logic_not:
   1584       if (result_dst.type != GLSL_TYPE_FLOAT)
   1585          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
   1586       else {
   1587          /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
   1588           * older GPUs implement SEQ using multiple instructions (i915 uses two
   1589           * SGE instructions and a MUL instruction).  Since our logic values are
   1590           * 0.0 and 1.0, 1-x also implements !x.
   1591           */
   1592          op[0].negate = ~op[0].negate;
   1593          emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
   1594       }
   1595       break;
   1596    case ir_unop_neg:
   1597       if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
   1598          emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
   1599       else if (result_dst.type == GLSL_TYPE_DOUBLE)
   1600          emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
   1601       else {
   1602          op[0].negate = ~op[0].negate;
   1603          result_src = op[0];
   1604       }
   1605       break;
   1606    case ir_unop_subroutine_to_int:
   1607       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
   1608       break;
   1609    case ir_unop_abs:
   1610       if (result_dst.type == GLSL_TYPE_FLOAT)
   1611          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
   1612       else if (result_dst.type == GLSL_TYPE_DOUBLE)
   1613          emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
   1614       else
   1615          emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
   1616       break;
   1617    case ir_unop_sign:
   1618       emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
   1619       break;
   1620    case ir_unop_rcp:
   1621       emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
   1622       break;
   1623 
   1624    case ir_unop_exp2:
   1625       emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
   1626       break;
   1627    case ir_unop_exp:
   1628    case ir_unop_log:
   1629       assert(!"not reached: should be handled by ir_explog_to_explog2");
   1630       break;
   1631    case ir_unop_log2:
   1632       emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
   1633       break;
   1634    case ir_unop_sin:
   1635       emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
   1636       break;
   1637    case ir_unop_cos:
   1638       emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
   1639       break;
   1640    case ir_unop_saturate: {
   1641       glsl_to_tgsi_instruction *inst;
   1642       inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
   1643       inst->saturate = true;
   1644       break;
   1645    }
   1646 
   1647    case ir_unop_dFdx:
   1648    case ir_unop_dFdx_coarse:
   1649       emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
   1650       break;
   1651    case ir_unop_dFdx_fine:
   1652       emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
   1653       break;
   1654    case ir_unop_dFdy:
   1655    case ir_unop_dFdy_coarse:
   1656    case ir_unop_dFdy_fine:
   1657    {
   1658       /* The X component contains 1 or -1 depending on whether the framebuffer
   1659        * is a FBO or the window system buffer, respectively.
   1660        * It is then multiplied with the source operand of DDY.
   1661        */
   1662       static const gl_state_index transform_y_state[STATE_LENGTH]
   1663          = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
   1664 
   1665       unsigned transform_y_index =
   1666          _mesa_add_state_reference(this->prog->Parameters,
   1667                                    transform_y_state);
   1668 
   1669       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
   1670                                           transform_y_index,
   1671                                           glsl_type::vec4_type);
   1672       transform_y.swizzle = SWIZZLE_XXXX;
   1673 
   1674       st_src_reg temp = get_temp(glsl_type::vec4_type);
   1675 
   1676       emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
   1677       emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
   1678            TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
   1679       break;
   1680    }
   1681 
   1682    case ir_unop_frexp_sig:
   1683       emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
   1684       break;
   1685 
   1686    case ir_unop_frexp_exp:
   1687       emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
   1688       break;
   1689 
   1690    case ir_unop_noise: {
   1691       /* At some point, a motivated person could add a better
   1692        * implementation of noise.  Currently not even the nvidia
   1693        * binary drivers do anything more than this.  In any case, the
   1694        * place to do this is in the GL state tracker, not the poor
   1695        * driver.
   1696        */
   1697       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
   1698       break;
   1699    }
   1700 
   1701    case ir_binop_add:
   1702       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
   1703       break;
   1704    case ir_binop_sub:
   1705       op[1].negate = ~op[1].negate;
   1706       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
   1707       break;
   1708 
   1709    case ir_binop_mul:
   1710       emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
   1711       break;
   1712    case ir_binop_div:
   1713       emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
   1714       break;
   1715    case ir_binop_mod:
   1716       if (result_dst.type == GLSL_TYPE_FLOAT)
   1717          assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
   1718       else
   1719          emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
   1720       break;
   1721 
   1722    case ir_binop_less:
   1723       emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
   1724       break;
   1725    case ir_binop_greater:
   1726       emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
   1727       break;
   1728    case ir_binop_lequal:
   1729       emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
   1730       break;
   1731    case ir_binop_gequal:
   1732       emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
   1733       break;
   1734    case ir_binop_equal:
   1735       emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
   1736       break;
   1737    case ir_binop_nequal:
   1738       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
   1739       break;
   1740    case ir_binop_all_equal:
   1741       /* "==" operator producing a scalar boolean. */
   1742       if (ir->operands[0]->type->is_vector() ||
   1743           ir->operands[1]->type->is_vector()) {
   1744          st_src_reg temp = get_temp(native_integers ?
   1745                                     glsl_type::uvec4_type :
   1746                                     glsl_type::vec4_type);
   1747 
   1748          if (native_integers) {
   1749             st_dst_reg temp_dst = st_dst_reg(temp);
   1750             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
   1751 
   1752             if (ir->operands[0]->type->is_boolean() &&
   1753                 ir->operands[1]->as_constant() &&
   1754                 ir->operands[1]->as_constant()->is_one()) {
   1755                emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
   1756             } else {
   1757                emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
   1758             }
   1759 
   1760             /* Emit 1-3 AND operations to combine the SEQ results. */
   1761             switch (ir->operands[0]->type->vector_elements) {
   1762             case 2:
   1763                break;
   1764             case 3:
   1765                temp_dst.writemask = WRITEMASK_Y;
   1766                temp1.swizzle = SWIZZLE_YYYY;
   1767                temp2.swizzle = SWIZZLE_ZZZZ;
   1768                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
   1769                break;
   1770             case 4:
   1771                temp_dst.writemask = WRITEMASK_X;
   1772                temp1.swizzle = SWIZZLE_XXXX;
   1773                temp2.swizzle = SWIZZLE_YYYY;
   1774                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
   1775                temp_dst.writemask = WRITEMASK_Y;
   1776                temp1.swizzle = SWIZZLE_ZZZZ;
   1777                temp2.swizzle = SWIZZLE_WWWW;
   1778                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
   1779             }
   1780 
   1781             temp1.swizzle = SWIZZLE_XXXX;
   1782             temp2.swizzle = SWIZZLE_YYYY;
   1783             emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
   1784          } else {
   1785             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
   1786 
   1787             /* After the dot-product, the value will be an integer on the
   1788              * range [0,4].  Zero becomes 1.0, and positive values become zero.
   1789              */
   1790             emit_dp(ir, result_dst, temp, temp, vector_elements);
   1791 
   1792             /* Negating the result of the dot-product gives values on the range
   1793              * [-4, 0].  Zero becomes 1.0, and negative values become zero.
   1794              * This is achieved using SGE.
   1795              */
   1796             st_src_reg sge_src = result_src;
   1797             sge_src.negate = ~sge_src.negate;
   1798             emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
   1799          }
   1800       } else {
   1801          emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
   1802       }
   1803       break;
   1804    case ir_binop_any_nequal:
   1805       /* "!=" operator producing a scalar boolean. */
   1806       if (ir->operands[0]->type->is_vector() ||
   1807           ir->operands[1]->type->is_vector()) {
   1808          st_src_reg temp = get_temp(native_integers ?
   1809                                     glsl_type::uvec4_type :
   1810                                     glsl_type::vec4_type);
   1811          if (ir->operands[0]->type->is_boolean() &&
   1812              ir->operands[1]->as_constant() &&
   1813              ir->operands[1]->as_constant()->is_zero()) {
   1814             emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
   1815          } else {
   1816             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
   1817          }
   1818 
   1819          if (native_integers) {
   1820             st_dst_reg temp_dst = st_dst_reg(temp);
   1821             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
   1822 
   1823             /* Emit 1-3 OR operations to combine the SNE results. */
   1824             switch (ir->operands[0]->type->vector_elements) {
   1825             case 2:
   1826                break;
   1827             case 3:
   1828                temp_dst.writemask = WRITEMASK_Y;
   1829                temp1.swizzle = SWIZZLE_YYYY;
   1830                temp2.swizzle = SWIZZLE_ZZZZ;
   1831                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
   1832                break;
   1833             case 4:
   1834                temp_dst.writemask = WRITEMASK_X;
   1835                temp1.swizzle = SWIZZLE_XXXX;
   1836                temp2.swizzle = SWIZZLE_YYYY;
   1837                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
   1838                temp_dst.writemask = WRITEMASK_Y;
   1839                temp1.swizzle = SWIZZLE_ZZZZ;
   1840                temp2.swizzle = SWIZZLE_WWWW;
   1841                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
   1842             }
   1843 
   1844             temp1.swizzle = SWIZZLE_XXXX;
   1845             temp2.swizzle = SWIZZLE_YYYY;
   1846             emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
   1847          } else {
   1848             /* After the dot-product, the value will be an integer on the
   1849              * range [0,4].  Zero stays zero, and positive values become 1.0.
   1850              */
   1851             glsl_to_tgsi_instruction *const dp =
   1852                   emit_dp(ir, result_dst, temp, temp, vector_elements);
   1853             if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
   1854                /* The clamping to [0,1] can be done for free in the fragment
   1855                 * shader with a saturate.
   1856                 */
   1857                dp->saturate = true;
   1858             } else {
   1859                /* Negating the result of the dot-product gives values on the range
   1860                 * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
   1861                 * achieved using SLT.
   1862                 */
   1863                st_src_reg slt_src = result_src;
   1864                slt_src.negate = ~slt_src.negate;
   1865                emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
   1866             }
   1867          }
   1868       } else {
   1869          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
   1870       }
   1871       break;
   1872 
   1873    case ir_binop_logic_xor:
   1874       if (native_integers)
   1875          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
   1876       else
   1877          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
   1878       break;
   1879 
   1880    case ir_binop_logic_or: {
   1881       if (native_integers) {
   1882          /* If integers are used as booleans, we can use an actual "or"
   1883           * instruction.
   1884           */
   1885          assert(native_integers);
   1886          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
   1887       } else {
   1888          /* After the addition, the value will be an integer on the
   1889           * range [0,2].  Zero stays zero, and positive values become 1.0.
   1890           */
   1891          glsl_to_tgsi_instruction *add =
   1892             emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
   1893          if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
   1894             /* The clamping to [0,1] can be done for free in the fragment
   1895              * shader with a saturate if floats are being used as boolean values.
   1896              */
   1897             add->saturate = true;
   1898          } else {
   1899             /* Negating the result of the addition gives values on the range
   1900              * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
   1901              * is achieved using SLT.
   1902              */
   1903             st_src_reg slt_src = result_src;
   1904             slt_src.negate = ~slt_src.negate;
   1905             emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
   1906          }
   1907       }
   1908       break;
   1909    }
   1910 
   1911    case ir_binop_logic_and:
   1912       /* If native integers are disabled, the bool args are stored as float 0.0
   1913        * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
   1914        * actual AND opcode.
   1915        */
   1916       if (native_integers)
   1917          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
   1918       else
   1919          emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
   1920       break;
   1921 
   1922    case ir_binop_dot:
   1923       assert(ir->operands[0]->type->is_vector());
   1924       assert(ir->operands[0]->type == ir->operands[1]->type);
   1925       emit_dp(ir, result_dst, op[0], op[1],
   1926               ir->operands[0]->type->vector_elements);
   1927       break;
   1928 
   1929    case ir_unop_sqrt:
   1930       if (have_sqrt) {
   1931          emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
   1932       } else {
   1933          /* This is the only instruction sequence that makes the game "Risen"
   1934           * render correctly. ABS is not required for the game, but since GLSL
   1935           * declares negative values as "undefined", allowing us to do whatever
   1936           * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
   1937           * behavior.
   1938           */
   1939          emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
   1940          emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
   1941       }
   1942       break;
   1943    case ir_unop_rsq:
   1944       emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
   1945       break;
   1946    case ir_unop_i2f:
   1947       if (native_integers) {
   1948          emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
   1949          break;
   1950       }
   1951       /* fallthrough to next case otherwise */
   1952    case ir_unop_b2f:
   1953       if (native_integers) {
   1954          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
   1955          break;
   1956       }
   1957       /* fallthrough to next case otherwise */
   1958    case ir_unop_i2u:
   1959    case ir_unop_u2i:
   1960       /* Converting between signed and unsigned integers is a no-op. */
   1961       result_src = op[0];
   1962       result_src.type = result_dst.type;
   1963       break;
   1964    case ir_unop_b2i:
   1965       if (native_integers) {
   1966          /* Booleans are stored as integers using ~0 for true and 0 for false.
   1967           * GLSL requires that int(bool) return 1 for true and 0 for false.
   1968           * This conversion is done with AND, but it could be done with NEG.
   1969           */
   1970          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
   1971       } else {
   1972          /* Booleans and integers are both stored as floats when native
   1973           * integers are disabled.
   1974           */
   1975          result_src = op[0];
   1976       }
   1977       break;
   1978    case ir_unop_f2i:
   1979       if (native_integers)
   1980          emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
   1981       else
   1982          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
   1983       break;
   1984    case ir_unop_f2u:
   1985       if (native_integers)
   1986          emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
   1987       else
   1988          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
   1989       break;
   1990    case ir_unop_bitcast_f2i:
   1991    case ir_unop_bitcast_f2u:
   1992       /* Make sure we don't propagate the negate modifier to integer opcodes. */
   1993       if (op[0].negate || op[0].abs)
   1994          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
   1995       else
   1996          result_src = op[0];
   1997       result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
   1998                                                                GLSL_TYPE_UINT;
   1999       break;
   2000    case ir_unop_bitcast_i2f:
   2001    case ir_unop_bitcast_u2f:
   2002       result_src = op[0];
   2003       result_src.type = GLSL_TYPE_FLOAT;
   2004       break;
   2005    case ir_unop_f2b:
   2006       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
   2007       break;
   2008    case ir_unop_d2b:
   2009       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
   2010       break;
   2011    case ir_unop_i2b:
   2012       if (native_integers)
   2013          emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
   2014       else
   2015          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
   2016       break;
   2017    case ir_unop_trunc:
   2018       emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
   2019       break;
   2020    case ir_unop_ceil:
   2021       emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
   2022       break;
   2023    case ir_unop_floor:
   2024       emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
   2025       break;
   2026    case ir_unop_round_even:
   2027       emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
   2028       break;
   2029    case ir_unop_fract:
   2030       emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
   2031       break;
   2032 
   2033    case ir_binop_min:
   2034       emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
   2035       break;
   2036    case ir_binop_max:
   2037       emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
   2038       break;
   2039    case ir_binop_pow:
   2040       emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
   2041       break;
   2042 
   2043    case ir_unop_bit_not:
   2044       if (native_integers) {
   2045          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
   2046          break;
   2047       }
   2048    case ir_unop_u2f:
   2049       if (native_integers) {
   2050          emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
   2051          break;
   2052       }
   2053    case ir_binop_lshift:
   2054       if (native_integers) {
   2055          emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
   2056          break;
   2057       }
   2058    case ir_binop_rshift:
   2059       if (native_integers) {
   2060          emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
   2061          break;
   2062       }
   2063    case ir_binop_bit_and:
   2064       if (native_integers) {
   2065          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
   2066          break;
   2067       }
   2068    case ir_binop_bit_xor:
   2069       if (native_integers) {
   2070          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
   2071          break;
   2072       }
   2073    case ir_binop_bit_or:
   2074       if (native_integers) {
   2075          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
   2076          break;
   2077       }
   2078 
   2079       assert(!"GLSL 1.30 features unsupported");
   2080       break;
   2081 
   2082    case ir_binop_ubo_load: {
   2083       ir_constant *const_uniform_block = ir->operands[0]->as_constant();
   2084       ir_constant *const_offset_ir = ir->operands[1]->as_constant();
   2085       unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
   2086       unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
   2087       st_src_reg index_reg = get_temp(glsl_type::uint_type);
   2088       st_src_reg cbuf;
   2089 
   2090       cbuf.type = ir->type->base_type;
   2091       cbuf.file = PROGRAM_CONSTANT;
   2092       cbuf.index = 0;
   2093       cbuf.reladdr = NULL;
   2094       cbuf.negate = 0;
   2095       cbuf.abs = 0;
   2096 
   2097       assert(ir->type->is_vector() || ir->type->is_scalar());
   2098 
   2099       if (const_offset_ir) {
   2100          /* Constant index into constant buffer */
   2101          cbuf.reladdr = NULL;
   2102          cbuf.index = const_offset / 16;
   2103       }
   2104       else {
   2105          ir_expression *offset_expr = ir->operands[1]->as_expression();
   2106          st_src_reg offset = op[1];
   2107 
   2108          /* The OpenGL spec is written in such a way that accesses with
   2109           * non-constant offset are almost always vec4-aligned. The only
   2110           * exception to this are members of structs in arrays of structs:
   2111           * each struct in an array of structs is at least vec4-aligned,
   2112           * but single-element and [ui]vec2 members of the struct may be at
   2113           * an offset that is not a multiple of 16 bytes.
   2114           *
   2115           * Here, we extract that offset, relying on previous passes to always
   2116           * generate offset expressions of the form (+ expr constant_offset).
   2117           *
   2118           * Note that the std430 layout, which allows more cases of alignment
   2119           * less than vec4 in arrays, is not supported for uniform blocks, so
   2120           * we do not have to deal with it here.
   2121           */
   2122          if (offset_expr && offset_expr->operation == ir_binop_add) {
   2123             const_offset_ir = offset_expr->operands[1]->as_constant();
   2124             if (const_offset_ir) {
   2125                const_offset = const_offset_ir->value.u[0];
   2126                cbuf.index = const_offset / 16;
   2127                offset_expr->operands[0]->accept(this);
   2128                offset = this->result;
   2129             }
   2130          }
   2131 
   2132          /* Relative/variable index into constant buffer */
   2133          emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
   2134               st_src_reg_for_int(4));
   2135          cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
   2136          memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
   2137       }
   2138 
   2139       if (const_uniform_block) {
   2140          /* Constant constant buffer */
   2141          cbuf.reladdr2 = NULL;
   2142          cbuf.index2D = const_block;
   2143          cbuf.has_index2 = true;
   2144       }
   2145       else {
   2146          /* Relative/variable constant buffer */
   2147          cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
   2148          cbuf.index2D = 1;
   2149          memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
   2150          cbuf.has_index2 = true;
   2151       }
   2152 
   2153       cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
   2154       if (glsl_base_type_is_64bit(cbuf.type))
   2155          cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
   2156                                        const_offset % 16 / 8,
   2157                                        const_offset % 16 / 8,
   2158                                        const_offset % 16 / 8);
   2159       else
   2160          cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
   2161                                        const_offset % 16 / 4,
   2162                                        const_offset % 16 / 4,
   2163                                        const_offset % 16 / 4);
   2164 
   2165       if (ir->type->base_type == GLSL_TYPE_BOOL) {
   2166          emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
   2167       } else {
   2168          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
   2169       }
   2170       break;
   2171    }
   2172    case ir_triop_lrp:
   2173       /* note: we have to reorder the three args here */
   2174       emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
   2175       break;
   2176    case ir_triop_csel:
   2177       if (this->ctx->Const.NativeIntegers)
   2178          emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
   2179       else {
   2180          op[0].negate = ~op[0].negate;
   2181          emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
   2182       }
   2183       break;
   2184    case ir_triop_bitfield_extract:
   2185       emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
   2186       break;
   2187    case ir_quadop_bitfield_insert:
   2188       emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
   2189       break;
   2190    case ir_unop_bitfield_reverse:
   2191       emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
   2192       break;
   2193    case ir_unop_bit_count:
   2194       emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
   2195       break;
   2196    case ir_unop_find_msb:
   2197       emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
   2198       break;
   2199    case ir_unop_find_lsb:
   2200       emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
   2201       break;
   2202    case ir_binop_imul_high:
   2203       emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
   2204       break;
   2205    case ir_triop_fma:
   2206       /* In theory, MAD is incorrect here. */
   2207       if (have_fma)
   2208          emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
   2209       else
   2210          emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
   2211       break;
   2212    case ir_unop_interpolate_at_centroid:
   2213       emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
   2214       break;
   2215    case ir_binop_interpolate_at_offset: {
   2216       /* The y coordinate needs to be flipped for the default fb */
   2217       static const gl_state_index transform_y_state[STATE_LENGTH]
   2218          = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
   2219 
   2220       unsigned transform_y_index =
   2221          _mesa_add_state_reference(this->prog->Parameters,
   2222                                    transform_y_state);
   2223 
   2224       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
   2225                                           transform_y_index,
   2226                                           glsl_type::vec4_type);
   2227       transform_y.swizzle = SWIZZLE_XXXX;
   2228 
   2229       st_src_reg temp = get_temp(glsl_type::vec2_type);
   2230       st_dst_reg temp_dst = st_dst_reg(temp);
   2231 
   2232       emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
   2233       temp_dst.writemask = WRITEMASK_Y;
   2234       emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
   2235       emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
   2236       break;
   2237    }
   2238    case ir_binop_interpolate_at_sample:
   2239       emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
   2240       break;
   2241 
   2242    case ir_unop_d2f:
   2243       emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
   2244       break;
   2245    case ir_unop_f2d:
   2246       emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
   2247       break;
   2248    case ir_unop_d2i:
   2249       emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
   2250       break;
   2251    case ir_unop_i2d:
   2252       emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
   2253       break;
   2254    case ir_unop_d2u:
   2255       emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
   2256       break;
   2257    case ir_unop_u2d:
   2258       emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
   2259       break;
   2260    case ir_unop_unpack_double_2x32:
   2261    case ir_unop_pack_double_2x32:
   2262       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
   2263       break;
   2264 
   2265    case ir_binop_ldexp:
   2266       if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
   2267          emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
   2268       } else {
   2269          assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
   2270       }
   2271       break;
   2272 
   2273    case ir_unop_pack_half_2x16:
   2274       emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
   2275       break;
   2276    case ir_unop_unpack_half_2x16:
   2277       emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
   2278       break;
   2279 
   2280    case ir_unop_get_buffer_size: {
   2281       ir_constant *const_offset = ir->operands[0]->as_constant();
   2282       st_src_reg buffer(
   2283             PROGRAM_BUFFER,
   2284             ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
   2285             (const_offset ? const_offset->value.u[0] : 0),
   2286             GLSL_TYPE_UINT);
   2287       if (!const_offset) {
   2288          buffer.reladdr = ralloc(mem_ctx, st_src_reg);
   2289          *buffer.reladdr = op[0];
   2290          emit_arl(ir, sampler_reladdr, op[0]);
   2291       }
   2292       emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
   2293       break;
   2294    }
   2295 
   2296    case ir_unop_vote_any:
   2297       emit_asm(ir, TGSI_OPCODE_VOTE_ANY, result_dst, op[0]);
   2298       break;
   2299    case ir_unop_vote_all:
   2300       emit_asm(ir, TGSI_OPCODE_VOTE_ALL, result_dst, op[0]);
   2301       break;
   2302    case ir_unop_vote_eq:
   2303       emit_asm(ir, TGSI_OPCODE_VOTE_EQ, result_dst, op[0]);
   2304       break;
   2305 
   2306    case ir_unop_pack_snorm_2x16:
   2307    case ir_unop_pack_unorm_2x16:
   2308    case ir_unop_pack_snorm_4x8:
   2309    case ir_unop_pack_unorm_4x8:
   2310 
   2311    case ir_unop_unpack_snorm_2x16:
   2312    case ir_unop_unpack_unorm_2x16:
   2313    case ir_unop_unpack_snorm_4x8:
   2314    case ir_unop_unpack_unorm_4x8:
   2315 
   2316    case ir_quadop_vector:
   2317    case ir_binop_vector_extract:
   2318    case ir_triop_vector_insert:
   2319    case ir_binop_carry:
   2320    case ir_binop_borrow:
   2321    case ir_unop_ssbo_unsized_array_length:
   2322       /* This operation is not supported, or should have already been handled.
