Home | History | Annotate | Download | only in Hexagon
      1 //===--- RDFGraph.h -------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Target-independent, SSA-based data flow graph for register data flow (RDF)
     11 // for a non-SSA program representation (e.g. post-RA machine code).
     12 //
     13 //
     14 // *** Introduction
     15 //
     16 // The RDF graph is a collection of nodes, each of which denotes some element
     17 // of the program. There are two main types of such elements: code and refe-
     18 // rences. Conceptually, "code" is something that represents the structure
     19 // of the program, e.g. basic block or a statement, while "reference" is an
     20 // instance of accessing a register, e.g. a definition or a use. Nodes are
     21 // connected with each other based on the structure of the program (such as
     22 // blocks, instructions, etc.), and based on the data flow (e.g. reaching
     23 // definitions, reached uses, etc.). The single-reaching-definition principle
     24 // of SSA is generally observed, although, due to the non-SSA representation
     25 // of the program, there are some differences between the graph and a "pure"
     26 // SSA representation.
     27 //
     28 //
     29 // *** Implementation remarks
     30 //
     31 // Since the graph can contain a large number of nodes, memory consumption
     32 // was one of the major design considerations. As a result, there is a single
     33 // base class NodeBase which defines all members used by all possible derived
     34 // classes. The members are arranged in a union, and a derived class cannot
     35 // add any data members of its own. Each derived class only defines the
     36 // functional interface, i.e. member functions. NodeBase must be a POD,
     37 // which implies that all of its members must also be PODs.
     38 // Since nodes need to be connected with other nodes, pointers have been
     39 // replaced with 32-bit identifiers: each node has an id of type NodeId.
     40 // There are mapping functions in the graph that translate between actual
     41 // memory addresses and the corresponding identifiers.
     42 // A node id of 0 is equivalent to nullptr.
     43 //
     44 //
     45 // *** Structure of the graph
     46 //
     47 // A code node is always a collection of other nodes. For example, a code
     48 // node corresponding to a basic block will contain code nodes corresponding
     49 // to instructions. In turn, a code node corresponding to an instruction will
     50 // contain a list of reference nodes that correspond to the definitions and
     51 // uses of registers in that instruction. The members are arranged into a
     52 // circular list, which is yet another consequence of the effort to save
     53 // memory: for each member node it should be possible to obtain its owner,
     54 // and it should be possible to access all other members. There are other
     55 // ways to accomplish that, but the circular list seemed the most natural.
     56 //
     57 // +- CodeNode -+
     58 // |            | <---------------------------------------------------+
     59 // +-+--------+-+                                                     |
     60 //   |FirstM  |LastM                                                  |
     61 //   |        +-------------------------------------+                 |
     62 //   |                                              |                 |
     63 //   V                                              V                 |
     64 //  +----------+ Next +----------+ Next       Next +----------+ Next  |
     65 //  |          |----->|          |-----> ... ----->|          |----->-+
     66 //  +- Member -+      +- Member -+                 +- Member -+
     67 //
     68 // The order of members is such that related reference nodes (see below)
     69 // should be contiguous on the member list.
     70 //
     71 // A reference node is a node that encapsulates an access to a register,
     72 // in other words, data flowing into or out of a register. There are two
     73 // major kinds of reference nodes: defs and uses. A def node will contain
     74 // the id of the first reached use, and the id of the first reached def.
     75 // Each def and use will contain the id of the reaching def, and also the
     76 // id of the next reached def (for def nodes) or use (for use nodes).
     77 // The "next node sharing the same reaching def" is denoted as "sibling".
     78 // In summary:
     79 // - Def node contains: reaching def, sibling, first reached def, and first
     80 // reached use.
     81 // - Use node contains: reaching def and sibling.
