Home | History | Annotate | Download | only in Disassembler
      1 //===-- HexagonDisassembler.cpp - Disassembler for Hexagon ISA ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "hexagon-disassembler"
     11 
     12 #include "Hexagon.h"
     13 #include "MCTargetDesc/HexagonBaseInfo.h"
     14 #include "MCTargetDesc/HexagonMCChecker.h"
     15 #include "MCTargetDesc/HexagonMCTargetDesc.h"
     16 #include "MCTargetDesc/HexagonMCInstrInfo.h"
     17 #include "MCTargetDesc/HexagonInstPrinter.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
     20 #include "llvm/MC/MCContext.h"
     21 #include "llvm/MC/MCExpr.h"
     22 #include "llvm/MC/MCFixedLenDisassembler.h"
     23 #include "llvm/MC/MCInst.h"
     24 #include "llvm/MC/MCInstrDesc.h"
     25 #include "llvm/MC/MCInstrInfo.h"
     26 #include "llvm/MC/MCSubtargetInfo.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/LEB128.h"
     30 #include "llvm/Support/MemoryObject.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Support/TargetRegistry.h"
     33 
     34 using namespace llvm;
     35 using namespace Hexagon;
     36 
     37 typedef MCDisassembler::DecodeStatus DecodeStatus;
     38 
     39 namespace {
     40 /// \brief Hexagon disassembler for all Hexagon platforms.
     41 class HexagonDisassembler : public MCDisassembler {
     42 public:
     43   std::unique_ptr<MCInstrInfo const> const MCII;
     44   std::unique_ptr<MCInst *> CurrentBundle;
     45   HexagonDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
     46                       MCInstrInfo const *MCII)
     47       : MCDisassembler(STI, Ctx), MCII(MCII), CurrentBundle(new MCInst *) {}
     48 
     49   DecodeStatus getSingleInstruction(MCInst &Instr, MCInst &MCB,
     50                                     ArrayRef<uint8_t> Bytes, uint64_t Address,
     51                                     raw_ostream &VStream, raw_ostream &CStream,
     52                                     bool &Complete) const;
     53   DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
     54                               ArrayRef<uint8_t> Bytes, uint64_t Address,
     55                               raw_ostream &VStream,
     56                               raw_ostream &CStream) const override;
     57 
     58   void adjustExtendedInstructions(MCInst &MCI, MCInst const &MCB) const;
     59   void addSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst) const;
     60 };
     61 }
     62 
     63 // Forward declare these because the auto-generated code will reference them.
     64 // Definitions are further down.
     65 
     66 static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     67                                                uint64_t Address,
     68                                                const void *Decoder);
     69 static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
     70                                                    uint64_t Address,
     71                                                    const void *Decoder);
     72 static DecodeStatus DecodeVectorRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     73                                                   uint64_t Address,
     74                                                   const void *Decoder);
     75 static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     76                                                   uint64_t Address,
     77                                                   const void *Decoder);
     78 static DecodeStatus DecodeVecDblRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     79                                                   uint64_t Address,
     80                                                   const void *Decoder);
     81 static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     82                                                 uint64_t Address,
     83                                                 const void *Decoder);
     84 static DecodeStatus DecodeVecPredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     85                                                    uint64_t Address,
     86                                                    const void *Decoder);
     87 static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     88                                                uint64_t Address,
     89                                                const void *Decoder);
     90 static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
     91                                                uint64_t Address,
     92                                                const void *Decoder);
     93 static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
     94                                                  uint64_t Address,
     95                                                  const void *Decoder);
     96 
     97 static DecodeStatus decodeSpecial(MCInst &MI, uint32_t insn);
     98 static DecodeStatus decodeImmext(MCInst &MI, uint32_t insn,
     99                                  void const *Decoder);
    100 
    101 static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
    102                                  raw_ostream &os);
    103 
    104 static unsigned getRegFromSubinstEncoding(unsigned encoded_reg);
    105 
    106 static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
    107                                        uint64_t Address, const void *Decoder);
    108 static DecodeStatus s16ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    109                                   const void *Decoder);
    110 static DecodeStatus s12ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    111                                   const void *Decoder);
    112 static DecodeStatus s11_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    113                                     const void *Decoder);
    114 static DecodeStatus s11_1ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    115                                     const void *Decoder);
    116 static DecodeStatus s11_2ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    117                                     const void *Decoder);
    118 static DecodeStatus s11_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    119                                     const void *Decoder);
    120 static DecodeStatus s10ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    121                                   const void *Decoder);
    122 static DecodeStatus s8ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    123                                  const void *Decoder);
    124 static DecodeStatus s6_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    125                                    const void *Decoder);
    126 static DecodeStatus s4_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    127                                    const void *Decoder);
    128 static DecodeStatus s4_1ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    129                                    const void *Decoder);
    130 static DecodeStatus s4_2ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    131                                    const void *Decoder);
    132 static DecodeStatus s4_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    133                                    const void *Decoder);
    134 static DecodeStatus s4_6ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    135                                    const void *Decoder);
    136 static DecodeStatus s3_6ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    137                                    const void *Decoder);
    138 static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    139                                     const void *Decoder);
    140 
    141 #include "HexagonGenDisassemblerTables.inc"
    142 
    143 static MCDisassembler *createHexagonDisassembler(const Target &T,
    144                                                  const MCSubtargetInfo &STI,
    145                                                  MCContext &Ctx) {
    146   return new HexagonDisassembler(STI, Ctx, T.createMCInstrInfo());
    147 }
    148 
    149 extern "C" void LLVMInitializeHexagonDisassembler() {
    150   TargetRegistry::RegisterMCDisassembler(TheHexagonTarget,
    151                                          createHexagonDisassembler);
    152 }
    153 
    154 DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
    155                                                  ArrayRef<uint8_t> Bytes,
    156                                                  uint64_t Address,
    157                                                  raw_ostream &os,
    158                                                  raw_ostream &cs) const {
    159   DecodeStatus Result = DecodeStatus::Success;
    160   bool Complete = false;
    161   Size = 0;
    162 
    163   *CurrentBundle = &MI;
    164   MI = HexagonMCInstrInfo::createBundle();
    165   while (Result == Success && Complete == false) {
    166     if (Bytes.size() < HEXAGON_INSTR_SIZE)
    167       return MCDisassembler::Fail;
    168     MCInst *Inst = new (getContext()) MCInst;
    169     Result = getSingleInstruction(*Inst, MI, Bytes, Address, os, cs, Complete);
    170     MI.addOperand(MCOperand::createInst(Inst));
    171     Size += HEXAGON_INSTR_SIZE;
    172     Bytes = Bytes.slice(HEXAGON_INSTR_SIZE);
    173   }
    174   if(Result == MCDisassembler::Fail)
    175     return Result;
    176   HexagonMCChecker Checker (*MCII, STI, MI, MI, *getContext().getRegisterInfo());
    177   if(!Checker.check())
    178     return MCDisassembler::Fail;
    179   return MCDisassembler::Success;
    180 }
    181 
    182 namespace {
    183 HexagonDisassembler const &disassembler(void const *Decoder) {
    184   return *static_cast<HexagonDisassembler const *>(Decoder);
    185 }
    186 MCContext &contextFromDecoder(void const *Decoder) {
    187   return disassembler(Decoder).getContext();
    188 }
    189 }
    190 
    191 DecodeStatus HexagonDisassembler::getSingleInstruction(
    192     MCInst &MI, MCInst &MCB, ArrayRef<uint8_t> Bytes, uint64_t Address,
    193     raw_ostream &os, raw_ostream &cs, bool &Complete) const {
    194   assert(Bytes.size() >= HEXAGON_INSTR_SIZE);
    195 
    196   uint32_t Instruction =
    197       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | (Bytes[0] << 0);
    198 
    199   auto BundleSize = HexagonMCInstrInfo::bundleSize(MCB);
    200   if ((Instruction & HexagonII::INST_PARSE_MASK) ==
    201       HexagonII::INST_PARSE_LOOP_END) {
    202     if (BundleSize == 0)
    203       HexagonMCInstrInfo::setInnerLoop(MCB);
    204     else if (BundleSize == 1)
    205       HexagonMCInstrInfo::setOuterLoop(MCB);
    206     else
    207       return DecodeStatus::Fail;
    208   }
    209 
    210   DecodeStatus Result = DecodeStatus::Success;
    211   if ((Instruction & HexagonII::INST_PARSE_MASK) ==
    212       HexagonII::INST_PARSE_DUPLEX) {
    213     // Determine the instruction class of each instruction in the duplex.
    214     unsigned duplexIClass, IClassLow, IClassHigh;
    215 
    216     duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1);
    217     switch (duplexIClass) {
    218     default:
    219       return MCDisassembler::Fail;
    220     case 0:
    221       IClassLow = HexagonII::HSIG_L1;
    222       IClassHigh = HexagonII::HSIG_L1;
    223       break;
    224     case 1:
    225       IClassLow = HexagonII::HSIG_L2;
    226       IClassHigh = HexagonII::HSIG_L1;
    227       break;
    228     case 2:
    229       IClassLow = HexagonII::HSIG_L2;
    230       IClassHigh = HexagonII::HSIG_L2;
    231       break;
    232     case 3:
    233       IClassLow = HexagonII::HSIG_A;
    234       IClassHigh = HexagonII::HSIG_A;
    235       break;
    236     case 4:
    237       IClassLow = HexagonII::HSIG_L1;
    238       IClassHigh = HexagonII::HSIG_A;
    239       break;
    240     case 5:
    241       IClassLow = HexagonII::HSIG_L2;
    242       IClassHigh = HexagonII::HSIG_A;
    243       break;
    244     case 6:
    245       IClassLow = HexagonII::HSIG_S1;
    246       IClassHigh = HexagonII::HSIG_A;
    247       break;
    248     case 7:
    249       IClassLow = HexagonII::HSIG_S2;
    250       IClassHigh = HexagonII::HSIG_A;
    251       break;
    252     case 8:
    253       IClassLow = HexagonII::HSIG_S1;
    254       IClassHigh = HexagonII::HSIG_L1;
    255       break;
    256     case 9:
    257       IClassLow = HexagonII::HSIG_S1;
    258       IClassHigh = HexagonII::HSIG_L2;
    259       break;
    260     case 10:
    261       IClassLow = HexagonII::HSIG_S1;
    262       IClassHigh = HexagonII::HSIG_S1;
    263       break;
    264     case 11:
    265       IClassLow = HexagonII::HSIG_S2;
    266       IClassHigh = HexagonII::HSIG_S1;
    267       break;
    268     case 12:
    269       IClassLow = HexagonII::HSIG_S2;
    270       IClassHigh = HexagonII::HSIG_L1;
    271       break;
    272     case 13:
    273       IClassLow = HexagonII::HSIG_S2;
    274       IClassHigh = HexagonII::HSIG_L2;
    275       break;
    276     case 14:
    277       IClassLow = HexagonII::HSIG_S2;
    278       IClassHigh = HexagonII::HSIG_S2;
    279       break;
    280     }
    281 
    282     // Set the MCInst to be a duplex instruction. Which one doesn't matter.
