Home | History | Annotate | Download | only in CodeGen
      1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the LiveRangeCalc class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LiveRangeCalc.h"
     15 #include "llvm/CodeGen/MachineDominators.h"
     16 #include "llvm/CodeGen/MachineRegisterInfo.h"
     17 
     18 using namespace llvm;
     19 
     20 #define DEBUG_TYPE "regalloc"
     21 
     22 void LiveRangeCalc::resetLiveOutMap() {
     23   unsigned NumBlocks = MF->getNumBlockIDs();
     24   Seen.clear();
     25   Seen.resize(NumBlocks);
     26   Map.resize(NumBlocks);
     27 }
     28 
     29 void LiveRangeCalc::reset(const MachineFunction *mf,
     30                           SlotIndexes *SI,
     31                           MachineDominatorTree *MDT,
     32                           VNInfo::Allocator *VNIA) {
     33   MF = mf;
     34   MRI = &MF->getRegInfo();
     35   Indexes = SI;
     36   DomTree = MDT;
     37   Alloc = VNIA;
     38   resetLiveOutMap();
     39   LiveIn.clear();
     40 }
     41 
     42 
     43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
     44                           LiveRange &LR, const MachineOperand &MO) {
     45   const MachineInstr &MI = *MO.getParent();
     46   SlotIndex DefIdx =
     47       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
     48 
     49   // Create the def in LR. This may find an existing def.
     50   LR.createDeadDef(DefIdx, Alloc);
     51 }
     52 
     53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
     54   assert(MRI && Indexes && "call reset() first");
     55 
     56   // Step 1: Create minimal live segments for every definition of Reg.
     57   // Visit all def operands. If the same instruction has multiple defs of Reg,
     58   // createDeadDef() will deduplicate.
     59   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
     60   unsigned Reg = LI.reg;
     61   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
     62     if (!MO.isDef() && !MO.readsReg())
     63       continue;
     64 
     65     unsigned SubReg = MO.getSubReg();
     66     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
     67       LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
     68                                      : MRI->getMaxLaneMaskForVReg(Reg);
     69 
     70       // If this is the first time we see a subregister def, initialize
     71       // subranges by creating a copy of the main range.
     72       if (!LI.hasSubRanges() && !LI.empty()) {
     73         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
     74         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
     75       }
     76 
     77       for (LiveInterval::SubRange &S : LI.subranges()) {
     78         // A Mask for subregs common to the existing subrange and current def.
     79         LaneBitmask Common = S.LaneMask & Mask;
     80         if (Common == 0)
     81           continue;
     82         // A Mask for subregs covered by the subrange but not the current def.
     83         LaneBitmask LRest = S.LaneMask & ~Mask;
     84         LiveInterval::SubRange *CommonRange;
     85         if (LRest != 0) {
     86           // Split current subrange into Common and LRest ranges.
     87           S.LaneMask = LRest;
     88           CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
     89         } else {
     90           assert(Common == S.LaneMask);
     91           CommonRange = &S;
     92         }
     93         if (MO.isDef())
     94           createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
     95         Mask &= ~Common;
     96       }
     97       // Create a new SubRange for subregs we did not cover yet.
     98       if (Mask != 0) {
     99         LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
    100         if (MO.isDef())
    101           createDeadDef(*Indexes, *Alloc, *NewRange, MO);
    102       }
    103     }
    104 
    105     // Create the def in the main liverange. We do not have to do this if
    106     // subranges are tracked as we recreate the main range later in this case.
    107     if (MO.isDef() && !LI.hasSubRanges())
    108       createDeadDef(*Indexes, *Alloc, LI, MO);
    109   }
    110 
    111   // We may have created empty live ranges for partially undefined uses, we
    112   // can't keep them because we won't find defs in them later.
    113   LI.removeEmptySubRanges();
    114 
    115   // Step 2: Extend live segments to all uses, constructing SSA form as
    116   // necessary.
    117   if (LI.hasSubRanges()) {
    118     for (LiveInterval::SubRange &S : LI.subranges()) {
    119       resetLiveOutMap();
    120       extendToUses(S, Reg, S.LaneMask);
    121     }
    122     LI.clear();
    123     constructMainRangeFromSubranges(LI);
    124   } else {
    125     resetLiveOutMap();
    126     extendToUses(LI, Reg, ~0u);
    127   }
    128 }
    129 
    130 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
    131   // First create dead defs at all defs found in subranges.
