Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/Scalar/GVN.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DepthFirstIterator.h"
     21 #include "llvm/ADT/Hashing.h"
     22 #include "llvm/ADT/MapVector.h"
     23 #include "llvm/ADT/PostOrderIterator.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/AssumptionCache.h"
     29 #include "llvm/Analysis/CFG.h"
     30 #include "llvm/Analysis/ConstantFolding.h"
     31 #include "llvm/Analysis/GlobalsModRef.h"
     32 #include "llvm/Analysis/InstructionSimplify.h"
     33 #include "llvm/Analysis/Loads.h"
     34 #include "llvm/Analysis/MemoryBuiltins.h"
     35 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     36 #include "llvm/Analysis/PHITransAddr.h"
     37 #include "llvm/Analysis/TargetLibraryInfo.h"
     38 #include "llvm/Analysis/ValueTracking.h"
     39 #include "llvm/IR/DataLayout.h"
     40 #include "llvm/IR/Dominators.h"
     41 #include "llvm/IR/GlobalVariable.h"
     42 #include "llvm/IR/IRBuilder.h"
     43 #include "llvm/IR/IntrinsicInst.h"
     44 #include "llvm/IR/LLVMContext.h"
     45 #include "llvm/IR/Metadata.h"
     46 #include "llvm/IR/PatternMatch.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     51 #include "llvm/Transforms/Utils/Local.h"
     52 #include "llvm/Transforms/Utils/SSAUpdater.h"
     53 #include <vector>
     54 using namespace llvm;
     55 using namespace llvm::gvn;
     56 using namespace PatternMatch;
     57 
     58 #define DEBUG_TYPE "gvn"
     59 
     60 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     61 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     62 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     63 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     64 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     65 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     66 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     67 
     68 static cl::opt<bool> EnablePRE("enable-pre",
     69                                cl::init(true), cl::Hidden);
     70 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     71 
     72 // Maximum allowed recursion depth.
     73 static cl::opt<uint32_t>
     74 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
     75                 cl::desc("Max recurse depth (default = 1000)"));
     76 
     77 struct llvm::GVN::Expression {
     78   uint32_t opcode;
     79   Type *type;
     80   SmallVector<uint32_t, 4> varargs;
     81 
     82   Expression(uint32_t o = ~2U) : opcode(o) {}
     83 
     84   bool operator==(const Expression &other) const {
     85     if (opcode != other.opcode)
     86       return false;
     87     if (opcode == ~0U || opcode == ~1U)
     88       return true;
     89     if (type != other.type)
     90       return false;
     91     if (varargs != other.varargs)
     92       return false;
     93     return true;
     94   }
     95 
     96   friend hash_code hash_value(const Expression &Value) {
     97     return hash_combine(
     98         Value.opcode, Value.type,
     99         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
    100   }
    101 };
    102 
    103 namespace llvm {
    104 template <> struct DenseMapInfo<GVN::Expression> {
    105   static inline GVN::Expression getEmptyKey() { return ~0U; }
    106 
    107   static inline GVN::Expression getTombstoneKey() { return ~1U; }
    108 
    109   static unsigned getHashValue(const GVN::Expression &e) {
    110     using llvm::hash_value;
    111     return static_cast<unsigned>(hash_value(e));
    112   }
    113   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
    114     return LHS == RHS;
    115   }
    116 };
    117 } // End llvm namespace.
    118 
    119 /// Represents a particular available value that we know how to materialize.
    120 /// Materialization of an AvailableValue never fails.  An AvailableValue is
    121 /// implicitly associated with a rematerialization point which is the
    122 /// location of the instruction from which it was formed.
    123 struct llvm::gvn::AvailableValue {
    124   enum ValType {
    125     SimpleVal, // A simple offsetted value that is accessed.
    126     LoadVal,   // A value produced by a load.
    127     MemIntrin, // A memory intrinsic which is loaded from.
    128     UndefVal   // A UndefValue representing a value from dead block (which
    129                // is not yet physically removed from the CFG).
    130   };
    131 
    132   /// V - The value that is live out of the block.
    133   PointerIntPair<Value *, 2, ValType> Val;
    134 
    135   /// Offset - The byte offset in Val that is interesting for the load query.
    136   unsigned Offset;
    137 
    138   static AvailableValue get(Value *V, unsigned Offset = 0) {
    139     AvailableValue Res;
    140     Res.Val.setPointer(V);
    141     Res.Val.setInt(SimpleVal);
    142     Res.Offset = Offset;
    143     return Res;
    144   }
    145 
    146   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
    147     AvailableValue Res;
    148     Res.Val.setPointer(MI);
    149     Res.Val.setInt(MemIntrin);
    150     Res.Offset = Offset;
    151     return Res;
    152   }
    153 
    154   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
    155     AvailableValue Res;
    156     Res.Val.setPointer(LI);
    157     Res.Val.setInt(LoadVal);
    158     Res.Offset = Offset;
    159     return Res;
    160   }
    161 
    162   static AvailableValue getUndef() {
    163     AvailableValue Res;
    164     Res.Val.setPointer(nullptr);
    165     Res.Val.setInt(UndefVal);
    166     Res.Offset = 0;
    167     return Res;
    168   }
    169 
    170   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
    171   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
    172   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
    173   bool isUndefValue() const { return Val.getInt() == UndefVal; }
    174 
    175   Value *getSimpleValue() const {
    176     assert(isSimpleValue() && "Wrong accessor");
    177     return Val.getPointer();
    178   }
    179 
    180   LoadInst *getCoercedLoadValue() const {
    181     assert(isCoercedLoadValue() && "Wrong accessor");
    182     return cast<LoadInst>(Val.getPointer());
    183   }
    184 
    185   MemIntrinsic *getMemIntrinValue() const {
    186     assert(isMemIntrinValue() && "Wrong accessor");
    187     return cast<MemIntrinsic>(Val.getPointer());
    188   }
    189 
    190   /// Emit code at the specified insertion point to adjust the value defined
    191   /// here to the specified type. This handles various coercion cases.
    192   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
    193                                   GVN &gvn) const;
    194 };
    195 
    196 /// Represents an AvailableValue which can be rematerialized at the end of
    197 /// the associated BasicBlock.
    198 struct llvm::gvn::AvailableValueInBlock {
    199   /// BB - The basic block in question.
    200   BasicBlock *BB;
    201 
    202   /// AV - The actual available value
    203   AvailableValue AV;
    204 
    205   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
    206     AvailableValueInBlock Res;
    207     Res.BB = BB;
    208     Res.AV = std::move(AV);
    209     return Res;
    210   }
    211 
    212   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
    213                                    unsigned Offset = 0) {
    214     return get(BB, AvailableValue::get(V, Offset));
    215   }
    216   static AvailableValueInBlock getUndef(BasicBlock *BB) {
    217     return get(BB, AvailableValue::getUndef());
    218   }
    219 
    220   /// Emit code at the end of this block to adjust the value defined here to
    221   /// the specified type. This handles various coercion cases.
    222   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
    223     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
    224   }
    225 };
    226 
    227 //===----------------------------------------------------------------------===//
    228 //                     ValueTable Internal Functions
    229 //===----------------------------------------------------------------------===//
    230 
    231 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
    232   Expression e;
    233   e.type = I->getType();
    234   e.opcode = I->getOpcode();
    235   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    236        OI != OE; ++OI)
    237     e.varargs.push_back(lookupOrAdd(*OI));
    238   if (I->isCommutative()) {
    239     // Ensure that commutative instructions that only differ by a permutation
    240     // of their operands get the same value number by sorting the operand value
    241     // numbers.  Since all commutative instructions have two operands it is more
    242     // efficient to sort by hand rather than using, say, std::sort.
    243     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    244     if (e.varargs[0] > e.varargs[1])
    245       std::swap(e.varargs[0], e.varargs[1]);
    246   }
    247 
    248   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    249     // Sort the operand value numbers so x<y and y>x get the same value number.
    250     CmpInst::Predicate Predicate = C->getPredicate();
    251     if (e.varargs[0] > e.varargs[1]) {
    252       std::swap(e.varargs[0], e.varargs[1]);
    253       Predicate = CmpInst::getSwappedPredicate(Predicate);
    254     }
    255     e.opcode = (C->getOpcode() << 8) | Predicate;
    256   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    257     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    258          II != IE; ++II)
    259       e.varargs.push_back(*II);
    260   }
    261 
    262   return e;
    263 }
    264 
    265 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
    266                                                CmpInst::Predicate Predicate,
    267                                                Value *LHS, Value *RHS) {
    268   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
    269          "Not a comparison!");
    270   Expression e;
    271   e.type = CmpInst::makeCmpResultType(LHS->getType());
    272   e.varargs.push_back(lookupOrAdd(LHS));
    273   e.varargs.push_back(lookupOrAdd(RHS));
    274 
    275   // Sort the operand value numbers so x<y and y>x get the same value number.
    276   if (e.varargs[0] > e.varargs[1]) {
    277     std::swap(e.varargs[0], e.varargs[1]);
    278     Predicate = CmpInst::getSwappedPredicate(Predicate);
    279   }
    280   e.opcode = (Opcode << 8) | Predicate;
    281   return e;
    282 }
    283 
    284 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
    285   assert(EI && "Not an ExtractValueInst?");
    286   Expression e;
    287   e.type = EI->getType();
    288   e.opcode = 0;
    289 
    290   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    291   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    292     // EI might be an extract from one of our recognised intrinsics. If it
    293     // is we'll synthesize a semantically equivalent expression instead on
    294     // an extract value expression.
    295     switch (I->getIntrinsicID()) {
    296       case Intrinsic::sadd_with_overflow:
    297       case Intrinsic::uadd_with_overflow:
    298         e.opcode = Instruction::Add;
    299         break;
    300       case Intrinsic::ssub_with_overflow:
    301       case Intrinsic::usub_with_overflow:
    302         e.opcode = Instruction::Sub;
    303         break;
    304       case Intrinsic::smul_with_overflow:
    305       case Intrinsic::umul_with_overflow:
    306         e.opcode = Instruction::Mul;
    307         break;
    308       default:
    309         break;
    310     }
    311 
    312     if (e.opcode != 0) {
    313       // Intrinsic recognized. Grab its args to finish building the expression.
    314       assert(I->getNumArgOperands() == 2 &&
    315              "Expect two args for recognised intrinsics.");
    316       e.varargs.push_back(lookupOrAdd(I->getArgOperand(0)));
    317       e.varargs.push_back(lookupOrAdd(I->getArgOperand(1)));
    318       return e;
    319     }
    320   }
    321 
    322   // Not a recognised intrinsic. Fall back to producing an extract value
    323   // expression.
    324   e.opcode = EI->getOpcode();
    325   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    326        OI != OE; ++OI)
    327     e.varargs.push_back(lookupOrAdd(*OI));
    328 
    329   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    330          II != IE; ++II)
    331     e.varargs.push_back(*II);
    332 
    333   return e;
    334 }
    335 
    336 //===----------------------------------------------------------------------===//
    337 //                     ValueTable External Functions
    338 //===----------------------------------------------------------------------===//
    339 
    340 GVN::ValueTable::ValueTable() : nextValueNumber(1) {}
    341 GVN::ValueTable::ValueTable(const ValueTable &Arg)
    342     : valueNumbering(Arg.valueNumbering),
    343       expressionNumbering(Arg.expressionNumbering), AA(Arg.AA), MD(Arg.MD),
    344       DT(Arg.DT), nextValueNumber(Arg.nextValueNumber) {}
    345 GVN::ValueTable::ValueTable(ValueTable &&Arg)
    346     : valueNumbering(std::move(Arg.valueNumbering)),
    347       expressionNumbering(std::move(Arg.expressionNumbering)),
    348       AA(std::move(Arg.AA)), MD(std::move(Arg.MD)), DT(std::move(Arg.DT)),
    349       nextValueNumber(std::move(Arg.nextValueNumber)) {}
    350 GVN::ValueTable::~ValueTable() {}
    351 
    352 /// add - Insert a value into the table with a specified value number.