    283     MI.setOpcode(Hexagon::DuplexIClass0);
    284 
    285     // Decode each instruction in the duplex.
    286     // Create an MCInst for each instruction.
    287     unsigned instLow = Instruction & 0x1fff;
    288     unsigned instHigh = (Instruction >> 16) & 0x1fff;
    289     unsigned opLow;
    290     if (GetSubinstOpcode(IClassLow, instLow, opLow, os) !=
    291         MCDisassembler::Success)
    292       return MCDisassembler::Fail;
    293     unsigned opHigh;
    294     if (GetSubinstOpcode(IClassHigh, instHigh, opHigh, os) !=
    295         MCDisassembler::Success)
    296       return MCDisassembler::Fail;
    297     MCInst *MILow = new (getContext()) MCInst;
    298     MILow->setOpcode(opLow);
    299     MCInst *MIHigh = new (getContext()) MCInst;
    300     MIHigh->setOpcode(opHigh);
    301     addSubinstOperands(MILow, opLow, instLow);
    302     addSubinstOperands(MIHigh, opHigh, instHigh);
    303     // see ConvertToSubInst() in
    304     // lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
    305 
    306     // Add the duplex instruction MCInsts as operands to the passed in MCInst.
    307     MCOperand OPLow = MCOperand::createInst(MILow);
    308     MCOperand OPHigh = MCOperand::createInst(MIHigh);
    309     MI.addOperand(OPLow);
    310     MI.addOperand(OPHigh);
    311     Complete = true;
    312   } else {
    313     if ((Instruction & HexagonII::INST_PARSE_MASK) ==
    314         HexagonII::INST_PARSE_PACKET_END)
    315       Complete = true;
    316     // Calling the auto-generated decoder function.
    317     Result =
    318         decodeInstruction(DecoderTable32, MI, Instruction, Address, this, STI);
    319 
    320     // If a, "standard" insn isn't found check special cases.
    321     if (MCDisassembler::Success != Result ||
    322         MI.getOpcode() == Hexagon::A4_ext) {
    323       Result = decodeImmext(MI, Instruction, this);
    324       if (MCDisassembler::Success != Result) {
    325         Result = decodeSpecial(MI, Instruction);
    326       }
    327     } else {
    328       // If the instruction is a compound instruction, register values will
    329       // follow the duplex model, so the register values in the MCInst are
    330       // incorrect. If the instruction is a compound, loop through the
    331       // operands and change registers appropriately.
    332       if (llvm::HexagonMCInstrInfo::getType(*MCII, MI) ==
    333           HexagonII::TypeCOMPOUND) {
    334         for (MCInst::iterator i = MI.begin(), last = MI.end(); i < last; ++i) {
    335           if (i->isReg()) {
    336             unsigned reg = i->getReg() - Hexagon::R0;
    337             i->setReg(getRegFromSubinstEncoding(reg));
    338           }
    339         }
    340       }
    341     }
    342   }
    343 
    344   if (HexagonMCInstrInfo::isNewValue(*MCII, MI)) {
    345     unsigned OpIndex = HexagonMCInstrInfo::getNewValueOp(*MCII, MI);
    346     MCOperand &MCO = MI.getOperand(OpIndex);
    347     assert(MCO.isReg() && "New value consumers must be registers");
    348     unsigned Register =
    349         getContext().getRegisterInfo()->getEncodingValue(MCO.getReg());
    350     if ((Register & 0x6) == 0)
    351       // HexagonPRM 10.11 Bit 1-2 == 0 is reserved
    352       return MCDisassembler::Fail;
    353     unsigned Lookback = (Register & 0x6) >> 1;
    354     unsigned Offset = 1;
    355     bool Vector = HexagonMCInstrInfo::isVector(*MCII, MI);
    356     auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
    357     auto i = Instructions.end() - 1;
    358     for (auto n = Instructions.begin() - 1;; --i, ++Offset) {
    359       if (i == n)
    360         // Couldn't find producer
    361         return MCDisassembler::Fail;
    362       if (Vector && !HexagonMCInstrInfo::isVector(*MCII, *i->getInst()))
    363         // Skip scalars when calculating distances for vectors
    364         ++Lookback;
    365       if (HexagonMCInstrInfo::isImmext(*i->getInst()))
    366         ++Lookback;
    367       if (Offset == Lookback)
    368         break;
    369     }
    370     auto const &Inst = *i->getInst();
    371     bool SubregBit = (Register & 0x1) != 0;
    372     if (SubregBit && HexagonMCInstrInfo::hasNewValue2(*MCII, Inst)) {
    373       // If subreg bit is set we're selecting the second produced newvalue
    374       unsigned Producer =
    375           HexagonMCInstrInfo::getNewValueOperand2(*MCII, Inst).getReg();
    376       assert(Producer != Hexagon::NoRegister);
    377       MCO.setReg(Producer);
    378     } else if (HexagonMCInstrInfo::hasNewValue(*MCII, Inst)) {
    379       unsigned Producer =
    380           HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg();
    381       if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
    382         Producer = ((Producer - Hexagon::W0) << 1) + SubregBit + Hexagon::V0;
    383       else if (SubregBit)
    384         // Hexagon PRM 10.11 New-value operands
    385         // Nt[0] is reserved and should always be encoded as zero.
    386         return MCDisassembler::Fail;
    387       assert(Producer != Hexagon::NoRegister);
    388       MCO.setReg(Producer);
    389     } else
    390       return MCDisassembler::Fail;
    391   }
    392 
    393   adjustExtendedInstructions(MI, MCB);
    394   MCInst const *Extender =
    395     HexagonMCInstrInfo::extenderForIndex(MCB,
    396                                          HexagonMCInstrInfo::bundleSize(MCB));
    397   if(Extender != nullptr) {
    398     MCInst const & Inst = HexagonMCInstrInfo::isDuplex(*MCII, MI) ?
    399                           *MI.getOperand(1).getInst() : MI;
    400     if (!HexagonMCInstrInfo::isExtendable(*MCII, Inst) &&
    401         !HexagonMCInstrInfo::isExtended(*MCII, Inst))
    402       return MCDisassembler::Fail;
    403   }
    404   return Result;
    405 }
    406 
    407 void HexagonDisassembler::adjustExtendedInstructions(MCInst &MCI,
    408                                                      MCInst const &MCB) const {
    409   if (!HexagonMCInstrInfo::hasExtenderForIndex(
    410           MCB, HexagonMCInstrInfo::bundleSize(MCB))) {
    411     unsigned opcode;
    412     // This code is used by the disassembler to disambiguate between GP
    413     // relative and absolute addressing instructions since they both have
    414     // same encoding bits. However, an absolute addressing instruction must
    415     // follow an immediate extender. Disassembler alwaus select absolute
    416     // addressing instructions first and uses this code to change them into
    417     // GP relative instruction in the absence of the corresponding immediate
    418     // extender.