    132   LiveRange &MainRange = LI;
    133   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
    134          "Expect empty main liverange");
    135 
    136   for (const LiveInterval::SubRange &SR : LI.subranges()) {
    137     for (const VNInfo *VNI : SR.valnos) {
    138       if (!VNI->isUnused() && !VNI->isPHIDef())
    139         MainRange.createDeadDef(VNI->def, *Alloc);
    140     }
    141   }
    142 
    143   resetLiveOutMap();
    144   extendToUses(MainRange, LI.reg);
    145 }
    146 
    147 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
    148   assert(MRI && Indexes && "call reset() first");
    149 
    150   // Visit all def operands. If the same instruction has multiple defs of Reg,
    151   // LR.createDeadDef() will deduplicate.
    152   for (MachineOperand &MO : MRI->def_operands(Reg))
    153     createDeadDef(*Indexes, *Alloc, LR, MO);
    154 }
    155 
    156 
    157 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
    158                                  LaneBitmask Mask) {
    159   // Visit all operands that read Reg. This may include partial defs.
    160   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
    161   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
    162     // Clear all kill flags. They will be reinserted after register allocation
    163     // by LiveIntervalAnalysis::addKillFlags().
    164     if (MO.isUse())
    165       MO.setIsKill(false);
    166     else {
    167       // We only care about uses, but on the main range (mask ~0u) this includes
    168       // the "virtual" reads happening for subregister defs.
    169       if (Mask != ~0u)
    170         continue;
    171     }
    172 
    173     if (!MO.readsReg())
    174       continue;
    175     unsigned SubReg = MO.getSubReg();
    176     if (SubReg != 0) {
    177       LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
    178       // Ignore uses not covering the current subrange.
    179       if ((SubRegMask & Mask) == 0)
    180         continue;
    181     }
    182 
    183     // Determine the actual place of the use.
    184     const MachineInstr *MI = MO.getParent();
    185     unsigned OpNo = (&MO - &MI->getOperand(0));
    186     SlotIndex UseIdx;
    187     if (MI->isPHI()) {
    188       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
    189       // The actual place where a phi operand is used is the end of the pred
    190       // MBB. PHI operands are paired: (Reg, PredMBB).
    191       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
    192     } else {
    193       // Check for early-clobber redefs.
    194       bool isEarlyClobber = false;
    195       unsigned DefIdx;
    196       if (MO.isDef())
    197         isEarlyClobber = MO.isEarlyClobber();
    198       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
    199         // FIXME: This would be a lot easier if tied early-clobber uses also
    200         // had an early-clobber flag.
    201         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
    202       }
    203       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
    204     }
    205 
    206     // MI is reading Reg. We may have visited MI before if it happens to be
    207     // reading Reg multiple times. That is OK, extend() is idempotent.
    208     extend(LR, UseIdx, Reg);
    209   }
    210 }
    211 
    212 
    213 void LiveRangeCalc::updateFromLiveIns() {
    214   LiveRangeUpdater Updater;
    215   for (const LiveInBlock &I : LiveIn) {
    216     if (!I.DomNode)
    217       continue;
    218     MachineBasicBlock *MBB = I.DomNode->getBlock();
    219     assert(I.Value && "No live-in value found");
    220     SlotIndex Start, End;
    221     std::tie(Start, End) = Indexes->getMBBRange(MBB);
    222 
    223     if (I.Kill.isValid())
    224       // Value is killed inside this block.
    225       End = I.Kill;
    226     else {
    227       // The value is live-through, update LiveOut as well.
    228       // Defer the Domtree lookup until it is needed.
    229       assert(Seen.test(MBB->getNumber()));
    230       Map[MBB] = LiveOutPair(I.Value, nullptr);
    231     }
    232     Updater.setDest(&I.LR);
    233     Updater.add(Start, End, I.Value);
    234   }
    235   LiveIn.clear();
    236 }
    237 
    238 
    239 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
    240   assert(Use.isValid() && "Invalid SlotIndex");
    241   assert(Indexes && "Missing SlotIndexes");
    242   assert(DomTree && "Missing dominator tree");
    243 
    244   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
    245   assert(UseMBB && "No MBB at Use");
    246 
    247   // Is there a def in the same MBB we can extend?