    353 void GVN::ValueTable::add(Value *V, uint32_t num) {
    354   valueNumbering.insert(std::make_pair(V, num));
    355 }
    356 
    357 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
    358   if (AA->doesNotAccessMemory(C)) {
    359     Expression exp = createExpr(C);
    360     uint32_t &e = expressionNumbering[exp];
    361     if (!e) e = nextValueNumber++;
    362     valueNumbering[C] = e;
    363     return e;
    364   } else if (AA->onlyReadsMemory(C)) {
    365     Expression exp = createExpr(C);
    366     uint32_t &e = expressionNumbering[exp];
    367     if (!e) {
    368       e = nextValueNumber++;
    369       valueNumbering[C] = e;
    370       return e;
    371     }
    372     if (!MD) {
    373       e = nextValueNumber++;
    374       valueNumbering[C] = e;
    375       return e;
    376     }
    377 
    378     MemDepResult local_dep = MD->getDependency(C);
    379 
    380     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    381       valueNumbering[C] =  nextValueNumber;
    382       return nextValueNumber++;
    383     }
    384 
    385     if (local_dep.isDef()) {
    386       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    387 
    388       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    389         valueNumbering[C] = nextValueNumber;
    390         return nextValueNumber++;
    391       }
    392 
    393       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    394         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
    395         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
    396         if (c_vn != cd_vn) {
    397           valueNumbering[C] = nextValueNumber;
    398           return nextValueNumber++;
    399         }
    400       }
    401 
    402       uint32_t v = lookupOrAdd(local_cdep);
    403       valueNumbering[C] = v;
    404       return v;
    405     }
    406 
    407     // Non-local case.
    408     const MemoryDependenceResults::NonLocalDepInfo &deps =
    409       MD->getNonLocalCallDependency(CallSite(C));
    410     // FIXME: Move the checking logic to MemDep!
    411     CallInst* cdep = nullptr;
    412 
    413     // Check to see if we have a single dominating call instruction that is
    414     // identical to C.
    415     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    416       const NonLocalDepEntry *I = &deps[i];
    417       if (I->getResult().isNonLocal())
    418         continue;
    419 
    420       // We don't handle non-definitions.  If we already have a call, reject
    421       // instruction dependencies.
    422       if (!I->getResult().isDef() || cdep != nullptr) {
    423         cdep = nullptr;
    424         break;
    425       }
    426 
    427       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    428       // FIXME: All duplicated with non-local case.
    429       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    430         cdep = NonLocalDepCall;
    431         continue;
    432       }
    433 
    434       cdep = nullptr;
    435       break;
    436     }
    437 
    438     if (!cdep) {
    439       valueNumbering[C] = nextValueNumber;
    440       return nextValueNumber++;
    441     }
    442 
    443     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    444       valueNumbering[C] = nextValueNumber;
    445       return nextValueNumber++;
    446     }
    447     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    448       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
    449       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
    450       if (c_vn != cd_vn) {
    451         valueNumbering[C] = nextValueNumber;
    452         return nextValueNumber++;
    453       }
    454     }
    455 
    456     uint32_t v = lookupOrAdd(cdep);
    457     valueNumbering[C] = v;
    458     return v;
    459 
    460   } else {
    461     valueNumbering[C] = nextValueNumber;
    462     return nextValueNumber++;
    463   }
    464 }
    465 
    466 /// Returns true if a value number exists for the specified value.
    467 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
    468 
    469 /// lookup_or_add - Returns the value number for the specified value, assigning
    470 /// it a new number if it did not have one before.
    471 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
    472   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    473   if (VI != valueNumbering.end())
    474     return VI->second;
    475 
    476   if (!isa<Instruction>(V)) {
    477     valueNumbering[V] = nextValueNumber;
    478     return nextValueNumber++;
    479   }
    480 
    481   Instruction* I = cast<Instruction>(V);
    482   Expression exp;
    483   switch (I->getOpcode()) {
    484     case Instruction::Call:
    485       return lookupOrAddCall(cast<CallInst>(I));
    486     case Instruction::Add:
    487     case Instruction::FAdd:
    488     case Instruction::Sub:
    489     case Instruction::FSub:
    490     case Instruction::Mul:
    491     case Instruction::FMul:
    492     case Instruction::UDiv:
    493     case Instruction::SDiv:
    494     case Instruction::FDiv:
    495     case Instruction::URem:
    496     case Instruction::SRem:
    497     case Instruction::FRem:
    498     case Instruction::Shl:
    499     case Instruction::LShr:
    500     case Instruction::AShr:
    501     case Instruction::And:
    502     case Instruction::Or:
    503     case Instruction::Xor:
    504     case Instruction::ICmp:
    505     case Instruction::FCmp:
    506     case Instruction::Trunc:
    507     case Instruction::ZExt:
    508     case Instruction::SExt:
    509     case Instruction::FPToUI:
    510     case Instruction::FPToSI:
    511     case Instruction::UIToFP:
    512     case Instruction::SIToFP:
    513     case Instruction::FPTrunc:
    514     case Instruction::FPExt:
    515     case Instruction::PtrToInt:
    516     case Instruction::IntToPtr:
    517     case Instruction::BitCast:
    518     case Instruction::Select:
    519     case Instruction::ExtractElement:
    520     case Instruction::InsertElement:
    521     case Instruction::ShuffleVector:
    522     case Instruction::InsertValue:
    523     case Instruction::GetElementPtr:
    524       exp = createExpr(I);
    525       break;
    526     case Instruction::ExtractValue:
    527       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
    528       break;
    529     default:
    530       valueNumbering[V] = nextValueNumber;
    531       return nextValueNumber++;
    532   }
    533 
    534   uint32_t& e = expressionNumbering[exp];
    535   if (!e) e = nextValueNumber++;
    536   valueNumbering[V] = e;
    537   return e;
    538 }
    539 
    540 /// Returns the value number of the specified value. Fails if
    541 /// the value has not yet been numbered.
    542 uint32_t GVN::ValueTable::lookup(Value *V) const {
    543   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    544   assert(VI != valueNumbering.end() && "Value not numbered?");
    545   return VI->second;
    546 }
    547 
    548 /// Returns the value number of the given comparison,
    549 /// assigning it a new number if it did not have one before.  Useful when
    550 /// we deduced the result of a comparison, but don't immediately have an
    551 /// instruction realizing that comparison to hand.
    552 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
    553                                          CmpInst::Predicate Predicate,
    554                                          Value *LHS, Value *RHS) {
    555   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
    556   uint32_t& e = expressionNumbering[exp];
    557   if (!e) e = nextValueNumber++;
    558   return e;
    559 }
    560 
    561 /// Remove all entries from the ValueTable.
    562 void GVN::ValueTable::clear() {
    563   valueNumbering.clear();
    564   expressionNumbering.clear();
    565   nextValueNumber = 1;
    566 }
    567 
    568 /// Remove a value from the value numbering.
    569 void GVN::ValueTable::erase(Value *V) {
    570   valueNumbering.erase(V);
    571 }
    572 
    573 /// verifyRemoved - Verify that the value is removed from all internal data
    574 /// structures.
    575 void GVN::ValueTable::verifyRemoved(const Value *V) const {
    576   for (DenseMap<Value*, uint32_t>::const_iterator
    577          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    578     assert(I->first != V && "Inst still occurs in value numbering map!");
    579   }
    580 }
    581 
    582 //===----------------------------------------------------------------------===//
    583 //                                GVN Pass
    584 //===----------------------------------------------------------------------===//
    585 
    586 PreservedAnalyses GVN::run(Function &F, AnalysisManager<Function> &AM) {
    587   // FIXME: The order of evaluation of these 'getResult' calls is very
    588   // significant! Re-ordering these variables will cause GVN when run alone to
    589   // be less effective! We should fix memdep and basic-aa to not exhibit this
    590   // behavior, but until then don't change the order here.
    591   auto &AC = AM.getResult<AssumptionAnalysis>(F);
    592   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    593   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
    594   auto &AA = AM.getResult<AAManager>(F);
    595   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
    596   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep);
    597   if (!Changed)
    598     return PreservedAnalyses::all();
    599   PreservedAnalyses PA;
    600   PA.preserve<DominatorTreeAnalysis>();
    601   PA.preserve<GlobalsAA>();
    602   return PA;
    603 }
    604 
    605 LLVM_DUMP_METHOD
    606 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    607   errs() << "{\n";
    608   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    609        E = d.end(); I != E; ++I) {
    610       errs() << I->first << "\n";
    611       I->second->dump();
    612   }
    613   errs() << "}\n";
    614 }
    615 
    616 /// Return true if we can prove that the value
    617 /// we're analyzing is fully available in the specified block.  As we go, keep
    618 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    619 /// map is actually a tri-state map with the following values:
    620 ///   0) we know the block *is not* fully available.
    621 ///   1) we know the block *is* fully available.
    622 ///   2) we do not know whether the block is fully available or not, but we are
    623 ///      currently speculating that it will be.
    624 ///   3) we are speculating for this block and have used that to speculate for
    625 ///      other blocks.
    626 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    627                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
    628                             uint32_t RecurseDepth) {
    629   if (RecurseDepth > MaxRecurseDepth)
    630     return false;
    631 
    632   // Optimistically assume that the block is fully available and check to see
    633   // if we already know about this block in one lookup.
    634   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    635     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    636 
    637   // If the entry already existed for this block, return the precomputed value.
    638   if (!IV.second) {
    639     // If this is a speculative "available" value, mark it as being used for
    640     // speculation of other blocks.
    641     if (IV.first->second == 2)
    642       IV.first->second = 3;
    643     return IV.first->second != 0;
    644   }
    645 
    646   // Otherwise, see if it is fully available in all predecessors.
    647   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    648 
    649   // If this block has no predecessors, it isn't live-in here.
    650   if (PI == PE)
    651     goto SpeculationFailure;
    652 
    653   for (; PI != PE; ++PI)
    654     // If the value isn't fully available in one of our predecessors, then it
    655     // isn't fully available in this block either.  Undo our previous
    656     // optimistic assumption and bail out.
    657     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
    658       goto SpeculationFailure;
    659 
    660   return true;
    661 
    662 // If we get here, we found out that this is not, after
    663 // all, a fully-available block.  We have a problem if we speculated on this and
    664 // used the speculation to mark other blocks as available.
    665 SpeculationFailure:
    666   char &BBVal = FullyAvailableBlocks[BB];
    667 
    668   // If we didn't speculate on this, just return with it set to false.
    669   if (BBVal == 2) {
    670     BBVal = 0;
    671     return false;
    672   }
    673 
    674   // If we did speculate on this value, we could have blocks set to 1 that are
    675   // incorrect.  Walk the (transitive) successors of this block and mark them as
    676   // 0 if set to one.
    677   SmallVector<BasicBlock*, 32> BBWorklist;
    678   BBWorklist.push_back(BB);
    679 
    680   do {
    681     BasicBlock *Entry = BBWorklist.pop_back_val();
    682     // Note that this sets blocks to 0 (unavailable) if they happen to not
    683     // already be in FullyAvailableBlocks.  This is safe.
    684     char &EntryVal = FullyAvailableBlocks[Entry];
    685     if (EntryVal == 0) continue;  // Already unavailable.
    686 
    687     // Mark as unavailable.
    688     EntryVal = 0;
    689 
    690     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
    691   } while (!BBWorklist.empty());
    692 
    693   return false;
    694 }
    695 
    696 
    697 /// Return true if CoerceAvailableValueToLoadType will succeed.
    698 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    699                                             Type *LoadTy,
    700                                             const DataLayout &DL) {
    701   // If the loaded or stored value is an first class array or struct, don't try
    702   // to transform them.  We need to be able to bitcast to integer.
    703   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    704       StoredVal->getType()->isStructTy() ||
    705       StoredVal->getType()->isArrayTy())
    706     return false;
    707 
    708   // The store has to be at least as big as the load.
    709   if (DL.getTypeSizeInBits(StoredVal->getType()) <
    710         DL.getTypeSizeInBits(LoadTy))
    711     return false;
    712 
    713   return true;
    714 }
    715 
    716 /// If we saw a store of a value to memory, and
    717 /// then a load from a must-aliased pointer of a different type, try to coerce
    718 /// the stored value.  LoadedTy is the type of the load we want to replace.