     82 //
     83 // +-- DefNode --+
     84 // | R2 = ...    | <---+--------------------+
     85 // ++---------+--+     |                    |
     86 //  |Reached  |Reached |                    |
     87 //  |Def      |Use     |                    |
     88 //  |         |        |Reaching            |Reaching
     89 //  |         V        |Def                 |Def
     90 //  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
     91 //  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
     92 //  |      +-------------+      +-------------+
     93 //  V
     94 // +-- DefNode --+ Sib
     95 // | R2 = ...    |----> ...
     96 // ++---------+--+
     97 //  |         |
     98 //  |         |
     99 // ...       ...
    100 //
    101 // To get a full picture, the circular lists connecting blocks within a
    102 // function, instructions within a block, etc. should be superimposed with
    103 // the def-def, def-use links shown above.
    104 // To illustrate this, consider a small example in a pseudo-assembly:
    105 // foo:
    106 //   add r2, r0, r1   ; r2 = r0+r1
    107 //   addi r0, r2, 1   ; r0 = r2+1
    108 //   ret r0           ; return value in r0
    109 //
    110 // The graph (in a format used by the debugging functions) would look like:
    111 //
    112 //   DFG dump:[
    113 //   f1: Function foo
    114 //   b2: === BB#0 === preds(0), succs(0):
    115 //   p3: phi [d4<r0>(,d12,u9):]
    116 //   p5: phi [d6<r1>(,,u10):]
    117 //   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
    118 //   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
    119 //   s14: ret [u15<r0>(d12):]
    120 //   ]
    121 //
    122 // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
    123 // kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
    124 // ment, d - def, u - use).
    125 // The format of a def node is:
    126 //   dN<R>(rd,d,u):sib,
    127 // where
    128 //   N   - numeric node id,
    129 //   R   - register being defined
    130 //   rd  - reaching def,
    131 //   d   - reached def,
    132 //   u   - reached use,
    133 //   sib - sibling.
    134 // The format of a use node is:
    135 //   uN<R>[!](rd):sib,
    136 // where
    137 //   N   - numeric node id,
    138 //   R   - register being used,
    139 //   rd  - reaching def,
    140 //   sib - sibling.
    141 // Possible annotations (usually preceding the node id):
    142 //   +   - preserving def,
    143 //   ~   - clobbering def,
    144 //   "   - shadow ref (follows the node id),
    145 //   !   - fixed register (appears after register name).
    146 //
    147 // The circular lists are not explicit in the dump.
    148 //
    149 //
    150 // *** Node attributes
    151 //
    152 // NodeBase has a member "Attrs", which is the primary way of determining
    153 // the node's characteristics. The fields in this member decide whether
    154 // the node is a code node or a reference node (i.e. node's "type"), then
    155 // within each type, the "kind" determines what specifically this node
    156 // represents. The remaining bits, "flags", contain additional information
    157 // that is even more detailed than the "kind".
    158 // CodeNode's kinds are:
    159 // - Phi:   Phi node, members are reference nodes.
    160 // - Stmt:  Statement, members are reference nodes.
    161 // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
    162 // - Func:  The whole function. The members are basic block nodes.
    163 // RefNode's kinds are:
    164 // - Use.
    165 // - Def.
    166 //
    167 // Meaning of flags:
    168 // - Preserving: applies only to defs. A preserving def is one that can
    169 //   preserve some of the original bits among those that are included in
    170 //   the register associated with that def. For example, if R0 is a 32-bit
    171 //   register, but a def can only change the lower 16 bits, then it will
    172 //   be marked as preserving.
    173 // - Shadow: a reference that has duplicates holding additional reaching
    174 //   defs (see more below).
    175 // - Clobbering: applied only to defs, indicates that the value generated
    176 //   by this def is unspecified. A typical example would be volatile registers
    177 //   after function calls.