    248   if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
    249     return;
    250 
    251   // Find the single reaching def, or determine if Use is jointly dominated by
    252   // multiple values, and we may need to create even more phi-defs to preserve
    253   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
    254   // know the dominating VNInfo.
    255   if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
    256     return;
    257 
    258   // When there were multiple different values, we may need new PHIs.
    259   calculateValues();
    260 }
    261 
    262 
    263 // This function is called by a client after using the low-level API to add
    264 // live-out and live-in blocks.  The unique value optimization is not
    265 // available, SplitEditor::transferValues handles that case directly anyway.
    266 void LiveRangeCalc::calculateValues() {
    267   assert(Indexes && "Missing SlotIndexes");
    268   assert(DomTree && "Missing dominator tree");
    269   updateSSA();
    270   updateFromLiveIns();
    271 }
    272 
    273 
    274 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
    275                                      SlotIndex Use, unsigned PhysReg) {
    276   unsigned UseMBBNum = UseMBB.getNumber();
    277 
    278   // Block numbers where LR should be live-in.
    279   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
    280 
    281   // Remember if we have seen more than one value.
    282   bool UniqueVNI = true;
    283   VNInfo *TheVNI = nullptr;
    284 
    285   // Using Seen as a visited set, perform a BFS for all reaching defs.
    286   for (unsigned i = 0; i != WorkList.size(); ++i) {
    287     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
    288 
    289 #ifndef NDEBUG
    290     if (MBB->pred_empty()) {
    291       MBB->getParent()->verify();
    292       errs() << "Use of " << PrintReg(PhysReg)
    293              << " does not have a corresponding definition on every path:\n";
    294       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
    295       if (MI != nullptr)
    296         errs() << Use << " " << *MI;
    297       llvm_unreachable("Use not jointly dominated by defs.");
    298     }
    299 
    300     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
    301         !MBB->isLiveIn(PhysReg)) {
    302       MBB->getParent()->verify();
    303       errs() << "The register " << PrintReg(PhysReg)
    304              << " needs to be live in to BB#" << MBB->getNumber()
    305              << ", but is missing from the live-in list.\n";
    306       llvm_unreachable("Invalid global physical register");
    307     }
    308 #endif
    309 
    310     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    311          PE = MBB->pred_end(); PI != PE; ++PI) {
    312        MachineBasicBlock *Pred = *PI;
    313 
    314        // Is this a known live-out block?
    315        if (Seen.test(Pred->getNumber())) {
    316          if (VNInfo *VNI = Map[Pred].first) {
    317            if (TheVNI && TheVNI != VNI)
    318              UniqueVNI = false;
    319            TheVNI = VNI;
    320          }
    321          continue;
    322        }
    323 
    324        SlotIndex Start, End;
    325        std::tie(Start, End) = Indexes->getMBBRange(Pred);
    326 
    327        // First time we see Pred.  Try to determine the live-out value, but set
    328        // it as null if Pred is live-through with an unknown value.
    329        VNInfo *VNI = LR.extendInBlock(Start, End);
    330        setLiveOutValue(Pred, VNI);
    331        if (VNI) {
    332          if (TheVNI && TheVNI != VNI)
    333            UniqueVNI = false;
    334          TheVNI = VNI;
    335          continue;
    336        }
    337 
    338        // No, we need a live-in value for Pred as well
    339        if (Pred != &UseMBB)
    340           WorkList.push_back(Pred->getNumber());
    341        else
    342           // Loopback to UseMBB, so value is really live through.
    343          Use = SlotIndex();
    344     }
    345   }
    346 
    347   LiveIn.clear();
    348 
    349   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
    350   // neither require it. Skip the sorting overhead for small updates.
    351   if (WorkList.size() > 4)
    352     array_pod_sort(WorkList.begin(), WorkList.end());
    353 
    354   // If a unique reaching def was found, blit in the live ranges immediately.
    355   if (UniqueVNI) {
    356     LiveRangeUpdater Updater(&LR);
    357     for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
    358          E = WorkList.end(); I != E; ++I) {
    359        SlotIndex Start, End;
    360        std::tie(Start, End) = Indexes->getMBBRange(*I);
    361        // Trim the live range in UseMBB.
    362        if (*I == UseMBBNum && Use.isValid())
    363          End = Use;
    364        else
    365          Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
    366        Updater.add(Start, End, TheVNI);
    367     }
    368     return true;
    369   }
    370 
    371   // Multiple values were found, so transfer the work list to the LiveIn array
    372   // where UpdateSSA will use it as a work list.
