Home | History | Annotate | Download | only in XCore
      1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the XCoreTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "XCoreISelLowering.h"
     15 #include "XCore.h"
     16 #include "XCoreMachineFunctionInfo.h"
     17 #include "XCoreSubtarget.h"
     18 #include "XCoreTargetMachine.h"
     19 #include "XCoreTargetObjectFile.h"
     20 #include "llvm/CodeGen/CallingConvLower.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/SelectionDAGISel.h"
     27 #include "llvm/CodeGen/ValueTypes.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Function.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/Intrinsics.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <algorithm>
     39 
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "xcore-lower"
     43 
     44 const char *XCoreTargetLowering::
     45 getTargetNodeName(unsigned Opcode) const
     46 {
     47   switch ((XCoreISD::NodeType)Opcode)
     48   {
     49     case XCoreISD::FIRST_NUMBER      : break;
     50     case XCoreISD::BL                : return "XCoreISD::BL";
     51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
     52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
     53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
     54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
     55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
     56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
     57     case XCoreISD::LADD              : return "XCoreISD::LADD";
     58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
     59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
     60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
     61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
     62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
     63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
     64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
     65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
     66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
     67     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
     68   }
     69   return nullptr;
     70 }
     71 
     72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
     73                                          const XCoreSubtarget &Subtarget)
     74     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
     75 
     76   // Set up the register classes.
     77   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
     78 
     79   // Compute derived properties from the register classes
     80   computeRegisterProperties(Subtarget.getRegisterInfo());
     81 
     82   setStackPointerRegisterToSaveRestore(XCore::SP);
     83 
     84   setSchedulingPreference(Sched::Source);
     85 
     86   // Use i32 for setcc operations results (slt, sgt, ...).
     87   setBooleanContents(ZeroOrOneBooleanContent);
     88   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     89 
     90   // XCore does not have the NodeTypes below.
     91   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
     92   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
     93   setOperationAction(ISD::ADDC, MVT::i32, Expand);
     94   setOperationAction(ISD::ADDE, MVT::i32, Expand);
     95   setOperationAction(ISD::SUBC, MVT::i32, Expand);
     96   setOperationAction(ISD::SUBE, MVT::i32, Expand);
     97 
     98   // 64bit
     99   setOperationAction(ISD::ADD, MVT::i64, Custom);
    100   setOperationAction(ISD::SUB, MVT::i64, Custom);
    101   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
    102   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
    103   setOperationAction(ISD::MULHS, MVT::i32, Expand);
    104   setOperationAction(ISD::MULHU, MVT::i32, Expand);
    105   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    106   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    107   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
    108 
    109   // Bit Manipulation
    110   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    111   setOperationAction(ISD::ROTL , MVT::i32, Expand);
    112   setOperationAction(ISD::ROTR , MVT::i32, Expand);
    113 
    114   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    115 
    116   // Jump tables.
    117   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
    118 
    119   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    120   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
    121 
    122   // Conversion of i64 -> double produces constantpool nodes
    123   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
    124 
    125   // Loads
    126   for (MVT VT : MVT::integer_valuetypes()) {
    127     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    130 
    131     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
    132     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
    133   }
    134 
    135   // Custom expand misaligned loads / stores.
    136   setOperationAction(ISD::LOAD, MVT::i32, Custom);
    137   setOperationAction(ISD::STORE, MVT::i32, Custom);
    138 
    139   // Varargs
    140   setOperationAction(ISD::VAEND, MVT::Other, Expand);
    141   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
    142   setOperationAction(ISD::VAARG, MVT::Other, Custom);
    143   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    144 
    145   // Dynamic stack
    146   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
    147   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
    148   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    149 
    150   // Exception handling
    151   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
    152   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    153 
    154   // Atomic operations
    155   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
    156   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
    157   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
    158   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    159   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    160 
    161   // TRAMPOLINE is custom lowered.
    162   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    163   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    164 
    165   // We want to custom lower some of our intrinsics.
    166   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    167 
    168   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
    169   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
    170     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
    171 
    172   // We have target-specific dag combine patterns for the following nodes:
    173   setTargetDAGCombine(ISD::STORE);
    174   setTargetDAGCombine(ISD::ADD);
    175   setTargetDAGCombine(ISD::INTRINSIC_VOID);
    176   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    177 
    178   setMinFunctionAlignment(1);
    179   setPrefFunctionAlignment(2);
    180 }
    181 
    182 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
    183   if (Val.getOpcode() != ISD::LOAD)
    184     return false;
    185 
    186   EVT VT1 = Val.getValueType();
    187   if (!VT1.isSimple() || !VT1.isInteger() ||
    188       !VT2.isSimple() || !VT2.isInteger())
    189     return false;
    190 
    191   switch (VT1.getSimpleVT().SimpleTy) {
    192   default: break;
    193   case MVT::i8:
    194     return true;
    195   }
    196 
    197   return false;
    198 }
    199 
    200 SDValue XCoreTargetLowering::
    201 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
    202   switch (Op.getOpcode())
    203   {
    204   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
    205   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
    206   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
    207   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
    208   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
    209   case ISD::LOAD:               return LowerLOAD(Op, DAG);
    210   case ISD::STORE:              return LowerSTORE(Op, DAG);
    211   case ISD::VAARG:              return LowerVAARG(Op, DAG);
    212   case ISD::VASTART:            return LowerVASTART(Op, DAG);
    213   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
    214   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
    215   // FIXME: Remove these when LegalizeDAGTypes lands.
    216   case ISD::ADD:
    217   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
    218   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
    219   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
    220   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
    221   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
    222   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
    223   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    224   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
    225   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
    226   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
    227   default:
    228     llvm_unreachable("unimplemented operand");
    229   }
    230 }
    231 
    232 /// ReplaceNodeResults - Replace the results of node with an illegal result
    233 /// type with new values built out of custom code.
    234 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
    235                                              SmallVectorImpl<SDValue>&Results,
    236                                              SelectionDAG &DAG) const {
    237   switch (N->getOpcode()) {
    238   default:
    239     llvm_unreachable("Don't know how to custom expand this!");
    240   case ISD::ADD:
    241   case ISD::SUB:
    242     Results.push_back(ExpandADDSUB(N, DAG));
    243     return;
    244   }
    245 }
    246 
    247 //===----------------------------------------------------------------------===//
    248 //  Misc Lower Operation implementation
    249 //===----------------------------------------------------------------------===//
    250 
    251 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
    252                                                      const GlobalValue *GV,
    253                                                      SelectionDAG &DAG) const {
    254   // FIXME there is no actual debug info here
    255   SDLoc dl(GA);
    256 
    257   if (GV->getValueType()->isFunctionTy())
    258     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
    259 
    260   const auto *GVar = dyn_cast<GlobalVariable>(GV);
    261   if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
    262       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
    263     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
    264 
    265   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
    266 }
    267 
    268 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
    269   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
    270     return true;
    271 
    272   Type *ObjType = GV->getValueType();
    273   if (!ObjType->isSized())
    274     return false;
    275 
    276   auto &DL = GV->getParent()->getDataLayout();
    277   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
    278   return ObjSize < CodeModelLargeSize && ObjSize != 0;
    279 }
    280 
    281 SDValue XCoreTargetLowering::
    282 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
    283 {
    284   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
    285   const GlobalValue *GV = GN->getGlobal();
    286   SDLoc DL(GN);
    287   int64_t Offset = GN->getOffset();
    288   if (IsSmallObject(GV, *this)) {
    289     // We can only fold positive offsets that are a multiple of the word size.
    290     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
    291     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
    292     GA = getGlobalAddressWrapper(GA, GV, DAG);
    293     // Handle the rest of the offset.
    294     if (Offset != FoldedOffset) {
    295       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
    296       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
    297     }
    298     return GA;
    299   } else {
    300     // Ideally we would not fold in offset with an index <= 11.