    178 //
    179 //
    180 // *** Shadow references
    181 //
    182 // It may happen that a super-register can have two (or more) non-overlapping
    183 // sub-registers. When both of these sub-registers are defined and followed
    184 // by a use of the super-register, the use of the super-register will not
    185 // have a unique reaching def: both defs of the sub-registers need to be
    186 // accounted for. In such cases, a duplicate use of the super-register is
    187 // added and it points to the extra reaching def. Both uses are marked with
    188 // a flag "shadow". Example:
    189 // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
    190 //   set r0, 1        ; r0 = 1
    191 //   set r1, 1        ; r1 = 1
    192 //   addi t1, t0, 1   ; t1 = t0+1
    193 //
    194 // The DFG:
    195 //   s1: set [d2<r0>(,,u9):]
    196 //   s3: set [d4<r1>(,,u10):]
    197 //   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
    198 //
    199 // The statement s5 has two use nodes for t0: u7" and u9". The quotation
    200 // mark " indicates that the node is a shadow.
    201 //
    202 #ifndef RDF_GRAPH_H
    203 #define RDF_GRAPH_H
    204 
    205 #include "llvm/Support/Allocator.h"
    206 #include "llvm/Support/Debug.h"
    207 #include "llvm/Support/raw_ostream.h"
    208 #include "llvm/Support/Timer.h"
    209 
    210 #include <functional>
    211 #include <map>
    212 #include <set>
    213 #include <vector>
    214 
    215 namespace llvm {
    216   class MachineBasicBlock;
    217   class MachineFunction;
    218   class MachineInstr;
    219   class MachineOperand;
    220   class MachineDominanceFrontier;
    221   class MachineDominatorTree;
    222   class TargetInstrInfo;
    223   class TargetRegisterInfo;
    224 
    225 namespace rdf {
    226   typedef uint32_t NodeId;
    227 
    228   struct NodeAttrs {
    229     enum : uint16_t {
    230       None          = 0x0000,   // Nothing
    231 
    232       // Types: 2 bits
    233       TypeMask      = 0x0003,
    234       Code          = 0x0001,   // 01, Container
    235       Ref           = 0x0002,   // 10, Reference
    236 
    237       // Kind: 3 bits
    238       KindMask      = 0x0007 << 2,
    239       Def           = 0x0001 << 2,  // 001
    240       Use           = 0x0002 << 2,  // 010
    241       Phi           = 0x0003 << 2,  // 011
    242       Stmt          = 0x0004 << 2,  // 100
    243       Block         = 0x0005 << 2,  // 101
    244       Func          = 0x0006 << 2,  // 110
    245 
    246       // Flags: 5 bits for now
    247       FlagMask      = 0x001F << 5,
    248       Shadow        = 0x0001 << 5,  // 00001, Has extra reaching defs.
    249       Clobbering    = 0x0002 << 5,  // 00010, Produces unspecified values.
    250       PhiRef        = 0x0004 << 5,  // 00100, Member of PhiNode.
    251       Preserving    = 0x0008 << 5,  // 01000, Def can keep original bits.
    252       Fixed         = 0x0010 << 5,  // 10000, Fixed register.
    253     };
    254 
    255     static uint16_t type(uint16_t T)  { return T & TypeMask; }
    256     static uint16_t kind(uint16_t T)  { return T & KindMask; }
    257     static uint16_t flags(uint16_t T) { return T & FlagMask; }
    258 
    259     static uint16_t set_type(uint16_t A, uint16_t T) {
    260       return (A & ~TypeMask) | T;
    261     }
    262     static uint16_t set_kind(uint16_t A, uint16_t K) {
    263       return (A & ~KindMask) | K;
    264     }
    265     static uint16_t set_flags(uint16_t A, uint16_t F) {
    266       return (A & ~FlagMask) | F;
    267     }
    268 
    269     // Test if A contains B.