    373   LiveIn.reserve(WorkList.size());
    374   for (SmallVectorImpl<unsigned>::const_iterator
    375        I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
    376     MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
    377     addLiveInBlock(LR, DomTree->getNode(MBB));
    378     if (MBB == &UseMBB)
    379       LiveIn.back().Kill = Use;
    380   }
    381 
    382   return false;
    383 }
    384 
    385 
    386 // This is essentially the same iterative algorithm that SSAUpdater uses,
    387 // except we already have a dominator tree, so we don't have to recompute it.
    388 void LiveRangeCalc::updateSSA() {
    389   assert(Indexes && "Missing SlotIndexes");
    390   assert(DomTree && "Missing dominator tree");
    391 
    392   // Interate until convergence.
    393   unsigned Changes;
    394   do {
    395     Changes = 0;
    396     // Propagate live-out values down the dominator tree, inserting phi-defs
    397     // when necessary.
    398     for (LiveInBlock &I : LiveIn) {
    399       MachineDomTreeNode *Node = I.DomNode;
    400       // Skip block if the live-in value has already been determined.
    401       if (!Node)
    402         continue;
    403       MachineBasicBlock *MBB = Node->getBlock();
    404       MachineDomTreeNode *IDom = Node->getIDom();
    405       LiveOutPair IDomValue;
    406 
    407       // We need a live-in value to a block with no immediate dominator?
    408       // This is probably an unreachable block that has survived somehow.
    409       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
    410 
    411       // IDom dominates all of our predecessors, but it may not be their
    412       // immediate dominator. Check if any of them have live-out values that are
    413       // properly dominated by IDom. If so, we need a phi-def here.
    414       if (!needPHI) {
    415         IDomValue = Map[IDom->getBlock()];
    416 
    417         // Cache the DomTree node that defined the value.
    418         if (IDomValue.first && !IDomValue.second)
    419           Map[IDom->getBlock()].second = IDomValue.second =
    420             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
    421 
    422         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
    423                PE = MBB->pred_end(); PI != PE; ++PI) {
    424           LiveOutPair &Value = Map[*PI];
    425           if (!Value.first || Value.first == IDomValue.first)
    426             continue;
    427 
    428           // Cache the DomTree node that defined the value.
    429           if (!Value.second)
    430             Value.second =
    431               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
    432 
    433           // This predecessor is carrying something other than IDomValue.
    434           // It could be because IDomValue hasn't propagated yet, or it could be
    435           // because MBB is in the dominance frontier of that value.
    436           if (DomTree->dominates(IDom, Value.second)) {
    437             needPHI = true;
    438             break;
    439           }
    440         }
    441       }
    442 
    443       // The value may be live-through even if Kill is set, as can happen when
    444       // we are called from extendRange. In that case LiveOutSeen is true, and
    445       // LiveOut indicates a foreign or missing value.
    446       LiveOutPair &LOP = Map[MBB];
    447 
    448       // Create a phi-def if required.
    449       if (needPHI) {
    450         ++Changes;
    451         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
    452         SlotIndex Start, End;
    453         std::tie(Start, End) = Indexes->getMBBRange(MBB);
    454         LiveRange &LR = I.LR;
    455         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
    456         I.Value = VNI;
    457         // This block is done, we know the final value.
    458         I.DomNode = nullptr;
    459 
    460         // Add liveness since updateFromLiveIns now skips this node.
    461         if (I.Kill.isValid())
    462           LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
    463         else {
    464           LR.addSegment(LiveInterval::Segment(Start, End, VNI));
    465           LOP = LiveOutPair(VNI, Node);
    466         }
    467       } else if (IDomValue.first) {
    468         // No phi-def here. Remember incoming value.
    469         I.Value = IDomValue.first;
    470 
    471         // If the IDomValue is killed in the block, don't propagate through.
    472         if (I.Kill.isValid())
    473           continue;
    474 
    475         // Propagate IDomValue if it isn't killed:
    476         // MBB is live-out and doesn't define its own value.
    477         if (LOP.first == IDomValue.first)
    478           continue;
    479         ++Changes;
    480         LOP = IDomValue;
    481       }
    482     }
    483   } while (Changes);
    484 }
    485