    301     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
    302     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
    303     Ty = Type::getInt32Ty(*DAG.getContext());
    304     Constant *Idx = ConstantInt::get(Ty, Offset);
    305     Constant *GAI = ConstantExpr::getGetElementPtr(
    306         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
    307     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
    308     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
    309                        DAG.getEntryNode(), CP, MachinePointerInfo(), false,
    310                        false, false, 0);
    311   }
    312 }
    313 
    314 SDValue XCoreTargetLowering::
    315 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
    316 {
    317   SDLoc DL(Op);
    318   auto PtrVT = getPointerTy(DAG.getDataLayout());
    319   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
    320   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
    321 
    322   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
    323 }
    324 
    325 SDValue XCoreTargetLowering::
    326 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
    327 {
    328   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
    329   // FIXME there isn't really debug info here
    330   SDLoc dl(CP);
    331   EVT PtrVT = Op.getValueType();
    332   SDValue Res;
    333   if (CP->isMachineConstantPoolEntry()) {
    334     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
    335                                     CP->getAlignment(), CP->getOffset());
    336   } else {
    337     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
    338                                     CP->getAlignment(), CP->getOffset());
    339   }
    340   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
    341 }
    342 
    343 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
    344   return MachineJumpTableInfo::EK_Inline;
    345 }
    346 
    347 SDValue XCoreTargetLowering::
    348 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
    349 {
    350   SDValue Chain = Op.getOperand(0);
    351   SDValue Table = Op.getOperand(1);
    352   SDValue Index = Op.getOperand(2);
    353   SDLoc dl(Op);
    354   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
    355   unsigned JTI = JT->getIndex();
    356   MachineFunction &MF = DAG.getMachineFunction();
    357   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
    358   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
    359 
    360   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
    361   if (NumEntries <= 32) {
    362     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
    363   }
    364   assert((NumEntries >> 31) == 0);
    365   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
    366                                     DAG.getConstant(1, dl, MVT::i32));
    367   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
    368                      ScaledIndex);
    369 }
    370 
    371 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
    372     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
    373     SelectionDAG &DAG) const {
    374   auto PtrVT = getPointerTy(DAG.getDataLayout());
    375   if ((Offset & 0x3) == 0) {
    376     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false,
    377                        false, false, 0);
    378   }
    379   // Lower to pair of consecutive word aligned loads plus some bit shifting.
    380   int32_t HighOffset = alignTo(Offset, 4);
    381   int32_t LowOffset = HighOffset - 4;
    382   SDValue LowAddr, HighAddr;
    383   if (GlobalAddressSDNode *GASD =
    384         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
    385     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
    386                                    LowOffset);
    387     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
    388                                     HighOffset);
    389   } else {
    390     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
    391                           DAG.getConstant(LowOffset, DL, MVT::i32));
    392     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
    393                            DAG.getConstant(HighOffset, DL, MVT::i32));
    394   }
    395   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
    396   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
    397 
    398   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(),
    399                             false, false, false, 0);
    400   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(),
    401                              false, false, false, 0);
    402   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
    403   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
    404   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
    405   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
    406                       High.getValue(1));
    407   SDValue Ops[] = { Result, Chain };
    408   return DAG.getMergeValues(Ops, DL);
    409 }
    410 
    411 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
    412 {
    413   APInt KnownZero, KnownOne;
    414   DAG.computeKnownBits(Value, KnownZero, KnownOne);
    415   return KnownZero.countTrailingOnes() >= 2;
    416 }
    417 
    418 SDValue XCoreTargetLowering::
    419 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
    420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    421   LoadSDNode *LD = cast<LoadSDNode>(Op);
    422   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
    423          "Unexpected extension type");
    424   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
    425   if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
    426                                      LD->getAddressSpace(),
    427                                      LD->getAlignment()))
    428     return SDValue();
    429 
    430   auto &TD = DAG.getDataLayout();
    431   unsigned ABIAlignment = TD.getABITypeAlignment(
    432       LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
    433   // Leave aligned load alone.
    434   if (LD->getAlignment() >= ABIAlignment)
    435     return SDValue();
    436 
    437   SDValue Chain = LD->getChain();
    438   SDValue BasePtr = LD->getBasePtr();
    439   SDLoc DL(Op);
    440 
    441   if (!LD->isVolatile()) {
    442     const GlobalValue *GV;
    443     int64_t Offset = 0;
    444     if (DAG.isBaseWithConstantOffset(BasePtr) &&
    445         isWordAligned(BasePtr->getOperand(0), DAG)) {
    446       SDValue NewBasePtr = BasePtr->getOperand(0);
    447       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
    448       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
    449                                                     Offset, DAG);
    450     }
    451     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
    452         MinAlign(GV->getAlignment(), 4) == 4) {
    453       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
    454                                                 BasePtr->getValueType(0));
    455       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
    456                                                     Offset, DAG);
    457     }
    458   }
    459 
    460   if (LD->getAlignment() == 2) {
    461     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
    462                                  BasePtr, LD->getPointerInfo(), MVT::i16,
    463                                  LD->isVolatile(), LD->isNonTemporal(),
    464                                  LD->isInvariant(), 2);
    465     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
    466                                    DAG.getConstant(2, DL, MVT::i32));
    467     SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
    468                                   HighAddr,
    469                                   LD->getPointerInfo().getWithOffset(2),
    470                                   MVT::i16, LD->isVolatile(),
    471                                   LD->isNonTemporal(), LD->isInvariant(), 2);
    472     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
    473                                       DAG.getConstant(16, DL, MVT::i32));
    474     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
    475     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
    476                              High.getValue(1));
    477     SDValue Ops[] = { Result, Chain };
    478     return DAG.getMergeValues(Ops, DL);
    479   }
    480 
    481   // Lower to a call to __misaligned_load(BasePtr).
    482   Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
    483   TargetLowering::ArgListTy Args;
    484   TargetLowering::ArgListEntry Entry;
    485 
    486   Entry.Ty = IntPtrTy;
    487   Entry.Node = BasePtr;
    488   Args.push_back(Entry);
    489 
    490   TargetLowering::CallLoweringInfo CLI(DAG);
    491   CLI.setDebugLoc(DL).setChain(Chain).setCallee(
    492       CallingConv::C, IntPtrTy,
    493       DAG.getExternalSymbol("__misaligned_load",
    494                             getPointerTy(DAG.getDataLayout())),
    495       std::move(Args));
    496 
    497   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    498   SDValue Ops[] = { CallResult.first, CallResult.second };
    499   return DAG.getMergeValues(Ops, DL);
    500 }
    501 
    502 SDValue XCoreTargetLowering::
    503 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
    504 {
    505   StoreSDNode *ST = cast<StoreSDNode>(Op);
    506   assert(!ST->isTruncatingStore() && "Unexpected store type");
    507   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
    508   if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
    509                                      ST->getAddressSpace(),
    510                                      ST->getAlignment())) {
    511     return SDValue();
    512   }
    513   unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
    514       ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
    515   // Leave aligned store alone.
    516   if (ST->getAlignment() >= ABIAlignment) {
    517     return SDValue();
    518   }
    519   SDValue Chain = ST->getChain();
    520   SDValue BasePtr = ST->getBasePtr();
    521   SDValue Value = ST->getValue();
    522   SDLoc dl(Op);
    523 
    524   if (ST->getAlignment() == 2) {
    525     SDValue Low = Value;
    526     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
    527                                       DAG.getConstant(16, dl, MVT::i32));
    528     SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
    529                                          ST->getPointerInfo(), MVT::i16,
    530                                          ST->isVolatile(), ST->isNonTemporal(),
    531                                          2);
    532     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
    533                                    DAG.getConstant(2, dl, MVT::i32));
    534     SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
    535                                           ST->getPointerInfo().getWithOffset(2),
    536                                           MVT::i16, ST->isVolatile(),
    537                                           ST->isNonTemporal(), 2);
    538     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
    539   }
    540 
    541   // Lower to a call to __misaligned_store(BasePtr, Value).
