1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the LiveRangeCalc class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "llvm/CodeGen/MachineDominators.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 18 using namespace llvm; 19 20 #define DEBUG_TYPE "regalloc" 21 22 void LiveRangeCalc::resetLiveOutMap() { 23 unsigned NumBlocks = MF->getNumBlockIDs(); 24 Seen.clear(); 25 Seen.resize(NumBlocks); 26 Map.resize(NumBlocks); 27 } 28 29 void LiveRangeCalc::reset(const MachineFunction *mf, 30 SlotIndexes *SI, 31 MachineDominatorTree *MDT, 32 VNInfo::Allocator *VNIA) { 33 MF = mf; 34 MRI = &MF->getRegInfo(); 35 Indexes = SI; 36 DomTree = MDT; 37 Alloc = VNIA; 38 resetLiveOutMap(); 39 LiveIn.clear(); 40 } 41 42 43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, 44 LiveRange &LR, const MachineOperand &MO) { 45 const MachineInstr &MI = *MO.getParent(); 46 SlotIndex DefIdx = 47 Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); 48 49 // Create the def in LR. This may find an existing def. 50 LR.createDeadDef(DefIdx, Alloc); 51 } 52 53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { 54 assert(MRI && Indexes && "call reset() first"); 55 56 // Step 1: Create minimal live segments for every definition of Reg. 57 // Visit all def operands. If the same instruction has multiple defs of Reg, 58 // createDeadDef() will deduplicate. 59 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 60 unsigned Reg = LI.reg; 61 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 62 if (!MO.isDef() && !MO.readsReg()) 63 continue; 64 65 unsigned SubReg = MO.getSubReg(); 66 if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { 67 LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) 68 : MRI->getMaxLaneMaskForVReg(Reg); 69 70 // If this is the first time we see a subregister def, initialize 71 // subranges by creating a copy of the main range. 72 if (!LI.hasSubRanges() && !LI.empty()) { 73 LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); 74 LI.createSubRangeFrom(*Alloc, ClassMask, LI); 75 } 76 77 for (LiveInterval::SubRange &S : LI.subranges()) { 78 // A Mask for subregs common to the existing subrange and current def. 79 LaneBitmask Common = S.LaneMask & Mask; 80 if (Common == 0) 81 continue; 82 // A Mask for subregs covered by the subrange but not the current def. 83 LaneBitmask LRest = S.LaneMask & ~Mask; 84 LiveInterval::SubRange *CommonRange; 85 if (LRest != 0) { 86 // Split current subrange into Common and LRest ranges. 87 S.LaneMask = LRest; 88 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S); 89 } else { 90 assert(Common == S.LaneMask); 91 CommonRange = &S; 92 } 93 if (MO.isDef()) 94 createDeadDef(*Indexes, *Alloc, *CommonRange, MO); 95 Mask &= ~Common; 96 } 97 // Create a new SubRange for subregs we did not cover yet. 98 if (Mask != 0) { 99 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask); 100 if (MO.isDef()) 101 createDeadDef(*Indexes, *Alloc, *NewRange, MO); 102 } 103 } 104 105 // Create the def in the main liverange. We do not have to do this if 106 // subranges are tracked as we recreate the main range later in this case. 107 if (MO.isDef() && !LI.hasSubRanges()) 108 createDeadDef(*Indexes, *Alloc, LI, MO); 109 } 110 111 // We may have created empty live ranges for partially undefined uses, we 112 // can't keep them because we won't find defs in them later. 113 LI.removeEmptySubRanges(); 114 115 // Step 2: Extend live segments to all uses, constructing SSA form as 116 // necessary. 117 if (LI.hasSubRanges()) { 118 for (LiveInterval::SubRange &S : LI.subranges()) { 119 resetLiveOutMap(); 120 extendToUses(S, Reg, S.LaneMask); 121 } 122 LI.clear(); 123 constructMainRangeFromSubranges(LI); 124 } else { 125 resetLiveOutMap(); 126 extendToUses(LI, Reg, ~0u); 127 } 128 } 129 130 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { 131 // First create dead defs at all defs found in subranges. 