   2323        */
   2324       assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
   2325       break;
   2326    }
   2327 
   2328    this->result = result_src;
   2329 }
   2330 
   2331 
   2332 void
   2333 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
   2334 {
   2335    st_src_reg src;
   2336    int i;
   2337    int swizzle[4];
   2338 
   2339    /* Note that this is only swizzles in expressions, not those on the left
   2340     * hand side of an assignment, which do write masking.  See ir_assignment
   2341     * for that.
   2342     */
   2343 
   2344    ir->val->accept(this);
   2345    src = this->result;
   2346    assert(src.file != PROGRAM_UNDEFINED);
   2347    assert(ir->type->vector_elements > 0);
   2348 
   2349    for (i = 0; i < 4; i++) {
   2350       if (i < ir->type->vector_elements) {
   2351          switch (i) {
   2352          case 0:
   2353             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
   2354             break;
   2355          case 1:
   2356             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
   2357             break;
   2358          case 2:
   2359             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
   2360             break;
   2361          case 3:
   2362             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
   2363             break;
   2364          }
   2365       } else {
   2366          /* If the type is smaller than a vec4, replicate the last
   2367           * channel out.
   2368           */
   2369          swizzle[i] = swizzle[ir->type->vector_elements - 1];
   2370       }
   2371    }
   2372 
   2373    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
   2374 
   2375    this->result = src;
   2376 }
   2377 
   2378 /* Test if the variable is an array. Note that geometry and
   2379  * tessellation shader inputs are outputs are always arrays (except
   2380  * for patch inputs), so only the array element type is considered.
   2381  */
   2382 static bool
   2383 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
   2384 {
   2385    const glsl_type *type = var->type;
   2386 
   2387    *remove_array = false;
   2388 
   2389    if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
   2390        (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
   2391       return false;
   2392 
   2393    if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
   2394         (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
   2395         stage == MESA_SHADER_TESS_CTRL) &&
   2396        !var->data.patch) {
   2397       if (!var->type->is_array())
   2398          return false; /* a system value probably */
   2399 
   2400       type = var->type->fields.array;
   2401       *remove_array = true;
   2402    }
   2403 
   2404    return type->is_array() || type->is_matrix();
   2405 }
   2406 
   2407 static unsigned
   2408 st_translate_interp_loc(ir_variable *var)
   2409 {
   2410    if (var->data.centroid)
   2411       return TGSI_INTERPOLATE_LOC_CENTROID;
   2412    else if (var->data.sample)
   2413       return TGSI_INTERPOLATE_LOC_SAMPLE;
   2414    else
   2415       return TGSI_INTERPOLATE_LOC_CENTER;
   2416 }
   2417 
   2418 void
   2419 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
   2420 {
   2421    variable_storage *entry = find_variable_storage(ir->var);
   2422    ir_variable *var = ir->var;
   2423    bool remove_array;
   2424 
   2425    if (!entry) {
   2426       switch (var->data.mode) {
   2427       case ir_var_uniform:
   2428          entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
   2429                                                var->data.param_index);
   2430          this->variables.push_tail(entry);
   2431          break;
   2432       case ir_var_shader_in: {
   2433          /* The linker assigns locations for varyings and attributes,
   2434           * including deprecated builtins (like gl_Color), user-assign
   2435           * generic attributes (glBindVertexLocation), and
   2436           * user-defined varyings.
   2437           */
   2438          assert(var->data.location != -1);
   2439 
   2440          const glsl_type *type_without_array = var->type->without_array();
   2441          struct inout_decl *decl = &inputs[num_inputs];
   2442          unsigned component = var->data.location_frac;
   2443          unsigned num_components;
   2444          num_inputs++;
   2445 
   2446          if (type_without_array->is_64bit())
   2447             component = component / 2;
   2448          if (type_without_array->vector_elements)
   2449             num_components = type_without_array->vector_elements;
   2450          else
   2451             num_components = 4;
   2452 
   2453          decl->mesa_index = var->data.location;
   2454          decl->interp = (glsl_interp_mode) var->data.interpolation;
   2455          decl->interp_loc = st_translate_interp_loc(var);
   2456          decl->base_type = type_without_array->base_type;
   2457          decl->usage_mask = u_bit_consecutive(component, num_components);
   2458 
   2459          if (is_inout_array(shader->Stage, var, &remove_array)) {
   2460             decl->array_id = num_input_arrays + 1;
   2461             num_input_arrays++;
   2462          } else {
   2463             decl->array_id = 0;
   2464          }
   2465 
   2466          if (remove_array)
   2467             decl->size = type_size(var->type->fields.array);
   2468          else
   2469             decl->size = type_size(var->type);
   2470 
   2471          entry = new(mem_ctx) variable_storage(var,
   2472                                                PROGRAM_INPUT,
   2473                                                decl->mesa_index,
   2474                                                decl->array_id);
   2475          entry->component = component;
   2476 
   2477          this->variables.push_tail(entry);
   2478          break;
   2479       }
   2480       case ir_var_shader_out: {
   2481          assert(var->data.location != -1);
   2482 
   2483          const glsl_type *type_without_array = var->type->without_array();
   2484          struct inout_decl *decl = &outputs[num_outputs];
   2485          unsigned component = var->data.location_frac;
   2486          unsigned num_components;
   2487          num_outputs++;
   2488 
   2489          if (type_without_array->is_64bit())
   2490             component = component / 2;
   2491          if (type_without_array->vector_elements)
   2492             num_components = type_without_array->vector_elements;
   2493          else
   2494             num_components = 4;
   2495 
   2496          decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
   2497          decl->base_type = type_without_array->base_type;
   2498          decl->usage_mask = u_bit_consecutive(component, num_components);
   2499          if (var->data.stream & (1u << 31)) {
   2500             decl->gs_out_streams = var->data.stream & ~(1u << 31);
   2501          } else {
   2502             assert(var->data.stream < 4);
   2503             decl->gs_out_streams = 0;
   2504             for (unsigned i = 0; i < num_components; ++i)
   2505                decl->gs_out_streams |= var->data.stream << (2 * (component + i));
   2506          }
   2507 
   2508          if (is_inout_array(shader->Stage, var, &remove_array)) {
   2509             decl->array_id = num_output_arrays + 1;
   2510             num_output_arrays++;
   2511          } else {
   2512             decl->array_id = 0;
   2513          }
   2514 
   2515          if (remove_array)
   2516             decl->size = type_size(var->type->fields.array);
   2517          else
   2518             decl->size = type_size(var->type);
   2519 
   2520          if (var->data.fb_fetch_output) {
   2521             st_dst_reg dst = st_dst_reg(get_temp(var->type));
   2522             st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
   2523                                         var->type, component, decl->array_id);
   2524             emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
   2525             entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
   2526                                                   dst.array_id);
   2527          } else {
   2528             entry = new(mem_ctx) variable_storage(var,
   2529                                                   PROGRAM_OUTPUT,
   2530                                                   decl->mesa_index,
   2531                                                   decl->array_id);
   2532          }
   2533          entry->component = component;
   2534 
   2535          this->variables.push_tail(entry);
   2536          break;
   2537       }
   2538       case ir_var_system_value:
   2539          entry = new(mem_ctx) variable_storage(var,
   2540                                                PROGRAM_SYSTEM_VALUE,
   2541                                                var->data.location);
   2542          break;
   2543       case ir_var_auto:
   2544       case ir_var_temporary:
   2545          st_src_reg src = get_temp(var->type);
   2546 
   2547          entry = new(mem_ctx) variable_storage(var, src.file, src.index,
   2548                                                src.array_id);
   2549          this->variables.push_tail(entry);
   2550 
   2551          break;
   2552       }
   2553 
   2554       if (!entry) {
   2555          printf("Failed to make storage for %s\n", var->name);
   2556          exit(1);
   2557       }
   2558    }
   2559 
   2560    this->result = st_src_reg(entry->file, entry->index, var->type,
   2561                              entry->component, entry->array_id);
   2562    if (this->shader->Stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in && var->type->is_double())
   2563       this->result.is_double_vertex_input = true;
   2564    if (!native_integers)
   2565       this->result.type = GLSL_TYPE_FLOAT;
   2566 }
   2567 
   2568 static void
   2569 shrink_array_declarations(struct inout_decl *decls, unsigned count,
   2570                           GLbitfield64* usage_mask,
   2571                           GLbitfield64 double_usage_mask,
   2572                           GLbitfield* patch_usage_mask)
   2573 {
   2574    unsigned i;
   2575    int j;
   2576 
   2577    /* Fix array declarations by removing unused array elements at both ends
   2578     * of the arrays. For example, mat4[3] where only mat[1] is used.
   2579     */
   2580    for (i = 0; i < count; i++) {
   2581       struct inout_decl *decl = &decls[i];
   2582       if (!decl->array_id)
   2583          continue;
   2584 
   2585       /* Shrink the beginning. */
   2586       for (j = 0; j < (int)decl->size; j++) {
   2587          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
   2588             if (*patch_usage_mask &
   2589                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
   2590                break;
   2591          }
   2592          else {
   2593             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
   2594                break;
   2595             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
   2596                break;
   2597          }
   2598 
   2599          decl->mesa_index++;
   2600          decl->size--;
   2601          j--;
   2602       }
   2603 
   2604       /* Shrink the end. */
   2605       for (j = decl->size-1; j >= 0; j--) {
   2606          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
   2607             if (*patch_usage_mask &
   2608                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
   2609                break;
   2610          }
   2611          else {
   2612             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
   2613                break;
   2614             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
   2615                break;
   2616          }
   2617 
   2618          decl->size--;
   2619       }
   2620 
   2621       /* When not all entries of an array are accessed, we mark them as used
   2622        * here anyway, to ensure that the input/output mapping logic doesn't get
   2623        * confused.
   2624        *
   2625        * TODO This happens when an array isn't used via indirect access, which
   2626        * some game ports do (at least eON-based). There is an optimization
   2627        * opportunity here by replacing the array declaration with non-array
   2628        * declarations of those slots that are actually used.
   2629        */
   2630       for (j = 1; j < (int)decl->size; ++j) {
   2631          if (decl->mesa_index >= VARYING_SLOT_PATCH0)
   2632             *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
   2633          else
   2634             *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
   2635       }
   2636    }
   2637 }
   2638 
   2639 void
   2640 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
   2641 {
   2642    ir_constant *index;
   2643    st_src_reg src;
   2644    int element_size = type_size(ir->type);
   2645    bool is_2D = false;
   2646 
   2647    index = ir->array_index->constant_expression_value();
   2648 
   2649    ir->array->accept(this);
   2650    src = this->result;
   2651 
   2652    if (ir->array->ir_type != ir_type_dereference_array) {
   2653       switch (this->prog->Target) {
   2654       case GL_TESS_CONTROL_PROGRAM_NV:
   2655          is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
   2656                  !ir->variable_referenced()->data.patch;
   2657          break;
   2658       case GL_TESS_EVALUATION_PROGRAM_NV:
   2659          is_2D = src.file == PROGRAM_INPUT &&
   2660                  !ir->variable_referenced()->data.patch;
   2661          break;
   2662       case GL_GEOMETRY_PROGRAM_NV:
   2663          is_2D = src.file == PROGRAM_INPUT;
   2664          break;
   2665       }
   2666    }
   2667 
   2668    if (is_2D)
   2669       element_size = 1;
   2670 
   2671    if (index) {
   2672 
   2673       if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
   2674 	  src.file == PROGRAM_INPUT)
   2675 	 element_size = attrib_type_size(ir->type, true);
   2676       if (is_2D) {
   2677          src.index2D = index->value.i[0];
   2678          src.has_index2 = true;
   2679       } else
   2680          src.index += index->value.i[0] * element_size;
   2681    } else {
   2682       /* Variable index array dereference.  It eats the "vec4" of the
   2683        * base of the array and an index that offsets the TGSI register
   2684        * index.
   2685        */
   2686       ir->array_index->accept(this);
   2687 
   2688       st_src_reg index_reg;
   2689 
   2690       if (element_size == 1) {
   2691          index_reg = this->result;
   2692       } else {
   2693          index_reg = get_temp(native_integers ?
   2694                               glsl_type::int_type : glsl_type::float_type);
   2695 
   2696          emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
   2697               this->result, st_src_reg_for_type(index_reg.type, element_size));
   2698       }
   2699 
   2700       /* If there was already a relative address register involved, add the
   2701        * new and the old together to get the new offset.
   2702        */
   2703       if (!is_2D && src.reladdr != NULL) {
   2704          st_src_reg accum_reg = get_temp(native_integers ?
   2705                                 glsl_type::int_type : glsl_type::float_type);
   2706 
   2707          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
   2708               index_reg, *src.reladdr);
   2709 
   2710          index_reg = accum_reg;
   2711       }
   2712 
   2713       if (is_2D) {
   2714          src.reladdr2 = ralloc(mem_ctx, st_src_reg);
   2715          memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
   2716          src.index2D = 0;
   2717          src.has_index2 = true;
   2718       } else {
   2719          src.reladdr = ralloc(mem_ctx, st_src_reg);
   2720          memcpy(src.reladdr, &index_reg, sizeof(index_reg));
   2721       }
   2722    }
   2723 
   2724    /* Change the register type to the element type of the array. */
   2725    src.type = ir->type->base_type;
   2726 
   2727    this->result = src;
   2728 }
   2729 
   2730 void
   2731 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
   2732 {
   2733    unsigned int i;
   2734    const glsl_type *struct_type = ir->record->type;
   2735    int offset = 0;
   2736 
   2737    ir->record->accept(this);
   2738 
   2739    for (i = 0; i < struct_type->length; i++) {
   2740       if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
   2741          break;
   2742       offset += type_size(struct_type->fields.structure[i].type);
   2743    }
   2744 
   2745    /* If the type is smaller than a vec4, replicate the last channel out. */
   2746    if (ir->type->is_scalar() || ir->type->is_vector())
   2747       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
   2748    else
   2749       this->result.swizzle = SWIZZLE_NOOP;
   2750 
   2751    this->result.index += offset;
   2752    this->result.type = ir->type->base_type;
   2753 }
   2754 
   2755 /**
   2756  * We want to be careful in assignment setup to hit the actual storage
   2757  * instead of potentially using a temporary like we might with the
   2758  * ir_dereference handler.
   2759  */
   2760 static st_dst_reg
   2761 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
   2762 {
   2763    /* The LHS must be a dereference.  If the LHS is a variable indexed array
   2764     * access of a vector, it must be separated into a series conditional moves
   2765     * before reaching this point (see ir_vec_index_to_cond_assign).
   2766     */
   2767    assert(ir->as_dereference());
   2768    ir_dereference_array *deref_array = ir->as_dereference_array();
   2769    if (deref_array) {
   2770       assert(!deref_array->array->type->is_vector());
   2771    }
   2772 
   2773    /* Use the rvalue deref handler for the most part.  We write swizzles using
   2774     * the writemask, but we do extract the base component for enhanced layouts
   2775     * from the source swizzle.
   2776     */
   2777    ir->accept(v);
   2778    *component = GET_SWZ(v->result.swizzle, 0);
   2779    return st_dst_reg(v->result);
   2780 }
   2781 
   2782 /**
   2783  * Process the condition of a conditional assignment
   2784  *
   2785  * Examines the condition of a conditional assignment to generate the optimal
   2786  * first operand of a \c CMP instruction.  If the condition is a relational
   2787  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
   2788  * used as the source for the \c CMP instruction.  Otherwise the comparison
   2789  * is processed to a boolean result, and the boolean result is used as the
   2790  * operand to the CMP instruction.
   2791  */
   2792 bool
   2793 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
   2794 {
   2795    ir_rvalue *src_ir = ir;
   2796    bool negate = true;
   2797    bool switch_order = false;
   2798 
   2799    ir_expression *const expr = ir->as_expression();
   2800 
   2801    if (native_integers) {
   2802       if ((expr != NULL) && (expr->get_num_operands() == 2)) {
   2803          enum glsl_base_type type = expr->operands[0]->type->base_type;
   2804          if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
   2805              type == GLSL_TYPE_BOOL) {
   2806             if (expr->operation == ir_binop_equal) {
   2807                if (expr->operands[0]->is_zero()) {
   2808                   src_ir = expr->operands[1];
   2809                   switch_order = true;
   2810                }
   2811                else if (expr->operands[1]->is_zero()) {
   2812                   src_ir = expr->operands[0];
   2813                   switch_order = true;
   2814                }
   2815             }
   2816             else if (expr->operation == ir_binop_nequal) {
   2817                if (expr->operands[0]->is_zero()) {
   2818                   src_ir = expr->operands[1];
   2819                }
   2820                else if (expr->operands[1]->is_zero()) {
   2821                   src_ir = expr->operands[0];
   2822                }
   2823             }
   2824          }
   2825       }
   2826 
   2827       src_ir->accept(this);
   2828       return switch_order;
   2829    }
   2830 
   2831    if ((expr != NULL) && (expr->get_num_operands() == 2)) {
   2832       bool zero_on_left = false;
   2833 
   2834       if (expr->operands[0]->is_zero()) {
   2835          src_ir = expr->operands[1];
   2836          zero_on_left = true;
   2837       } else if (expr->operands[1]->is_zero()) {
   2838          src_ir = expr->operands[0];
   2839          zero_on_left = false;
   2840       }
   2841 
   2842       /*      a is -  0  +            -  0  +
   2843        * (a <  0)  T  F  F  ( a < 0)  T  F  F
   2844        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
   2845        * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
   2846        * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
   2847        * (a >  0)  F  F  T  (-a < 0)  F  F  T
   2848        * (0 >  a)  T  F  F  ( a < 0)  T  F  F
   2849        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
   2850        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
   2851        *
   2852        * Note that exchanging the order of 0 and 'a' in the comparison simply
   2853        * means that the value of 'a' should be negated.
   2854        */
   2855       if (src_ir != ir) {
   2856          switch (expr->operation) {
   2857          case ir_binop_less:
   2858             switch_order = false;
   2859             negate = zero_on_left;
   2860             break;
   2861 
   2862          case ir_binop_greater:
   2863             switch_order = false;
   2864             negate = !zero_on_left;
   2865             break;
   2866 
   2867          case ir_binop_lequal:
   2868             switch_order = true;
   2869             negate = !zero_on_left;
   2870             break;
   2871 
   2872          case ir_binop_gequal:
   2873             switch_order = true;
   2874             negate = zero_on_left;
   2875             break;
   2876 
   2877          default:
   2878             /* This isn't the right kind of comparison afterall, so make sure
   2879              * the whole condition is visited.
   2880              */
   2881             src_ir = ir;
   2882             break;
   2883          }
   2884       }
   2885    }
   2886 
   2887    src_ir->accept(this);
   2888 
   2889    /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
   2890     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
   2891     * choose which value TGSI_OPCODE_CMP produces without an extra instruction
   2892     * computing the condition.
   2893     */
   2894    if (negate)
   2895       this->result.negate = ~this->result.negate;
   2896 
   2897    return switch_order;
   2898 }
   2899 
   2900 void
   2901 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
   2902                                      st_dst_reg *l, st_src_reg *r,
   2903                                      st_src_reg *cond, bool cond_swap)
   2904 {
   2905    if (type->base_type == GLSL_TYPE_STRUCT) {
   2906       for (unsigned int i = 0; i < type->length; i++) {
   2907          emit_block_mov(ir, type->fields.structure[i].type, l, r,
   2908                         cond, cond_swap);
   2909       }
   2910       return;
   2911    }
   2912 
   2913    if (type->is_array()) {
   2914       for (unsigned int i = 0; i < type->length; i++) {
   2915          emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
   2916       }
   2917       return;
   2918    }
   2919 
   2920    if (type->is_matrix()) {
   2921       const struct glsl_type *vec_type;
   2922 
   2923       vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
   2924                                          type->vector_elements, 1);
   2925 
   2926       for (int i = 0; i < type->matrix_columns; i++) {
   2927          emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
   2928       }
   2929       return;
   2930    }
   2931 
   2932    assert(type->is_scalar() || type->is_vector());
   2933 
   2934    l->type = type->base_type;
   2935    r->type = type->base_type;
   2936    if (cond) {
   2937       st_src_reg l_src = st_src_reg(*l);
   2938       l_src.swizzle = swizzle_for_size(type->vector_elements);
   2939 
   2940       if (native_integers) {
   2941          emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
   2942               cond_swap ? l_src : *r,
   2943               cond_swap ? *r : l_src);
   2944       } else {
   2945          emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
   2946               cond_swap ? l_src : *r,
   2947               cond_swap ? *r : l_src);
   2948       }
   2949    } else {
   2950       emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
   2951    }
   2952    l->index++;
   2953    r->index++;
   2954    if (type->is_dual_slot()) {
   2955       l->index++;
   2956       if (r->is_double_vertex_input == false)
   2957 	 r->index++;
   2958    }
   2959 }
   2960 
   2961 void
   2962 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
   2963 {
   2964    int dst_component;
   2965    st_dst_reg l;
   2966    st_src_reg r;
   2967 
   2968    ir->rhs->accept(this);
   2969    r = this->result;
   2970 
   2971    l = get_assignment_lhs(ir->lhs, this, &dst_component);
   2972 
   2973    {
   2974       int swizzles[4];
   2975       int first_enabled_chan = 0;
   2976       int rhs_chan = 0;
   2977       ir_variable *variable = ir->lhs->variable_referenced();
   2978 
   2979       if (shader->Stage == MESA_SHADER_FRAGMENT &&
   2980           variable->data.mode == ir_var_shader_out &&
   2981           (variable->data.location == FRAG_RESULT_DEPTH ||
   2982            variable->data.location == FRAG_RESULT_STENCIL)) {
   2983          assert(ir->lhs->type->is_scalar());
   2984          assert(ir->write_mask == WRITEMASK_X);
   2985 
   2986          if (variable->data.location == FRAG_RESULT_DEPTH)
   2987             l.writemask = WRITEMASK_Z;
   2988          else {
   2989             assert(variable->data.location == FRAG_RESULT_STENCIL);
   2990             l.writemask = WRITEMASK_Y;
   2991          }
   2992       } else if (ir->write_mask == 0) {
   2993          assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
   2994 
   2995          unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
   2996 
   2997          if (num_elements) {
   2998             l.writemask = u_bit_consecutive(0, num_elements);
   2999          } else {
   3000             /* The type is a struct or an array of (array of) structs. */
   3001             l.writemask = WRITEMASK_XYZW;
   3002          }
   3003       } else {
   3004          l.writemask = ir->write_mask;
   3005       }
   3006 
   3007       for (int i = 0; i < 4; i++) {
   3008          if (l.writemask & (1 << i)) {
   3009             first_enabled_chan = GET_SWZ(r.swizzle, i);
   3010             break;
   3011          }
   3012       }
   3013 
   3014       l.writemask = l.writemask << dst_component;
   3015 
   3016       /* Swizzle a small RHS vector into the channels being written.
   3017        *
   3018        * glsl ir treats write_mask as dictating how many channels are
   3019        * present on the RHS while TGSI treats write_mask as just
   3020        * showing which channels of the vec4 RHS get written.
   3021        */
   3022       for (int i = 0; i < 4; i++) {
   3023          if (l.writemask & (1 << i))
   3024             swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
   3025          else
   3026             swizzles[i] = first_enabled_chan;
   3027       }
   3028       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
   3029                                 swizzles[2], swizzles[3]);
   3030    }
   3031 
   3032    assert(l.file != PROGRAM_UNDEFINED);
   3033    assert(r.file != PROGRAM_UNDEFINED);
   3034 
   3035    if (ir->condition) {
   3036       const bool switch_order = this->process_move_condition(ir->condition);
   3037       st_src_reg condition = this->result;
   3038 
   3039       emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
   3040    } else if (ir->rhs->as_expression() &&
   3041               this->instructions.get_tail() &&
   3042               ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
   3043               !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
   3044               type_size(ir->lhs->type) == 1 &&
   3045               l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
   3046       /* To avoid emitting an extra MOV when assigning an expression to a
   3047        * variable, emit the last instruction of the expression again, but
   3048        * replace the destination register with the target of the assignment.
   3049        * Dead code elimination will remove the original instruction.