    719 /// IRB is IRBuilder used to insert new instructions.
    720 ///
    721 /// If we can't do it, return null.
    722 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
    723                                              IRBuilder<> &IRB,
    724                                              const DataLayout &DL) {
    725   assert(CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
    726          "precondition violation - materialization can't fail");
    727 
    728   // If this is already the right type, just return it.
    729   Type *StoredValTy = StoredVal->getType();
    730 
    731   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
    732   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
    733 
    734   // If the store and reload are the same size, we can always reuse it.
    735   if (StoredValSize == LoadedValSize) {
    736     // Pointer to Pointer -> use bitcast.
    737     if (StoredValTy->getScalarType()->isPointerTy() &&
    738         LoadedTy->getScalarType()->isPointerTy())
    739       return IRB.CreateBitCast(StoredVal, LoadedTy);
    740 
    741     // Convert source pointers to integers, which can be bitcast.
    742     if (StoredValTy->getScalarType()->isPointerTy()) {
    743       StoredValTy = DL.getIntPtrType(StoredValTy);
    744       StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
    745     }
    746 
    747     Type *TypeToCastTo = LoadedTy;
    748     if (TypeToCastTo->getScalarType()->isPointerTy())
    749       TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
    750 
    751     if (StoredValTy != TypeToCastTo)
    752       StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
    753 
    754     // Cast to pointer if the load needs a pointer type.
    755     if (LoadedTy->getScalarType()->isPointerTy())
    756       StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
    757 
    758     return StoredVal;
    759   }
    760 
    761   // If the loaded value is smaller than the available value, then we can
    762   // extract out a piece from it.  If the available value is too small, then we
    763   // can't do anything.
    764   assert(StoredValSize >= LoadedValSize &&
    765          "CanCoerceMustAliasedValueToLoad fail");
    766 
    767   // Convert source pointers to integers, which can be manipulated.
    768   if (StoredValTy->getScalarType()->isPointerTy()) {
    769     StoredValTy = DL.getIntPtrType(StoredValTy);
    770     StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
    771   }
    772 
    773   // Convert vectors and fp to integer, which can be manipulated.
    774   if (!StoredValTy->isIntegerTy()) {
    775     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
    776     StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
    777   }
    778 
    779   // If this is a big-endian system, we need to shift the value down to the low
    780   // bits so that a truncate will work.
    781   if (DL.isBigEndian()) {
    782     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
    783                         DL.getTypeStoreSizeInBits(LoadedTy);
    784     StoredVal = IRB.CreateLShr(StoredVal, ShiftAmt, "tmp");
    785   }
    786 
    787   // Truncate the integer to the right size now.
    788   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
    789   StoredVal  = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
    790 
    791   if (LoadedTy == NewIntTy)
    792     return StoredVal;
    793 
    794   // If the result is a pointer, inttoptr.
    795   if (LoadedTy->getScalarType()->isPointerTy())
    796     return IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
    797 
    798   // Otherwise, bitcast.
    799   return IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
    800 }
    801 
    802 /// This function is called when we have a
    803 /// memdep query of a load that ends up being a clobbering memory write (store,
    804 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    805 /// by the load but we can't be sure because the pointers don't mustalias.
    806 ///
    807 /// Check this case to see if there is anything more we can do before we give
    808 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    809 /// value of the piece that feeds the load.
    810 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    811                                           Value *WritePtr,
    812                                           uint64_t WriteSizeInBits,
    813                                           const DataLayout &DL) {
    814   // If the loaded or stored value is a first class array or struct, don't try
    815   // to transform them.  We need to be able to bitcast to integer.
    816   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    817     return -1;
    818 
    819   int64_t StoreOffset = 0, LoadOffset = 0;
    820   Value *StoreBase =
    821       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
    822   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
    823   if (StoreBase != LoadBase)
    824     return -1;
    825 
    826   // If the load and store are to the exact same address, they should have been
    827   // a must alias.  AA must have gotten confused.
    828   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    829   // to a load from the base of the memset.
    830 #if 0
    831   if (LoadOffset == StoreOffset) {
    832     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    833     << "Base       = " << *StoreBase << "\n"
    834     << "Store Ptr  = " << *WritePtr << "\n"
    835     << "Store Offs = " << StoreOffset << "\n"
    836     << "Load Ptr   = " << *LoadPtr << "\n";
    837     abort();
    838   }
    839 #endif
    840 
    841   // If the load and store don't overlap at all, the store doesn't provide
    842   // anything to the load.  In this case, they really don't alias at all, AA
    843   // must have gotten confused.
    844   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
    845 
    846   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    847     return -1;
    848   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    849   LoadSize >>= 3;
    850 
    851 
    852   bool isAAFailure = false;
    853   if (StoreOffset < LoadOffset)
    854     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    855   else
    856     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    857 
    858   if (isAAFailure) {
    859 #if 0
    860     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    861     << "Base       = " << *StoreBase << "\n"
    862     << "Store Ptr  = " << *WritePtr << "\n"
    863     << "Store Offs = " << StoreOffset << "\n"
    864     << "Load Ptr   = " << *LoadPtr << "\n";
    865     abort();
    866 #endif
    867     return -1;
    868   }
    869 
    870   // If the Load isn't completely contained within the stored bits, we don't
    871   // have all the bits to feed it.  We could do something crazy in the future
    872   // (issue a smaller load then merge the bits in) but this seems unlikely to be
    873   // valuable.
    874   if (StoreOffset > LoadOffset ||
    875       StoreOffset+StoreSize < LoadOffset+LoadSize)
    876     return -1;
    877 
    878   // Okay, we can do this transformation.  Return the number of bytes into the
    879   // store that the load is.
    880   return LoadOffset-StoreOffset;
    881 }
    882 
    883 /// This function is called when we have a
    884 /// memdep query of a load that ends up being a clobbering store.
    885 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
    886                                           StoreInst *DepSI) {
    887   // Cannot handle reading from store of first-class aggregate yet.
    888   if (DepSI->getValueOperand()->getType()->isStructTy() ||
    889       DepSI->getValueOperand()->getType()->isArrayTy())
    890     return -1;
    891 
    892   const DataLayout &DL = DepSI->getModule()->getDataLayout();
    893   Value *StorePtr = DepSI->getPointerOperand();
    894   uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
    895   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    896                                         StorePtr, StoreSize, DL);
    897 }
    898 
    899 /// This function is called when we have a
    900 /// memdep query of a load that ends up being clobbered by another load.  See if
    901 /// the other load can feed into the second load.
    902 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
    903                                          LoadInst *DepLI, const DataLayout &DL){
    904   // Cannot handle reading from store of first-class aggregate yet.
    905   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
    906     return -1;
    907 
    908   Value *DepPtr = DepLI->getPointerOperand();
    909   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
    910   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
    911   if (R != -1) return R;
    912 
    913   // If we have a load/load clobber an DepLI can be widened to cover this load,
    914   // then we should widen it!
    915   int64_t LoadOffs = 0;
    916   const Value *LoadBase =
    917       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
    918   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
    919 
    920   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
    921       LoadBase, LoadOffs, LoadSize, DepLI);
    922   if (Size == 0) return -1;
    923 
    924   // Check non-obvious conditions enforced by MDA which we rely on for being
    925   // able to materialize this potentially available value
    926   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
    927   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
    928 
    929   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
    930 }
    931 
    932 
    933 
    934 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
    935                                             MemIntrinsic *MI,
    936                                             const DataLayout &DL) {
    937   // If the mem operation is a non-constant size, we can't handle it.
    938   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
    939   if (!SizeCst) return -1;
    940   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
    941 
    942   // If this is memset, we just need to see if the offset is valid in the size
    943   // of the memset..
    944   if (MI->getIntrinsicID() == Intrinsic::memset)
    945     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
    946                                           MemSizeInBits, DL);
    947 
    948   // If we have a memcpy/memmove, the only case we can handle is if this is a
    949   // copy from constant memory.  In that case, we can read directly from the
    950   // constant memory.
    951   MemTransferInst *MTI = cast<MemTransferInst>(MI);
    952 
    953   Constant *Src = dyn_cast<Constant>(MTI->getSource());
    954   if (!Src) return -1;
    955 
    956   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
    957   if (!GV || !GV->isConstant()) return -1;
    958 
    959   // See if the access is within the bounds of the transfer.
    960   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
    961                                               MI->getDest(), MemSizeInBits, DL);
    962   if (Offset == -1)
    963     return Offset;
    964 
    965   unsigned AS = Src->getType()->getPointerAddressSpace();
    966   // Otherwise, see if we can constant fold a load from the constant with the
    967   // offset applied as appropriate.
    968   Src = ConstantExpr::getBitCast(Src,
    969                                  Type::getInt8PtrTy(Src->getContext(), AS));
    970   Constant *OffsetCst =
    971     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
    972   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
    973                                        OffsetCst);
    974   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
    975   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
    976     return Offset;
    977   return -1;
    978 }
    979 
    980 
    981 /// This function is called when we have a
    982 /// memdep query of a load that ends up being a clobbering store.  This means
    983 /// that the store provides bits used by the load but we the pointers don't
    984 /// mustalias.  Check this case to see if there is anything more we can do
    985 /// before we give up.
    986 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
    987                                    Type *LoadTy,
    988                                    Instruction *InsertPt, const DataLayout &DL){
    989   LLVMContext &Ctx = SrcVal->getType()->getContext();
    990 
    991   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
    992   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
    993 
    994   IRBuilder<> Builder(InsertPt);
    995 
    996   // Compute which bits of the stored value are being used by the load.  Convert
    997   // to an integer type to start with.
    998   if (SrcVal->getType()->getScalarType()->isPointerTy())
    999     SrcVal = Builder.CreatePtrToInt(SrcVal,
   1000         DL.getIntPtrType(SrcVal->getType()));
   1001   if (!SrcVal->getType()->isIntegerTy())
   1002     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
   1003 
   1004   // Shift the bits to the least significant depending on endianness.
   1005   unsigned ShiftAmt;
   1006   if (DL.isLittleEndian())
   1007     ShiftAmt = Offset*8;
   1008   else
   1009     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
   1010 
   1011   if (ShiftAmt)
   1012     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
   1013 
   1014   if (LoadSize != StoreSize)
   1015     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
   1016 
   1017   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
   1018 }
   1019 
   1020 /// This function is called when we have a
   1021 /// memdep query of a load that ends up being a clobbering load.  This means
   1022 /// that the load *may* provide bits used by the load but we can't be sure
   1023 /// because the pointers don't mustalias.  Check this case to see if there is
   1024 /// anything more we can do before we give up.
   1025 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
   1026                                   Type *LoadTy, Instruction *InsertPt,
   1027                                   GVN &gvn) {
   1028   const DataLayout &DL = SrcVal->getModule()->getDataLayout();
   1029   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   1030   // widen SrcVal out to a larger load.
   1031   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
   1032   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
   1033   if (Offset+LoadSize > SrcValStoreSize) {
   1034     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
   1035     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
   1036     // If we have a load/load clobber an DepLI can be widened to cover this
   1037     // load, then we should widen it to the next power of 2 size big enough!
   1038     unsigned NewLoadSize = Offset+LoadSize;
   1039     if (!isPowerOf2_32(NewLoadSize))
   1040       NewLoadSize = NextPowerOf2(NewLoadSize);
   1041 
   1042     Value *PtrVal = SrcVal->getPointerOperand();
   1043 
   1044     // Insert the new load after the old load.  This ensures that subsequent
   1045     // memdep queries will find the new load.  We can't easily remove the old
   1046     // load completely because it is already in the value numbering table.
   1047     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1048     Type *DestPTy =
   1049       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1050     DestPTy = PointerType::get(DestPTy,
   1051                                PtrVal->getType()->getPointerAddressSpace());
   1052     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1053     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1054     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1055     NewLoad->takeName(SrcVal);
   1056     NewLoad->setAlignment(SrcVal->getAlignment());
   1057 
   1058     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1059     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1060 
   1061     // Replace uses of the original load with the wider load.  On a big endian
   1062     // system, we need to shift down to get the relevant bits.
