Home | History | Annotate | Download | only in Target
      1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
     17 #define LLVM_TARGET_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/MachineValueType.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/MC/MCRegisterInfo.h"
     24 #include "llvm/Support/Printable.h"
     25 #include <cassert>
     26 #include <functional>
     27 
     28 namespace llvm {
     29 
     30 class BitVector;
     31 class MachineFunction;
     32 class RegScavenger;
     33 template<class T> class SmallVectorImpl;
     34 class VirtRegMap;
     35 class raw_ostream;
     36 class LiveRegMatrix;
     37 
     38 /// A bitmask representing the covering of a register with sub-registers.
     39 ///
     40 /// This is typically used to track liveness at sub-register granularity.
     41 /// Lane masks for sub-register indices are similar to register units for
     42 /// physical registers. The individual bits in a lane mask can't be assigned
     43 /// any specific meaning. They can be used to check if two sub-register
     44 /// indices overlap.
     45 ///
     46 /// Iff the target has a register such that:
     47 ///
     48 ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
     49 ///
     50 /// then:
     51 ///
     52 ///   (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0
     53 typedef unsigned LaneBitmask;
     54 
     55 class TargetRegisterClass {
     56 public:
     57   typedef const MCPhysReg* iterator;
     58   typedef const MCPhysReg* const_iterator;
     59   typedef const MVT::SimpleValueType* vt_iterator;
     60   typedef const TargetRegisterClass* const * sc_iterator;
     61 
     62   // Instance variables filled by tablegen, do not use!
     63   const MCRegisterClass *MC;
     64   const vt_iterator VTs;
     65   const uint32_t *SubClassMask;
     66   const uint16_t *SuperRegIndices;
     67   const LaneBitmask LaneMask;
     68   /// Classes with a higher priority value are assigned first by register
     69   /// allocators using a greedy heuristic. The value is in the range [0,63].
     70   const uint8_t AllocationPriority;
     71   /// Whether the class supports two (or more) disjunct subregister indices.
     72   const bool HasDisjunctSubRegs;
     73   /// Whether a combination of subregisters can cover every register in the
     74   /// class. See also the CoveredBySubRegs description in Target.td.
     75   const bool CoveredBySubRegs;
     76   const sc_iterator SuperClasses;
     77   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
     78 
     79   /// Return the register class ID number.
     80   unsigned getID() const { return MC->getID(); }
     81 
     82   /// begin/end - Return all of the registers in this class.
     83   ///
     84   iterator       begin() const { return MC->begin(); }
     85   iterator         end() const { return MC->end(); }
     86 
     87   /// Return the number of registers in this class.
     88   unsigned getNumRegs() const { return MC->getNumRegs(); }
     89 
     90   /// Return the specified register in the class.
     91   unsigned getRegister(unsigned i) const {
     92     return MC->getRegister(i);
     93   }
     94 
     95   /// Return true if the specified register is included in this register class.
     96   /// This does not include virtual registers.
     97   bool contains(unsigned Reg) const {
     98     return MC->contains(Reg);
     99   }
    100 
    101   /// Return true if both registers are in this class.
    102   bool contains(unsigned Reg1, unsigned Reg2) const {
    103     return MC->contains(Reg1, Reg2);
    104   }
    105 
    106   /// Return the size of the register in bytes, which is also the size
    107   /// of a stack slot allocated to hold a spilled copy of this register.
    108   unsigned getSize() const { return MC->getSize(); }
    109 
    110   /// Return the minimum required alignment for a register of this class.
    111   unsigned getAlignment() const { return MC->getAlignment(); }
    112 
    113   /// Return the cost of copying a value between two registers in this class.
    114   /// A negative number means the register class is very expensive
    115   /// to copy e.g. status flag register classes.
    116   int getCopyCost() const { return MC->getCopyCost(); }
    117 
    118   /// Return true if this register class may be used to create virtual
    119   /// registers.
    120   bool isAllocatable() const { return MC->isAllocatable(); }
    121 
    122   /// Return true if this TargetRegisterClass has the ValueType vt.
    123   bool hasType(MVT vt) const {
    124     for(int i = 0; VTs[i] != MVT::Other; ++i)
    125       if (MVT(VTs[i]) == vt)
    126         return true;
    127     return false;
    128   }
    129 
    130   /// vt_begin / vt_end - Loop over all of the value types that can be
    131   /// represented by values in this register class.
    132   vt_iterator vt_begin() const {
    133     return VTs;
    134   }
    135 
    136   vt_iterator vt_end() const {
    137     vt_iterator I = VTs;
    138     while (*I != MVT::Other) ++I;
    139     return I;
    140   }
    141 
    142   /// Return true if the specified TargetRegisterClass
    143   /// is a proper sub-class of this TargetRegisterClass.
    144   bool hasSubClass(const TargetRegisterClass *RC) const {
    145     return RC != this && hasSubClassEq(RC);
    146   }
    147 
    148   /// Returns true if RC is a sub-class of or equal to this class.
    149   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    150     unsigned ID = RC->getID();
    151     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    152   }
    153 
    154   /// Return true if the specified TargetRegisterClass is a
    155   /// proper super-class of this TargetRegisterClass.