   3050        */
   3051       glsl_to_tgsi_instruction *inst, *new_inst;
   3052       inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
   3053       new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
   3054       new_inst->saturate = inst->saturate;
   3055       inst->dead_mask = inst->dst[0].writemask;
   3056    } else {
   3057       emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
   3058    }
   3059 }
   3060 
   3061 
   3062 void
   3063 glsl_to_tgsi_visitor::visit(ir_constant *ir)
   3064 {
   3065    st_src_reg src;
   3066    GLdouble stack_vals[4] = { 0 };
   3067    gl_constant_value *values = (gl_constant_value *) stack_vals;
   3068    GLenum gl_type = GL_NONE;
   3069    unsigned int i;
   3070    static int in_array = 0;
   3071    gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
   3072 
   3073    /* Unfortunately, 4 floats is all we can get into
   3074     * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
   3075     * aggregate constant and move each constant value into it.  If we
   3076     * get lucky, copy propagation will eliminate the extra moves.
   3077     */
   3078    if (ir->type->base_type == GLSL_TYPE_STRUCT) {
   3079       st_src_reg temp_base = get_temp(ir->type);
   3080       st_dst_reg temp = st_dst_reg(temp_base);
   3081 
   3082       foreach_in_list(ir_constant, field_value, &ir->components) {
   3083          int size = type_size(field_value->type);
   3084 
   3085          assert(size > 0);
   3086 
   3087          field_value->accept(this);
   3088          src = this->result;
   3089 
   3090          for (i = 0; i < (unsigned int)size; i++) {
   3091             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
   3092 
   3093             src.index++;
   3094             temp.index++;
   3095          }
   3096       }
   3097       this->result = temp_base;
   3098       return;
   3099    }
   3100 
   3101    if (ir->type->is_array()) {
   3102       st_src_reg temp_base = get_temp(ir->type);
   3103       st_dst_reg temp = st_dst_reg(temp_base);
   3104       int size = type_size(ir->type->fields.array);
   3105 
   3106       assert(size > 0);
   3107       in_array++;
   3108 
   3109       for (i = 0; i < ir->type->length; i++) {
   3110          ir->array_elements[i]->accept(this);
   3111          src = this->result;
   3112          for (int j = 0; j < size; j++) {
   3113             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
   3114 
   3115             src.index++;
   3116             temp.index++;
   3117          }
   3118       }
   3119       this->result = temp_base;
   3120       in_array--;
   3121       return;
   3122    }
   3123 
   3124    if (ir->type->is_matrix()) {
   3125       st_src_reg mat = get_temp(ir->type);
   3126       st_dst_reg mat_column = st_dst_reg(mat);
   3127 
   3128       for (i = 0; i < ir->type->matrix_columns; i++) {
   3129          switch (ir->type->base_type) {
   3130          case GLSL_TYPE_FLOAT:
   3131             values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
   3132 
   3133             src = st_src_reg(file, -1, ir->type->base_type);
   3134             src.index = add_constant(file,
   3135                                      values,
   3136                                      ir->type->vector_elements,
   3137                                      GL_FLOAT,
   3138                                      &src.swizzle);
   3139             emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
   3140             break;
   3141          case GLSL_TYPE_DOUBLE:
   3142             values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
   3143             src = st_src_reg(file, -1, ir->type->base_type);
   3144             src.index = add_constant(file,
   3145                                      values,
   3146                                      ir->type->vector_elements,
   3147                                      GL_DOUBLE,
   3148                                      &src.swizzle);
   3149             if (ir->type->vector_elements >= 2) {
   3150                mat_column.writemask = WRITEMASK_XY;
   3151                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
   3152                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
   3153             } else {
   3154                mat_column.writemask = WRITEMASK_X;
   3155                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
   3156                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
   3157             }
   3158             src.index++;
   3159             if (ir->type->vector_elements > 2) {
   3160                if (ir->type->vector_elements == 4) {
   3161                   mat_column.writemask = WRITEMASK_ZW;
   3162                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
   3163                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
   3164                } else {
   3165                   mat_column.writemask = WRITEMASK_Z;
   3166                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
   3167                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
   3168                   mat_column.writemask = WRITEMASK_XYZW;
   3169                   src.swizzle = SWIZZLE_XYZW;
   3170                }
   3171                mat_column.index++;
   3172             }
   3173             break;
   3174          default:
   3175             unreachable("Illegal matrix constant type.\n");
   3176             break;
   3177          }
   3178          mat_column.index++;
   3179       }
   3180       this->result = mat;
   3181       return;
   3182    }
   3183 
   3184    switch (ir->type->base_type) {
   3185    case GLSL_TYPE_FLOAT:
   3186       gl_type = GL_FLOAT;
   3187       for (i = 0; i < ir->type->vector_elements; i++) {
   3188          values[i].f = ir->value.f[i];
   3189       }
   3190       break;
   3191    case GLSL_TYPE_DOUBLE:
   3192       gl_type = GL_DOUBLE;
   3193       for (i = 0; i < ir->type->vector_elements; i++) {
   3194          memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
   3195       }
   3196       break;
   3197    case GLSL_TYPE_UINT:
   3198       gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
   3199       for (i = 0; i < ir->type->vector_elements; i++) {
   3200          if (native_integers)
   3201             values[i].u = ir->value.u[i];
   3202          else
   3203             values[i].f = ir->value.u[i];
   3204       }
   3205       break;
   3206    case GLSL_TYPE_INT:
   3207       gl_type = native_integers ? GL_INT : GL_FLOAT;
   3208       for (i = 0; i < ir->type->vector_elements; i++) {
   3209          if (native_integers)
   3210             values[i].i = ir->value.i[i];
   3211          else
   3212             values[i].f = ir->value.i[i];
   3213       }
   3214       break;
   3215    case GLSL_TYPE_BOOL:
   3216       gl_type = native_integers ? GL_BOOL : GL_FLOAT;
   3217       for (i = 0; i < ir->type->vector_elements; i++) {
   3218          values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
   3219       }
   3220       break;
   3221    default:
   3222       assert(!"Non-float/uint/int/bool constant");
   3223    }
   3224 
   3225    this->result = st_src_reg(file, -1, ir->type);
   3226    this->result.index = add_constant(file,
   3227                                      values,
   3228                                      ir->type->vector_elements,
   3229                                      gl_type,
   3230                                      &this->result.swizzle);
   3231 }
   3232 
   3233 void
   3234 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
   3235 {
   3236    exec_node *param = ir->actual_parameters.get_head();
   3237    ir_dereference *deref = static_cast<ir_dereference *>(param);
   3238    ir_variable *location = deref->variable_referenced();
   3239 
   3240    st_src_reg buffer(
   3241          PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
   3242 
   3243    /* Calculate the surface offset */
   3244    st_src_reg offset;
   3245    unsigned array_size = 0, base = 0;
   3246    uint16_t index = 0;
   3247 
   3248    get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
   3249 
   3250    if (offset.file != PROGRAM_UNDEFINED) {
   3251       emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
   3252                offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
   3253       emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
   3254                offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
   3255    } else {
   3256       offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
   3257    }
   3258 
   3259    ir->return_deref->accept(this);
   3260    st_dst_reg dst(this->result);
   3261    dst.writemask = WRITEMASK_X;
   3262 
   3263    glsl_to_tgsi_instruction *inst;
   3264 
   3265    if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
   3266       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
   3267    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
   3268       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
   3269                       st_src_reg_for_int(1));
   3270    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
   3271       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
   3272                       st_src_reg_for_int(-1));
   3273       emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
   3274    } else {
   3275       param = param->get_next();
   3276       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
   3277       val->accept(this);
   3278 
   3279       st_src_reg data = this->result, data2 = undef_src;
   3280       unsigned opcode;
   3281       switch (ir->callee->intrinsic_id) {
   3282       case ir_intrinsic_atomic_counter_add:
   3283          opcode = TGSI_OPCODE_ATOMUADD;
   3284          break;
   3285       case ir_intrinsic_atomic_counter_min:
   3286          opcode = TGSI_OPCODE_ATOMIMIN;
   3287          break;
   3288       case ir_intrinsic_atomic_counter_max:
   3289          opcode = TGSI_OPCODE_ATOMIMAX;
   3290          break;
   3291       case ir_intrinsic_atomic_counter_and:
   3292          opcode = TGSI_OPCODE_ATOMAND;
   3293          break;
   3294       case ir_intrinsic_atomic_counter_or:
   3295          opcode = TGSI_OPCODE_ATOMOR;
   3296          break;
   3297       case ir_intrinsic_atomic_counter_xor:
   3298          opcode = TGSI_OPCODE_ATOMXOR;
   3299          break;
   3300       case ir_intrinsic_atomic_counter_exchange:
   3301          opcode = TGSI_OPCODE_ATOMXCHG;
   3302          break;
   3303       case ir_intrinsic_atomic_counter_comp_swap: {
   3304          opcode = TGSI_OPCODE_ATOMCAS;
   3305          param = param->get_next();
   3306          val = ((ir_instruction *)param)->as_rvalue();
   3307          val->accept(this);
   3308          data2 = this->result;
   3309          break;
   3310       }
   3311       default:
   3312          assert(!"Unexpected intrinsic");
   3313          return;
   3314       }
   3315 
   3316       inst = emit_asm(ir, opcode, dst, offset, data, data2);
   3317    }
   3318 
   3319    inst->resource = buffer;
   3320 }
   3321 
   3322 void
   3323 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
   3324 {
   3325    exec_node *param = ir->actual_parameters.get_head();
   3326 
   3327    ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
   3328 
   3329    param = param->get_next();
   3330    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
   3331 
   3332    ir_constant *const_block = block->as_constant();
   3333 
   3334    st_src_reg buffer(
   3335          PROGRAM_BUFFER,
   3336          ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
   3337          (const_block ? const_block->value.u[0] : 0),
   3338          GLSL_TYPE_UINT);
   3339 
   3340    if (!const_block) {
   3341       block->accept(this);
   3342       buffer.reladdr = ralloc(mem_ctx, st_src_reg);
   3343       *buffer.reladdr = this->result;
   3344       emit_arl(ir, sampler_reladdr, this->result);
   3345    }
   3346 
   3347    /* Calculate the surface offset */
   3348    offset->accept(this);
   3349    st_src_reg off = this->result;
   3350 
   3351    st_dst_reg dst = undef_dst;
   3352    if (ir->return_deref) {
   3353       ir->return_deref->accept(this);
   3354       dst = st_dst_reg(this->result);
   3355       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
   3356    }
   3357 
   3358    glsl_to_tgsi_instruction *inst;
   3359 
   3360    if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
   3361       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
   3362       if (dst.type == GLSL_TYPE_BOOL)
   3363          emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
   3364    } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
   3365       param = param->get_next();
   3366       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
   3367       val->accept(this);
   3368 
   3369       param = param->get_next();
   3370       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
   3371       assert(write_mask);
   3372       dst.writemask = write_mask->value.u[0];
   3373 
   3374       dst.type = this->result.type;
   3375       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
   3376    } else {
   3377       param = param->get_next();
   3378       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
   3379       val->accept(this);
   3380 
   3381       st_src_reg data = this->result, data2 = undef_src;
   3382       unsigned opcode;
   3383       switch (ir->callee->intrinsic_id) {
   3384       case ir_intrinsic_ssbo_atomic_add:
   3385          opcode = TGSI_OPCODE_ATOMUADD;
   3386          break;
   3387       case ir_intrinsic_ssbo_atomic_min:
   3388          opcode = TGSI_OPCODE_ATOMIMIN;
   3389          break;
   3390       case ir_intrinsic_ssbo_atomic_max:
   3391          opcode = TGSI_OPCODE_ATOMIMAX;
   3392          break;
   3393       case ir_intrinsic_ssbo_atomic_and:
   3394          opcode = TGSI_OPCODE_ATOMAND;
   3395          break;
   3396       case ir_intrinsic_ssbo_atomic_or:
   3397          opcode = TGSI_OPCODE_ATOMOR;
   3398          break;
   3399       case ir_intrinsic_ssbo_atomic_xor:
   3400          opcode = TGSI_OPCODE_ATOMXOR;
   3401          break;
   3402       case ir_intrinsic_ssbo_atomic_exchange:
   3403          opcode = TGSI_OPCODE_ATOMXCHG;
   3404          break;
   3405       case ir_intrinsic_ssbo_atomic_comp_swap:
   3406          opcode = TGSI_OPCODE_ATOMCAS;
   3407          param = param->get_next();
   3408          val = ((ir_instruction *)param)->as_rvalue();
   3409          val->accept(this);
   3410          data2 = this->result;
   3411          break;
   3412       default:
   3413          assert(!"Unexpected intrinsic");
   3414          return;
   3415       }
   3416 
   3417       inst = emit_asm(ir, opcode, dst, off, data, data2);
   3418    }
   3419 
   3420    param = param->get_next();
   3421    ir_constant *access = NULL;
   3422    if (!param->is_tail_sentinel()) {
   3423       access = ((ir_instruction *)param)->as_constant();
   3424       assert(access);
   3425    }
   3426 
   3427    /* The emit_asm() might have actually split the op into pieces, e.g. for
   3428     * double stores. We have to go back and fix up all the generated ops.
   3429     */
   3430    unsigned op = inst->op;
   3431    do {
   3432       inst->resource = buffer;
   3433       if (access)
   3434          inst->buffer_access = access->value.u[0];
   3435 
   3436       if (inst == this->instructions.get_head_raw())
   3437          break;
   3438       inst = (glsl_to_tgsi_instruction *)inst->get_prev();
   3439 
   3440       if (inst->op == TGSI_OPCODE_UADD) {
   3441          if (inst == this->instructions.get_head_raw())
   3442             break;
   3443          inst = (glsl_to_tgsi_instruction *)inst->get_prev();
   3444       }
   3445    } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
   3446 }
   3447 
   3448 void
   3449 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
   3450 {
   3451    switch (ir->callee->intrinsic_id) {
   3452    case ir_intrinsic_memory_barrier:
   3453       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
   3454                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
   3455                                   TGSI_MEMBAR_ATOMIC_BUFFER |
   3456                                   TGSI_MEMBAR_SHADER_IMAGE |
   3457                                   TGSI_MEMBAR_SHARED));
   3458       break;
   3459    case ir_intrinsic_memory_barrier_atomic_counter:
   3460       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
   3461                st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
   3462       break;
   3463    case ir_intrinsic_memory_barrier_buffer:
   3464       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
   3465                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
   3466       break;
   3467    case ir_intrinsic_memory_barrier_image:
   3468       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
   3469                st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
   3470       break;
   3471    case ir_intrinsic_memory_barrier_shared:
   3472       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
   3473                st_src_reg_for_int(TGSI_MEMBAR_SHARED));
   3474       break;
   3475    case ir_intrinsic_group_memory_barrier:
   3476       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
   3477                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
   3478                                   TGSI_MEMBAR_ATOMIC_BUFFER |
   3479                                   TGSI_MEMBAR_SHADER_IMAGE |
   3480                                   TGSI_MEMBAR_SHARED |
   3481                                   TGSI_MEMBAR_THREAD_GROUP));
   3482       break;
   3483    default:
   3484       assert(!"Unexpected memory barrier intrinsic");
   3485    }
   3486 }
   3487 
   3488 void
   3489 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
   3490 {
   3491    exec_node *param = ir->actual_parameters.get_head();
   3492 
   3493    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
   3494 
   3495    st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
   3496 
   3497    /* Calculate the surface offset */
   3498    offset->accept(this);
   3499    st_src_reg off = this->result;
   3500 
   3501    st_dst_reg dst = undef_dst;
   3502    if (ir->return_deref) {
   3503       ir->return_deref->accept(this);
   3504       dst = st_dst_reg(this->result);
   3505       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
   3506    }
   3507 
   3508    glsl_to_tgsi_instruction *inst;
   3509 
   3510    if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
   3511       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
   3512       inst->resource = buffer;
   3513    } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
   3514       param = param->get_next();
   3515       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
   3516       val->accept(this);
   3517 
   3518       param = param->get_next();
   3519       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
   3520       assert(write_mask);
   3521       dst.writemask = write_mask->value.u[0];
   3522 
   3523       dst.type = this->result.type;
   3524       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
   3525       inst->resource = buffer;
   3526    } else {
   3527       param = param->get_next();
   3528       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
   3529       val->accept(this);
   3530 
   3531       st_src_reg data = this->result, data2 = undef_src;
   3532       unsigned opcode;
   3533       switch (ir->callee->intrinsic_id) {
   3534       case ir_intrinsic_shared_atomic_add:
   3535          opcode = TGSI_OPCODE_ATOMUADD;
   3536          break;
   3537       case ir_intrinsic_shared_atomic_min:
   3538          opcode = TGSI_OPCODE_ATOMIMIN;
   3539          break;
   3540       case ir_intrinsic_shared_atomic_max:
   3541          opcode = TGSI_OPCODE_ATOMIMAX;
   3542          break;
   3543       case ir_intrinsic_shared_atomic_and:
   3544          opcode = TGSI_OPCODE_ATOMAND;
   3545          break;
   3546       case ir_intrinsic_shared_atomic_or:
   3547          opcode = TGSI_OPCODE_ATOMOR;
   3548          break;
   3549       case ir_intrinsic_shared_atomic_xor:
   3550          opcode = TGSI_OPCODE_ATOMXOR;
   3551          break;
   3552       case ir_intrinsic_shared_atomic_exchange:
   3553          opcode = TGSI_OPCODE_ATOMXCHG;
   3554          break;
   3555       case ir_intrinsic_shared_atomic_comp_swap:
   3556          opcode = TGSI_OPCODE_ATOMCAS;
   3557          param = param->get_next();
   3558          val = ((ir_instruction *)param)->as_rvalue();
   3559          val->accept(this);
   3560          data2 = this->result;
   3561          break;
   3562       default:
   3563          assert(!"Unexpected intrinsic");
   3564          return;
   3565       }
   3566 
   3567       inst = emit_asm(ir, opcode, dst, off, data, data2);
   3568       inst->resource = buffer;
   3569    }
   3570 }
   3571 
   3572 void
   3573 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
   3574 {
   3575    exec_node *param = ir->actual_parameters.get_head();
   3576 
   3577    ir_dereference *img = (ir_dereference *)param;
   3578    const ir_variable *imgvar = img->variable_referenced();
   3579    const glsl_type *type = imgvar->type->without_array();
   3580    unsigned sampler_array_size = 1, sampler_base = 0;
   3581 
   3582    st_src_reg reladdr;
   3583    st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
   3584 
   3585    get_deref_offsets(img, &sampler_array_size, &sampler_base,
   3586                      (uint16_t*)&image.index, &reladdr, true);
   3587 
   3588    if (reladdr.file != PROGRAM_UNDEFINED) {
   3589       image.reladdr = ralloc(mem_ctx, st_src_reg);
   3590       *image.reladdr = reladdr;
   3591       emit_arl(ir, sampler_reladdr, reladdr);
   3592    }
   3593 
   3594    st_dst_reg dst = undef_dst;
   3595    if (ir->return_deref) {
   3596       ir->return_deref->accept(this);
   3597       dst = st_dst_reg(this->result);
   3598       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
   3599    }
   3600 
   3601    glsl_to_tgsi_instruction *inst;
   3602 
   3603    if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
   3604       dst.writemask = WRITEMASK_XYZ;
   3605       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
   3606    } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
   3607       st_src_reg res = get_temp(glsl_type::ivec4_type);
   3608       st_dst_reg dstres = st_dst_reg(res);
   3609       dstres.writemask = WRITEMASK_W;
   3610       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
   3611       res.swizzle = SWIZZLE_WWWW;
   3612       emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
   3613    } else {
   3614       st_src_reg arg1 = undef_src, arg2 = undef_src;
   3615       st_src_reg coord;
   3616       st_dst_reg coord_dst;
   3617       coord = get_temp(glsl_type::ivec4_type);
   3618       coord_dst = st_dst_reg(coord);
   3619       coord_dst.writemask = (1 << type->coordinate_components()) - 1;
   3620       param = param->get_next();
   3621       ((ir_dereference *)param)->accept(this);
   3622       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
   3623       coord.swizzle = SWIZZLE_XXXX;
   3624       switch (type->coordinate_components()) {
   3625       case 4: assert(!"unexpected coord count");
   3626       /* fallthrough */
   3627       case 3: coord.swizzle |= SWIZZLE_Z << 6;
   3628       /* fallthrough */
   3629       case 2: coord.swizzle |= SWIZZLE_Y << 3;
   3630       }
   3631 
   3632       if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
   3633          param = param->get_next();
   3634          ((ir_dereference *)param)->accept(this);
   3635          st_src_reg sample = this->result;
   3636          sample.swizzle = SWIZZLE_XXXX;
   3637          coord_dst.writemask = WRITEMASK_W;
   3638          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
   3639          coord.swizzle |= SWIZZLE_W << 9;
   3640       }
   3641 
   3642       param = param->get_next();
   3643       if (!param->is_tail_sentinel()) {
   3644          ((ir_dereference *)param)->accept(this);
   3645          arg1 = this->result;
   3646          param = param->get_next();
   3647       }
   3648 
   3649       if (!param->is_tail_sentinel()) {
   3650          ((ir_dereference *)param)->accept(this);
   3651          arg2 = this->result;
   3652          param = param->get_next();
   3653       }
   3654 
   3655       assert(param->is_tail_sentinel());
   3656 
   3657       unsigned opcode;
   3658       switch (ir->callee->intrinsic_id) {
   3659       case ir_intrinsic_image_load:
   3660          opcode = TGSI_OPCODE_LOAD;
   3661          break;
   3662       case ir_intrinsic_image_store:
   3663          opcode = TGSI_OPCODE_STORE;
   3664          break;
   3665       case ir_intrinsic_image_atomic_add:
   3666          opcode = TGSI_OPCODE_ATOMUADD;
   3667          break;
   3668       case ir_intrinsic_image_atomic_min:
   3669          opcode = TGSI_OPCODE_ATOMIMIN;
   3670          break;
   3671       case ir_intrinsic_image_atomic_max:
   3672          opcode = TGSI_OPCODE_ATOMIMAX;
   3673          break;
   3674       case ir_intrinsic_image_atomic_and:
   3675          opcode = TGSI_OPCODE_ATOMAND;
   3676          break;
   3677       case ir_intrinsic_image_atomic_or:
   3678          opcode = TGSI_OPCODE_ATOMOR;
   3679          break;
   3680       case ir_intrinsic_image_atomic_xor:
   3681          opcode = TGSI_OPCODE_ATOMXOR;
   3682          break;
   3683       case ir_intrinsic_image_atomic_exchange:
   3684          opcode = TGSI_OPCODE_ATOMXCHG;
   3685          break;
   3686       case ir_intrinsic_image_atomic_comp_swap:
   3687          opcode = TGSI_OPCODE_ATOMCAS;
   3688          break;
   3689       default:
   3690          assert(!"Unexpected intrinsic");
   3691          return;
   3692       }
   3693 
   3694       inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
   3695       if (opcode == TGSI_OPCODE_STORE)
   3696          inst->dst[0].writemask = WRITEMASK_XYZW;
   3697    }
   3698 
   3699    inst->resource = image;
   3700    inst->sampler_array_size = sampler_array_size;
   3701    inst->sampler_base = sampler_base;
   3702 
   3703    switch (type->sampler_dimensionality) {
   3704    case GLSL_SAMPLER_DIM_1D:
   3705       inst->tex_target = (type->sampler_array)
   3706          ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
   3707       break;
   3708    case GLSL_SAMPLER_DIM_2D:
   3709       inst->tex_target = (type->sampler_array)
