Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LiveRangeEdit class represents changes done to a virtual register when it
     11 // is spilled or split.
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/LiveRangeEdit.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/CodeGen/CalcSpillWeights.h"
     17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/VirtRegMap.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 
     24 using namespace llvm;
     25 
     26 #define DEBUG_TYPE "regalloc"
     27 
     28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
     29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
     30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
     31 
     32 void LiveRangeEdit::Delegate::anchor() { }
     33 
     34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
     35   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     36   if (VRM) {
     37     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     38   }
     39   LiveInterval &LI = LIS.createEmptyInterval(VReg);
     40   return LI;
     41 }
     42 
     43 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
     44   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     45   if (VRM) {
     46     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     47   }
     48   return VReg;
     49 }
     50 
     51 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
     52                                           const MachineInstr *DefMI,
     53                                           AliasAnalysis *aa) {
     54   assert(DefMI && "Missing instruction");
     55   ScannedRemattable = true;
     56   if (!TII.isTriviallyReMaterializable(*DefMI, aa))
     57     return false;
     58   Remattable.insert(VNI);
     59   return true;
     60 }
     61 
     62 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
     63   for (VNInfo *VNI : getParent().valnos) {
     64     if (VNI->isUnused())
     65       continue;
     66     unsigned Original = VRM->getOriginal(getReg());
     67     LiveInterval &OrigLI = LIS.getInterval(Original);
     68     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
     69     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
     70     if (!DefMI)
     71       continue;
     72     checkRematerializable(OrigVNI, DefMI, aa);
     73   }
     74   ScannedRemattable = true;
     75 }
     76 
     77 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
     78   if (!ScannedRemattable)
     79     scanRemattable(aa);
     80   return !Remattable.empty();
     81 }
     82 
     83 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
     84 /// OrigIdx are also available with the same value at UseIdx.
     85 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
     86                                        SlotIndex OrigIdx,
     87                                        SlotIndex UseIdx) const {
     88   OrigIdx = OrigIdx.getRegSlot(true);
     89   UseIdx = UseIdx.getRegSlot(true);
     90   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
     91     const MachineOperand &MO = OrigMI->getOperand(i);
     92     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
     93       continue;
     94 
     95     // We can't remat physreg uses, unless it is a constant.
     96     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
     97       if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
     98         continue;
     99       return false;
    100     }
    101 
    102     LiveInterval &li = LIS.getInterval(MO.getReg());
    103     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
    104     if (!OVNI)
    105       continue;
    106 
    107     // Don't allow rematerialization immediately after the original def.
    108     // It would be incorrect if OrigMI redefines the register.
    109     // See PR14098.
    110     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
    111       return false;
    112 
    113     if (OVNI != li.getVNInfoAt(UseIdx))
    114       return false;
    115   }
    116   return true;
    117 }
    118 
    119 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
    120                                        SlotIndex UseIdx, bool cheapAsAMove) {
    121   assert(ScannedRemattable && "Call anyRematerializable first");
    122 
    123   // Use scanRemattable info.
    124   if (!Remattable.count(OrigVNI))
    125     return false;
    126 
    127   // No defining instruction provided.
    128   SlotIndex DefIdx;
    129   assert(RM.OrigMI && "No defining instruction for remattable value");
    130   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
    131 
    132   // If only cheap remats were requested, bail out early.
    133   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
    134     return false;
    135 
    136   // Verify that all used registers are available with the same values.
    137   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
    138     return false;
    139 
    140   return true;
    141 }
    142 
    143 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
    144                                          MachineBasicBlock::iterator MI,
    145                                          unsigned DestReg,
    146                                          const Remat &RM,
    147                                          const TargetRegisterInfo &tri,
    148                                          bool Late) {
    149   assert(RM.OrigMI && "Invalid remat");
    150   TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
    151   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
    152   // to false anyway in case the isDead flag of RM.OrigMI's dest register
    153   // is true.
    154   (*--MI).getOperand(0).setIsDead(false);
    155   Rematted.insert(RM.ParentVNI);
    156   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
    157 }
    158 
    159 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
    160   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
    161     LIS.removeInterval(Reg);
    162 }
    163 
    164 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
    165                                SmallVectorImpl<MachineInstr*> &Dead) {
    166   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
    167 
    168   // Check that there is a single def and a single use.
    169   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
    170     MachineInstr *MI = MO.getParent();
    171     if (MO.isDef()) {
    172       if (DefMI && DefMI != MI)
    173         return false;
    174       if (!MI->canFoldAsLoad())
    175         return false;
    176       DefMI = MI;
    177     } else if (!MO.isUndef()) {
    178       if (UseMI && UseMI != MI)
    179         return false;
    180       // FIXME: Targets don't know how to fold subreg uses.