    156   bool hasSuperClass(const TargetRegisterClass *RC) const {
    157     return RC->hasSubClass(this);
    158   }
    159 
    160   /// Returns true if RC is a super-class of or equal to this class.
    161   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    162     return RC->hasSubClassEq(this);
    163   }
    164 
    165   /// Returns a bit vector of subclasses, including this one.
    166   /// The vector is indexed by class IDs.
    167   ///
    168   /// To use it, consider the returned array as a chunk of memory that
    169   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
    170   /// contains a bitset of the ID of the subclasses in big-endian style.
    171 
    172   /// I.e., the representation of the memory from left to right at the
    173   /// bit level looks like:
    174   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
    175   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
    176   /// Where the number represents the class ID and XXX bits that
    177   /// should be ignored.
    178   ///
    179   /// See the implementation of hasSubClassEq for an example of how it
    180   /// can be used.
    181   const uint32_t *getSubClassMask() const {
    182     return SubClassMask;
    183   }
    184 
    185   /// Returns a 0-terminated list of sub-register indices that project some
    186   /// super-register class into this register class. The list has an entry for
    187   /// each Idx such that:
    188   ///
    189   ///   There exists SuperRC where:
    190   ///     For all Reg in SuperRC:
    191   ///       this->contains(Reg:Idx)
    192   ///
    193   const uint16_t *getSuperRegIndices() const {
    194     return SuperRegIndices;
    195   }
    196 
    197   /// Returns a NULL-terminated list of super-classes.  The
    198   /// classes are ordered by ID which is also a topological ordering from large
    199   /// to small classes.  The list does NOT include the current class.
    200   sc_iterator getSuperClasses() const {
    201     return SuperClasses;
    202   }
    203 
    204   /// Return true if this TargetRegisterClass is a subset
    205   /// class of at least one other TargetRegisterClass.
    206   bool isASubClass() const {
    207     return SuperClasses[0] != nullptr;
    208   }
    209 
    210   /// Returns the preferred order for allocating registers from this register
    211   /// class in MF. The raw order comes directly from the .td file and may
    212   /// include reserved registers that are not allocatable.
    213   /// Register allocators should also make sure to allocate
    214   /// callee-saved registers only after all the volatiles are used. The
    215   /// RegisterClassInfo class provides filtered allocation orders with
    216   /// callee-saved registers moved to the end.
    217   ///
    218   /// The MachineFunction argument can be used to tune the allocatable
    219   /// registers based on the characteristics of the function, subtarget, or
    220   /// other criteria.
    221   ///
    222   /// By default, this method returns all registers in the class.
    223   ///
    224   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
    225     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
    226   }
    227 
    228   /// Returns the combination of all lane masks of register in this class.
    229   /// The lane masks of the registers are the combination of all lane masks
    230   /// of their subregisters. Returns 1 if there are no subregisters.
    231   LaneBitmask getLaneMask() const {
    232     return LaneMask;
    233   }
    234 };
    235 
    236 /// Extra information, not in MCRegisterDesc, about registers.
    237 /// These are used by codegen, not by MC.
    238 struct TargetRegisterInfoDesc {
    239   unsigned CostPerUse;          // Extra cost of instructions using register.
    240   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    241 };
    242 
    243 /// Each TargetRegisterClass has a per register weight, and weight
    244 /// limit which must be less than the limits of its pressure sets.
    245 struct RegClassWeight {
    246   unsigned RegWeight;
    247   unsigned WeightLimit;
    248 };
    249 
    250 /// TargetRegisterInfo base class - We assume that the target defines a static
    251 /// array of TargetRegisterDesc objects that represent all of the machine
    252 /// registers that the target has.  As such, we simply have to track a pointer
    253 /// to this array so that we can turn register number into a register
    254 /// descriptor.
    255 ///
    256 class TargetRegisterInfo : public MCRegisterInfo {
    257 public:
    258   typedef const TargetRegisterClass * const * regclass_iterator;
    259 private:
    260   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    261   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    262   // Pointer to array of lane masks, one per sub-reg index.
    263   const LaneBitmask *SubRegIndexLaneMasks;
    264 
    265   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    266   unsigned CoveringLanes;
    267 
    268 protected:
    269   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    270                      regclass_iterator RegClassBegin,
    271                      regclass_iterator RegClassEnd,
    272                      const char *const *SRINames,
    273                      const LaneBitmask *SRILaneMasks,
    274                      unsigned CoveringLanes);
    275   virtual ~TargetRegisterInfo();
    276 public:
    277 
    278   // Register numbers can represent physical registers, virtual registers, and
    279   // sometimes stack slots. The unsigned values are divided into these ranges:
    280   //
    281   //   0           Not a register, can be used as a sentinel.
    282   //   [1;2^30)    Physical registers assigned by TableGen.
    283   //   [2^30;2^31) Stack slots. (Rarely used.)
    284   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    285   //
    286   // Further sentinels can be allocated from the small negative integers.
    287   // DenseMapInfo<unsigned> uses -1u and -2u.
    288 
    289   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    290   /// frame index in a variable that normally holds a register. isStackSlot()
    291   /// returns true if Reg is in the range used for stack slots.
