Home | History | Annotate | Download | only in SelectionDAG
      1 //===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file performs vector type splitting and scalarization for LegalizeTypes.
     11 // Scalarization is the act of changing a computation in an illegal one-element
     12 // vector type to be a computation in its scalar element type.  For example,
     13 // implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
     14 // as a base case when scalarizing vector arithmetic like <4 x f32>, which
     15 // eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
     16 // types.
     17 // Splitting is the act of changing a computation in an invalid vector type to
     18 // be a computation in two vectors of half the size.  For example, implementing
     19 // <128 x f32> operations in terms of two <64 x f32> operations.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "LegalizeTypes.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/Support/ErrorHandling.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 using namespace llvm;
     28 
     29 #define DEBUG_TYPE "legalize-types"
     30 
     31 //===----------------------------------------------------------------------===//
     32 //  Result Vector Scalarization: <1 x ty> -> ty.
     33 //===----------------------------------------------------------------------===//
     34 
     35 void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
     36   DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
     37         N->dump(&DAG);
     38         dbgs() << "\n");
     39   SDValue R = SDValue();
     40 
     41   switch (N->getOpcode()) {
     42   default:
     43 #ifndef NDEBUG
     44     dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
     45     N->dump(&DAG);
     46     dbgs() << "\n";
     47 #endif
     48     report_fatal_error("Do not know how to scalarize the result of this "
     49                        "operator!\n");
     50 
     51   case ISD::MERGE_VALUES:      R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
     52   case ISD::BITCAST:           R = ScalarizeVecRes_BITCAST(N); break;
     53   case ISD::BUILD_VECTOR:      R = ScalarizeVecRes_BUILD_VECTOR(N); break;
     54   case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
     55   case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
     56   case ISD::FP_ROUND:          R = ScalarizeVecRes_FP_ROUND(N); break;
     57   case ISD::FP_ROUND_INREG:    R = ScalarizeVecRes_InregOp(N); break;
     58   case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
     59   case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
     60   case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
     61   case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
     62   case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
     63   case ISD::VSELECT:           R = ScalarizeVecRes_VSELECT(N); break;
     64   case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
     65   case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
     66   case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
     67   case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
     68   case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
     69   case ISD::ANY_EXTEND:
     70   case ISD::BITREVERSE:
     71   case ISD::BSWAP:
     72   case ISD::CTLZ:
     73   case ISD::CTLZ_ZERO_UNDEF:
     74   case ISD::CTPOP:
     75   case ISD::CTTZ:
     76   case ISD::CTTZ_ZERO_UNDEF:
     77   case ISD::FABS:
     78   case ISD::FCEIL:
     79   case ISD::FCOS:
     80   case ISD::FEXP:
     81   case ISD::FEXP2:
     82   case ISD::FFLOOR:
     83   case ISD::FLOG:
     84   case ISD::FLOG10:
     85   case ISD::FLOG2:
     86   case ISD::FNEARBYINT:
     87   case ISD::FNEG:
     88   case ISD::FP_EXTEND:
     89   case ISD::FP_TO_SINT:
     90   case ISD::FP_TO_UINT:
     91   case ISD::FRINT:
     92   case ISD::FROUND:
     93   case ISD::FSIN:
     94   case ISD::FSQRT:
     95   case ISD::FTRUNC:
     96   case ISD::SIGN_EXTEND:
     97   case ISD::SINT_TO_FP:
     98   case ISD::TRUNCATE:
     99   case ISD::UINT_TO_FP:
    100   case ISD::ZERO_EXTEND:
    101     R = ScalarizeVecRes_UnaryOp(N);
    102     break;
    103 
    104   case ISD::ADD:
    105   case ISD::AND:
    106   case ISD::FADD:
    107   case ISD::FCOPYSIGN:
    108   case ISD::FDIV:
    109   case ISD::FMUL:
    110   case ISD::FMINNUM:
    111   case ISD::FMAXNUM:
    112   case ISD::FMINNAN:
    113   case ISD::FMAXNAN:
    114   case ISD::SMIN:
    115   case ISD::SMAX:
    116   case ISD::UMIN:
    117   case ISD::UMAX:
    118 
    119   case ISD::FPOW:
    120   case ISD::FREM:
    121   case ISD::FSUB:
    122   case ISD::MUL:
    123   case ISD::OR:
    124   case ISD::SDIV:
    125   case ISD::SREM:
    126   case ISD::SUB:
    127   case ISD::UDIV:
    128   case ISD::UREM:
    129   case ISD::XOR:
    130   case ISD::SHL:
    131   case ISD::SRA:
    132   case ISD::SRL:
    133     R = ScalarizeVecRes_BinOp(N);
    134     break;
    135   case ISD::FMA:
    136     R = ScalarizeVecRes_TernaryOp(N);
    137     break;
    138   }
    139 
    140   // If R is null, the sub-method took care of registering the result.
    141   if (R.getNode())
    142     SetScalarizedVector(SDValue(N, ResNo), R);
    143 }
    144 
    145 SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
    146   SDValue LHS = GetScalarizedVector(N->getOperand(0));
    147   SDValue RHS = GetScalarizedVector(N->getOperand(1));
    148   return DAG.getNode(N->getOpcode(), SDLoc(N),
    149                      LHS.getValueType(), LHS, RHS, N->getFlags());
    150 }
    151 
    152 SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
    153   SDValue Op0 = GetScalarizedVector(N->getOperand(0));
    154   SDValue Op1 = GetScalarizedVector(N->getOperand(1));
    155   SDValue Op2 = GetScalarizedVector(N->getOperand(2));
    156   return DAG.getNode(N->getOpcode(), SDLoc(N),
    157                      Op0.getValueType(), Op0, Op1, Op2);
    158 }
    159 
    160 SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
    161                                                        unsigned ResNo) {
    162   SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
    163   return GetScalarizedVector(Op);
    164 }
    165 
    166 SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
    167   EVT NewVT = N->getValueType(0).getVectorElementType();
    168   return DAG.getNode(ISD::BITCAST, SDLoc(N),
    169                      NewVT, N->getOperand(0));
    170 }
    171 
    172 SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
    173   EVT EltVT = N->getValueType(0).getVectorElementType();
    174   SDValue InOp = N->getOperand(0);
    175   // The BUILD_VECTOR operands may be of wider element types and
    176   // we may need to truncate them back to the requested return type.
    177   if (EltVT.isInteger())
    178     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
    179   return InOp;
    180 }
    181 
    182 SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
    183   EVT NewVT = N->getValueType(0).getVectorElementType();
    184   SDValue Op0 = GetScalarizedVector(N->getOperand(0));
    185   return DAG.getConvertRndSat(NewVT, SDLoc(N),
    186                               Op0, DAG.getValueType(NewVT),
    187                               DAG.getValueType(Op0.getValueType()),
    188                               N->getOperand(3),
    189                               N->getOperand(4),
    190                               cast<CvtRndSatSDNode>(N)->getCvtCode());
    191 }
    192 
    193 SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
    194   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
    195                      N->getValueType(0).getVectorElementType(),
    196                      N->getOperand(0), N->getOperand(1));
    197 }
    198 
    199 SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
    200   EVT NewVT = N->getValueType(0).getVectorElementType();
    201   SDValue Op = GetScalarizedVector(N->getOperand(0));
    202   return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
    203                      NewVT, Op, N->getOperand(1));
    204 }
    205 
    206 SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
    207   SDValue Op = GetScalarizedVector(N->getOperand(0));
    208   return DAG.getNode(ISD::FPOWI, SDLoc(N),
    209                      Op.getValueType(), Op, N->getOperand(1));
    210 }
    211 
    212 SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
    213   // The value to insert may have a wider type than the vector element type,
    214   // so be sure to truncate it to the element type if necessary.
    215   SDValue Op = N->getOperand(1);
    216   EVT EltVT = N->getValueType(0).getVectorElementType();
    217   if (Op.getValueType() != EltVT)
    218     // FIXME: Can this happen for floating point types?
    219     Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
    220   return Op;
    221 }
    222 
    223 SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
    224   assert(N->isUnindexed() && "Indexed vector load?");
    225 
    226   SDValue Result = DAG.getLoad(ISD::UNINDEXED,
    227                                N->getExtensionType(),
    228                                N->getValueType(0).getVectorElementType(),
    229                                SDLoc(N),
    230                                N->getChain(), N->getBasePtr(),
    231                                DAG.getUNDEF(N->getBasePtr().getValueType()),
    232                                N->getPointerInfo(),
    233                                N->getMemoryVT().getVectorElementType(),
    234                                N->isVolatile(), N->isNonTemporal(),
    235                                N->isInvariant(), N->getOriginalAlignment(),
    236                                N->getAAInfo());
    237 
    238   // Legalize the chain result - switch anything that used the old chain to
    239   // use the new one.
    240   ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
    241   return Result;
    242 }
    243 
    244 SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
    245   // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
    246   EVT DestVT = N->getValueType(0).getVectorElementType();
    247   SDValue Op = N->getOperand(0);
    248   EVT OpVT = Op.getValueType();
    249   SDLoc DL(N);
    250   // The result needs scalarizing, but it's not a given that the source does.
    251   // This is a workaround for targets where it's impossible to scalarize the
    252   // result of a conversion, because the source type is legal.
    253   // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
    254   // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
    255   // legal and was not scalarized.
    256   // See the similar logic in ScalarizeVecRes_VSETCC
    257   if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
    258     Op = GetScalarizedVector(Op);
    259   } else {
    260     EVT VT = OpVT.getVectorElementType();
    261     Op = DAG.getNode(
    262         ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
    263         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
    264   }
    265   return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
    266 }
    267 
    268 SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
    269   EVT EltVT = N->getValueType(0).getVectorElementType();
    270   EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
    271   SDValue LHS = GetScalarizedVector(N->getOperand(0));
    272   return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
    273                      LHS, DAG.getValueType(ExtVT));
    274 }
    275 
    276 SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
    277   // If the operand is wider than the vector element type then it is implicitly
    278   // truncated.  Make that explicit here.
    279   EVT EltVT = N->getValueType(0).getVectorElementType();
    280   SDValue InOp = N->getOperand(0);
    281   if (InOp.getValueType() != EltVT)
    282     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
    283   return InOp;
    284 }
    285 
    286 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
    287   SDValue Cond = GetScalarizedVector(N->getOperand(0));
    288   SDValue LHS = GetScalarizedVector(N->getOperand(1));
    289   TargetLowering::BooleanContent ScalarBool =
    290       TLI.getBooleanContents(false, false);
    291   TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
    292 
    293   // If integer and float booleans have different contents then we can't
    294   // reliably optimize in all cases. There is a full explanation for this in
    295   // DAGCombiner::visitSELECT() where the same issue affects folding
    296   // (select C, 0, 1) to (xor C, 1).
    297   if (TLI.getBooleanContents(false, false) !=
    298       TLI.getBooleanContents(false, true)) {
    299     // At least try the common case where the boolean is generated by a
    300     // comparison.
    301     if (Cond->getOpcode() == ISD::SETCC) {
    302       EVT OpVT = Cond->getOperand(0)->getValueType(0);
    303       ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
    304       VecBool = TLI.getBooleanContents(OpVT);
    305     } else
    306       ScalarBool = TargetLowering::UndefinedBooleanContent;
    307   }
    308 
    309   if (ScalarBool != VecBool) {
    310     EVT CondVT = Cond.getValueType();
    311     switch (ScalarBool) {
    312       case TargetLowering::UndefinedBooleanContent:
    313         break;
    314       case TargetLowering::ZeroOrOneBooleanContent:
    315         assert(VecBool == TargetLowering::UndefinedBooleanContent ||
    316                VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
    317         // Vector read from all ones, scalar expects a single 1 so mask.
    318         Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
    319                            Cond, DAG.getConstant(1, SDLoc(N), CondVT));
    320         break;
    321       case TargetLowering::ZeroOrNegativeOneBooleanContent:
    322         assert(VecBool == TargetLowering::UndefinedBooleanContent ||
    323                VecBool == TargetLowering::ZeroOrOneBooleanContent);
    324         // Vector reads from a one, scalar from all ones so sign extend.
    325         Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
    326                            Cond, DAG.getValueType(MVT::i1));
    327         break;
    328     }
    329   }
    330 
    331   return DAG.getSelect(SDLoc(N),
    332                        LHS.getValueType(), Cond, LHS,
    333                        GetScalarizedVector(N->getOperand(2)));
    334 }
    335 
    336 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
    337   SDValue LHS = GetScalarizedVector(N->getOperand(1));
    338   return DAG.getSelect(SDLoc(N),
    339                        LHS.getValueType(), N->getOperand(0), LHS,
    340                        GetScalarizedVector(N->getOperand(2)));
    341 }
    342 
    343 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
    344   SDValue LHS = GetScalarizedVector(N->getOperand(2));
    345   return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
    346                      N->getOperand(0), N->getOperand(1),
    347                      LHS, GetScalarizedVector(N->getOperand(3)),
    348                      N->getOperand(4));
    349 }
    350 
    351 SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
    352   assert(N->getValueType(0).isVector() ==
    353          N->getOperand(0).getValueType().isVector() &&
    354          "Scalar/Vector type mismatch");
    355 
    356   if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
    357 
    358   SDValue LHS = GetScalarizedVector(N->getOperand(0));
    359   SDValue RHS = GetScalarizedVector(N->getOperand(1));
    360   SDLoc DL(N);
    361 
    362   // Turn it into a scalar SETCC.
    363   return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
    364 }
    365 
    366 SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
    367   return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
    368 }
    369 
    370 SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
    371   // Figure out if the scalar is the LHS or RHS and return it.
    372   SDValue Arg = N->getOperand(2).getOperand(0);
    373   if (Arg.isUndef())
    374     return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
    375   unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
    376   return GetScalarizedVector(N->getOperand(Op));
    377 }
    378 
    379 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
    380   assert(N->getValueType(0).isVector() &&
    381          N->getOperand(0).getValueType().isVector() &&
    382          "Operand types must be vectors");
    383   SDValue LHS = N->getOperand(0);
    384   SDValue RHS = N->getOperand(1);
    385   EVT OpVT = LHS.getValueType();
    386   EVT NVT = N->getValueType(0).getVectorElementType();
    387   SDLoc DL(N);
    388 
    389   // The result needs scalarizing, but it's not a given that the source does.
    390   if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
    391     LHS = GetScalarizedVector(LHS);
    392     RHS = GetScalarizedVector(RHS);
    393   } else {
    394     EVT VT = OpVT.getVectorElementType();
    395     LHS = DAG.getNode(
    396         ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
    397         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
    398     RHS = DAG.getNode(
    399         ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
    400         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
    401   }
    402 
    403   // Turn it into a scalar SETCC.
    404   SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
    405                             N->getOperand(2));
    406   // Vectors may have a different boolean contents to scalars.  Promote the
    407   // value appropriately.
    408   ISD::NodeType ExtendCode =
    409       TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
    410   return DAG.getNode(ExtendCode, DL, NVT, Res);
    411 }
    412 
    413 
    414 //===----------------------------------------------------------------------===//
    415 //  Operand Vector Scalarization <1 x ty> -> ty.
    416 //===----------------------------------------------------------------------===//
    417 
    418 bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
    419   DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
    420         N->dump(&DAG);
    421         dbgs() << "\n");
    422   SDValue Res = SDValue();
    423 
    424   if (!Res.getNode()) {
    425     switch (N->getOpcode()) {
    426     default:
    427 #ifndef NDEBUG
    428       dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
    429       N->dump(&DAG);
    430       dbgs() << "\n";
    431 #endif
    432       llvm_unreachable("Do not know how to scalarize this operator's operand!");
    433     case ISD::BITCAST:
    434       Res = ScalarizeVecOp_BITCAST(N);
    435       break;
    436     case ISD::ANY_EXTEND:
    437     case ISD::ZERO_EXTEND:
    438     case ISD::SIGN_EXTEND:
    439     case ISD::TRUNCATE:
    440     case ISD::FP_TO_SINT:
    441     case ISD::FP_TO_UINT:
    442     case ISD::SINT_TO_FP:
    443     case ISD::UINT_TO_FP:
    444       Res = ScalarizeVecOp_UnaryOp(N);
    445       break;
    446     case ISD::CONCAT_VECTORS:
    447       Res = ScalarizeVecOp_CONCAT_VECTORS(N);
    448       break;
    449     case ISD::EXTRACT_VECTOR_ELT:
    450       Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
    451       break;
    452     case ISD::VSELECT:
    453       Res = ScalarizeVecOp_VSELECT(N);
    454       break;
    455     case ISD::STORE:
    456       Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
    457       break;
    458     case ISD::FP_ROUND:
    459       Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
    460       break;
    461     }
    462   }
    463 
    464   // If the result is null, the sub-method took care of registering results etc.
    465   if (!Res.getNode()) return false;
    466 
    467   // If the result is N, the sub-method updated N in place.  Tell the legalizer
    468   // core about this.
    469   if (Res.getNode() == N)
    470     return true;
    471 
    472   assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
    473          "Invalid operand expansion");
    474 
    475   ReplaceValueWith(SDValue(N, 0), Res);
    476   return false;
    477 }
    478 
    479 /// If the value to convert is a vector that needs to be scalarized, it must be
    480 /// <1 x ty>. Convert the element instead.
    481 SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
    482   SDValue Elt = GetScalarizedVector(N->getOperand(0));
    483   return DAG.getNode(ISD::BITCAST, SDLoc(N),
    484                      N->getValueType(0), Elt);
    485 }
    486 
    487 /// If the input is a vector that needs to be scalarized, it must be <1 x ty>.
    488 /// Do the operation on the element instead.
    489 SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
    490   assert(N->getValueType(0).getVectorNumElements() == 1 &&
    491          "Unexpected vector type!");
    492   SDValue Elt = GetScalarizedVector(N->getOperand(0));
    493   SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
    494                            N->getValueType(0).getScalarType(), Elt);
    495   // Revectorize the result so the types line up with what the uses of this
    496   // expression expect.
    497   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op);
    498 }
    499 
    500 /// The vectors to concatenate have length one - use a BUILD_VECTOR instead.
    501 SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
    502   SmallVector<SDValue, 8> Ops(N->getNumOperands());
    503   for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
    504     Ops[i] = GetScalarizedVector(N->getOperand(i));
    505   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops);
    506 }
    507 
    508 /// If the input is a vector that needs to be scalarized, it must be <1 x ty>,
    509 /// so just return the element, ignoring the index.