   1063     Value *RV = NewLoad;
   1064     if (DL.isBigEndian())
   1065       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
   1066     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1067     SrcVal->replaceAllUsesWith(RV);
   1068 
   1069     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1070     // because the load is already memoized into the leader map table that GVN
   1071     // tracks.  It is potentially possible to remove the load from the table,
   1072     // but then there all of the operations based on it would need to be
   1073     // rehashed.  Just leave the dead load around.
   1074     gvn.getMemDep().removeInstruction(SrcVal);
   1075     SrcVal = NewLoad;
   1076   }
   1077 
   1078   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
   1079 }
   1080 
   1081 
   1082 /// This function is called when we have a
   1083 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1084 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1085                                      Type *LoadTy, Instruction *InsertPt,
   1086                                      const DataLayout &DL){
   1087   LLVMContext &Ctx = LoadTy->getContext();
   1088   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
   1089 
   1090   IRBuilder<> Builder(InsertPt);
   1091 
   1092   // We know that this method is only called when the mem transfer fully
   1093   // provides the bits for the load.
   1094   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1095     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1096     // independently of what the offset is.
   1097     Value *Val = MSI->getValue();
   1098     if (LoadSize != 1)
   1099       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1100 
   1101     Value *OneElt = Val;
   1102 
   1103     // Splat the value out to the right number of bits.
   1104     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1105       // If we can double the number of bytes set, do it.
   1106       if (NumBytesSet*2 <= LoadSize) {
   1107         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1108         Val = Builder.CreateOr(Val, ShVal);
   1109         NumBytesSet <<= 1;
   1110         continue;
   1111       }
   1112 
   1113       // Otherwise insert one byte at a time.
   1114       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1115       Val = Builder.CreateOr(OneElt, ShVal);
   1116       ++NumBytesSet;
   1117     }
   1118 
   1119     return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
   1120   }
   1121 
   1122   // Otherwise, this is a memcpy/memmove from a constant global.
   1123   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1124   Constant *Src = cast<Constant>(MTI->getSource());
   1125   unsigned AS = Src->getType()->getPointerAddressSpace();
   1126 
   1127   // Otherwise, see if we can constant fold a load from the constant with the
   1128   // offset applied as appropriate.
   1129   Src = ConstantExpr::getBitCast(Src,
   1130                                  Type::getInt8PtrTy(Src->getContext(), AS));
   1131   Constant *OffsetCst =
   1132     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1133   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
   1134                                        OffsetCst);
   1135   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
   1136   return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
   1137 }
   1138 
   1139 
   1140 /// Given a set of loads specified by ValuesPerBlock,
   1141 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1142 /// that should be used at LI's definition site.
   1143 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1144                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1145                                      GVN &gvn) {
   1146   // Check for the fully redundant, dominating load case.  In this case, we can
   1147   // just use the dominating value directly.
   1148   if (ValuesPerBlock.size() == 1 &&
   1149       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1150                                                LI->getParent())) {
   1151     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
   1152            "Dead BB dominate this block");
   1153     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
   1154   }
   1155 
   1156   // Otherwise, we have to construct SSA form.
   1157   SmallVector<PHINode*, 8> NewPHIs;
   1158   SSAUpdater SSAUpdate(&NewPHIs);
   1159   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1160 
   1161   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
   1162     BasicBlock *BB = AV.BB;
   1163 
   1164     if (SSAUpdate.HasValueForBlock(BB))
   1165       continue;
   1166 
   1167     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
   1168   }
   1169 
   1170   // Perform PHI construction.
   1171   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1172 }
   1173 
   1174 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
   1175                                                 Instruction *InsertPt,
   1176                                                 GVN &gvn) const {
   1177   Value *Res;
   1178   Type *LoadTy = LI->getType();
   1179   const DataLayout &DL = LI->getModule()->getDataLayout();
   1180   if (isSimpleValue()) {
   1181     Res = getSimpleValue();
   1182     if (Res->getType() != LoadTy) {
   1183       Res = GetStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
   1184 
   1185       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1186                    << *getSimpleValue() << '\n'
   1187                    << *Res << '\n' << "\n\n\n");
   1188     }
   1189   } else if (isCoercedLoadValue()) {
   1190     LoadInst *Load = getCoercedLoadValue();
   1191     if (Load->getType() == LoadTy && Offset == 0) {
   1192       Res = Load;
   1193     } else {
   1194       Res = GetLoadValueForLoad(Load, Offset, LoadTy, InsertPt, gvn);
   1195 
   1196       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1197                    << *getCoercedLoadValue() << '\n'
   1198                    << *Res << '\n' << "\n\n\n");
   1199     }
   1200   } else if (isMemIntrinValue()) {
   1201     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
   1202                                  InsertPt, DL);
   1203     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1204                  << "  " << *getMemIntrinValue() << '\n'
   1205                  << *Res << '\n' << "\n\n\n");
   1206   } else {
   1207     assert(isUndefValue() && "Should be UndefVal");
   1208     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
   1209     return UndefValue::get(LoadTy);
   1210   }
   1211   assert(Res && "failed to materialize?");
   1212   return Res;
   1213 }
   1214 
   1215 static bool isLifetimeStart(const Instruction *Inst) {
   1216   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1217     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1218   return false;
   1219 }
   1220 
   1221 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
   1222                                   Value *Address, AvailableValue &Res) {
   1223 
   1224   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
   1225          "expected a local dependence");
   1226   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
   1227 
   1228   const DataLayout &DL = LI->getModule()->getDataLayout();
   1229 
   1230   if (DepInfo.isClobber()) {
   1231     // If the dependence is to a store that writes to a superset of the bits
   1232     // read by the load, we can extract the bits we need for the load from the
   1233     // stored value.
   1234     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1235       // Can't forward from non-atomic to atomic without violating memory model.
   1236       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
   1237         int Offset =
   1238           AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
   1239         if (Offset != -1) {
   1240           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
   1241           return true;
   1242         }
   1243       }
   1244     }
   1245 
   1246     // Check to see if we have something like this:
   1247     //    load i32* P
   1248     //    load i8* (P+1)
   1249     // if we have this, replace the later with an extraction from the former.
   1250     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1251       // If this is a clobber and L is the first instruction in its block, then
   1252       // we have the first instruction in the entry block.
   1253       // Can't forward from non-atomic to atomic without violating memory model.
   1254       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
   1255         int Offset =
   1256           AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
   1257 
   1258         if (Offset != -1) {
   1259           Res = AvailableValue::getLoad(DepLI, Offset);
   1260           return true;
   1261         }
   1262       }
   1263     }
   1264 
   1265     // If the clobbering value is a memset/memcpy/memmove, see if we can
   1266     // forward a value on from it.
   1267     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1268       if (Address && !LI->isAtomic()) {
   1269         int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1270                                                       DepMI, DL);
   1271         if (Offset != -1) {
   1272           Res = AvailableValue::getMI(DepMI, Offset);
   1273           return true;
   1274         }
   1275       }
   1276     }
   1277     // Nothing known about this clobber, have to be conservative
   1278     DEBUG(
   1279       // fast print dep, using operator<< on instruction is too slow.
   1280       dbgs() << "GVN: load ";
   1281       LI->printAsOperand(dbgs());
   1282       Instruction *I = DepInfo.getInst();
   1283       dbgs() << " is clobbered by " << *I << '\n';
   1284     );
   1285     return false;
   1286   }
   1287   assert(DepInfo.isDef() && "follows from above");
   1288 
   1289   Instruction *DepInst = DepInfo.getInst();
   1290 
   1291   // Loading the allocation -> undef.
   1292   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
   1293       // Loading immediately after lifetime begin -> undef.
   1294       isLifetimeStart(DepInst)) {
   1295     Res = AvailableValue::get(UndefValue::get(LI->getType()));
   1296     return true;
   1297   }
   1298 
   1299   // Loading from calloc (which zero initializes memory) -> zero
   1300   if (isCallocLikeFn(DepInst, TLI)) {
   1301     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
   1302     return true;
   1303   }
   1304 
   1305   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1306     // Reject loads and stores that are to the same address but are of
   1307     // different types if we have to. If the stored value is larger or equal to
   1308     // the loaded value, we can reuse it.
   1309     if (S->getValueOperand()->getType() != LI->getType() &&
   1310         !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1311                                          LI->getType(), DL))
   1312       return false;
   1313 
   1314     // Can't forward from non-atomic to atomic without violating memory model.
   1315     if (S->isAtomic() < LI->isAtomic())
   1316       return false;
   1317 
   1318     Res = AvailableValue::get(S->getValueOperand());
   1319     return true;
   1320   }
   1321 
   1322   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1323     // If the types mismatch and we can't handle it, reject reuse of the load.
   1324     // If the stored value is larger or equal to the loaded value, we can reuse
   1325     // it.
   1326     if (LD->getType() != LI->getType() &&
   1327         !CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
   1328       return false;
   1329 
   1330     // Can't forward from non-atomic to atomic without violating memory model.
   1331     if (LD->isAtomic() < LI->isAtomic())
   1332       return false;
   1333 
   1334     Res = AvailableValue::getLoad(LD);
   1335     return true;
   1336   }
   1337 
   1338   // Unknown def - must be conservative
   1339   DEBUG(
   1340     // fast print dep, using operator<< on instruction is too slow.
   1341     dbgs() << "GVN: load ";
   1342     LI->printAsOperand(dbgs());
   1343     dbgs() << " has unknown def " << *DepInst << '\n';
   1344   );
   1345   return false;
   1346 }
   1347 
   1348 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
   1349                                   AvailValInBlkVect &ValuesPerBlock,
   1350                                   UnavailBlkVect &UnavailableBlocks) {
   1351 
   1352   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1353   // where we have a value available in repl, also keep track of whether we see
   1354   // dependencies that produce an unknown value for the load (such as a call
   1355   // that could potentially clobber the load).
   1356   unsigned NumDeps = Deps.size();
   1357   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
   1358     BasicBlock *DepBB = Deps[i].getBB();
   1359     MemDepResult DepInfo = Deps[i].getResult();
   1360 
   1361     if (DeadBlocks.count(DepBB)) {
   1362       // Dead dependent mem-op disguise as a load evaluating the same value
   1363       // as the load in question.
   1364       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
   1365       continue;
   1366     }
   1367 
   1368     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1369       UnavailableBlocks.push_back(DepBB);
   1370       continue;
   1371     }
   1372 
   1373     // The address being loaded in this non-local block may not be the same as
   1374     // the pointer operand of the load if PHI translation occurs.  Make sure
   1375     // to consider the right address.
   1376     Value *Address = Deps[i].getAddress();
   1377 
   1378     AvailableValue AV;
   1379     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
   1380       // subtlety: because we know this was a non-local dependency, we know
   1381       // it's safe to materialize anywhere between the instruction within
   1382       // DepInfo and the end of it's block.
   1383       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1384                                                           std::move(AV)));
   1385     } else {
   1386       UnavailableBlocks.push_back(DepBB);
   1387     }
   1388   }
   1389 
   1390   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
   1391          "post condition violation");
   1392 }
   1393 
   1394 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
   1395                          UnavailBlkVect &UnavailableBlocks) {
   1396   // Okay, we have *some* definitions of the value.  This means that the value
   1397   // is available in some of our (transitive) predecessors.  Lets think about
   1398   // doing PRE of this load.  This will involve inserting a new load into the
   1399   // predecessor when it's not available.  We could do this in general, but
   1400   // prefer to not increase code size.  As such, we only do this when we know
   1401   // that we only have to insert *one* load (which means we're basically moving
   1402   // the load, not inserting a new one).
   1403 
   1404   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
   1405                                         UnavailableBlocks.end());
   1406 
   1407   // Let's find the first basic block with more than one predecessor.  Walk
   1408   // backwards through predecessors if needed.