    292   ///
    293   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    294   /// slots, so if a variable may contains a stack slot, always check
    295   /// isStackSlot() first.
    296   ///
    297   static bool isStackSlot(unsigned Reg) {
    298     return int(Reg) >= (1 << 30);
    299   }
    300 
    301   /// Compute the frame index from a register value representing a stack slot.
    302   static int stackSlot2Index(unsigned Reg) {
    303     assert(isStackSlot(Reg) && "Not a stack slot");
    304     return int(Reg - (1u << 30));
    305   }
    306 
    307   /// Convert a non-negative frame index to a stack slot register value.
    308   static unsigned index2StackSlot(int FI) {
    309     assert(FI >= 0 && "Cannot hold a negative frame index.");
    310     return FI + (1u << 30);
    311   }
    312 
    313   /// Return true if the specified register number is in
    314   /// the physical register namespace.
    315   static bool isPhysicalRegister(unsigned Reg) {
    316     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    317     return int(Reg) > 0;
    318   }
    319 
    320   /// Return true if the specified register number is in
    321   /// the virtual register namespace.
    322   static bool isVirtualRegister(unsigned Reg) {
    323     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    324     return int(Reg) < 0;
    325   }
    326 
    327   /// Convert a virtual register number to a 0-based index.
    328   /// The first virtual register in a function will get the index 0.
    329   static unsigned virtReg2Index(unsigned Reg) {
    330     assert(isVirtualRegister(Reg) && "Not a virtual register");
    331     return Reg & ~(1u << 31);
    332   }
    333 
    334   /// Convert a 0-based index to a virtual register number.
    335   /// This is the inverse operation of VirtReg2IndexFunctor below.
    336   static unsigned index2VirtReg(unsigned Index) {
    337     return Index | (1u << 31);
    338   }
    339 
    340   /// Returns the Register Class of a physical register of the given type,
    341   /// picking the most sub register class of the right type that contains this
    342   /// physreg.
    343   const TargetRegisterClass *
    344     getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
    345 
    346   /// Return the maximal subclass of the given register class that is
    347   /// allocatable or NULL.
    348   const TargetRegisterClass *
    349     getAllocatableClass(const TargetRegisterClass *RC) const;
    350 
    351   /// Returns a bitset indexed by register number indicating if a register is
    352   /// allocatable or not. If a register class is specified, returns the subset
    353   /// for the class.
    354   BitVector getAllocatableSet(const MachineFunction &MF,
    355                               const TargetRegisterClass *RC = nullptr) const;
    356 
    357   /// Return the additional cost of using this register instead
    358   /// of other registers in its class.
    359   unsigned getCostPerUse(unsigned RegNo) const {
    360     return InfoDesc[RegNo].CostPerUse;
    361   }
    362 
    363   /// Return true if the register is in the allocation of any register class.
    364   bool isInAllocatableClass(unsigned RegNo) const {
    365     return InfoDesc[RegNo].inAllocatableClass;
    366   }
    367 
    368   /// Return the human-readable symbolic target-specific
    369   /// name for the specified SubRegIndex.
    370   const char *getSubRegIndexName(unsigned SubIdx) const {
    371     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
    372            "This is not a subregister index");
    373     return SubRegIndexNames[SubIdx-1];
    374   }
    375 
    376   /// Return a bitmask representing the parts of a register that are covered by
    377   /// SubIdx \see LaneBitmask.
    378   ///
    379   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
    380   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
    381     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
    382     return SubRegIndexLaneMasks[SubIdx];
    383   }
    384 
    385   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
    386   /// used to determine if sub-registers overlap - they can't be used to
    387   /// determine if a set of sub-registers completely cover another
    388   /// sub-register.
    389   ///
    390   /// The X86 general purpose registers have two lanes corresponding to the
    391   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
    392   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
    393   /// sub_32bit sub-register.
    394   ///
    395   /// On the other hand, the ARM NEON lanes fully cover their registers: The
    396   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
    397   /// This is related to the CoveredBySubRegs property on register definitions.
    398   ///
    399   /// This function returns a bit mask of lanes that completely cover their
    400   /// sub-registers. More precisely, given:
    401   ///
    402   ///   Covering = getCoveringLanes();
    403   ///   MaskA = getSubRegIndexLaneMask(SubA);
    404   ///   MaskB = getSubRegIndexLaneMask(SubB);
    405   ///
    406   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
    407   /// SubB.
    408   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
    409 
    410   /// Returns true if the two registers are equal or alias each other.
    411   /// The registers may be virtual registers.
    412   bool regsOverlap(unsigned regA, unsigned regB) const {
    413     if (regA == regB) return true;
    414     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    415       return false;
    416 
    417     // Regunits are numerically ordered. Find a common unit.
    418     MCRegUnitIterator RUA(regA, this);
    419     MCRegUnitIterator RUB(regB, this);
    420     do {
    421       if (*RUA == *RUB) return true;
    422       if (*RUA < *RUB) ++RUA;
    423       else             ++RUB;
    424     } while (RUA.isValid() && RUB.isValid());
    425     return false;
    426   }
    427 
    428   /// Returns true if Reg contains RegUnit.