    510 SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
    511   SDValue Res = GetScalarizedVector(N->getOperand(0));
    512   if (Res.getValueType() != N->getValueType(0))
    513     Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
    514                       Res);
    515   return Res;
    516 }
    517 
    518 
    519 /// If the input condition is a vector that needs to be scalarized, it must be
    520 /// <1 x i1>, so just convert to a normal ISD::SELECT
    521 /// (still with vector output type since that was acceptable if we got here).
    522 SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
    523   SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
    524   EVT VT = N->getValueType(0);
    525 
    526   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
    527                      N->getOperand(2));
    528 }
    529 
    530 /// If the value to store is a vector that needs to be scalarized, it must be
    531 /// <1 x ty>. Just store the element.
    532 SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
    533   assert(N->isUnindexed() && "Indexed store of one-element vector?");
    534   assert(OpNo == 1 && "Do not know how to scalarize this operand!");
    535   SDLoc dl(N);
    536 
    537   if (N->isTruncatingStore())
    538     return DAG.getTruncStore(N->getChain(), dl,
    539                              GetScalarizedVector(N->getOperand(1)),
    540                              N->getBasePtr(), N->getPointerInfo(),
    541                              N->getMemoryVT().getVectorElementType(),
    542                              N->isVolatile(), N->isNonTemporal(),
    543                              N->getAlignment(), N->getAAInfo());
    544 
    545   return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
    546                       N->getBasePtr(), N->getPointerInfo(),
    547                       N->isVolatile(), N->isNonTemporal(),
    548                       N->getOriginalAlignment(), N->getAAInfo());
    549 }
    550 
    551 /// If the value to round is a vector that needs to be scalarized, it must be
    552 /// <1 x ty>. Convert the element instead.
    553 SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
    554   SDValue Elt = GetScalarizedVector(N->getOperand(0));
    555   SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
    556                             N->getValueType(0).getVectorElementType(), Elt,
    557                             N->getOperand(1));
    558   return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
    559 }
    560 
    561 //===----------------------------------------------------------------------===//
    562 //  Result Vector Splitting
    563 //===----------------------------------------------------------------------===//
    564 
    565 /// This method is called when the specified result of the specified node is
    566 /// found to need vector splitting. At this point, the node may also have
    567 /// invalid operands or may have other results that need legalization, we just
    568 /// know that (at least) one result needs vector splitting.
    569 void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
    570   DEBUG(dbgs() << "Split node result: ";
    571         N->dump(&DAG);
    572         dbgs() << "\n");
    573   SDValue Lo, Hi;
    574 
    575   // See if the target wants to custom expand this node.
    576   if (CustomLowerNode(N, N->getValueType(ResNo), true))
    577     return;
    578 
    579   switch (N->getOpcode()) {
    580   default:
    581 #ifndef NDEBUG
    582     dbgs() << "SplitVectorResult #" << ResNo << ": ";
    583     N->dump(&DAG);
    584     dbgs() << "\n";
    585 #endif
    586     report_fatal_error("Do not know how to split the result of this "
    587                        "operator!\n");
    588 
    589   case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
    590   case ISD::VSELECT:
    591   case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
    592   case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
    593   case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
    594   case ISD::BITCAST:           SplitVecRes_BITCAST(N, Lo, Hi); break;
    595   case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
    596   case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
    597   case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
    598   case ISD::INSERT_SUBVECTOR:  SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
    599   case ISD::FP_ROUND_INREG:    SplitVecRes_InregOp(N, Lo, Hi); break;
    600   case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
    601   case ISD::FCOPYSIGN:         SplitVecRes_FCOPYSIGN(N, Lo, Hi); break;
    602   case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
    603   case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
    604   case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
    605   case ISD::LOAD:
    606     SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
    607     break;
    608   case ISD::MLOAD:
    609     SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
    610     break;
    611   case ISD::MGATHER:
    612     SplitVecRes_MGATHER(cast<MaskedGatherSDNode>(N), Lo, Hi);
    613     break;
    614   case ISD::SETCC:
    615     SplitVecRes_SETCC(N, Lo, Hi);
    616     break;
    617   case ISD::VECTOR_SHUFFLE:
    618     SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
    619     break;
    620 
    621   case ISD::ANY_EXTEND_VECTOR_INREG:
    622   case ISD::SIGN_EXTEND_VECTOR_INREG:
    623   case ISD::ZERO_EXTEND_VECTOR_INREG:
    624     SplitVecRes_ExtVecInRegOp(N, Lo, Hi);
    625     break;
    626 
    627   case ISD::BITREVERSE:
    628   case ISD::BSWAP:
    629   case ISD::CONVERT_RNDSAT:
    630   case ISD::CTLZ:
    631   case ISD::CTTZ:
    632   case ISD::CTLZ_ZERO_UNDEF:
    633   case ISD::CTTZ_ZERO_UNDEF:
    634   case ISD::CTPOP:
    635   case ISD::FABS:
    636   case ISD::FCEIL:
    637   case ISD::FCOS:
    638   case ISD::FEXP:
    639   case ISD::FEXP2:
    640   case ISD::FFLOOR:
    641   case ISD::FLOG:
    642   case ISD::FLOG10:
    643   case ISD::FLOG2:
    644   case ISD::FNEARBYINT:
    645   case ISD::FNEG:
    646   case ISD::FP_EXTEND:
    647   case ISD::FP_ROUND:
    648   case ISD::FP_TO_SINT:
    649   case ISD::FP_TO_UINT:
    650   case ISD::FRINT:
    651   case ISD::FROUND:
    652   case ISD::FSIN:
    653   case ISD::FSQRT:
    654   case ISD::FTRUNC:
    655   case ISD::SINT_TO_FP:
    656   case ISD::TRUNCATE:
    657   case ISD::UINT_TO_FP:
    658     SplitVecRes_UnaryOp(N, Lo, Hi);
    659     break;
    660 
    661   case ISD::ANY_EXTEND:
    662   case ISD::SIGN_EXTEND:
    663   case ISD::ZERO_EXTEND:
    664     SplitVecRes_ExtendOp(N, Lo, Hi);
    665     break;
    666 
    667   case ISD::ADD:
    668   case ISD::SUB:
    669   case ISD::MUL:
    670   case ISD::MULHS:
    671   case ISD::MULHU:
    672   case ISD::FADD:
    673   case ISD::FSUB:
    674   case ISD::FMUL:
    675   case ISD::FMINNUM:
    676   case ISD::FMAXNUM:
    677   case ISD::FMINNAN:
    678   case ISD::FMAXNAN:
    679   case ISD::SDIV:
    680   case ISD::UDIV:
    681   case ISD::FDIV:
    682   case ISD::FPOW:
    683   case ISD::AND:
    684   case ISD::OR:
    685   case ISD::XOR:
    686   case ISD::SHL:
    687   case ISD::SRA:
    688   case ISD::SRL:
    689   case ISD::UREM:
    690   case ISD::SREM:
    691   case ISD::FREM:
    692   case ISD::SMIN:
    693   case ISD::SMAX:
    694   case ISD::UMIN:
    695   case ISD::UMAX:
    696     SplitVecRes_BinOp(N, Lo, Hi);
    697     break;
    698   case ISD::FMA:
    699     SplitVecRes_TernaryOp(N, Lo, Hi);
    700     break;
    701   }
    702 
    703   // If Lo/Hi is null, the sub-method took care of registering results etc.
    704   if (Lo.getNode())
    705     SetSplitVector(SDValue(N, ResNo), Lo, Hi);
    706 }
    707 
    708 void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
    709                                          SDValue &Hi) {
    710   SDValue LHSLo, LHSHi;
    711   GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
    712   SDValue RHSLo, RHSHi;
    713   GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
    714   SDLoc dl(N);
    715 
    716   const SDNodeFlags *Flags = N->getFlags();
    717   unsigned Opcode = N->getOpcode();
    718   Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Flags);
    719   Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Flags);
    720 }
    721 
    722 void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
    723                                              SDValue &Hi) {
    724   SDValue Op0Lo, Op0Hi;
    725   GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
    726   SDValue Op1Lo, Op1Hi;
    727   GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
    728   SDValue Op2Lo, Op2Hi;
    729   GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
    730   SDLoc dl(N);
    731 
    732   Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
    733                    Op0Lo, Op1Lo, Op2Lo);
    734   Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
    735                    Op0Hi, Op1Hi, Op2Hi);
    736 }
    737 
    738 void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
    739                                            SDValue &Hi) {
    740   // We know the result is a vector.  The input may be either a vector or a
    741   // scalar value.
    742   EVT LoVT, HiVT;
    743   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
    744   SDLoc dl(N);
    745 
    746   SDValue InOp = N->getOperand(0);
    747   EVT InVT = InOp.getValueType();
    748 
    749   // Handle some special cases efficiently.
    750   switch (getTypeAction(InVT)) {
    751   case TargetLowering::TypeLegal:
    752   case TargetLowering::TypePromoteInteger:
    753   case TargetLowering::TypePromoteFloat:
    754   case TargetLowering::TypeSoftenFloat:
    755   case TargetLowering::TypeScalarizeVector:
    756   case TargetLowering::TypeWidenVector:
    757     break;
    758   case TargetLowering::TypeExpandInteger:
    759   case TargetLowering::TypeExpandFloat:
    760     // A scalar to vector conversion, where the scalar needs expansion.
    761     // If the vector is being split in two then we can just convert the
    762     // expanded pieces.
    763     if (LoVT == HiVT) {
    764       GetExpandedOp(InOp, Lo, Hi);
    765       if (DAG.getDataLayout().isBigEndian())
    766         std::swap(Lo, Hi);
    767       Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
    768       Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
    769       return;
    770     }
    771     break;
    772   case TargetLowering::TypeSplitVector:
    773     // If the input is a vector that needs to be split, convert each split
    774     // piece of the input now.
    775     GetSplitVector(InOp, Lo, Hi);
    776     Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
    777     Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
    778     return;
    779   }
    780 
    781   // In the general case, convert the input to an integer and split it by hand.
    782   EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
    783   EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
    784   if (DAG.getDataLayout().isBigEndian())
    785     std::swap(LoIntVT, HiIntVT);
    786 
    787   SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
    788 
    789   if (DAG.getDataLayout().isBigEndian())
    790     std::swap(Lo, Hi);
    791   Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
    792   Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
    793 }
    794 
    795 void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
    796                                                 SDValue &Hi) {
    797   EVT LoVT, HiVT;
    798   SDLoc dl(N);
    799   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
    800   unsigned LoNumElts = LoVT.getVectorNumElements();
    801   SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
    802   Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps);
    803 
    804   SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
    805   Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps);
    806 }
    807 
    808 void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
    809                                                   SDValue &Hi) {
    810   assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
    811   SDLoc dl(N);
    812   unsigned NumSubvectors = N->getNumOperands() / 2;
    813   if (NumSubvectors == 1) {
    814     Lo = N->getOperand(0);
    815     Hi = N->getOperand(1);
    816     return;
    817   }
    818 
    819   EVT LoVT, HiVT;
    820   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
    821 
    822   SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
    823   Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
    824 
    825   SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
    826   Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
    827 }
    828 
    829 void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
    830                                                      SDValue &Hi) {
    831   SDValue Vec = N->getOperand(0);
    832   SDValue Idx = N->getOperand(1);
    833   SDLoc dl(N);
    834 
    835   EVT LoVT, HiVT;
    836   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
    837 
    838   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
    839   uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
    840   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
    841                    DAG.getConstant(IdxVal + LoVT.getVectorNumElements(), dl,
    842                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
    843 }
    844 
    845 void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
    846                                                     SDValue &Hi) {
    847   SDValue Vec = N->getOperand(0);
    848   SDValue SubVec = N->getOperand(1);
    849   SDValue Idx = N->getOperand(2);
    850   SDLoc dl(N);
    851   GetSplitVector(Vec, Lo, Hi);
    852 
    853   EVT VecVT = Vec.getValueType();
    854   EVT VecElemVT = VecVT.getVectorElementType();
    855   unsigned VecElems = VecVT.getVectorNumElements();
    856   unsigned SubElems = SubVec.getValueType().getVectorNumElements();
    857 
    858   // If we know the index is 0, and we know the subvector doesn't cross the
    859   // boundary between the halves, we can avoid spilling the vector, and insert
    860   // into the lower half of the split vector directly.
    861   // TODO: The IdxVal == 0 constraint is artificial, we could do this whenever
    862   // the index is constant and there is no boundary crossing. But those cases
    863   // don't seem to get hit in practice.
    864   if (ConstantSDNode *ConstIdx = dyn_cast<ConstantSDNode>(Idx)) {
    865     unsigned IdxVal = ConstIdx->getZExtValue();
    866     if ((IdxVal == 0) && (IdxVal + SubElems <= VecElems / 2)) {
    867       EVT LoVT, HiVT;
    868       std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
    869       Lo = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, LoVT, Lo, SubVec, Idx);
    870       return;
    871     }
    872   }
    873 
    874   // Spill the vector to the stack.
    875   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
    876   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
    877                                MachinePointerInfo(), false, false, 0);
    878 
    879   // Store the new subvector into the specified index.
    880   SDValue SubVecPtr = GetVectorElementPointer(StackPtr, VecElemVT, Idx);
    881   Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
    882   unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
    883   Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(),
    884                        false, false, 0);
    885 
    886   // Load the Lo part from the stack slot.
    887   Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
    888                    false, false, false, 0);
    889 
    890   // Increment the pointer to the other part.
    891   unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
    892   StackPtr =
    893       DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
    894                   DAG.getConstant(IncrementSize, dl, StackPtr.getValueType()));
    895 
    896   // Load the Hi part from the stack slot.
    897   Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
    898                    false, false, false, MinAlign(Alignment, IncrementSize));
    899 }
    900 
    901 void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
    902                                          SDValue &Hi) {
    903   SDLoc dl(N);
    904   GetSplitVector(N->getOperand(0), Lo, Hi);
    905   Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
    906   Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
    907 }
    908 
    909 void DAGTypeLegalizer::SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo,
    910                                              SDValue &Hi) {
    911   SDValue LHSLo, LHSHi;
    912   GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
    913   SDLoc DL(N);
    914 
    915   SDValue RHSLo, RHSHi;
    916   SDValue RHS = N->getOperand(1);
    917   EVT RHSVT = RHS.getValueType();
    918   if (getTypeAction(RHSVT) == TargetLowering::TypeSplitVector)
    919     GetSplitVector(RHS, RHSLo, RHSHi);
    920   else
    921     std::tie(RHSLo, RHSHi) = DAG.SplitVector(RHS, SDLoc(RHS));
    922 
    923 
    924   Lo = DAG.getNode(ISD::FCOPYSIGN, DL, LHSLo.getValueType(), LHSLo, RHSLo);
    925   Hi = DAG.getNode(ISD::FCOPYSIGN, DL, LHSHi.getValueType(), LHSHi, RHSHi);
    926 }
    927 
    928 void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
    929                                            SDValue &Hi) {
    930   SDValue LHSLo, LHSHi;
    931   GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
    932   SDLoc dl(N);
    933 
    934   EVT LoVT, HiVT;
    935   std::tie(LoVT, HiVT) =
    936     DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
    937 
    938   Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
    939                    DAG.getValueType(LoVT));
    940   Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
    941                    DAG.getValueType(HiVT));
    942 }
    943 
    944 void DAGTypeLegalizer::SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo,
    945                                                  SDValue &Hi) {
    946   unsigned Opcode = N->getOpcode();
    947   SDValue N0 = N->getOperand(0);
    948 
    949   SDLoc dl(N);
    950   SDValue InLo, InHi;
    951   GetSplitVector(N0, InLo, InHi);
    952   EVT InLoVT = InLo.getValueType();
    953   unsigned InNumElements = InLoVT.getVectorNumElements();
    954 
    955   EVT OutLoVT, OutHiVT;
    956   std::tie(OutLoVT, OutHiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
    957   unsigned OutNumElements = OutLoVT.getVectorNumElements();
    958   assert((2 * OutNumElements) <= InNumElements &&
    959          "Illegal extend vector in reg split");
    960 
    961   // *_EXTEND_VECTOR_INREG instructions extend the lowest elements of the
    962   // input vector (i.e. we only use InLo):
    963   // OutLo will extend the first OutNumElements from InLo.
    964   // OutHi will extend the next OutNumElements from InLo.
    965 
    966   // Shuffle the elements from InLo for OutHi into the bottom elements to
    967   // create a 'fake' InHi.
    968   SmallVector<int, 8> SplitHi(InNumElements, -1);
    969   for (unsigned i = 0; i != OutNumElements; ++i)
    970     SplitHi[i] = i + OutNumElements;
    971   InHi = DAG.getVectorShuffle(InLoVT, dl, InLo, DAG.getUNDEF(InLoVT), SplitHi);
    972 
    973   Lo = DAG.getNode(Opcode, dl, OutLoVT, InLo);
    974   Hi = DAG.getNode(Opcode, dl, OutHiVT, InHi);
    975 }
    976 
    977 void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
    978                                                      SDValue &Hi) {
    979   SDValue Vec = N->getOperand(0);
    980   SDValue Elt = N->getOperand(1);
    981   SDValue Idx = N->getOperand(2);
    982   SDLoc dl(N);
    983   GetSplitVector(Vec, Lo, Hi);
    984 
    985   if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
    986     unsigned IdxVal = CIdx->getZExtValue();
    987     unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
    988     if (IdxVal < LoNumElts)
    989       Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
    990                        Lo.getValueType(), Lo, Elt, Idx);
    991     else
    992       Hi =
    993           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
    994                       DAG.getConstant(IdxVal - LoNumElts, dl,
    995                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
    996     return;
    997   }
    998 
    999   // See if the target wants to custom expand this node.
   1000   if (CustomLowerNode(N, N->getValueType(0), true))
   1001     return;
   1002 
   1003   // Spill the vector to the stack.
   1004   EVT VecVT = Vec.getValueType();
   1005   EVT EltVT = VecVT.getVectorElementType();
   1006   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
   1007   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
   1008                                MachinePointerInfo(), false, false, 0);
   1009 
   1010   // Store the new element.  This may be larger than the vector element type,
   1011   // so use a truncating store.
   1012   SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
   1013   Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
   1014   unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
   1015   Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
   1016                             false, false, 0);
   1017 
   1018   // Load the Lo part from the stack slot.