    270     static bool contains(uint16_t A, uint16_t B) {
    271       if (type(A) != Code)
    272         return false;
    273       uint16_t KB = kind(B);
    274       switch (kind(A)) {
    275         case Func:
    276           return KB == Block;
    277         case Block:
    278           return KB == Phi || KB == Stmt;
    279         case Phi:
    280         case Stmt:
    281           return type(B) == Ref;
    282       }
    283       return false;
    284     }
    285   };
    286 
    287   struct BuildOptions {
    288     enum : unsigned {
    289       None          = 0x00,
    290       KeepDeadPhis  = 0x01,   // Do not remove dead phis during build.
    291     };
    292   };
    293 
    294   template <typename T> struct NodeAddr {
    295     NodeAddr() : Addr(nullptr), Id(0) {}
    296     NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
    297     NodeAddr(const NodeAddr&) = default;
    298     NodeAddr &operator= (const NodeAddr&) = default;
    299 
    300     bool operator== (const NodeAddr<T> &NA) const {
    301       assert((Addr == NA.Addr) == (Id == NA.Id));
    302       return Addr == NA.Addr;
    303     }
    304     bool operator!= (const NodeAddr<T> &NA) const {
    305       return !operator==(NA);
    306     }
    307     // Type cast (casting constructor). The reason for having this class
    308     // instead of std::pair.
    309     template <typename S> NodeAddr(const NodeAddr<S> &NA)
    310       : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
    311 
    312     T Addr;
    313     NodeId Id;
    314   };
    315 
    316   struct NodeBase;
    317 
    318   // Fast memory allocation and translation between node id and node address.
    319   // This is really the same idea as the one underlying the "bump pointer
    320   // allocator", the difference being in the translation. A node id is
    321   // composed of two components: the index of the block in which it was
    322   // allocated, and the index within the block. With the default settings,
    323   // where the number of nodes per block is 4096, the node id (minus 1) is:
    324   //
    325   // bit position:                11             0
    326   // +----------------------------+--------------+
    327   // | Index of the block         |Index in block|
    328   // +----------------------------+--------------+
    329   //
    330   // The actual node id is the above plus 1, to avoid creating a node id of 0.
    331   //
    332   // This method significantly improved the build time, compared to using maps
    333   // (std::unordered_map or DenseMap) to translate between pointers and ids.
    334   struct NodeAllocator {
    335     // Amount of storage for a single node.
    336     enum { NodeMemSize = 32 };
    337     NodeAllocator(uint32_t NPB = 4096)
    338         : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
    339           IndexMask((1 << BitsPerIndex)-1), ActiveEnd(nullptr) {
    340       assert(isPowerOf2_32(NPB));
    341     }
    342     NodeBase *ptr(NodeId N) const {
    343       uint32_t N1 = N-1;
    344       uint32_t BlockN = N1 >> BitsPerIndex;
    345       uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
    346       return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
    347     }
    348     NodeId id(const NodeBase *P) const;
    349     NodeAddr<NodeBase*> New();
    350     void clear();
    351 
    352   private:
    353     void startNewBlock();
    354     bool needNewBlock();
    355     uint32_t makeId(uint32_t Block, uint32_t Index) const {
    356       // Add 1 to the id, to avoid the id of 0, which is treated as "null".
    357       return ((Block << BitsPerIndex) | Index) + 1;
    358     }
    359 
    360     const uint32_t NodesPerBlock;
    361     const uint32_t BitsPerIndex;
    362     const uint32_t IndexMask;
    363     char *ActiveEnd;
    364     std::vector<char*> Blocks;
    365     typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
    366     AllocatorTy MemPool;
    367   };
    368 
    369   struct RegisterRef {
    370     unsigned Reg, Sub;
    371 
    372     // No non-trivial constructors, since this will be a member of a union.