132 LiveRange &MainRange = LI; 133 assert(MainRange.segments.empty() && MainRange.valnos.empty() && 134 "Expect empty main liverange"); 135 136 for (const LiveInterval::SubRange &SR : LI.subranges()) { 137 for (const VNInfo *VNI : SR.valnos) { 138 if (!VNI->isUnused() && !VNI->isPHIDef()) 139 MainRange.createDeadDef(VNI->def, *Alloc); 140 } 141 } 142 143 resetLiveOutMap(); 144 extendToUses(MainRange, LI.reg); 145 } 146 147 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { 148 assert(MRI && Indexes && "call reset() first"); 149 150 // Visit all def operands. If the same instruction has multiple defs of Reg, 151 // LR.createDeadDef() will deduplicate. 152 for (MachineOperand &MO : MRI->def_operands(Reg)) 153 createDeadDef(*Indexes, *Alloc, LR, MO); 154 } 155 156 157 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, 158 LaneBitmask Mask) { 159 // Visit all operands that read Reg. This may include partial defs. 160 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 161 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 162 // Clear all kill flags. They will be reinserted after register allocation 163 // by LiveIntervalAnalysis::addKillFlags(). 164 if (MO.isUse()) 165 MO.setIsKill(false); 166 else { 167 // We only care about uses, but on the main range (mask ~0u) this includes 168 // the "virtual" reads happening for subregister defs. 169 if (Mask != ~0u) 170 continue; 171 } 172 173 if (!MO.readsReg()) 174 continue; 175 unsigned SubReg = MO.getSubReg(); 176 if (SubReg != 0) { 177 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg); 178 // Ignore uses not covering the current subrange. 179 if ((SubRegMask & Mask) == 0) 180 continue; 181 } 182 183 // Determine the actual place of the use. 184 const MachineInstr *MI = MO.getParent(); 185 unsigned OpNo = (&MO - &MI->getOperand(0)); 186 SlotIndex UseIdx; 187 if (MI->isPHI()) { 188 assert(!MO.isDef() && "Cannot handle PHI def of partial register."); 189 // The actual place where a phi operand is used is the end of the pred 190 // MBB. PHI operands are paired: (Reg, PredMBB). 191 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); 192 } else { 193 // Check for early-clobber redefs. 194 bool isEarlyClobber = false; 195 unsigned DefIdx; 196 if (MO.isDef()) 197 isEarlyClobber = MO.isEarlyClobber(); 198 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { 199 // FIXME: This would be a lot easier if tied early-clobber uses also 200 // had an early-clobber flag. 201 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); 202 } 203 UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); 204 } 205 206 // MI is reading Reg. We may have visited MI before if it happens to be 207 // reading Reg multiple times. That is OK, extend() is idempotent. 208 extend(LR, UseIdx, Reg); 209 } 210 } 211 212 213 void LiveRangeCalc::updateFromLiveIns() { 214 LiveRangeUpdater Updater; 215 for (const LiveInBlock &I : LiveIn) { 216 if (!I.DomNode) 217 continue; 218 MachineBasicBlock *MBB = I.DomNode->getBlock(); 219 assert(I.Value && "No live-in value found"); 220 SlotIndex Start, End; 221 std::tie(Start, End) = Indexes->getMBBRange(MBB); 222 223 if (I.Kill.isValid()) 224 // Value is killed inside this block. 225 End = I.Kill; 226 else { 227 // The value is live-through, update LiveOut as well. 228 // Defer the Domtree lookup until it is needed. 229 assert(Seen.test(MBB->getNumber())); 230 Map[MBB] = LiveOutPair(I.Value, nullptr); 231 } 232 Updater.setDest(&I.LR); 233 Updater.add(Start, End, I.Value); 234 } 235 LiveIn.clear(); 236 } 237 238 239 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) { 240 assert(Use.isValid() && "Invalid SlotIndex"); 241 assert(Indexes && "Missing SlotIndexes"); 242 assert(DomTree && "Missing dominator tree"); 243 244 MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); 245 assert(UseMBB && "No MBB at Use"); 246 247 // Is there a def in the same MBB we can extend? 