   1019   Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
   1020                    false, false, false, 0);
   1021 
   1022   // Increment the pointer to the other part.
   1023   unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
   1024   StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
   1025                          DAG.getConstant(IncrementSize, dl,
   1026                                          StackPtr.getValueType()));
   1027 
   1028   // Load the Hi part from the stack slot.
   1029   Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
   1030                    false, false, false, MinAlign(Alignment, IncrementSize));
   1031 }
   1032 
   1033 void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
   1034                                                     SDValue &Hi) {
   1035   EVT LoVT, HiVT;
   1036   SDLoc dl(N);
   1037   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
   1038   Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
   1039   Hi = DAG.getUNDEF(HiVT);
   1040 }
   1041 
   1042 void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
   1043                                         SDValue &Hi) {
   1044   assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
   1045   EVT LoVT, HiVT;
   1046   SDLoc dl(LD);
   1047   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
   1048 
   1049   ISD::LoadExtType ExtType = LD->getExtensionType();
   1050   SDValue Ch = LD->getChain();
   1051   SDValue Ptr = LD->getBasePtr();
   1052   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
   1053   EVT MemoryVT = LD->getMemoryVT();
   1054   unsigned Alignment = LD->getOriginalAlignment();
   1055   bool isVolatile = LD->isVolatile();
   1056   bool isNonTemporal = LD->isNonTemporal();
   1057   bool isInvariant = LD->isInvariant();
   1058   AAMDNodes AAInfo = LD->getAAInfo();
   1059 
   1060   EVT LoMemVT, HiMemVT;
   1061   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1062 
   1063   Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
   1064                    LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
   1065                    isInvariant, Alignment, AAInfo);
   1066 
   1067   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
   1068   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
   1069                     DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
   1070   Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
   1071                    LD->getPointerInfo().getWithOffset(IncrementSize),
   1072                    HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
   1073                    AAInfo);
   1074 
   1075   // Build a factor node to remember that this load is independent of the
   1076   // other one.
   1077   Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1078                    Hi.getValue(1));
   1079 
   1080   // Legalize the chain result - switch anything that used the old chain to
   1081   // use the new one.
   1082   ReplaceValueWith(SDValue(LD, 1), Ch);
   1083 }
   1084 
   1085 void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
   1086                                          SDValue &Lo, SDValue &Hi) {
   1087   EVT LoVT, HiVT;
   1088   SDLoc dl(MLD);
   1089   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
   1090 
   1091   SDValue Ch = MLD->getChain();
   1092   SDValue Ptr = MLD->getBasePtr();
   1093   SDValue Mask = MLD->getMask();
   1094   SDValue Src0 = MLD->getSrc0();
   1095   unsigned Alignment = MLD->getOriginalAlignment();
   1096   ISD::LoadExtType ExtType = MLD->getExtensionType();
   1097 
   1098   // if Alignment is equal to the vector size,
   1099   // take the half of it for the second part
   1100   unsigned SecondHalfAlignment =
   1101     (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
   1102      Alignment/2 : Alignment;
   1103 
   1104   // Split Mask operand
   1105   SDValue MaskLo, MaskHi;
   1106   if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
   1107     GetSplitVector(Mask, MaskLo, MaskHi);
   1108   else
   1109     std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
   1110 
   1111   EVT MemoryVT = MLD->getMemoryVT();
   1112   EVT LoMemVT, HiMemVT;
   1113   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1114 
   1115   SDValue Src0Lo, Src0Hi;
   1116   if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
   1117     GetSplitVector(Src0, Src0Lo, Src0Hi);
   1118   else
   1119     std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
   1120 
   1121   MachineMemOperand *MMO = DAG.getMachineFunction().
   1122     getMachineMemOperand(MLD->getPointerInfo(),
   1123                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
   1124                          Alignment, MLD->getAAInfo(), MLD->getRanges());
   1125 
   1126   Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
   1127                          ExtType);
   1128 
   1129   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
   1130   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
   1131                     DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
   1132 
   1133   MMO = DAG.getMachineFunction().
   1134     getMachineMemOperand(MLD->getPointerInfo(),
   1135                          MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
   1136                          SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
   1137 
   1138   Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
   1139                          ExtType);
   1140 
   1141 
   1142   // Build a factor node to remember that this load is independent of the
   1143   // other one.
   1144   Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1145                    Hi.getValue(1));
   1146 
   1147   // Legalize the chain result - switch anything that used the old chain to
   1148   // use the new one.
   1149   ReplaceValueWith(SDValue(MLD, 1), Ch);
   1150 
   1151 }
   1152 
   1153 void DAGTypeLegalizer::SplitVecRes_MGATHER(MaskedGatherSDNode *MGT,
   1154                                          SDValue &Lo, SDValue &Hi) {
   1155   EVT LoVT, HiVT;
   1156   SDLoc dl(MGT);
   1157   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
   1158 
   1159   SDValue Ch = MGT->getChain();
   1160   SDValue Ptr = MGT->getBasePtr();
   1161   SDValue Mask = MGT->getMask();
   1162   SDValue Src0 = MGT->getValue();
   1163   SDValue Index = MGT->getIndex();
   1164   unsigned Alignment = MGT->getOriginalAlignment();
   1165 
   1166   // Split Mask operand
   1167   SDValue MaskLo, MaskHi;
   1168   if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
   1169     GetSplitVector(Mask, MaskLo, MaskHi);
   1170   else
   1171     std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
   1172 
   1173   EVT MemoryVT = MGT->getMemoryVT();
   1174   EVT LoMemVT, HiMemVT;
   1175   // Split MemoryVT
   1176   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1177 
   1178   SDValue Src0Lo, Src0Hi;
   1179   if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
   1180     GetSplitVector(Src0, Src0Lo, Src0Hi);
   1181   else
   1182     std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
   1183 
   1184   SDValue IndexHi, IndexLo;
   1185   if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
   1186     GetSplitVector(Index, IndexLo, IndexHi);
   1187   else
   1188     std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
   1189 
   1190   MachineMemOperand *MMO = DAG.getMachineFunction().
   1191     getMachineMemOperand(MGT->getPointerInfo(),
   1192                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
   1193                          Alignment, MGT->getAAInfo(), MGT->getRanges());
   1194 
   1195   SDValue OpsLo[] = {Ch, Src0Lo, MaskLo, Ptr, IndexLo};
   1196   Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl, OpsLo,
   1197                            MMO);
   1198 
   1199   SDValue OpsHi[] = {Ch, Src0Hi, MaskHi, Ptr, IndexHi};
   1200   Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl, OpsHi,
   1201                            MMO);
   1202 
   1203   // Build a factor node to remember that this load is independent of the
   1204   // other one.
   1205   Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1206                    Hi.getValue(1));
   1207 
   1208   // Legalize the chain result - switch anything that used the old chain to
   1209   // use the new one.
   1210   ReplaceValueWith(SDValue(MGT, 1), Ch);
   1211 }
   1212 
   1213 
   1214 void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
   1215   assert(N->getValueType(0).isVector() &&
   1216          N->getOperand(0).getValueType().isVector() &&
   1217          "Operand types must be vectors");
   1218 
   1219   EVT LoVT, HiVT;
   1220   SDLoc DL(N);
   1221   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
   1222 
   1223   // Split the input.
   1224   SDValue LL, LH, RL, RH;
   1225   std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
   1226   std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
   1227 
   1228   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
   1229   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
   1230 }
   1231 
   1232 void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
   1233                                            SDValue &Hi) {
   1234   // Get the dest types - they may not match the input types, e.g. int_to_fp.
   1235   EVT LoVT, HiVT;
   1236   SDLoc dl(N);
   1237   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
   1238 
   1239   // If the input also splits, handle it directly for a compile time speedup.
   1240   // Otherwise split it by hand.
   1241   EVT InVT = N->getOperand(0).getValueType();
   1242   if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
   1243     GetSplitVector(N->getOperand(0), Lo, Hi);
   1244   else
   1245     std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
   1246 
   1247   if (N->getOpcode() == ISD::FP_ROUND) {
   1248     Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
   1249     Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
   1250   } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
   1251     SDValue DTyOpLo = DAG.getValueType(LoVT);
   1252     SDValue DTyOpHi = DAG.getValueType(HiVT);
   1253     SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
   1254     SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
   1255     SDValue RndOp = N->getOperand(3);
   1256     SDValue SatOp = N->getOperand(4);
   1257     ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
   1258     Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
   1259                               CvtCode);
   1260     Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
   1261                               CvtCode);
   1262   } else {
   1263     Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
   1264     Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
   1265   }
   1266 }
   1267 
   1268 void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
   1269                                             SDValue &Hi) {
   1270   SDLoc dl(N);
   1271   EVT SrcVT = N->getOperand(0).getValueType();
   1272   EVT DestVT = N->getValueType(0);
   1273   EVT LoVT, HiVT;
   1274   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
   1275 
   1276   // We can do better than a generic split operation if the extend is doing
   1277   // more than just doubling the width of the elements and the following are
   1278   // true:
   1279   //   - The number of vector elements is even,
   1280   //   - the source type is legal,
   1281   //   - the type of a split source is illegal,
   1282   //   - the type of an extended (by doubling element size) source is legal, and
   1283   //   - the type of that extended source when split is legal.
   1284   //
   1285   // This won't necessarily completely legalize the operation, but it will
   1286   // more effectively move in the right direction and prevent falling down
   1287   // to scalarization in many cases due to the input vector being split too
   1288   // far.
   1289   unsigned NumElements = SrcVT.getVectorNumElements();
   1290   if ((NumElements & 1) == 0 &&
   1291       SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
   1292     LLVMContext &Ctx = *DAG.getContext();
   1293     EVT NewSrcVT = EVT::getVectorVT(
   1294         Ctx, EVT::getIntegerVT(
   1295                  Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
   1296         NumElements);
   1297     EVT SplitSrcVT =
   1298         EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
   1299     EVT SplitLoVT, SplitHiVT;
   1300     std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
   1301     if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
   1302         TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
   1303       DEBUG(dbgs() << "Split vector extend via incremental extend:";
   1304             N->dump(&DAG); dbgs() << "\n");
   1305       // Extend the source vector by one step.
   1306       SDValue NewSrc =
   1307           DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
   1308       // Get the low and high halves of the new, extended one step, vector.
   1309       std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
   1310       // Extend those vector halves the rest of the way.
   1311       Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
   1312       Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
   1313       return;
   1314     }
   1315   }
   1316   // Fall back to the generic unary operator splitting otherwise.
   1317   SplitVecRes_UnaryOp(N, Lo, Hi);
   1318 }
   1319 
   1320 void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
   1321                                                   SDValue &Lo, SDValue &Hi) {
   1322   // The low and high parts of the original input give four input vectors.
   1323   SDValue Inputs[4];
   1324   SDLoc dl(N);
   1325   GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
   1326   GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
   1327   EVT NewVT = Inputs[0].getValueType();
   1328   unsigned NewElts = NewVT.getVectorNumElements();
   1329 
   1330   // If Lo or Hi uses elements from at most two of the four input vectors, then
   1331   // express it as a vector shuffle of those two inputs.  Otherwise extract the
   1332   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
   1333   SmallVector<int, 16> Ops;
   1334   for (unsigned High = 0; High < 2; ++High) {
   1335     SDValue &Output = High ? Hi : Lo;
   1336 
   1337     // Build a shuffle mask for the output, discovering on the fly which
   1338     // input vectors to use as shuffle operands (recorded in InputUsed).
   1339     // If building a suitable shuffle vector proves too hard, then bail
   1340     // out with useBuildVector set.
   1341     unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
   1342     unsigned FirstMaskIdx = High * NewElts;
   1343     bool useBuildVector = false;
   1344     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
   1345       // The mask element.  This indexes into the input.
   1346       int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
   1347 
   1348       // The input vector this mask element indexes into.
   1349       unsigned Input = (unsigned)Idx / NewElts;
   1350 
   1351       if (Input >= array_lengthof(Inputs)) {
   1352         // The mask element does not index into any input vector.
   1353         Ops.push_back(-1);
   1354         continue;
   1355       }
   1356 
   1357       // Turn the index into an offset from the start of the input vector.
   1358       Idx -= Input * NewElts;
   1359 
   1360       // Find or create a shuffle vector operand to hold this input.
   1361       unsigned OpNo;
   1362       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
   1363         if (InputUsed[OpNo] == Input) {
   1364           // This input vector is already an operand.
   1365           break;
   1366         } else if (InputUsed[OpNo] == -1U) {
   1367           // Create a new operand for this input vector.
   1368           InputUsed[OpNo] = Input;
   1369           break;
   1370         }
   1371       }
   1372 
   1373       if (OpNo >= array_lengthof(InputUsed)) {
   1374         // More than two input vectors used!  Give up on trying to create a
   1375         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
   1376         useBuildVector = true;
   1377         break;
   1378       }
   1379 
   1380       // Add the mask index for the new shuffle vector.
   1381       Ops.push_back(Idx + OpNo * NewElts);
   1382     }
   1383 
   1384     if (useBuildVector) {
   1385       EVT EltVT = NewVT.getVectorElementType();
   1386       SmallVector<SDValue, 16> SVOps;
   1387 
   1388       // Extract the input elements by hand.
   1389       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
   1390         // The mask element.  This indexes into the input.
   1391         int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
   1392 
   1393         // The input vector this mask element indexes into.
   1394         unsigned Input = (unsigned)Idx / NewElts;
   1395 
   1396         if (Input >= array_lengthof(Inputs)) {
   1397           // The mask element is "undef" or indexes off the end of the input.
   1398           SVOps.push_back(DAG.getUNDEF(EltVT));
   1399           continue;
   1400         }
   1401 
   1402         // Turn the index into an offset from the start of the input vector.
   1403         Idx -= Input * NewElts;
   1404 
   1405         // Extract the vector element by hand.
   1406         SVOps.push_back(DAG.getNode(
   1407             ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Inputs[Input],
   1408             DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
   1409       }
   1410 
   1411       // Construct the Lo/Hi output using a BUILD_VECTOR.
   1412       Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps);
   1413     } else if (InputUsed[0] == -1U) {
   1414       // No input vectors were used!  The result is undefined.
   1415       Output = DAG.getUNDEF(NewVT);
   1416     } else {
   1417       SDValue Op0 = Inputs[InputUsed[0]];
   1418       // If only one input was used, use an undefined vector for the other.
   1419       SDValue Op1 = InputUsed[1] == -1U ?
   1420         DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
   1421       // At least one input vector was used.  Create a new shuffle vector.
   1422       Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, Ops);
   1423     }
   1424 
   1425     Ops.clear();
   1426   }
   1427 }
   1428 
   1429 
   1430 //===----------------------------------------------------------------------===//
   1431 //  Operand Vector Splitting
   1432 //===----------------------------------------------------------------------===//
   1433 
   1434 /// This method is called when the specified operand of the specified node is
   1435 /// found to need vector splitting. At this point, all of the result types of
   1436 /// the node are known to be legal, but other operands of the node may need
   1437 /// legalization as well as the specified one.
   1438 bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
   1439   DEBUG(dbgs() << "Split node operand: ";
   1440         N->dump(&DAG);
   1441         dbgs() << "\n");
   1442   SDValue Res = SDValue();
   1443 
   1444   // See if the target wants to custom split this node.
   1445   if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
   1446     return false;
   1447 
   1448   if (!Res.getNode()) {
   1449     switch (N->getOpcode()) {
   1450     default:
   1451 #ifndef NDEBUG
   1452       dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
   1453       N->dump(&DAG);
   1454       dbgs() << "\n";
   1455 #endif
   1456       report_fatal_error("Do not know how to split this operator's "
   1457                          "operand!\n");
   1458 
   1459     case ISD::SETCC:             Res = SplitVecOp_VSETCC(N); break;
   1460     case ISD::BITCAST:           Res = SplitVecOp_BITCAST(N); break;
   1461     case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
   1462     case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
   1463     case ISD::CONCAT_VECTORS:    Res = SplitVecOp_CONCAT_VECTORS(N); break;
   1464     case ISD::TRUNCATE:
   1465       Res = SplitVecOp_TruncateHelper(N);
   1466       break;
   1467     case ISD::FP_ROUND:          Res = SplitVecOp_FP_ROUND(N); break;
   1468     case ISD::FCOPYSIGN:         Res = SplitVecOp_FCOPYSIGN(N); break;
   1469     case ISD::STORE:
   1470       Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
   1471       break;
   1472     case ISD::MSTORE:
   1473       Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
   1474       break;
   1475     case ISD::MSCATTER:
   1476       Res = SplitVecOp_MSCATTER(cast<MaskedScatterSDNode>(N), OpNo);
   1477       break;
   1478     case ISD::MGATHER:
   1479       Res = SplitVecOp_MGATHER(cast<MaskedGatherSDNode>(N), OpNo);
   1480       break;
   1481     case ISD::VSELECT:
   1482       Res = SplitVecOp_VSELECT(N, OpNo);
   1483       break;
   1484     case ISD::FP_TO_SINT:
   1485     case ISD::FP_TO_UINT:
   1486       if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
   1487         Res = SplitVecOp_TruncateHelper(N);
   1488       else
   1489         Res = SplitVecOp_UnaryOp(N);
   1490       break;
   1491     case ISD::SINT_TO_FP:
   1492     case ISD::UINT_TO_FP:
   1493       if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
   1494         Res = SplitVecOp_TruncateHelper(N);
   1495       else
   1496         Res = SplitVecOp_UnaryOp(N);
   1497       break;
   1498     case ISD::CTTZ:
   1499     case ISD::CTLZ:
   1500     case ISD::CTPOP:
   1501     case ISD::FP_EXTEND:
   1502     case ISD::SIGN_EXTEND:
   1503     case ISD::ZERO_EXTEND:
   1504     case ISD::ANY_EXTEND:
   1505     case ISD::FTRUNC:
   1506       Res = SplitVecOp_UnaryOp(N);
   1507       break;
   1508     }
   1509   }
   1510 
   1511   // If the result is null, the sub-method took care of registering results etc.
   1512   if (!Res.getNode()) return false;
   1513 
   1514   // If the result is N, the sub-method updated N in place.  Tell the legalizer
   1515   // core about this.
   1516   if (Res.getNode() == N)
   1517     return true;
   1518 
   1519   assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
   1520          "Invalid operand expansion");
   1521 
   1522   ReplaceValueWith(SDValue(N, 0), Res);
   1523   return false;
   1524 }
   1525 
   1526 SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
   1527   // The only possibility for an illegal operand is the mask, since result type
   1528   // legalization would have handled this node already otherwise.