    181       if (MO.getSubReg())
    182         return false;
    183       UseMI = MI;
    184     }
    185   }
    186   if (!DefMI || !UseMI)
    187     return false;
    188 
    189   // Since we're moving the DefMI load, make sure we're not extending any live
    190   // ranges.
    191   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
    192                           LIS.getInstructionIndex(*UseMI)))
    193     return false;
    194 
    195   // We also need to make sure it is safe to move the load.
    196   // Assume there are stores between DefMI and UseMI.
    197   bool SawStore = true;
    198   if (!DefMI->isSafeToMove(nullptr, SawStore))
    199     return false;
    200 
    201   DEBUG(dbgs() << "Try to fold single def: " << *DefMI
    202                << "       into single use: " << *UseMI);
    203 
    204   SmallVector<unsigned, 8> Ops;
    205   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
    206     return false;
    207 
    208   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
    209   if (!FoldMI)
    210     return false;
    211   DEBUG(dbgs() << "                folded: " << *FoldMI);
    212   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
    213   UseMI->eraseFromParent();
    214   DefMI->addRegisterDead(LI->reg, nullptr);
    215   Dead.push_back(DefMI);
    216   ++NumDCEFoldedLoads;
    217   return true;
    218 }
    219 
    220 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
    221                               const MachineOperand &MO) const {
    222   const MachineInstr &MI = *MO.getParent();
    223   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
    224   if (LI.Query(Idx).isKill())
    225     return true;
    226   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
    227   unsigned SubReg = MO.getSubReg();
    228   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
    229   for (const LiveInterval::SubRange &S : LI.subranges()) {
    230     if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill())
    231       return true;
    232   }
    233   return false;
    234 }
    235 
    236 /// Find all live intervals that need to shrink, then remove the instruction.
    237 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
    238                                      AliasAnalysis *AA) {
    239   assert(MI->allDefsAreDead() && "Def isn't really dead");
    240   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    241 
    242   // Never delete a bundled instruction.
    243   if (MI->isBundled()) {
    244     return;
    245   }
    246   // Never delete inline asm.
    247   if (MI->isInlineAsm()) {
    248     DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    249     return;
    250   }
    251 
    252   // Use the same criteria as DeadMachineInstructionElim.
    253   bool SawStore = false;
    254   if (!MI->isSafeToMove(nullptr, SawStore)) {
    255     DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    256     return;
    257   }
    258 
    259   DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
    260 
    261   // Collect virtual registers to be erased after MI is gone.
    262   SmallVector<unsigned, 8> RegsToErase;
    263   bool ReadsPhysRegs = false;
    264   bool isOrigDef = false;
    265   unsigned Dest;
    266   if (VRM && MI->getOperand(0).isReg()) {
    267     Dest = MI->getOperand(0).getReg();
    268     unsigned Original = VRM->getOriginal(Dest);
    269     LiveInterval &OrigLI = LIS.getInterval(Original);
    270     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
    271     // The original live-range may have been shrunk to
    272     // an empty live-range. It happens when it is dead, but
    273     // we still keep it around to be able to rematerialize
    274     // other values that depend on it.
    275     if (OrigVNI)
    276       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
    277   }
    278 
    279   // Check for live intervals that may shrink
    280   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    281          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    282     if (!MOI->isReg())
    283       continue;
    284     unsigned Reg = MOI->getReg();
    285     if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
    286       // Check if MI reads any unreserved physregs.
    287       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
    288         ReadsPhysRegs = true;
    289       else if (MOI->isDef())
    290         LIS.removePhysRegDefAt(Reg, Idx);
    291       continue;
    292     }
    293     LiveInterval &LI = LIS.getInterval(Reg);
    294 
    295     // Shrink read registers, unless it is likely to be expensive and
    296     // unlikely to change anything. We typically don't want to shrink the
    297     // PIC base register that has lots of uses everywhere.
    298     // Always shrink COPY uses that probably come from live range splitting.
    299     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
    300         (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
    301       ToShrink.insert(&LI);
    302 
    303     // Remove defined value.
    304     if (MOI->isDef()) {
    305       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
    306         TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
    307       LIS.removeVRegDefAt(LI, Idx);
    308       if (LI.empty())
    309         RegsToErase.push_back(Reg);
    310     }
    311   }
    312 
    313   // Currently, we don't support DCE of physreg live ranges. If MI reads
    314   // any unreserved physregs, don't erase the instruction, but turn it into
    315   // a KILL instead. This way, the physreg live ranges don't end up
    316   // dangling.
    317   // FIXME: It would be better to have something like shrinkToUses() for
    318   // physregs. That could potentially enable more DCE and it would free up
    319   // the physreg. It would not happen often, though.