    542   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
    543   TargetLowering::ArgListTy Args;
    544   TargetLowering::ArgListEntry Entry;
    545 
    546   Entry.Ty = IntPtrTy;
    547   Entry.Node = BasePtr;
    548   Args.push_back(Entry);
    549 
    550   Entry.Node = Value;
    551   Args.push_back(Entry);
    552 
    553   TargetLowering::CallLoweringInfo CLI(DAG);
    554   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
    555       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
    556       DAG.getExternalSymbol("__misaligned_store",
    557                             getPointerTy(DAG.getDataLayout())),
    558       std::move(Args));
    559 
    560   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
    561   return CallResult.second;
    562 }
    563 
    564 SDValue XCoreTargetLowering::
    565 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
    566 {
    567   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
    568          "Unexpected operand to lower!");
    569   SDLoc dl(Op);
    570   SDValue LHS = Op.getOperand(0);
    571   SDValue RHS = Op.getOperand(1);
    572   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
    573   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
    574                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
    575                            LHS, RHS);
    576   SDValue Lo(Hi.getNode(), 1);
    577   SDValue Ops[] = { Lo, Hi };
    578   return DAG.getMergeValues(Ops, dl);
    579 }
    580 
    581 SDValue XCoreTargetLowering::
    582 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
    583 {
    584   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
    585          "Unexpected operand to lower!");
    586   SDLoc dl(Op);
    587   SDValue LHS = Op.getOperand(0);
    588   SDValue RHS = Op.getOperand(1);
    589   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
    590   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
    591                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
    592                            Zero, Zero);
    593   SDValue Lo(Hi.getNode(), 1);
    594   SDValue Ops[] = { Lo, Hi };
    595   return DAG.getMergeValues(Ops, dl);
    596 }
    597 
    598 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
    599 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
    600 /// each intermediate result in the calculation must also have a single use.
    601 /// If the Op is in the correct form the constituent parts are written to Mul0,
    602 /// Mul1, Addend0 and Addend1.
    603 static bool
    604 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
    605             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
    606 {
    607   if (Op.getOpcode() != ISD::ADD)
    608     return false;
    609   SDValue N0 = Op.getOperand(0);
    610   SDValue N1 = Op.getOperand(1);
    611   SDValue AddOp;
    612   SDValue OtherOp;
    613   if (N0.getOpcode() == ISD::ADD) {
    614     AddOp = N0;
    615     OtherOp = N1;
    616   } else if (N1.getOpcode() == ISD::ADD) {
    617     AddOp = N1;
    618     OtherOp = N0;
    619   } else {
    620     return false;
    621   }
    622   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
    623     return false;
    624   if (OtherOp.getOpcode() == ISD::MUL) {
    625     // add(add(a,b),mul(x,y))
    626     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
    627       return false;
    628     Mul0 = OtherOp.getOperand(0);
    629     Mul1 = OtherOp.getOperand(1);
    630     Addend0 = AddOp.getOperand(0);
    631     Addend1 = AddOp.getOperand(1);
    632     return true;
    633   }
    634   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
    635     // add(add(mul(x,y),a),b)
    636     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
    637       return false;
    638     Mul0 = AddOp.getOperand(0).getOperand(0);
    639     Mul1 = AddOp.getOperand(0).getOperand(1);
    640     Addend0 = AddOp.getOperand(1);
    641     Addend1 = OtherOp;
    642     return true;
    643   }
    644   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
    645     // add(add(a,mul(x,y)),b)
    646     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
    647       return false;
    648     Mul0 = AddOp.getOperand(1).getOperand(0);
    649     Mul1 = AddOp.getOperand(1).getOperand(1);
    650     Addend0 = AddOp.getOperand(0);
    651     Addend1 = OtherOp;
    652     return true;
    653   }
    654   return false;
    655 }
    656 
    657 SDValue XCoreTargetLowering::
    658 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
    659 {
    660   SDValue Mul;
    661   SDValue Other;
    662   if (N->getOperand(0).getOpcode() == ISD::MUL) {
    663     Mul = N->getOperand(0);
    664     Other = N->getOperand(1);
    665   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
    666     Mul = N->getOperand(1);
    667     Other = N->getOperand(0);
    668   } else {
    669     return SDValue();
    670   }
    671   SDLoc dl(N);
    672   SDValue LL, RL, AddendL, AddendH;
    673   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    674                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
    675   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    676                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
    677   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    678                         Other, DAG.getConstant(0, dl, MVT::i32));
    679   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    680                         Other, DAG.getConstant(1, dl, MVT::i32));
    681   APInt HighMask = APInt::getHighBitsSet(64, 32);
    682   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
    683   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
    684   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
    685       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
    686     // The inputs are both zero-extended.
    687     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
    688                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    689                              AddendL, LL, RL);
    690     SDValue Lo(Hi.getNode(), 1);
    691     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    692   }
    693   if (LHSSB > 32 && RHSSB > 32) {
    694     // The inputs are both sign-extended.
    695     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
    696                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    697                              AddendL, LL, RL);
    698     SDValue Lo(Hi.getNode(), 1);
    699     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    700   }
    701   SDValue LH, RH;
    702   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    703                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
    704   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    705                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
    706   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
    707                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
    708                            AddendL, LL, RL);
    709   SDValue Lo(Hi.getNode(), 1);
    710   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
    711   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
    712   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
    713   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
    714   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    715 }
    716 
    717 SDValue XCoreTargetLowering::
    718 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
    719 {
    720   assert(N->getValueType(0) == MVT::i64 &&
    721          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
    722         "Unknown operand to lower!");
    723 
    724   if (N->getOpcode() == ISD::ADD)
    725     if (SDValue Result = TryExpandADDWithMul(N, DAG))
    726       return Result;
    727 
    728   SDLoc dl(N);
    729 
    730   // Extract components
    731   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    732                              N->getOperand(0),
    733                              DAG.getConstant(0, dl, MVT::i32));
    734   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    735                              N->getOperand(0),
    736                              DAG.getConstant(1, dl, MVT::i32));
    737   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    738                              N->getOperand(1),
    739                              DAG.getConstant(0, dl, MVT::i32));
    740   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
    741                              N->getOperand(1),
    742                              DAG.getConstant(1, dl, MVT::i32));
    743 
    744   // Expand
    745   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
    746                                                    XCoreISD::LSUB;
    747   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
    748   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
    749                            LHSL, RHSL, Zero);
    750   SDValue Carry(Lo.getNode(), 1);
    751 
    752   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
    753                            LHSH, RHSH, Carry);
    754   SDValue Ignored(Hi.getNode(), 1);
    755   // Merge the pieces
    756   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
    757 }
    758 
    759 SDValue XCoreTargetLowering::
    760 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
    761 {
    762   // Whist llvm does not support aggregate varargs we can ignore
    763   // the possibility of the ValueType being an implicit byVal vararg.
    764   SDNode *Node = Op.getNode();
    765   EVT VT = Node->getValueType(0); // not an aggregate
    766   SDValue InChain = Node->getOperand(0);
    767   SDValue VAListPtr = Node->getOperand(1);
    768   EVT PtrVT = VAListPtr.getValueType();
    769   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
    770   SDLoc dl(Node);
    771   SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
    772                                VAListPtr, MachinePointerInfo(SV),
    773                                false, false, false, 0);
    774   // Increment the pointer, VAList, to the next vararg
    775   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
    776                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
    777                                                       dl));
    778   // Store the incremented VAList to the legalized pointer
    779   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
    780                          MachinePointerInfo(SV), false, false, 0);
    781   // Load the actual argument out of the pointer VAList
    782   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
    783                      false, false, false, 0);
    784 }
    785 
    786 SDValue XCoreTargetLowering::
    787 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
    788 {
    789   SDLoc dl(Op);
    790   // vastart stores the address of the VarArgsFrameIndex slot into the
    791   // memory location argument
    792   MachineFunction &MF = DAG.getMachineFunction();
    793   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
    794   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
    795   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
    796                       MachinePointerInfo(), false, false, 0);
    797 }
    798 
    799 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
    800                                             SelectionDAG &DAG) const {
    801   // This nodes represent llvm.frameaddress on the DAG.
    802   // It takes one operand, the index of the frame address to return.
    803   // An index of zero corresponds to the current function's frame address.
    804   // An index of one to the parent's frame address, and so on.
    805   // Depths > 0 not supported yet!