    429   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
    430     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
    431       if (*Units == RegUnit)
    432         return true;
    433     return false;
    434   }
    435 
    436   /// Return a null-terminated list of all of the callee-saved registers on
    437   /// this target. The register should be in the order of desired callee-save
    438   /// stack frame offset. The first register is closest to the incoming stack
    439   /// pointer if stack grows down, and vice versa.
    440   ///
    441   virtual const MCPhysReg*
    442   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
    443 
    444   virtual const MCPhysReg*
    445   getCalleeSavedRegsViaCopy(const MachineFunction *MF) const {
    446     return nullptr;
    447   }
    448 
    449   /// Return a mask of call-preserved registers for the given calling convention
    450   /// on the current function. The mask should include all call-preserved
    451   /// aliases. This is used by the register allocator to determine which
    452   /// registers can be live across a call.
    453   ///
    454   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
    455   /// A set bit indicates that all bits of the corresponding register are
    456   /// preserved across the function call.  The bit mask is expected to be
    457   /// sub-register complete, i.e. if A is preserved, so are all its
    458   /// sub-registers.
    459   ///
    460   /// Bits are numbered from the LSB, so the bit for physical register Reg can
    461   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
    462   ///
    463   /// A NULL pointer means that no register mask will be used, and call
    464   /// instructions should use implicit-def operands to indicate call clobbered
    465   /// registers.
    466   ///
    467   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
    468                                                CallingConv::ID) const {
    469     // The default mask clobbers everything.  All targets should override.
    470     return nullptr;
    471   }
    472 
    473   /// Return a register mask that clobbers everything.
    474   virtual const uint32_t *getNoPreservedMask() const {
    475     llvm_unreachable("target does not provide no preserved mask");
    476   }
    477 
    478   /// Return true if all bits that are set in mask \p mask0 are also set in
    479   /// \p mask1.
    480   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
    481 
    482   /// Return all the call-preserved register masks defined for this target.
    483   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
    484   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
    485 
    486   /// Returns a bitset indexed by physical register number indicating if a
    487   /// register is a special register that has particular uses and should be
    488   /// considered unavailable at all times, e.g. SP, RA. This is
    489   /// used by register scavenger to determine what registers are free.
    490   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    491 
    492   /// Prior to adding the live-out mask to a stackmap or patchpoint
    493   /// instruction, provide the target the opportunity to adjust it (mainly to
    494   /// remove pseudo-registers that should be ignored).
    495   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { }
    496 
    497   /// Return a super-register of the specified register
    498   /// Reg so its sub-register of index SubIdx is Reg.
    499   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    500                                const TargetRegisterClass *RC) const {
    501     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
    502   }
    503 
    504   /// Return a subclass of the specified register
    505   /// class A so that each register in it has a sub-register of the
    506   /// specified sub-register index which is in the specified register class B.
    507   ///
    508   /// TableGen will synthesize missing A sub-classes.
    509   virtual const TargetRegisterClass *
    510   getMatchingSuperRegClass(const TargetRegisterClass *A,
    511                            const TargetRegisterClass *B, unsigned Idx) const;
    512 
    513   // For a copy-like instruction that defines a register of class DefRC with
    514   // subreg index DefSubReg, reading from another source with class SrcRC and
    515   // subregister SrcSubReg return true if this is a preferrable copy
    516   // instruction or an earlier use should be used.
    517   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
    518                                     unsigned DefSubReg,
    519                                     const TargetRegisterClass *SrcRC,
    520                                     unsigned SrcSubReg) const;
    521 
    522   /// Returns the largest legal sub-class of RC that
    523   /// supports the sub-register index Idx.
    524   /// If no such sub-class exists, return NULL.
    525   /// If all registers in RC already have an Idx sub-register, return RC.
    526   ///
    527   /// TableGen generates a version of this function that is good enough in most
    528   /// cases.  Targets can override if they have constraints that TableGen
    529   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    530   /// supported by the full GR32 register class in 64-bit mode, but only by the
    531   /// GR32_ABCD regiister class in 32-bit mode.
    532   ///
    533   /// TableGen will synthesize missing RC sub-classes.
    534   virtual const TargetRegisterClass *
    535   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
    536     assert(Idx == 0 && "Target has no sub-registers");
    537     return RC;
    538   }
    539 
    540   /// Return the subregister index you get from composing
    541   /// two subregister indices.
    542   ///
    543   /// The special null sub-register index composes as the identity.
    544   ///
    545   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    546   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    547   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    548   /// b, composeSubRegIndices doesn't tell you.
    549   ///
    550   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    551   /// ssub_0:S0 - ssub_3:S3 subregs.
    552   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    553   ///
    554   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    555     if (!a) return b;
    556     if (!b) return a;
    557     return composeSubRegIndicesImpl(a, b);
    558   }
    559 
    560   /// Transforms a LaneMask computed for one subregister to the lanemask that
    561   /// would have been computed when composing the subsubregisters with IdxA
    562   /// first. @sa composeSubRegIndices()
    563   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
    564                                          LaneBitmask Mask) const {
    565     if (!IdxA)
    566       return Mask;
    567     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
    568   }
    569 
    570   /// Transform a lanemask given for a virtual register to the corresponding
    571   /// lanemask before using subregister with index \p IdxA.