    419     switch (MCI.getOpcode()) {
    420     case Hexagon::S2_storerbabs:
    421       opcode = Hexagon::S2_storerbgp;
    422       break;
    423     case Hexagon::S2_storerhabs:
    424       opcode = Hexagon::S2_storerhgp;
    425       break;
    426     case Hexagon::S2_storerfabs:
    427       opcode = Hexagon::S2_storerfgp;
    428       break;
    429     case Hexagon::S2_storeriabs:
    430       opcode = Hexagon::S2_storerigp;
    431       break;
    432     case Hexagon::S2_storerbnewabs:
    433       opcode = Hexagon::S2_storerbnewgp;
    434       break;
    435     case Hexagon::S2_storerhnewabs:
    436       opcode = Hexagon::S2_storerhnewgp;
    437       break;
    438     case Hexagon::S2_storerinewabs:
    439       opcode = Hexagon::S2_storerinewgp;
    440       break;
    441     case Hexagon::S2_storerdabs:
    442       opcode = Hexagon::S2_storerdgp;
    443       break;
    444     case Hexagon::L4_loadrb_abs:
    445       opcode = Hexagon::L2_loadrbgp;
    446       break;
    447     case Hexagon::L4_loadrub_abs:
    448       opcode = Hexagon::L2_loadrubgp;
    449       break;
    450     case Hexagon::L4_loadrh_abs:
    451       opcode = Hexagon::L2_loadrhgp;
    452       break;
    453     case Hexagon::L4_loadruh_abs:
    454       opcode = Hexagon::L2_loadruhgp;
    455       break;
    456     case Hexagon::L4_loadri_abs:
    457       opcode = Hexagon::L2_loadrigp;
    458       break;
    459     case Hexagon::L4_loadrd_abs:
    460       opcode = Hexagon::L2_loadrdgp;
    461       break;
    462     default:
    463       opcode = MCI.getOpcode();
    464     }
    465     MCI.setOpcode(opcode);
    466   }
    467 }
    468 
    469 namespace llvm {
    470 extern const MCInstrDesc HexagonInsts[];
    471 }
    472 
    473 static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
    474                                         ArrayRef<MCPhysReg> Table) {
    475   if (RegNo < Table.size()) {
    476     Inst.addOperand(MCOperand::createReg(Table[RegNo]));
    477     return MCDisassembler::Success;
    478   }
    479 
    480   return MCDisassembler::Fail;
    481 }
    482 
    483 static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
    484                                                    uint64_t Address,
    485                                                    const void *Decoder) {
    486   return DecodeIntRegsRegisterClass(Inst, RegNo, Address, Decoder);
    487 }
    488 
    489 static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    490                                                uint64_t Address,
    491                                                const void *Decoder) {
    492   static const MCPhysReg IntRegDecoderTable[] = {
    493       Hexagon::R0,  Hexagon::R1,  Hexagon::R2,  Hexagon::R3,  Hexagon::R4,
    494       Hexagon::R5,  Hexagon::R6,  Hexagon::R7,  Hexagon::R8,  Hexagon::R9,
    495       Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
    496       Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
    497       Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
    498       Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
    499       Hexagon::R30, Hexagon::R31};
    500 
    501   return DecodeRegisterClass(Inst, RegNo, IntRegDecoderTable);
    502 }
    503 
    504 static DecodeStatus DecodeVectorRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    505                                                   uint64_t /*Address*/,
    506                                                   const void *Decoder) {
    507   static const MCPhysReg VecRegDecoderTable[] = {
    508       Hexagon::V0,  Hexagon::V1,  Hexagon::V2,  Hexagon::V3,  Hexagon::V4,
    509       Hexagon::V5,  Hexagon::V6,  Hexagon::V7,  Hexagon::V8,  Hexagon::V9,
    510       Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14,
    511       Hexagon::V15, Hexagon::V16, Hexagon::V17, Hexagon::V18, Hexagon::V19,
    512       Hexagon::V20, Hexagon::V21, Hexagon::V22, Hexagon::V23, Hexagon::V24,
    513       Hexagon::V25, Hexagon::V26, Hexagon::V27, Hexagon::V28, Hexagon::V29,
    514       Hexagon::V30, Hexagon::V31};
    515 
    516   return DecodeRegisterClass(Inst, RegNo, VecRegDecoderTable);
    517 }
    518 
    519 static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    520                                                   uint64_t /*Address*/,
    521                                                   const void *Decoder) {
    522   static const MCPhysReg DoubleRegDecoderTable[] = {
    523       Hexagon::D0,  Hexagon::D1,  Hexagon::D2,  Hexagon::D3,
    524       Hexagon::D4,  Hexagon::D5,  Hexagon::D6,  Hexagon::D7,
    525       Hexagon::D8,  Hexagon::D9,  Hexagon::D10, Hexagon::D11,
    526       Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15};
    527 
    528   return DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable);
    529 }
    530 
    531 static DecodeStatus DecodeVecDblRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    532                                                   uint64_t /*Address*/,
    533                                                   const void *Decoder) {
    534   static const MCPhysReg VecDblRegDecoderTable[] = {
    535       Hexagon::W0,  Hexagon::W1,  Hexagon::W2,  Hexagon::W3,
    536       Hexagon::W4,  Hexagon::W5,  Hexagon::W6,  Hexagon::W7,
    537       Hexagon::W8,  Hexagon::W9,  Hexagon::W10, Hexagon::W11,
    538       Hexagon::W12, Hexagon::W13, Hexagon::W14, Hexagon::W15};
    539 
    540   return (DecodeRegisterClass(Inst, RegNo >> 1, VecDblRegDecoderTable));
    541 }
    542 
    543 static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    544                                                 uint64_t /*Address*/,
    545                                                 const void *Decoder) {
    546   static const MCPhysReg PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1,
    547                                                   Hexagon::P2, Hexagon::P3};
    548 
    549   return DecodeRegisterClass(Inst, RegNo, PredRegDecoderTable);
    550 }
    551 
    552 static DecodeStatus DecodeVecPredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    553                                                    uint64_t /*Address*/,
    554                                                    const void *Decoder) {
    555   static const MCPhysReg VecPredRegDecoderTable[] = {Hexagon::Q0, Hexagon::Q1,
    556                                                      Hexagon::Q2, Hexagon::Q3};
    557 
    558   return DecodeRegisterClass(Inst, RegNo, VecPredRegDecoderTable);
    559 }
    560 
    561 static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    562                                                uint64_t /*Address*/,
    563                                                const void *Decoder) {
    564   static const MCPhysReg CtrlRegDecoderTable[] = {
    565     Hexagon::SA0, Hexagon::LC0, Hexagon::SA1, Hexagon::LC1,
    566     Hexagon::P3_0, Hexagon::C5, Hexagon::C6, Hexagon::C7,
    567     Hexagon::USR, Hexagon::PC, Hexagon::UGP, Hexagon::GP,
    568     Hexagon::CS0, Hexagon::CS1, Hexagon::UPCL, Hexagon::UPC
    569   };
    570 
    571   if (RegNo >= array_lengthof(CtrlRegDecoderTable))
    572     return MCDisassembler::Fail;
    573 
    574   if (CtrlRegDecoderTable[RegNo] == Hexagon::NoRegister)
    575     return MCDisassembler::Fail;
    576 
    577   unsigned Register = CtrlRegDecoderTable[RegNo];
    578   Inst.addOperand(MCOperand::createReg(Register));
    579   return MCDisassembler::Success;
    580 }
    581 
    582 static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
    583                                                  uint64_t /*Address*/,
    584                                                  const void *Decoder) {
    585   static const MCPhysReg CtrlReg64DecoderTable[] = {
    586       Hexagon::C1_0,   Hexagon::NoRegister,
    587       Hexagon::C3_2,   Hexagon::NoRegister,
    588       Hexagon::C7_6,   Hexagon::NoRegister,
    589       Hexagon::C9_8,   Hexagon::NoRegister,
    590       Hexagon::C11_10, Hexagon::NoRegister,
    591       Hexagon::CS,     Hexagon::NoRegister,
    592       Hexagon::UPC,    Hexagon::NoRegister
    593   };
    594 
    595   if (RegNo >= array_lengthof(CtrlReg64DecoderTable))
    596     return MCDisassembler::Fail;
    597 
    598   if (CtrlReg64DecoderTable[RegNo] == Hexagon::NoRegister)
    599     return MCDisassembler::Fail;
    600 
    601   unsigned Register = CtrlReg64DecoderTable[RegNo];
    602   Inst.addOperand(MCOperand::createReg(Register));
    603   return MCDisassembler::Success;
    604 }
    605 
    606 static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
    607                                                uint64_t /*Address*/,
    608                                                const void *Decoder) {
    609   unsigned Register = 0;
    610   switch (RegNo) {
    611   case 0:
    612     Register = Hexagon::M0;
    613     break;
    614   case 1:
    615     Register = Hexagon::M1;
    616     break;
    617   default:
    618     return MCDisassembler::Fail;
    619   }
    620   Inst.addOperand(MCOperand::createReg(Register));
    621   return MCDisassembler::Success;
    622 }
    623 
    624 namespace {
    625 uint32_t fullValue(MCInstrInfo const &MCII,
    626                   MCInst &MCB,
    627                   MCInst &MI,
    628                   int64_t Value) {
    629   MCInst const *Extender = HexagonMCInstrInfo::extenderForIndex(
    630     MCB, HexagonMCInstrInfo::bundleSize(MCB));
    631   if(!Extender || MI.size() != HexagonMCInstrInfo::getExtendableOp(MCII, MI))
    632     return Value;
    633   unsigned Alignment = HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
    634   uint32_t Lower6 = static_cast<uint32_t>(Value >> Alignment) & 0x3f;
    635   int64_t Bits;
    636   bool Success = Extender->getOperand(0).getExpr()->evaluateAsAbsolute(Bits);
    637   assert(Success);(void)Success;
    638   uint32_t Upper26 = static_cast<uint32_t>(Bits);
    639   uint32_t Operand = Upper26 | Lower6;
    640   return Operand;
    641 }
    642 template <size_t T>
    643 void signedDecoder(MCInst &MI, unsigned tmp, const void *Decoder) {
    644   HexagonDisassembler const &Disassembler = disassembler(Decoder);
    645   int64_t FullValue = fullValue(*Disassembler.MCII,