   1529   assert(OpNo == 0 && "Illegal operand must be mask");
   1530 
   1531   SDValue Mask = N->getOperand(0);
   1532   SDValue Src0 = N->getOperand(1);
   1533   SDValue Src1 = N->getOperand(2);
   1534   EVT Src0VT = Src0.getValueType();
   1535   SDLoc DL(N);
   1536   assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
   1537 
   1538   SDValue Lo, Hi;
   1539   GetSplitVector(N->getOperand(0), Lo, Hi);
   1540   assert(Lo.getValueType() == Hi.getValueType() &&
   1541          "Lo and Hi have differing types");
   1542 
   1543   EVT LoOpVT, HiOpVT;
   1544   std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
   1545   assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
   1546 
   1547   SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
   1548   std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
   1549   std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
   1550   std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
   1551 
   1552   SDValue LoSelect =
   1553     DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
   1554   SDValue HiSelect =
   1555     DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
   1556 
   1557   return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
   1558 }
   1559 
   1560 SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
   1561   // The result has a legal vector type, but the input needs splitting.
   1562   EVT ResVT = N->getValueType(0);
   1563   SDValue Lo, Hi;
   1564   SDLoc dl(N);
   1565   GetSplitVector(N->getOperand(0), Lo, Hi);
   1566   EVT InVT = Lo.getValueType();
   1567 
   1568   EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
   1569                                InVT.getVectorNumElements());
   1570 
   1571   Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
   1572   Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
   1573 
   1574   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
   1575 }
   1576 
   1577 SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
   1578   // For example, i64 = BITCAST v4i16 on alpha.  Typically the vector will
   1579   // end up being split all the way down to individual components.  Convert the
   1580   // split pieces into integers and reassemble.
   1581   SDValue Lo, Hi;
   1582   GetSplitVector(N->getOperand(0), Lo, Hi);
   1583   Lo = BitConvertToInteger(Lo);
   1584   Hi = BitConvertToInteger(Hi);
   1585 
   1586   if (DAG.getDataLayout().isBigEndian())
   1587     std::swap(Lo, Hi);
   1588 
   1589   return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
   1590                      JoinIntegers(Lo, Hi));
   1591 }
   1592 
   1593 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
   1594   // We know that the extracted result type is legal.
   1595   EVT SubVT = N->getValueType(0);
   1596   SDValue Idx = N->getOperand(1);
   1597   SDLoc dl(N);
   1598   SDValue Lo, Hi;
   1599   GetSplitVector(N->getOperand(0), Lo, Hi);
   1600 
   1601   uint64_t LoElts = Lo.getValueType().getVectorNumElements();
   1602   uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   1603 
   1604   if (IdxVal < LoElts) {
   1605     assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
   1606            "Extracted subvector crosses vector split!");
   1607     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
   1608   } else {
   1609     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
   1610                        DAG.getConstant(IdxVal - LoElts, dl,
   1611                                        Idx.getValueType()));
   1612   }
   1613 }
   1614 
   1615 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
   1616   SDValue Vec = N->getOperand(0);
   1617   SDValue Idx = N->getOperand(1);
   1618   EVT VecVT = Vec.getValueType();
   1619 
   1620   if (isa<ConstantSDNode>(Idx)) {
   1621     uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   1622     assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
   1623 
   1624     SDValue Lo, Hi;
   1625     GetSplitVector(Vec, Lo, Hi);
   1626 
   1627     uint64_t LoElts = Lo.getValueType().getVectorNumElements();
   1628 
   1629     if (IdxVal < LoElts)
   1630       return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
   1631     return SDValue(DAG.UpdateNodeOperands(N, Hi,
   1632                                   DAG.getConstant(IdxVal - LoElts, SDLoc(N),
   1633                                                   Idx.getValueType())), 0);
   1634   }
   1635 
   1636   // See if the target wants to custom expand this node.
   1637   if (CustomLowerNode(N, N->getValueType(0), true))
   1638     return SDValue();
   1639 
   1640   // Make the vector elements byte-addressable if they aren't already.
   1641   SDLoc dl(N);
   1642   EVT EltVT = VecVT.getVectorElementType();
   1643   if (EltVT.getSizeInBits() < 8) {
   1644     SmallVector<SDValue, 4> ElementOps;
   1645     for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) {
   1646       ElementOps.push_back(DAG.getAnyExtOrTrunc(
   1647           DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vec,
   1648                       DAG.getConstant(i, dl, MVT::i8)),
   1649           dl, MVT::i8));
   1650     }
   1651 
   1652     EltVT = MVT::i8;
   1653     VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
   1654                              VecVT.getVectorNumElements());
   1655     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, ElementOps);
   1656   }
   1657 
   1658   // Store the vector to the stack.
   1659   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
   1660   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
   1661                                MachinePointerInfo(), false, false, 0);
   1662 
   1663   // Load back the required element.
   1664   StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
   1665   return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
   1666                         MachinePointerInfo(), EltVT, false, false, false, 0);
   1667 }
   1668 
   1669 SDValue DAGTypeLegalizer::SplitVecOp_MGATHER(MaskedGatherSDNode *MGT,
   1670                                              unsigned OpNo) {
   1671   EVT LoVT, HiVT;
   1672   SDLoc dl(MGT);
   1673   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
   1674 
   1675   SDValue Ch = MGT->getChain();
   1676   SDValue Ptr = MGT->getBasePtr();
   1677   SDValue Index = MGT->getIndex();
   1678   SDValue Mask = MGT->getMask();
   1679   SDValue Src0 = MGT->getValue();
   1680   unsigned Alignment = MGT->getOriginalAlignment();
   1681 
   1682   SDValue MaskLo, MaskHi;
   1683   if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
   1684     // Split Mask operand
   1685     GetSplitVector(Mask, MaskLo, MaskHi);
   1686   else
   1687     std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
   1688 
   1689   EVT MemoryVT = MGT->getMemoryVT();
   1690   EVT LoMemVT, HiMemVT;
   1691   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1692 
   1693   SDValue Src0Lo, Src0Hi;
   1694   if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
   1695     GetSplitVector(Src0, Src0Lo, Src0Hi);
   1696   else
   1697     std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
   1698 
   1699   SDValue IndexHi, IndexLo;
   1700   if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
   1701     GetSplitVector(Index, IndexLo, IndexHi);
   1702   else
   1703     std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
   1704 
   1705   MachineMemOperand *MMO = DAG.getMachineFunction().
   1706     getMachineMemOperand(MGT->getPointerInfo(),
   1707                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
   1708                          Alignment, MGT->getAAInfo(), MGT->getRanges());
   1709 
   1710   SDValue OpsLo[] = {Ch, Src0Lo, MaskLo, Ptr, IndexLo};
   1711   SDValue Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl,
   1712                                    OpsLo, MMO);
   1713 
   1714   MMO = DAG.getMachineFunction().
   1715     getMachineMemOperand(MGT->getPointerInfo(),
   1716                          MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
   1717                          Alignment, MGT->getAAInfo(),
   1718                          MGT->getRanges());
   1719 
   1720   SDValue OpsHi[] = {Ch, Src0Hi, MaskHi, Ptr, IndexHi};
   1721   SDValue Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl,
   1722                                    OpsHi, MMO);
   1723 
   1724   // Build a factor node to remember that this load is independent of the
   1725   // other one.
   1726   Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
   1727                    Hi.getValue(1));
   1728 
   1729   // Legalize the chain result - switch anything that used the old chain to
   1730   // use the new one.
   1731   ReplaceValueWith(SDValue(MGT, 1), Ch);
   1732 
   1733   SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MGT->getValueType(0), Lo,
   1734                             Hi);
   1735   ReplaceValueWith(SDValue(MGT, 0), Res);
   1736   return SDValue();
   1737 }
   1738 
   1739 SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
   1740                                             unsigned OpNo) {
   1741   SDValue Ch  = N->getChain();
   1742   SDValue Ptr = N->getBasePtr();
   1743   SDValue Mask = N->getMask();
   1744   SDValue Data = N->getValue();
   1745   EVT MemoryVT = N->getMemoryVT();
   1746   unsigned Alignment = N->getOriginalAlignment();
   1747   SDLoc DL(N);
   1748 
   1749   EVT LoMemVT, HiMemVT;
   1750   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1751 
   1752   SDValue DataLo, DataHi;
   1753   if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
   1754     // Split Data operand
   1755     GetSplitVector(Data, DataLo, DataHi);
   1756   else
   1757     std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
   1758 
   1759   SDValue MaskLo, MaskHi;
   1760   if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
   1761     // Split Mask operand
   1762     GetSplitVector(Mask, MaskLo, MaskHi);
   1763   else
   1764     std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
   1765 
   1766   MaskLo = PromoteTargetBoolean(MaskLo, DataLo.getValueType());
   1767   MaskHi = PromoteTargetBoolean(MaskHi, DataHi.getValueType());
   1768 
   1769   // if Alignment is equal to the vector size,
   1770   // take the half of it for the second part
   1771   unsigned SecondHalfAlignment =
   1772     (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
   1773        Alignment/2 : Alignment;
   1774 
   1775   SDValue Lo, Hi;
   1776   MachineMemOperand *MMO = DAG.getMachineFunction().
   1777     getMachineMemOperand(N->getPointerInfo(),
   1778                          MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
   1779                          Alignment, N->getAAInfo(), N->getRanges());
   1780 
   1781   Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
   1782                           N->isTruncatingStore());
   1783 
   1784   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
   1785   Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
   1786                     DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
   1787 
   1788   MMO = DAG.getMachineFunction().
   1789     getMachineMemOperand(N->getPointerInfo(),
   1790                          MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
   1791                          SecondHalfAlignment, N->getAAInfo(), N->getRanges());
   1792 
   1793   Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
   1794                           N->isTruncatingStore());
   1795 
   1796   // Build a factor node to remember that this store is independent of the
   1797   // other one.
   1798   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
   1799 }
   1800 
   1801 SDValue DAGTypeLegalizer::SplitVecOp_MSCATTER(MaskedScatterSDNode *N,
   1802                                               unsigned OpNo) {
   1803   SDValue Ch  = N->getChain();
   1804   SDValue Ptr = N->getBasePtr();
   1805   SDValue Mask = N->getMask();
   1806   SDValue Index = N->getIndex();
   1807   SDValue Data = N->getValue();
   1808   EVT MemoryVT = N->getMemoryVT();
   1809   unsigned Alignment = N->getOriginalAlignment();
   1810   SDLoc DL(N);
   1811 
   1812   // Split all operands
   1813   EVT LoMemVT, HiMemVT;
   1814   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1815 
   1816   SDValue DataLo, DataHi;
   1817   if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
   1818     // Split Data operand
   1819     GetSplitVector(Data, DataLo, DataHi);
   1820   else
   1821     std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
   1822 
   1823   SDValue MaskLo, MaskHi;
   1824   if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
   1825     // Split Mask operand
   1826     GetSplitVector(Mask, MaskLo, MaskHi);
   1827   else
   1828     std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
   1829 
   1830   SDValue IndexHi, IndexLo;
   1831   if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
   1832     GetSplitVector(Index, IndexLo, IndexHi);
   1833   else
   1834     std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
   1835 
   1836   SDValue Lo, Hi;
   1837   MachineMemOperand *MMO = DAG.getMachineFunction().
   1838     getMachineMemOperand(N->getPointerInfo(),
   1839                          MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
   1840                          Alignment, N->getAAInfo(), N->getRanges());
   1841 
   1842   SDValue OpsLo[] = {Ch, DataLo, MaskLo, Ptr, IndexLo};
   1843   Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
   1844                             DL, OpsLo, MMO);
   1845 
   1846   MMO = DAG.getMachineFunction().
   1847     getMachineMemOperand(N->getPointerInfo(),
   1848                          MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
   1849                          Alignment, N->getAAInfo(), N->getRanges());
   1850 
   1851   SDValue OpsHi[] = {Ch, DataHi, MaskHi, Ptr, IndexHi};
   1852   Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
   1853                             DL, OpsHi, MMO);
   1854 
   1855   // Build a factor node to remember that this store is independent of the
   1856   // other one.
   1857   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
   1858 }
   1859 
   1860 SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
   1861   assert(N->isUnindexed() && "Indexed store of vector?");
   1862   assert(OpNo == 1 && "Can only split the stored value");
   1863   SDLoc DL(N);
   1864 
   1865   bool isTruncating = N->isTruncatingStore();
   1866   SDValue Ch  = N->getChain();
   1867   SDValue Ptr = N->getBasePtr();
   1868   EVT MemoryVT = N->getMemoryVT();
   1869   unsigned Alignment = N->getOriginalAlignment();
   1870   bool isVol = N->isVolatile();
   1871   bool isNT = N->isNonTemporal();
   1872   AAMDNodes AAInfo = N->getAAInfo();
   1873   SDValue Lo, Hi;
   1874   GetSplitVector(N->getOperand(1), Lo, Hi);
   1875 
   1876   EVT LoMemVT, HiMemVT;
   1877   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
   1878 
   1879   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
   1880 
   1881   if (isTruncating)
   1882     Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
   1883                            LoMemVT, isVol, isNT, Alignment, AAInfo);
   1884   else
   1885     Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
   1886                       isVol, isNT, Alignment, AAInfo);
   1887 
   1888   // Increment the pointer to the other half.
   1889   Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
   1890                     DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
   1891 
   1892   if (isTruncating)
   1893     Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
   1894                            N->getPointerInfo().getWithOffset(IncrementSize),
   1895                            HiMemVT, isVol, isNT, Alignment, AAInfo);
   1896   else
   1897     Hi = DAG.getStore(Ch, DL, Hi, Ptr,
   1898                       N->getPointerInfo().getWithOffset(IncrementSize),
   1899                       isVol, isNT, Alignment, AAInfo);
   1900 
   1901   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
   1902 }
   1903 
   1904 SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
   1905   SDLoc DL(N);
   1906 
   1907   // The input operands all must have the same type, and we know the result
   1908   // type is valid.  Convert this to a buildvector which extracts all the
   1909   // input elements.
   1910   // TODO: If the input elements are power-two vectors, we could convert this to
   1911   // a new CONCAT_VECTORS node with elements that are half-wide.
   1912   SmallVector<SDValue, 32> Elts;
   1913   EVT EltVT = N->getValueType(0).getVectorElementType();
   1914   for (const SDValue &Op : N->op_values()) {
   1915     for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
   1916          i != e; ++i) {
   1917       Elts.push_back(DAG.getNode(
   1918           ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op,
   1919           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
   1920     }
   1921   }
   1922 
   1923   return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts);
   1924 }
   1925 
   1926 SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
   1927   // The result type is legal, but the input type is illegal.  If splitting
   1928   // ends up with the result type of each half still being legal, just
   1929   // do that.  If, however, that would result in an illegal result type,
   1930   // we can try to get more clever with power-two vectors. Specifically,
   1931   // split the input type, but also widen the result element size, then
   1932   // concatenate the halves and truncate again.  For example, consider a target
   1933   // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
   1934   // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
   1935   //   %inlo = v4i32 extract_subvector %in, 0
   1936   //   %inhi = v4i32 extract_subvector %in, 4
   1937   //   %lo16 = v4i16 trunc v4i32 %inlo
   1938   //   %hi16 = v4i16 trunc v4i32 %inhi
   1939   //   %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
   1940   //   %res = v8i8 trunc v8i16 %in16
   1941   //
   1942   // Without this transform, the original truncate would end up being
   1943   // scalarized, which is pretty much always a last resort.
   1944   SDValue InVec = N->getOperand(0);
   1945   EVT InVT = InVec->getValueType(0);
   1946   EVT OutVT = N->getValueType(0);
   1947   unsigned NumElements = OutVT.getVectorNumElements();
   1948   bool IsFloat = OutVT.isFloatingPoint();
   1949 
   1950   // Widening should have already made sure this is a power-two vector
   1951   // if we're trying to split it at all. assert() that's true, just in case.
   1952   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
   1953 
   1954   unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
   1955   unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
   1956 
   1957   // If the input elements are only 1/2 the width of the result elements,
   1958   // just use the normal splitting. Our trick only work if there's room
   1959   // to split more than once.
   1960   if (InElementSize <= OutElementSize * 2)
   1961     return SplitVecOp_UnaryOp(N);
   1962   SDLoc DL(N);
   1963 
   1964   // Extract the halves of the input via extract_subvector.
   1965   SDValue InLoVec, InHiVec;
   1966   std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
   1967   // Truncate them to 1/2 the element size.
   1968   EVT HalfElementVT = IsFloat ?
   1969     EVT::getFloatingPointVT(InElementSize/2) :
   1970     EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
   1971   EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
   1972                                 NumElements/2);
   1973   SDValue HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
   1974   SDValue HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
   1975   // Concatenate them to get the full intermediate truncation result.
   1976   EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
   1977   SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
   1978                                  HalfHi);
   1979   // Now finish up by truncating all the way down to the original result
   1980   // type. This should normally be something that ends up being legal directly,
   1981   // but in theory if a target has very wide vectors and an annoyingly
   1982   // restricted set of legal types, this split can chain to build things up.
   1983   return IsFloat
   1984              ? DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
   1985                            DAG.getTargetConstant(
   1986                                0, DL, TLI.getPointerTy(DAG.getDataLayout())))
   1987              : DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
   1988 }
   1989 
   1990 SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
   1991   assert(N->getValueType(0).isVector() &&
   1992          N->getOperand(0).getValueType().isVector() &&
   1993          "Operand types must be vectors");
   1994   // The result has a legal vector type, but the input needs splitting.
   1995   SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
   1996   SDLoc DL(N);
   1997   GetSplitVector(N->getOperand(0), Lo0, Hi0);
   1998   GetSplitVector(N->getOperand(1), Lo1, Hi1);
   1999   unsigned PartElements = Lo0.getValueType().getVectorNumElements();
   2000   EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
   2001   EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
   2002 
   2003   LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
   2004   HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
   2005   SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
   2006   return PromoteTargetBoolean(Con, N->getValueType(0));
   2007 }
   2008 
   2009 
   2010 SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
   2011   // The result has a legal vector type, but the input needs splitting.