   3710          ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
   3711       break;
   3712    case GLSL_SAMPLER_DIM_3D:
   3713       inst->tex_target = TEXTURE_3D_INDEX;
   3714       break;
   3715    case GLSL_SAMPLER_DIM_CUBE:
   3716       inst->tex_target = (type->sampler_array)
   3717          ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
   3718       break;
   3719    case GLSL_SAMPLER_DIM_RECT:
   3720       inst->tex_target = TEXTURE_RECT_INDEX;
   3721       break;
   3722    case GLSL_SAMPLER_DIM_BUF:
   3723       inst->tex_target = TEXTURE_BUFFER_INDEX;
   3724       break;
   3725    case GLSL_SAMPLER_DIM_EXTERNAL:
   3726       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
   3727       break;
   3728    case GLSL_SAMPLER_DIM_MS:
   3729       inst->tex_target = (type->sampler_array)
   3730          ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
   3731       break;
   3732    default:
   3733       assert(!"Should not get here.");
   3734    }
   3735 
   3736    inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
   3737          _mesa_get_shader_image_format(imgvar->data.image_format));
   3738 
   3739    if (imgvar->data.image_coherent)
   3740       inst->buffer_access |= TGSI_MEMORY_COHERENT;
   3741    if (imgvar->data.image_restrict)
   3742       inst->buffer_access |= TGSI_MEMORY_RESTRICT;
   3743    if (imgvar->data.image_volatile)
   3744       inst->buffer_access |= TGSI_MEMORY_VOLATILE;
   3745 }
   3746 
   3747 void
   3748 glsl_to_tgsi_visitor::visit(ir_call *ir)
   3749 {
   3750    ir_function_signature *sig = ir->callee;
   3751 
   3752    /* Filter out intrinsics */
   3753    switch (sig->intrinsic_id) {
   3754    case ir_intrinsic_atomic_counter_read:
   3755    case ir_intrinsic_atomic_counter_increment:
   3756    case ir_intrinsic_atomic_counter_predecrement:
   3757    case ir_intrinsic_atomic_counter_add:
   3758    case ir_intrinsic_atomic_counter_min:
   3759    case ir_intrinsic_atomic_counter_max:
   3760    case ir_intrinsic_atomic_counter_and:
   3761    case ir_intrinsic_atomic_counter_or:
   3762    case ir_intrinsic_atomic_counter_xor:
   3763    case ir_intrinsic_atomic_counter_exchange:
   3764    case ir_intrinsic_atomic_counter_comp_swap:
   3765       visit_atomic_counter_intrinsic(ir);
   3766       return;
   3767 
   3768    case ir_intrinsic_ssbo_load:
   3769    case ir_intrinsic_ssbo_store:
   3770    case ir_intrinsic_ssbo_atomic_add:
   3771    case ir_intrinsic_ssbo_atomic_min:
   3772    case ir_intrinsic_ssbo_atomic_max:
   3773    case ir_intrinsic_ssbo_atomic_and:
   3774    case ir_intrinsic_ssbo_atomic_or:
   3775    case ir_intrinsic_ssbo_atomic_xor:
   3776    case ir_intrinsic_ssbo_atomic_exchange:
   3777    case ir_intrinsic_ssbo_atomic_comp_swap:
   3778       visit_ssbo_intrinsic(ir);
   3779       return;
   3780 
   3781    case ir_intrinsic_memory_barrier:
   3782    case ir_intrinsic_memory_barrier_atomic_counter:
   3783    case ir_intrinsic_memory_barrier_buffer:
   3784    case ir_intrinsic_memory_barrier_image:
   3785    case ir_intrinsic_memory_barrier_shared:
   3786    case ir_intrinsic_group_memory_barrier:
   3787       visit_membar_intrinsic(ir);
   3788       return;
   3789 
   3790    case ir_intrinsic_shared_load:
   3791    case ir_intrinsic_shared_store:
   3792    case ir_intrinsic_shared_atomic_add:
   3793    case ir_intrinsic_shared_atomic_min:
   3794    case ir_intrinsic_shared_atomic_max:
   3795    case ir_intrinsic_shared_atomic_and:
   3796    case ir_intrinsic_shared_atomic_or:
   3797    case ir_intrinsic_shared_atomic_xor:
   3798    case ir_intrinsic_shared_atomic_exchange:
   3799    case ir_intrinsic_shared_atomic_comp_swap:
   3800       visit_shared_intrinsic(ir);
   3801       return;
   3802 
   3803    case ir_intrinsic_image_load:
   3804    case ir_intrinsic_image_store:
   3805    case ir_intrinsic_image_atomic_add:
   3806    case ir_intrinsic_image_atomic_min:
   3807    case ir_intrinsic_image_atomic_max:
   3808    case ir_intrinsic_image_atomic_and:
   3809    case ir_intrinsic_image_atomic_or:
   3810    case ir_intrinsic_image_atomic_xor:
   3811    case ir_intrinsic_image_atomic_exchange:
   3812    case ir_intrinsic_image_atomic_comp_swap:
   3813    case ir_intrinsic_image_size:
   3814    case ir_intrinsic_image_samples:
   3815       visit_image_intrinsic(ir);
   3816       return;
   3817 
   3818    case ir_intrinsic_invalid:
   3819    case ir_intrinsic_generic_load:
   3820    case ir_intrinsic_generic_store:
   3821    case ir_intrinsic_generic_atomic_add:
   3822    case ir_intrinsic_generic_atomic_and:
   3823    case ir_intrinsic_generic_atomic_or:
   3824    case ir_intrinsic_generic_atomic_xor:
   3825    case ir_intrinsic_generic_atomic_min:
   3826    case ir_intrinsic_generic_atomic_max:
   3827    case ir_intrinsic_generic_atomic_exchange:
   3828    case ir_intrinsic_generic_atomic_comp_swap:
   3829    case ir_intrinsic_shader_clock:
   3830       unreachable("Invalid intrinsic");
   3831    }
   3832 }
   3833 
   3834 void
   3835 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
   3836                                          unsigned *array_elements,
   3837                                          uint16_t *index,
   3838                                          st_src_reg *indirect,
   3839                                          unsigned *location)
   3840 {
   3841    switch (tail->ir_type) {
   3842    case ir_type_dereference_record: {
   3843       ir_dereference_record *deref_record = tail->as_dereference_record();
   3844       const glsl_type *struct_type = deref_record->record->type;
   3845       int field_index = deref_record->record->type->field_index(deref_record->field);
   3846 
   3847       calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
   3848 
   3849       assert(field_index >= 0);
   3850       *location += struct_type->record_location_offset(field_index);
   3851       break;
   3852    }
   3853 
   3854    case ir_type_dereference_array: {
   3855       ir_dereference_array *deref_arr = tail->as_dereference_array();
   3856       ir_constant *array_index = deref_arr->array_index->constant_expression_value();
   3857 
   3858       if (!array_index) {
   3859          st_src_reg temp_reg;
   3860          st_dst_reg temp_dst;
   3861 
   3862          temp_reg = get_temp(glsl_type::uint_type);
   3863          temp_dst = st_dst_reg(temp_reg);
   3864          temp_dst.writemask = 1;
   3865 
   3866          deref_arr->array_index->accept(this);
   3867          if (*array_elements != 1)
   3868             emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
   3869          else
   3870             emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
   3871 
   3872          if (indirect->file == PROGRAM_UNDEFINED)
   3873             *indirect = temp_reg;
   3874          else {
   3875             temp_dst = st_dst_reg(*indirect);
   3876             temp_dst.writemask = 1;
   3877             emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
   3878          }
   3879       } else
   3880          *index += array_index->value.u[0] * *array_elements;
   3881 
   3882       *array_elements *= deref_arr->array->type->length;
   3883 
   3884       calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
   3885       break;
   3886    }
   3887    default:
   3888       break;
   3889    }
   3890 }
   3891 
   3892 void
   3893 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
   3894                                         unsigned *array_size,
   3895                                         unsigned *base,
   3896                                         uint16_t *index,
   3897                                         st_src_reg *reladdr,
   3898                                         bool opaque)
   3899 {
   3900    GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
   3901    unsigned location = 0;
   3902    ir_variable *var = ir->variable_referenced();
   3903 
   3904    memset(reladdr, 0, sizeof(*reladdr));
   3905    reladdr->file = PROGRAM_UNDEFINED;
   3906 
   3907    *base = 0;
   3908    *array_size = 1;
   3909 
   3910    assert(var);
   3911    location = var->data.location;
   3912    calc_deref_offsets(ir, array_size, index, reladdr, &location);
   3913 
   3914    /*
   3915     * If we end up with no indirect then adjust the base to the index,
   3916     * and set the array size to 1.
   3917     */
   3918    if (reladdr->file == PROGRAM_UNDEFINED) {
   3919       *base = *index;
   3920       *array_size = 1;
   3921    }
   3922 
   3923    if (opaque) {
   3924       assert(location != 0xffffffff);
   3925       *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
   3926       *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
   3927    }
   3928 }
   3929 
   3930 st_src_reg
   3931 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
   3932 {
   3933    if (offset.reladdr || offset.reladdr2) {
   3934       st_src_reg tmp = get_temp(glsl_type::ivec2_type);
   3935       st_dst_reg tmp_dst = st_dst_reg(tmp);
   3936       tmp_dst.writemask = WRITEMASK_XY;
   3937       emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
   3938       return tmp;
   3939    }
   3940 
   3941    return offset;
   3942 }
   3943 
   3944 void
   3945 glsl_to_tgsi_visitor::visit(ir_texture *ir)
   3946 {
   3947    st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
   3948    st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
   3949    st_src_reg levels_src, reladdr;
   3950    st_dst_reg result_dst, coord_dst, cube_sc_dst;
   3951    glsl_to_tgsi_instruction *inst = NULL;
   3952    unsigned opcode = TGSI_OPCODE_NOP;
   3953    const glsl_type *sampler_type = ir->sampler->type;
   3954    unsigned sampler_array_size = 1, sampler_base = 0;
   3955    uint16_t sampler_index = 0;
   3956    bool is_cube_array = false;
   3957    unsigned i;
   3958 
   3959    /* if we are a cube array sampler */
   3960    if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
   3961         sampler_type->sampler_array)) {
   3962       is_cube_array = true;
   3963    }
   3964 
   3965    if (ir->coordinate) {
   3966       ir->coordinate->accept(this);
   3967 
   3968       /* Put our coords in a temp.  We'll need to modify them for shadow,
   3969        * projection, or LOD, so the only case we'd use it as-is is if
   3970        * we're doing plain old texturing.  The optimization passes on
   3971        * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
   3972        */
   3973       coord = get_temp(glsl_type::vec4_type);
   3974       coord_dst = st_dst_reg(coord);
   3975       coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
   3976       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
   3977    }
   3978 
   3979    if (ir->projector) {
   3980       ir->projector->accept(this);
   3981       projector = this->result;
   3982    }
   3983 
   3984    /* Storage for our result.  Ideally for an assignment we'd be using
   3985     * the actual storage for the result here, instead.
   3986     */
   3987    result_src = get_temp(ir->type);
   3988    result_dst = st_dst_reg(result_src);
   3989    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
   3990 
   3991    switch (ir->op) {
   3992    case ir_tex:
   3993       opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
   3994       if (ir->offset) {
   3995          ir->offset->accept(this);
   3996          offset[0] = this->result;
   3997       }
   3998       break;
   3999    case ir_txb:
   4000       if (is_cube_array ||
   4001           sampler_type == glsl_type::samplerCubeShadow_type) {
   4002          opcode = TGSI_OPCODE_TXB2;
   4003       }
   4004       else {
   4005          opcode = TGSI_OPCODE_TXB;
   4006       }
   4007       ir->lod_info.bias->accept(this);
   4008       lod_info = this->result;
   4009       if (ir->offset) {
   4010          ir->offset->accept(this);
   4011          offset[0] = this->result;
   4012       }
   4013       break;
   4014    case ir_txl:
   4015       opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
   4016       ir->lod_info.lod->accept(this);
   4017       lod_info = this->result;
   4018       if (ir->offset) {
   4019          ir->offset->accept(this);
   4020          offset[0] = this->result;
   4021       }
   4022       break;
   4023    case ir_txd:
   4024       opcode = TGSI_OPCODE_TXD;
   4025       ir->lod_info.grad.dPdx->accept(this);
   4026       dx = this->result;
   4027       ir->lod_info.grad.dPdy->accept(this);
   4028       dy = this->result;
   4029       if (ir->offset) {
   4030          ir->offset->accept(this);
   4031          offset[0] = this->result;
   4032       }
   4033       break;
   4034    case ir_txs:
   4035       opcode = TGSI_OPCODE_TXQ;
   4036       ir->lod_info.lod->accept(this);
   4037       lod_info = this->result;
   4038       break;
   4039    case ir_query_levels:
   4040       opcode = TGSI_OPCODE_TXQ;
   4041       lod_info = undef_src;
   4042       levels_src = get_temp(ir->type);
   4043       break;
   4044    case ir_txf:
   4045       opcode = TGSI_OPCODE_TXF;
   4046       ir->lod_info.lod->accept(this);
   4047       lod_info = this->result;
   4048       if (ir->offset) {
   4049          ir->offset->accept(this);
   4050          offset[0] = this->result;
   4051       }
   4052       break;
   4053    case ir_txf_ms:
   4054       opcode = TGSI_OPCODE_TXF;
   4055       ir->lod_info.sample_index->accept(this);
   4056       sample_index = this->result;
   4057       break;
   4058    case ir_tg4:
   4059       opcode = TGSI_OPCODE_TG4;
   4060       ir->lod_info.component->accept(this);
   4061       component = this->result;
   4062       if (ir->offset) {
   4063          ir->offset->accept(this);
   4064          if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
   4065             const glsl_type *elt_type = ir->offset->type->fields.array;
   4066             for (i = 0; i < ir->offset->type->length; i++) {
   4067                offset[i] = this->result;
   4068                offset[i].index += i * type_size(elt_type);
   4069                offset[i].type = elt_type->base_type;
   4070                offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
   4071                offset[i] = canonicalize_gather_offset(offset[i]);
   4072             }
   4073          } else {
   4074             offset[0] = canonicalize_gather_offset(this->result);
   4075          }
   4076       }
   4077       break;
   4078    case ir_lod:
   4079       opcode = TGSI_OPCODE_LODQ;
   4080       break;
   4081    case ir_texture_samples:
   4082       opcode = TGSI_OPCODE_TXQS;
   4083       break;
   4084    case ir_samples_identical:
   4085       unreachable("Unexpected ir_samples_identical opcode");
   4086    }
   4087 
   4088    if (ir->projector) {
   4089       if (opcode == TGSI_OPCODE_TEX) {
   4090          /* Slot the projector in as the last component of the coord. */
   4091          coord_dst.writemask = WRITEMASK_W;
   4092          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
   4093          coord_dst.writemask = WRITEMASK_XYZW;
   4094          opcode = TGSI_OPCODE_TXP;
   4095       } else {
   4096          st_src_reg coord_w = coord;
   4097          coord_w.swizzle = SWIZZLE_WWWW;
   4098 
   4099          /* For the other TEX opcodes there's no projective version
   4100           * since the last slot is taken up by LOD info.  Do the
   4101           * projective divide now.
   4102           */
   4103          coord_dst.writemask = WRITEMASK_W;
   4104          emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
   4105 
   4106          /* In the case where we have to project the coordinates "by hand,"
   4107           * the shadow comparator value must also be projected.
   4108           */
   4109          st_src_reg tmp_src = coord;
   4110          if (ir->shadow_comparator) {
   4111             /* Slot the shadow value in as the second to last component of the
   4112              * coord.
   4113              */
   4114             ir->shadow_comparator->accept(this);
   4115 
   4116             tmp_src = get_temp(glsl_type::vec4_type);
   4117             st_dst_reg tmp_dst = st_dst_reg(tmp_src);
   4118 
   4119             /* Projective division not allowed for array samplers. */
   4120             assert(!sampler_type->sampler_array);
   4121 
   4122             tmp_dst.writemask = WRITEMASK_Z;
   4123             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
   4124 
   4125             tmp_dst.writemask = WRITEMASK_XY;
   4126             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
   4127          }
   4128 
   4129          coord_dst.writemask = WRITEMASK_XYZ;
   4130          emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
   4131 
   4132          coord_dst.writemask = WRITEMASK_XYZW;
   4133          coord.swizzle = SWIZZLE_XYZW;
   4134       }
   4135    }
   4136 
   4137    /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
   4138     * comparator was put in the correct place (and projected) by the code,
   4139     * above, that handles by-hand projection.
   4140     */
   4141    if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
   4142       /* Slot the shadow value in as the second to last component of the
   4143        * coord.
   4144        */
   4145       ir->shadow_comparator->accept(this);
   4146 
   4147       if (is_cube_array) {
   4148          cube_sc = get_temp(glsl_type::float_type);
   4149          cube_sc_dst = st_dst_reg(cube_sc);
   4150          cube_sc_dst.writemask = WRITEMASK_X;
   4151          emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
   4152          cube_sc_dst.writemask = WRITEMASK_X;
   4153       }
   4154       else {
   4155          if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
   4156               sampler_type->sampler_array) ||
   4157              sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
   4158             coord_dst.writemask = WRITEMASK_W;
   4159          } else {
   4160             coord_dst.writemask = WRITEMASK_Z;
   4161          }
   4162          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
   4163          coord_dst.writemask = WRITEMASK_XYZW;
   4164       }
   4165    }
   4166 
   4167    if (ir->op == ir_txf_ms) {
   4168       coord_dst.writemask = WRITEMASK_W;
   4169       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
   4170       coord_dst.writemask = WRITEMASK_XYZW;
   4171    } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
   4172        opcode == TGSI_OPCODE_TXF) {
   4173       /* TGSI stores LOD or LOD bias in the last channel of the coords. */
   4174       coord_dst.writemask = WRITEMASK_W;
   4175       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
   4176       coord_dst.writemask = WRITEMASK_XYZW;
   4177    }
   4178 
   4179    get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
   4180                      &sampler_index, &reladdr, true);
   4181    if (reladdr.file != PROGRAM_UNDEFINED)
   4182       emit_arl(ir, sampler_reladdr, reladdr);
   4183 
   4184    if (opcode == TGSI_OPCODE_TXD)
   4185       inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
   4186    else if (opcode == TGSI_OPCODE_TXQ) {
   4187       if (ir->op == ir_query_levels) {
   4188          /* the level is stored in W */
   4189          inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
   4190          result_dst.writemask = WRITEMASK_X;
   4191          levels_src.swizzle = SWIZZLE_WWWW;
   4192          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
   4193       } else
   4194          inst = emit_asm(ir, opcode, result_dst, lod_info);
   4195    } else if (opcode == TGSI_OPCODE_TXQS) {
   4196       inst = emit_asm(ir, opcode, result_dst);
   4197    } else if (opcode == TGSI_OPCODE_TXF) {
   4198       inst = emit_asm(ir, opcode, result_dst, coord);
   4199    } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
   4200       inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
   4201    } else if (opcode == TGSI_OPCODE_TEX2) {
   4202       inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
   4203    } else if (opcode == TGSI_OPCODE_TG4) {
   4204       if (is_cube_array && ir->shadow_comparator) {
   4205          inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
   4206       } else {
   4207          inst = emit_asm(ir, opcode, result_dst, coord, component);
   4208       }
   4209    } else
   4210       inst = emit_asm(ir, opcode, result_dst, coord);
   4211 
   4212    if (ir->shadow_comparator)
   4213       inst->tex_shadow = GL_TRUE;
   4214 
   4215    inst->resource.index = sampler_index;
   4216    inst->sampler_array_size = sampler_array_size;
   4217    inst->sampler_base = sampler_base;
   4218 
   4219    if (reladdr.file != PROGRAM_UNDEFINED) {
   4220       inst->resource.reladdr = ralloc(mem_ctx, st_src_reg);
   4221       memcpy(inst->resource.reladdr, &reladdr, sizeof(reladdr));
   4222    }
   4223 
   4224    if (ir->offset) {
   4225       if (!inst->tex_offsets)
   4226          inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
   4227 
   4228       for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
   4229          inst->tex_offsets[i] = offset[i];
   4230       inst->tex_offset_num_offset = i;
   4231    }
   4232 
   4233    switch (sampler_type->sampler_dimensionality) {
   4234    case GLSL_SAMPLER_DIM_1D:
   4235       inst->tex_target = (sampler_type->sampler_array)
   4236          ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
   4237       break;
   4238    case GLSL_SAMPLER_DIM_2D:
   4239       inst->tex_target = (sampler_type->sampler_array)
   4240          ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
   4241       break;
   4242    case GLSL_SAMPLER_DIM_3D:
   4243       inst->tex_target = TEXTURE_3D_INDEX;
   4244       break;
   4245    case GLSL_SAMPLER_DIM_CUBE:
   4246       inst->tex_target = (sampler_type->sampler_array)
   4247          ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
   4248       break;
   4249    case GLSL_SAMPLER_DIM_RECT:
   4250       inst->tex_target = TEXTURE_RECT_INDEX;
   4251       break;
   4252    case GLSL_SAMPLER_DIM_BUF:
   4253       inst->tex_target = TEXTURE_BUFFER_INDEX;
   4254       break;
   4255    case GLSL_SAMPLER_DIM_EXTERNAL:
   4256       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
   4257       break;
   4258    case GLSL_SAMPLER_DIM_MS:
   4259       inst->tex_target = (sampler_type->sampler_array)
   4260          ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
   4261       break;
   4262    default:
   4263       assert(!"Should not get here.");
   4264    }
   4265 
   4266    inst->tex_type = ir->type->base_type;
   4267 
   4268    this->result = result_src;
   4269 }
   4270 
   4271 void
   4272 glsl_to_tgsi_visitor::visit(ir_return *ir)
   4273 {
   4274    assert(!ir->get_value());
   4275 
   4276    emit_asm(ir, TGSI_OPCODE_RET);
   4277 }
   4278 
   4279 void
   4280 glsl_to_tgsi_visitor::visit(ir_discard *ir)
   4281 {
   4282    if (ir->condition) {
   4283       ir->condition->accept(this);
   4284       st_src_reg condition = this->result;
   4285 
   4286       /* Convert the bool condition to a float so we can negate. */
   4287       if (native_integers) {
   4288          st_src_reg temp = get_temp(ir->condition->type);
   4289          emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
   4290               condition, st_src_reg_for_float(1.0));
   4291          condition = temp;
   4292       }
   4293 
   4294       condition.negate = ~condition.negate;
   4295       emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
   4296    } else {
   4297       /* unconditional kil */
   4298       emit_asm(ir, TGSI_OPCODE_KILL);
   4299    }
   4300 }
   4301 
   4302 void
   4303 glsl_to_tgsi_visitor::visit(ir_if *ir)
   4304 {
   4305    unsigned if_opcode;
   4306    glsl_to_tgsi_instruction *if_inst;
   4307 
   4308    ir->condition->accept(this);
   4309    assert(this->result.file != PROGRAM_UNDEFINED);
   4310 
   4311    if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
   4312 
   4313    if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
   4314 
   4315    this->instructions.push_tail(if_inst);
   4316 
   4317    visit_exec_list(&ir->then_instructions, this);
   4318 
   4319    if (!ir->else_instructions.is_empty()) {
   4320       emit_asm(ir->condition, TGSI_OPCODE_ELSE);
   4321       visit_exec_list(&ir->else_instructions, this);
   4322    }
   4323 
   4324    if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
   4325 }
   4326 
   4327 
   4328 void
   4329 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
   4330 {
   4331    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
   4332 
   4333    ir->stream->accept(this);
   4334    emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
   4335 }
   4336 
   4337 void
   4338 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
   4339 {
   4340    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
   4341 
   4342    ir->stream->accept(this);
   4343    emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
   4344 }
   4345 
   4346 void
   4347 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
   4348 {
   4349    assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
   4350           this->prog->Target == GL_COMPUTE_PROGRAM_NV);
   4351 
   4352    emit_asm(ir, TGSI_OPCODE_BARRIER);
   4353 }
   4354 
   4355 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
   4356 {
   4357    STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
   4358 
   4359    result.file = PROGRAM_UNDEFINED;
   4360    next_temp = 1;
   4361    array_sizes = NULL;
   4362    max_num_arrays = 0;
   4363    next_array = 0;
   4364    num_inputs = 0;
   4365    num_outputs = 0;
   4366    num_input_arrays = 0;
   4367    num_output_arrays = 0;
   4368    num_immediates = 0;
   4369    num_address_regs = 0;
   4370    samplers_used = 0;
   4371    buffers_used = 0;
   4372    images_used = 0;
   4373    indirect_addr_consts = false;
   4374    wpos_transform_const = -1;
   4375    glsl_version = 0;
   4376    native_integers = false;
   4377    mem_ctx = ralloc_context(NULL);
   4378    ctx = NULL;
   4379    prog = NULL;
   4380    shader_program = NULL;
   4381    shader = NULL;
   4382    options = NULL;
   4383    have_sqrt = false;
   4384    have_fma = false;
   4385    use_shared_memory = false;
   4386 }
   4387 
   4388 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
   4389 {
   4390    free(array_sizes);
   4391    ralloc_free(mem_ctx);
   4392 }
   4393 
   4394 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
   4395 {
   4396    delete v;
   4397 }
   4398 
   4399 
   4400 /**
   4401  * Count resources used by the given gpu program (number of texture
   4402  * samplers, etc).