    646                                 **Disassembler.CurrentBundle,
    647                                 MI, SignExtend64<T>(tmp));
    648   int64_t Extended = SignExtend64<32>(FullValue);
    649   HexagonMCInstrInfo::addConstant(MI, Extended,
    650                                   Disassembler.getContext());
    651 }
    652 }
    653 
    654 static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
    655                                        uint64_t /*Address*/,
    656                                        const void *Decoder) {
    657   HexagonDisassembler const &Disassembler = disassembler(Decoder);
    658   int64_t FullValue = fullValue(*Disassembler.MCII,
    659                                 **Disassembler.CurrentBundle,
    660                                 MI, tmp);
    661   assert(FullValue >= 0 && "Negative in unsigned decoder");
    662   HexagonMCInstrInfo::addConstant(MI, FullValue, Disassembler.getContext());
    663   return MCDisassembler::Success;
    664 }
    665 
    666 static DecodeStatus s16ImmDecoder(MCInst &MI, unsigned tmp,
    667                                   uint64_t /*Address*/, const void *Decoder) {
    668   signedDecoder<16>(MI, tmp, Decoder);
    669   return MCDisassembler::Success;
    670 }
    671 
    672 static DecodeStatus s12ImmDecoder(MCInst &MI, unsigned tmp,
    673                                   uint64_t /*Address*/, const void *Decoder) {
    674   signedDecoder<12>(MI, tmp, Decoder);
    675   return MCDisassembler::Success;
    676 }
    677 
    678 static DecodeStatus s11_0ImmDecoder(MCInst &MI, unsigned tmp,
    679                                     uint64_t /*Address*/, const void *Decoder) {
    680   signedDecoder<11>(MI, tmp, Decoder);
    681   return MCDisassembler::Success;
    682 }
    683 
    684 static DecodeStatus s11_1ImmDecoder(MCInst &MI, unsigned tmp,
    685                                     uint64_t /*Address*/, const void *Decoder) {
    686   HexagonMCInstrInfo::addConstant(MI, SignExtend64<12>(tmp), contextFromDecoder(Decoder));
    687   return MCDisassembler::Success;
    688 }
    689 
    690 static DecodeStatus s11_2ImmDecoder(MCInst &MI, unsigned tmp,
    691                                     uint64_t /*Address*/, const void *Decoder) {
    692   signedDecoder<13>(MI, tmp, Decoder);
    693   return MCDisassembler::Success;
    694 }
    695 
    696 static DecodeStatus s11_3ImmDecoder(MCInst &MI, unsigned tmp,
    697                                     uint64_t /*Address*/, const void *Decoder) {
    698   signedDecoder<14>(MI, tmp, Decoder);
    699   return MCDisassembler::Success;
    700 }
    701 
    702 static DecodeStatus s10ImmDecoder(MCInst &MI, unsigned tmp,
    703                                   uint64_t /*Address*/, const void *Decoder) {
    704   signedDecoder<10>(MI, tmp, Decoder);
    705   return MCDisassembler::Success;
    706 }
    707 
    708 static DecodeStatus s8ImmDecoder(MCInst &MI, unsigned tmp, uint64_t /*Address*/,
    709                                  const void *Decoder) {
    710   signedDecoder<8>(MI, tmp, Decoder);
    711   return MCDisassembler::Success;
    712 }
    713 
    714 static DecodeStatus s6_0ImmDecoder(MCInst &MI, unsigned tmp,
    715                                    uint64_t /*Address*/, const void *Decoder) {
    716   signedDecoder<6>(MI, tmp, Decoder);
    717   return MCDisassembler::Success;
    718 }
    719 
    720 static DecodeStatus s4_0ImmDecoder(MCInst &MI, unsigned tmp,
    721                                    uint64_t /*Address*/, const void *Decoder) {
    722   signedDecoder<4>(MI, tmp, Decoder);
    723   return MCDisassembler::Success;
    724 }
    725 
    726 static DecodeStatus s4_1ImmDecoder(MCInst &MI, unsigned tmp,
    727                                    uint64_t /*Address*/, const void *Decoder) {
    728   signedDecoder<5>(MI, tmp, Decoder);
    729   return MCDisassembler::Success;
    730 }
    731 
    732 static DecodeStatus s4_2ImmDecoder(MCInst &MI, unsigned tmp,
    733                                    uint64_t /*Address*/, const void *Decoder) {
    734   signedDecoder<6>(MI, tmp, Decoder);
    735   return MCDisassembler::Success;
    736 }
    737 
    738 static DecodeStatus s4_3ImmDecoder(MCInst &MI, unsigned tmp,
    739                                    uint64_t /*Address*/, const void *Decoder) {
    740   signedDecoder<7>(MI, tmp, Decoder);
    741   return MCDisassembler::Success;
    742 }
    743 
    744 static DecodeStatus s4_6ImmDecoder(MCInst &MI, unsigned tmp,
    745                                    uint64_t /*Address*/, const void *Decoder) {
    746   signedDecoder<10>(MI, tmp, Decoder);
    747   return MCDisassembler::Success;
    748 }
    749 
    750 static DecodeStatus s3_6ImmDecoder(MCInst &MI, unsigned tmp,
    751                                    uint64_t /*Address*/, const void *Decoder) {
    752   signedDecoder<19>(MI, tmp, Decoder);
    753   return MCDisassembler::Success;
    754 }
    755 
    756 // custom decoder for various jump/call immediates
    757 static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
    758                                     const void *Decoder) {
    759   HexagonDisassembler const &Disassembler = disassembler(Decoder);
    760   unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI);
    761   // r13_2 is not extendable, so if there are no extent bits, it's r13_2
    762   if (Bits == 0)
    763     Bits = 15;
    764   uint32_t FullValue = fullValue(*Disassembler.MCII,
    765                                 **Disassembler.CurrentBundle,
    766                                 MI, SignExtend64(tmp, Bits));
    767   int64_t Extended = SignExtend64<32>(FullValue) + Address;
    768   if (!Disassembler.tryAddingSymbolicOperand(MI, Extended, Address, true,
    769                                               0, 4))
    770     HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext());
    771   return MCDisassembler::Success;
    772 }
    773 
    774 // Addressing mode dependent load store opcode map.
    775 //   - If an insn is preceded by an extender the address is absolute.
    776 //      - memw(##symbol) = r0
    777 //   - If an insn is not preceded by an extender the address is GP relative.
    778 //      - memw(gp + #symbol) = r0
    779 // Please note that the instructions must be ordered in the descending order
    780 // of their opcode.
    781 // HexagonII::INST_ICLASS_ST
    782 static const unsigned int StoreConditionalOpcodeData[][2] = {
    783     {S4_pstorerdfnew_abs, 0xafc02084},
    784     {S4_pstorerdtnew_abs, 0xafc02080},
    785     {S4_pstorerdf_abs, 0xafc00084},
    786     {S4_pstorerdt_abs, 0xafc00080},
    787     {S4_pstorerinewfnew_abs, 0xafa03084},
    788     {S4_pstorerinewtnew_abs, 0xafa03080},
    789     {S4_pstorerhnewfnew_abs, 0xafa02884},
    790     {S4_pstorerhnewtnew_abs, 0xafa02880},
    791     {S4_pstorerbnewfnew_abs, 0xafa02084},
    792     {S4_pstorerbnewtnew_abs, 0xafa02080},
    793     {S4_pstorerinewf_abs, 0xafa01084},
    794     {S4_pstorerinewt_abs, 0xafa01080},
    795     {S4_pstorerhnewf_abs, 0xafa00884},
    796     {S4_pstorerhnewt_abs, 0xafa00880},
    797     {S4_pstorerbnewf_abs, 0xafa00084},
    798     {S4_pstorerbnewt_abs, 0xafa00080},
    799     {S4_pstorerifnew_abs, 0xaf802084},
    800     {S4_pstoreritnew_abs, 0xaf802080},
    801     {S4_pstorerif_abs, 0xaf800084},
    802     {S4_pstorerit_abs, 0xaf800080},
    803     {S4_pstorerhfnew_abs, 0xaf402084},
    804     {S4_pstorerhtnew_abs, 0xaf402080},
    805     {S4_pstorerhf_abs, 0xaf400084},
    806     {S4_pstorerht_abs, 0xaf400080},
    807     {S4_pstorerbfnew_abs, 0xaf002084},
    808     {S4_pstorerbtnew_abs, 0xaf002080},
    809     {S4_pstorerbf_abs, 0xaf000084},
    810     {S4_pstorerbt_abs, 0xaf000080}};
    811 // HexagonII::INST_ICLASS_LD
    812 
    813 // HexagonII::INST_ICLASS_LD_ST_2
    814 static unsigned int LoadStoreOpcodeData[][2] = {{L4_loadrd_abs, 0x49c00000},
    815                                                 {L4_loadri_abs, 0x49800000},
    816                                                 {L4_loadruh_abs, 0x49600000},
    817                                                 {L4_loadrh_abs, 0x49400000},
    818                                                 {L4_loadrub_abs, 0x49200000},
    819                                                 {L4_loadrb_abs, 0x49000000},
    820                                                 {S2_storerdabs, 0x48c00000},
    821                                                 {S2_storerinewabs, 0x48a01000},
    822                                                 {S2_storerhnewabs, 0x48a00800},
    823                                                 {S2_storerbnewabs, 0x48a00000},
    824                                                 {S2_storeriabs, 0x48800000},
    825                                                 {S2_storerfabs, 0x48600000},
    826                                                 {S2_storerhabs, 0x48400000},
    827                                                 {S2_storerbabs, 0x48000000}};
    828 static const size_t NumCondS = array_lengthof(StoreConditionalOpcodeData);
    829 static const size_t NumLS = array_lengthof(LoadStoreOpcodeData);
    830 
    831 static DecodeStatus decodeSpecial(MCInst &MI, uint32_t insn) {
    832 
    833   unsigned MachineOpcode = 0;
    834   unsigned LLVMOpcode = 0;
    835 
    836   if ((insn & HexagonII::INST_ICLASS_MASK) == HexagonII::INST_ICLASS_ST) {
    837     for (size_t i = 0; i < NumCondS; ++i) {
    838       if ((insn & StoreConditionalOpcodeData[i][1]) ==
    839           StoreConditionalOpcodeData[i][1]) {
    840         MachineOpcode = StoreConditionalOpcodeData[i][1];
    841         LLVMOpcode = StoreConditionalOpcodeData[i][0];
    842         break;
    843       }
    844     }
    845   }
    846   if ((insn & HexagonII::INST_ICLASS_MASK) == HexagonII::INST_ICLASS_LD_ST_2) {
    847     for (size_t i = 0; i < NumLS; ++i) {
    848       if ((insn & LoadStoreOpcodeData[i][1]) == LoadStoreOpcodeData[i][1]) {
    849         MachineOpcode = LoadStoreOpcodeData[i][1];
    850         LLVMOpcode = LoadStoreOpcodeData[i][0];
    851         break;
    852       }
    853     }
    854   }
    855 
    856   if (MachineOpcode) {
    857     unsigned Value = 0;
    858     unsigned shift = 0;
    859     MI.setOpcode(LLVMOpcode);
    860     // Remove the parse bits from the insn.