248 if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use)) 249 return; 250 251 // Find the single reaching def, or determine if Use is jointly dominated by 252 // multiple values, and we may need to create even more phi-defs to preserve 253 // VNInfo SSA form. Perform a search for all predecessor blocks where we 254 // know the dominating VNInfo. 255 if (findReachingDefs(LR, *UseMBB, Use, PhysReg)) 256 return; 257 258 // When there were multiple different values, we may need new PHIs. 259 calculateValues(); 260 } 261 262 263 // This function is called by a client after using the low-level API to add 264 // live-out and live-in blocks. The unique value optimization is not 265 // available, SplitEditor::transferValues handles that case directly anyway. 266 void LiveRangeCalc::calculateValues() { 267 assert(Indexes && "Missing SlotIndexes"); 268 assert(DomTree && "Missing dominator tree"); 269 updateSSA(); 270 updateFromLiveIns(); 271 } 272 273 274 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, 275 SlotIndex Use, unsigned PhysReg) { 276 unsigned UseMBBNum = UseMBB.getNumber(); 277 278 // Block numbers where LR should be live-in. 279 SmallVector<unsigned, 16> WorkList(1, UseMBBNum); 280 281 // Remember if we have seen more than one value. 282 bool UniqueVNI = true; 283 VNInfo *TheVNI = nullptr; 284 285 // Using Seen as a visited set, perform a BFS for all reaching defs. 286 for (unsigned i = 0; i != WorkList.size(); ++i) { 287 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); 288 289 #ifndef NDEBUG 290 if (MBB->pred_empty()) { 291 MBB->getParent()->verify(); 292 errs() << "Use of " << PrintReg(PhysReg) 293 << " does not have a corresponding definition on every path:\n"; 294 const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); 295 if (MI != nullptr) 296 errs() << Use << " " << *MI; 297 llvm_unreachable("Use not jointly dominated by defs."); 298 } 299 300 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && 301 !MBB->isLiveIn(PhysReg)) { 302 MBB->getParent()->verify(); 303 errs() << "The register " << PrintReg(PhysReg) 304 << " needs to be live in to BB#" << MBB->getNumber() 305 << ", but is missing from the live-in list.\n"; 306 llvm_unreachable("Invalid global physical register"); 307 } 308 #endif 309 310 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 311 PE = MBB->pred_end(); PI != PE; ++PI) { 312 MachineBasicBlock *Pred = *PI; 313 314 // Is this a known live-out block? 315 if (Seen.test(Pred->getNumber())) { 316 if (VNInfo *VNI = Map[Pred].first) { 317 if (TheVNI && TheVNI != VNI) 318 UniqueVNI = false; 319 TheVNI = VNI; 320 } 321 continue; 322 } 323 324 SlotIndex Start, End; 325 std::tie(Start, End) = Indexes->getMBBRange(Pred); 326 327 // First time we see Pred. Try to determine the live-out value, but set 328 // it as null if Pred is live-through with an unknown value. 329 VNInfo *VNI = LR.extendInBlock(Start, End); 330 setLiveOutValue(Pred, VNI); 331 if (VNI) { 332 if (TheVNI && TheVNI != VNI) 333 UniqueVNI = false; 334 TheVNI = VNI; 335 continue; 336 } 337 338 // No, we need a live-in value for Pred as well 339 if (Pred != &UseMBB) 340 WorkList.push_back(Pred->getNumber()); 341 else 342 // Loopback to UseMBB, so value is really live through. 343 Use = SlotIndex(); 344 } 345 } 346 347 LiveIn.clear(); 348 349 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but 350 // neither require it. Skip the sorting overhead for small updates. 351 if (WorkList.size() > 4) 352 array_pod_sort(WorkList.begin(), WorkList.end()); 353 354 // If a unique reaching def was found, blit in the live ranges immediately. 355 if (UniqueVNI) { 356 LiveRangeUpdater Updater(&LR); 357 for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), 358 E = WorkList.end(); I != E; ++I) { 359 SlotIndex Start, End; 360 std::tie(Start, End) = Indexes->getMBBRange(*I); 361 // Trim the live range in UseMBB. 