    320   if (ReadsPhysRegs) {
    321     MI->setDesc(TII.get(TargetOpcode::KILL));
    322     // Remove all operands that aren't physregs.
    323     for (unsigned i = MI->getNumOperands(); i; --i) {
    324       const MachineOperand &MO = MI->getOperand(i-1);
    325       if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
    326         continue;
    327       MI->RemoveOperand(i-1);
    328     }
    329     DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
    330   } else {
    331     // If the dest of MI is an original reg and MI is reMaterializable,
    332     // don't delete the inst. Replace the dest with a new reg, and keep
    333     // the inst for remat of other siblings. The inst is saved in
    334     // LiveRangeEdit::DeadRemats and will be deleted after all the
    335     // allocations of the func are done.
    336     if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
    337       LiveInterval &NewLI = createEmptyIntervalFrom(Dest);
    338       VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
    339       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
    340       pop_back();
    341       markDeadRemat(MI);
    342       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
    343       MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
    344       MI->getOperand(0).setIsDead(true);
    345     } else {
    346       if (TheDelegate)
    347         TheDelegate->LRE_WillEraseInstruction(MI);
    348       LIS.RemoveMachineInstrFromMaps(*MI);
    349       MI->eraseFromParent();
    350       ++NumDCEDeleted;
    351     }
    352   }
    353 
    354   // Erase any virtregs that are now empty and unused. There may be <undef>
    355   // uses around. Keep the empty live range in that case.
    356   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    357     unsigned Reg = RegsToErase[i];
    358     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
    359       ToShrink.remove(&LIS.getInterval(Reg));
    360       eraseVirtReg(Reg);
    361     }
    362   }
    363 }
    364 
    365 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
    366                                       ArrayRef<unsigned> RegsBeingSpilled,
    367                                       AliasAnalysis *AA) {
    368   ToShrinkSet ToShrink;
    369 
    370   for (;;) {
    371     // Erase all dead defs.
    372     while (!Dead.empty())
    373       eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
    374 
    375     if (ToShrink.empty())
    376       break;
    377 
    378     // Shrink just one live interval. Then delete new dead defs.
    379     LiveInterval *LI = ToShrink.back();
    380     ToShrink.pop_back();
    381     if (foldAsLoad(LI, Dead))
    382       continue;
    383     unsigned VReg = LI->reg;
    384     if (TheDelegate)
    385       TheDelegate->LRE_WillShrinkVirtReg(VReg);
    386     if (!LIS.shrinkToUses(LI, &Dead))
    387       continue;
    388 
    389     // Don't create new intervals for a register being spilled.
    390     // The new intervals would have to be spilled anyway so its not worth it.
    391     // Also they currently aren't spilled so creating them and not spilling
    392     // them results in incorrect code.
    393     bool BeingSpilled = false;
    394     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
    395       if (VReg == RegsBeingSpilled[i]) {
    396         BeingSpilled = true;
    397         break;
    398       }
    399     }
    400 
    401     if (BeingSpilled) continue;
    402 
    403     // LI may have been separated, create new intervals.
    404     LI->RenumberValues();
    405     SmallVector<LiveInterval*, 8> SplitLIs;
    406     LIS.splitSeparateComponents(*LI, SplitLIs);
    407     if (!SplitLIs.empty())
    408       ++NumFracRanges;
    409 
    410     unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
    411     for (const LiveInterval *SplitLI : SplitLIs) {
    412       // If LI is an original interval that hasn't been split yet, make the new
    413       // intervals their own originals instead of referring to LI. The original
    414       // interval must contain all the split products, and LI doesn't.
    415       if (Original != VReg && Original != 0)
    416         VRM->setIsSplitFromReg(SplitLI->reg, Original);
    417       if (TheDelegate)
    418         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
    419     }
    420   }
    421 }
    422 
    423 // Keep track of new virtual registers created via
    424 // MachineRegisterInfo::createVirtualRegister.
    425 void
    426 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
    427 {
    428   if (VRM)
    429     VRM->grow();
    430 
    431   NewRegs.push_back(VReg);
    432 }
    433 
    434 void
    435 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
    436                                         const MachineLoopInfo &Loops,
    437                                         const MachineBlockFrequencyInfo &MBFI) {
    438   VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
    439   for (unsigned I = 0, Size = size(); I < Size; ++I) {
    440     LiveInterval &LI = LIS.getInterval(get(I));
    441     if (MRI.recomputeRegClass(LI.reg))
    442       DEBUG({
    443         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    444         dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
    445                << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
    446       });
    447     VRAI.calculateSpillWeightAndHint(LI);
    448   }
    449 }
    450