    373     RegisterRef() = default;
    374     RegisterRef(const RegisterRef &RR) = default;
    375     RegisterRef &operator= (const RegisterRef &RR) = default;
    376     bool operator== (const RegisterRef &RR) const {
    377       return Reg == RR.Reg && Sub == RR.Sub;
    378     }
    379     bool operator!= (const RegisterRef &RR) const {
    380       return !operator==(RR);
    381     }
    382     bool operator< (const RegisterRef &RR) const {
    383       return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
    384     }
    385   };
    386   typedef std::set<RegisterRef> RegisterSet;
    387 
    388   struct RegisterAliasInfo {
    389     RegisterAliasInfo(const TargetRegisterInfo &tri) : TRI(tri) {}
    390     virtual ~RegisterAliasInfo() {}
    391 
    392     virtual std::vector<RegisterRef> getAliasSet(RegisterRef RR) const;
    393     virtual bool alias(RegisterRef RA, RegisterRef RB) const;
    394     virtual bool covers(RegisterRef RA, RegisterRef RB) const;
    395     virtual bool covers(const RegisterSet &RRs, RegisterRef RR) const;
    396 
    397     const TargetRegisterInfo &TRI;
    398   };
    399 
    400   struct TargetOperandInfo {
    401     TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
    402     virtual ~TargetOperandInfo() {}
    403     virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
    404     virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
    405     virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
    406 
    407     const TargetInstrInfo &TII;
    408   };
    409 
    410 
    411   struct DataFlowGraph;
    412 
    413   struct NodeBase {
    414   public:
    415     // Make sure this is a POD.
    416     NodeBase() = default;
    417     uint16_t getType()  const { return NodeAttrs::type(Attrs); }
    418     uint16_t getKind()  const { return NodeAttrs::kind(Attrs); }
    419     uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
    420     NodeId   getNext()  const { return Next; }
    421 
    422     uint16_t getAttrs() const { return Attrs; }
    423     void setAttrs(uint16_t A) { Attrs = A; }
    424     void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
    425 
    426     // Insert node NA after "this" in the circular chain.
    427     void append(NodeAddr<NodeBase*> NA);
    428     // Initialize all members to 0.
    429     void init() { memset(this, 0, sizeof *this); }
    430     void setNext(NodeId N) { Next = N; }
    431 
    432   protected:
    433     uint16_t Attrs;
    434     uint16_t Reserved;
    435     NodeId Next;                // Id of the next node in the circular chain.
    436     // Definitions of nested types. Using anonymous nested structs would make
    437     // this class definition clearer, but unnamed structs are not a part of
    438     // the standard.
    439     struct Def_struct  {
    440       NodeId DD, DU;          // Ids of the first reached def and use.
    441     };
    442     struct PhiU_struct  {
    443       NodeId PredB;           // Id of the predecessor block for a phi use.
    444     };
    445     struct Code_struct {
    446       void *CP;               // Pointer to the actual code.
    447       NodeId FirstM, LastM;   // Id of the first member and last.
    448     };
    449     struct Ref_struct {
    450       NodeId RD, Sib;         // Ids of the reaching def and the sibling.
    451       union {
    452         Def_struct Def;
    453         PhiU_struct PhiU;
    454       };
    455       union {
    456         MachineOperand *Op;   // Non-phi refs point to a machine operand.
    457         RegisterRef RR;       // Phi refs store register info directly.
    458       };
    459     };
    460 
    461     // The actual payload.
    462     union {
    463       Ref_struct Ref;
    464       Code_struct Code;
    465     };
    466   };
    467   // The allocator allocates chunks of 32 bytes for each node. The fact that
    468   // each node takes 32 bytes in memory is used for fast translation between
    469   // the node id and the node address.