    861     insn &= ~HexagonII::INST_PARSE_MASK;
    862 
    863     switch (LLVMOpcode) {
    864     default:
    865       return MCDisassembler::Fail;
    866       break;
    867 
    868     case Hexagon::S4_pstorerdf_abs:
    869     case Hexagon::S4_pstorerdt_abs:
    870     case Hexagon::S4_pstorerdfnew_abs:
    871     case Hexagon::S4_pstorerdtnew_abs: {
    872       // op: Pv
    873       Value = insn & UINT64_C(3);
    874       DecodePredRegsRegisterClass(MI, Value, 0, 0);
    875       // op: u6
    876       Value = (insn >> 12) & UINT64_C(48);
    877       Value |= (insn >> 3) & UINT64_C(15);
    878       MI.addOperand(MCOperand::createImm(Value));
    879       // op: Rtt
    880       Value = (insn >> 8) & UINT64_C(31);
    881       DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
    882       break;
    883     }
    884 
    885     case Hexagon::S4_pstorerbnewf_abs:
    886     case Hexagon::S4_pstorerbnewt_abs:
    887     case Hexagon::S4_pstorerbnewfnew_abs:
    888     case Hexagon::S4_pstorerbnewtnew_abs:
    889     case Hexagon::S4_pstorerhnewf_abs:
    890     case Hexagon::S4_pstorerhnewt_abs:
    891     case Hexagon::S4_pstorerhnewfnew_abs:
    892     case Hexagon::S4_pstorerhnewtnew_abs:
    893     case Hexagon::S4_pstorerinewf_abs:
    894     case Hexagon::S4_pstorerinewt_abs:
    895     case Hexagon::S4_pstorerinewfnew_abs:
    896     case Hexagon::S4_pstorerinewtnew_abs: {
    897       // op: Pv
    898       Value = insn & UINT64_C(3);
    899       DecodePredRegsRegisterClass(MI, Value, 0, 0);
    900       // op: u6
    901       Value = (insn >> 12) & UINT64_C(48);
    902       Value |= (insn >> 3) & UINT64_C(15);
    903       MI.addOperand(MCOperand::createImm(Value));
    904       // op: Nt
    905       Value = (insn >> 8) & UINT64_C(7);
    906       DecodeIntRegsRegisterClass(MI, Value, 0, 0);
    907       break;
    908     }
    909 
    910     case Hexagon::S4_pstorerbf_abs:
    911     case Hexagon::S4_pstorerbt_abs:
    912     case Hexagon::S4_pstorerbfnew_abs:
    913     case Hexagon::S4_pstorerbtnew_abs:
    914     case Hexagon::S4_pstorerhf_abs:
    915     case Hexagon::S4_pstorerht_abs:
    916     case Hexagon::S4_pstorerhfnew_abs:
    917     case Hexagon::S4_pstorerhtnew_abs:
    918     case Hexagon::S4_pstorerif_abs:
    919     case Hexagon::S4_pstorerit_abs:
    920     case Hexagon::S4_pstorerifnew_abs:
    921     case Hexagon::S4_pstoreritnew_abs: {
    922       // op: Pv
    923       Value = insn & UINT64_C(3);
    924       DecodePredRegsRegisterClass(MI, Value, 0, 0);
    925       // op: u6
    926       Value = (insn >> 12) & UINT64_C(48);
    927       Value |= (insn >> 3) & UINT64_C(15);
    928       MI.addOperand(MCOperand::createImm(Value));
    929       // op: Rt
    930       Value = (insn >> 8) & UINT64_C(31);
    931       DecodeIntRegsRegisterClass(MI, Value, 0, 0);
    932       break;
    933     }
    934 
    935     case Hexagon::L4_ploadrdf_abs:
    936     case Hexagon::L4_ploadrdt_abs:
    937     case Hexagon::L4_ploadrdfnew_abs:
    938     case Hexagon::L4_ploadrdtnew_abs: {
    939       // op: Rdd
    940       Value = insn & UINT64_C(31);
    941       DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
    942       // op: Pt
    943       Value = ((insn >> 9) & UINT64_C(3));
    944       DecodePredRegsRegisterClass(MI, Value, 0, 0);
    945       // op: u6
    946       Value = ((insn >> 15) & UINT64_C(62));
    947       Value |= ((insn >> 8) & UINT64_C(1));
    948       MI.addOperand(MCOperand::createImm(Value));
    949       break;
    950     }
    951 
    952     case Hexagon::L4_ploadrbf_abs:
    953     case Hexagon::L4_ploadrbt_abs:
    954     case Hexagon::L4_ploadrbfnew_abs:
    955     case Hexagon::L4_ploadrbtnew_abs:
    956     case Hexagon::L4_ploadrhf_abs:
    957     case Hexagon::L4_ploadrht_abs:
    958     case Hexagon::L4_ploadrhfnew_abs:
    959     case Hexagon::L4_ploadrhtnew_abs:
    960     case Hexagon::L4_ploadrubf_abs:
    961     case Hexagon::L4_ploadrubt_abs:
    962     case Hexagon::L4_ploadrubfnew_abs:
    963     case Hexagon::L4_ploadrubtnew_abs:
    964     case Hexagon::L4_ploadruhf_abs:
    965     case Hexagon::L4_ploadruht_abs:
    966     case Hexagon::L4_ploadruhfnew_abs:
    967     case Hexagon::L4_ploadruhtnew_abs:
    968     case Hexagon::L4_ploadrif_abs:
    969     case Hexagon::L4_ploadrit_abs:
    970     case Hexagon::L4_ploadrifnew_abs:
    971     case Hexagon::L4_ploadritnew_abs:
    972       // op: Rd
    973       Value = insn & UINT64_C(31);
    974       DecodeIntRegsRegisterClass(MI, Value, 0, 0);
    975       // op: Pt
    976       Value = (insn >> 9) & UINT64_C(3);
    977       DecodePredRegsRegisterClass(MI, Value, 0, 0);
    978       // op: u6
    979       Value = (insn >> 15) & UINT64_C(62);
    980       Value |= (insn >> 8) & UINT64_C(1);
    981       MI.addOperand(MCOperand::createImm(Value));
    982       break;
    983 
    984     // op: g16_2
    985     case (Hexagon::L4_loadri_abs):
    986       ++shift;
    987     // op: g16_1
    988     case Hexagon::L4_loadrh_abs:
    989     case Hexagon::L4_loadruh_abs:
    990       ++shift;
    991     // op: g16_0
    992     case Hexagon::L4_loadrb_abs:
    993     case Hexagon::L4_loadrub_abs: {
    994       // op: Rd
    995       Value |= insn & UINT64_C(31);
    996       DecodeIntRegsRegisterClass(MI, Value, 0, 0);
    997       Value = (insn >> 11) & UINT64_C(49152);
    998       Value |= (insn >> 7) & UINT64_C(15872);
    999       Value |= (insn >> 5) & UINT64_C(511);
   1000       MI.addOperand(MCOperand::createImm(Value << shift));
   1001       break;
   1002     }
   1003 
   1004     case Hexagon::L4_loadrd_abs: {
   1005       Value = insn & UINT64_C(31);
   1006       DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
   1007       Value = (insn >> 11) & UINT64_C(49152);
   1008       Value |= (insn >> 7) & UINT64_C(15872);
   1009       Value |= (insn >> 5) & UINT64_C(511);
   1010       MI.addOperand(MCOperand::createImm(Value << 3));
   1011       break;
   1012     }
   1013 
   1014     case Hexagon::S2_storerdabs: {
   1015       // op: g16_3
   1016       Value = (insn >> 11) & UINT64_C(49152);
   1017       Value |= (insn >> 7) & UINT64_C(15872);
   1018       Value |= (insn >> 5) & UINT64_C(256);
   1019       Value |= insn & UINT64_C(255);
   1020       MI.addOperand(MCOperand::createImm(Value << 3));
   1021       // op: Rtt
   1022       Value = (insn >> 8) & UINT64_C(31);
   1023       DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
   1024       break;
   1025     }
   1026 
   1027     // op: g16_2
   1028     case Hexagon::S2_storerinewabs:
   1029       ++shift;
   1030     // op: g16_1
   1031     case Hexagon::S2_storerhnewabs:
   1032       ++shift;
   1033     // op: g16_0
   1034     case Hexagon::S2_storerbnewabs: {
   1035       Value = (insn >> 11) & UINT64_C(49152);
   1036       Value |= (insn >> 7) & UINT64_C(15872);
   1037       Value |= (insn >> 5) & UINT64_C(256);
   1038       Value |= insn & UINT64_C(255);
   1039       MI.addOperand(MCOperand::createImm(Value << shift));
   1040       // op: Nt
   1041       Value = (insn >> 8) & UINT64_C(7);
   1042       DecodeIntRegsRegisterClass(MI, Value, 0, 0);
   1043       break;
   1044     }
   1045 
   1046     // op: g16_2
   1047     case Hexagon::S2_storeriabs:
   1048       ++shift;
   1049     // op: g16_1
   1050     case Hexagon::S2_storerhabs:
   1051     case Hexagon::S2_storerfabs:
   1052       ++shift;
   1053     // op: g16_0
   1054     case Hexagon::S2_storerbabs: {
   1055       Value = (insn >> 11) & UINT64_C(49152);
   1056       Value |= (insn >> 7) & UINT64_C(15872);
   1057       Value |= (insn >> 5) & UINT64_C(256);
   1058       Value |= insn & UINT64_C(255);
   1059       MI.addOperand(MCOperand::createImm(Value << shift));
   1060       // op: Rt
   1061       Value = (insn >> 8) & UINT64_C(31);
   1062       DecodeIntRegsRegisterClass(MI, Value, 0, 0);
   1063       break;
   1064     }
   1065     }
   1066     return MCDisassembler::Success;
   1067   }
   1068   return MCDisassembler::Fail;
   1069 }
   1070 
   1071 static DecodeStatus decodeImmext(MCInst &MI, uint32_t insn,
   1072                                  void const *Decoder) {
   1073 
   1074   // Instruction Class for a constant a extender: bits 31:28 = 0x0000
   1075   if ((~insn & 0xf0000000) == 0xf0000000) {
   1076     unsigned Value;
   1077     // 27:16 High 12 bits of 26-bit extender.
   1078     Value = (insn & 0x0fff0000) << 4;
   1079     // 13:0 Low 14 bits of 26-bit extender.