    806   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
    807     return SDValue();
    808 
    809   MachineFunction &MF = DAG.getMachineFunction();
    810   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
    811   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
    812                             RegInfo->getFrameRegister(MF), MVT::i32);
    813 }
    814 
    815 SDValue XCoreTargetLowering::
    816 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
    817   // This nodes represent llvm.returnaddress on the DAG.
    818   // It takes one operand, the index of the return address to return.
    819   // An index of zero corresponds to the current function's return address.
    820   // An index of one to the parent's return address, and so on.
    821   // Depths > 0 not supported yet!
    822   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
    823     return SDValue();
    824 
    825   MachineFunction &MF = DAG.getMachineFunction();
    826   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
    827   int FI = XFI->createLRSpillSlot(MF);
    828   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
    829   return DAG.getLoad(
    830       getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN,
    831       MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0);
    832 }
    833 
    834 SDValue XCoreTargetLowering::
    835 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
    836   // This node represents offset from frame pointer to first on-stack argument.
    837   // This is needed for correct stack adjustment during unwind.
    838   // However, we don't know the offset until after the frame has be finalised.
    839   // This is done during the XCoreFTAOElim pass.
    840   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
    841 }
    842 
    843 SDValue XCoreTargetLowering::
    844 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
    845   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
    846   // This node represents 'eh_return' gcc dwarf builtin, which is used to
    847   // return from exception. The general meaning is: adjust stack by OFFSET and
    848   // pass execution to HANDLER.
    849   MachineFunction &MF = DAG.getMachineFunction();
    850   SDValue Chain     = Op.getOperand(0);
    851   SDValue Offset    = Op.getOperand(1);
    852   SDValue Handler   = Op.getOperand(2);
    853   SDLoc dl(Op);
    854 
    855   // Absolute SP = (FP + FrameToArgs) + Offset
    856   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
    857   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
    858                             RegInfo->getFrameRegister(MF), MVT::i32);
    859   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
    860                                     MVT::i32);
    861   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
    862   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
    863 
    864   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
    865   // which leaves 2 caller saved registers, R2 & R3 for us to use.
    866   unsigned StackReg = XCore::R2;
    867   unsigned HandlerReg = XCore::R3;
    868 
    869   SDValue OutChains[] = {
    870     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
    871     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
    872   };
    873 
    874   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
    875 
    876   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
    877                      DAG.getRegister(StackReg, MVT::i32),
    878                      DAG.getRegister(HandlerReg, MVT::i32));
    879 
    880 }
    881 
    882 SDValue XCoreTargetLowering::
    883 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
    884   return Op.getOperand(0);
    885 }
    886 
    887 SDValue XCoreTargetLowering::
    888 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
    889   SDValue Chain = Op.getOperand(0);
    890   SDValue Trmp = Op.getOperand(1); // trampoline
    891   SDValue FPtr = Op.getOperand(2); // nested function
    892   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
    893 
    894   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
    895 
    896   // .align 4
    897   // LDAPF_u10 r11, nest
    898   // LDW_2rus r11, r11[0]
    899   // STWSP_ru6 r11, sp[0]
    900   // LDAPF_u10 r11, fptr
    901   // LDW_2rus r11, r11[0]
    902   // BAU_1r r11
    903   // nest:
    904   // .word nest
    905   // fptr:
    906   // .word fptr
    907   SDValue OutChains[5];
    908 
    909   SDValue Addr = Trmp;
    910 
    911   SDLoc dl(Op);
    912   OutChains[0] = DAG.getStore(Chain, dl,
    913                               DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
    914                               MachinePointerInfo(TrmpAddr), false, false, 0);
    915 
    916   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    917                      DAG.getConstant(4, dl, MVT::i32));
    918   OutChains[1] = DAG.getStore(Chain, dl,
    919                               DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
    920                               MachinePointerInfo(TrmpAddr, 4), false, false, 0);
    921 
    922   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    923                      DAG.getConstant(8, dl, MVT::i32));
    924   OutChains[2] = DAG.getStore(Chain, dl,
    925                               DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
    926                               MachinePointerInfo(TrmpAddr, 8), false, false, 0);
    927 
    928   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    929                      DAG.getConstant(12, dl, MVT::i32));
    930   OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
    931                               MachinePointerInfo(TrmpAddr, 12), false, false,
    932                               0);
    933 
    934   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
    935                      DAG.getConstant(16, dl, MVT::i32));
    936   OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
    937                               MachinePointerInfo(TrmpAddr, 16), false, false,
    938                               0);
    939 
    940   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
    941 }
    942 
    943 SDValue XCoreTargetLowering::
    944 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
    945   SDLoc DL(Op);
    946   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    947   switch (IntNo) {
    948     case Intrinsic::xcore_crc8:
    949       EVT VT = Op.getValueType();
    950       SDValue Data =
    951         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
    952                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
    953       SDValue Crc(Data.getNode(), 1);
    954       SDValue Results[] = { Crc, Data };
    955       return DAG.getMergeValues(Results, DL);
    956   }
    957   return SDValue();
    958 }
    959 
    960 SDValue XCoreTargetLowering::
    961 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
    962   SDLoc DL(Op);
    963   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
    964 }
    965 
    966 SDValue XCoreTargetLowering::
    967 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
    968   AtomicSDNode *N = cast<AtomicSDNode>(Op);
    969   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
    970   assert((N->getOrdering() == AtomicOrdering::Unordered ||
    971           N->getOrdering() == AtomicOrdering::Monotonic) &&
    972          "setInsertFencesForAtomic(true) expects unordered / monotonic");
    973   if (N->getMemoryVT() == MVT::i32) {
    974     if (N->getAlignment() < 4)
    975       report_fatal_error("atomic load must be aligned");
    976     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
    977                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
    978                        N->isVolatile(), N->isNonTemporal(), N->isInvariant(),
    979                        N->getAlignment(), N->getAAInfo(), N->getRanges());
    980   }
    981   if (N->getMemoryVT() == MVT::i16) {
    982     if (N->getAlignment() < 2)
    983       report_fatal_error("atomic load must be aligned");
    984     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
    985                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
    986                           N->isVolatile(), N->isNonTemporal(),
    987                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
    988   }
    989   if (N->getMemoryVT() == MVT::i8)
    990     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
    991                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
    992                           N->isVolatile(), N->isNonTemporal(),
    993                           N->isInvariant(), N->getAlignment(), N->getAAInfo());
    994   return SDValue();
    995 }
    996 
    997 SDValue XCoreTargetLowering::
    998 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
    999   AtomicSDNode *N = cast<AtomicSDNode>(Op);
   1000   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
   1001   assert((N->getOrdering() == AtomicOrdering::Unordered ||
   1002           N->getOrdering() == AtomicOrdering::Monotonic) &&
   1003          "setInsertFencesForAtomic(true) expects unordered / monotonic");
   1004   if (N->getMemoryVT() == MVT::i32) {
   1005     if (N->getAlignment() < 4)
   1006       report_fatal_error("atomic store must be aligned");
   1007     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
   1008                         N->getBasePtr(), N->getPointerInfo(),
   1009                         N->isVolatile(), N->isNonTemporal(),
   1010                         N->getAlignment(), N->getAAInfo());
   1011   }
   1012   if (N->getMemoryVT() == MVT::i16) {
   1013     if (N->getAlignment() < 2)
   1014       report_fatal_error("atomic store must be aligned");
   1015     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
   1016                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
   1017                              N->isVolatile(), N->isNonTemporal(),
   1018                              N->getAlignment(), N->getAAInfo());
   1019   }
   1020   if (N->getMemoryVT() == MVT::i8)
   1021     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
   1022                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
   1023                              N->isVolatile(), N->isNonTemporal(),
   1024                              N->getAlignment(), N->getAAInfo());
   1025   return SDValue();
   1026 }
   1027 
   1028 //===----------------------------------------------------------------------===//
   1029 //                      Calling Convention Implementation
   1030 //===----------------------------------------------------------------------===//
   1031 
   1032 #include "XCoreGenCallingConv.inc"
   1033 
   1034 //===----------------------------------------------------------------------===//
   1035 //                  Call Calling Convention Implementation
   1036 //===----------------------------------------------------------------------===//
   1037 
   1038 /// XCore call implementation
   1039 SDValue
   1040 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1041                                SmallVectorImpl<SDValue> &InVals) const {
   1042   SelectionDAG &DAG                     = CLI.DAG;
   1043   SDLoc &dl                             = CLI.DL;
   1044   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1045   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1046   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1047   SDValue Chain                         = CLI.Chain;
   1048   SDValue Callee                        = CLI.Callee;
   1049   bool &isTailCall                      = CLI.IsTailCall;
   1050   CallingConv::ID CallConv              = CLI.CallConv;
   1051   bool isVarArg                         = CLI.IsVarArg;
   1052 
   1053   // XCore target does not yet support tail call optimization.