    572   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
    573   /// valie lane mask (no invalid bits set) the following holds:
    574   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
    575   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
    576   /// => X1 == Mask
    577   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
    578                                                 LaneBitmask LaneMask) const {
    579     if (!IdxA)
    580       return LaneMask;
    581     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
    582   }
    583 
    584   /// Debugging helper: dump register in human readable form to dbgs() stream.
    585   static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
    586                       const TargetRegisterInfo* TRI = nullptr);
    587 
    588 protected:
    589   /// Overridden by TableGen in targets that have sub-registers.
    590   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
    591     llvm_unreachable("Target has no sub-registers");
    592   }
    593 
    594   /// Overridden by TableGen in targets that have sub-registers.
    595   virtual LaneBitmask
    596   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
    597     llvm_unreachable("Target has no sub-registers");
    598   }
    599 
    600   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
    601                                                             LaneBitmask) const {
    602     llvm_unreachable("Target has no sub-registers");
    603   }
    604 
    605 public:
    606   /// Find a common super-register class if it exists.
    607   ///
    608   /// Find a register class, SuperRC and two sub-register indices, PreA and
    609   /// PreB, such that:
    610   ///
    611   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
    612   ///
    613   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
    614   ///
    615   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
    616   ///
    617   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
    618   /// requirements, and there is no register class with a smaller spill size
    619   /// that satisfies the requirements.
    620   ///
    621   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
    622   ///
    623   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
    624   /// that case, the returned register class will be a sub-class of the
    625   /// corresponding argument register class.
    626   ///
    627   /// The function returns NULL if no register class can be found.
    628   ///
    629   const TargetRegisterClass*
    630   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    631                          const TargetRegisterClass *RCB, unsigned SubB,
    632                          unsigned &PreA, unsigned &PreB) const;
    633 
    634   //===--------------------------------------------------------------------===//
    635   // Register Class Information
    636   //
    637 
    638   /// Register class iterators
    639   ///
    640   regclass_iterator regclass_begin() const { return RegClassBegin; }
    641   regclass_iterator regclass_end() const { return RegClassEnd; }
    642 
    643   unsigned getNumRegClasses() const {
    644     return (unsigned)(regclass_end()-regclass_begin());
    645   }
    646 
    647   /// Returns the register class associated with the enumeration value.
    648   /// See class MCOperandInfo.
    649   const TargetRegisterClass *getRegClass(unsigned i) const {
    650     assert(i < getNumRegClasses() && "Register Class ID out of range");
    651     return RegClassBegin[i];
    652   }
    653 
    654   /// Returns the name of the register class.
    655   const char *getRegClassName(const TargetRegisterClass *Class) const {
    656     return MCRegisterInfo::getRegClassName(Class->MC);
    657   }
    658 
    659   /// Find the largest common subclass of A and B.
    660   /// Return NULL if there is no common subclass.
    661   /// The common subclass should contain
    662   /// simple value type SVT if it is not the Any type.
    663   const TargetRegisterClass *
    664   getCommonSubClass(const TargetRegisterClass *A,
    665                     const TargetRegisterClass *B,
    666                     const MVT::SimpleValueType SVT =
    667                     MVT::SimpleValueType::Any) const;
    668 
    669   /// Returns a TargetRegisterClass used for pointer values.
    670   /// If a target supports multiple different pointer register classes,
    671   /// kind specifies which one is indicated.
    672   virtual const TargetRegisterClass *
    673   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
    674     llvm_unreachable("Target didn't implement getPointerRegClass!");
    675   }
    676 
    677   /// Returns a legal register class to copy a register in the specified class
    678   /// to or from. If it is possible to copy the register directly without using
    679   /// a cross register class copy, return the specified RC. Returns NULL if it
    680   /// is not possible to copy between two registers of the specified class.
    681   virtual const TargetRegisterClass *
    682   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    683     return RC;
    684   }
    685 
    686   /// Returns the largest super class of RC that is legal to use in the current
    687   /// sub-target and has the same spill size.
    688   /// The returned register class can be used to create virtual registers which
    689   /// means that all its registers can be copied and spilled.
    690   virtual const TargetRegisterClass *
    691   getLargestLegalSuperClass(const TargetRegisterClass *RC,
    692                             const MachineFunction &) const {
    693     /// The default implementation is very conservative and doesn't allow the
    694     /// register allocator to inflate register classes.
    695     return RC;
    696   }
    697 
    698   /// Return the register pressure "high water mark" for the specific register
    699   /// class. The scheduler is in high register pressure mode (for the specific
    700   /// register class) if it goes over the limit.
    701   ///
    702   /// Note: this is the old register pressure model that relies on a manually
    703   /// specified representative register class per value type.
    704   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    705                                        MachineFunction &MF) const {
    706     return 0;
    707   }
    708 
    709   /// Return a heuristic for the machine scheduler to compare the profitability
    710   /// of increasing one register pressure set versus another.  The scheduler
    711   /// will prefer increasing the register pressure of the set which returns
    712   /// the largest value for this function.
    713   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
    714                                           unsigned PSetID) const {
    715     return PSetID;
    716   }
    717 
    718   /// Get the weight in units of pressure for this register class.