   1409   BasicBlock *LoadBB = LI->getParent();
   1410   BasicBlock *TmpBB = LoadBB;
   1411 
   1412   while (TmpBB->getSinglePredecessor()) {
   1413     TmpBB = TmpBB->getSinglePredecessor();
   1414     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1415       return false;
   1416     if (Blockers.count(TmpBB))
   1417       return false;
   1418 
   1419     // If any of these blocks has more than one successor (i.e. if the edge we
   1420     // just traversed was critical), then there are other paths through this
   1421     // block along which the load may not be anticipated.  Hoisting the load
   1422     // above this block would be adding the load to execution paths along
   1423     // which it was not previously executed.
   1424     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1425       return false;
   1426   }
   1427 
   1428   assert(TmpBB);
   1429   LoadBB = TmpBB;
   1430 
   1431   // Check to see how many predecessors have the loaded value fully
   1432   // available.
   1433   MapVector<BasicBlock *, Value *> PredLoads;
   1434   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1435   for (const AvailableValueInBlock &AV : ValuesPerBlock)
   1436     FullyAvailableBlocks[AV.BB] = true;
   1437   for (BasicBlock *UnavailableBB : UnavailableBlocks)
   1438     FullyAvailableBlocks[UnavailableBB] = false;
   1439 
   1440   SmallVector<BasicBlock *, 4> CriticalEdgePred;
   1441   for (BasicBlock *Pred : predecessors(LoadBB)) {
   1442     // If any predecessor block is an EH pad that does not allow non-PHI
   1443     // instructions before the terminator, we can't PRE the load.
   1444     if (Pred->getTerminator()->isEHPad()) {
   1445       DEBUG(dbgs()
   1446             << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
   1447             << Pred->getName() << "': " << *LI << '\n');
   1448       return false;
   1449     }
   1450 
   1451     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
   1452       continue;
   1453     }
   1454 
   1455     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1456       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1457         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1458               << Pred->getName() << "': " << *LI << '\n');
   1459         return false;
   1460       }
   1461 
   1462       if (LoadBB->isEHPad()) {
   1463         DEBUG(dbgs()
   1464               << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
   1465               << Pred->getName() << "': " << *LI << '\n');
   1466         return false;
   1467       }
   1468 
   1469       CriticalEdgePred.push_back(Pred);
   1470     } else {
   1471       // Only add the predecessors that will not be split for now.
   1472       PredLoads[Pred] = nullptr;
   1473     }
   1474   }
   1475 
   1476   // Decide whether PRE is profitable for this load.
   1477   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
   1478   assert(NumUnavailablePreds != 0 &&
   1479          "Fully available value should already be eliminated!");
   1480 
   1481   // If this load is unavailable in multiple predecessors, reject it.
   1482   // FIXME: If we could restructure the CFG, we could make a common pred with
   1483   // all the preds that don't have an available LI and insert a new load into
   1484   // that one block.
   1485   if (NumUnavailablePreds != 1)
   1486       return false;
   1487 
   1488   // Split critical edges, and update the unavailable predecessors accordingly.
   1489   for (BasicBlock *OrigPred : CriticalEdgePred) {
   1490     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
   1491     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
   1492     PredLoads[NewPred] = nullptr;
   1493     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
   1494                  << LoadBB->getName() << '\n');
   1495   }
   1496 
   1497   // Check if the load can safely be moved to all the unavailable predecessors.
   1498   bool CanDoPRE = true;
   1499   const DataLayout &DL = LI->getModule()->getDataLayout();
   1500   SmallVector<Instruction*, 8> NewInsts;
   1501   for (auto &PredLoad : PredLoads) {
   1502     BasicBlock *UnavailablePred = PredLoad.first;
   1503 
   1504     // Do PHI translation to get its value in the predecessor if necessary.  The
   1505     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1506 
   1507     // If all preds have a single successor, then we know it is safe to insert
   1508     // the load on the pred (?!?), so we can insert code to materialize the
   1509     // pointer if it is not available.
   1510     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
   1511     Value *LoadPtr = nullptr;
   1512     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1513                                                 *DT, NewInsts);
   1514 
   1515     // If we couldn't find or insert a computation of this phi translated value,
   1516     // we fail PRE.
   1517     if (!LoadPtr) {
   1518       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1519             << *LI->getPointerOperand() << "\n");
   1520       CanDoPRE = false;
   1521       break;
   1522     }
   1523 
   1524     PredLoad.second = LoadPtr;
   1525   }
   1526 
   1527   if (!CanDoPRE) {
   1528     while (!NewInsts.empty()) {
   1529       Instruction *I = NewInsts.pop_back_val();
   1530       if (MD) MD->removeInstruction(I);
   1531       I->eraseFromParent();
   1532     }
   1533     // HINT: Don't revert the edge-splitting as following transformation may
   1534     // also need to split these critical edges.
   1535     return !CriticalEdgePred.empty();
   1536   }
   1537 
   1538   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1539   // and using PHI construction to get the value in the other predecessors, do
   1540   // it.
   1541   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1542   DEBUG(if (!NewInsts.empty())
   1543           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1544                  << *NewInsts.back() << '\n');
   1545 
   1546   // Assign value numbers to the new instructions.
   1547   for (Instruction *I : NewInsts) {
   1548     // FIXME: We really _ought_ to insert these value numbers into their
   1549     // parent's availability map.  However, in doing so, we risk getting into
   1550     // ordering issues.  If a block hasn't been processed yet, we would be
   1551     // marking a value as AVAIL-IN, which isn't what we intend.
   1552     VN.lookupOrAdd(I);
   1553   }
   1554 
   1555   for (const auto &PredLoad : PredLoads) {
   1556     BasicBlock *UnavailablePred = PredLoad.first;
   1557     Value *LoadPtr = PredLoad.second;
   1558 
   1559     auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre",
   1560                                  LI->isVolatile(), LI->getAlignment(),
   1561                                  LI->getOrdering(), LI->getSynchScope(),
   1562                                  UnavailablePred->getTerminator());
   1563 
   1564     // Transfer the old load's AA tags to the new load.
   1565     AAMDNodes Tags;
   1566     LI->getAAMetadata(Tags);
   1567     if (Tags)
   1568       NewLoad->setAAMetadata(Tags);
   1569 
   1570     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
   1571       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
   1572     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
   1573       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
   1574     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
   1575       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
   1576 
   1577     // Transfer DebugLoc.
   1578     NewLoad->setDebugLoc(LI->getDebugLoc());
   1579 
   1580     // Add the newly created load.
   1581     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1582                                                         NewLoad));
   1583     MD->invalidateCachedPointerInfo(LoadPtr);
   1584     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1585   }
   1586 
   1587   // Perform PHI construction.
   1588   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1589   LI->replaceAllUsesWith(V);
   1590   if (isa<PHINode>(V))
   1591     V->takeName(LI);
   1592   if (Instruction *I = dyn_cast<Instruction>(V))
   1593     I->setDebugLoc(LI->getDebugLoc());
   1594   if (V->getType()->getScalarType()->isPointerTy())
   1595     MD->invalidateCachedPointerInfo(V);
   1596   markInstructionForDeletion(LI);
   1597   ++NumPRELoad;
   1598   return true;
   1599 }
   1600 
   1601 /// Attempt to eliminate a load whose dependencies are
   1602 /// non-local by performing PHI construction.
   1603 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1604   // non-local speculations are not allowed under asan.
   1605   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeAddress))
   1606     return false;
   1607 
   1608   // Step 1: Find the non-local dependencies of the load.
   1609   LoadDepVect Deps;
   1610   MD->getNonLocalPointerDependency(LI, Deps);
   1611 
   1612   // If we had to process more than one hundred blocks to find the
   1613   // dependencies, this load isn't worth worrying about.  Optimizing
   1614   // it will be too expensive.
   1615   unsigned NumDeps = Deps.size();
   1616   if (NumDeps > 100)
   1617     return false;
   1618 
   1619   // If we had a phi translation failure, we'll have a single entry which is a
   1620   // clobber in the current block.  Reject this early.
   1621   if (NumDeps == 1 &&
   1622       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
   1623     DEBUG(
   1624       dbgs() << "GVN: non-local load ";
   1625       LI->printAsOperand(dbgs());
   1626       dbgs() << " has unknown dependencies\n";
   1627     );
   1628     return false;
   1629   }
   1630 
   1631   // If this load follows a GEP, see if we can PRE the indices before analyzing.
   1632   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
   1633     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
   1634                                         OE = GEP->idx_end();
   1635          OI != OE; ++OI)
   1636       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
   1637         performScalarPRE(I);
   1638   }
   1639 
   1640   // Step 2: Analyze the availability of the load
   1641   AvailValInBlkVect ValuesPerBlock;
   1642   UnavailBlkVect UnavailableBlocks;
   1643   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
   1644 
   1645   // If we have no predecessors that produce a known value for this load, exit
   1646   // early.
   1647   if (ValuesPerBlock.empty())
   1648     return false;
   1649 
   1650   // Step 3: Eliminate fully redundancy.
   1651   //
   1652   // If all of the instructions we depend on produce a known value for this
   1653   // load, then it is fully redundant and we can use PHI insertion to compute
   1654   // its value.  Insert PHIs and remove the fully redundant value now.
   1655   if (UnavailableBlocks.empty()) {
   1656     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1657 
   1658     // Perform PHI construction.
   1659     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1660     LI->replaceAllUsesWith(V);
   1661 
   1662     if (isa<PHINode>(V))
   1663       V->takeName(LI);
   1664     if (Instruction *I = dyn_cast<Instruction>(V))
   1665       if (LI->getDebugLoc())
   1666         I->setDebugLoc(LI->getDebugLoc());
   1667     if (V->getType()->getScalarType()->isPointerTy())
   1668       MD->invalidateCachedPointerInfo(V);
   1669     markInstructionForDeletion(LI);
   1670     ++NumGVNLoad;
   1671     return true;
   1672   }
   1673 
   1674   // Step 4: Eliminate partial redundancy.
   1675   if (!EnablePRE || !EnableLoadPRE)
   1676     return false;
   1677 
   1678   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
   1679 }
   1680 
   1681 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
   1682   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
   1683          "This function can only be called with llvm.assume intrinsic");
   1684   Value *V = IntrinsicI->getArgOperand(0);
   1685 
   1686   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
   1687     if (Cond->isZero()) {
   1688       Type *Int8Ty = Type::getInt8Ty(V->getContext());
   1689       // Insert a new store to null instruction before the load to indicate that
   1690       // this code is not reachable.  FIXME: We could insert unreachable
   1691       // instruction directly because we can modify the CFG.
   1692       new StoreInst(UndefValue::get(Int8Ty),
   1693                     Constant::getNullValue(Int8Ty->getPointerTo()),
   1694                     IntrinsicI);
   1695     }
   1696     markInstructionForDeletion(IntrinsicI);
   1697     return false;
   1698   }
   1699 
   1700   Constant *True = ConstantInt::getTrue(V->getContext());
   1701   bool Changed = false;
   1702 
   1703   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
   1704     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
   1705 
   1706     // This property is only true in dominated successors, propagateEquality
   1707     // will check dominance for us.
   1708     Changed |= propagateEquality(V, True, Edge, false);
   1709   }
   1710 
   1711   // We can replace assume value with true, which covers cases like this:
   1712   // call void @llvm.assume(i1 %cmp)
   1713   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
   1714   ReplaceWithConstMap[V] = True;
   1715 
   1716   // If one of *cmp *eq operand is const, adding it to map will cover this:
   1717   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
   1718   // call void @llvm.assume(i1 %cmp)
   1719   // ret float %0 ; will change it to ret float 3.000000e+00
   1720   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
   1721     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
   1722         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
   1723         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
   1724          CmpI->getFastMathFlags().noNaNs())) {
   1725       Value *CmpLHS = CmpI->getOperand(0);
   1726       Value *CmpRHS = CmpI->getOperand(1);
   1727       if (isa<Constant>(CmpLHS))
   1728         std::swap(CmpLHS, CmpRHS);
   1729       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
   1730 
   1731       // If only one operand is constant.