   4403  */
   4404 static void
   4405 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
   4406 {
   4407    v->samplers_used = 0;
   4408    v->buffers_used = 0;
   4409    v->images_used = 0;
   4410 
   4411    foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
   4412       if (inst->info->is_tex) {
   4413          for (int i = 0; i < inst->sampler_array_size; i++) {
   4414             unsigned idx = inst->sampler_base + i;
   4415             v->samplers_used |= 1u << idx;
   4416 
   4417             debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
   4418             v->sampler_types[idx] = inst->tex_type;
   4419             v->sampler_targets[idx] =
   4420                st_translate_texture_target(inst->tex_target, inst->tex_shadow);
   4421 
   4422             if (inst->tex_shadow) {
   4423                prog->ShadowSamplers |= 1 << (inst->resource.index + i);
   4424             }
   4425          }
   4426       }
   4427 
   4428       if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
   4429          prog->ExternalSamplersUsed |= 1 << inst->resource.index;
   4430 
   4431       if (inst->resource.file != PROGRAM_UNDEFINED && (
   4432                 is_resource_instruction(inst->op) ||
   4433                 inst->op == TGSI_OPCODE_STORE)) {
   4434          if (inst->resource.file == PROGRAM_BUFFER) {
   4435             v->buffers_used |= 1 << inst->resource.index;
   4436          } else if (inst->resource.file == PROGRAM_MEMORY) {
   4437             v->use_shared_memory = true;
   4438          } else {
   4439             assert(inst->resource.file == PROGRAM_IMAGE);
   4440             for (int i = 0; i < inst->sampler_array_size; i++) {
   4441                unsigned idx = inst->sampler_base + i;
   4442                v->images_used |= 1 << idx;
   4443                v->image_targets[idx] =
   4444                   st_translate_texture_target(inst->tex_target, false);
   4445                v->image_formats[idx] = inst->image_format;
   4446             }
   4447          }
   4448       }
   4449    }
   4450    prog->SamplersUsed = v->samplers_used;
   4451 
   4452    if (v->shader_program != NULL)
   4453       _mesa_update_shader_textures_used(v->shader_program, prog);
   4454 }
   4455 
   4456 /**
   4457  * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
   4458  * are read from the given src in this instruction
   4459  */
   4460 static int
   4461 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
   4462 {
   4463    int read_mask = 0, comp;
   4464 
   4465    /* Now, given the src swizzle and the written channels, find which
   4466     * components are actually read
   4467     */
   4468    for (comp = 0; comp < 4; ++comp) {
   4469       const unsigned coord = GET_SWZ(src.swizzle, comp);
   4470       assert(coord < 4);
   4471       if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
   4472          read_mask |= 1 << coord;
   4473    }
   4474 
   4475    return read_mask;
   4476 }
   4477 
   4478 /**
   4479  * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
   4480  * instruction is the first instruction to write to register T0.  There are
   4481  * several lowering passes done in GLSL IR (e.g. branches and
   4482  * relative addressing) that create a large number of conditional assignments
   4483  * that ir_to_mesa converts to CMP instructions like the one mentioned above.
   4484  *
   4485  * Here is why this conversion is safe:
   4486  * CMP T0, T1 T2 T0 can be expanded to:
   4487  * if (T1 < 0.0)
   4488  *   MOV T0, T2;
   4489  * else
   4490  *   MOV T0, T0;
   4491  *
   4492  * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
   4493  * as the original program.  If (T1 < 0.0) evaluates to false, executing
   4494  * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
   4495  * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
   4496  * because any instruction that was going to read from T0 after this was going
   4497  * to read a garbage value anyway.
   4498  */
   4499 void
   4500 glsl_to_tgsi_visitor::simplify_cmp(void)
   4501 {
   4502    int tempWritesSize = 0;
   4503    unsigned *tempWrites = NULL;
   4504    unsigned outputWrites[VARYING_SLOT_TESS_MAX];
   4505 
   4506    memset(outputWrites, 0, sizeof(outputWrites));
   4507 
   4508    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4509       unsigned prevWriteMask = 0;
   4510 
   4511       /* Give up if we encounter relative addressing or flow control. */
   4512       if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
   4513           inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
   4514           tgsi_get_opcode_info(inst->op)->is_branch ||
   4515           inst->op == TGSI_OPCODE_CONT ||
   4516           inst->op == TGSI_OPCODE_END ||
   4517           inst->op == TGSI_OPCODE_RET) {
   4518          break;
   4519       }
   4520 
   4521       if (inst->dst[0].file == PROGRAM_OUTPUT) {
   4522          assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
   4523          prevWriteMask = outputWrites[inst->dst[0].index];
   4524          outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
   4525       } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
   4526          if (inst->dst[0].index >= tempWritesSize) {
   4527             const int inc = 4096;
   4528 
   4529             tempWrites = (unsigned*)
   4530                          realloc(tempWrites,
   4531                                  (tempWritesSize + inc) * sizeof(unsigned));
   4532             if (!tempWrites)
   4533                return;
   4534 
   4535             memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
   4536             tempWritesSize += inc;
   4537          }
   4538 
   4539          prevWriteMask = tempWrites[inst->dst[0].index];
   4540          tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
   4541       } else
   4542          continue;
   4543 
   4544       /* For a CMP to be considered a conditional write, the destination
   4545        * register and source register two must be the same. */
   4546       if (inst->op == TGSI_OPCODE_CMP
   4547           && !(inst->dst[0].writemask & prevWriteMask)
   4548           && inst->src[2].file == inst->dst[0].file
   4549           && inst->src[2].index == inst->dst[0].index
   4550           && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
   4551 
   4552          inst->op = TGSI_OPCODE_MOV;
   4553          inst->info = tgsi_get_opcode_info(inst->op);
   4554          inst->src[0] = inst->src[1];
   4555       }
   4556    }
   4557 
   4558    free(tempWrites);
   4559 }
   4560 
   4561 /* Replaces all references to a temporary register index with another index. */
   4562 void
   4563 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
   4564 {
   4565    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4566       unsigned j;
   4567       int k;
   4568       for (j = 0; j < num_inst_src_regs(inst); j++) {
   4569          if (inst->src[j].file == PROGRAM_TEMPORARY)
   4570             for (k = 0; k < num_renames; k++)
   4571                if (inst->src[j].index == renames[k].old_reg)
   4572                   inst->src[j].index = renames[k].new_reg;
   4573       }
   4574 
   4575       for (j = 0; j < inst->tex_offset_num_offset; j++) {
   4576          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
   4577             for (k = 0; k < num_renames; k++)
   4578                if (inst->tex_offsets[j].index == renames[k].old_reg)
   4579                   inst->tex_offsets[j].index = renames[k].new_reg;
   4580       }
   4581 
   4582       for (j = 0; j < num_inst_dst_regs(inst); j++) {
   4583          if (inst->dst[j].file == PROGRAM_TEMPORARY)
   4584              for (k = 0; k < num_renames; k++)
   4585                 if (inst->dst[j].index == renames[k].old_reg)
   4586                    inst->dst[j].index = renames[k].new_reg;
   4587       }
   4588    }
   4589 }
   4590 
   4591 void
   4592 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
   4593 {
   4594    int depth = 0; /* loop depth */
   4595    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
   4596    unsigned i = 0, j;
   4597 
   4598    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4599       for (j = 0; j < num_inst_src_regs(inst); j++) {
   4600          if (inst->src[j].file == PROGRAM_TEMPORARY) {
   4601             if (first_reads[inst->src[j].index] == -1)
   4602                 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
   4603          }
   4604       }
   4605       for (j = 0; j < inst->tex_offset_num_offset; j++) {
   4606          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
   4607             if (first_reads[inst->tex_offsets[j].index] == -1)
   4608                first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
   4609          }
   4610       }
   4611       if (inst->op == TGSI_OPCODE_BGNLOOP) {
   4612          if(depth++ == 0)
   4613             loop_start = i;
   4614       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
   4615          if (--depth == 0)
   4616             loop_start = -1;
   4617       }
   4618       assert(depth >= 0);
   4619       i++;
   4620    }
   4621 }
   4622 
   4623 void
   4624 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
   4625 {
   4626    int depth = 0; /* loop depth */
   4627    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
   4628    unsigned i = 0, j;
   4629    int k;
   4630    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4631       for (j = 0; j < num_inst_src_regs(inst); j++) {
   4632          if (inst->src[j].file == PROGRAM_TEMPORARY)
   4633             last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
   4634       }
   4635       for (j = 0; j < num_inst_dst_regs(inst); j++) {
   4636          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
   4637             if (first_writes[inst->dst[j].index] == -1)
   4638                first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
   4639             last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
   4640          }
   4641       }
   4642       for (j = 0; j < inst->tex_offset_num_offset; j++) {
   4643          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
   4644             last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
   4645       }
   4646       if (inst->op == TGSI_OPCODE_BGNLOOP) {
   4647          if(depth++ == 0)
   4648             loop_start = i;
   4649       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
   4650          if (--depth == 0) {
   4651             loop_start = -1;
   4652             for (k = 0; k < this->next_temp; k++) {
   4653                if (last_reads[k] == -2) {
   4654                   last_reads[k] = i;
   4655                }
   4656             }
   4657          }
   4658       }
   4659       assert(depth >= 0);
   4660       i++;
   4661    }
   4662 }
   4663 
   4664 void
   4665 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
   4666 {
   4667    int depth = 0; /* loop depth */
   4668    int i = 0, k;
   4669    unsigned j;
   4670 
   4671    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4672       for (j = 0; j < num_inst_dst_regs(inst); j++) {
   4673          if (inst->dst[j].file == PROGRAM_TEMPORARY)
   4674             last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
   4675       }
   4676 
   4677       if (inst->op == TGSI_OPCODE_BGNLOOP)
   4678          depth++;
   4679       else if (inst->op == TGSI_OPCODE_ENDLOOP)
   4680          if (--depth == 0) {
   4681             for (k = 0; k < this->next_temp; k++) {
   4682                if (last_writes[k] == -2) {
   4683                   last_writes[k] = i;
   4684                }
   4685             }
   4686          }
   4687       assert(depth >= 0);
   4688       i++;
   4689    }
   4690 }
   4691 
   4692 /*
   4693  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
   4694  * channels for copy propagation and updates following instructions to
   4695  * use the original versions.
   4696  *
   4697  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
   4698  * will occur.  As an example, a TXP production before this pass:
   4699  *
   4700  * 0: MOV TEMP[1], INPUT[4].xyyy;
   4701  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   4702  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
   4703  *
   4704  * and after:
   4705  *
   4706  * 0: MOV TEMP[1], INPUT[4].xyyy;
   4707  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   4708  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
   4709  *
   4710  * which allows for dead code elimination on TEMP[1]'s writes.
   4711  */
   4712 void
   4713 glsl_to_tgsi_visitor::copy_propagate(void)
   4714 {
   4715    glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
   4716                                                   glsl_to_tgsi_instruction *,
   4717                                                   this->next_temp * 4);
   4718    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
   4719    int level = 0;
   4720 
   4721    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4722       assert(inst->dst[0].file != PROGRAM_TEMPORARY
   4723              || inst->dst[0].index < this->next_temp);
   4724 
   4725       /* First, do any copy propagation possible into the src regs. */
   4726       for (int r = 0; r < 3; r++) {
   4727          glsl_to_tgsi_instruction *first = NULL;
   4728          bool good = true;
   4729          int acp_base = inst->src[r].index * 4;
   4730 
   4731          if (inst->src[r].file != PROGRAM_TEMPORARY ||
   4732              inst->src[r].reladdr ||
   4733              inst->src[r].reladdr2)
   4734             continue;
   4735 
   4736          /* See if we can find entries in the ACP consisting of MOVs
   4737           * from the same src register for all the swizzled channels
   4738           * of this src register reference.
   4739           */
   4740          for (int i = 0; i < 4; i++) {
   4741             int src_chan = GET_SWZ(inst->src[r].swizzle, i);
   4742             glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
   4743 
   4744             if (!copy_chan) {
   4745                good = false;
   4746                break;
   4747             }
   4748 
   4749             assert(acp_level[acp_base + src_chan] <= level);
   4750 
   4751             if (!first) {
   4752                first = copy_chan;
   4753             } else {
   4754                if (first->src[0].file != copy_chan->src[0].file ||
   4755                    first->src[0].index != copy_chan->src[0].index ||
   4756                    first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
   4757                    first->src[0].index2D != copy_chan->src[0].index2D) {
   4758                   good = false;
   4759                   break;
   4760                }
   4761             }
   4762          }
   4763 
   4764          if (good) {
   4765             /* We've now validated that we can copy-propagate to
   4766              * replace this src register reference.  Do it.
   4767              */
   4768             inst->src[r].file = first->src[0].file;
   4769             inst->src[r].index = first->src[0].index;
   4770             inst->src[r].index2D = first->src[0].index2D;
   4771             inst->src[r].has_index2 = first->src[0].has_index2;
   4772             inst->src[r].double_reg2 = first->src[0].double_reg2;
   4773             inst->src[r].array_id = first->src[0].array_id;
   4774 
   4775             int swizzle = 0;
   4776             for (int i = 0; i < 4; i++) {
   4777                int src_chan = GET_SWZ(inst->src[r].swizzle, i);
   4778                glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
   4779                swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
   4780             }
   4781             inst->src[r].swizzle = swizzle;
   4782          }
   4783       }
   4784 
   4785       switch (inst->op) {
   4786       case TGSI_OPCODE_BGNLOOP:
   4787       case TGSI_OPCODE_ENDLOOP:
   4788          /* End of a basic block, clear the ACP entirely. */
   4789          memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
   4790          break;
   4791 
   4792       case TGSI_OPCODE_IF:
   4793       case TGSI_OPCODE_UIF:
   4794          ++level;
   4795          break;
   4796 
   4797       case TGSI_OPCODE_ENDIF:
   4798       case TGSI_OPCODE_ELSE:
   4799          /* Clear all channels written inside the block from the ACP, but
   4800           * leaving those that were not touched.
   4801           */
   4802          for (int r = 0; r < this->next_temp; r++) {
   4803             for (int c = 0; c < 4; c++) {
   4804                if (!acp[4 * r + c])
   4805                   continue;
   4806 
   4807                if (acp_level[4 * r + c] >= level)
   4808                   acp[4 * r + c] = NULL;
   4809             }
   4810          }
   4811          if (inst->op == TGSI_OPCODE_ENDIF)
   4812             --level;
   4813          break;
   4814 
   4815       default:
   4816          /* Continuing the block, clear any written channels from
   4817           * the ACP.
   4818           */
   4819          for (int d = 0; d < 2; d++) {
   4820             if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
   4821                /* Any temporary might be written, so no copy propagation
   4822                 * across this instruction.
   4823                 */
   4824                memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
   4825             } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
   4826                        inst->dst[d].reladdr) {
   4827                /* Any output might be written, so no copy propagation
   4828                 * from outputs across this instruction.
   4829                 */
   4830                for (int r = 0; r < this->next_temp; r++) {
   4831                   for (int c = 0; c < 4; c++) {
   4832                      if (!acp[4 * r + c])
   4833                         continue;
   4834 
   4835                      if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
   4836                         acp[4 * r + c] = NULL;
   4837                   }
   4838                }
   4839             } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
   4840                        inst->dst[d].file == PROGRAM_OUTPUT) {
   4841                /* Clear where it's used as dst. */
   4842                if (inst->dst[d].file == PROGRAM_TEMPORARY) {
   4843                   for (int c = 0; c < 4; c++) {
   4844                      if (inst->dst[d].writemask & (1 << c))
   4845                         acp[4 * inst->dst[d].index + c] = NULL;
   4846                   }
   4847                }
   4848 
   4849                /* Clear where it's used as src. */
   4850                for (int r = 0; r < this->next_temp; r++) {
   4851                   for (int c = 0; c < 4; c++) {
   4852                      if (!acp[4 * r + c])
   4853                         continue;
   4854 
   4855                      int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
   4856 
   4857                      if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
   4858                          acp[4 * r + c]->src[0].index == inst->dst[d].index &&
   4859                          inst->dst[d].writemask & (1 << src_chan)) {
   4860                         acp[4 * r + c] = NULL;
   4861                      }
   4862                   }
   4863                }
   4864             }
   4865          }
   4866          break;
   4867       }
   4868 
   4869       /* If this is a copy, add it to the ACP. */
   4870       if (inst->op == TGSI_OPCODE_MOV &&
   4871           inst->dst[0].file == PROGRAM_TEMPORARY &&
   4872           !(inst->dst[0].file == inst->src[0].file &&
   4873              inst->dst[0].index == inst->src[0].index) &&
   4874           !inst->dst[0].reladdr &&
   4875           !inst->dst[0].reladdr2 &&
   4876           !inst->saturate &&
   4877           inst->src[0].file != PROGRAM_ARRAY &&
   4878           !inst->src[0].reladdr &&
   4879           !inst->src[0].reladdr2 &&
   4880           !inst->src[0].negate &&
   4881           !inst->src[0].abs) {
   4882          for (int i = 0; i < 4; i++) {
   4883             if (inst->dst[0].writemask & (1 << i)) {
   4884                acp[4 * inst->dst[0].index + i] = inst;
   4885                acp_level[4 * inst->dst[0].index + i] = level;
   4886             }
   4887          }
   4888       }
   4889    }
   4890 
   4891    ralloc_free(acp_level);
   4892    ralloc_free(acp);
   4893 }
   4894 
   4895 /*
   4896  * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
   4897  * code elimination.
   4898  *
   4899  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
   4900  * will occur.  As an example, a TXP production after copy propagation but
   4901  * before this pass:
   4902  *
   4903  * 0: MOV TEMP[1], INPUT[4].xyyy;
   4904  * 1: MOV TEMP[1].w, INPUT[4].wwww;
   4905  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
   4906  *
   4907  * and after this pass:
   4908  *
   4909  * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
   4910  */
   4911 int
   4912 glsl_to_tgsi_visitor::eliminate_dead_code(void)
   4913 {
   4914    glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
   4915                                                      glsl_to_tgsi_instruction *,
   4916                                                      this->next_temp * 4);
   4917    int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
   4918    int level = 0;
   4919    int removed = 0;
   4920 
   4921    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
   4922       assert(inst->dst[0].file != PROGRAM_TEMPORARY
   4923              || inst->dst[0].index < this->next_temp);
   4924 
   4925       switch (inst->op) {
   4926       case TGSI_OPCODE_BGNLOOP:
   4927       case TGSI_OPCODE_ENDLOOP:
   4928       case TGSI_OPCODE_CONT:
   4929       case TGSI_OPCODE_BRK:
   4930          /* End of a basic block, clear the write array entirely.
   4931           *
   4932           * This keeps us from killing dead code when the writes are
   4933           * on either side of a loop, even when the register isn't touched
   4934           * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
   4935           * dead code of this type, so it shouldn't make a difference as long as
   4936           * the dead code elimination pass in the GLSL compiler does its job.
   4937           */
   4938          memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
   4939          break;
   4940 
   4941       case TGSI_OPCODE_ENDIF:
   4942       case TGSI_OPCODE_ELSE:
   4943          /* Promote the recorded level of all channels written inside the
   4944           * preceding if or else block to the level above the if/else block.
   4945           */
   4946          for (int r = 0; r < this->next_temp; r++) {
   4947             for (int c = 0; c < 4; c++) {
   4948                if (!writes[4 * r + c])
   4949                   continue;
   4950 
   4951                if (write_level[4 * r + c] == level)
   4952                   write_level[4 * r + c] = level-1;
   4953             }
   4954          }
   4955          if(inst->op == TGSI_OPCODE_ENDIF)
   4956             --level;
   4957          break;
   4958 
   4959       case TGSI_OPCODE_IF:
   4960       case TGSI_OPCODE_UIF:
   4961          ++level;
   4962          /* fallthrough to default case to mark the condition as read */
   4963       default:
   4964          /* Continuing the block, clear any channels from the write array that
   4965           * are read by this instruction.
   4966           */
   4967          for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
   4968             if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
   4969                /* Any temporary might be read, so no dead code elimination
   4970                 * across this instruction.
   4971                 */
   4972                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
   4973             } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
   4974                /* Clear where it's used as src. */
   4975                int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
   4976                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
   4977                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
   4978                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
   4979 
   4980                for (int c = 0; c < 4; c++) {
   4981                   if (src_chans & (1 << c))
   4982                      writes[4 * inst->src[i].index + c] = NULL;
   4983                }
   4984             }
   4985          }
   4986          for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
   4987             if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
   4988                /* Any temporary might be read, so no dead code elimination
   4989                 * across this instruction.
   4990                 */
   4991                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
   4992             } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
   4993                /* Clear where it's used as src. */
   4994                int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
   4995                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
   4996                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
   4997                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
   4998 
   4999                for (int c = 0; c < 4; c++) {
   5000                   if (src_chans & (1 << c))
   5001                      writes[4 * inst->tex_offsets[i].index + c] = NULL;
   5002                }
   5003             }
   5004          }
   5005          break;
   5006       }
   5007 
   5008       /* If this instruction writes to a temporary, add it to the write array.
   5009        * If there is already an instruction in the write array for one or more
   5010        * of the channels, flag that channel write as dead.
   5011        */
   5012       for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
   5013          if (inst->dst[i].file == PROGRAM_TEMPORARY &&
   5014              !inst->dst[i].reladdr) {
   5015             for (int c = 0; c < 4; c++) {
   5016                if (inst->dst[i].writemask & (1 << c)) {
   5017                   if (writes[4 * inst->dst[i].index + c]) {
   5018                      if (write_level[4 * inst->dst[i].index + c] < level)
   5019                         continue;
   5020                      else
   5021                         writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
   5022                   }
   5023                   writes[4 * inst->dst[i].index + c] = inst;
   5024                   write_level[4 * inst->dst[i].index + c] = level;
   5025                }
   5026             }
   5027          }
   5028       }
   5029    }
   5030 
   5031    /* Anything still in the write array at this point is dead code. */
   5032    for (int r = 0; r < this->next_temp; r++) {
   5033       for (int c = 0; c < 4; c++) {
   5034          glsl_to_tgsi_instruction *inst = writes[4 * r + c];
   5035          if (inst)
   5036             inst->dead_mask |= (1 << c);
   5037       }
   5038    }
   5039 
   5040    /* Now actually remove the instructions that are completely dead and update
   5041     * the writemask of other instructions with dead channels.
   5042     */
   5043    foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
   5044       if (!inst->dead_mask || !inst->dst[0].writemask)
   5045          continue;
   5046       /* No amount of dead masks should remove memory stores */
   5047       if (inst->info->is_store)
   5048          continue;
   5049 
   5050       if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
   5051          inst->remove();
   5052          delete inst;
   5053          removed++;
   5054       } else {
   5055          if (glsl_base_type_is_64bit(inst->dst[0].type)) {
   5056             if (inst->dead_mask == WRITEMASK_XY ||
   5057                 inst->dead_mask == WRITEMASK_ZW)
   5058                inst->dst[0].writemask &= ~(inst->dead_mask);
   5059          } else
   5060             inst->dst[0].writemask &= ~(inst->dead_mask);
   5061       }
   5062    }
   5063 
   5064    ralloc_free(write_level);
   5065    ralloc_free(writes);
   5066 
   5067    return removed;
   5068 }
   5069 
   5070 /* merge DFRACEXP instructions into one. */
   5071 void
   5072 glsl_to_tgsi_visitor::merge_two_dsts(void)
   5073 {
   5074    foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
   5075       glsl_to_tgsi_instruction *inst2;
   5076       bool merged;
   5077       if (num_inst_dst_regs(inst) != 2)
   5078          continue;
   5079 
   5080       if (inst->dst[0].file != PROGRAM_UNDEFINED &&
   5081           inst->dst[1].file != PROGRAM_UNDEFINED)
   5082          continue;
   5083 
   5084       inst2 = (glsl_to_tgsi_instruction *) inst->next;
   5085       do {
   5086 
   5087          if (inst->src[0].file == inst2->src[0].file &&
   5088              inst->src[0].index == inst2->src[0].index &&
   5089              inst->src[0].type == inst2->src[0].type &&
   5090              inst->src[0].swizzle == inst2->src[0].swizzle)
   5091             break;
   5092          inst2 = (glsl_to_tgsi_instruction *) inst2->next;
   5093       } while (inst2);
   5094 
   5095       if (!inst2)
   5096          continue;
   5097       merged = false;
   5098       if (inst->dst[0].file == PROGRAM_UNDEFINED) {
   5099          merged = true;
   5100          inst->dst[0] = inst2->dst[0];
   5101       } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
   5102          inst->dst[1] = inst2->dst[1];
   5103          merged = true;
   5104       }
   5105 
   5106       if (merged) {
   5107          inst2->remove();
   5108          delete inst2;
   5109       }
   5110    }
   5111 }
   5112 
   5113 /* Merges temporary registers together where possible to reduce the number of
   5114  * registers needed to run a program.