    719   virtual const RegClassWeight &getRegClassWeight(
    720     const TargetRegisterClass *RC) const = 0;
    721 
    722   /// Get the weight in units of pressure for this register unit.
    723   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
    724 
    725   /// Get the number of dimensions of register pressure.
    726   virtual unsigned getNumRegPressureSets() const = 0;
    727 
    728   /// Get the name of this register unit pressure set.
    729   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
    730 
    731   /// Get the register unit pressure limit for this dimension.
    732   /// This limit must be adjusted dynamically for reserved registers.
    733   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
    734                                           unsigned Idx) const = 0;
    735 
    736   /// Get the dimensions of register pressure impacted by this register class.
    737   /// Returns a -1 terminated array of pressure set IDs.
    738   virtual const int *getRegClassPressureSets(
    739     const TargetRegisterClass *RC) const = 0;
    740 
    741   /// Get the dimensions of register pressure impacted by this register unit.
    742   /// Returns a -1 terminated array of pressure set IDs.
    743   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
    744 
    745   /// Get a list of 'hint' registers that the register allocator should try
    746   /// first when allocating a physical register for the virtual register
    747   /// VirtReg. These registers are effectively moved to the front of the
    748   /// allocation order.
    749   ///
    750   /// The Order argument is the allocation order for VirtReg's register class
    751   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
    752   /// come from Order, and they must not be reserved.
    753   ///
    754   /// The default implementation of this function can resolve
    755   /// target-independent hints provided to MRI::setRegAllocationHint with
    756   /// HintType == 0. Targets that override this function should defer to the
    757   /// default implementation if they have no reason to change the allocation
    758   /// order for VirtReg. There may be target-independent hints.
    759   virtual void getRegAllocationHints(unsigned VirtReg,
    760                                      ArrayRef<MCPhysReg> Order,
    761                                      SmallVectorImpl<MCPhysReg> &Hints,
    762                                      const MachineFunction &MF,
    763                                      const VirtRegMap *VRM = nullptr,
    764                                      const LiveRegMatrix *Matrix = nullptr)
    765     const;
    766 
    767   /// A callback to allow target a chance to update register allocation hints
    768   /// when a register is "changed" (e.g. coalesced) to another register.
    769   /// e.g. On ARM, some virtual registers should target register pairs,
    770   /// if one of pair is coalesced to another register, the allocation hint of
    771   /// the other half of the pair should be changed to point to the new register.
    772   virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
    773                                   MachineFunction &MF) const {
    774     // Do nothing.
    775   }
    776 
    777   /// Allow the target to reverse allocation order of local live ranges. This
    778   /// will generally allocate shorter local live ranges first. For targets with
    779   /// many registers, this could reduce regalloc compile time by a large
    780   /// factor. It is disabled by default for three reasons:
    781   /// (1) Top-down allocation is simpler and easier to debug for targets that
    782   /// don't benefit from reversing the order.
    783   /// (2) Bottom-up allocation could result in poor evicition decisions on some
    784   /// targets affecting the performance of compiled code.
    785   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
    786   virtual bool reverseLocalAssignment() const { return false; }
    787 
    788   /// Allow the target to override the cost of using a callee-saved register for
    789   /// the first time. Default value of 0 means we will use a callee-saved
    790   /// register if it is available.
    791   virtual unsigned getCSRFirstUseCost() const { return 0; }
    792 
    793   /// Returns true if the target requires (and can make use of) the register
    794   /// scavenger.
    795   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    796     return false;
    797   }
    798 
    799   /// Returns true if the target wants to use frame pointer based accesses to
    800   /// spill to the scavenger emergency spill slot.
    801   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    802     return true;
    803   }
    804 
    805   /// Returns true if the target requires post PEI scavenging of registers for
    806   /// materializing frame index constants.
    807   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    808     return false;
    809   }
    810 
    811   /// Returns true if the target wants the LocalStackAllocation pass to be run
    812   /// and virtual base registers used for more efficient stack access.
    813   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    814     return false;
    815   }
    816 
    817   /// Return true if target has reserved a spill slot in the stack frame of
    818   /// the given function for the specified register. e.g. On x86, if the frame
    819   /// register is required, the first fixed stack object is reserved as its
    820   /// spill slot. This tells PEI not to create a new stack frame
    821   /// object for the given register. It should be called only after
    822   /// determineCalleeSaves().
    823   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    824                                     int &FrameIdx) const {
    825     return false;
    826   }
    827 
    828   /// Returns true if the live-ins should be tracked after register allocation.
    829   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
    830     return false;
    831   }
    832 
    833   /// True if the stack can be realigned for the target.
    834   virtual bool canRealignStack(const MachineFunction &MF) const;
    835 
    836   /// True if storage within the function requires the stack pointer to be
    837   /// aligned more than the normal calling convention calls for.
    838   /// This cannot be overriden by the target, but canRealignStack can be
    839   /// overridden.
    840   bool needsStackRealignment(const MachineFunction &MF) const;
    841 
    842   /// Get the offset from the referenced frame index in the instruction,
    843   /// if there is one.
    844   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    845                                            int Idx) const {
    846     return 0;
    847   }
    848 
    849   /// Returns true if the instruction's frame index reference would be better
    850   /// served by a base register other than FP or SP.