   1054   isTailCall = false;
   1055 
   1056   // For now, only CallingConv::C implemented
   1057   switch (CallConv)
   1058   {
   1059     default:
   1060       llvm_unreachable("Unsupported calling convention");
   1061     case CallingConv::Fast:
   1062     case CallingConv::C:
   1063       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
   1064                             Outs, OutVals, Ins, dl, DAG, InVals);
   1065   }
   1066 }
   1067 
   1068 /// LowerCallResult - Lower the result values of a call into the
   1069 /// appropriate copies out of appropriate physical registers / memory locations.
   1070 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
   1071                                const SmallVectorImpl<CCValAssign> &RVLocs,
   1072                                const SDLoc &dl, SelectionDAG &DAG,
   1073                                SmallVectorImpl<SDValue> &InVals) {
   1074   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
   1075   // Copy results out of physical registers.
   1076   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1077     const CCValAssign &VA = RVLocs[i];
   1078     if (VA.isRegLoc()) {
   1079       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
   1080                                  InFlag).getValue(1);
   1081       InFlag = Chain.getValue(2);
   1082       InVals.push_back(Chain.getValue(0));
   1083     } else {
   1084       assert(VA.isMemLoc());
   1085       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
   1086                                              InVals.size()));
   1087       // Reserve space for this result.
   1088       InVals.push_back(SDValue());
   1089     }
   1090   }
   1091 
   1092   // Copy results out of memory.
   1093   SmallVector<SDValue, 4> MemOpChains;
   1094   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
   1095     int offset = ResultMemLocs[i].first;
   1096     unsigned index = ResultMemLocs[i].second;
   1097     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
   1098     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
   1099     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
   1100     InVals[index] = load;
   1101     MemOpChains.push_back(load.getValue(1));
   1102   }
   1103 
   1104   // Transform all loads nodes into one single node because
   1105   // all load nodes are independent of each other.
   1106   if (!MemOpChains.empty())
   1107     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1108 
   1109   return Chain;
   1110 }
   1111 
   1112 /// LowerCCCCallTo - functions arguments are copied from virtual
   1113 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
   1114 /// CALLSEQ_END are emitted.
   1115 /// TODO: isTailCall, sret.
   1116 SDValue XCoreTargetLowering::LowerCCCCallTo(
   1117     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
   1118     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
   1119     const SmallVectorImpl<SDValue> &OutVals,
   1120     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   1121     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   1122 
   1123   // Analyze operands of the call, assigning locations to each operand.
   1124   SmallVector<CCValAssign, 16> ArgLocs;
   1125   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1126                  *DAG.getContext());
   1127 
   1128   // The ABI dictates there should be one stack slot available to the callee
   1129   // on function entry (for saving lr).
   1130   CCInfo.AllocateStack(4, 4);
   1131 
   1132   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
   1133 
   1134   SmallVector<CCValAssign, 16> RVLocs;
   1135   // Analyze return values to determine the number of bytes of stack required.
   1136   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1137                     *DAG.getContext());
   1138   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
   1139   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
   1140 
   1141   // Get a count of how many bytes are to be pushed on the stack.
   1142   unsigned NumBytes = RetCCInfo.getNextStackOffset();
   1143   auto PtrVT = getPointerTy(DAG.getDataLayout());
   1144 
   1145   Chain = DAG.getCALLSEQ_START(Chain,
   1146                                DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
   1147 
   1148   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
   1149   SmallVector<SDValue, 12> MemOpChains;
   1150 
   1151   // Walk the register/memloc assignments, inserting copies/loads.
   1152   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1153     CCValAssign &VA = ArgLocs[i];
   1154     SDValue Arg = OutVals[i];
   1155 
   1156     // Promote the value if needed.
   1157     switch (VA.getLocInfo()) {
   1158       default: llvm_unreachable("Unknown loc info!");
   1159       case CCValAssign::Full: break;
   1160       case CCValAssign::SExt:
   1161         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1162         break;
   1163       case CCValAssign::ZExt:
   1164         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1165         break;
   1166       case CCValAssign::AExt:
   1167         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1168         break;
   1169     }
   1170 
   1171     // Arguments that can be passed on register must be kept at
   1172     // RegsToPass vector
   1173     if (VA.isRegLoc()) {
   1174       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1175     } else {
   1176       assert(VA.isMemLoc());
   1177 
   1178       int Offset = VA.getLocMemOffset();
   1179 
   1180       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
   1181                                         Chain, Arg,
   1182                                         DAG.getConstant(Offset/4, dl,
   1183                                                         MVT::i32)));
   1184     }
   1185   }
   1186 
   1187   // Transform all store nodes into one single node because
   1188   // all store nodes are independent of each other.
   1189   if (!MemOpChains.empty())
   1190     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1191 
   1192   // Build a sequence of copy-to-reg nodes chained together with token
   1193   // chain and flag operands which copy the outgoing args into registers.
   1194   // The InFlag in necessary since all emitted instructions must be
   1195   // stuck together.
   1196   SDValue InFlag;
   1197   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1198     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1199                              RegsToPass[i].second, InFlag);
   1200     InFlag = Chain.getValue(1);
   1201   }
   1202 
   1203   // If the callee is a GlobalAddress node (quite common, every direct call is)
   1204   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
   1205   // Likewise ExternalSymbol -> TargetExternalSymbol.
   1206   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
   1207     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
   1208   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
   1209     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
   1210 
   1211   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
   1212   //             = Chain, Callee, Reg#1, Reg#2, ...
   1213   //
   1214   // Returns a chain & a flag for retval copy to use.
   1215   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1216   SmallVector<SDValue, 8> Ops;
   1217   Ops.push_back(Chain);
   1218   Ops.push_back(Callee);
   1219 
   1220   // Add argument registers to the end of the list so that they are
   1221   // known live into the call.
   1222   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1223     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1224                                   RegsToPass[i].second.getValueType()));
   1225 
   1226   if (InFlag.getNode())
   1227     Ops.push_back(InFlag);
   1228 
   1229   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
   1230   InFlag = Chain.getValue(1);
   1231 
   1232   // Create the CALLSEQ_END node.
   1233   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
   1234                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
   1235   InFlag = Chain.getValue(1);
   1236 
   1237   // Handle result values, copying them out of physregs into vregs that we
   1238   // return.
   1239   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
   1240 }
   1241 
   1242 //===----------------------------------------------------------------------===//
   1243 //             Formal Arguments Calling Convention Implementation
   1244 //===----------------------------------------------------------------------===//
   1245 
   1246 namespace {
   1247   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
   1248 }
   1249 
   1250 /// XCore formal arguments implementation
   1251 SDValue XCoreTargetLowering::LowerFormalArguments(
   1252     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   1253     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   1254     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   1255   switch (CallConv)
   1256   {
   1257     default:
   1258       llvm_unreachable("Unsupported calling convention");
   1259     case CallingConv::C:
   1260     case CallingConv::Fast:
   1261       return LowerCCCArguments(Chain, CallConv, isVarArg,
   1262                                Ins, dl, DAG, InVals);
   1263   }
   1264 }
   1265 
   1266 /// LowerCCCArguments - transform physical registers into
   1267 /// virtual registers and generate load operations for
   1268 /// arguments places on the stack.
   1269 /// TODO: sret
   1270 SDValue XCoreTargetLowering::LowerCCCArguments(
   1271     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   1272     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   1273     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   1274   MachineFunction &MF = DAG.getMachineFunction();
   1275   MachineFrameInfo *MFI = MF.getFrameInfo();
   1276   MachineRegisterInfo &RegInfo = MF.getRegInfo();
   1277   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
   1278 
   1279   // Assign locations to all of the incoming arguments.