   1732       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
   1733         ReplaceWithConstMap[CmpLHS] = RHSConst;
   1734     }
   1735   }
   1736   return Changed;
   1737 }
   1738 
   1739 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
   1740   auto *ReplInst = dyn_cast<Instruction>(Repl);
   1741   if (!ReplInst)
   1742     return;
   1743 
   1744   // Patch the replacement so that it is not more restrictive than the value
   1745   // being replaced.
   1746   ReplInst->andIRFlags(I);
   1747 
   1748   // FIXME: If both the original and replacement value are part of the
   1749   // same control-flow region (meaning that the execution of one
   1750   // guarantees the execution of the other), then we can combine the
   1751   // noalias scopes here and do better than the general conservative
   1752   // answer used in combineMetadata().
   1753 
   1754   // In general, GVN unifies expressions over different control-flow
   1755   // regions, and so we need a conservative combination of the noalias
   1756   // scopes.
   1757   static const unsigned KnownIDs[] = {
   1758       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
   1759       LLVMContext::MD_noalias,        LLVMContext::MD_range,
   1760       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
   1761       LLVMContext::MD_invariant_group};
   1762   combineMetadata(ReplInst, I, KnownIDs);
   1763 }
   1764 
   1765 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
   1766   patchReplacementInstruction(I, Repl);
   1767   I->replaceAllUsesWith(Repl);
   1768 }
   1769 
   1770 /// Attempt to eliminate a load, first by eliminating it
   1771 /// locally, and then attempting non-local elimination if that fails.
   1772 bool GVN::processLoad(LoadInst *L) {
   1773   if (!MD)
   1774     return false;
   1775 
   1776   // This code hasn't been audited for ordered or volatile memory access
   1777   if (!L->isUnordered())
   1778     return false;
   1779 
   1780   if (L->use_empty()) {
   1781     markInstructionForDeletion(L);
   1782     return true;
   1783   }
   1784 
   1785   // ... to a pointer that has been loaded from before...
   1786   MemDepResult Dep = MD->getDependency(L);
   1787 
   1788   // If it is defined in another block, try harder.
   1789   if (Dep.isNonLocal())
   1790     return processNonLocalLoad(L);
   1791 
   1792   // Only handle the local case below
   1793   if (!Dep.isDef() && !Dep.isClobber()) {
   1794     // This might be a NonFuncLocal or an Unknown
   1795     DEBUG(
   1796       // fast print dep, using operator<< on instruction is too slow.
   1797       dbgs() << "GVN: load ";
   1798       L->printAsOperand(dbgs());
   1799       dbgs() << " has unknown dependence\n";
   1800     );
   1801     return false;
   1802   }
   1803 
   1804   AvailableValue AV;
   1805   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
   1806     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
   1807 
   1808     // Replace the load!
   1809     patchAndReplaceAllUsesWith(L, AvailableValue);
   1810     markInstructionForDeletion(L);
   1811     ++NumGVNLoad;
   1812     // Tell MDA to rexamine the reused pointer since we might have more
   1813     // information after forwarding it.
   1814     if (MD && AvailableValue->getType()->getScalarType()->isPointerTy())
   1815       MD->invalidateCachedPointerInfo(AvailableValue);
   1816     return true;
   1817   }
   1818 
   1819   return false;
   1820 }
   1821 
   1822 // In order to find a leader for a given value number at a
   1823 // specific basic block, we first obtain the list of all Values for that number,
   1824 // and then scan the list to find one whose block dominates the block in
   1825 // question.  This is fast because dominator tree queries consist of only
   1826 // a few comparisons of DFS numbers.
   1827 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
   1828   LeaderTableEntry Vals = LeaderTable[num];
   1829   if (!Vals.Val) return nullptr;
   1830 
   1831   Value *Val = nullptr;
   1832   if (DT->dominates(Vals.BB, BB)) {
   1833     Val = Vals.Val;
   1834     if (isa<Constant>(Val)) return Val;
   1835   }
   1836 
   1837   LeaderTableEntry* Next = Vals.Next;
   1838   while (Next) {
   1839     if (DT->dominates(Next->BB, BB)) {
   1840       if (isa<Constant>(Next->Val)) return Next->Val;
   1841       if (!Val) Val = Next->Val;
   1842     }
   1843 
   1844     Next = Next->Next;
   1845   }
   1846 
   1847   return Val;
   1848 }
   1849 
   1850 /// There is an edge from 'Src' to 'Dst'.  Return
   1851 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   1852 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   1853 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
   1854                                        DominatorTree *DT) {
   1855   // While in theory it is interesting to consider the case in which Dst has
   1856   // more than one predecessor, because Dst might be part of a loop which is
   1857   // only reachable from Src, in practice it is pointless since at the time
   1858   // GVN runs all such loops have preheaders, which means that Dst will have
   1859   // been changed to have only one predecessor, namely Src.
   1860   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
   1861   assert((!Pred || Pred == E.getStart()) &&
   1862          "No edge between these basic blocks!");
   1863   return Pred != nullptr;
   1864 }
   1865 
   1866 // Tries to replace instruction with const, using information from
   1867 // ReplaceWithConstMap.
   1868 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
   1869   bool Changed = false;
   1870   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
   1871     Value *Operand = Instr->getOperand(OpNum);
   1872     auto it = ReplaceWithConstMap.find(Operand);
   1873     if (it != ReplaceWithConstMap.end()) {
   1874       assert(!isa<Constant>(Operand) &&
   1875              "Replacing constants with constants is invalid");
   1876       DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second
   1877                    << " in instruction " << *Instr << '\n');
   1878       Instr->setOperand(OpNum, it->second);
   1879       Changed = true;
   1880     }
   1881   }
   1882   return Changed;
   1883 }
   1884 
   1885 /// The given values are known to be equal in every block
   1886 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   1887 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   1888 /// If DominatesByEdge is false, then it means that we will propagate the RHS
   1889 /// value starting from the end of Root.Start.
   1890 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
   1891                             bool DominatesByEdge) {
   1892   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
   1893   Worklist.push_back(std::make_pair(LHS, RHS));
   1894   bool Changed = false;
   1895   // For speed, compute a conservative fast approximation to
   1896   // DT->dominates(Root, Root.getEnd());
   1897   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
   1898 
   1899   while (!Worklist.empty()) {
   1900     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
   1901     LHS = Item.first; RHS = Item.second;
   1902 
   1903     if (LHS == RHS)
   1904       continue;
   1905     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
   1906 
   1907     // Don't try to propagate equalities between constants.
   1908     if (isa<Constant>(LHS) && isa<Constant>(RHS))
   1909       continue;
   1910 
   1911     // Prefer a constant on the right-hand side, or an Argument if no constants.
   1912     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
   1913       std::swap(LHS, RHS);
   1914     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
   1915 
   1916     // If there is no obvious reason to prefer the left-hand side over the
   1917     // right-hand side, ensure the longest lived term is on the right-hand side,
   1918     // so the shortest lived term will be replaced by the longest lived.
   1919     // This tends to expose more simplifications.
   1920     uint32_t LVN = VN.lookupOrAdd(LHS);
   1921     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
   1922         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
   1923       // Move the 'oldest' value to the right-hand side, using the value number
   1924       // as a proxy for age.
   1925       uint32_t RVN = VN.lookupOrAdd(RHS);
   1926       if (LVN < RVN) {
   1927         std::swap(LHS, RHS);
   1928         LVN = RVN;
   1929       }
   1930     }
   1931 
   1932     // If value numbering later sees that an instruction in the scope is equal
   1933     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
   1934     // the invariant that instructions only occur in the leader table for their
   1935     // own value number (this is used by removeFromLeaderTable), do not do this
   1936     // if RHS is an instruction (if an instruction in the scope is morphed into
   1937     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
   1938     // using the leader table is about compiling faster, not optimizing better).
   1939     // The leader table only tracks basic blocks, not edges. Only add to if we
   1940     // have the simple case where the edge dominates the end.
   1941     if (RootDominatesEnd && !isa<Instruction>(RHS))
   1942       addToLeaderTable(LVN, RHS, Root.getEnd());
   1943 
   1944     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   1945     // LHS always has at least one use that is not dominated by Root, this will
   1946     // never do anything if LHS has only one use.
   1947     if (!LHS->hasOneUse()) {
   1948       unsigned NumReplacements =
   1949           DominatesByEdge
   1950               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
   1951               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
   1952 
   1953       Changed |= NumReplacements > 0;
   1954       NumGVNEqProp += NumReplacements;
   1955     }
   1956 
   1957     // Now try to deduce additional equalities from this one. For example, if
   1958     // the known equality was "(A != B)" == "false" then it follows that A and B
   1959     // are equal in the scope. Only boolean equalities with an explicit true or
   1960     // false RHS are currently supported.
   1961     if (!RHS->getType()->isIntegerTy(1))
   1962       // Not a boolean equality - bail out.
   1963       continue;
   1964     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   1965     if (!CI)
   1966       // RHS neither 'true' nor 'false' - bail out.
   1967       continue;
   1968     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   1969     bool isKnownTrue = CI->isAllOnesValue();
   1970     bool isKnownFalse = !isKnownTrue;
   1971 
   1972     // If "A && B" is known true then both A and B are known true.  If "A || B"
   1973     // is known false then both A and B are known false.
   1974     Value *A, *B;
   1975     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   1976         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   1977       Worklist.push_back(std::make_pair(A, RHS));
   1978       Worklist.push_back(std::make_pair(B, RHS));
   1979       continue;
   1980     }
   1981 
   1982     // If we are propagating an equality like "(A == B)" == "true" then also
   1983     // propagate the equality A == B.  When propagating a comparison such as
   1984     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
   1985     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
   1986       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   1987 
   1988       // If "A == B" is known true, or "A != B" is known false, then replace
   1989       // A with B everywhere in the scope.
   1990       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   1991           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
   1992         Worklist.push_back(std::make_pair(Op0, Op1));
   1993 
   1994       // Handle the floating point versions of equality comparisons too.
   1995       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
   1996           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
   1997 
   1998         // Floating point -0.0 and 0.0 compare equal, so we can only
   1999         // propagate values if we know that we have a constant and that
   2000         // its value is non-zero.
   2001 
   2002         // FIXME: We should do this optimization if 'no signed zeros' is
   2003         // applicable via an instruction-level fast-math-flag or some other
   2004         // indicator that relaxed FP semantics are being used.
   2005 
   2006         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
   2007           Worklist.push_back(std::make_pair(Op0, Op1));
   2008       }
   2009 
   2010       // If "A >= B" is known true, replace "A < B" with false everywhere.
   2011       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
   2012       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
   2013       // Since we don't have the instruction "A < B" immediately to hand, work
   2014       // out the value number that it would have and use that to find an
   2015       // appropriate instruction (if any).
   2016       uint32_t NextNum = VN.getNextUnusedValueNumber();
   2017       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
   2018       // If the number we were assigned was brand new then there is no point in
   2019       // looking for an instruction realizing it: there cannot be one!
   2020       if (Num < NextNum) {
   2021         Value *NotCmp = findLeader(Root.getEnd(), Num);
   2022         if (NotCmp && isa<Instruction>(NotCmp)) {
   2023           unsigned NumReplacements =
   2024               DominatesByEdge
   2025                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
   2026                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
   2027                                              Root.getStart());
   2028           Changed |= NumReplacements > 0;
   2029           NumGVNEqProp += NumReplacements;
   2030         }
   2031       }
   2032       // Ensure that any instruction in scope that gets the "A < B" value number
   2033       // is replaced with false.
   2034       // The leader table only tracks basic blocks, not edges. Only add to if we
   2035       // have the simple case where the edge dominates the end.
   2036       if (RootDominatesEnd)
   2037         addToLeaderTable(Num, NotVal, Root.getEnd());
   2038 
   2039       continue;
   2040     }
   2041   }
   2042 
   2043   return Changed;
   2044 }
   2045 
   2046 /// When calculating availability, handle an instruction
   2047 /// by inserting it into the appropriate sets
   2048 bool GVN::processInstruction(Instruction *I) {
   2049   // Ignore dbg info intrinsics.