    851   /// Used by LocalStackFrameAllocation to determine which frame index
    852   /// references it should create new base registers for.
    853   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    854     return false;
    855   }
    856 
    857   /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
    858   /// before insertion point I.
    859   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    860                                             unsigned BaseReg, int FrameIdx,
    861                                             int64_t Offset) const {
    862     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
    863                      "target");
    864   }
    865 
    866   /// Resolve a frame index operand of an instruction
    867   /// to reference the indicated base register plus offset instead.
    868   virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
    869                                  int64_t Offset) const {
    870     llvm_unreachable("resolveFrameIndex does not exist on this target");
    871   }
    872 
    873   /// Determine whether a given base register plus offset immediate is
    874   /// encodable to resolve a frame index.
    875   virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
    876                                   int64_t Offset) const {
    877     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
    878   }
    879 
    880   /// Spill the register so it can be used by the register scavenger.
    881   /// Return true if the register was spilled, false otherwise.
    882   /// If this function does not spill the register, the scavenger
    883   /// will instead spill it to the emergency spill slot.
    884   ///
    885   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    886                                      MachineBasicBlock::iterator I,
    887                                      MachineBasicBlock::iterator &UseMI,
    888                                      const TargetRegisterClass *RC,
    889                                      unsigned Reg) const {
    890     return false;
    891   }
    892 
    893   /// This method must be overriden to eliminate abstract frame indices from
    894   /// instructions which may use them. The instruction referenced by the
    895   /// iterator contains an MO_FrameIndex operand which must be eliminated by
    896   /// this method. This method may modify or replace the specified instruction,
    897   /// as long as it keeps the iterator pointing at the finished product.
    898   /// SPAdj is the SP adjustment due to call frame setup instruction.
    899   /// FIOperandNum is the FI operand number.
    900   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    901                                    int SPAdj, unsigned FIOperandNum,
    902                                    RegScavenger *RS = nullptr) const = 0;
    903 
    904   /// Return the assembly name for \p Reg.
    905   virtual StringRef getRegAsmName(unsigned Reg) const {
    906     // FIXME: We are assuming that the assembly name is equal to the TableGen
    907     // name converted to lower case
    908     //
    909     // The TableGen name is the name of the definition for this register in the
    910     // target's tablegen files.  For example, the TableGen name of
    911     // def EAX : Register <...>; is "EAX"
    912     return StringRef(getName(Reg));
    913   }
    914 
    915   //===--------------------------------------------------------------------===//
    916   /// Subtarget Hooks
    917 
    918   /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
    919   virtual bool shouldCoalesce(MachineInstr *MI,
    920                               const TargetRegisterClass *SrcRC,
    921                               unsigned SubReg,
    922                               const TargetRegisterClass *DstRC,
    923                               unsigned DstSubReg,
    924                               const TargetRegisterClass *NewRC) const
    925   { return true; }
    926 
    927   //===--------------------------------------------------------------------===//
    928   /// Debug information queries.
    929 
    930   /// getFrameRegister - This method should return the register used as a base
    931   /// for values allocated in the current stack frame.
    932   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    933 };
    934 
    935 
    936 //===----------------------------------------------------------------------===//
    937 //                           SuperRegClassIterator
    938 //===----------------------------------------------------------------------===//
    939 //
    940 // Iterate over the possible super-registers for a given register class. The
    941 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
    942 // possible classes of super-registers.
    943 //
    944 // Each bit mask will have at least one set bit, and each set bit in Mask
    945 // corresponds to a SuperRC such that:
    946 //
    947 //   For all Reg in SuperRC: Reg:Idx is in RC.
    948 //
    949 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
    950 // also satisfies the above requirement, assuming Reg:0 == Reg.
    951 //
    952 class SuperRegClassIterator {
    953   const unsigned RCMaskWords;
    954   unsigned SubReg;
    955   const uint16_t *Idx;
    956   const uint32_t *Mask;
    957 
    958 public:
    959   /// Create a SuperRegClassIterator that visits all the super-register classes
    960   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
    961   SuperRegClassIterator(const TargetRegisterClass *RC,
    962                         const TargetRegisterInfo *TRI,
    963                         bool IncludeSelf = false)
    964     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
    965       SubReg(0),
    966       Idx(RC->getSuperRegIndices()),
    967       Mask(RC->getSubClassMask()) {
    968     if (!IncludeSelf)
    969       ++*this;
    970   }
    971 
    972   /// Returns true if this iterator is still pointing at a valid entry.
    973   bool isValid() const { return Idx; }
    974 
    975   /// Returns the current sub-register index.
    976   unsigned getSubReg() const { return SubReg; }
    977 
    978   /// Returns the bit mask of register classes that getSubReg() projects into
    979   /// RC.
    980   /// See TargetRegisterClass::getSubClassMask() for how to use it.
    981   const uint32_t *getMask() const { return Mask; }
    982 
    983   /// Advance iterator to the next entry.
    984   void operator++() {
    985     assert(isValid() && "Cannot move iterator past end.");
    986     Mask += RCMaskWords;
    987     SubReg = *Idx++;
    988     if (!SubReg)
    989       Idx = nullptr;
    990   }
    991 };
    992 
    993 //===----------------------------------------------------------------------===//
    994 //                           BitMaskClassIterator
    995 //===----------------------------------------------------------------------===//
    996 /// This class encapuslates the logic to iterate over bitmask returned by
    997 /// the various RegClass related APIs.