   1280   SmallVector<CCValAssign, 16> ArgLocs;
   1281   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1282                  *DAG.getContext());
   1283 
   1284   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
   1285 
   1286   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
   1287 
   1288   unsigned LRSaveSize = StackSlotSize;
   1289 
   1290   if (!isVarArg)
   1291     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
   1292 
   1293   // All getCopyFromReg ops must precede any getMemcpys to prevent the
   1294   // scheduler clobbering a register before it has been copied.
   1295   // The stages are:
   1296   // 1. CopyFromReg (and load) arg & vararg registers.
   1297   // 2. Chain CopyFromReg nodes into a TokenFactor.
   1298   // 3. Memcpy 'byVal' args & push final InVals.
   1299   // 4. Chain mem ops nodes into a TokenFactor.
   1300   SmallVector<SDValue, 4> CFRegNode;
   1301   SmallVector<ArgDataPair, 4> ArgData;
   1302   SmallVector<SDValue, 4> MemOps;
   1303 
   1304   // 1a. CopyFromReg (and load) arg registers.
   1305   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1306 
   1307     CCValAssign &VA = ArgLocs[i];
   1308     SDValue ArgIn;
   1309 
   1310     if (VA.isRegLoc()) {
   1311       // Arguments passed in registers
   1312       EVT RegVT = VA.getLocVT();
   1313       switch (RegVT.getSimpleVT().SimpleTy) {
   1314       default:
   1315         {
   1316 #ifndef NDEBUG
   1317           errs() << "LowerFormalArguments Unhandled argument type: "
   1318                  << RegVT.getEVTString() << "\n";
   1319 #endif
   1320           llvm_unreachable(nullptr);
   1321         }
   1322       case MVT::i32:
   1323         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
   1324         RegInfo.addLiveIn(VA.getLocReg(), VReg);
   1325         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
   1326         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
   1327       }
   1328     } else {
   1329       // sanity check
   1330       assert(VA.isMemLoc());
   1331       // Load the argument to a virtual register
   1332       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
   1333       if (ObjSize > StackSlotSize) {
   1334         errs() << "LowerFormalArguments Unhandled argument type: "
   1335                << EVT(VA.getLocVT()).getEVTString()
   1336                << "\n";
   1337       }
   1338       // Create the frame index object for this incoming parameter...
   1339       int FI = MFI->CreateFixedObject(ObjSize,
   1340                                       LRSaveSize + VA.getLocMemOffset(),
   1341                                       true);
   1342 
   1343       // Create the SelectionDAG nodes corresponding to a load
   1344       //from this parameter
   1345       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1346       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
   1347                           MachinePointerInfo::getFixedStack(MF, FI), false,
   1348                           false, false, 0);
   1349     }
   1350     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
   1351     ArgData.push_back(ADP);
   1352   }
   1353 
   1354   // 1b. CopyFromReg vararg registers.
   1355   if (isVarArg) {
   1356     // Argument registers
   1357     static const MCPhysReg ArgRegs[] = {
   1358       XCore::R0, XCore::R1, XCore::R2, XCore::R3
   1359     };
   1360     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
   1361     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
   1362     if (FirstVAReg < array_lengthof(ArgRegs)) {
   1363       int offset = 0;
   1364       // Save remaining registers, storing higher register numbers at a higher
   1365       // address
   1366       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
   1367         // Create a stack slot
   1368         int FI = MFI->CreateFixedObject(4, offset, true);
   1369         if (i == (int)FirstVAReg) {
   1370           XFI->setVarArgsFrameIndex(FI);
   1371         }
   1372         offset -= StackSlotSize;
   1373         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1374         // Move argument from phys reg -> virt reg
   1375         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
   1376         RegInfo.addLiveIn(ArgRegs[i], VReg);
   1377         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   1378         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
   1379         // Move argument from virt reg -> stack
   1380         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
   1381                                      MachinePointerInfo(), false, false, 0);
   1382         MemOps.push_back(Store);
   1383       }
   1384     } else {
   1385       // This will point to the next argument passed via stack.
   1386       XFI->setVarArgsFrameIndex(
   1387         MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
   1388                                true));
   1389     }
   1390   }
   1391 
   1392   // 2. chain CopyFromReg nodes into a TokenFactor.
   1393   if (!CFRegNode.empty())
   1394     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
   1395 
   1396   // 3. Memcpy 'byVal' args & push final InVals.
   1397   // Aggregates passed "byVal" need to be copied by the callee.
   1398   // The callee will use a pointer to this copy, rather than the original
   1399   // pointer.
   1400   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
   1401                                                     ArgDE = ArgData.end();
   1402        ArgDI != ArgDE; ++ArgDI) {
   1403     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
   1404       unsigned Size = ArgDI->Flags.getByValSize();
   1405       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
   1406       // Create a new object on the stack and copy the pointee into it.
   1407       int FI = MFI->CreateStackObject(Size, Align, false);
   1408       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1409       InVals.push_back(FIN);
   1410       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
   1411                                      DAG.getConstant(Size, dl, MVT::i32),
   1412                                      Align, false, false, false,
   1413                                      MachinePointerInfo(),
   1414                                      MachinePointerInfo()));
   1415     } else {
   1416       InVals.push_back(ArgDI->SDV);
   1417     }
   1418   }
   1419 
   1420   // 4, chain mem ops nodes into a TokenFactor.
   1421   if (!MemOps.empty()) {
   1422     MemOps.push_back(Chain);
   1423     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   1424   }
   1425 
   1426   return Chain;
   1427 }
   1428 
   1429 //===----------------------------------------------------------------------===//
   1430 //               Return Value Calling Convention Implementation
   1431 //===----------------------------------------------------------------------===//
   1432 
   1433 bool XCoreTargetLowering::
   1434 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
   1435                bool isVarArg,
   1436                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1437                LLVMContext &Context) const {
   1438   SmallVector<CCValAssign, 16> RVLocs;
   1439   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   1440   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
   1441     return false;
   1442   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
   1443     return false;
   1444   return true;
   1445 }
   1446 
   1447 SDValue
   1448 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   1449                                  bool isVarArg,
   1450                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
   1451                                  const SmallVectorImpl<SDValue> &OutVals,
   1452                                  const SDLoc &dl, SelectionDAG &DAG) const {
   1453 
   1454   XCoreFunctionInfo *XFI =
   1455     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
   1456   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1457 
   1458   // CCValAssign - represent the assignment of
   1459   // the return value to a location
   1460   SmallVector<CCValAssign, 16> RVLocs;
   1461 
   1462   // CCState - Info about the registers and stack slot.
   1463   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1464                  *DAG.getContext());
   1465 
   1466   // Analyze return values.
   1467   if (!isVarArg)
   1468     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
   1469 
   1470   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
   1471 
   1472   SDValue Flag;
   1473   SmallVector<SDValue, 4> RetOps(1, Chain);
   1474 
   1475   // Return on XCore is always a "retsp 0"
   1476   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
   1477 
   1478   SmallVector<SDValue, 4> MemOpChains;
   1479   // Handle return values that must be copied to memory.
   1480   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1481     CCValAssign &VA = RVLocs[i];
   1482     if (VA.isRegLoc())
   1483       continue;
   1484     assert(VA.isMemLoc());
   1485     if (isVarArg) {
   1486       report_fatal_error("Can't return value from vararg function in memory");
   1487     }
   1488 
   1489     int Offset = VA.getLocMemOffset();
   1490     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
   1491     // Create the frame index object for the memory location.
   1492     int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
   1493 
   1494     // Create a SelectionDAG node corresponding to a store
   1495     // to this memory location.
   1496     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
   1497     MemOpChains.push_back(DAG.getStore(
   1498         Chain, dl, OutVals[i], FIN,
   1499         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
   1500         false, 0));
   1501   }
   1502 
   1503   // Transform all store nodes into one single node because
   1504   // all stores are independent of each other.
   1505   if (!MemOpChains.empty())
   1506     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1507 
   1508   // Now handle return values copied to registers.