   2050   if (isa<DbgInfoIntrinsic>(I))
   2051     return false;
   2052 
   2053   // If the instruction can be easily simplified then do so now in preference
   2054   // to value numbering it.  Value numbering often exposes redundancies, for
   2055   // example if it determines that %y is equal to %x then the instruction
   2056   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2057   const DataLayout &DL = I->getModule()->getDataLayout();
   2058   if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
   2059     bool Changed = false;
   2060     if (!I->use_empty()) {
   2061       I->replaceAllUsesWith(V);
   2062       Changed = true;
   2063     }
   2064     if (isInstructionTriviallyDead(I, TLI)) {
   2065       markInstructionForDeletion(I);
   2066       Changed = true;
   2067     }
   2068     if (Changed) {
   2069       if (MD && V->getType()->getScalarType()->isPointerTy())
   2070         MD->invalidateCachedPointerInfo(V);
   2071       ++NumGVNSimpl;
   2072       return true;
   2073     }
   2074   }
   2075 
   2076   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
   2077     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
   2078       return processAssumeIntrinsic(IntrinsicI);
   2079 
   2080   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2081     if (processLoad(LI))
   2082       return true;
   2083 
   2084     unsigned Num = VN.lookupOrAdd(LI);
   2085     addToLeaderTable(Num, LI, LI->getParent());
   2086     return false;
   2087   }
   2088 
   2089   // For conditional branches, we can perform simple conditional propagation on
   2090   // the condition value itself.
   2091   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2092     if (!BI->isConditional())
   2093       return false;
   2094 
   2095     if (isa<Constant>(BI->getCondition()))
   2096       return processFoldableCondBr(BI);
   2097 
   2098     Value *BranchCond = BI->getCondition();
   2099     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2100     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2101     // Avoid multiple edges early.
   2102     if (TrueSucc == FalseSucc)
   2103       return false;
   2104 
   2105     BasicBlock *Parent = BI->getParent();
   2106     bool Changed = false;
   2107 
   2108     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
   2109     BasicBlockEdge TrueE(Parent, TrueSucc);
   2110     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
   2111 
   2112     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
   2113     BasicBlockEdge FalseE(Parent, FalseSucc);
   2114     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
   2115 
   2116     return Changed;
   2117   }
   2118 
   2119   // For switches, propagate the case values into the case destinations.
   2120   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2121     Value *SwitchCond = SI->getCondition();
   2122     BasicBlock *Parent = SI->getParent();
   2123     bool Changed = false;
   2124 
   2125     // Remember how many outgoing edges there are to every successor.
   2126     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
   2127     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
   2128       ++SwitchEdges[SI->getSuccessor(i)];
   2129 
   2130     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2131          i != e; ++i) {
   2132       BasicBlock *Dst = i.getCaseSuccessor();
   2133       // If there is only a single edge, propagate the case value into it.
   2134       if (SwitchEdges.lookup(Dst) == 1) {
   2135         BasicBlockEdge E(Parent, Dst);
   2136         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true);
   2137       }
   2138     }
   2139     return Changed;
   2140   }
   2141 
   2142   // Instructions with void type don't return a value, so there's
   2143   // no point in trying to find redundancies in them.
   2144   if (I->getType()->isVoidTy())
   2145     return false;
   2146 
   2147   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2148   unsigned Num = VN.lookupOrAdd(I);
   2149 
   2150   // Allocations are always uniquely numbered, so we can save time and memory
   2151   // by fast failing them.
   2152   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2153     addToLeaderTable(Num, I, I->getParent());
   2154     return false;
   2155   }
   2156 
   2157   // If the number we were assigned was a brand new VN, then we don't
   2158   // need to do a lookup to see if the number already exists
   2159   // somewhere in the domtree: it can't!
   2160   if (Num >= NextNum) {
   2161     addToLeaderTable(Num, I, I->getParent());
   2162     return false;
   2163   }
   2164 
   2165   // Perform fast-path value-number based elimination of values inherited from
   2166   // dominators.
   2167   Value *Repl = findLeader(I->getParent(), Num);
   2168   if (!Repl) {
   2169     // Failure, just remember this instance for future use.
   2170     addToLeaderTable(Num, I, I->getParent());
   2171     return false;
   2172   } else if (Repl == I) {
   2173     // If I was the result of a shortcut PRE, it might already be in the table
   2174     // and the best replacement for itself. Nothing to do.
   2175     return false;
   2176   }
   2177 
   2178   // Remove it!
   2179   patchAndReplaceAllUsesWith(I, Repl);
   2180   if (MD && Repl->getType()->getScalarType()->isPointerTy())
   2181     MD->invalidateCachedPointerInfo(Repl);
   2182   markInstructionForDeletion(I);
   2183   return true;
   2184 }
   2185 
   2186 /// runOnFunction - This is the main transformation entry point for a function.
   2187 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
   2188                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
   2189                   MemoryDependenceResults *RunMD) {
   2190   AC = &RunAC;
   2191   DT = &RunDT;
   2192   VN.setDomTree(DT);
   2193   TLI = &RunTLI;
   2194   VN.setAliasAnalysis(&RunAA);
   2195   MD = RunMD;
   2196   VN.setMemDep(MD);
   2197 
   2198   bool Changed = false;
   2199   bool ShouldContinue = true;
   2200 
   2201   // Merge unconditional branches, allowing PRE to catch more
   2202   // optimization opportunities.
   2203   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2204     BasicBlock *BB = &*FI++;
   2205 
   2206     bool removedBlock =
   2207         MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD);
   2208     if (removedBlock) ++NumGVNBlocks;
   2209 
   2210     Changed |= removedBlock;
   2211   }
   2212 
   2213   unsigned Iteration = 0;
   2214   while (ShouldContinue) {
   2215     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2216     ShouldContinue = iterateOnFunction(F);
   2217     Changed |= ShouldContinue;
   2218     ++Iteration;
   2219   }
   2220 
   2221   if (EnablePRE) {
   2222     // Fabricate val-num for dead-code in order to suppress assertion in
   2223     // performPRE().
   2224     assignValNumForDeadCode();
   2225     bool PREChanged = true;
   2226     while (PREChanged) {
   2227       PREChanged = performPRE(F);
   2228       Changed |= PREChanged;
   2229     }
   2230   }
   2231 
   2232   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2233   // computations into blocks where they become fully redundant.  Note that
   2234   // we can't do this until PRE's critical edge splitting updates memdep.
   2235   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2236 
   2237   cleanupGlobalSets();
   2238   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
   2239   // iteration.
   2240   DeadBlocks.clear();
   2241 
   2242   return Changed;
   2243 }
   2244 
   2245 bool GVN::processBlock(BasicBlock *BB) {
   2246   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2247   // (and incrementing BI before processing an instruction).
   2248   assert(InstrsToErase.empty() &&
   2249          "We expect InstrsToErase to be empty across iterations");
   2250   if (DeadBlocks.count(BB))
   2251     return false;
   2252 
   2253   // Clearing map before every BB because it can be used only for single BB.
   2254   ReplaceWithConstMap.clear();
   2255   bool ChangedFunction = false;
   2256 
   2257   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2258        BI != BE;) {
   2259     if (!ReplaceWithConstMap.empty())
   2260       ChangedFunction |= replaceOperandsWithConsts(&*BI);
   2261     ChangedFunction |= processInstruction(&*BI);
   2262 
   2263     if (InstrsToErase.empty()) {
   2264       ++BI;
   2265       continue;
   2266     }
   2267 
   2268     // If we need some instructions deleted, do it now.
   2269     NumGVNInstr += InstrsToErase.size();
   2270 
   2271     // Avoid iterator invalidation.
   2272     bool AtStart = BI == BB->begin();
   2273     if (!AtStart)
   2274       --BI;
   2275 
   2276     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
   2277          E = InstrsToErase.end(); I != E; ++I) {
   2278       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2279       if (MD) MD->removeInstruction(*I);
   2280       DEBUG(verifyRemoved(*I));
   2281       (*I)->eraseFromParent();
   2282     }
   2283     InstrsToErase.clear();
   2284 
   2285     if (AtStart)
   2286       BI = BB->begin();
   2287     else
   2288       ++BI;
   2289   }
   2290 
   2291   return ChangedFunction;
   2292 }
   2293 
   2294 // Instantiate an expression in a predecessor that lacked it.
   2295 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
   2296                                     unsigned int ValNo) {
   2297   // Because we are going top-down through the block, all value numbers
   2298   // will be available in the predecessor by the time we need them.  Any
   2299   // that weren't originally present will have been instantiated earlier
   2300   // in this loop.
   2301   bool success = true;
   2302   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
   2303     Value *Op = Instr->getOperand(i);
   2304     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2305       continue;
   2306     // This could be a newly inserted instruction, in which case, we won't
   2307     // find a value number, and should give up before we hurt ourselves.
   2308     // FIXME: Rewrite the infrastructure to let it easier to value number
   2309     // and process newly inserted instructions.
   2310     if (!VN.exists(Op)) {
   2311       success = false;
   2312       break;
   2313     }
   2314     if (Value *V = findLeader(Pred, VN.lookup(Op))) {
   2315       Instr->setOperand(i, V);
   2316     } else {
   2317       success = false;
   2318       break;
   2319     }
   2320   }
   2321 
   2322   // Fail out if we encounter an operand that is not available in
   2323   // the PRE predecessor.  This is typically because of loads which
   2324   // are not value numbered precisely.
   2325   if (!success)
   2326     return false;
   2327 
   2328   Instr->insertBefore(Pred->getTerminator());
   2329   Instr->setName(Instr->getName() + ".pre");
   2330   Instr->setDebugLoc(Instr->getDebugLoc());
   2331   VN.add(Instr, ValNo);
   2332 
   2333   // Update the availability map to include the new instruction.
   2334   addToLeaderTable(ValNo, Instr, Pred);
   2335   return true;
   2336 }
   2337 
   2338 bool GVN::performScalarPRE(Instruction *CurInst) {
   2339   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
   2340       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
   2341       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2342       isa<DbgInfoIntrinsic>(CurInst))
   2343     return false;
   2344 
   2345   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
   2346   // sinking the compare again, and it would force the code generator to
   2347   // move the i1 from processor flags or predicate registers into a general
   2348   // purpose register.
   2349   if (isa<CmpInst>(CurInst))
   2350     return false;
   2351 
   2352   // We don't currently value number ANY inline asm calls.
   2353   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2354     if (CallI->isInlineAsm())
   2355       return false;
   2356 
   2357   uint32_t ValNo = VN.lookup(CurInst);
   2358 
   2359   // Look for the predecessors for PRE opportunities.  We're
   2360   // only trying to solve the basic diamond case, where
   2361   // a value is computed in the successor and one predecessor,
   2362   // but not the other.  We also explicitly disallow cases
   2363   // where the successor is its own predecessor, because they're
   2364   // more complicated to get right.
   2365   unsigned NumWith = 0;
   2366   unsigned NumWithout = 0;
   2367   BasicBlock *PREPred = nullptr;
   2368   BasicBlock *CurrentBlock = CurInst->getParent();
   2369 
   2370   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
   2371   for (BasicBlock *P : predecessors(CurrentBlock)) {
   2372     // We're not interested in PRE where the block is its
   2373     // own predecessor, or in blocks with predecessors
   2374     // that are not reachable.
   2375     if (P == CurrentBlock) {
   2376       NumWithout = 2;
   2377       break;
   2378     } else if (!DT->isReachableFromEntry(P)) {
   2379       NumWithout = 2;
   2380       break;
   2381     }
   2382 
   2383     Value *predV = findLeader(P, ValNo);
   2384     if (!predV) {
   2385       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
   2386       PREPred = P;
   2387       ++NumWithout;
   2388     } else if (predV == CurInst) {
   2389       /* CurInst dominates this predecessor. */
   2390       NumWithout = 2;
   2391       break;
   2392     } else {
   2393       predMap.push_back(std::make_pair(predV, P));
   2394       ++NumWith;
   2395     }
   2396   }
   2397 
   2398   // Don't do PRE when it might increase code size, i.e. when
   2399   // we would need to insert instructions in more than one pred.
   2400   if (NumWithout > 1 || NumWith == 0)
   2401     return false;
   2402 
   2403   // We may have a case where all predecessors have the instruction,
   2404   // and we just need to insert a phi node. Otherwise, perform
   2405   // insertion.