362 if (*I == UseMBBNum && Use.isValid()) 363 End = Use; 364 else 365 Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr); 366 Updater.add(Start, End, TheVNI); 367 } 368 return true; 369 } 370 371 // Multiple values were found, so transfer the work list to the LiveIn array 372 // where UpdateSSA will use it as a work list. 373 LiveIn.reserve(WorkList.size()); 374 for (SmallVectorImpl<unsigned>::const_iterator 375 I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { 376 MachineBasicBlock *MBB = MF->getBlockNumbered(*I); 377 addLiveInBlock(LR, DomTree->getNode(MBB)); 378 if (MBB == &UseMBB) 379 LiveIn.back().Kill = Use; 380 } 381 382 return false; 383 } 384 385 386 // This is essentially the same iterative algorithm that SSAUpdater uses, 387 // except we already have a dominator tree, so we don't have to recompute it. 388 void LiveRangeCalc::updateSSA() { 389 assert(Indexes && "Missing SlotIndexes"); 390 assert(DomTree && "Missing dominator tree"); 391 392 // Interate until convergence. 393 unsigned Changes; 394 do { 395 Changes = 0; 396 // Propagate live-out values down the dominator tree, inserting phi-defs 397 // when necessary. 398 for (LiveInBlock &I : LiveIn) { 399 MachineDomTreeNode *Node = I.DomNode; 400 // Skip block if the live-in value has already been determined. 401 if (!Node) 402 continue; 403 MachineBasicBlock *MBB = Node->getBlock(); 404 MachineDomTreeNode *IDom = Node->getIDom(); 405 LiveOutPair IDomValue; 406 407 // We need a live-in value to a block with no immediate dominator? 408 // This is probably an unreachable block that has survived somehow. 409 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); 410 411 // IDom dominates all of our predecessors, but it may not be their 412 // immediate dominator. Check if any of them have live-out values that are 413 // properly dominated by IDom. If so, we need a phi-def here. 414 if (!needPHI) { 415 IDomValue = Map[IDom->getBlock()]; 416 417 // Cache the DomTree node that defined the value. 418 if (IDomValue.first && !IDomValue.second) 419 Map[IDom->getBlock()].second = IDomValue.second = 420 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); 421 422 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 423 PE = MBB->pred_end(); PI != PE; ++PI) { 424 LiveOutPair &Value = Map[*PI]; 425 if (!Value.first || Value.first == IDomValue.first) 426 continue; 427 428 // Cache the DomTree node that defined the value. 429 if (!Value.second) 430 Value.second = 431 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); 432 433 // This predecessor is carrying something other than IDomValue. 434 // It could be because IDomValue hasn't propagated yet, or it could be 435 // because MBB is in the dominance frontier of that value. 436 if (DomTree->dominates(IDom, Value.second)) { 437 needPHI = true; 438 break; 439 } 440 } 441 } 442 443 // The value may be live-through even if Kill is set, as can happen when 444 // we are called from extendRange. In that case LiveOutSeen is true, and 445 // LiveOut indicates a foreign or missing value. 446 LiveOutPair &LOP = Map[MBB]; 447 448 // Create a phi-def if required. 449 if (needPHI) { 450 ++Changes; 451 assert(Alloc && "Need VNInfo allocator to create PHI-defs"); 452 SlotIndex Start, End; 453 std::tie(Start, End) = Indexes->getMBBRange(MBB); 454 LiveRange &LR = I.LR; 455 VNInfo *VNI = LR.getNextValue(Start, *Alloc); 456 I.Value = VNI; 457 // This block is done, we know the final value. 458 I.DomNode = nullptr; 459 460 // Add liveness since updateFromLiveIns now skips this node. 461 if (I.Kill.isValid()) 462 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); 463 else { 464 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 465 LOP = LiveOutPair(VNI, Node); 466 } 467 } else if (IDomValue.first) { 468 // No phi-def here. Remember incoming value. 469 I.Value = IDomValue.first; 470 471 // If the IDomValue is killed in the block, don't propagate through. 472 if (I.Kill.isValid()) 473 continue; 474 475 // Propagate IDomValue if it isn't killed: 476 // MBB is live-out and doesn't define its own value. 477 if (LOP.first == IDomValue.first) 478 continue; 479 ++Changes; 480 LOP = IDomValue; 481 } 482 } 483 } while (Changes); 484 } 485