   5115  *
   5116  * Produces optimal code only after copy propagation and dead code elimination
   5117  * have been run. */
   5118 void
   5119 glsl_to_tgsi_visitor::merge_registers(void)
   5120 {
   5121    int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
   5122    int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
   5123    struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
   5124    int i, j;
   5125    int num_renames = 0;
   5126 
   5127    /* Read the indices of the last read and first write to each temp register
   5128     * into an array so that we don't have to traverse the instruction list as
   5129     * much. */
   5130    for (i = 0; i < this->next_temp; i++) {
   5131       last_reads[i] = -1;
   5132       first_writes[i] = -1;
   5133    }
   5134    get_last_temp_read_first_temp_write(last_reads, first_writes);
   5135 
   5136    /* Start looking for registers with non-overlapping usages that can be
   5137     * merged together. */
   5138    for (i = 0; i < this->next_temp; i++) {
   5139       /* Don't touch unused registers. */
   5140       if (last_reads[i] < 0 || first_writes[i] < 0) continue;
   5141 
   5142       for (j = 0; j < this->next_temp; j++) {
   5143          /* Don't touch unused registers. */
   5144          if (last_reads[j] < 0 || first_writes[j] < 0) continue;
   5145 
   5146          /* We can merge the two registers if the first write to j is after or
   5147           * in the same instruction as the last read from i.  Note that the
   5148           * register at index i will always be used earlier or at the same time
   5149           * as the register at index j. */
   5150          if (first_writes[i] <= first_writes[j] &&
   5151              last_reads[i] <= first_writes[j]) {
   5152             renames[num_renames].old_reg = j;
   5153             renames[num_renames].new_reg = i;
   5154             num_renames++;
   5155 
   5156             /* Update the first_writes and last_reads arrays with the new
   5157              * values for the merged register index, and mark the newly unused
   5158              * register index as such. */
   5159             assert(last_reads[j] >= last_reads[i]);
   5160             last_reads[i] = last_reads[j];
   5161             first_writes[j] = -1;
   5162             last_reads[j] = -1;
   5163          }
   5164       }
   5165    }
   5166 
   5167    rename_temp_registers(num_renames, renames);
   5168    ralloc_free(renames);
   5169    ralloc_free(last_reads);
   5170    ralloc_free(first_writes);
   5171 }
   5172 
   5173 /* Reassign indices to temporary registers by reusing unused indices created
   5174  * by optimization passes. */
   5175 void
   5176 glsl_to_tgsi_visitor::renumber_registers(void)
   5177 {
   5178    int i = 0;
   5179    int new_index = 0;
   5180    int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
   5181    struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
   5182    int num_renames = 0;
   5183    for (i = 0; i < this->next_temp; i++) {
   5184       first_reads[i] = -1;
   5185    }
   5186    get_first_temp_read(first_reads);
   5187 
   5188    for (i = 0; i < this->next_temp; i++) {
   5189       if (first_reads[i] < 0) continue;
   5190       if (i != new_index) {
   5191          renames[num_renames].old_reg = i;
   5192          renames[num_renames].new_reg = new_index;
   5193          num_renames++;
   5194       }
   5195       new_index++;
   5196    }
   5197 
   5198    rename_temp_registers(num_renames, renames);
   5199    this->next_temp = new_index;
   5200    ralloc_free(renames);
   5201    ralloc_free(first_reads);
   5202 }
   5203 
   5204 /* ------------------------- TGSI conversion stuff -------------------------- */
   5205 
   5206 /**
   5207  * Intermediate state used during shader translation.
   5208  */
   5209 struct st_translate {
   5210    struct ureg_program *ureg;
   5211 
   5212    unsigned temps_size;
   5213    struct ureg_dst *temps;
   5214 
   5215    struct ureg_dst *arrays;
   5216    unsigned num_temp_arrays;
   5217    struct ureg_src *constants;
   5218    int num_constants;
   5219    struct ureg_src *immediates;
   5220    int num_immediates;
   5221    struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
   5222    struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
   5223    struct ureg_dst address[3];
   5224    struct ureg_src samplers[PIPE_MAX_SAMPLERS];
   5225    struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
   5226    struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
   5227    struct ureg_src systemValues[SYSTEM_VALUE_MAX];
   5228    struct ureg_src shared_memory;
   5229    unsigned *array_sizes;
   5230    struct inout_decl *input_decls;
   5231    unsigned num_input_decls;
   5232    struct inout_decl *output_decls;
   5233    unsigned num_output_decls;
   5234 
   5235    const GLuint *inputMapping;
   5236    const GLuint *outputMapping;
   5237 
   5238    unsigned procType;  /**< PIPE_SHADER_VERTEX/FRAGMENT */
   5239 };
   5240 
   5241 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
   5242 unsigned
   5243 _mesa_sysval_to_semantic(unsigned sysval)
   5244 {
   5245    switch (sysval) {
   5246    /* Vertex shader */
   5247    case SYSTEM_VALUE_VERTEX_ID:
   5248       return TGSI_SEMANTIC_VERTEXID;
   5249    case SYSTEM_VALUE_INSTANCE_ID:
   5250       return TGSI_SEMANTIC_INSTANCEID;
   5251    case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
   5252       return TGSI_SEMANTIC_VERTEXID_NOBASE;
   5253    case SYSTEM_VALUE_BASE_VERTEX:
   5254       return TGSI_SEMANTIC_BASEVERTEX;
   5255    case SYSTEM_VALUE_BASE_INSTANCE:
   5256       return TGSI_SEMANTIC_BASEINSTANCE;
   5257    case SYSTEM_VALUE_DRAW_ID:
   5258       return TGSI_SEMANTIC_DRAWID;
   5259 
   5260    /* Geometry shader */
   5261    case SYSTEM_VALUE_INVOCATION_ID:
   5262       return TGSI_SEMANTIC_INVOCATIONID;
   5263 
   5264    /* Fragment shader */
   5265    case SYSTEM_VALUE_FRAG_COORD:
   5266       return TGSI_SEMANTIC_POSITION;
   5267    case SYSTEM_VALUE_FRONT_FACE:
   5268       return TGSI_SEMANTIC_FACE;
   5269    case SYSTEM_VALUE_SAMPLE_ID:
   5270       return TGSI_SEMANTIC_SAMPLEID;
   5271    case SYSTEM_VALUE_SAMPLE_POS:
   5272       return TGSI_SEMANTIC_SAMPLEPOS;
   5273    case SYSTEM_VALUE_SAMPLE_MASK_IN:
   5274       return TGSI_SEMANTIC_SAMPLEMASK;
   5275    case SYSTEM_VALUE_HELPER_INVOCATION:
   5276       return TGSI_SEMANTIC_HELPER_INVOCATION;
   5277 
   5278    /* Tessellation shader */
   5279    case SYSTEM_VALUE_TESS_COORD:
   5280       return TGSI_SEMANTIC_TESSCOORD;
   5281    case SYSTEM_VALUE_VERTICES_IN:
   5282       return TGSI_SEMANTIC_VERTICESIN;
   5283    case SYSTEM_VALUE_PRIMITIVE_ID:
   5284       return TGSI_SEMANTIC_PRIMID;
   5285    case SYSTEM_VALUE_TESS_LEVEL_OUTER:
   5286       return TGSI_SEMANTIC_TESSOUTER;
   5287    case SYSTEM_VALUE_TESS_LEVEL_INNER:
   5288       return TGSI_SEMANTIC_TESSINNER;
   5289 
   5290    /* Compute shader */
   5291    case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
   5292       return TGSI_SEMANTIC_THREAD_ID;
   5293    case SYSTEM_VALUE_WORK_GROUP_ID:
   5294       return TGSI_SEMANTIC_BLOCK_ID;
   5295    case SYSTEM_VALUE_NUM_WORK_GROUPS:
   5296       return TGSI_SEMANTIC_GRID_SIZE;
   5297    case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
   5298       return TGSI_SEMANTIC_BLOCK_SIZE;
   5299 
   5300    /* Unhandled */
   5301    case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
   5302    case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
   5303    case SYSTEM_VALUE_VERTEX_CNT:
   5304    default:
   5305       assert(!"Unexpected SYSTEM_VALUE_ enum");
   5306       return TGSI_SEMANTIC_COUNT;
   5307    }
   5308 }
   5309 
   5310 /**
   5311  * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
   5312  */
   5313 static struct ureg_src
   5314 emit_immediate(struct st_translate *t,
   5315                gl_constant_value values[4],
   5316                int type, int size)
   5317 {
   5318    struct ureg_program *ureg = t->ureg;
   5319 
   5320    switch(type)
   5321    {
   5322    case GL_FLOAT:
   5323       return ureg_DECL_immediate(ureg, &values[0].f, size);
   5324    case GL_DOUBLE:
   5325       return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
   5326    case GL_INT:
   5327       return ureg_DECL_immediate_int(ureg, &values[0].i, size);
   5328    case GL_UNSIGNED_INT:
   5329    case GL_BOOL:
   5330       return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
   5331    default:
   5332       assert(!"should not get here - type must be float, int, uint, or bool");
   5333       return ureg_src_undef();
   5334    }
   5335 }
   5336 
   5337 /**
   5338  * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
   5339  */
   5340 static struct ureg_dst
   5341 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
   5342              unsigned array_id)
   5343 {
   5344    unsigned array;
   5345 
   5346    switch(file) {
   5347    case PROGRAM_UNDEFINED:
   5348       return ureg_dst_undef();
   5349 
   5350    case PROGRAM_TEMPORARY:
   5351       /* Allocate space for temporaries on demand. */
   5352       if (index >= t->temps_size) {
   5353          const int inc = align(index - t->temps_size + 1, 4096);
   5354 
   5355          t->temps = (struct ureg_dst*)
   5356                     realloc(t->temps,
   5357                             (t->temps_size + inc) * sizeof(struct ureg_dst));
   5358          if (!t->temps)
   5359             return ureg_dst_undef();
   5360 
   5361          memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
   5362          t->temps_size += inc;
   5363       }
   5364 
   5365       if (ureg_dst_is_undef(t->temps[index]))
   5366          t->temps[index] = ureg_DECL_local_temporary(t->ureg);
   5367 
   5368       return t->temps[index];
   5369 
   5370    case PROGRAM_ARRAY:
   5371       assert(array_id && array_id <= t->num_temp_arrays);
   5372       array = array_id - 1;
   5373 
   5374       if (ureg_dst_is_undef(t->arrays[array]))
   5375          t->arrays[array] = ureg_DECL_array_temporary(
   5376             t->ureg, t->array_sizes[array], TRUE);
   5377 
   5378       return ureg_dst_array_offset(t->arrays[array], index);
   5379 
   5380    case PROGRAM_OUTPUT:
   5381       if (!array_id) {
   5382          if (t->procType == PIPE_SHADER_FRAGMENT)
   5383             assert(index < 2 * FRAG_RESULT_MAX);
   5384          else if (t->procType == PIPE_SHADER_TESS_CTRL ||
   5385                   t->procType == PIPE_SHADER_TESS_EVAL)
   5386             assert(index < VARYING_SLOT_TESS_MAX);
   5387          else
   5388             assert(index < VARYING_SLOT_MAX);
   5389 
   5390          assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
   5391          assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
   5392          return t->outputs[t->outputMapping[index]];
   5393       }
   5394       else {
   5395          struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
   5396          unsigned mesa_index = decl->mesa_index;
   5397          int slot = t->outputMapping[mesa_index];
   5398 
   5399          assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
   5400 
   5401          struct ureg_dst dst = t->outputs[slot];
   5402          dst.ArrayID = array_id;
   5403          return ureg_dst_array_offset(dst, index - mesa_index);
   5404       }
   5405 
   5406    case PROGRAM_ADDRESS:
   5407       return t->address[index];
   5408 
   5409    default:
   5410       assert(!"unknown dst register file");
   5411       return ureg_dst_undef();
   5412    }
   5413 }
   5414 
   5415 /**
   5416  * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
   5417  */
   5418 static struct ureg_src
   5419 src_register(struct st_translate *t, const st_src_reg *reg)
   5420 {
   5421    int index = reg->index;
   5422    int double_reg2 = reg->double_reg2 ? 1 : 0;
   5423 
   5424    switch(reg->file) {
   5425    case PROGRAM_UNDEFINED:
   5426       return ureg_imm4f(t->ureg, 0, 0, 0, 0);
   5427 
   5428    case PROGRAM_TEMPORARY:
   5429    case PROGRAM_ARRAY:
   5430       return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
   5431 
   5432    case PROGRAM_OUTPUT: {
   5433       struct ureg_dst dst = dst_register(t, reg->file, reg->index, reg->array_id);
   5434       assert(dst.WriteMask != 0);
   5435       unsigned shift = ffs(dst.WriteMask) - 1;
   5436       return ureg_swizzle(ureg_src(dst),
   5437                           shift,
   5438                           MIN2(shift + 1, 3),
   5439                           MIN2(shift + 2, 3),
   5440                           MIN2(shift + 3, 3));
   5441    }
   5442 
   5443    case PROGRAM_UNIFORM:
   5444       assert(reg->index >= 0);
   5445       return reg->index < t->num_constants ?
   5446                t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
   5447    case PROGRAM_STATE_VAR:
   5448    case PROGRAM_CONSTANT:       /* ie, immediate */
   5449       if (reg->has_index2)
   5450          return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
   5451       else
   5452          return reg->index >= 0 && reg->index < t->num_constants ?
   5453                   t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
   5454 
   5455    case PROGRAM_IMMEDIATE:
   5456       assert(reg->index >= 0 && reg->index < t->num_immediates);
   5457       return t->immediates[reg->index];
   5458 
   5459    case PROGRAM_INPUT:
   5460       /* GLSL inputs are 64-bit containers, so we have to
   5461        * map back to the original index and add the offset after
   5462        * mapping. */
   5463       index -= double_reg2;
   5464       if (!reg->array_id) {
   5465          assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
   5466          assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
   5467          return t->inputs[t->inputMapping[index] + double_reg2];
   5468       }
   5469       else {
   5470          struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls, reg->array_id);
   5471          unsigned mesa_index = decl->mesa_index;
   5472          int slot = t->inputMapping[mesa_index];
   5473 
   5474          assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
   5475 
   5476          struct ureg_src src = t->inputs[slot];
   5477          src.ArrayID = reg->array_id;
   5478          return ureg_src_array_offset(src, index + double_reg2 - mesa_index);
   5479       }
   5480 
   5481    case PROGRAM_ADDRESS:
   5482       return ureg_src(t->address[reg->index]);
   5483 
   5484    case PROGRAM_SYSTEM_VALUE:
   5485       assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
   5486       return t->systemValues[reg->index];
   5487 
   5488    default:
   5489       assert(!"unknown src register file");
   5490       return ureg_src_undef();
   5491    }
   5492 }
   5493 
   5494 /**
   5495  * Create a TGSI ureg_dst register from an st_dst_reg.
   5496  */
   5497 static struct ureg_dst
   5498 translate_dst(struct st_translate *t,
   5499               const st_dst_reg *dst_reg,
   5500               bool saturate)
   5501 {
   5502    struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
   5503                                       dst_reg->array_id);
   5504 
   5505    if (dst.File == TGSI_FILE_NULL)
   5506       return dst;
   5507 
   5508    dst = ureg_writemask(dst, dst_reg->writemask);
   5509 
   5510    if (saturate)
   5511       dst = ureg_saturate(dst);
   5512 
   5513    if (dst_reg->reladdr != NULL) {
   5514       assert(dst_reg->file != PROGRAM_TEMPORARY);
   5515       dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
   5516    }
   5517 
   5518    if (dst_reg->has_index2) {
   5519       if (dst_reg->reladdr2)
   5520          dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
   5521                                            dst_reg->index2D);
   5522       else
   5523          dst = ureg_dst_dimension(dst, dst_reg->index2D);
   5524    }
   5525 
   5526    return dst;
   5527 }
   5528 
   5529 /**
   5530  * Create a TGSI ureg_src register from an st_src_reg.
   5531  */
   5532 static struct ureg_src
   5533 translate_src(struct st_translate *t, const st_src_reg *src_reg)
   5534 {
   5535    struct ureg_src src = src_register(t, src_reg);
   5536 
   5537    if (src_reg->has_index2) {
   5538       /* 2D indexes occur with geometry shader inputs (attrib, vertex)
   5539        * and UBO constant buffers (buffer, position).
   5540        */
   5541       if (src_reg->reladdr2)
   5542          src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
   5543                                            src_reg->index2D);
   5544       else
   5545          src = ureg_src_dimension(src, src_reg->index2D);
   5546    }
   5547 
   5548    src = ureg_swizzle(src,
   5549                       GET_SWZ(src_reg->swizzle, 0) & 0x3,
   5550                       GET_SWZ(src_reg->swizzle, 1) & 0x3,
   5551                       GET_SWZ(src_reg->swizzle, 2) & 0x3,
   5552                       GET_SWZ(src_reg->swizzle, 3) & 0x3);
   5553 
   5554    if (src_reg->abs)
   5555       src = ureg_abs(src);
   5556 
   5557    if ((src_reg->negate & 0xf) == NEGATE_XYZW)
   5558       src = ureg_negate(src);
   5559 
   5560    if (src_reg->reladdr != NULL) {
   5561       assert(src_reg->file != PROGRAM_TEMPORARY);
   5562       src = ureg_src_indirect(src, ureg_src(t->address[0]));
   5563    }
   5564 
   5565    return src;
   5566 }
   5567 
   5568 static struct tgsi_texture_offset
   5569 translate_tex_offset(struct st_translate *t,
   5570                      const st_src_reg *in_offset)
   5571 {
   5572    struct tgsi_texture_offset offset;
   5573    struct ureg_src src = translate_src(t, in_offset);
   5574 
   5575    offset.File = src.File;
   5576    offset.Index = src.Index;
   5577    offset.SwizzleX = src.SwizzleX;
   5578    offset.SwizzleY = src.SwizzleY;
   5579    offset.SwizzleZ = src.SwizzleZ;
   5580    offset.Padding = 0;
   5581 
   5582    assert(!src.Indirect);
   5583    assert(!src.DimIndirect);
   5584    assert(!src.Dimension);
   5585    assert(!src.Absolute); /* those shouldn't be used with integers anyway */
   5586    assert(!src.Negate);
   5587 
   5588    return offset;
   5589 }
   5590 
   5591 static void
   5592 compile_tgsi_instruction(struct st_translate *t,
   5593                          const glsl_to_tgsi_instruction *inst)
   5594 {
   5595    struct ureg_program *ureg = t->ureg;
   5596    int i;
   5597    struct ureg_dst dst[2];
   5598    struct ureg_src src[4];
   5599    struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
   5600 
   5601    int num_dst;
   5602    int num_src;
   5603    unsigned tex_target = 0;
   5604 
   5605    num_dst = num_inst_dst_regs(inst);
   5606    num_src = num_inst_src_regs(inst);
   5607 
   5608    for (i = 0; i < num_dst; i++)
   5609       dst[i] = translate_dst(t,
   5610                              &inst->dst[i],
   5611                              inst->saturate);
   5612 
   5613    for (i = 0; i < num_src; i++)
   5614       src[i] = translate_src(t, &inst->src[i]);
   5615 
   5616    switch(inst->op) {
   5617    case TGSI_OPCODE_BGNLOOP:
   5618    case TGSI_OPCODE_ELSE:
   5619    case TGSI_OPCODE_ENDLOOP:
   5620    case TGSI_OPCODE_IF:
   5621    case TGSI_OPCODE_UIF:
   5622       assert(num_dst == 0);
   5623       ureg_insn(ureg, inst->op, NULL, 0, src, num_src);
   5624       return;
   5625 
   5626    case TGSI_OPCODE_TEX:
   5627    case TGSI_OPCODE_TXB:
   5628    case TGSI_OPCODE_TXD:
   5629    case TGSI_OPCODE_TXL:
   5630    case TGSI_OPCODE_TXP:
   5631    case TGSI_OPCODE_TXQ:
   5632    case TGSI_OPCODE_TXQS:
   5633    case TGSI_OPCODE_TXF:
   5634    case TGSI_OPCODE_TEX2:
   5635    case TGSI_OPCODE_TXB2:
   5636    case TGSI_OPCODE_TXL2:
   5637    case TGSI_OPCODE_TG4:
   5638    case TGSI_OPCODE_LODQ:
   5639       src[num_src] = t->samplers[inst->resource.index];
   5640       assert(src[num_src].File != TGSI_FILE_NULL);
   5641       if (inst->resource.reladdr)
   5642          src[num_src] =
   5643             ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
   5644       num_src++;
   5645       for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
   5646          texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
   5647       }
   5648       tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
   5649 
   5650       ureg_tex_insn(ureg,
   5651                     inst->op,
   5652                     dst, num_dst,
   5653                     tex_target,
   5654                     texoffsets, inst->tex_offset_num_offset,
   5655                     src, num_src);
   5656       return;
   5657 
   5658    case TGSI_OPCODE_RESQ:
   5659    case TGSI_OPCODE_LOAD:
   5660    case TGSI_OPCODE_ATOMUADD:
   5661    case TGSI_OPCODE_ATOMXCHG:
   5662    case TGSI_OPCODE_ATOMCAS:
   5663    case TGSI_OPCODE_ATOMAND:
   5664    case TGSI_OPCODE_ATOMOR:
   5665    case TGSI_OPCODE_ATOMXOR:
   5666    case TGSI_OPCODE_ATOMUMIN:
   5667    case TGSI_OPCODE_ATOMUMAX:
   5668    case TGSI_OPCODE_ATOMIMIN:
   5669    case TGSI_OPCODE_ATOMIMAX:
   5670       for (i = num_src - 1; i >= 0; i--)
   5671          src[i + 1] = src[i];
   5672       num_src++;
   5673       if (inst->resource.file == PROGRAM_MEMORY) {
   5674          src[0] = t->shared_memory;
   5675       } else if (inst->resource.file == PROGRAM_BUFFER) {
   5676          src[0] = t->buffers[inst->resource.index];
   5677       } else {
   5678          src[0] = t->images[inst->resource.index];
   5679          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
   5680       }
   5681       if (inst->resource.reladdr)
   5682          src[0] = ureg_src_indirect(src[0], ureg_src(t->address[2]));
   5683       assert(src[0].File != TGSI_FILE_NULL);
   5684       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
   5685                        inst->buffer_access,
   5686                        tex_target, inst->image_format);
   5687       break;
   5688 
   5689    case TGSI_OPCODE_STORE:
   5690       if (inst->resource.file == PROGRAM_MEMORY) {
   5691          dst[0] = ureg_dst(t->shared_memory);
   5692       } else if (inst->resource.file == PROGRAM_BUFFER) {
   5693          dst[0] = ureg_dst(t->buffers[inst->resource.index]);
   5694       } else {
   5695          dst[0] = ureg_dst(t->images[inst->resource.index]);
   5696          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
   5697       }
   5698       dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
   5699       if (inst->resource.reladdr)
   5700          dst[0] = ureg_dst_indirect(dst[0], ureg_src(t->address[2]));
   5701       assert(dst[0].File != TGSI_FILE_NULL);
   5702       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
   5703                        inst->buffer_access,
   5704                        tex_target, inst->image_format);
   5705       break;
   5706 
   5707    case TGSI_OPCODE_SCS:
   5708       dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
   5709       ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
   5710       break;
   5711 
   5712    default:
   5713       ureg_insn(ureg,
   5714                 inst->op,
   5715                 dst, num_dst,
   5716                 src, num_src);
   5717       break;
   5718    }
   5719 }
   5720 
   5721 /**
   5722  * Emit the TGSI instructions for inverting and adjusting WPOS.