   2406   Instruction *PREInstr = nullptr;
   2407 
   2408   if (NumWithout != 0) {
   2409     // Don't do PRE across indirect branch.
   2410     if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2411       return false;
   2412 
   2413     // We can't do PRE safely on a critical edge, so instead we schedule
   2414     // the edge to be split and perform the PRE the next time we iterate
   2415     // on the function.
   2416     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2417     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2418       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2419       return false;
   2420     }
   2421     // We need to insert somewhere, so let's give it a shot
   2422     PREInstr = CurInst->clone();
   2423     if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
   2424       // If we failed insertion, make sure we remove the instruction.
   2425       DEBUG(verifyRemoved(PREInstr));
   2426       delete PREInstr;
   2427       return false;
   2428     }
   2429   }
   2430 
   2431   // Either we should have filled in the PRE instruction, or we should
   2432   // not have needed insertions.
   2433   assert (PREInstr != nullptr || NumWithout == 0);
   2434 
   2435   ++NumGVNPRE;
   2436 
   2437   // Create a PHI to make the value available in this block.
   2438   PHINode *Phi =
   2439       PHINode::Create(CurInst->getType(), predMap.size(),
   2440                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
   2441   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
   2442     if (Value *V = predMap[i].first)
   2443       Phi->addIncoming(V, predMap[i].second);
   2444     else
   2445       Phi->addIncoming(PREInstr, PREPred);
   2446   }
   2447 
   2448   VN.add(Phi, ValNo);
   2449   addToLeaderTable(ValNo, Phi, CurrentBlock);
   2450   Phi->setDebugLoc(CurInst->getDebugLoc());
   2451   CurInst->replaceAllUsesWith(Phi);
   2452   if (MD && Phi->getType()->getScalarType()->isPointerTy())
   2453     MD->invalidateCachedPointerInfo(Phi);
   2454   VN.erase(CurInst);
   2455   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2456 
   2457   DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2458   if (MD)
   2459     MD->removeInstruction(CurInst);
   2460   DEBUG(verifyRemoved(CurInst));
   2461   CurInst->eraseFromParent();
   2462   ++NumGVNInstr;
   2463 
   2464   return true;
   2465 }
   2466 
   2467 /// Perform a purely local form of PRE that looks for diamond
   2468 /// control flow patterns and attempts to perform simple PRE at the join point.
   2469 bool GVN::performPRE(Function &F) {
   2470   bool Changed = false;
   2471   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
   2472     // Nothing to PRE in the entry block.
   2473     if (CurrentBlock == &F.getEntryBlock())
   2474       continue;
   2475 
   2476     // Don't perform PRE on an EH pad.
   2477     if (CurrentBlock->isEHPad())
   2478       continue;
   2479 
   2480     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2481                               BE = CurrentBlock->end();
   2482          BI != BE;) {
   2483       Instruction *CurInst = &*BI++;
   2484       Changed |= performScalarPRE(CurInst);
   2485     }
   2486   }
   2487 
   2488   if (splitCriticalEdges())
   2489     Changed = true;
   2490 
   2491   return Changed;
   2492 }
   2493 
   2494 /// Split the critical edge connecting the given two blocks, and return
   2495 /// the block inserted to the critical edge.
   2496 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
   2497   BasicBlock *BB =
   2498       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
   2499   if (MD)
   2500     MD->invalidateCachedPredecessors();
   2501   return BB;
   2502 }
   2503 
   2504 /// Split critical edges found during the previous
   2505 /// iteration that may enable further optimization.
   2506 bool GVN::splitCriticalEdges() {
   2507   if (toSplit.empty())
   2508     return false;
   2509   do {
   2510     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2511     SplitCriticalEdge(Edge.first, Edge.second,
   2512                       CriticalEdgeSplittingOptions(DT));
   2513   } while (!toSplit.empty());
   2514   if (MD) MD->invalidateCachedPredecessors();
   2515   return true;
   2516 }
   2517 
   2518 /// Executes one iteration of GVN
   2519 bool GVN::iterateOnFunction(Function &F) {
   2520   cleanupGlobalSets();
   2521 
   2522   // Top-down walk of the dominator tree
   2523   bool Changed = false;
   2524   // Save the blocks this function have before transformation begins. GVN may
   2525   // split critical edge, and hence may invalidate the RPO/DT iterator.
   2526   //
   2527   std::vector<BasicBlock *> BBVect;
   2528   BBVect.reserve(256);
   2529   // Needed for value numbering with phi construction to work.
   2530   ReversePostOrderTraversal<Function *> RPOT(&F);
   2531   for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
   2532                                                            RE = RPOT.end();
   2533        RI != RE; ++RI)
   2534     BBVect.push_back(*RI);
   2535 
   2536   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
   2537        I != E; I++)
   2538     Changed |= processBlock(*I);
   2539 
   2540   return Changed;
   2541 }
   2542 
   2543 void GVN::cleanupGlobalSets() {
   2544   VN.clear();
   2545   LeaderTable.clear();
   2546   TableAllocator.Reset();
   2547 }
   2548 
   2549 /// Verify that the specified instruction does not occur in our
   2550 /// internal data structures.
   2551 void GVN::verifyRemoved(const Instruction *Inst) const {
   2552   VN.verifyRemoved(Inst);
   2553 
   2554   // Walk through the value number scope to make sure the instruction isn't
   2555   // ferreted away in it.
   2556   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2557        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2558     const LeaderTableEntry *Node = &I->second;
   2559     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2560 
   2561     while (Node->Next) {
   2562       Node = Node->Next;
   2563       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2564     }
   2565   }
   2566 }
   2567 
   2568 /// BB is declared dead, which implied other blocks become dead as well. This
   2569 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
   2570 /// live successors, update their phi nodes by replacing the operands
   2571 /// corresponding to dead blocks with UndefVal.
   2572 void GVN::addDeadBlock(BasicBlock *BB) {
   2573   SmallVector<BasicBlock *, 4> NewDead;
   2574   SmallSetVector<BasicBlock *, 4> DF;
   2575 
   2576   NewDead.push_back(BB);
   2577   while (!NewDead.empty()) {
   2578     BasicBlock *D = NewDead.pop_back_val();
   2579     if (DeadBlocks.count(D))
   2580       continue;
   2581 
   2582     // All blocks dominated by D are dead.
   2583     SmallVector<BasicBlock *, 8> Dom;
   2584     DT->getDescendants(D, Dom);
   2585     DeadBlocks.insert(Dom.begin(), Dom.end());
   2586 
   2587     // Figure out the dominance-frontier(D).
   2588     for (BasicBlock *B : Dom) {
   2589       for (BasicBlock *S : successors(B)) {
   2590         if (DeadBlocks.count(S))
   2591           continue;
   2592 
   2593         bool AllPredDead = true;
   2594         for (BasicBlock *P : predecessors(S))
   2595           if (!DeadBlocks.count(P)) {
   2596             AllPredDead = false;
   2597             break;
   2598           }
   2599 
   2600         if (!AllPredDead) {
   2601           // S could be proved dead later on. That is why we don't update phi
   2602           // operands at this moment.
   2603           DF.insert(S);
   2604         } else {
   2605           // While S is not dominated by D, it is dead by now. This could take
   2606           // place if S already have a dead predecessor before D is declared
   2607           // dead.
   2608           NewDead.push_back(S);
   2609         }
   2610       }
   2611     }
   2612   }
   2613 
   2614   // For the dead blocks' live successors, update their phi nodes by replacing
   2615   // the operands corresponding to dead blocks with UndefVal.
   2616   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
   2617         I != E; I++) {
   2618     BasicBlock *B = *I;
   2619     if (DeadBlocks.count(B))
   2620       continue;
   2621 
   2622     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
   2623     for (BasicBlock *P : Preds) {
   2624       if (!DeadBlocks.count(P))
   2625         continue;
   2626 
   2627       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
   2628         if (BasicBlock *S = splitCriticalEdges(P, B))
   2629           DeadBlocks.insert(P = S);
   2630       }
   2631 
   2632       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
   2633         PHINode &Phi = cast<PHINode>(*II);
   2634         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
   2635                              UndefValue::get(Phi.getType()));
   2636       }
   2637     }
   2638   }
   2639 }
   2640 
   2641 // If the given branch is recognized as a foldable branch (i.e. conditional
   2642 // branch with constant condition), it will perform following analyses and
   2643 // transformation.
   2644 //  1) If the dead out-coming edge is a critical-edge, split it. Let
   2645 //     R be the target of the dead out-coming edge.
   2646 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
   2647 //     edge. The result of this step will be {X| X is dominated by R}
   2648 //  2) Identify those blocks which haves at least one dead predecessor. The
   2649 //     result of this step will be dominance-frontier(R).
   2650 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
   2651 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
   2652 //
   2653 // Return true iff *NEW* dead code are found.
   2654 bool GVN::processFoldableCondBr(BranchInst *BI) {
   2655   if (!BI || BI->isUnconditional())
   2656     return false;
   2657 
   2658   // If a branch has two identical successors, we cannot declare either dead.
   2659   if (BI->getSuccessor(0) == BI->getSuccessor(1))
   2660     return false;
   2661 
   2662   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
   2663   if (!Cond)
   2664     return false;
   2665 
   2666   BasicBlock *DeadRoot =
   2667       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
   2668   if (DeadBlocks.count(DeadRoot))
   2669     return false;
   2670 
   2671   if (!DeadRoot->getSinglePredecessor())
   2672     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
   2673 
   2674   addDeadBlock(DeadRoot);
   2675   return true;
   2676 }
   2677 
   2678 // performPRE() will trigger assert if it comes across an instruction without
   2679 // associated val-num. As it normally has far more live instructions than dead
   2680 // instructions, it makes more sense just to "fabricate" a val-number for the
   2681 // dead code than checking if instruction involved is dead or not.
   2682 void GVN::assignValNumForDeadCode() {
   2683   for (BasicBlock *BB : DeadBlocks) {
   2684     for (Instruction &Inst : *BB) {
   2685       unsigned ValNum = VN.lookupOrAdd(&Inst);
   2686       addToLeaderTable(ValNum, &Inst, BB);
   2687     }
   2688   }
   2689 }
   2690 
   2691 class llvm::gvn::GVNLegacyPass : public FunctionPass {
   2692 public:
   2693   static char ID; // Pass identification, replacement for typeid
   2694   explicit GVNLegacyPass(bool NoLoads = false)
   2695       : FunctionPass(ID), NoLoads(NoLoads) {
   2696     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
   2697   }
   2698 
   2699   bool runOnFunction(Function &F) override {
   2700     if (skipFunction(F))
   2701       return false;
   2702 
   2703     return Impl.runImpl(
   2704         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
   2705         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
   2706         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
   2707         getAnalysis<AAResultsWrapperPass>().getAAResults(),
   2708         NoLoads ? nullptr
   2709                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep());
   2710   }
   2711 
   2712   void getAnalysisUsage(AnalysisUsage &AU) const override {
   2713     AU.addRequired<AssumptionCacheTracker>();
   2714     AU.addRequired<DominatorTreeWrapperPass>();
   2715     AU.addRequired<TargetLibraryInfoWrapperPass>();
   2716     if (!NoLoads)
   2717       AU.addRequired<MemoryDependenceWrapperPass>();
   2718     AU.addRequired<AAResultsWrapperPass>();
   2719 
   2720     AU.addPreserved<DominatorTreeWrapperPass>();
   2721     AU.addPreserved<GlobalsAAWrapperPass>();
   2722   }
   2723 
   2724 private:
   2725   bool NoLoads;
   2726   GVN Impl;
   2727 };
   2728 
   2729 char GVNLegacyPass::ID = 0;
   2730 
   2731 // The public interface to this file...
   2732 FunctionPass *llvm::createGVNPass(bool NoLoads) {
   2733   return new GVNLegacyPass(NoLoads);
   2734 }
   2735 
   2736 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
   2737 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   2738 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
   2739 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   2740 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   2741 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   2742 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
   2743 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
   2744