   1080     Value |= ((insn & 0x3fff) << 6);
   1081     MI.setOpcode(Hexagon::A4_ext);
   1082     HexagonMCInstrInfo::addConstant(MI, Value, contextFromDecoder(Decoder));
   1083     return MCDisassembler::Success;
   1084   }
   1085   return MCDisassembler::Fail;
   1086 }
   1087 
   1088 // These values are from HexagonGenMCCodeEmitter.inc and HexagonIsetDx.td
   1089 enum subInstBinaryValues {
   1090   V4_SA1_addi_BITS = 0x0000,
   1091   V4_SA1_addi_MASK = 0x1800,
   1092   V4_SA1_addrx_BITS = 0x1800,
   1093   V4_SA1_addrx_MASK = 0x1f00,
   1094   V4_SA1_addsp_BITS = 0x0c00,
   1095   V4_SA1_addsp_MASK = 0x1c00,
   1096   V4_SA1_and1_BITS = 0x1200,
   1097   V4_SA1_and1_MASK = 0x1f00,
   1098   V4_SA1_clrf_BITS = 0x1a70,
   1099   V4_SA1_clrf_MASK = 0x1e70,
   1100   V4_SA1_clrfnew_BITS = 0x1a50,
   1101   V4_SA1_clrfnew_MASK = 0x1e70,
   1102   V4_SA1_clrt_BITS = 0x1a60,
   1103   V4_SA1_clrt_MASK = 0x1e70,
   1104   V4_SA1_clrtnew_BITS = 0x1a40,
   1105   V4_SA1_clrtnew_MASK = 0x1e70,
   1106   V4_SA1_cmpeqi_BITS = 0x1900,
   1107   V4_SA1_cmpeqi_MASK = 0x1f00,
   1108   V4_SA1_combine0i_BITS = 0x1c00,
   1109   V4_SA1_combine0i_MASK = 0x1d18,
   1110   V4_SA1_combine1i_BITS = 0x1c08,
   1111   V4_SA1_combine1i_MASK = 0x1d18,
   1112   V4_SA1_combine2i_BITS = 0x1c10,
   1113   V4_SA1_combine2i_MASK = 0x1d18,
   1114   V4_SA1_combine3i_BITS = 0x1c18,
   1115   V4_SA1_combine3i_MASK = 0x1d18,
   1116   V4_SA1_combinerz_BITS = 0x1d08,
   1117   V4_SA1_combinerz_MASK = 0x1d08,
   1118   V4_SA1_combinezr_BITS = 0x1d00,
   1119   V4_SA1_combinezr_MASK = 0x1d08,
   1120   V4_SA1_dec_BITS = 0x1300,
   1121   V4_SA1_dec_MASK = 0x1f00,
   1122   V4_SA1_inc_BITS = 0x1100,
   1123   V4_SA1_inc_MASK = 0x1f00,
   1124   V4_SA1_seti_BITS = 0x0800,
   1125   V4_SA1_seti_MASK = 0x1c00,
   1126   V4_SA1_setin1_BITS = 0x1a00,
   1127   V4_SA1_setin1_MASK = 0x1e40,
   1128   V4_SA1_sxtb_BITS = 0x1500,
   1129   V4_SA1_sxtb_MASK = 0x1f00,
   1130   V4_SA1_sxth_BITS = 0x1400,
   1131   V4_SA1_sxth_MASK = 0x1f00,
   1132   V4_SA1_tfr_BITS = 0x1000,
   1133   V4_SA1_tfr_MASK = 0x1f00,
   1134   V4_SA1_zxtb_BITS = 0x1700,
   1135   V4_SA1_zxtb_MASK = 0x1f00,
   1136   V4_SA1_zxth_BITS = 0x1600,
   1137   V4_SA1_zxth_MASK = 0x1f00,
   1138   V4_SL1_loadri_io_BITS = 0x0000,
   1139   V4_SL1_loadri_io_MASK = 0x1000,
   1140   V4_SL1_loadrub_io_BITS = 0x1000,
   1141   V4_SL1_loadrub_io_MASK = 0x1000,
   1142   V4_SL2_deallocframe_BITS = 0x1f00,
   1143   V4_SL2_deallocframe_MASK = 0x1fc0,
   1144   V4_SL2_jumpr31_BITS = 0x1fc0,
   1145   V4_SL2_jumpr31_MASK = 0x1fc4,
   1146   V4_SL2_jumpr31_f_BITS = 0x1fc5,
   1147   V4_SL2_jumpr31_f_MASK = 0x1fc7,
   1148   V4_SL2_jumpr31_fnew_BITS = 0x1fc7,
   1149   V4_SL2_jumpr31_fnew_MASK = 0x1fc7,
   1150   V4_SL2_jumpr31_t_BITS = 0x1fc4,
   1151   V4_SL2_jumpr31_t_MASK = 0x1fc7,
   1152   V4_SL2_jumpr31_tnew_BITS = 0x1fc6,
   1153   V4_SL2_jumpr31_tnew_MASK = 0x1fc7,
   1154   V4_SL2_loadrb_io_BITS = 0x1000,
   1155   V4_SL2_loadrb_io_MASK = 0x1800,
   1156   V4_SL2_loadrd_sp_BITS = 0x1e00,
   1157   V4_SL2_loadrd_sp_MASK = 0x1f00,
   1158   V4_SL2_loadrh_io_BITS = 0x0000,
   1159   V4_SL2_loadrh_io_MASK = 0x1800,
   1160   V4_SL2_loadri_sp_BITS = 0x1c00,
   1161   V4_SL2_loadri_sp_MASK = 0x1e00,
   1162   V4_SL2_loadruh_io_BITS = 0x0800,
   1163   V4_SL2_loadruh_io_MASK = 0x1800,
   1164   V4_SL2_return_BITS = 0x1f40,
   1165   V4_SL2_return_MASK = 0x1fc4,
   1166   V4_SL2_return_f_BITS = 0x1f45,
   1167   V4_SL2_return_f_MASK = 0x1fc7,
   1168   V4_SL2_return_fnew_BITS = 0x1f47,
   1169   V4_SL2_return_fnew_MASK = 0x1fc7,
   1170   V4_SL2_return_t_BITS = 0x1f44,
   1171   V4_SL2_return_t_MASK = 0x1fc7,
   1172   V4_SL2_return_tnew_BITS = 0x1f46,
   1173   V4_SL2_return_tnew_MASK = 0x1fc7,
   1174   V4_SS1_storeb_io_BITS = 0x1000,
   1175   V4_SS1_storeb_io_MASK = 0x1000,
   1176   V4_SS1_storew_io_BITS = 0x0000,
   1177   V4_SS1_storew_io_MASK = 0x1000,
   1178   V4_SS2_allocframe_BITS = 0x1c00,
   1179   V4_SS2_allocframe_MASK = 0x1e00,
   1180   V4_SS2_storebi0_BITS = 0x1200,
   1181   V4_SS2_storebi0_MASK = 0x1f00,
   1182   V4_SS2_storebi1_BITS = 0x1300,
   1183   V4_SS2_storebi1_MASK = 0x1f00,
   1184   V4_SS2_stored_sp_BITS = 0x0a00,
   1185   V4_SS2_stored_sp_MASK = 0x1e00,
   1186   V4_SS2_storeh_io_BITS = 0x0000,
   1187   V4_SS2_storeh_io_MASK = 0x1800,
   1188   V4_SS2_storew_sp_BITS = 0x0800,
   1189   V4_SS2_storew_sp_MASK = 0x1e00,
   1190   V4_SS2_storewi0_BITS = 0x1000,
   1191   V4_SS2_storewi0_MASK = 0x1f00,
   1192   V4_SS2_storewi1_BITS = 0x1100,
   1193   V4_SS2_storewi1_MASK = 0x1f00
   1194 };
   1195 
   1196 static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
   1197                                  raw_ostream &os) {
   1198   switch (IClass) {
   1199   case HexagonII::HSIG_L1:
   1200     if ((inst & V4_SL1_loadri_io_MASK) == V4_SL1_loadri_io_BITS)
   1201       op = Hexagon::V4_SL1_loadri_io;
   1202     else if ((inst & V4_SL1_loadrub_io_MASK) == V4_SL1_loadrub_io_BITS)
   1203       op = Hexagon::V4_SL1_loadrub_io;
   1204     else {
   1205       os << "<unknown subinstruction>";
   1206       return MCDisassembler::Fail;
   1207     }
   1208     break;
   1209   case HexagonII::HSIG_L2:
   1210     if ((inst & V4_SL2_deallocframe_MASK) == V4_SL2_deallocframe_BITS)
   1211       op = Hexagon::V4_SL2_deallocframe;
   1212     else if ((inst & V4_SL2_jumpr31_MASK) == V4_SL2_jumpr31_BITS)
   1213       op = Hexagon::V4_SL2_jumpr31;
   1214     else if ((inst & V4_SL2_jumpr31_f_MASK) == V4_SL2_jumpr31_f_BITS)
   1215       op = Hexagon::V4_SL2_jumpr31_f;
   1216     else if ((inst & V4_SL2_jumpr31_fnew_MASK) == V4_SL2_jumpr31_fnew_BITS)
   1217       op = Hexagon::V4_SL2_jumpr31_fnew;
   1218     else if ((inst & V4_SL2_jumpr31_t_MASK) == V4_SL2_jumpr31_t_BITS)
   1219       op = Hexagon::V4_SL2_jumpr31_t;
   1220     else if ((inst & V4_SL2_jumpr31_tnew_MASK) == V4_SL2_jumpr31_tnew_BITS)
   1221       op = Hexagon::V4_SL2_jumpr31_tnew;
   1222     else if ((inst & V4_SL2_loadrb_io_MASK) == V4_SL2_loadrb_io_BITS)
   1223       op = Hexagon::V4_SL2_loadrb_io;
   1224     else if ((inst & V4_SL2_loadrd_sp_MASK) == V4_SL2_loadrd_sp_BITS)
   1225       op = Hexagon::V4_SL2_loadrd_sp;
   1226     else if ((inst & V4_SL2_loadrh_io_MASK) == V4_SL2_loadrh_io_BITS)
   1227       op = Hexagon::V4_SL2_loadrh_io;
   1228     else if ((inst & V4_SL2_loadri_sp_MASK) == V4_SL2_loadri_sp_BITS)
   1229       op = Hexagon::V4_SL2_loadri_sp;
   1230     else if ((inst & V4_SL2_loadruh_io_MASK) == V4_SL2_loadruh_io_BITS)
   1231       op = Hexagon::V4_SL2_loadruh_io;
   1232     else if ((inst & V4_SL2_return_MASK) == V4_SL2_return_BITS)
   1233       op = Hexagon::V4_SL2_return;
   1234     else if ((inst & V4_SL2_return_f_MASK) == V4_SL2_return_f_BITS)
   1235       op = Hexagon::V4_SL2_return_f;
   1236     else if ((inst & V4_SL2_return_fnew_MASK) == V4_SL2_return_fnew_BITS)
   1237       op = Hexagon::V4_SL2_return_fnew;
   1238     else if ((inst & V4_SL2_return_t_MASK) == V4_SL2_return_t_BITS)
   1239       op = Hexagon::V4_SL2_return_t;
   1240     else if ((inst & V4_SL2_return_tnew_MASK) == V4_SL2_return_tnew_BITS)
   1241       op = Hexagon::V4_SL2_return_tnew;
   1242     else {
   1243       os << "<unknown subinstruction>";
   1244       return MCDisassembler::Fail;
   1245     }
   1246     break;
   1247   case HexagonII::HSIG_A:
   1248     if ((inst & V4_SA1_addi_MASK) == V4_SA1_addi_BITS)
   1249       op = Hexagon::V4_SA1_addi;
   1250     else if ((inst & V4_SA1_addrx_MASK) == V4_SA1_addrx_BITS)
   1251       op = Hexagon::V4_SA1_addrx;
   1252     else if ((inst & V4_SA1_addsp_MASK) == V4_SA1_addsp_BITS)
   1253       op = Hexagon::V4_SA1_addsp;