   5723  * This code is unavoidable because it also depends on whether
   5724  * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
   5725  */
   5726 static void
   5727 emit_wpos_adjustment(struct gl_context *ctx,
   5728                      struct st_translate *t,
   5729                      int wpos_transform_const,
   5730                      boolean invert,
   5731                      GLfloat adjX, GLfloat adjY[2])
   5732 {
   5733    struct ureg_program *ureg = t->ureg;
   5734 
   5735    assert(wpos_transform_const >= 0);
   5736 
   5737    /* Fragment program uses fragment position input.
   5738     * Need to replace instances of INPUT[WPOS] with temp T
   5739     * where T = INPUT[WPOS] is inverted by Y.
   5740     */
   5741    struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
   5742    struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
   5743    struct ureg_src *wpos =
   5744       ctx->Const.GLSLFragCoordIsSysVal ?
   5745          &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
   5746          &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
   5747    struct ureg_src wpos_input = *wpos;
   5748 
   5749    /* First, apply the coordinate shift: */
   5750    if (adjX || adjY[0] || adjY[1]) {
   5751       if (adjY[0] != adjY[1]) {
   5752          /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
   5753           * depending on whether inversion is actually going to be applied
   5754           * or not, which is determined by testing against the inversion
   5755           * state variable used below, which will be either +1 or -1.
   5756           */
   5757          struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
   5758 
   5759          ureg_CMP(ureg, adj_temp,
   5760                   ureg_scalar(wpostrans, invert ? 2 : 0),
   5761                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
   5762                   ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
   5763          ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
   5764       } else {
   5765          ureg_ADD(ureg, wpos_temp, wpos_input,
   5766                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
   5767       }
   5768       wpos_input = ureg_src(wpos_temp);
   5769    } else {
   5770       /* MOV wpos_temp, input[wpos]
   5771        */
   5772       ureg_MOV( ureg, wpos_temp, wpos_input );
   5773    }
   5774 
   5775    /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
   5776     * inversion/identity, or the other way around if we're drawing to an FBO.
   5777     */
   5778    if (invert) {
   5779       /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
   5780        */
   5781       ureg_MAD( ureg,
   5782                 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
   5783                 wpos_input,
   5784                 ureg_scalar(wpostrans, 0),
   5785                 ureg_scalar(wpostrans, 1));
   5786    } else {
   5787       /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
   5788        */
   5789       ureg_MAD( ureg,
   5790                 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
   5791                 wpos_input,
   5792                 ureg_scalar(wpostrans, 2),
   5793                 ureg_scalar(wpostrans, 3));
   5794    }
   5795 
   5796    /* Use wpos_temp as position input from here on:
   5797     */
   5798    *wpos = ureg_src(wpos_temp);
   5799 }
   5800 
   5801 
   5802 /**
   5803  * Emit fragment position/ooordinate code.
   5804  */
   5805 static void
   5806 emit_wpos(struct st_context *st,
   5807           struct st_translate *t,
   5808           const struct gl_program *program,
   5809           struct ureg_program *ureg,
   5810           int wpos_transform_const)
   5811 {
   5812    struct pipe_screen *pscreen = st->pipe->screen;
   5813    GLfloat adjX = 0.0f;
   5814    GLfloat adjY[2] = { 0.0f, 0.0f };
   5815    boolean invert = FALSE;
   5816 
   5817    /* Query the pixel center conventions supported by the pipe driver and set
   5818     * adjX, adjY to help out if it cannot handle the requested one internally.
   5819     *
   5820     * The bias of the y-coordinate depends on whether y-inversion takes place
   5821     * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
   5822     * drawing to an FBO (causes additional inversion), and whether the pipe
   5823     * driver origin and the requested origin differ (the latter condition is
   5824     * stored in the 'invert' variable).
   5825     *
   5826     * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
   5827     *
   5828     * center shift only:
   5829     * i -> h: +0.5
   5830     * h -> i: -0.5
   5831     *
   5832     * inversion only:
   5833     * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
   5834     * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
   5835     * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
   5836     * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
   5837     *
   5838     * inversion and center shift:
   5839     * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
   5840     * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
   5841     * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
   5842     * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
   5843     */
   5844    if (program->OriginUpperLeft) {
   5845       /* Fragment shader wants origin in upper-left */
   5846       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
   5847          /* the driver supports upper-left origin */
   5848       }
   5849       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
   5850          /* the driver supports lower-left origin, need to invert Y */
   5851          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
   5852                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
   5853          invert = TRUE;
   5854       }
   5855       else
   5856          assert(0);
   5857    }
   5858    else {
   5859       /* Fragment shader wants origin in lower-left */
   5860       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
   5861          /* the driver supports lower-left origin */
   5862          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
   5863                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
   5864       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
   5865          /* the driver supports upper-left origin, need to invert Y */
   5866          invert = TRUE;
   5867       else
   5868          assert(0);
   5869    }
   5870 
   5871    if (program->PixelCenterInteger) {
   5872       /* Fragment shader wants pixel center integer */
   5873       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
   5874          /* the driver supports pixel center integer */
   5875          adjY[1] = 1.0f;
   5876          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
   5877                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
   5878       }
   5879       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
   5880          /* the driver supports pixel center half integer, need to bias X,Y */
   5881          adjX = -0.5f;
   5882          adjY[0] = -0.5f;
   5883          adjY[1] = 0.5f;
   5884       }
   5885       else
   5886          assert(0);
   5887    }
   5888    else {
   5889       /* Fragment shader wants pixel center half integer */
   5890       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
   5891          /* the driver supports pixel center half integer */
   5892       }
   5893       else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
   5894          /* the driver supports pixel center integer, need to bias X,Y */
   5895          adjX = adjY[0] = adjY[1] = 0.5f;
   5896          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
   5897                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
   5898       }
   5899       else
   5900          assert(0);
   5901    }
   5902 
   5903    /* we invert after adjustment so that we avoid the MOV to temporary,
   5904     * and reuse the adjustment ADD instead */
   5905    emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
   5906 }
   5907 
   5908 /**
   5909  * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
   5910  * TGSI uses +1 for front, -1 for back.
   5911  * This function converts the TGSI value to the GL value.  Simply clamping/
   5912  * saturating the value to [0,1] does the job.
   5913  */
   5914 static void
   5915 emit_face_var(struct gl_context *ctx, struct st_translate *t)
   5916 {
   5917    struct ureg_program *ureg = t->ureg;
   5918    struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
   5919    struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
   5920 
   5921    if (ctx->Const.NativeIntegers) {
   5922       ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
   5923    }
   5924    else {
   5925       /* MOV_SAT face_temp, input[face] */
   5926       ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
   5927    }
   5928 
   5929    /* Use face_temp as face input from here on: */
   5930    t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
   5931 }
   5932 
   5933 static void
   5934 emit_compute_block_size(const struct gl_program *prog,
   5935                         struct ureg_program *ureg) {
   5936    ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
   5937                  prog->info.cs.local_size[0]);
   5938    ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
   5939                  prog->info.cs.local_size[1]);
   5940    ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
   5941                  prog->info.cs.local_size[2]);
   5942 }
   5943 
   5944 struct sort_inout_decls {
   5945    bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
   5946       return mapping[a.mesa_index] < mapping[b.mesa_index];
   5947    }
   5948 
   5949    const GLuint *mapping;
   5950 };
   5951 
   5952 /* Sort the given array of decls by the corresponding slot (TGSI file index).
   5953  *
   5954  * This is for the benefit of older drivers which are broken when the
   5955  * declarations aren't sorted in this way.
   5956  */
   5957 static void
   5958 sort_inout_decls_by_slot(struct inout_decl *decls,
   5959                          unsigned count,
   5960                          const GLuint mapping[])
   5961 {
   5962    sort_inout_decls sorter;
   5963    sorter.mapping = mapping;
   5964    std::sort(decls, decls + count, sorter);
   5965 }
   5966 
   5967 static unsigned
   5968 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
   5969 {
   5970    switch (glsl_qual) {
   5971    case INTERP_MODE_NONE:
   5972       if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
   5973          return TGSI_INTERPOLATE_COLOR;
   5974       return TGSI_INTERPOLATE_PERSPECTIVE;
   5975    case INTERP_MODE_SMOOTH:
   5976       return TGSI_INTERPOLATE_PERSPECTIVE;
   5977    case INTERP_MODE_FLAT:
   5978       return TGSI_INTERPOLATE_CONSTANT;
   5979    case INTERP_MODE_NOPERSPECTIVE:
   5980       return TGSI_INTERPOLATE_LINEAR;
   5981    default:
   5982       assert(0 && "unexpected interp mode in st_translate_interp()");
   5983       return TGSI_INTERPOLATE_PERSPECTIVE;
   5984    }
   5985 }
   5986 
   5987 /**
   5988  * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
   5989  * \param program  the program to translate
   5990  * \param numInputs  number of input registers used
   5991  * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
   5992  *                      input indexes
   5993  * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
   5994  * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
   5995  *                            each input
   5996  * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
   5997  * \param numOutputs  number of output registers used
   5998  * \param outputMapping  maps Mesa fragment program outputs to TGSI
   5999  *                       generic outputs
   6000  * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
   6001  * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
   6002  *                             each output
   6003  *
   6004  * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
   6005  */
   6006 extern "C" enum pipe_error
   6007 st_translate_program(
   6008    struct gl_context *ctx,
   6009    uint procType,
   6010    struct ureg_program *ureg,
   6011    glsl_to_tgsi_visitor *program,
   6012    const struct gl_program *proginfo,
   6013    GLuint numInputs,
   6014    const GLuint inputMapping[],
   6015    const GLuint inputSlotToAttr[],
   6016    const ubyte inputSemanticName[],
   6017    const ubyte inputSemanticIndex[],
   6018    const GLuint interpMode[],
   6019    GLuint numOutputs,
   6020    const GLuint outputMapping[],
   6021    const GLuint outputSlotToAttr[],
   6022    const ubyte outputSemanticName[],
   6023    const ubyte outputSemanticIndex[])
   6024 {
   6025    struct st_translate *t;
   6026    unsigned i;
   6027    struct gl_program_constants *frag_const =
   6028       &ctx->Const.Program[MESA_SHADER_FRAGMENT];
   6029    enum pipe_error ret = PIPE_OK;
   6030 
   6031    assert(numInputs <= ARRAY_SIZE(t->inputs));
   6032    assert(numOutputs <= ARRAY_SIZE(t->outputs));
   6033 
   6034    t = CALLOC_STRUCT(st_translate);
   6035    if (!t) {
   6036       ret = PIPE_ERROR_OUT_OF_MEMORY;
   6037       goto out;
   6038    }
   6039 
   6040    t->procType = procType;
   6041    t->inputMapping = inputMapping;
   6042    t->outputMapping = outputMapping;
   6043    t->ureg = ureg;
   6044    t->num_temp_arrays = program->next_array;
   6045    if (t->num_temp_arrays)
   6046       t->arrays = (struct ureg_dst*)
   6047                   calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
   6048 
   6049    /*
   6050     * Declare input attributes.
   6051     */
   6052    switch (procType) {
   6053    case PIPE_SHADER_FRAGMENT:
   6054    case PIPE_SHADER_GEOMETRY:
   6055    case PIPE_SHADER_TESS_EVAL:
   6056    case PIPE_SHADER_TESS_CTRL:
   6057       sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
   6058 
   6059       for (i = 0; i < program->num_inputs; ++i) {
   6060          struct inout_decl *decl = &program->inputs[i];
   6061          unsigned slot = inputMapping[decl->mesa_index];
   6062          struct ureg_src src;
   6063          ubyte tgsi_usage_mask = decl->usage_mask;
   6064 
   6065          if (glsl_base_type_is_64bit(decl->base_type)) {
   6066             if (tgsi_usage_mask == 1)
   6067                tgsi_usage_mask = TGSI_WRITEMASK_XY;
   6068             else if (tgsi_usage_mask == 2)
   6069                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
   6070             else
   6071                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
   6072          }
   6073 
   6074          unsigned interp_mode = 0;
   6075          unsigned interp_location = 0;
   6076          if (procType == PIPE_SHADER_FRAGMENT) {
   6077             assert(interpMode);
   6078             interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
   6079                interpMode[slot] :
   6080                st_translate_interp(decl->interp, inputSlotToAttr[slot]);
   6081 
   6082             interp_location = decl->interp_loc;
   6083          }
   6084 
   6085          src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
   6086                   inputSemanticName[slot], inputSemanticIndex[slot],
   6087                   interp_mode, 0, interp_location, slot, tgsi_usage_mask,
   6088                   decl->array_id, decl->size);
   6089 
   6090          for (unsigned j = 0; j < decl->size; ++j) {
   6091             if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
   6092                /* The ArrayID is set up in dst_register */
   6093                t->inputs[slot + j] = src;
   6094                t->inputs[slot + j].ArrayID = 0;
   6095                t->inputs[slot + j].Index += j;
   6096             }
   6097          }
   6098       }
   6099       break;
   6100    case PIPE_SHADER_VERTEX:
   6101       for (i = 0; i < numInputs; i++) {
   6102          t->inputs[i] = ureg_DECL_vs_input(ureg, i);
   6103       }
   6104       break;
   6105    case PIPE_SHADER_COMPUTE:
   6106       break;
   6107    default:
   6108       assert(0);
   6109    }
   6110 
   6111    /*
   6112     * Declare output attributes.
   6113     */
   6114    switch (procType) {
   6115    case PIPE_SHADER_FRAGMENT:
   6116    case PIPE_SHADER_COMPUTE:
   6117       break;
   6118    case PIPE_SHADER_GEOMETRY:
   6119    case PIPE_SHADER_TESS_EVAL:
   6120    case PIPE_SHADER_TESS_CTRL:
   6121    case PIPE_SHADER_VERTEX:
   6122       sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
   6123 
   6124       for (i = 0; i < program->num_outputs; ++i) {
   6125          struct inout_decl *decl = &program->outputs[i];
   6126          unsigned slot = outputMapping[decl->mesa_index];
   6127          struct ureg_dst dst;
   6128          ubyte tgsi_usage_mask = decl->usage_mask;
   6129 
   6130          if (glsl_base_type_is_64bit(decl->base_type)) {
   6131             if (tgsi_usage_mask == 1)
   6132                tgsi_usage_mask = TGSI_WRITEMASK_XY;
   6133             else if (tgsi_usage_mask == 2)
   6134                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
   6135             else
   6136                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
   6137          }
   6138 
   6139          dst = ureg_DECL_output_layout(ureg,
   6140                      outputSemanticName[slot], outputSemanticIndex[slot],
   6141                      decl->gs_out_streams,
   6142                      slot, tgsi_usage_mask, decl->array_id, decl->size);
   6143 
   6144          for (unsigned j = 0; j < decl->size; ++j) {
   6145             if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
   6146                /* The ArrayID is set up in dst_register */
   6147                t->outputs[slot + j] = dst;
   6148                t->outputs[slot + j].ArrayID = 0;
   6149                t->outputs[slot + j].Index += j;
   6150             }
   6151          }
   6152       }
   6153       break;
   6154    default:
   6155       assert(0);
   6156    }
   6157 
   6158    if (procType == PIPE_SHADER_FRAGMENT) {
   6159       if (program->shader->info.EarlyFragmentTests)
   6160          ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
   6161 
   6162       if (proginfo->info.inputs_read & VARYING_BIT_POS) {
   6163           /* Must do this after setting up t->inputs. */
   6164           emit_wpos(st_context(ctx), t, proginfo, ureg,
   6165                     program->wpos_transform_const);
   6166       }
   6167 
   6168       if (proginfo->info.inputs_read & VARYING_BIT_FACE)
   6169          emit_face_var(ctx, t);
   6170 
   6171       for (i = 0; i < numOutputs; i++) {
   6172          switch (outputSemanticName[i]) {
   6173          case TGSI_SEMANTIC_POSITION:
   6174             t->outputs[i] = ureg_DECL_output(ureg,
   6175                                              TGSI_SEMANTIC_POSITION, /* Z/Depth */
   6176                                              outputSemanticIndex[i]);
   6177             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
   6178             break;
   6179          case TGSI_SEMANTIC_STENCIL:
   6180             t->outputs[i] = ureg_DECL_output(ureg,
   6181                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
   6182                                              outputSemanticIndex[i]);
   6183             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
   6184             break;
   6185          case TGSI_SEMANTIC_COLOR:
   6186             t->outputs[i] = ureg_DECL_output(ureg,
   6187                                              TGSI_SEMANTIC_COLOR,
   6188                                              outputSemanticIndex[i]);
   6189             break;
   6190          case TGSI_SEMANTIC_SAMPLEMASK:
   6191             t->outputs[i] = ureg_DECL_output(ureg,
   6192                                              TGSI_SEMANTIC_SAMPLEMASK,
   6193                                              outputSemanticIndex[i]);
   6194             /* TODO: If we ever support more than 32 samples, this will have
   6195              * to become an array.
   6196              */
   6197             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
   6198             break;
   6199          default:
   6200             assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
   6201             ret = PIPE_ERROR_BAD_INPUT;
   6202             goto out;
   6203          }
   6204       }
   6205    }
   6206    else if (procType == PIPE_SHADER_VERTEX) {
   6207       for (i = 0; i < numOutputs; i++) {
   6208          if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
   6209             /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
   6210             ureg_MOV(ureg,
   6211                      ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
   6212                      ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
   6213             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
   6214          }
   6215       }
   6216    }
   6217 
   6218    if (procType == PIPE_SHADER_COMPUTE) {
   6219       emit_compute_block_size(proginfo, ureg);
   6220    }
   6221 
   6222    /* Declare address register.
   6223     */
   6224    if (program->num_address_regs > 0) {
   6225       assert(program->num_address_regs <= 3);
   6226       for (int i = 0; i < program->num_address_regs; i++)
   6227          t->address[i] = ureg_DECL_address(ureg);
   6228    }
   6229 
   6230    /* Declare misc input registers
   6231     */
   6232    {
   6233       GLbitfield sysInputs = proginfo->info.system_values_read;
   6234 
   6235       for (i = 0; sysInputs; i++) {
   6236          if (sysInputs & (1 << i)) {
   6237             unsigned semName = _mesa_sysval_to_semantic(i);
   6238 
   6239             t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
   6240 
   6241             if (semName == TGSI_SEMANTIC_INSTANCEID ||
   6242                 semName == TGSI_SEMANTIC_VERTEXID) {
   6243                /* From Gallium perspective, these system values are always
   6244                 * integer, and require native integer support.  However, if
   6245                 * native integer is supported on the vertex stage but not the
   6246                 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
   6247                 * assumes these system values are floats. To resolve the
   6248                 * inconsistency, we insert a U2F.
   6249                 */
   6250                struct st_context *st = st_context(ctx);
   6251                struct pipe_screen *pscreen = st->pipe->screen;
   6252                assert(procType == PIPE_SHADER_VERTEX);
   6253                assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
   6254                (void) pscreen;
   6255                if (!ctx->Const.NativeIntegers) {
   6256                   struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
   6257                   ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
   6258                   t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
   6259                }
   6260             }
   6261 
   6262             if (procType == PIPE_SHADER_FRAGMENT &&
   6263                 semName == TGSI_SEMANTIC_POSITION)
   6264                emit_wpos(st_context(ctx), t, proginfo, ureg,
   6265                          program->wpos_transform_const);
   6266 
   6267             sysInputs &= ~(1 << i);
   6268          }
   6269       }
   6270    }
   6271 
   6272    t->array_sizes = program->array_sizes;
   6273    t->input_decls = program->inputs;
   6274    t->num_input_decls = program->num_inputs;
   6275    t->output_decls = program->outputs;
   6276    t->num_output_decls = program->num_outputs;
   6277 
   6278    /* Emit constants and uniforms.  TGSI uses a single index space for these,
   6279     * so we put all the translated regs in t->constants.
   6280     */
   6281    if (proginfo->Parameters) {
   6282       t->constants = (struct ureg_src *)
   6283          calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
   6284       if (t->constants == NULL) {
   6285          ret = PIPE_ERROR_OUT_OF_MEMORY;
   6286          goto out;
   6287       }
   6288       t->num_constants = proginfo->Parameters->NumParameters;
   6289 
   6290       for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
   6291          switch (proginfo->Parameters->Parameters[i].Type) {
   6292          case PROGRAM_STATE_VAR:
   6293          case PROGRAM_UNIFORM:
   6294             t->constants[i] = ureg_DECL_constant(ureg, i);
   6295             break;
   6296 
   6297          /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
   6298           * addressing of the const buffer.
   6299           * FIXME: Be smarter and recognize param arrays:
   6300           * indirect addressing is only valid within the referenced
   6301           * array.
   6302           */
   6303          case PROGRAM_CONSTANT:
   6304             if (program->indirect_addr_consts)
   6305                t->constants[i] = ureg_DECL_constant(ureg, i);
   6306             else
   6307                t->constants[i] = emit_immediate(t,
   6308                                                 proginfo->Parameters->ParameterValues[i],
   6309                                                 proginfo->Parameters->Parameters[i].DataType,
   6310                                                 4);
   6311             break;
   6312          default:
   6313             break;
   6314          }
   6315       }
   6316    }
   6317 
   6318    for (i = 0; i < proginfo->info.num_ubos; i++) {
   6319       unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
   6320       unsigned num_const_vecs = (size + 15) / 16;
   6321       unsigned first, last;
   6322       assert(num_const_vecs > 0);
   6323       first = 0;
   6324       last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
   6325       ureg_DECL_constant2D(t->ureg, first, last, i + 1);
   6326    }
   6327 
   6328    /* Emit immediate values.
   6329     */
   6330    t->immediates = (struct ureg_src *)
   6331       calloc(program->num_immediates, sizeof(struct ureg_src));
   6332    if (t->immediates == NULL) {
   6333       ret = PIPE_ERROR_OUT_OF_MEMORY;
   6334       goto out;
   6335    }
   6336    t->num_immediates = program->num_immediates;
   6337 
   6338    i = 0;
   6339    foreach_in_list(immediate_storage, imm, &program->immediates) {
   6340       assert(i < program->num_immediates);
   6341       t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
   6342    }
   6343    assert(i == program->num_immediates);
   6344 
   6345    /* texture samplers */
   6346    for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
   6347       if (program->samplers_used & (1u << i)) {
   6348          unsigned type;
   6349 
   6350          t->samplers[i] = ureg_DECL_sampler(ureg, i);
   6351 
   6352          switch (program->sampler_types[i]) {
   6353          case GLSL_TYPE_INT:
   6354             type = TGSI_RETURN_TYPE_SINT;
   6355             break;
   6356          case GLSL_TYPE_UINT:
   6357             type = TGSI_RETURN_TYPE_UINT;
   6358             break;
   6359          case GLSL_TYPE_FLOAT:
   6360             type = TGSI_RETURN_TYPE_FLOAT;
   6361             break;
   6362          default:
   6363             unreachable("not reached");
   6364          }
   6365 
   6366          ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
   6367                                  type, type, type, type );
   6368       }
   6369    }
   6370 
   6371    for (i = 0; i < frag_const->MaxAtomicBuffers; i++) {
   6372       if (program->buffers_used & (1 << i)) {
   6373          t->buffers[i] = ureg_DECL_buffer(ureg, i, true);
   6374       }
   6375    }
   6376 
   6377    for (; i < frag_const->MaxAtomicBuffers + frag_const->MaxShaderStorageBlocks;
   6378         i++) {
   6379       if (program->buffers_used & (1 << i)) {
   6380          t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
   6381       }
   6382    }
   6383 
   6384    if (program->use_shared_memory)
   6385       t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
   6386 
   6387    for (i = 0; i < program->shader->Program->info.num_images; i++) {
   6388       if (program->images_used & (1 << i)) {
   6389          t->images[i] = ureg_DECL_image(ureg, i,
   6390                                         program->image_targets[i],
   6391                                         program->image_formats[i],
   6392                                         true, false);
   6393       }
   6394    }
   6395 
   6396    /* Emit each instruction in turn:
   6397     */
   6398    foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
   6399       compile_tgsi_instruction(t, inst);
   6400 
   6401    /* Set the next shader stage hint for VS and TES. */
   6402    switch (procType) {
   6403    case PIPE_SHADER_VERTEX:
   6404    case PIPE_SHADER_TESS_EVAL:
   6405       if (program->shader_program->SeparateShader)
   6406          break;
   6407 
   6408       for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
   6409          if (program->shader_program->_LinkedShaders[i]) {
   6410             unsigned next;
   6411 
   6412             switch (i) {
   6413             case MESA_SHADER_TESS_CTRL:
   6414                next = PIPE_SHADER_TESS_CTRL;
   6415                break;
   6416             case MESA_SHADER_TESS_EVAL:
   6417                next = PIPE_SHADER_TESS_EVAL;
   6418                break;
   6419             case MESA_SHADER_GEOMETRY:
   6420                next = PIPE_SHADER_GEOMETRY;
   6421                break;
   6422             case MESA_SHADER_FRAGMENT:
   6423                next = PIPE_SHADER_FRAGMENT;
   6424                break;
   6425             default:
   6426                assert(0);
   6427                continue;
   6428             }
   6429 
   6430             ureg_set_next_shader_processor(ureg, next);
   6431             break;
   6432          }
   6433       }
   6434       break;
   6435    }
   6436 
   6437 out:
   6438    if (t) {
   6439       free(t->arrays);
   6440       free(t->temps);
   6441       free(t->constants);
   6442       t->num_constants = 0;
   6443       free(t->immediates);
   6444       t->num_immediates = 0;
   6445       FREE(t);
   6446    }
   6447 
   6448    return ret;
   6449 }
   6450 /* ----------------------------- End TGSI code ------------------------------ */
   6451 
   6452 
   6453 /**
   6454  * Convert a shader's GLSL IR into a Mesa gl_program, although without
   6455  * generating Mesa IR.