    998 /// E.g., this class can be used to iterate over the subclasses provided by
    999 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
   1000 class BitMaskClassIterator {
   1001   /// Total number of register classes.
   1002   const unsigned NumRegClasses;
   1003   /// Base index of CurrentChunk.
   1004   /// In other words, the number of bit we read to get at the
   1005   /// beginning of that chunck.
   1006   unsigned Base;
   1007   /// Adjust base index of CurrentChunk.
   1008   /// Base index + how many bit we read within CurrentChunk.
   1009   unsigned Idx;
   1010   /// Current register class ID.
   1011   unsigned ID;
   1012   /// Mask we are iterating over.
   1013   const uint32_t *Mask;
   1014   /// Current chunk of the Mask we are traversing.
   1015   uint32_t CurrentChunk;
   1016 
   1017   /// Move ID to the next set bit.
   1018   void moveToNextID() {
   1019     // If the current chunk of memory is empty, move to the next one,
   1020     // while making sure we do not go pass the number of register
   1021     // classes.
   1022     while (!CurrentChunk) {
   1023       // Move to the next chunk.
   1024       Base += 32;
   1025       if (Base >= NumRegClasses) {
   1026         ID = NumRegClasses;
   1027         return;
   1028       }
   1029       CurrentChunk = *++Mask;
   1030       Idx = Base;
   1031     }
   1032     // Otherwise look for the first bit set from the right
   1033     // (representation of the class ID is big endian).
   1034     // See getSubClassMask for more details on the representation.
   1035     unsigned Offset = countTrailingZeros(CurrentChunk);
   1036     // Add the Offset to the adjusted base number of this chunk: Idx.
   1037     // This is the ID of the register class.
   1038     ID = Idx + Offset;
   1039 
   1040     // Consume the zeros, if any, and the bit we just read
   1041     // so that we are at the right spot for the next call.
   1042     // Do not do Offset + 1 because Offset may be 31 and 32
   1043     // will be UB for the shift, though in that case we could
   1044     // have make the chunk being equal to 0, but that would
   1045     // have introduced a if statement.
   1046     moveNBits(Offset);
   1047     moveNBits(1);
   1048   }
   1049 
   1050   /// Move \p NumBits Bits forward in CurrentChunk.
   1051   void moveNBits(unsigned NumBits) {
   1052     assert(NumBits < 32 && "Undefined behavior spotted!");
   1053     // Consume the bit we read for the next call.
   1054     CurrentChunk >>= NumBits;
   1055     // Adjust the base for the chunk.
   1056     Idx += NumBits;
   1057   }
   1058 
   1059 public:
   1060   /// Create a BitMaskClassIterator that visits all the register classes
   1061   /// represented by \p Mask.
   1062   ///
   1063   /// \pre \p Mask != nullptr
   1064   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
   1065       : NumRegClasses(TRI.getNumRegClasses()), Base(0), Idx(0), ID(0),
   1066         Mask(Mask), CurrentChunk(*Mask) {
   1067     // Move to the first ID.
   1068     moveToNextID();
   1069   }
   1070 
   1071   /// Returns true if this iterator is still pointing at a valid entry.
   1072   bool isValid() const { return getID() != NumRegClasses; }
   1073 
   1074   /// Returns the current register class ID.
   1075   unsigned getID() const { return ID; }
   1076 
   1077   /// Advance iterator to the next entry.
   1078   void operator++() {
   1079     assert(isValid() && "Cannot move iterator past end.");
   1080     moveToNextID();
   1081   }
   1082 };
   1083 
   1084 // This is useful when building IndexedMaps keyed on virtual registers
   1085 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
   1086   unsigned operator()(unsigned Reg) const {
   1087     return TargetRegisterInfo::virtReg2Index(Reg);
   1088   }
   1089 };
   1090 
   1091 /// Prints virtual and physical registers with or without a TRI instance.
   1092 ///
   1093 /// The format is:
   1094 ///   %noreg          - NoRegister
   1095 ///   %vreg5          - a virtual register.
   1096 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
   1097 ///   %EAX            - a physical register
   1098 ///   %physreg17      - a physical register when no TRI instance given.
   1099 ///
   1100 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
   1101 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
   1102                    unsigned SubRegIdx = 0);
   1103 
   1104 /// Create Printable object to print register units on a \ref raw_ostream.
   1105 ///
   1106 /// Register units are named after their root registers:
   1107 ///
   1108 ///   AL      - Single root.
   1109 ///   FP0~ST7 - Dual roots.
   1110 ///
   1111 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
   1112 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
   1113 
   1114 /// \brief Create Printable object to print virtual registers and physical
   1115 /// registers on a \ref raw_ostream.
   1116 Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
   1117 
   1118 /// Create Printable object to print LaneBitmasks on a \ref raw_ostream.
   1119 Printable PrintLaneMask(LaneBitmask LaneMask);
   1120 
   1121 } // End llvm namespace
   1122 
   1123 #endif
   1124