   2012   EVT ResVT = N->getValueType(0);
   2013   SDValue Lo, Hi;
   2014   SDLoc DL(N);
   2015   GetSplitVector(N->getOperand(0), Lo, Hi);
   2016   EVT InVT = Lo.getValueType();
   2017 
   2018   EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
   2019                                InVT.getVectorNumElements());
   2020 
   2021   Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
   2022   Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
   2023 
   2024   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
   2025 }
   2026 
   2027 SDValue DAGTypeLegalizer::SplitVecOp_FCOPYSIGN(SDNode *N) {
   2028   // The result (and the first input) has a legal vector type, but the second
   2029   // input needs splitting.
   2030   return DAG.UnrollVectorOp(N, N->getValueType(0).getVectorNumElements());
   2031 }
   2032 
   2033 
   2034 //===----------------------------------------------------------------------===//
   2035 //  Result Vector Widening
   2036 //===----------------------------------------------------------------------===//
   2037 
   2038 void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
   2039   DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
   2040         N->dump(&DAG);
   2041         dbgs() << "\n");
   2042 
   2043   // See if the target wants to custom widen this node.
   2044   if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
   2045     return;
   2046 
   2047   SDValue Res = SDValue();
   2048   switch (N->getOpcode()) {
   2049   default:
   2050 #ifndef NDEBUG
   2051     dbgs() << "WidenVectorResult #" << ResNo << ": ";
   2052     N->dump(&DAG);
   2053     dbgs() << "\n";
   2054 #endif
   2055     llvm_unreachable("Do not know how to widen the result of this operator!");
   2056 
   2057   case ISD::MERGE_VALUES:      Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
   2058   case ISD::BITCAST:           Res = WidenVecRes_BITCAST(N); break;
   2059   case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
   2060   case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
   2061   case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
   2062   case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
   2063   case ISD::FP_ROUND_INREG:    Res = WidenVecRes_InregOp(N); break;
   2064   case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
   2065   case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
   2066   case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
   2067   case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
   2068   case ISD::VSELECT:
   2069   case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
   2070   case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
   2071   case ISD::SETCC:             Res = WidenVecRes_SETCC(N); break;
   2072   case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
   2073   case ISD::VECTOR_SHUFFLE:
   2074     Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
   2075     break;
   2076   case ISD::MLOAD:
   2077     Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
   2078     break;
   2079   case ISD::MGATHER:
   2080     Res = WidenVecRes_MGATHER(cast<MaskedGatherSDNode>(N));
   2081     break;
   2082 
   2083   case ISD::ADD:
   2084   case ISD::AND:
   2085   case ISD::MUL:
   2086   case ISD::MULHS:
   2087   case ISD::MULHU:
   2088   case ISD::OR:
   2089   case ISD::SUB:
   2090   case ISD::XOR:
   2091   case ISD::FMINNUM:
   2092   case ISD::FMAXNUM:
   2093   case ISD::FMINNAN:
   2094   case ISD::FMAXNAN:
   2095   case ISD::SMIN:
   2096   case ISD::SMAX:
   2097   case ISD::UMIN:
   2098   case ISD::UMAX:
   2099     Res = WidenVecRes_Binary(N);
   2100     break;
   2101 
   2102   case ISD::FADD:
   2103   case ISD::FMUL:
   2104   case ISD::FPOW:
   2105   case ISD::FSUB:
   2106   case ISD::FDIV:
   2107   case ISD::FREM:
   2108   case ISD::SDIV:
   2109   case ISD::UDIV:
   2110   case ISD::SREM:
   2111   case ISD::UREM:
   2112     Res = WidenVecRes_BinaryCanTrap(N);
   2113     break;
   2114 
   2115   case ISD::FCOPYSIGN:
   2116     Res = WidenVecRes_FCOPYSIGN(N);
   2117     break;
   2118 
   2119   case ISD::FPOWI:
   2120     Res = WidenVecRes_POWI(N);
   2121     break;
   2122 
   2123   case ISD::SHL:
   2124   case ISD::SRA:
   2125   case ISD::SRL:
   2126     Res = WidenVecRes_Shift(N);
   2127     break;
   2128 
   2129   case ISD::ANY_EXTEND_VECTOR_INREG:
   2130   case ISD::SIGN_EXTEND_VECTOR_INREG:
   2131   case ISD::ZERO_EXTEND_VECTOR_INREG:
   2132     Res = WidenVecRes_EXTEND_VECTOR_INREG(N);
   2133     break;
   2134 
   2135   case ISD::ANY_EXTEND:
   2136   case ISD::FP_EXTEND:
   2137   case ISD::FP_ROUND:
   2138   case ISD::FP_TO_SINT:
   2139   case ISD::FP_TO_UINT:
   2140   case ISD::SIGN_EXTEND:
   2141   case ISD::SINT_TO_FP:
   2142   case ISD::TRUNCATE:
   2143   case ISD::UINT_TO_FP:
   2144   case ISD::ZERO_EXTEND:
   2145     Res = WidenVecRes_Convert(N);
   2146     break;
   2147 
   2148   case ISD::BITREVERSE:
   2149   case ISD::BSWAP:
   2150   case ISD::CTLZ:
   2151   case ISD::CTPOP:
   2152   case ISD::CTTZ:
   2153   case ISD::FABS:
   2154   case ISD::FCEIL:
   2155   case ISD::FCOS:
   2156   case ISD::FEXP:
   2157   case ISD::FEXP2:
   2158   case ISD::FFLOOR:
   2159   case ISD::FLOG:
   2160   case ISD::FLOG10:
   2161   case ISD::FLOG2:
   2162   case ISD::FNEARBYINT:
   2163   case ISD::FNEG:
   2164   case ISD::FRINT:
   2165   case ISD::FROUND:
   2166   case ISD::FSIN:
   2167   case ISD::FSQRT:
   2168   case ISD::FTRUNC:
   2169     Res = WidenVecRes_Unary(N);
   2170     break;
   2171   case ISD::FMA:
   2172     Res = WidenVecRes_Ternary(N);
   2173     break;
   2174   }
   2175 
   2176   // If Res is null, the sub-method took care of registering the result.
   2177   if (Res.getNode())
   2178     SetWidenedVector(SDValue(N, ResNo), Res);
   2179 }
   2180 
   2181 SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
   2182   // Ternary op widening.
   2183   SDLoc dl(N);
   2184   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2185   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
   2186   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   2187   SDValue InOp3 = GetWidenedVector(N->getOperand(2));
   2188   return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
   2189 }
   2190 
   2191 SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
   2192   // Binary op widening.
   2193   SDLoc dl(N);
   2194   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2195   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
   2196   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   2197   return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, N->getFlags());
   2198 }
   2199 
   2200 SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
   2201   // Binary op widening for operations that can trap.
   2202   unsigned Opcode = N->getOpcode();
   2203   SDLoc dl(N);
   2204   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2205   EVT WidenEltVT = WidenVT.getVectorElementType();
   2206   EVT VT = WidenVT;
   2207   unsigned NumElts =  VT.getVectorNumElements();
   2208   const SDNodeFlags *Flags = N->getFlags();
   2209   while (!TLI.isTypeLegal(VT) && NumElts != 1) {
   2210     NumElts = NumElts / 2;
   2211     VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
   2212   }
   2213 
   2214   if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
   2215     // Operation doesn't trap so just widen as normal.
   2216     SDValue InOp1 = GetWidenedVector(N->getOperand(0));
   2217     SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   2218     return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, Flags);
   2219   }
   2220 
   2221   // No legal vector version so unroll the vector operation and then widen.
   2222   if (NumElts == 1)
   2223     return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
   2224 
   2225   // Since the operation can trap, apply operation on the original vector.
   2226   EVT MaxVT = VT;
   2227   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
   2228   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   2229   unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
   2230 
   2231   SmallVector<SDValue, 16> ConcatOps(CurNumElts);
   2232   unsigned ConcatEnd = 0;  // Current ConcatOps index.
   2233   int Idx = 0;        // Current Idx into input vectors.
   2234 
   2235   // NumElts := greatest legal vector size (at most WidenVT)
   2236   // while (orig. vector has unhandled elements) {
   2237   //   take munches of size NumElts from the beginning and add to ConcatOps
   2238   //   NumElts := next smaller supported vector size or 1
   2239   // }
   2240   while (CurNumElts != 0) {
   2241     while (CurNumElts >= NumElts) {
   2242       SDValue EOp1 = DAG.getNode(
   2243           ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
   2244           DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2245       SDValue EOp2 = DAG.getNode(
   2246           ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
   2247           DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2248       ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2, Flags);
   2249       Idx += NumElts;
   2250       CurNumElts -= NumElts;
   2251     }
   2252     do {
   2253       NumElts = NumElts / 2;
   2254       VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
   2255     } while (!TLI.isTypeLegal(VT) && NumElts != 1);
   2256 
   2257     if (NumElts == 1) {
   2258       for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
   2259         SDValue EOp1 = DAG.getNode(
   2260             ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp1,
   2261             DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2262         SDValue EOp2 = DAG.getNode(
   2263             ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp2,
   2264             DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2265         ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
   2266                                              EOp1, EOp2, Flags);
   2267       }
   2268       CurNumElts = 0;
   2269     }
   2270   }
   2271 
   2272   // Check to see if we have a single operation with the widen type.
   2273   if (ConcatEnd == 1) {
   2274     VT = ConcatOps[0].getValueType();
   2275     if (VT == WidenVT)
   2276       return ConcatOps[0];
   2277   }
   2278 
   2279   // while (Some element of ConcatOps is not of type MaxVT) {
   2280   //   From the end of ConcatOps, collect elements of the same type and put
   2281   //   them into an op of the next larger supported type
   2282   // }
   2283   while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
   2284     Idx = ConcatEnd - 1;
   2285     VT = ConcatOps[Idx--].getValueType();
   2286     while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
   2287       Idx--;
   2288 
   2289     int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
   2290     EVT NextVT;
   2291     do {
   2292       NextSize *= 2;
   2293       NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
   2294     } while (!TLI.isTypeLegal(NextVT));
   2295 
   2296     if (!VT.isVector()) {
   2297       // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
   2298       SDValue VecOp = DAG.getUNDEF(NextVT);
   2299       unsigned NumToInsert = ConcatEnd - Idx - 1;
   2300       for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
   2301         VecOp = DAG.getNode(
   2302             ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp, ConcatOps[OpIdx],
   2303             DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2304       }
   2305       ConcatOps[Idx+1] = VecOp;
   2306       ConcatEnd = Idx + 2;
   2307     } else {
   2308       // Vector type, create a CONCAT_VECTORS of type NextVT
   2309       SDValue undefVec = DAG.getUNDEF(VT);
   2310       unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
   2311       SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
   2312       unsigned RealVals = ConcatEnd - Idx - 1;
   2313       unsigned SubConcatEnd = 0;
   2314       unsigned SubConcatIdx = Idx + 1;
   2315       while (SubConcatEnd < RealVals)
   2316         SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
   2317       while (SubConcatEnd < OpsToConcat)
   2318         SubConcatOps[SubConcatEnd++] = undefVec;
   2319       ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
   2320                                             NextVT, SubConcatOps);
   2321       ConcatEnd = SubConcatIdx + 1;
   2322     }
   2323   }
   2324 
   2325   // Check to see if we have a single operation with the widen type.
   2326   if (ConcatEnd == 1) {
   2327     VT = ConcatOps[0].getValueType();
   2328     if (VT == WidenVT)
   2329       return ConcatOps[0];
   2330   }
   2331 
   2332   // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
   2333   unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
   2334   if (NumOps != ConcatEnd ) {
   2335     SDValue UndefVal = DAG.getUNDEF(MaxVT);
   2336     for (unsigned j = ConcatEnd; j < NumOps; ++j)
   2337       ConcatOps[j] = UndefVal;
   2338   }
   2339   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
   2340                      makeArrayRef(ConcatOps.data(), NumOps));
   2341 }
   2342 
   2343 SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
   2344   SDValue InOp = N->getOperand(0);
   2345   SDLoc DL(N);
   2346 
   2347   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2348   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2349 
   2350   EVT InVT = InOp.getValueType();
   2351   EVT InEltVT = InVT.getVectorElementType();
   2352   EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
   2353 
   2354   unsigned Opcode = N->getOpcode();
   2355   unsigned InVTNumElts = InVT.getVectorNumElements();
   2356   const SDNodeFlags *Flags = N->getFlags();
   2357   if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
   2358     InOp = GetWidenedVector(N->getOperand(0));
   2359     InVT = InOp.getValueType();
   2360     InVTNumElts = InVT.getVectorNumElements();
   2361     if (InVTNumElts == WidenNumElts) {
   2362       if (N->getNumOperands() == 1)
   2363         return DAG.getNode(Opcode, DL, WidenVT, InOp);
   2364       return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1), Flags);
   2365     }
   2366   }
   2367 
   2368   if (TLI.isTypeLegal(InWidenVT)) {
   2369     // Because the result and the input are different vector types, widening
   2370     // the result could create a legal type but widening the input might make
   2371     // it an illegal type that might lead to repeatedly splitting the input
   2372     // and then widening it. To avoid this, we widen the input only if
   2373     // it results in a legal type.
   2374     if (WidenNumElts % InVTNumElts == 0) {
   2375       // Widen the input and call convert on the widened input vector.
   2376       unsigned NumConcat = WidenNumElts/InVTNumElts;
   2377       SmallVector<SDValue, 16> Ops(NumConcat);
   2378       Ops[0] = InOp;
   2379       SDValue UndefVal = DAG.getUNDEF(InVT);
   2380       for (unsigned i = 1; i != NumConcat; ++i)
   2381         Ops[i] = UndefVal;
   2382       SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
   2383       if (N->getNumOperands() == 1)
   2384         return DAG.getNode(Opcode, DL, WidenVT, InVec);
   2385       return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1), Flags);
   2386     }
   2387 
   2388     if (InVTNumElts % WidenNumElts == 0) {
   2389       SDValue InVal = DAG.getNode(
   2390           ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, InOp,
   2391           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2392       // Extract the input and convert the shorten input vector.
   2393       if (N->getNumOperands() == 1)
   2394         return DAG.getNode(Opcode, DL, WidenVT, InVal);
   2395       return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1), Flags);
   2396     }
   2397   }
   2398 
   2399   // Otherwise unroll into some nasty scalar code and rebuild the vector.
   2400   SmallVector<SDValue, 16> Ops(WidenNumElts);
   2401   EVT EltVT = WidenVT.getVectorElementType();
   2402   unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
   2403   unsigned i;
   2404   for (i=0; i < MinElts; ++i) {
   2405     SDValue Val = DAG.getNode(
   2406         ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
   2407         DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2408     if (N->getNumOperands() == 1)
   2409       Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
   2410     else
   2411       Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1), Flags);
   2412   }
   2413 
   2414   SDValue UndefVal = DAG.getUNDEF(EltVT);
   2415   for (; i < WidenNumElts; ++i)
   2416     Ops[i] = UndefVal;
   2417 
   2418   return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
   2419 }
   2420 
   2421 SDValue DAGTypeLegalizer::WidenVecRes_EXTEND_VECTOR_INREG(SDNode *N) {
   2422   unsigned Opcode = N->getOpcode();
   2423   SDValue InOp = N->getOperand(0);
   2424   SDLoc DL(N);
   2425 
   2426   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2427   EVT WidenSVT = WidenVT.getVectorElementType();
   2428   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2429 
   2430   EVT InVT = InOp.getValueType();
   2431   EVT InSVT = InVT.getVectorElementType();
   2432   unsigned InVTNumElts = InVT.getVectorNumElements();
   2433 
   2434   if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
   2435     InOp = GetWidenedVector(InOp);
   2436     InVT = InOp.getValueType();
   2437     if (InVT.getSizeInBits() == WidenVT.getSizeInBits()) {
   2438       switch (Opcode) {
   2439       case ISD::ANY_EXTEND_VECTOR_INREG:
   2440         return DAG.getAnyExtendVectorInReg(InOp, DL, WidenVT);
   2441       case ISD::SIGN_EXTEND_VECTOR_INREG:
   2442         return DAG.getSignExtendVectorInReg(InOp, DL, WidenVT);
   2443       case ISD::ZERO_EXTEND_VECTOR_INREG:
   2444         return DAG.getZeroExtendVectorInReg(InOp, DL, WidenVT);
   2445       }
   2446     }
   2447   }
   2448 
   2449   // Unroll, extend the scalars and rebuild the vector.
   2450   SmallVector<SDValue, 16> Ops;
   2451   for (unsigned i = 0, e = std::min(InVTNumElts, WidenNumElts); i != e; ++i) {
   2452     SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InSVT, InOp,
   2453       DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2454     switch (Opcode) {
   2455     case ISD::ANY_EXTEND_VECTOR_INREG:
   2456       Val = DAG.getNode(ISD::ANY_EXTEND, DL, WidenSVT, Val);
   2457       break;
   2458     case ISD::SIGN_EXTEND_VECTOR_INREG:
   2459       Val = DAG.getNode(ISD::SIGN_EXTEND, DL, WidenSVT, Val);
   2460       break;
   2461     case ISD::ZERO_EXTEND_VECTOR_INREG:
   2462       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenSVT, Val);
   2463       break;
   2464     default:
   2465       llvm_unreachable("A *_EXTEND_VECTOR_INREG node was expected");
   2466     }
   2467     Ops.push_back(Val);
   2468   }
   2469 
   2470   while (Ops.size() != WidenNumElts)
   2471     Ops.push_back(DAG.getUNDEF(WidenSVT));
   2472 
   2473   return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
   2474 }
   2475 
   2476 SDValue DAGTypeLegalizer::WidenVecRes_FCOPYSIGN(SDNode *N) {
   2477   // If this is an FCOPYSIGN with same input types, we can treat it as a
   2478   // normal (can trap) binary op.
   2479   if (N->getOperand(0).getValueType() == N->getOperand(1).getValueType())
   2480     return WidenVecRes_BinaryCanTrap(N);
   2481 
   2482   // If the types are different, fall back to unrolling.
   2483   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2484   return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
   2485 }
   2486 
   2487 SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
   2488   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2489   SDValue InOp = GetWidenedVector(N->getOperand(0));
   2490   SDValue ShOp = N->getOperand(1);
   2491   return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
   2492 }
   2493 
   2494 SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
   2495   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2496   SDValue InOp = GetWidenedVector(N->getOperand(0));
   2497   SDValue ShOp = N->getOperand(1);
   2498 
   2499   EVT ShVT = ShOp.getValueType();
   2500   if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
   2501     ShOp = GetWidenedVector(ShOp);
   2502     ShVT = ShOp.getValueType();
   2503   }
   2504   EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
   2505                                    ShVT.getVectorElementType(),
   2506                                    WidenVT.getVectorNumElements());
   2507   if (ShVT != ShWidenVT)
   2508     ShOp = ModifyToType(ShOp, ShWidenVT);
   2509 
   2510   return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
   2511 }
   2512 
   2513 SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
   2514   // Unary op widening.