   1509   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   1510     CCValAssign &VA = RVLocs[i];
   1511     if (!VA.isRegLoc())
   1512       continue;
   1513     // Copy the result values into the output registers.
   1514     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
   1515 
   1516     // guarantee that all emitted copies are
   1517     // stuck together, avoiding something bad
   1518     Flag = Chain.getValue(1);
   1519     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   1520   }
   1521 
   1522   RetOps[0] = Chain;  // Update chain.
   1523 
   1524   // Add the flag if we have it.
   1525   if (Flag.getNode())
   1526     RetOps.push_back(Flag);
   1527 
   1528   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
   1529 }
   1530 
   1531 //===----------------------------------------------------------------------===//
   1532 //  Other Lowering Code
   1533 //===----------------------------------------------------------------------===//
   1534 
   1535 MachineBasicBlock *
   1536 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   1537                                                  MachineBasicBlock *BB) const {
   1538   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
   1539   DebugLoc dl = MI.getDebugLoc();
   1540   assert((MI.getOpcode() == XCore::SELECT_CC) &&
   1541          "Unexpected instr type to insert");
   1542 
   1543   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
   1544   // control-flow pattern.  The incoming instruction knows the destination vreg
   1545   // to set, the condition code register to branch on, the true/false values to
   1546   // select between, and a branch opcode to use.
   1547   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1548   MachineFunction::iterator It = ++BB->getIterator();
   1549 
   1550   //  thisMBB:
   1551   //  ...
   1552   //   TrueVal = ...
   1553   //   cmpTY ccX, r1, r2
   1554   //   bCC copy1MBB
   1555   //   fallthrough --> copy0MBB
   1556   MachineBasicBlock *thisMBB = BB;
   1557   MachineFunction *F = BB->getParent();
   1558   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1559   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   1560   F->insert(It, copy0MBB);
   1561   F->insert(It, sinkMBB);
   1562 
   1563   // Transfer the remainder of BB and its successor edges to sinkMBB.
   1564   sinkMBB->splice(sinkMBB->begin(), BB,
   1565                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1566   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   1567 
   1568   // Next, add the true and fallthrough blocks as its successors.
   1569   BB->addSuccessor(copy0MBB);
   1570   BB->addSuccessor(sinkMBB);
   1571 
   1572   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
   1573       .addReg(MI.getOperand(1).getReg())
   1574       .addMBB(sinkMBB);
   1575 
   1576   //  copy0MBB:
   1577   //   %FalseValue = ...
   1578   //   # fallthrough to sinkMBB
   1579   BB = copy0MBB;
   1580 
   1581   // Update machine-CFG edges
   1582   BB->addSuccessor(sinkMBB);
   1583 
   1584   //  sinkMBB:
   1585   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   1586   //  ...
   1587   BB = sinkMBB;
   1588   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
   1589       .addReg(MI.getOperand(3).getReg())
   1590       .addMBB(copy0MBB)
   1591       .addReg(MI.getOperand(2).getReg())
   1592       .addMBB(thisMBB);
   1593 
   1594   MI.eraseFromParent(); // The pseudo instruction is gone now.
   1595   return BB;
   1596 }
   1597 
   1598 //===----------------------------------------------------------------------===//
   1599 // Target Optimization Hooks
   1600 //===----------------------------------------------------------------------===//
   1601 
   1602 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
   1603                                              DAGCombinerInfo &DCI) const {
   1604   SelectionDAG &DAG = DCI.DAG;
   1605   SDLoc dl(N);
   1606   switch (N->getOpcode()) {
   1607   default: break;
   1608   case ISD::INTRINSIC_VOID:
   1609     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   1610     case Intrinsic::xcore_outt:
   1611     case Intrinsic::xcore_outct:
   1612     case Intrinsic::xcore_chkct: {
   1613       SDValue OutVal = N->getOperand(3);
   1614       // These instructions ignore the high bits.
   1615       if (OutVal.hasOneUse()) {
   1616         unsigned BitWidth = OutVal.getValueSizeInBits();
   1617         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
   1618         APInt KnownZero, KnownOne;
   1619         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1620                                               !DCI.isBeforeLegalizeOps());
   1621         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1622         if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
   1623             TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
   1624                                      TLO))
   1625           DCI.CommitTargetLoweringOpt(TLO);
   1626       }
   1627       break;
   1628     }
   1629     case Intrinsic::xcore_setpt: {
   1630       SDValue Time = N->getOperand(3);
   1631       // This instruction ignores the high bits.
   1632       if (Time.hasOneUse()) {
   1633         unsigned BitWidth = Time.getValueSizeInBits();
   1634         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
   1635         APInt KnownZero, KnownOne;
   1636         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   1637                                               !DCI.isBeforeLegalizeOps());
   1638         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1639         if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
   1640             TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
   1641                                      TLO))
   1642           DCI.CommitTargetLoweringOpt(TLO);
   1643       }
   1644       break;
   1645     }
   1646     }
   1647     break;
   1648   case XCoreISD::LADD: {
   1649     SDValue N0 = N->getOperand(0);
   1650     SDValue N1 = N->getOperand(1);
   1651     SDValue N2 = N->getOperand(2);
   1652     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1653     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1654     EVT VT = N0.getValueType();
   1655 
   1656     // canonicalize constant to RHS
   1657     if (N0C && !N1C)
   1658       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
   1659 
   1660     // fold (ladd 0, 0, x) -> 0, x & 1
   1661     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
   1662       SDValue Carry = DAG.getConstant(0, dl, VT);
   1663       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
   1664                                    DAG.getConstant(1, dl, VT));
   1665       SDValue Ops[] = { Result, Carry };
   1666       return DAG.getMergeValues(Ops, dl);
   1667     }
   1668 
   1669     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
   1670     // low bit set
   1671     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
   1672       APInt KnownZero, KnownOne;
   1673       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1674                                          VT.getSizeInBits() - 1);
   1675       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1676       if ((KnownZero & Mask) == Mask) {
   1677         SDValue Carry = DAG.getConstant(0, dl, VT);
   1678         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
   1679         SDValue Ops[] = { Result, Carry };
   1680         return DAG.getMergeValues(Ops, dl);
   1681       }
   1682     }
   1683   }
   1684   break;
   1685   case XCoreISD::LSUB: {
   1686     SDValue N0 = N->getOperand(0);
   1687     SDValue N1 = N->getOperand(1);
   1688     SDValue N2 = N->getOperand(2);
   1689     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1690     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1691     EVT VT = N0.getValueType();
   1692 
   1693     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
   1694     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
   1695       APInt KnownZero, KnownOne;
   1696       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1697                                          VT.getSizeInBits() - 1);
   1698       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1699       if ((KnownZero & Mask) == Mask) {
   1700         SDValue Borrow = N2;
   1701         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
   1702                                      DAG.getConstant(0, dl, VT), N2);
   1703         SDValue Ops[] = { Result, Borrow };
   1704         return DAG.getMergeValues(Ops, dl);
   1705       }
   1706     }
   1707 
   1708     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
   1709     // low bit set
   1710     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
   1711       APInt KnownZero, KnownOne;
   1712       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
   1713                                          VT.getSizeInBits() - 1);
   1714       DAG.computeKnownBits(N2, KnownZero, KnownOne);
   1715       if ((KnownZero & Mask) == Mask) {
   1716         SDValue Borrow = DAG.getConstant(0, dl, VT);
   1717         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
   1718         SDValue Ops[] = { Result, Borrow };
   1719         return DAG.getMergeValues(Ops, dl);
   1720       }
   1721     }
   1722   }
   1723   break;
   1724   case XCoreISD::LMUL: {
   1725     SDValue N0 = N->getOperand(0);
   1726     SDValue N1 = N->getOperand(1);
   1727     SDValue N2 = N->getOperand(2);
   1728     SDValue N3 = N->getOperand(3);
   1729     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
   1730     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   1731     EVT VT = N0.getValueType();
   1732     // Canonicalize multiplicative constant to RHS. If both multiplicative
   1733     // operands are constant canonicalize smallest to RHS.