   1254     else if ((inst & V4_SA1_and1_MASK) == V4_SA1_and1_BITS)
   1255       op = Hexagon::V4_SA1_and1;
   1256     else if ((inst & V4_SA1_clrf_MASK) == V4_SA1_clrf_BITS)
   1257       op = Hexagon::V4_SA1_clrf;
   1258     else if ((inst & V4_SA1_clrfnew_MASK) == V4_SA1_clrfnew_BITS)
   1259       op = Hexagon::V4_SA1_clrfnew;
   1260     else if ((inst & V4_SA1_clrt_MASK) == V4_SA1_clrt_BITS)
   1261       op = Hexagon::V4_SA1_clrt;
   1262     else if ((inst & V4_SA1_clrtnew_MASK) == V4_SA1_clrtnew_BITS)
   1263       op = Hexagon::V4_SA1_clrtnew;
   1264     else if ((inst & V4_SA1_cmpeqi_MASK) == V4_SA1_cmpeqi_BITS)
   1265       op = Hexagon::V4_SA1_cmpeqi;
   1266     else if ((inst & V4_SA1_combine0i_MASK) == V4_SA1_combine0i_BITS)
   1267       op = Hexagon::V4_SA1_combine0i;
   1268     else if ((inst & V4_SA1_combine1i_MASK) == V4_SA1_combine1i_BITS)
   1269       op = Hexagon::V4_SA1_combine1i;
   1270     else if ((inst & V4_SA1_combine2i_MASK) == V4_SA1_combine2i_BITS)
   1271       op = Hexagon::V4_SA1_combine2i;
   1272     else if ((inst & V4_SA1_combine3i_MASK) == V4_SA1_combine3i_BITS)
   1273       op = Hexagon::V4_SA1_combine3i;
   1274     else if ((inst & V4_SA1_combinerz_MASK) == V4_SA1_combinerz_BITS)
   1275       op = Hexagon::V4_SA1_combinerz;
   1276     else if ((inst & V4_SA1_combinezr_MASK) == V4_SA1_combinezr_BITS)
   1277       op = Hexagon::V4_SA1_combinezr;
   1278     else if ((inst & V4_SA1_dec_MASK) == V4_SA1_dec_BITS)
   1279       op = Hexagon::V4_SA1_dec;
   1280     else if ((inst & V4_SA1_inc_MASK) == V4_SA1_inc_BITS)
   1281       op = Hexagon::V4_SA1_inc;
   1282     else if ((inst & V4_SA1_seti_MASK) == V4_SA1_seti_BITS)
   1283       op = Hexagon::V4_SA1_seti;
   1284     else if ((inst & V4_SA1_setin1_MASK) == V4_SA1_setin1_BITS)
   1285       op = Hexagon::V4_SA1_setin1;
   1286     else if ((inst & V4_SA1_sxtb_MASK) == V4_SA1_sxtb_BITS)
   1287       op = Hexagon::V4_SA1_sxtb;
   1288     else if ((inst & V4_SA1_sxth_MASK) == V4_SA1_sxth_BITS)
   1289       op = Hexagon::V4_SA1_sxth;
   1290     else if ((inst & V4_SA1_tfr_MASK) == V4_SA1_tfr_BITS)
   1291       op = Hexagon::V4_SA1_tfr;
   1292     else if ((inst & V4_SA1_zxtb_MASK) == V4_SA1_zxtb_BITS)
   1293       op = Hexagon::V4_SA1_zxtb;
   1294     else if ((inst & V4_SA1_zxth_MASK) == V4_SA1_zxth_BITS)
   1295       op = Hexagon::V4_SA1_zxth;
   1296     else {
   1297       os << "<unknown subinstruction>";
   1298       return MCDisassembler::Fail;
   1299     }
   1300     break;
   1301   case HexagonII::HSIG_S1:
   1302     if ((inst & V4_SS1_storeb_io_MASK) == V4_SS1_storeb_io_BITS)
   1303       op = Hexagon::V4_SS1_storeb_io;
   1304     else if ((inst & V4_SS1_storew_io_MASK) == V4_SS1_storew_io_BITS)
   1305       op = Hexagon::V4_SS1_storew_io;
   1306     else {
   1307       os << "<unknown subinstruction>";
   1308       return MCDisassembler::Fail;
   1309     }
   1310     break;
   1311   case HexagonII::HSIG_S2:
   1312     if ((inst & V4_SS2_allocframe_MASK) == V4_SS2_allocframe_BITS)
   1313       op = Hexagon::V4_SS2_allocframe;
   1314     else if ((inst & V4_SS2_storebi0_MASK) == V4_SS2_storebi0_BITS)
   1315       op = Hexagon::V4_SS2_storebi0;
   1316     else if ((inst & V4_SS2_storebi1_MASK) == V4_SS2_storebi1_BITS)
   1317       op = Hexagon::V4_SS2_storebi1;
   1318     else if ((inst & V4_SS2_stored_sp_MASK) == V4_SS2_stored_sp_BITS)
   1319       op = Hexagon::V4_SS2_stored_sp;
   1320     else if ((inst & V4_SS2_storeh_io_MASK) == V4_SS2_storeh_io_BITS)
   1321       op = Hexagon::V4_SS2_storeh_io;
   1322     else if ((inst & V4_SS2_storew_sp_MASK) == V4_SS2_storew_sp_BITS)
   1323       op = Hexagon::V4_SS2_storew_sp;
   1324     else if ((inst & V4_SS2_storewi0_MASK) == V4_SS2_storewi0_BITS)
   1325       op = Hexagon::V4_SS2_storewi0;
   1326     else if ((inst & V4_SS2_storewi1_MASK) == V4_SS2_storewi1_BITS)
   1327       op = Hexagon::V4_SS2_storewi1;
   1328     else {
   1329       os << "<unknown subinstruction>";
   1330       return MCDisassembler::Fail;
   1331     }
   1332     break;
   1333   default:
   1334     os << "<unknown>";
   1335     return MCDisassembler::Fail;
   1336   }
   1337   return MCDisassembler::Success;
   1338 }
   1339 
   1340 static unsigned getRegFromSubinstEncoding(unsigned encoded_reg) {
   1341   if (encoded_reg < 8)
   1342     return Hexagon::R0 + encoded_reg;
   1343   else if (encoded_reg < 16)
   1344     return Hexagon::R0 + encoded_reg + 8;
   1345 
   1346   // patently false value
   1347   return Hexagon::NoRegister;
   1348 }
   1349 
   1350 static unsigned getDRegFromSubinstEncoding(unsigned encoded_dreg) {
   1351   if (encoded_dreg < 4)
   1352     return Hexagon::D0 + encoded_dreg;
   1353   else if (encoded_dreg < 8)
   1354     return Hexagon::D0 + encoded_dreg + 4;
   1355 
   1356   // patently false value
   1357   return Hexagon::NoRegister;
   1358 }
   1359 
   1360 void HexagonDisassembler::addSubinstOperands(MCInst *MI, unsigned opcode,
   1361                                              unsigned inst) const {
   1362   int64_t operand;
   1363   MCOperand Op;
   1364   switch (opcode) {
   1365   case Hexagon::V4_SL2_deallocframe:
   1366   case Hexagon::V4_SL2_jumpr31:
   1367   case Hexagon::V4_SL2_jumpr31_f:
   1368   case Hexagon::V4_SL2_jumpr31_fnew:
   1369   case Hexagon::V4_SL2_jumpr31_t:
   1370   case Hexagon::V4_SL2_jumpr31_tnew:
   1371   case Hexagon::V4_SL2_return:
   1372   case Hexagon::V4_SL2_return_f:
   1373   case Hexagon::V4_SL2_return_fnew:
   1374   case Hexagon::V4_SL2_return_t:
   1375   case Hexagon::V4_SL2_return_tnew:
   1376     // no operands for these instructions
   1377     break;
   1378   case Hexagon::V4_SS2_allocframe:
   1379     // u 8-4{5_3}
   1380     operand = ((inst & 0x1f0) >> 4) << 3;
   1381     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1382     break;
   1383   case Hexagon::V4_SL1_loadri_io:
   1384     // Rd 3-0, Rs 7-4, u 11-8{4_2}
   1385     operand = getRegFromSubinstEncoding(inst & 0xf);
   1386     Op = MCOperand::createReg(operand);
   1387     MI->addOperand(Op);
   1388     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1389     Op = MCOperand::createReg(operand);
   1390     MI->addOperand(Op);
   1391     operand = (inst & 0xf00) >> 6;
   1392     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1393     break;
   1394   case Hexagon::V4_SL1_loadrub_io:
   1395     // Rd 3-0, Rs 7-4, u 11-8
   1396     operand = getRegFromSubinstEncoding(inst & 0xf);
   1397     Op = MCOperand::createReg(operand);
   1398     MI->addOperand(Op);
   1399     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1400     Op = MCOperand::createReg(operand);
   1401     MI->addOperand(Op);
   1402     operand = (inst & 0xf00) >> 8;
   1403     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1404     break;
   1405   case Hexagon::V4_SL2_loadrb_io:
   1406     // Rd 3-0, Rs 7-4, u 10-8
   1407     operand = getRegFromSubinstEncoding(inst & 0xf);
   1408     Op = MCOperand::createReg(operand);
   1409     MI->addOperand(Op);
   1410     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1411     Op = MCOperand::createReg(operand);
   1412     MI->addOperand(Op);
   1413     operand = (inst & 0x700) >> 8;
   1414     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1415     break;
   1416   case Hexagon::V4_SL2_loadrh_io:
   1417   case Hexagon::V4_SL2_loadruh_io:
   1418     // Rd 3-0, Rs 7-4, u 10-8{3_1}
   1419     operand = getRegFromSubinstEncoding(inst & 0xf);
   1420     Op = MCOperand::createReg(operand);
   1421     MI->addOperand(Op);
   1422     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1423     Op = MCOperand::createReg(operand);