   2515   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2516   SDValue InOp = GetWidenedVector(N->getOperand(0));
   2517   return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
   2518 }
   2519 
   2520 SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
   2521   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2522   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
   2523                                cast<VTSDNode>(N->getOperand(1))->getVT()
   2524                                  .getVectorElementType(),
   2525                                WidenVT.getVectorNumElements());
   2526   SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
   2527   return DAG.getNode(N->getOpcode(), SDLoc(N),
   2528                      WidenVT, WidenLHS, DAG.getValueType(ExtVT));
   2529 }
   2530 
   2531 SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
   2532   SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
   2533   return GetWidenedVector(WidenVec);
   2534 }
   2535 
   2536 SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
   2537   SDValue InOp = N->getOperand(0);
   2538   EVT InVT = InOp.getValueType();
   2539   EVT VT = N->getValueType(0);
   2540   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
   2541   SDLoc dl(N);
   2542 
   2543   switch (getTypeAction(InVT)) {
   2544   case TargetLowering::TypeLegal:
   2545     break;
   2546   case TargetLowering::TypePromoteInteger:
   2547     // If the incoming type is a vector that is being promoted, then
   2548     // we know that the elements are arranged differently and that we
   2549     // must perform the conversion using a stack slot.
   2550     if (InVT.isVector())
   2551       break;
   2552 
   2553     // If the InOp is promoted to the same size, convert it.  Otherwise,
   2554     // fall out of the switch and widen the promoted input.
   2555     InOp = GetPromotedInteger(InOp);
   2556     InVT = InOp.getValueType();
   2557     if (WidenVT.bitsEq(InVT))
   2558       return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
   2559     break;
   2560   case TargetLowering::TypeSoftenFloat:
   2561   case TargetLowering::TypePromoteFloat:
   2562   case TargetLowering::TypeExpandInteger:
   2563   case TargetLowering::TypeExpandFloat:
   2564   case TargetLowering::TypeScalarizeVector:
   2565   case TargetLowering::TypeSplitVector:
   2566     break;
   2567   case TargetLowering::TypeWidenVector:
   2568     // If the InOp is widened to the same size, convert it.  Otherwise, fall
   2569     // out of the switch and widen the widened input.
   2570     InOp = GetWidenedVector(InOp);
   2571     InVT = InOp.getValueType();
   2572     if (WidenVT.bitsEq(InVT))
   2573       // The input widens to the same size. Convert to the widen value.
   2574       return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
   2575     break;
   2576   }
   2577 
   2578   unsigned WidenSize = WidenVT.getSizeInBits();
   2579   unsigned InSize = InVT.getSizeInBits();
   2580   // x86mmx is not an acceptable vector element type, so don't try.
   2581   if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
   2582     // Determine new input vector type.  The new input vector type will use
   2583     // the same element type (if its a vector) or use the input type as a
   2584     // vector.  It is the same size as the type to widen to.
   2585     EVT NewInVT;
   2586     unsigned NewNumElts = WidenSize / InSize;
   2587     if (InVT.isVector()) {
   2588       EVT InEltVT = InVT.getVectorElementType();
   2589       NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
   2590                                  WidenSize / InEltVT.getSizeInBits());
   2591     } else {
   2592       NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
   2593     }
   2594 
   2595     if (TLI.isTypeLegal(NewInVT)) {
   2596       // Because the result and the input are different vector types, widening
   2597       // the result could create a legal type but widening the input might make
   2598       // it an illegal type that might lead to repeatedly splitting the input
   2599       // and then widening it. To avoid this, we widen the input only if
   2600       // it results in a legal type.
   2601       SmallVector<SDValue, 16> Ops(NewNumElts);
   2602       SDValue UndefVal = DAG.getUNDEF(InVT);
   2603       Ops[0] = InOp;
   2604       for (unsigned i = 1; i < NewNumElts; ++i)
   2605         Ops[i] = UndefVal;
   2606 
   2607       SDValue NewVec;
   2608       if (InVT.isVector())
   2609         NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
   2610       else
   2611         NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
   2612       return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
   2613     }
   2614   }
   2615 
   2616   return CreateStackStoreLoad(InOp, WidenVT);
   2617 }
   2618 
   2619 SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
   2620   SDLoc dl(N);
   2621   // Build a vector with undefined for the new nodes.
   2622   EVT VT = N->getValueType(0);
   2623 
   2624   // Integer BUILD_VECTOR operands may be larger than the node's vector element
   2625   // type. The UNDEFs need to have the same type as the existing operands.
   2626   EVT EltVT = N->getOperand(0).getValueType();
   2627   unsigned NumElts = VT.getVectorNumElements();
   2628 
   2629   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
   2630   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2631 
   2632   SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
   2633   assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
   2634   NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
   2635 
   2636   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps);
   2637 }
   2638 
   2639 SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
   2640   EVT InVT = N->getOperand(0).getValueType();
   2641   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2642   SDLoc dl(N);
   2643   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2644   unsigned NumInElts = InVT.getVectorNumElements();
   2645   unsigned NumOperands = N->getNumOperands();
   2646 
   2647   bool InputWidened = false; // Indicates we need to widen the input.
   2648   if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
   2649     if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
   2650       // Add undef vectors to widen to correct length.
   2651       unsigned NumConcat = WidenVT.getVectorNumElements() /
   2652                            InVT.getVectorNumElements();
   2653       SDValue UndefVal = DAG.getUNDEF(InVT);
   2654       SmallVector<SDValue, 16> Ops(NumConcat);
   2655       for (unsigned i=0; i < NumOperands; ++i)
   2656         Ops[i] = N->getOperand(i);
   2657       for (unsigned i = NumOperands; i != NumConcat; ++i)
   2658         Ops[i] = UndefVal;
   2659       return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
   2660     }
   2661   } else {
   2662     InputWidened = true;
   2663     if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
   2664       // The inputs and the result are widen to the same value.
   2665       unsigned i;
   2666       for (i=1; i < NumOperands; ++i)
   2667         if (!N->getOperand(i).isUndef())
   2668           break;
   2669 
   2670       if (i == NumOperands)
   2671         // Everything but the first operand is an UNDEF so just return the
   2672         // widened first operand.
   2673         return GetWidenedVector(N->getOperand(0));
   2674 
   2675       if (NumOperands == 2) {
   2676         // Replace concat of two operands with a shuffle.
   2677         SmallVector<int, 16> MaskOps(WidenNumElts, -1);
   2678         for (unsigned i = 0; i < NumInElts; ++i) {
   2679           MaskOps[i] = i;
   2680           MaskOps[i + NumInElts] = i + WidenNumElts;
   2681         }
   2682         return DAG.getVectorShuffle(WidenVT, dl,
   2683                                     GetWidenedVector(N->getOperand(0)),
   2684                                     GetWidenedVector(N->getOperand(1)),
   2685                                     MaskOps);
   2686       }
   2687     }
   2688   }
   2689 
   2690   // Fall back to use extracts and build vector.
   2691   EVT EltVT = WidenVT.getVectorElementType();
   2692   SmallVector<SDValue, 16> Ops(WidenNumElts);
   2693   unsigned Idx = 0;
   2694   for (unsigned i=0; i < NumOperands; ++i) {
   2695     SDValue InOp = N->getOperand(i);
   2696     if (InputWidened)
   2697       InOp = GetWidenedVector(InOp);
   2698     for (unsigned j=0; j < NumInElts; ++j)
   2699       Ops[Idx++] = DAG.getNode(
   2700           ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
   2701           DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2702   }
   2703   SDValue UndefVal = DAG.getUNDEF(EltVT);
   2704   for (; Idx < WidenNumElts; ++Idx)
   2705     Ops[Idx] = UndefVal;
   2706   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
   2707 }
   2708 
   2709 SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
   2710   SDLoc dl(N);
   2711   SDValue InOp  = N->getOperand(0);
   2712   SDValue RndOp = N->getOperand(3);
   2713   SDValue SatOp = N->getOperand(4);
   2714 
   2715   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2716   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2717 
   2718   EVT InVT = InOp.getValueType();
   2719   EVT InEltVT = InVT.getVectorElementType();
   2720   EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
   2721 
   2722   SDValue DTyOp = DAG.getValueType(WidenVT);
   2723   SDValue STyOp = DAG.getValueType(InWidenVT);
   2724   ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
   2725 
   2726   unsigned InVTNumElts = InVT.getVectorNumElements();
   2727   if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
   2728     InOp = GetWidenedVector(InOp);
   2729     InVT = InOp.getValueType();
   2730     InVTNumElts = InVT.getVectorNumElements();
   2731     if (InVTNumElts == WidenNumElts)
   2732       return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
   2733                                   SatOp, CvtCode);
   2734   }
   2735 
   2736   if (TLI.isTypeLegal(InWidenVT)) {
   2737     // Because the result and the input are different vector types, widening
   2738     // the result could create a legal type but widening the input might make
   2739     // it an illegal type that might lead to repeatedly splitting the input
   2740     // and then widening it. To avoid this, we widen the input only if
   2741     // it results in a legal type.
   2742     if (WidenNumElts % InVTNumElts == 0) {
   2743       // Widen the input and call convert on the widened input vector.
   2744       unsigned NumConcat = WidenNumElts/InVTNumElts;
   2745       SmallVector<SDValue, 16> Ops(NumConcat);
   2746       Ops[0] = InOp;
   2747       SDValue UndefVal = DAG.getUNDEF(InVT);
   2748       for (unsigned i = 1; i != NumConcat; ++i)
   2749         Ops[i] = UndefVal;
   2750 
   2751       InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops);
   2752       return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
   2753                                   SatOp, CvtCode);
   2754     }
   2755 
   2756     if (InVTNumElts % WidenNumElts == 0) {
   2757       // Extract the input and convert the shorten input vector.
   2758       InOp = DAG.getNode(
   2759           ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
   2760           DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2761       return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
   2762                                   SatOp, CvtCode);
   2763     }
   2764   }
   2765 
   2766   // Otherwise unroll into some nasty scalar code and rebuild the vector.
   2767   SmallVector<SDValue, 16> Ops(WidenNumElts);
   2768   EVT EltVT = WidenVT.getVectorElementType();
   2769   DTyOp = DAG.getValueType(EltVT);
   2770   STyOp = DAG.getValueType(InEltVT);
   2771 
   2772   unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
   2773   unsigned i;
   2774   for (i=0; i < MinElts; ++i) {
   2775     SDValue ExtVal = DAG.getNode(
   2776         ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
   2777         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   2778     Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
   2779                                   SatOp, CvtCode);
   2780   }
   2781 
   2782   SDValue UndefVal = DAG.getUNDEF(EltVT);
   2783   for (; i < WidenNumElts; ++i)
   2784     Ops[i] = UndefVal;
   2785 
   2786   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
   2787 }
   2788 
   2789 SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
   2790   EVT      VT = N->getValueType(0);
   2791   EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
   2792   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2793   SDValue  InOp = N->getOperand(0);
   2794   SDValue  Idx  = N->getOperand(1);
   2795   SDLoc dl(N);
   2796 
   2797   if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
   2798     InOp = GetWidenedVector(InOp);
   2799 
   2800   EVT InVT = InOp.getValueType();
   2801 
   2802   // Check if we can just return the input vector after widening.
   2803   uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   2804   if (IdxVal == 0 && InVT == WidenVT)
   2805     return InOp;
   2806 
   2807   // Check if we can extract from the vector.
   2808   unsigned InNumElts = InVT.getVectorNumElements();
   2809   if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
   2810     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
   2811 
   2812   // We could try widening the input to the right length but for now, extract
   2813   // the original elements, fill the rest with undefs and build a vector.
   2814   SmallVector<SDValue, 16> Ops(WidenNumElts);
   2815   EVT EltVT = VT.getVectorElementType();
   2816   unsigned NumElts = VT.getVectorNumElements();
   2817   unsigned i;
   2818   for (i=0; i < NumElts; ++i)
   2819     Ops[i] =
   2820         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
   2821                     DAG.getConstant(IdxVal + i, dl,
   2822                                     TLI.getVectorIdxTy(DAG.getDataLayout())));
   2823 
   2824   SDValue UndefVal = DAG.getUNDEF(EltVT);
   2825   for (; i < WidenNumElts; ++i)
   2826     Ops[i] = UndefVal;
   2827   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
   2828 }
   2829 
   2830 SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
   2831   SDValue InOp = GetWidenedVector(N->getOperand(0));
   2832   return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
   2833                      InOp.getValueType(), InOp,
   2834                      N->getOperand(1), N->getOperand(2));
   2835 }
   2836 
   2837 SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
   2838   LoadSDNode *LD = cast<LoadSDNode>(N);
   2839   ISD::LoadExtType ExtType = LD->getExtensionType();
   2840 
   2841   SDValue Result;
   2842   SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
   2843   if (ExtType != ISD::NON_EXTLOAD)
   2844     Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
   2845   else
   2846     Result = GenWidenVectorLoads(LdChain, LD);
   2847 
   2848   // If we generate a single load, we can use that for the chain.  Otherwise,
   2849   // build a factor node to remember the multiple loads are independent and
   2850   // chain to that.
   2851   SDValue NewChain;
   2852   if (LdChain.size() == 1)
   2853     NewChain = LdChain[0];
   2854   else
   2855     NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
   2856 
   2857   // Modified the chain - switch anything that used the old chain to use
   2858   // the new one.
   2859   ReplaceValueWith(SDValue(N, 1), NewChain);
   2860 
   2861   return Result;
   2862 }
   2863 
   2864 SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
   2865 
   2866   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
   2867   SDValue Mask = N->getMask();
   2868   EVT MaskVT = Mask.getValueType();
   2869   SDValue Src0 = GetWidenedVector(N->getSrc0());
   2870   ISD::LoadExtType ExtType = N->getExtensionType();
   2871   SDLoc dl(N);
   2872 
   2873   if (getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
   2874     Mask = GetWidenedVector(Mask);
   2875   else {
   2876     EVT BoolVT = getSetCCResultType(WidenVT);
   2877 
   2878     // We can't use ModifyToType() because we should fill the mask with
   2879     // zeroes
   2880     unsigned WidenNumElts = BoolVT.getVectorNumElements();
   2881     unsigned MaskNumElts = MaskVT.getVectorNumElements();
   2882 
   2883     unsigned NumConcat = WidenNumElts / MaskNumElts;
   2884     SmallVector<SDValue, 16> Ops(NumConcat);
   2885     SDValue ZeroVal = DAG.getConstant(0, dl, MaskVT);
   2886     Ops[0] = Mask;
   2887     for (unsigned i = 1; i != NumConcat; ++i)
   2888       Ops[i] = ZeroVal;
   2889 
   2890     Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
   2891   }
   2892 
   2893   SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
   2894                                   Mask, Src0, N->getMemoryVT(),
   2895                                   N->getMemOperand(), ExtType);
   2896   // Legalize the chain result - switch anything that used the old chain to
   2897   // use the new one.
   2898   ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
   2899   return Res;
   2900 }
   2901 
   2902 SDValue DAGTypeLegalizer::WidenVecRes_MGATHER(MaskedGatherSDNode *N) {
   2903 
   2904   EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2905   SDValue Mask = N->getMask();
   2906   SDValue Src0 = GetWidenedVector(N->getValue());
   2907   unsigned NumElts = WideVT.getVectorNumElements();
   2908   SDLoc dl(N);
   2909 
   2910   // The mask should be widened as well
   2911   Mask = WidenTargetBoolean(Mask, WideVT, true);
   2912 
   2913   // Widen the Index operand
   2914   SDValue Index = N->getIndex();
   2915   EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
   2916                                      Index.getValueType().getScalarType(),
   2917                                      NumElts);
   2918   Index = ModifyToType(Index, WideIndexVT);
   2919   SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
   2920   SDValue Res = DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other),
   2921                                     N->getMemoryVT(), dl, Ops,
   2922                                     N->getMemOperand());
   2923 
   2924   // Legalize the chain result - switch anything that used the old chain to
   2925   // use the new one.
   2926   ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
   2927   return Res;
   2928 }
   2929 
   2930 SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
   2931   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2932   return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
   2933                      WidenVT, N->getOperand(0));
   2934 }
   2935 
   2936 SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
   2937   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2938   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   2939 
   2940   SDValue Cond1 = N->getOperand(0);
   2941   EVT CondVT = Cond1.getValueType();
   2942   if (CondVT.isVector()) {
   2943     EVT CondEltVT = CondVT.getVectorElementType();
   2944     EVT CondWidenVT =  EVT::getVectorVT(*DAG.getContext(),
   2945                                         CondEltVT, WidenNumElts);
   2946     if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
   2947       Cond1 = GetWidenedVector(Cond1);
   2948 
   2949     // If we have to split the condition there is no point in widening the
   2950     // select. This would result in an cycle of widening the select ->
   2951     // widening the condition operand -> splitting the condition operand ->
   2952     // splitting the select -> widening the select. Instead split this select
   2953     // further and widen the resulting type.
   2954     if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
   2955       SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
   2956       SDValue Res = ModifyToType(SplitSelect, WidenVT);
   2957       return Res;
   2958     }
   2959 
   2960     if (Cond1.getValueType() != CondWidenVT)
   2961       Cond1 = ModifyToType(Cond1, CondWidenVT);
   2962   }
   2963 
   2964   SDValue InOp1 = GetWidenedVector(N->getOperand(1));
   2965   SDValue InOp2 = GetWidenedVector(N->getOperand(2));
   2966   assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
   2967   return DAG.getNode(N->getOpcode(), SDLoc(N),
   2968                      WidenVT, Cond1, InOp1, InOp2);
   2969 }
   2970 
   2971 SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
   2972   SDValue InOp1 = GetWidenedVector(N->getOperand(2));
   2973   SDValue InOp2 = GetWidenedVector(N->getOperand(3));
   2974   return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
   2975                      InOp1.getValueType(), N->getOperand(0),
   2976                      N->getOperand(1), InOp1, InOp2, N->getOperand(4));
   2977 }
   2978 
   2979 SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
   2980   assert(N->getValueType(0).isVector() ==
   2981          N->getOperand(0).getValueType().isVector() &&
   2982          "Scalar/Vector type mismatch");
   2983   if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
   2984 
   2985   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2986   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
   2987   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   2988   return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
   2989                      InOp1, InOp2, N->getOperand(2));
   2990 }
   2991 
   2992 SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
   2993  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   2994  return DAG.getUNDEF(WidenVT);
   2995 }
   2996 
   2997 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
   2998   EVT VT = N->getValueType(0);
   2999   SDLoc dl(N);
   3000 
   3001   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
   3002   unsigned NumElts = VT.getVectorNumElements();
   3003   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   3004 
   3005   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
   3006   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   3007 
   3008   // Adjust mask based on new input vector length.