    470   static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
    471         "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
    472 
    473   typedef std::vector<NodeAddr<NodeBase*>> NodeList;
    474   typedef std::set<NodeId> NodeSet;
    475 
    476   struct RefNode : public NodeBase {
    477     RefNode() = default;
    478     RegisterRef getRegRef() const;
    479     MachineOperand &getOp() {
    480       assert(!(getFlags() & NodeAttrs::PhiRef));
    481       return *Ref.Op;
    482     }
    483     void setRegRef(RegisterRef RR);
    484     void setRegRef(MachineOperand *Op);
    485     NodeId getReachingDef() const {
    486       return Ref.RD;
    487     }
    488     void setReachingDef(NodeId RD) {
    489       Ref.RD = RD;
    490     }
    491     NodeId getSibling() const {
    492       return Ref.Sib;
    493     }
    494     void setSibling(NodeId Sib) {
    495       Ref.Sib = Sib;
    496     }
    497     bool isUse() const {
    498       assert(getType() == NodeAttrs::Ref);
    499       return getKind() == NodeAttrs::Use;
    500     }
    501     bool isDef() const {
    502       assert(getType() == NodeAttrs::Ref);
    503       return getKind() == NodeAttrs::Def;
    504     }
    505 
    506     template <typename Predicate>
    507     NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
    508         const DataFlowGraph &G);
    509     NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
    510   };
    511 
    512   struct DefNode : public RefNode {
    513     NodeId getReachedDef() const {
    514       return Ref.Def.DD;
    515     }
    516     void setReachedDef(NodeId D) {
    517       Ref.Def.DD = D;
    518     }
    519     NodeId getReachedUse() const {
    520       return Ref.Def.DU;
    521     }
    522     void setReachedUse(NodeId U) {
    523       Ref.Def.DU = U;
    524     }
    525 
    526     void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
    527   };
    528 
    529   struct UseNode : public RefNode {
    530     void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
    531   };
    532 
    533   struct PhiUseNode : public UseNode {
    534     NodeId getPredecessor() const {
    535       assert(getFlags() & NodeAttrs::PhiRef);
    536       return Ref.PhiU.PredB;
    537     }
    538     void setPredecessor(NodeId B) {
    539       assert(getFlags() & NodeAttrs::PhiRef);
    540       Ref.PhiU.PredB = B;
    541     }
    542   };
    543 
    544   struct CodeNode : public NodeBase {
    545     template <typename T> T getCode() const {
    546       return static_cast<T>(Code.CP);
    547     }
    548     void setCode(void *C) {
    549       Code.CP = C;
    550     }
    551 
    552     NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
    553     NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
    554     void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
    555     void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
    556         const DataFlowGraph &G);
    557     void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
    558 
    559     NodeList members(const DataFlowGraph &G) const;
    560     template <typename Predicate>
    561     NodeList members_if(Predicate P, const DataFlowGraph &G) const;
    562   };
    563 
    564   struct InstrNode : public CodeNode {
    565     NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
    566   };
    567 
    568   struct PhiNode : public InstrNode {
    569     MachineInstr *getCode() const {
    570       return nullptr;
    571     }
    572   };
    573 
    574   struct StmtNode : public InstrNode {
    575     MachineInstr *getCode() const {
    576       return CodeNode::getCode<MachineInstr*>();
    577     }
    578   };
    579 
    580   struct BlockNode : public CodeNode {
    581     MachineBasicBlock *getCode() const {
    582       return CodeNode::getCode<MachineBasicBlock*>();
    583     }
    584     void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
    585   };
    586 
    587   struct FuncNode : public CodeNode {
    588     MachineFunction *getCode() const {
    589       return CodeNode::getCode<MachineFunction*>();
    590     }
    591     NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
    592         const DataFlowGraph &G) const;
    593     NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
    594   };
    595 
    596   struct DataFlowGraph {
    597     DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
    598         const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
    599         const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai,
    600         const TargetOperandInfo &toi);
    601 
    602     NodeBase *ptr(NodeId N) const;
    603     template <typename T> T ptr(NodeId N) const {
    604       return static_cast<T>(ptr(N));
    605     }
    606     NodeId id(const NodeBase *P) const;
    607 
    608     template <typename T> NodeAddr<T> addr(NodeId N) const {
    609       return { ptr<T>(N), N };
    610     }
    611 
    612     NodeAddr<FuncNode*> getFunc() const {
    613       return Func;
    614     }
    615     MachineFunction &getMF() const {
    616       return MF;
    617     }
    618     const TargetInstrInfo &getTII() const {
    619       return TII;
    620     }
    621     const TargetRegisterInfo &getTRI() const {
    622       return TRI;
    623     }
    624     const MachineDominatorTree &getDT() const {
    625       return MDT;
    626     }
    627     const MachineDominanceFrontier &getDF() const {
    628       return MDF;
    629     }
    630     const RegisterAliasInfo &getRAI() const {
    631       return RAI;
    632     }
    633 
    634     struct DefStack {
    635       DefStack() = default;
    636       bool empty() const { return Stack.empty() || top() == bottom(); }
    637     private:
    638       typedef NodeAddr<DefNode*> value_type;
    639       struct Iterator {
    640         typedef DefStack::value_type value_type;
    641         Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
    642         Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
    643         value_type operator*() const {
    644           assert(Pos >= 1);
    645           return DS.Stack[Pos-1];
    646         }
    647         const value_type *operator->() const {
    648           assert(Pos >= 1);
    649           return &DS.Stack[Pos-1];
    650         }
    651         bool operator==(const Iterator &It) const { return Pos == It.Pos; }
    652         bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
    653       private:
    654         Iterator(const DefStack &S, bool Top);
    655         // Pos-1 is the index in the StorageType object that corresponds to
    656         // the top of the DefStack.