   1424     MI->addOperand(Op);
   1425     operand = ((inst & 0x700) >> 8) << 1;
   1426     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1427     break;
   1428   case Hexagon::V4_SL2_loadrd_sp:
   1429     // Rdd 2-0, u 7-3{5_3}
   1430     operand = getDRegFromSubinstEncoding(inst & 0x7);
   1431     Op = MCOperand::createReg(operand);
   1432     MI->addOperand(Op);
   1433     operand = ((inst & 0x0f8) >> 3) << 3;
   1434     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1435     break;
   1436   case Hexagon::V4_SL2_loadri_sp:
   1437     // Rd 3-0, u 8-4{5_2}
   1438     operand = getRegFromSubinstEncoding(inst & 0xf);
   1439     Op = MCOperand::createReg(operand);
   1440     MI->addOperand(Op);
   1441     operand = ((inst & 0x1f0) >> 4) << 2;
   1442     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1443     break;
   1444   case Hexagon::V4_SA1_addi:
   1445     // Rx 3-0 (x2), s7 10-4
   1446     operand = getRegFromSubinstEncoding(inst & 0xf);
   1447     Op = MCOperand::createReg(operand);
   1448     MI->addOperand(Op);
   1449     MI->addOperand(Op);
   1450     operand = SignExtend64<7>((inst & 0x7f0) >> 4);
   1451     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1452     break;
   1453   case Hexagon::V4_SA1_addrx:
   1454     // Rx 3-0 (x2), Rs 7-4
   1455     operand = getRegFromSubinstEncoding(inst & 0xf);
   1456     Op = MCOperand::createReg(operand);
   1457     MI->addOperand(Op);
   1458     MI->addOperand(Op);
   1459     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1460     Op = MCOperand::createReg(operand);
   1461     MI->addOperand(Op);
   1462     break;
   1463   case Hexagon::V4_SA1_and1:
   1464   case Hexagon::V4_SA1_dec:
   1465   case Hexagon::V4_SA1_inc:
   1466   case Hexagon::V4_SA1_sxtb:
   1467   case Hexagon::V4_SA1_sxth:
   1468   case Hexagon::V4_SA1_tfr:
   1469   case Hexagon::V4_SA1_zxtb:
   1470   case Hexagon::V4_SA1_zxth:
   1471     // Rd 3-0, Rs 7-4
   1472     operand = getRegFromSubinstEncoding(inst & 0xf);
   1473     Op = MCOperand::createReg(operand);
   1474     MI->addOperand(Op);
   1475     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1476     Op = MCOperand::createReg(operand);
   1477     MI->addOperand(Op);
   1478     break;
   1479   case Hexagon::V4_SA1_addsp:
   1480     // Rd 3-0, u 9-4{6_2}
   1481     operand = getRegFromSubinstEncoding(inst & 0xf);
   1482     Op = MCOperand::createReg(operand);
   1483     MI->addOperand(Op);
   1484     operand = ((inst & 0x3f0) >> 4) << 2;
   1485     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1486     break;
   1487   case Hexagon::V4_SA1_seti:
   1488     // Rd 3-0, u 9-4
   1489     operand = getRegFromSubinstEncoding(inst & 0xf);
   1490     Op = MCOperand::createReg(operand);
   1491     MI->addOperand(Op);
   1492     operand = (inst & 0x3f0) >> 4;
   1493     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1494     break;
   1495   case Hexagon::V4_SA1_clrf:
   1496   case Hexagon::V4_SA1_clrfnew:
   1497   case Hexagon::V4_SA1_clrt:
   1498   case Hexagon::V4_SA1_clrtnew:
   1499   case Hexagon::V4_SA1_setin1:
   1500     // Rd 3-0
   1501     operand = getRegFromSubinstEncoding(inst & 0xf);
   1502     Op = MCOperand::createReg(operand);
   1503     MI->addOperand(Op);
   1504     break;
   1505   case Hexagon::V4_SA1_cmpeqi:
   1506     // Rs 7-4, u 1-0
   1507     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1508     Op = MCOperand::createReg(operand);
   1509     MI->addOperand(Op);
   1510     operand = inst & 0x3;
   1511     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1512     break;
   1513   case Hexagon::V4_SA1_combine0i:
   1514   case Hexagon::V4_SA1_combine1i:
   1515   case Hexagon::V4_SA1_combine2i:
   1516   case Hexagon::V4_SA1_combine3i:
   1517     // Rdd 2-0, u 6-5
   1518     operand = getDRegFromSubinstEncoding(inst & 0x7);
   1519     Op = MCOperand::createReg(operand);
   1520     MI->addOperand(Op);
   1521     operand = (inst & 0x060) >> 5;
   1522     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1523     break;
   1524   case Hexagon::V4_SA1_combinerz:
   1525   case Hexagon::V4_SA1_combinezr:
   1526     // Rdd 2-0, Rs 7-4
   1527     operand = getDRegFromSubinstEncoding(inst & 0x7);
   1528     Op = MCOperand::createReg(operand);
   1529     MI->addOperand(Op);
   1530     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1531     Op = MCOperand::createReg(operand);
   1532     MI->addOperand(Op);
   1533     break;
   1534   case Hexagon::V4_SS1_storeb_io:
   1535     // Rs 7-4, u 11-8, Rt 3-0
   1536     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1537     Op = MCOperand::createReg(operand);
   1538     MI->addOperand(Op);
   1539     operand = (inst & 0xf00) >> 8;
   1540     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1541     operand = getRegFromSubinstEncoding(inst & 0xf);
   1542     Op = MCOperand::createReg(operand);
   1543     MI->addOperand(Op);
   1544     break;
   1545   case Hexagon::V4_SS1_storew_io:
   1546     // Rs 7-4, u 11-8{4_2}, Rt 3-0
   1547     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1548     Op = MCOperand::createReg(operand);
   1549     MI->addOperand(Op);
   1550     operand = ((inst & 0xf00) >> 8) << 2;
   1551     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1552     operand = getRegFromSubinstEncoding(inst & 0xf);
   1553     Op = MCOperand::createReg(operand);
   1554     MI->addOperand(Op);
   1555     break;
   1556   case Hexagon::V4_SS2_storebi0:
   1557   case Hexagon::V4_SS2_storebi1:
   1558     // Rs 7-4, u 3-0
   1559     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1560     Op = MCOperand::createReg(operand);
   1561     MI->addOperand(Op);
   1562     operand = inst & 0xf;
   1563     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1564     break;
   1565   case Hexagon::V4_SS2_storewi0:
   1566   case Hexagon::V4_SS2_storewi1:
   1567     // Rs 7-4, u 3-0{4_2}
   1568     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1569     Op = MCOperand::createReg(operand);
   1570     MI->addOperand(Op);
   1571     operand = (inst & 0xf) << 2;
   1572     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1573     break;
   1574   case Hexagon::V4_SS2_stored_sp:
   1575     // s 8-3{6_3}, Rtt 2-0
   1576     operand = SignExtend64<9>(((inst & 0x1f8) >> 3) << 3);
   1577     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1578     operand = getDRegFromSubinstEncoding(inst & 0x7);
   1579     Op = MCOperand::createReg(operand);
   1580     MI->addOperand(Op);
   1581     break;
   1582   case Hexagon::V4_SS2_storeh_io:
   1583     // Rs 7-4, u 10-8{3_1}, Rt 3-0
   1584     operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
   1585     Op = MCOperand::createReg(operand);
   1586     MI->addOperand(Op);
   1587     operand = ((inst & 0x700) >> 8) << 1;
   1588     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1589     operand = getRegFromSubinstEncoding(inst & 0xf);
   1590     Op = MCOperand::createReg(operand);
   1591     MI->addOperand(Op);
   1592     break;
   1593   case Hexagon::V4_SS2_storew_sp:
   1594     // u 8-4{5_2}, Rd 3-0
   1595     operand = ((inst & 0x1f0) >> 4) << 2;
   1596     HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
   1597     operand = getRegFromSubinstEncoding(inst & 0xf);
   1598     Op = MCOperand::createReg(operand);
   1599     MI->addOperand(Op);
   1600     break;
   1601   default:
   1602     // don't crash with an invalid subinstruction
   1603     // llvm_unreachable("Invalid subinstruction in duplex instruction");
   1604     break;
   1605   }
   1606 }
   1607