   3009   SmallVector<int, 16> NewMask;
   3010   for (unsigned i = 0; i != NumElts; ++i) {
   3011     int Idx = N->getMaskElt(i);
   3012     if (Idx < (int)NumElts)
   3013       NewMask.push_back(Idx);
   3014     else
   3015       NewMask.push_back(Idx - NumElts + WidenNumElts);
   3016   }
   3017   for (unsigned i = NumElts; i != WidenNumElts; ++i)
   3018     NewMask.push_back(-1);
   3019   return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, NewMask);
   3020 }
   3021 
   3022 SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
   3023   assert(N->getValueType(0).isVector() &&
   3024          N->getOperand(0).getValueType().isVector() &&
   3025          "Operands must be vectors");
   3026   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
   3027   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   3028 
   3029   SDValue InOp1 = N->getOperand(0);
   3030   EVT InVT = InOp1.getValueType();
   3031   assert(InVT.isVector() && "can not widen non-vector type");
   3032   EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
   3033                                    InVT.getVectorElementType(), WidenNumElts);
   3034 
   3035   // The input and output types often differ here, and it could be that while
   3036   // we'd prefer to widen the result type, the input operands have been split.
   3037   // In this case, we also need to split the result of this node as well.
   3038   if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
   3039     SDValue SplitVSetCC = SplitVecOp_VSETCC(N);
   3040     SDValue Res = ModifyToType(SplitVSetCC, WidenVT);
   3041     return Res;
   3042   }
   3043 
   3044   InOp1 = GetWidenedVector(InOp1);
   3045   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
   3046 
   3047   // Assume that the input and output will be widen appropriately.  If not,
   3048   // we will have to unroll it at some point.
   3049   assert(InOp1.getValueType() == WidenInVT &&
   3050          InOp2.getValueType() == WidenInVT &&
   3051          "Input not widened to expected type!");
   3052   (void)WidenInVT;
   3053   return DAG.getNode(ISD::SETCC, SDLoc(N),
   3054                      WidenVT, InOp1, InOp2, N->getOperand(2));
   3055 }
   3056 
   3057 
   3058 //===----------------------------------------------------------------------===//
   3059 // Widen Vector Operand
   3060 //===----------------------------------------------------------------------===//
   3061 bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
   3062   DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
   3063         N->dump(&DAG);
   3064         dbgs() << "\n");
   3065   SDValue Res = SDValue();
   3066 
   3067   // See if the target wants to custom widen this node.
   3068   if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
   3069     return false;
   3070 
   3071   switch (N->getOpcode()) {
   3072   default:
   3073 #ifndef NDEBUG
   3074     dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
   3075     N->dump(&DAG);
   3076     dbgs() << "\n";
   3077 #endif
   3078     llvm_unreachable("Do not know how to widen this operator's operand!");
   3079 
   3080   case ISD::BITCAST:            Res = WidenVecOp_BITCAST(N); break;
   3081   case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
   3082   case ISD::EXTRACT_SUBVECTOR:  Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
   3083   case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
   3084   case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
   3085   case ISD::MSTORE:             Res = WidenVecOp_MSTORE(N, OpNo); break;
   3086   case ISD::MSCATTER:           Res = WidenVecOp_MSCATTER(N, OpNo); break;
   3087   case ISD::SETCC:              Res = WidenVecOp_SETCC(N); break;
   3088   case ISD::FCOPYSIGN:          Res = WidenVecOp_FCOPYSIGN(N); break;
   3089 
   3090   case ISD::ANY_EXTEND:
   3091   case ISD::SIGN_EXTEND:
   3092   case ISD::ZERO_EXTEND:
   3093     Res = WidenVecOp_EXTEND(N);
   3094     break;
   3095 
   3096   case ISD::FP_EXTEND:
   3097   case ISD::FP_TO_SINT:
   3098   case ISD::FP_TO_UINT:
   3099   case ISD::SINT_TO_FP:
   3100   case ISD::UINT_TO_FP:
   3101   case ISD::TRUNCATE:
   3102     Res = WidenVecOp_Convert(N);
   3103     break;
   3104   }
   3105 
   3106   // If Res is null, the sub-method took care of registering the result.
   3107   if (!Res.getNode()) return false;
   3108 
   3109   // If the result is N, the sub-method updated N in place.  Tell the legalizer
   3110   // core about this.
   3111   if (Res.getNode() == N)
   3112     return true;
   3113 
   3114 
   3115   assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
   3116          "Invalid operand expansion");
   3117 
   3118   ReplaceValueWith(SDValue(N, 0), Res);
   3119   return false;
   3120 }
   3121 
   3122 SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
   3123   SDLoc DL(N);
   3124   EVT VT = N->getValueType(0);
   3125 
   3126   SDValue InOp = N->getOperand(0);
   3127   // If some legalization strategy other than widening is used on the operand,
   3128   // we can't safely assume that just extending the low lanes is the correct
   3129   // transformation.
   3130   if (getTypeAction(InOp.getValueType()) != TargetLowering::TypeWidenVector)
   3131     return WidenVecOp_Convert(N);
   3132   InOp = GetWidenedVector(InOp);
   3133   assert(VT.getVectorNumElements() <
   3134              InOp.getValueType().getVectorNumElements() &&
   3135          "Input wasn't widened!");
   3136 
   3137   // We may need to further widen the operand until it has the same total
   3138   // vector size as the result.
   3139   EVT InVT = InOp.getValueType();
   3140   if (InVT.getSizeInBits() != VT.getSizeInBits()) {
   3141     EVT InEltVT = InVT.getVectorElementType();
   3142     for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
   3143       EVT FixedVT = (MVT::SimpleValueType)i;
   3144       EVT FixedEltVT = FixedVT.getVectorElementType();
   3145       if (TLI.isTypeLegal(FixedVT) &&
   3146           FixedVT.getSizeInBits() == VT.getSizeInBits() &&
   3147           FixedEltVT == InEltVT) {
   3148         assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
   3149                "Not enough elements in the fixed type for the operand!");
   3150         assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
   3151                "We can't have the same type as we started with!");
   3152         if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
   3153           InOp = DAG.getNode(
   3154               ISD::INSERT_SUBVECTOR, DL, FixedVT, DAG.getUNDEF(FixedVT), InOp,
   3155               DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3156         else
   3157           InOp = DAG.getNode(
   3158               ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
   3159               DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3160         break;
   3161       }
   3162     }
   3163     InVT = InOp.getValueType();
   3164     if (InVT.getSizeInBits() != VT.getSizeInBits())
   3165       // We couldn't find a legal vector type that was a widening of the input
   3166       // and could be extended in-register to the result type, so we have to
   3167       // scalarize.
   3168       return WidenVecOp_Convert(N);
   3169   }
   3170 
   3171   // Use special DAG nodes to represent the operation of extending the
   3172   // low lanes.
   3173   switch (N->getOpcode()) {
   3174   default:
   3175     llvm_unreachable("Extend legalization on on extend operation!");
   3176   case ISD::ANY_EXTEND:
   3177     return DAG.getAnyExtendVectorInReg(InOp, DL, VT);
   3178   case ISD::SIGN_EXTEND:
   3179     return DAG.getSignExtendVectorInReg(InOp, DL, VT);
   3180   case ISD::ZERO_EXTEND:
   3181     return DAG.getZeroExtendVectorInReg(InOp, DL, VT);
   3182   }
   3183 }
   3184 
   3185 SDValue DAGTypeLegalizer::WidenVecOp_FCOPYSIGN(SDNode *N) {
   3186   // The result (and first input) is legal, but the second input is illegal.
   3187   // We can't do much to fix that, so just unroll and let the extracts off of
   3188   // the second input be widened as needed later.
   3189   return DAG.UnrollVectorOp(N);
   3190 }
   3191 
   3192 SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
   3193   // Since the result is legal and the input is illegal, it is unlikely that we
   3194   // can fix the input to a legal type so unroll the convert into some scalar
   3195   // code and create a nasty build vector.
   3196   EVT VT = N->getValueType(0);
   3197   EVT EltVT = VT.getVectorElementType();
   3198   SDLoc dl(N);
   3199   unsigned NumElts = VT.getVectorNumElements();
   3200   SDValue InOp = N->getOperand(0);
   3201   if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
   3202     InOp = GetWidenedVector(InOp);
   3203   EVT InVT = InOp.getValueType();
   3204   EVT InEltVT = InVT.getVectorElementType();
   3205 
   3206   unsigned Opcode = N->getOpcode();
   3207   SmallVector<SDValue, 16> Ops(NumElts);
   3208   for (unsigned i=0; i < NumElts; ++i)
   3209     Ops[i] = DAG.getNode(
   3210         Opcode, dl, EltVT,
   3211         DAG.getNode(
   3212             ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
   3213             DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
   3214 
   3215   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   3216 }
   3217 
   3218 SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
   3219   EVT VT = N->getValueType(0);
   3220   SDValue InOp = GetWidenedVector(N->getOperand(0));
   3221   EVT InWidenVT = InOp.getValueType();
   3222   SDLoc dl(N);
   3223 
   3224   // Check if we can convert between two legal vector types and extract.
   3225   unsigned InWidenSize = InWidenVT.getSizeInBits();
   3226   unsigned Size = VT.getSizeInBits();
   3227   // x86mmx is not an acceptable vector element type, so don't try.
   3228   if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
   3229     unsigned NewNumElts = InWidenSize / Size;
   3230     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
   3231     if (TLI.isTypeLegal(NewVT)) {
   3232       SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
   3233       return DAG.getNode(
   3234           ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
   3235           DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3236     }
   3237   }
   3238 
   3239   return CreateStackStoreLoad(InOp, VT);
   3240 }
   3241 
   3242 SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
   3243   // If the input vector is not legal, it is likely that we will not find a
   3244   // legal vector of the same size. Replace the concatenate vector with a
   3245   // nasty build vector.
   3246   EVT VT = N->getValueType(0);
   3247   EVT EltVT = VT.getVectorElementType();
   3248   SDLoc dl(N);
   3249   unsigned NumElts = VT.getVectorNumElements();
   3250   SmallVector<SDValue, 16> Ops(NumElts);
   3251 
   3252   EVT InVT = N->getOperand(0).getValueType();
   3253   unsigned NumInElts = InVT.getVectorNumElements();
   3254 
   3255   unsigned Idx = 0;
   3256   unsigned NumOperands = N->getNumOperands();
   3257   for (unsigned i=0; i < NumOperands; ++i) {
   3258     SDValue InOp = N->getOperand(i);
   3259     if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
   3260       InOp = GetWidenedVector(InOp);
   3261     for (unsigned j=0; j < NumInElts; ++j)
   3262       Ops[Idx++] = DAG.getNode(
   3263           ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
   3264           DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3265   }
   3266   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   3267 }
   3268 
   3269 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
   3270   SDValue InOp = GetWidenedVector(N->getOperand(0));
   3271   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
   3272                      N->getValueType(0), InOp, N->getOperand(1));
   3273 }
   3274 
   3275 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
   3276   SDValue InOp = GetWidenedVector(N->getOperand(0));
   3277   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
   3278                      N->getValueType(0), InOp, N->getOperand(1));
   3279 }
   3280 
   3281 SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
   3282   // We have to widen the value, but we want only to store the original
   3283   // vector type.
   3284   StoreSDNode *ST = cast<StoreSDNode>(N);
   3285 
   3286   SmallVector<SDValue, 16> StChain;
   3287   if (ST->isTruncatingStore())
   3288     GenWidenVectorTruncStores(StChain, ST);
   3289   else
   3290     GenWidenVectorStores(StChain, ST);
   3291 
   3292   if (StChain.size() == 1)
   3293     return StChain[0];
   3294   else
   3295     return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
   3296 }
   3297 
   3298 SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
   3299   MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
   3300   SDValue Mask = MST->getMask();
   3301   EVT MaskVT = Mask.getValueType();
   3302   SDValue StVal = MST->getValue();
   3303   // Widen the value
   3304   SDValue WideVal = GetWidenedVector(StVal);
   3305   SDLoc dl(N);
   3306 
   3307   if (OpNo == 2 || getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
   3308     Mask = GetWidenedVector(Mask);
   3309   else {
   3310     // The mask should be widened as well.
   3311     EVT BoolVT = getSetCCResultType(WideVal.getValueType());
   3312     // We can't use ModifyToType() because we should fill the mask with
   3313     // zeroes.
   3314     unsigned WidenNumElts = BoolVT.getVectorNumElements();
   3315     unsigned MaskNumElts = MaskVT.getVectorNumElements();
   3316 
   3317     unsigned NumConcat = WidenNumElts / MaskNumElts;
   3318     SmallVector<SDValue, 16> Ops(NumConcat);
   3319     SDValue ZeroVal = DAG.getConstant(0, dl, MaskVT);
   3320     Ops[0] = Mask;
   3321     for (unsigned i = 1; i != NumConcat; ++i)
   3322       Ops[i] = ZeroVal;
   3323 
   3324     Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
   3325   }
   3326   assert(Mask.getValueType().getVectorNumElements() ==
   3327          WideVal.getValueType().getVectorNumElements() &&
   3328          "Mask and data vectors should have the same number of elements");
   3329   return DAG.getMaskedStore(MST->getChain(), dl, WideVal, MST->getBasePtr(),
   3330                             Mask, MST->getMemoryVT(), MST->getMemOperand(),
   3331                             false);
   3332 }
   3333 
   3334 SDValue DAGTypeLegalizer::WidenVecOp_MSCATTER(SDNode *N, unsigned OpNo) {
   3335   assert(OpNo == 1 && "Can widen only data operand of mscatter");
   3336   MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
   3337   SDValue DataOp = MSC->getValue();
   3338   SDValue Mask = MSC->getMask();
   3339 
   3340   // Widen the value.
   3341   SDValue WideVal = GetWidenedVector(DataOp);
   3342   EVT WideVT = WideVal.getValueType();
   3343   unsigned NumElts = WideVal.getValueType().getVectorNumElements();
   3344   SDLoc dl(N);
   3345 
   3346   // The mask should be widened as well.
   3347   Mask = WidenTargetBoolean(Mask, WideVT, true);
   3348 
   3349   // Widen index.
   3350   SDValue Index = MSC->getIndex();
   3351   EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
   3352                                      Index.getValueType().getScalarType(),
   3353                                      NumElts);
   3354   Index = ModifyToType(Index, WideIndexVT);
   3355 
   3356   SDValue Ops[] = {MSC->getChain(), WideVal, Mask, MSC->getBasePtr(), Index};
   3357   return DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
   3358                               MSC->getMemoryVT(), dl, Ops,
   3359                               MSC->getMemOperand());
   3360 }
   3361 
   3362 SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
   3363   SDValue InOp0 = GetWidenedVector(N->getOperand(0));
   3364   SDValue InOp1 = GetWidenedVector(N->getOperand(1));
   3365   SDLoc dl(N);
   3366 
   3367   // WARNING: In this code we widen the compare instruction with garbage.
   3368   // This garbage may contain denormal floats which may be slow. Is this a real
   3369   // concern ? Should we zero the unused lanes if this is a float compare ?
   3370 
   3371   // Get a new SETCC node to compare the newly widened operands.
   3372   // Only some of the compared elements are legal.
   3373   EVT SVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   3374                                    InOp0.getValueType());
   3375   SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
   3376                      SVT, InOp0, InOp1, N->getOperand(2));
   3377 
   3378   // Extract the needed results from the result vector.
   3379   EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
   3380                                SVT.getVectorElementType(),
   3381                                N->getValueType(0).getVectorNumElements());
   3382   SDValue CC = DAG.getNode(
   3383       ISD::EXTRACT_SUBVECTOR, dl, ResVT, WideSETCC,
   3384       DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3385 
   3386   return PromoteTargetBoolean(CC, N->getValueType(0));
   3387 }
   3388 
   3389 
   3390 //===----------------------------------------------------------------------===//
   3391 // Vector Widening Utilities
   3392 //===----------------------------------------------------------------------===//
   3393 
   3394 // Utility function to find the type to chop up a widen vector for load/store
   3395 //  TLI:       Target lowering used to determine legal types.
   3396 //  Width:     Width left need to load/store.
   3397 //  WidenVT:   The widen vector type to load to/store from
   3398 //  Align:     If 0, don't allow use of a wider type
   3399 //  WidenEx:   If Align is not 0, the amount additional we can load/store from.
   3400 
   3401 static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
   3402                        unsigned Width, EVT WidenVT,
   3403                        unsigned Align = 0, unsigned WidenEx = 0) {
   3404   EVT WidenEltVT = WidenVT.getVectorElementType();
   3405   unsigned WidenWidth = WidenVT.getSizeInBits();
   3406   unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
   3407   unsigned AlignInBits = Align*8;
   3408 
   3409   // If we have one element to load/store, return it.
   3410   EVT RetVT = WidenEltVT;
   3411   if (Width == WidenEltWidth)
   3412     return RetVT;
   3413 
   3414   // See if there is larger legal integer than the element type to load/store.
   3415   unsigned VT;
   3416   for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
   3417        VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
   3418     EVT MemVT((MVT::SimpleValueType) VT);
   3419     unsigned MemVTWidth = MemVT.getSizeInBits();
   3420     if (MemVT.getSizeInBits() <= WidenEltWidth)
   3421       break;
   3422     auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
   3423     if ((Action == TargetLowering::TypeLegal ||
   3424          Action == TargetLowering::TypePromoteInteger) &&
   3425         (WidenWidth % MemVTWidth) == 0 &&
   3426         isPowerOf2_32(WidenWidth / MemVTWidth) &&
   3427         (MemVTWidth <= Width ||
   3428          (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
   3429       RetVT = MemVT;
   3430       break;
   3431     }
   3432   }
   3433 
   3434   // See if there is a larger vector type to load/store that has the same vector
   3435   // element type and is evenly divisible with the WidenVT.