    657         const DefStack &DS;
    658         unsigned Pos;
    659         friend struct DefStack;
    660       };
    661     public:
    662       typedef Iterator iterator;
    663       iterator top() const { return Iterator(*this, true); }
    664       iterator bottom() const { return Iterator(*this, false); }
    665       unsigned size() const;
    666 
    667       void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
    668       void pop();
    669       void start_block(NodeId N);
    670       void clear_block(NodeId N);
    671     private:
    672       friend struct Iterator;
    673       typedef std::vector<value_type> StorageType;
    674       bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
    675         return (P.Addr == nullptr) && (N == 0 || P.Id == N);
    676       }
    677       unsigned nextUp(unsigned P) const;
    678       unsigned nextDown(unsigned P) const;
    679       StorageType Stack;
    680     };
    681 
    682     typedef std::map<RegisterRef,DefStack> DefStackMap;
    683 
    684     void build(unsigned Options = BuildOptions::None);
    685     void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
    686     void markBlock(NodeId B, DefStackMap &DefM);
    687     void releaseBlock(NodeId B, DefStackMap &DefM);
    688 
    689     NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
    690         NodeAddr<RefNode*> RA) const;
    691     NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
    692         NodeAddr<RefNode*> RA, bool Create);
    693     NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
    694         NodeAddr<RefNode*> RA) const;
    695     NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
    696         NodeAddr<RefNode*> RA, bool Create);
    697     NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
    698         NodeAddr<RefNode*> RA) const;
    699 
    700     NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
    701         NodeAddr<RefNode*> RA) const;
    702 
    703     void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
    704       unlinkUseDF(UA);
    705       if (RemoveFromOwner)
    706         removeFromOwner(UA);
    707     }
    708     void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
    709       unlinkDefDF(DA);
    710       if (RemoveFromOwner)
    711         removeFromOwner(DA);
    712     }
    713 
    714     // Some useful filters.
    715     template <uint16_t Kind>
    716     static bool IsRef(const NodeAddr<NodeBase*> BA) {
    717       return BA.Addr->getType() == NodeAttrs::Ref &&
    718              BA.Addr->getKind() == Kind;
    719     }
    720     template <uint16_t Kind>
    721     static bool IsCode(const NodeAddr<NodeBase*> BA) {
    722       return BA.Addr->getType() == NodeAttrs::Code &&
    723              BA.Addr->getKind() == Kind;
    724     }
    725     static bool IsDef(const NodeAddr<NodeBase*> BA) {
    726       return BA.Addr->getType() == NodeAttrs::Ref &&
    727              BA.Addr->getKind() == NodeAttrs::Def;
    728     }
    729     static bool IsUse(const NodeAddr<NodeBase*> BA) {
    730       return BA.Addr->getType() == NodeAttrs::Ref &&
    731              BA.Addr->getKind() == NodeAttrs::Use;
    732     }
    733     static bool IsPhi(const NodeAddr<NodeBase*> BA) {
    734       return BA.Addr->getType() == NodeAttrs::Code &&
    735              BA.Addr->getKind() == NodeAttrs::Phi;
    736     }
    737 
    738   private:
    739     void reset();
    740 
    741     NodeAddr<NodeBase*> newNode(uint16_t Attrs);
    742     NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
    743     NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
    744         MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
    745     NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
    746         RegisterRef RR, NodeAddr<BlockNode*> PredB,
    747         uint16_t Flags = NodeAttrs::PhiRef);
    748     NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
    749         MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
    750     NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
    751         RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