   1734     if ((N0C && !N1C) ||
   1735         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
   1736       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
   1737                          N1, N0, N2, N3);
   1738 
   1739     // lmul(x, 0, a, b)
   1740     if (N1C && N1C->isNullValue()) {
   1741       // If the high result is unused fold to add(a, b)
   1742       if (N->hasNUsesOfValue(0, 0)) {
   1743         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
   1744         SDValue Ops[] = { Lo, Lo };
   1745         return DAG.getMergeValues(Ops, dl);
   1746       }
   1747       // Otherwise fold to ladd(a, b, 0)
   1748       SDValue Result =
   1749         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
   1750       SDValue Carry(Result.getNode(), 1);
   1751       SDValue Ops[] = { Carry, Result };
   1752       return DAG.getMergeValues(Ops, dl);
   1753     }
   1754   }
   1755   break;
   1756   case ISD::ADD: {
   1757     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
   1758     // lmul(x, y, a, b). The high result of lmul will be ignored.
   1759     // This is only profitable if the intermediate results are unused
   1760     // elsewhere.
   1761     SDValue Mul0, Mul1, Addend0, Addend1;
   1762     if (N->getValueType(0) == MVT::i32 &&
   1763         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
   1764       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
   1765                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
   1766                                     Mul1, Addend0, Addend1);
   1767       SDValue Result(Ignored.getNode(), 1);
   1768       return Result;
   1769     }
   1770     APInt HighMask = APInt::getHighBitsSet(64, 32);
   1771     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
   1772     // lmul(x, y, a, b) if all operands are zero-extended. We do this
   1773     // before type legalization as it is messy to match the operands after
   1774     // that.
   1775     if (N->getValueType(0) == MVT::i64 &&
   1776         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
   1777         DAG.MaskedValueIsZero(Mul0, HighMask) &&
   1778         DAG.MaskedValueIsZero(Mul1, HighMask) &&
   1779         DAG.MaskedValueIsZero(Addend0, HighMask) &&
   1780         DAG.MaskedValueIsZero(Addend1, HighMask)) {
   1781       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1782                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
   1783       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1784                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
   1785       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1786                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
   1787       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   1788                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
   1789       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
   1790                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
   1791                                Addend0L, Addend1L);
   1792       SDValue Lo(Hi.getNode(), 1);
   1793       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   1794     }
   1795   }
   1796   break;
   1797   case ISD::STORE: {
   1798     // Replace unaligned store of unaligned load with memmove.
   1799     StoreSDNode *ST  = cast<StoreSDNode>(N);
   1800     if (!DCI.isBeforeLegalize() ||
   1801         allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
   1802                                        ST->getAddressSpace(),
   1803                                        ST->getAlignment()) ||
   1804         ST->isVolatile() || ST->isIndexed()) {
   1805       break;
   1806     }
   1807     SDValue Chain = ST->getChain();
   1808 
   1809     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
   1810     assert((StoreBits % 8) == 0 &&
   1811            "Store size in bits must be a multiple of 8");
   1812     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
   1813         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
   1814     unsigned Alignment = ST->getAlignment();
   1815     if (Alignment >= ABIAlignment) {
   1816       break;
   1817     }
   1818 
   1819     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
   1820       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
   1821         LD->getAlignment() == Alignment &&
   1822         !LD->isVolatile() && !LD->isIndexed() &&
   1823         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
   1824         bool isTail = isInTailCallPosition(DAG, ST, Chain);
   1825         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
   1826                               LD->getBasePtr(),
   1827                               DAG.getConstant(StoreBits/8, dl, MVT::i32),
   1828                               Alignment, false, isTail, ST->getPointerInfo(),
   1829                               LD->getPointerInfo());
   1830       }
   1831     }
   1832     break;
   1833   }
   1834   }
   1835   return SDValue();
   1836 }
   1837 
   1838 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1839                                                         APInt &KnownZero,
   1840                                                         APInt &KnownOne,
   1841                                                         const SelectionDAG &DAG,
   1842                                                         unsigned Depth) const {
   1843   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
   1844   switch (Op.getOpcode()) {
   1845   default: break;
   1846   case XCoreISD::LADD:
   1847   case XCoreISD::LSUB:
   1848     if (Op.getResNo() == 1) {
   1849       // Top bits of carry / borrow are clear.
   1850       KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1851                                         KnownZero.getBitWidth() - 1);
   1852     }
   1853     break;
   1854   case ISD::INTRINSIC_W_CHAIN:
   1855     {
   1856       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1857       switch (IntNo) {
   1858       case Intrinsic::xcore_getts:
   1859         // High bits are known to be zero.
   1860         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1861                                           KnownZero.getBitWidth() - 16);
   1862         break;
   1863       case Intrinsic::xcore_int:
   1864       case Intrinsic::xcore_inct:
   1865         // High bits are known to be zero.
   1866         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1867                                           KnownZero.getBitWidth() - 8);
   1868         break;
   1869       case Intrinsic::xcore_testct:
   1870         // Result is either 0 or 1.
   1871         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1872                                           KnownZero.getBitWidth() - 1);
   1873         break;
   1874       case Intrinsic::xcore_testwct:
   1875         // Result is in the range 0 - 4.
   1876         KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
   1877                                           KnownZero.getBitWidth() - 3);
   1878         break;
   1879       }
   1880     }
   1881     break;
   1882   }
   1883 }
   1884 
   1885 //===----------------------------------------------------------------------===//
   1886 //  Addressing mode description hooks
   1887 //===----------------------------------------------------------------------===//
   1888 
   1889 static inline bool isImmUs(int64_t val)
   1890 {
   1891   return (val >= 0 && val <= 11);
   1892 }
   1893 
   1894 static inline bool isImmUs2(int64_t val)
   1895 {
   1896   return (val%2 == 0 && isImmUs(val/2));
   1897 }
   1898 
   1899 static inline bool isImmUs4(int64_t val)
   1900 {
   1901   return (val%4 == 0 && isImmUs(val/4));
   1902 }
   1903 
   1904 /// isLegalAddressingMode - Return true if the addressing mode represented
   1905 /// by AM is legal for this target, for a load/store of the specified type.
   1906 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   1907                                                 const AddrMode &AM, Type *Ty,
   1908                                                 unsigned AS) const {
   1909   if (Ty->getTypeID() == Type::VoidTyID)
   1910     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
   1911 
   1912   unsigned Size = DL.getTypeAllocSize(Ty);
   1913   if (AM.BaseGV) {
   1914     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
   1915                  AM.BaseOffs%4 == 0;
   1916   }
   1917 
   1918   switch (Size) {
   1919   case 1:
   1920     // reg + imm
   1921     if (AM.Scale == 0) {
   1922       return isImmUs(AM.BaseOffs);
   1923     }
   1924     // reg + reg
   1925     return AM.Scale == 1 && AM.BaseOffs == 0;
   1926   case 2:
   1927   case 3:
   1928     // reg + imm
   1929     if (AM.Scale == 0) {
   1930       return isImmUs2(AM.BaseOffs);
   1931     }
   1932     // reg + reg<<1
   1933     return AM.Scale == 2 && AM.BaseOffs == 0;
   1934   default:
   1935     // reg + imm
   1936     if (AM.Scale == 0) {
   1937       return isImmUs4(AM.BaseOffs);
   1938     }
   1939     // reg + reg<<2
   1940     return AM.Scale == 4 && AM.BaseOffs == 0;
   1941   }
   1942 }
   1943 
   1944 //===----------------------------------------------------------------------===//
   1945 //                           XCore Inline Assembly Support
   1946 //===----------------------------------------------------------------------===//
   1947 
   1948 std::pair<unsigned, const TargetRegisterClass *>
   1949 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   1950                                                   StringRef Constraint,
   1951                                                   MVT VT) const {
   1952   if (Constraint.size() == 1) {
   1953     switch (Constraint[0]) {
   1954     default : break;
   1955     case 'r':
   1956       return std::make_pair(0U, &XCore::GRRegsRegClass);
   1957     }
   1958   }
   1959   // Use the default implementation in TargetLowering to convert the register
   1960   // constraint into a member of a register class.
   1961   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   1962 }
   1963