   6456  */
   6457 static struct gl_program *
   6458 get_mesa_program_tgsi(struct gl_context *ctx,
   6459                       struct gl_shader_program *shader_program,
   6460                       struct gl_linked_shader *shader)
   6461 {
   6462    glsl_to_tgsi_visitor* v;
   6463    struct gl_program *prog;
   6464    struct gl_shader_compiler_options *options =
   6465          &ctx->Const.ShaderCompilerOptions[shader->Stage];
   6466    struct pipe_screen *pscreen = ctx->st->pipe->screen;
   6467    enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
   6468 
   6469    validate_ir_tree(shader->ir);
   6470 
   6471    prog = shader->Program;
   6472 
   6473    prog->Parameters = _mesa_new_parameter_list();
   6474    v = new glsl_to_tgsi_visitor();
   6475    v->ctx = ctx;
   6476    v->prog = prog;
   6477    v->shader_program = shader_program;
   6478    v->shader = shader;
   6479    v->options = options;
   6480    v->glsl_version = ctx->Const.GLSLVersion;
   6481    v->native_integers = ctx->Const.NativeIntegers;
   6482 
   6483    v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
   6484                                             PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
   6485    v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
   6486                                            PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
   6487 
   6488    _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
   6489                                                prog->Parameters);
   6490 
   6491    /* Remove reads from output registers. */
   6492    if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
   6493       lower_output_reads(shader->Stage, shader->ir);
   6494 
   6495    /* Emit intermediate IR for main(). */
   6496    visit_exec_list(shader->ir, v);
   6497 
   6498 #if 0
   6499    /* Print out some information (for debugging purposes) used by the
   6500     * optimization passes. */
   6501    {
   6502       int i;
   6503       int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
   6504       int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
   6505       int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
   6506       int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
   6507 
   6508       for (i = 0; i < v->next_temp; i++) {
   6509          first_writes[i] = -1;
   6510          first_reads[i] = -1;
   6511          last_writes[i] = -1;
   6512          last_reads[i] = -1;
   6513       }
   6514       v->get_first_temp_read(first_reads);
   6515       v->get_last_temp_read_first_temp_write(last_reads, first_writes);
   6516       v->get_last_temp_write(last_writes);
   6517       for (i = 0; i < v->next_temp; i++)
   6518          printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
   6519                 first_writes[i],
   6520                 last_reads[i],
   6521                 last_writes[i]);
   6522       ralloc_free(first_writes);
   6523       ralloc_free(first_reads);
   6524       ralloc_free(last_writes);
   6525       ralloc_free(last_reads);
   6526    }
   6527 #endif
   6528 
   6529    /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
   6530    v->simplify_cmp();
   6531 
   6532    if (shader->Stage != MESA_SHADER_TESS_CTRL &&
   6533        shader->Stage != MESA_SHADER_TESS_EVAL)
   6534       v->copy_propagate();
   6535 
   6536    while (v->eliminate_dead_code());
   6537 
   6538    v->merge_two_dsts();
   6539    v->merge_registers();
   6540    v->renumber_registers();
   6541 
   6542    /* Write the END instruction. */
   6543    v->emit_asm(NULL, TGSI_OPCODE_END);
   6544 
   6545    if (ctx->_Shader->Flags & GLSL_DUMP) {
   6546       _mesa_log("\n");
   6547       _mesa_log("GLSL IR for linked %s program %d:\n",
   6548              _mesa_shader_stage_to_string(shader->Stage),
   6549              shader_program->Name);
   6550       _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
   6551       _mesa_log("\n\n");
   6552    }
   6553 
   6554    do_set_program_inouts(shader->ir, prog, shader->Stage);
   6555    _mesa_copy_linked_program_data(shader_program, shader);
   6556    shrink_array_declarations(v->inputs, v->num_inputs,
   6557                              &prog->info.inputs_read,
   6558                              prog->info.double_inputs_read,
   6559                              &prog->info.patch_inputs_read);
   6560    shrink_array_declarations(v->outputs, v->num_outputs,
   6561                              &prog->info.outputs_written, 0ULL,
   6562                              &prog->info.patch_outputs_written);
   6563    count_resources(v, prog);
   6564 
   6565    /* The GLSL IR won't be needed anymore. */
   6566    ralloc_free(shader->ir);
   6567    shader->ir = NULL;
   6568 
   6569    /* This must be done before the uniform storage is associated. */
   6570    if (shader->Stage == MESA_SHADER_FRAGMENT &&
   6571        (prog->info.inputs_read & VARYING_BIT_POS ||
   6572         prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
   6573       static const gl_state_index wposTransformState[STATE_LENGTH] = {
   6574          STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
   6575       };
   6576 
   6577       v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
   6578                                                           wposTransformState);
   6579    }
   6580 
   6581    /* Avoid reallocation of the program parameter list, because the uniform
   6582     * storage is only associated with the original parameter list.
   6583     * This should be enough for Bitmap and DrawPixels constants.
   6584     */
   6585    _mesa_reserve_parameter_storage(prog->Parameters, 8);
   6586 
   6587    /* This has to be done last.  Any operation the can cause
   6588     * prog->ParameterValues to get reallocated (e.g., anything that adds a
   6589     * program constant) has to happen before creating this linkage.
   6590     */
   6591    _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
   6592    if (!shader_program->data->LinkStatus) {
   6593       free_glsl_to_tgsi_visitor(v);
   6594       _mesa_reference_program(ctx, &shader->Program, NULL);
   6595       return NULL;
   6596    }
   6597 
   6598    struct st_vertex_program *stvp;
   6599    struct st_fragment_program *stfp;
   6600    struct st_geometry_program *stgp;
   6601    struct st_tessctrl_program *sttcp;
   6602    struct st_tesseval_program *sttep;
   6603    struct st_compute_program *stcp;
   6604 
   6605    switch (shader->Stage) {
   6606    case MESA_SHADER_VERTEX:
   6607       stvp = (struct st_vertex_program *)prog;
   6608       stvp->glsl_to_tgsi = v;
   6609       break;
   6610    case MESA_SHADER_FRAGMENT:
   6611       stfp = (struct st_fragment_program *)prog;
   6612       stfp->glsl_to_tgsi = v;
   6613       break;
   6614    case MESA_SHADER_GEOMETRY:
   6615       stgp = (struct st_geometry_program *)prog;
   6616       stgp->glsl_to_tgsi = v;
   6617       break;
   6618    case MESA_SHADER_TESS_CTRL:
   6619       sttcp = (struct st_tessctrl_program *)prog;
   6620       sttcp->glsl_to_tgsi = v;
   6621       break;
   6622    case MESA_SHADER_TESS_EVAL:
   6623       sttep = (struct st_tesseval_program *)prog;
   6624       sttep->glsl_to_tgsi = v;
   6625       break;
   6626    case MESA_SHADER_COMPUTE:
   6627       stcp = (struct st_compute_program *)prog;
   6628       stcp->glsl_to_tgsi = v;
   6629       break;
   6630    default:
   6631       assert(!"should not be reached");
   6632       return NULL;
   6633    }
   6634 
   6635    return prog;
   6636 }
   6637 
   6638 static void
   6639 set_affected_state_flags(uint64_t *states,
   6640                          struct gl_program *prog,
   6641                          uint64_t new_constants,
   6642                          uint64_t new_sampler_views,
   6643                          uint64_t new_samplers,
   6644                          uint64_t new_images,
   6645                          uint64_t new_ubos,
   6646                          uint64_t new_ssbos,
   6647                          uint64_t new_atomics)
   6648 {
   6649    if (prog->Parameters->NumParameters)
   6650       *states |= new_constants;
   6651 
   6652    if (prog->info.num_textures)
   6653       *states |= new_sampler_views | new_samplers;
   6654 
   6655    if (prog->info.num_images)
   6656       *states |= new_images;
   6657 
   6658    if (prog->info.num_ubos)
   6659       *states |= new_ubos;
   6660 
   6661    if (prog->info.num_ssbos)
   6662       *states |= new_ssbos;
   6663 
   6664    if (prog->info.num_abos)
   6665       *states |= new_atomics;
   6666 }
   6667 
   6668 static struct gl_program *
   6669 get_mesa_program(struct gl_context *ctx,
   6670                  struct gl_shader_program *shader_program,
   6671                  struct gl_linked_shader *shader)
   6672 {
   6673    struct pipe_screen *pscreen = ctx->st->pipe->screen;
   6674    enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(shader->Stage);
   6675    enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
   6676       pscreen->get_shader_param(pscreen, ptarget, PIPE_SHADER_CAP_PREFERRED_IR);
   6677    struct gl_program *prog = NULL;
   6678 
   6679    if (preferred_ir == PIPE_SHADER_IR_NIR) {
   6680       /* TODO only for GLSL VS/FS for now: */
   6681       switch (shader->Stage) {
   6682       case MESA_SHADER_VERTEX:
   6683       case MESA_SHADER_FRAGMENT:
   6684          prog = st_nir_get_mesa_program(ctx, shader_program, shader);
   6685       default:
   6686          break;
   6687       }
   6688    } else {
   6689       prog = get_mesa_program_tgsi(ctx, shader_program, shader);
   6690    }
   6691 
   6692    if (prog) {
   6693       uint64_t *states;
   6694 
   6695       /* This determines which states will be updated when the shader is
   6696        * bound.
   6697        */
   6698       switch (shader->Stage) {
   6699       case MESA_SHADER_VERTEX:
   6700          states = &((struct st_vertex_program*)prog)->affected_states;
   6701 
   6702          *states = ST_NEW_VS_STATE |
   6703                    ST_NEW_RASTERIZER |
   6704                    ST_NEW_VERTEX_ARRAYS;
   6705 
   6706          set_affected_state_flags(states, prog,
   6707                                   ST_NEW_VS_CONSTANTS,
   6708                                   ST_NEW_VS_SAMPLER_VIEWS,
   6709                                   ST_NEW_RENDER_SAMPLERS,
   6710                                   ST_NEW_VS_IMAGES,
   6711                                   ST_NEW_VS_UBOS,
   6712                                   ST_NEW_VS_SSBOS,
   6713                                   ST_NEW_VS_ATOMICS);
   6714          break;
   6715 
   6716       case MESA_SHADER_TESS_CTRL:
   6717          states = &((struct st_tessctrl_program*)prog)->affected_states;
   6718 
   6719          *states = ST_NEW_TCS_STATE;
   6720 
   6721          set_affected_state_flags(states, prog,
   6722                                   ST_NEW_TCS_CONSTANTS,
   6723                                   ST_NEW_TCS_SAMPLER_VIEWS,
   6724                                   ST_NEW_RENDER_SAMPLERS,
   6725                                   ST_NEW_TCS_IMAGES,
   6726                                   ST_NEW_TCS_UBOS,
   6727                                   ST_NEW_TCS_SSBOS,
   6728                                   ST_NEW_TCS_ATOMICS);
   6729          break;
   6730 
   6731       case MESA_SHADER_TESS_EVAL:
   6732          states = &((struct st_tesseval_program*)prog)->affected_states;
   6733 
   6734          *states = ST_NEW_TES_STATE |
   6735                    ST_NEW_RASTERIZER;
   6736 
   6737          set_affected_state_flags(states, prog,
   6738                                   ST_NEW_TES_CONSTANTS,
   6739                                   ST_NEW_TES_SAMPLER_VIEWS,
   6740                                   ST_NEW_RENDER_SAMPLERS,
   6741                                   ST_NEW_TES_IMAGES,
   6742                                   ST_NEW_TES_UBOS,
   6743                                   ST_NEW_TES_SSBOS,
   6744                                   ST_NEW_TES_ATOMICS);
   6745          break;
   6746 
   6747       case MESA_SHADER_GEOMETRY:
   6748          states = &((struct st_geometry_program*)prog)->affected_states;
   6749 
   6750          *states = ST_NEW_GS_STATE |
   6751                    ST_NEW_RASTERIZER;
   6752 
   6753          set_affected_state_flags(states, prog,
   6754                                   ST_NEW_GS_CONSTANTS,
   6755                                   ST_NEW_GS_SAMPLER_VIEWS,
   6756                                   ST_NEW_RENDER_SAMPLERS,
   6757                                   ST_NEW_GS_IMAGES,
   6758                                   ST_NEW_GS_UBOS,
   6759                                   ST_NEW_GS_SSBOS,
   6760                                   ST_NEW_GS_ATOMICS);
   6761          break;
   6762 
   6763       case MESA_SHADER_FRAGMENT:
   6764          states = &((struct st_fragment_program*)prog)->affected_states;
   6765 
   6766          /* gl_FragCoord and glDrawPixels always use constants. */
   6767          *states = ST_NEW_FS_STATE |
   6768                    ST_NEW_SAMPLE_SHADING |
   6769                    ST_NEW_FS_CONSTANTS;
   6770 
   6771          set_affected_state_flags(states, prog,
   6772                                   ST_NEW_FS_CONSTANTS,
   6773                                   ST_NEW_FS_SAMPLER_VIEWS,
   6774                                   ST_NEW_RENDER_SAMPLERS,
   6775                                   ST_NEW_FS_IMAGES,
   6776                                   ST_NEW_FS_UBOS,
   6777                                   ST_NEW_FS_SSBOS,
   6778                                   ST_NEW_FS_ATOMICS);
   6779          break;
   6780 
   6781       case MESA_SHADER_COMPUTE:
   6782          states = &((struct st_compute_program*)prog)->affected_states;
   6783 
   6784          *states = ST_NEW_CS_STATE;
   6785 
   6786          set_affected_state_flags(states, prog,
   6787                                   ST_NEW_CS_CONSTANTS,
   6788                                   ST_NEW_CS_SAMPLER_VIEWS,
   6789                                   ST_NEW_CS_SAMPLERS,
   6790                                   ST_NEW_CS_IMAGES,
   6791                                   ST_NEW_CS_UBOS,
   6792                                   ST_NEW_CS_SSBOS,
   6793                                   ST_NEW_CS_ATOMICS);
   6794          break;
   6795 
   6796       default:
   6797          unreachable("unhandled shader stage");
   6798       }
   6799    }
   6800 
   6801    return prog;
   6802 }
   6803 
   6804 /* See if there are unsupported control flow statements. */
   6805 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
   6806 private:
   6807    const struct gl_shader_compiler_options *options;
   6808 public:
   6809    ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
   6810       : options(options),
   6811         unsupported(false)
   6812    {
   6813    }
   6814 
   6815    virtual ir_visitor_status visit_enter(ir_function *ir)
   6816    {
   6817       /* Other functions are skipped (same as glsl_to_tgsi). */
   6818       if (strcmp(ir->name, "main") == 0)
   6819          return visit_continue;
   6820 
   6821       return visit_continue_with_parent;
   6822    }
   6823 
   6824    virtual ir_visitor_status visit_enter(ir_call *ir)
   6825    {
   6826       if (!ir->callee->is_intrinsic()) {
   6827          unsupported = true; /* it's a function call */
   6828          return visit_stop;
   6829       }
   6830       return visit_continue;
   6831    }
   6832 
   6833    virtual ir_visitor_status visit_enter(ir_return *ir)
   6834    {
   6835       if (options->EmitNoMainReturn) {
   6836          unsupported = true;
   6837          return visit_stop;
   6838       }
   6839       return visit_continue;
   6840    }
   6841 
   6842    bool unsupported;
   6843 };
   6844 
   6845 static bool
   6846 has_unsupported_control_flow(exec_list *ir,
   6847                              const struct gl_shader_compiler_options *options)
   6848 {
   6849    ir_control_flow_info_visitor visitor(options);
   6850    visit_list_elements(&visitor, ir);
   6851    return visitor.unsupported;
   6852 }
   6853 
   6854 extern "C" {
   6855 
   6856 /**
   6857  * Link a shader.
   6858  * Called via ctx->Driver.LinkShader()
   6859  * This actually involves converting GLSL IR into an intermediate TGSI-like IR
   6860  * with code lowering and other optimizations.
   6861  */
   6862 GLboolean
   6863 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
   6864 {
   6865    struct pipe_screen *pscreen = ctx->st->pipe->screen;
   6866    assert(prog->data->LinkStatus);
   6867 
   6868    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   6869       if (prog->_LinkedShaders[i] == NULL)
   6870          continue;
   6871 
   6872       struct gl_linked_shader *shader = prog->_LinkedShaders[i];
   6873       exec_list *ir = shader->ir;
   6874       gl_shader_stage stage = shader->Stage;
   6875       const struct gl_shader_compiler_options *options =
   6876             &ctx->Const.ShaderCompilerOptions[stage];
   6877       enum pipe_shader_type ptarget = st_shader_stage_to_ptarget(stage);
   6878       bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
   6879                                                    PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
   6880       bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
   6881                                                    PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
   6882       unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
   6883                                                         PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
   6884 
   6885       /* If there are forms of indirect addressing that the driver
   6886        * cannot handle, perform the lowering pass.
   6887        */
   6888       if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
   6889           options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
   6890          lower_variable_index_to_cond_assign(stage, ir,
   6891                                              options->EmitNoIndirectInput,
   6892                                              options->EmitNoIndirectOutput,
   6893                                              options->EmitNoIndirectTemp,
   6894                                              options->EmitNoIndirectUniform);
   6895       }
   6896 
   6897       if (ctx->Extensions.ARB_shading_language_packing) {
   6898          unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
   6899                                LOWER_UNPACK_SNORM_2x16 |
   6900                                LOWER_PACK_UNORM_2x16 |
   6901                                LOWER_UNPACK_UNORM_2x16 |
   6902                                LOWER_PACK_SNORM_4x8 |
   6903                                LOWER_UNPACK_SNORM_4x8 |
   6904                                LOWER_UNPACK_UNORM_4x8 |
   6905                                LOWER_PACK_UNORM_4x8;
   6906 
   6907          if (ctx->Extensions.ARB_gpu_shader5)
   6908             lower_inst |= LOWER_PACK_USE_BFI |
   6909                           LOWER_PACK_USE_BFE;
   6910          if (!ctx->st->has_half_float_packing)
   6911             lower_inst |= LOWER_PACK_HALF_2x16 |
   6912                           LOWER_UNPACK_HALF_2x16;
   6913 
   6914          lower_packing_builtins(ir, lower_inst);
   6915       }
   6916 
   6917       if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
   6918          lower_offset_arrays(ir);
   6919       do_mat_op_to_vec(ir);
   6920 
   6921       if (stage == MESA_SHADER_FRAGMENT)
   6922          lower_blend_equation_advanced(shader);
   6923 
   6924       lower_instructions(ir,
   6925                          MOD_TO_FLOOR |
   6926                          FDIV_TO_MUL_RCP |
   6927                          EXP_TO_EXP2 |
   6928                          LOG_TO_LOG2 |
   6929                          LDEXP_TO_ARITH |
   6930                          (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
   6931                          CARRY_TO_ARITH |
   6932                          BORROW_TO_ARITH |
   6933                          (have_dround ? 0 : DOPS_TO_DFRAC) |
   6934                          (options->EmitNoPow ? POW_TO_EXP2 : 0) |
   6935                          (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
   6936                          (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
   6937                          /* Assume that if ARB_gpu_shader5 is not supported
   6938                           * then all of the extended integer functions need
   6939                           * lowering.  It may be necessary to add some caps
   6940                           * for individual instructions.
   6941                           */
   6942                          (!ctx->Extensions.ARB_gpu_shader5
   6943                           ? BIT_COUNT_TO_MATH |
   6944                             EXTRACT_TO_SHIFTS |
   6945                             INSERT_TO_SHIFTS |
   6946                             REVERSE_TO_SHIFTS |
   6947                             FIND_LSB_TO_FLOAT_CAST |
   6948                             FIND_MSB_TO_FLOAT_CAST |
   6949                             IMUL_HIGH_TO_MUL
   6950                           : 0));
   6951 
   6952       do_vec_index_to_cond_assign(ir);
   6953       lower_vector_insert(ir, true);
   6954       lower_quadop_vector(ir, false);
   6955       lower_noise(ir);
   6956       if (options->MaxIfDepth == 0) {
   6957          lower_discard(ir);
   6958       }
   6959 
   6960       if (ctx->Const.GLSLOptimizeConservatively) {
   6961          /* Do it once and repeat only if there's unsupported control flow. */
   6962          do {
   6963             do_common_optimization(ir, true, true, options,
   6964                                    ctx->Const.NativeIntegers);
   6965             lower_if_to_cond_assign((gl_shader_stage)i, ir,
   6966                                     options->MaxIfDepth, if_threshold);
   6967          } while (has_unsupported_control_flow(ir, options));
   6968       } else {
   6969          /* Repeat it until it stops making changes. */
   6970          bool progress;
   6971          do {
   6972             progress = do_common_optimization(ir, true, true, options,
   6973                                               ctx->Const.NativeIntegers);
   6974             progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
   6975                                                 options->MaxIfDepth, if_threshold);
   6976          } while (progress);
   6977       }
   6978 
   6979       validate_ir_tree(ir);
   6980    }
   6981 
   6982    build_program_resource_list(ctx, prog);
   6983 
   6984    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   6985       struct gl_program *linked_prog;
   6986 
   6987       if (prog->_LinkedShaders[i] == NULL)
   6988          continue;
   6989 
   6990       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
   6991 
   6992       if (linked_prog) {
   6993          if (!ctx->Driver.ProgramStringNotify(ctx,
   6994                                               _mesa_shader_stage_to_program(i),
   6995                                               linked_prog)) {
   6996             _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
   6997                                     NULL);
   6998             return GL_FALSE;
   6999          }
   7000       }
   7001    }
   7002 
   7003    return GL_TRUE;
   7004 }
   7005 
   7006 void
   7007 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
   7008                                 const GLuint outputMapping[],
   7009                                 struct pipe_stream_output_info *so)
   7010 {
   7011    struct gl_transform_feedback_info *info =
   7012       glsl_to_tgsi->shader_program->xfb_program->sh.LinkedTransformFeedback;
   7013    st_translate_stream_output_info2(info, outputMapping, so);
   7014 }
   7015 
   7016 void
   7017 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
   7018                                 const GLuint outputMapping[],
   7019                                 struct pipe_stream_output_info *so)
   7020 {
   7021    unsigned i;
   7022 
   7023    for (i = 0; i < info->NumOutputs; i++) {
   7024       so->output[i].register_index =
   7025          outputMapping[info->Outputs[i].OutputRegister];
   7026       so->output[i].start_component = info->Outputs[i].ComponentOffset;
   7027       so->output[i].num_components = info->Outputs[i].NumComponents;
   7028       so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
   7029       so->output[i].dst_offset = info->Outputs[i].DstOffset;
   7030       so->output[i].stream = info->Outputs[i].StreamId;
   7031    }
   7032 
   7033    for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
   7034       so->stride[i] = info->Buffers[i].Stride;
   7035    }
   7036    so->num_outputs = info->NumOutputs;
   7037 }
   7038 
   7039 } /* extern "C" */
   7040