    752     NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
    753     NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
    754         MachineInstr *MI);
    755     NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
    756         MachineBasicBlock *BB);
    757     NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
    758 
    759     template <typename Predicate>
    760     std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
    761     locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
    762         Predicate P) const;
    763 
    764     typedef std::map<NodeId,RegisterSet> BlockRefsMap;
    765 
    766     void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
    767     void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
    768     void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
    769         NodeAddr<BlockNode*> BA);
    770     void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
    771         NodeAddr<BlockNode*> BA);
    772     void removeUnusedPhis();
    773 
    774     template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
    775         NodeAddr<T> TA, DefStack &DS);
    776     void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
    777     void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
    778 
    779     void unlinkUseDF(NodeAddr<UseNode*> UA);
    780     void unlinkDefDF(NodeAddr<DefNode*> DA);
    781     void removeFromOwner(NodeAddr<RefNode*> RA) {
    782       NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
    783       IA.Addr->removeMember(RA, *this);
    784     }
    785 
    786     TimerGroup TimeG;
    787     NodeAddr<FuncNode*> Func;
    788     NodeAllocator Memory;
    789 
    790     MachineFunction &MF;
    791     const TargetInstrInfo &TII;
    792     const TargetRegisterInfo &TRI;
    793     const MachineDominatorTree &MDT;
    794     const MachineDominanceFrontier &MDF;
    795     const RegisterAliasInfo &RAI;
    796     const TargetOperandInfo &TOI;
    797   };  // struct DataFlowGraph
    798 
    799   template <typename Predicate>
    800   NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
    801         bool NextOnly, const DataFlowGraph &G) {
    802     // Get the "Next" reference in the circular list that references RR and
    803     // satisfies predicate "Pred".
    804     auto NA = G.addr<NodeBase*>(getNext());
    805 
    806     while (NA.Addr != this) {
    807       if (NA.Addr->getType() == NodeAttrs::Ref) {
    808         NodeAddr<RefNode*> RA = NA;
    809         if (RA.Addr->getRegRef() == RR && P(NA))
    810           return NA;
    811         if (NextOnly)
    812           break;
    813         NA = G.addr<NodeBase*>(NA.Addr->getNext());
    814       } else {
    815         // We've hit the beginning of the chain.
    816         assert(NA.Addr->getType() == NodeAttrs::Code);
    817         NodeAddr<CodeNode*> CA = NA;
    818         NA = CA.Addr->getFirstMember(G);
    819       }
    820     }
    821     // Return the equivalent of "nullptr" if such a node was not found.
    822     return NodeAddr<RefNode*>();
    823   }
    824 
    825   template <typename Predicate>
    826   NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
    827     NodeList MM;
    828     auto M = getFirstMember(G);
    829     if (M.Id == 0)
    830       return MM;
    831 
    832     while (M.Addr != this) {
    833       if (P(M))
    834         MM.push_back(M);
    835       M = G.addr<NodeBase*>(M.Addr->getNext());
    836     }
    837     return MM;
    838   }
    839 
    840 
    841   template <typename T> struct Print;
    842   template <typename T>
    843   raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
    844 
    845   template <typename T>
    846   struct Print {
    847     Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
    848     const T &Obj;
    849     const DataFlowGraph &G;
    850   };
    851 
    852   template <typename T>
    853   struct PrintNode : Print<NodeAddr<T>> {
    854     PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
    855       : Print<NodeAddr<T>>(x, g) {}
    856   };
    857 } // namespace rdf
    858 } // namespace llvm
    859 
    860 #endif // RDF_GRAPH_H
    861