   3436   for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
   3437        VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
   3438     EVT MemVT = (MVT::SimpleValueType) VT;
   3439     unsigned MemVTWidth = MemVT.getSizeInBits();
   3440     if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
   3441         (WidenWidth % MemVTWidth) == 0 &&
   3442         isPowerOf2_32(WidenWidth / MemVTWidth) &&
   3443         (MemVTWidth <= Width ||
   3444          (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
   3445       if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
   3446         return MemVT;
   3447     }
   3448   }
   3449 
   3450   return RetVT;
   3451 }
   3452 
   3453 // Builds a vector type from scalar loads
   3454 //  VecTy: Resulting Vector type
   3455 //  LDOps: Load operators to build a vector type
   3456 //  [Start,End) the list of loads to use.
   3457 static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
   3458                                      SmallVectorImpl<SDValue> &LdOps,
   3459                                      unsigned Start, unsigned End) {
   3460   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3461   SDLoc dl(LdOps[Start]);
   3462   EVT LdTy = LdOps[Start].getValueType();
   3463   unsigned Width = VecTy.getSizeInBits();
   3464   unsigned NumElts = Width / LdTy.getSizeInBits();
   3465   EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
   3466 
   3467   unsigned Idx = 1;
   3468   SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
   3469 
   3470   for (unsigned i = Start + 1; i != End; ++i) {
   3471     EVT NewLdTy = LdOps[i].getValueType();
   3472     if (NewLdTy != LdTy) {
   3473       NumElts = Width / NewLdTy.getSizeInBits();
   3474       NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
   3475       VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
   3476       // Readjust position and vector position based on new load type.
   3477       Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
   3478       LdTy = NewLdTy;
   3479     }
   3480     VecOp = DAG.getNode(
   3481         ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
   3482         DAG.getConstant(Idx++, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3483   }
   3484   return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
   3485 }
   3486 
   3487 SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
   3488                                               LoadSDNode *LD) {
   3489   // The strategy assumes that we can efficiently load power-of-two widths.
   3490   // The routine chops the vector into the largest vector loads with the same
   3491   // element type or scalar loads and then recombines it to the widen vector
   3492   // type.
   3493   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
   3494   unsigned WidenWidth = WidenVT.getSizeInBits();
   3495   EVT LdVT    = LD->getMemoryVT();
   3496   SDLoc dl(LD);
   3497   assert(LdVT.isVector() && WidenVT.isVector());
   3498   assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
   3499 
   3500   // Load information
   3501   SDValue   Chain = LD->getChain();
   3502   SDValue   BasePtr = LD->getBasePtr();
   3503   unsigned  Align    = LD->getAlignment();
   3504   bool      isVolatile = LD->isVolatile();
   3505   bool      isNonTemporal = LD->isNonTemporal();
   3506   bool      isInvariant = LD->isInvariant();
   3507   AAMDNodes AAInfo = LD->getAAInfo();
   3508 
   3509   int LdWidth = LdVT.getSizeInBits();
   3510   int WidthDiff = WidenWidth - LdWidth;
   3511   unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads.
   3512 
   3513   // Find the vector type that can load from.
   3514   EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
   3515   int NewVTWidth = NewVT.getSizeInBits();
   3516   SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
   3517                              isVolatile, isNonTemporal, isInvariant, Align,
   3518                              AAInfo);
   3519   LdChain.push_back(LdOp.getValue(1));
   3520 
   3521   // Check if we can load the element with one instruction.
   3522   if (LdWidth <= NewVTWidth) {
   3523     if (!NewVT.isVector()) {
   3524       unsigned NumElts = WidenWidth / NewVTWidth;
   3525       EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
   3526       SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
   3527       return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
   3528     }
   3529     if (NewVT == WidenVT)
   3530       return LdOp;
   3531 
   3532     assert(WidenWidth % NewVTWidth == 0);
   3533     unsigned NumConcat = WidenWidth / NewVTWidth;
   3534     SmallVector<SDValue, 16> ConcatOps(NumConcat);
   3535     SDValue UndefVal = DAG.getUNDEF(NewVT);
   3536     ConcatOps[0] = LdOp;
   3537     for (unsigned i = 1; i != NumConcat; ++i)
   3538       ConcatOps[i] = UndefVal;
   3539     return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
   3540   }
   3541 
   3542   // Load vector by using multiple loads from largest vector to scalar.
   3543   SmallVector<SDValue, 16> LdOps;
   3544   LdOps.push_back(LdOp);
   3545 
   3546   LdWidth -= NewVTWidth;
   3547   unsigned Offset = 0;
   3548 
   3549   while (LdWidth > 0) {
   3550     unsigned Increment = NewVTWidth / 8;
   3551     Offset += Increment;
   3552     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   3553                           DAG.getConstant(Increment, dl, BasePtr.getValueType()));
   3554 
   3555     SDValue L;
   3556     if (LdWidth < NewVTWidth) {
   3557       // The current type we are using is too large. Find a better size.
   3558       NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
   3559       NewVTWidth = NewVT.getSizeInBits();
   3560       L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
   3561                       LD->getPointerInfo().getWithOffset(Offset), isVolatile,
   3562                       isNonTemporal, isInvariant, MinAlign(Align, Increment),
   3563                       AAInfo);
   3564       LdChain.push_back(L.getValue(1));
   3565       if (L->getValueType(0).isVector()) {
   3566         SmallVector<SDValue, 16> Loads;
   3567         Loads.push_back(L);
   3568         unsigned size = L->getValueSizeInBits(0);
   3569         while (size < LdOp->getValueSizeInBits(0)) {
   3570           Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
   3571           size += L->getValueSizeInBits(0);
   3572         }
   3573         L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads);
   3574       }
   3575     } else {
   3576       L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
   3577                       LD->getPointerInfo().getWithOffset(Offset), isVolatile,
   3578                       isNonTemporal, isInvariant, MinAlign(Align, Increment),
   3579                       AAInfo);
   3580       LdChain.push_back(L.getValue(1));
   3581     }
   3582 
   3583     LdOps.push_back(L);
   3584 
   3585 
   3586     LdWidth -= NewVTWidth;
   3587   }
   3588 
   3589   // Build the vector from the load operations.
   3590   unsigned End = LdOps.size();
   3591   if (!LdOps[0].getValueType().isVector())
   3592     // All the loads are scalar loads.
   3593     return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
   3594 
   3595   // If the load contains vectors, build the vector using concat vector.
   3596   // All of the vectors used to load are power-of-2, and the scalar loads can be
   3597   // combined to make a power-of-2 vector.
   3598   SmallVector<SDValue, 16> ConcatOps(End);
   3599   int i = End - 1;
   3600   int Idx = End;
   3601   EVT LdTy = LdOps[i].getValueType();
   3602   // First, combine the scalar loads to a vector.
   3603   if (!LdTy.isVector())  {
   3604     for (--i; i >= 0; --i) {
   3605       LdTy = LdOps[i].getValueType();
   3606       if (LdTy.isVector())
   3607         break;
   3608     }
   3609     ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i + 1, End);
   3610   }
   3611   ConcatOps[--Idx] = LdOps[i];
   3612   for (--i; i >= 0; --i) {
   3613     EVT NewLdTy = LdOps[i].getValueType();
   3614     if (NewLdTy != LdTy) {
   3615       // Create a larger vector.
   3616       ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
   3617                                      makeArrayRef(&ConcatOps[Idx], End - Idx));
   3618       Idx = End - 1;
   3619       LdTy = NewLdTy;
   3620     }
   3621     ConcatOps[--Idx] = LdOps[i];
   3622   }
   3623 
   3624   if (WidenWidth == LdTy.getSizeInBits() * (End - Idx))
   3625     return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
   3626                        makeArrayRef(&ConcatOps[Idx], End - Idx));
   3627 
   3628   // We need to fill the rest with undefs to build the vector.
   3629   unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
   3630   SmallVector<SDValue, 16> WidenOps(NumOps);
   3631   SDValue UndefVal = DAG.getUNDEF(LdTy);
   3632   {
   3633     unsigned i = 0;
   3634     for (; i != End-Idx; ++i)
   3635       WidenOps[i] = ConcatOps[Idx+i];
   3636     for (; i != NumOps; ++i)
   3637       WidenOps[i] = UndefVal;
   3638   }
   3639   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
   3640 }
   3641 
   3642 SDValue
   3643 DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
   3644                                          LoadSDNode *LD,
   3645                                          ISD::LoadExtType ExtType) {
   3646   // For extension loads, it may not be more efficient to chop up the vector
   3647   // and then extend it. Instead, we unroll the load and build a new vector.
   3648   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
   3649   EVT LdVT    = LD->getMemoryVT();
   3650   SDLoc dl(LD);
   3651   assert(LdVT.isVector() && WidenVT.isVector());
   3652 
   3653   // Load information
   3654   SDValue   Chain = LD->getChain();
   3655   SDValue   BasePtr = LD->getBasePtr();
   3656   unsigned  Align    = LD->getAlignment();
   3657   bool      isVolatile = LD->isVolatile();
   3658   bool      isNonTemporal = LD->isNonTemporal();
   3659   bool      isInvariant = LD->isInvariant();
   3660   AAMDNodes AAInfo = LD->getAAInfo();
   3661 
   3662   EVT EltVT = WidenVT.getVectorElementType();
   3663   EVT LdEltVT = LdVT.getVectorElementType();
   3664   unsigned NumElts = LdVT.getVectorNumElements();
   3665 
   3666   // Load each element and widen.
   3667   unsigned WidenNumElts = WidenVT.getVectorNumElements();
   3668   SmallVector<SDValue, 16> Ops(WidenNumElts);
   3669   unsigned Increment = LdEltVT.getSizeInBits() / 8;
   3670   Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
   3671                           LD->getPointerInfo(),
   3672                           LdEltVT, isVolatile, isNonTemporal, isInvariant,
   3673                           Align, AAInfo);
   3674   LdChain.push_back(Ops[0].getValue(1));
   3675   unsigned i = 0, Offset = Increment;
   3676   for (i=1; i < NumElts; ++i, Offset += Increment) {
   3677     SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
   3678                                      BasePtr,
   3679                                      DAG.getConstant(Offset, dl,
   3680                                                      BasePtr.getValueType()));
   3681     Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
   3682                             LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
   3683                             isVolatile, isNonTemporal, isInvariant, Align,
   3684                             AAInfo);
   3685     LdChain.push_back(Ops[i].getValue(1));
   3686   }
   3687 
   3688   // Fill the rest with undefs.
   3689   SDValue UndefVal = DAG.getUNDEF(EltVT);
   3690   for (; i != WidenNumElts; ++i)
   3691     Ops[i] = UndefVal;
   3692 
   3693   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
   3694 }
   3695 
   3696 
   3697 void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
   3698                                             StoreSDNode *ST) {
   3699   // The strategy assumes that we can efficiently store power-of-two widths.
   3700   // The routine chops the vector into the largest vector stores with the same
   3701   // element type or scalar stores.
   3702   SDValue  Chain = ST->getChain();
   3703   SDValue  BasePtr = ST->getBasePtr();
   3704   unsigned Align = ST->getAlignment();
   3705   bool     isVolatile = ST->isVolatile();
   3706   bool     isNonTemporal = ST->isNonTemporal();
   3707   AAMDNodes AAInfo = ST->getAAInfo();
   3708   SDValue  ValOp = GetWidenedVector(ST->getValue());
   3709   SDLoc dl(ST);
   3710 
   3711   EVT StVT = ST->getMemoryVT();
   3712   unsigned StWidth = StVT.getSizeInBits();
   3713   EVT ValVT = ValOp.getValueType();
   3714   unsigned ValWidth = ValVT.getSizeInBits();
   3715   EVT ValEltVT = ValVT.getVectorElementType();
   3716   unsigned ValEltWidth = ValEltVT.getSizeInBits();
   3717   assert(StVT.getVectorElementType() == ValEltVT);
   3718 
   3719   int Idx = 0;          // current index to store
   3720   unsigned Offset = 0;  // offset from base to store
   3721   while (StWidth != 0) {
   3722     // Find the largest vector type we can store with.
   3723     EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
   3724     unsigned NewVTWidth = NewVT.getSizeInBits();
   3725     unsigned Increment = NewVTWidth / 8;
   3726     if (NewVT.isVector()) {
   3727       unsigned NumVTElts = NewVT.getVectorNumElements();
   3728       do {
   3729         SDValue EOp = DAG.getNode(
   3730             ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
   3731             DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3732         StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
   3733                                     ST->getPointerInfo().getWithOffset(Offset),
   3734                                        isVolatile, isNonTemporal,
   3735                                        MinAlign(Align, Offset), AAInfo));
   3736         StWidth -= NewVTWidth;
   3737         Offset += Increment;
   3738         Idx += NumVTElts;
   3739         BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   3740                               DAG.getConstant(Increment, dl,
   3741                                               BasePtr.getValueType()));
   3742       } while (StWidth != 0 && StWidth >= NewVTWidth);
   3743     } else {
   3744       // Cast the vector to the scalar type we can store.
   3745       unsigned NumElts = ValWidth / NewVTWidth;
   3746       EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
   3747       SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
   3748       // Readjust index position based on new vector type.
   3749       Idx = Idx * ValEltWidth / NewVTWidth;
   3750       do {
   3751         SDValue EOp = DAG.getNode(
   3752             ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
   3753             DAG.getConstant(Idx++, dl,
   3754                             TLI.getVectorIdxTy(DAG.getDataLayout())));
   3755         StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
   3756                                     ST->getPointerInfo().getWithOffset(Offset),
   3757                                        isVolatile, isNonTemporal,
   3758                                        MinAlign(Align, Offset), AAInfo));
   3759         StWidth -= NewVTWidth;
   3760         Offset += Increment;
   3761         BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
   3762                               DAG.getConstant(Increment, dl,
   3763                                               BasePtr.getValueType()));
   3764       } while (StWidth != 0 && StWidth >= NewVTWidth);
   3765       // Restore index back to be relative to the original widen element type.
   3766       Idx = Idx * NewVTWidth / ValEltWidth;
   3767     }
   3768   }
   3769 }
   3770 
   3771 void
   3772 DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
   3773                                             StoreSDNode *ST) {
   3774   // For extension loads, it may not be more efficient to truncate the vector
   3775   // and then store it. Instead, we extract each element and then store it.
   3776   SDValue  Chain = ST->getChain();
   3777   SDValue  BasePtr = ST->getBasePtr();
   3778   unsigned Align = ST->getAlignment();
   3779   bool     isVolatile = ST->isVolatile();
   3780   bool     isNonTemporal = ST->isNonTemporal();
   3781   AAMDNodes AAInfo = ST->getAAInfo();
   3782   SDValue  ValOp = GetWidenedVector(ST->getValue());
   3783   SDLoc dl(ST);
   3784 
   3785   EVT StVT = ST->getMemoryVT();
   3786   EVT ValVT = ValOp.getValueType();
   3787 
   3788   // It must be true that the wide vector type is bigger than where we need to
   3789   // store.
   3790   assert(StVT.isVector() && ValOp.getValueType().isVector());
   3791   assert(StVT.bitsLT(ValOp.getValueType()));
   3792 
   3793   // For truncating stores, we can not play the tricks of chopping legal vector
   3794   // types and bitcast it to the right type. Instead, we unroll the store.
   3795   EVT StEltVT  = StVT.getVectorElementType();
   3796   EVT ValEltVT = ValVT.getVectorElementType();
   3797   unsigned Increment = ValEltVT.getSizeInBits() / 8;
   3798   unsigned NumElts = StVT.getVectorNumElements();
   3799   SDValue EOp = DAG.getNode(
   3800       ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
   3801       DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3802   StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
   3803                                       ST->getPointerInfo(), StEltVT,
   3804                                       isVolatile, isNonTemporal, Align,
   3805                                       AAInfo));
   3806   unsigned Offset = Increment;
   3807   for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
   3808     SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
   3809                                      BasePtr,
   3810                                      DAG.getConstant(Offset, dl,
   3811                                                      BasePtr.getValueType()));
   3812     SDValue EOp = DAG.getNode(
   3813         ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
   3814         DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3815     StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
   3816                                       ST->getPointerInfo().getWithOffset(Offset),
   3817                                         StEltVT, isVolatile, isNonTemporal,
   3818                                         MinAlign(Align, Offset), AAInfo));
   3819   }
   3820 }
   3821 
   3822 /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
   3823 /// input vector must have the same element type as NVT.
   3824 /// FillWithZeroes specifies that the vector should be widened with zeroes.
   3825 SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT,
   3826                                        bool FillWithZeroes) {
   3827   // Note that InOp might have been widened so it might already have
   3828   // the right width or it might need be narrowed.
   3829   EVT InVT = InOp.getValueType();
   3830   assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
   3831          "input and widen element type must match");
   3832   SDLoc dl(InOp);
   3833 
   3834   // Check if InOp already has the right width.
   3835   if (InVT == NVT)
   3836     return InOp;
   3837 
   3838   unsigned InNumElts = InVT.getVectorNumElements();
   3839   unsigned WidenNumElts = NVT.getVectorNumElements();
   3840   if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
   3841     unsigned NumConcat = WidenNumElts / InNumElts;
   3842     SmallVector<SDValue, 16> Ops(NumConcat);
   3843     SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, InVT) :
   3844       DAG.getUNDEF(InVT);
   3845     Ops[0] = InOp;
   3846     for (unsigned i = 1; i != NumConcat; ++i)
   3847       Ops[i] = FillVal;
   3848 
   3849     return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
   3850   }
   3851 
   3852   if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
   3853     return DAG.getNode(
   3854         ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
   3855         DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3856 
   3857   // Fall back to extract and build.
   3858   SmallVector<SDValue, 16> Ops(WidenNumElts);
   3859   EVT EltVT = NVT.getVectorElementType();
   3860   unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
   3861   unsigned Idx;
   3862   for (Idx = 0; Idx < MinNumElts; ++Idx)
   3863     Ops[Idx] = DAG.getNode(
   3864         ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
   3865         DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
   3866 
   3867   SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
   3868     DAG.getUNDEF(EltVT);
   3869   for ( ; Idx < WidenNumElts; ++Idx)
   3870     Ops[Idx] = FillVal;
   3871   return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
   3872 }
   3873