Home | History | Annotate | Download | only in AArch64
      1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that performs load / store related peephole
     11 // optimizations. This pass should be run after register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "AArch64InstrInfo.h"
     16 #include "AArch64Subtarget.h"
     17 #include "MCTargetDesc/AArch64AddressingModes.h"
     18 #include "llvm/ADT/BitVector.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/CodeGen/MachineBasicBlock.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineInstr.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/Support/CommandLine.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Target/TargetInstrInfo.h"
     30 #include "llvm/Target/TargetMachine.h"
     31 #include "llvm/Target/TargetRegisterInfo.h"
     32 using namespace llvm;
     33 
     34 #define DEBUG_TYPE "aarch64-ldst-opt"
     35 
     36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
     37 STATISTIC(NumPostFolded, "Number of post-index updates folded");
     38 STATISTIC(NumPreFolded, "Number of pre-index updates folded");
     39 STATISTIC(NumUnscaledPairCreated,
     40           "Number of load/store from unscaled generated");
     41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted");
     42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
     43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
     44 
     45 // The LdStLimit limits how far we search for load/store pairs.
     46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
     47                                    cl::init(20), cl::Hidden);
     48 
     49 // The UpdateLimit limits how far we search for update instructions when we form
     50 // pre-/post-index instructions.
     51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
     52                                      cl::Hidden);
     53 
     54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden,
     55                                          cl::init(false),
     56                                          cl::desc("Enable narrow load merge"));
     57 
     58 namespace llvm {
     59 void initializeAArch64LoadStoreOptPass(PassRegistry &);
     60 }
     61 
     62 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
     63 
     64 namespace {
     65 
     66 typedef struct LdStPairFlags {
     67   // If a matching instruction is found, MergeForward is set to true if the
     68   // merge is to remove the first instruction and replace the second with
     69   // a pair-wise insn, and false if the reverse is true.
     70   bool MergeForward;
     71 
     72   // SExtIdx gives the index of the result of the load pair that must be
     73   // extended. The value of SExtIdx assumes that the paired load produces the
     74   // value in this order: (I, returned iterator), i.e., -1 means no value has
     75   // to be extended, 0 means I, and 1 means the returned iterator.
     76   int SExtIdx;
     77 
     78   LdStPairFlags() : MergeForward(false), SExtIdx(-1) {}
     79 
     80   void setMergeForward(bool V = true) { MergeForward = V; }
     81   bool getMergeForward() const { return MergeForward; }
     82 
     83   void setSExtIdx(int V) { SExtIdx = V; }
     84   int getSExtIdx() const { return SExtIdx; }
     85 
     86 } LdStPairFlags;
     87 
     88 struct AArch64LoadStoreOpt : public MachineFunctionPass {
     89   static char ID;
     90   AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
     91     initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
     92   }
     93 
     94   const AArch64InstrInfo *TII;
     95   const TargetRegisterInfo *TRI;
     96   const AArch64Subtarget *Subtarget;
     97 
     98   // Track which registers have been modified and used.
     99   BitVector ModifiedRegs, UsedRegs;
    100 
    101   // Scan the instructions looking for a load/store that can be combined
    102   // with the current instruction into a load/store pair.
    103   // Return the matching instruction if one is found, else MBB->end().
    104   MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
    105                                                LdStPairFlags &Flags,
    106                                                unsigned Limit,
    107                                                bool FindNarrowMerge);
    108 
    109   // Scan the instructions looking for a store that writes to the address from
    110   // which the current load instruction reads. Return true if one is found.
    111   bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
    112                          MachineBasicBlock::iterator &StoreI);
    113 
    114   // Merge the two instructions indicated into a wider instruction.
    115   MachineBasicBlock::iterator
    116   mergeNarrowInsns(MachineBasicBlock::iterator I,
    117                    MachineBasicBlock::iterator MergeMI,
    118                    const LdStPairFlags &Flags);
    119 
    120   // Merge the two instructions indicated into a single pair-wise instruction.
    121   MachineBasicBlock::iterator
    122   mergePairedInsns(MachineBasicBlock::iterator I,
    123                    MachineBasicBlock::iterator Paired,
    124                    const LdStPairFlags &Flags);
    125 
    126   // Promote the load that reads directly from the address stored to.
    127   MachineBasicBlock::iterator
    128   promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
    129                        MachineBasicBlock::iterator StoreI);
    130 
    131   // Scan the instruction list to find a base register update that can
    132   // be combined with the current instruction (a load or store) using
    133   // pre or post indexed addressing with writeback. Scan forwards.
    134   MachineBasicBlock::iterator
    135   findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
    136                                 int UnscaledOffset, unsigned Limit);
    137 
    138   // Scan the instruction list to find a base register update that can
    139   // be combined with the current instruction (a load or store) using
    140   // pre or post indexed addressing with writeback. Scan backwards.
    141   MachineBasicBlock::iterator
    142   findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
    143 
    144   // Find an instruction that updates the base register of the ld/st
    145   // instruction.
    146   bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
    147                             unsigned BaseReg, int Offset);
    148 
    149   // Merge a pre- or post-index base register update into a ld/st instruction.
    150   MachineBasicBlock::iterator
    151   mergeUpdateInsn(MachineBasicBlock::iterator I,
    152                   MachineBasicBlock::iterator Update, bool IsPreIdx);
    153 
    154   // Find and merge foldable ldr/str instructions.
    155   bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI);
    156 
    157   // Find and pair ldr/str instructions.
    158   bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
    159 
    160   // Find and promote load instructions which read directly from store.
    161   bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
    162 
    163   bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt);
    164 
    165   bool runOnMachineFunction(MachineFunction &Fn) override;
    166 
    167   MachineFunctionProperties getRequiredProperties() const override {
    168     return MachineFunctionProperties().set(
    169         MachineFunctionProperties::Property::AllVRegsAllocated);
    170   }
    171 
    172   const char *getPassName() const override {
    173     return AARCH64_LOAD_STORE_OPT_NAME;
    174   }
    175 };
    176 char AArch64LoadStoreOpt::ID = 0;
    177 } // namespace
    178 
    179 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
    180                 AARCH64_LOAD_STORE_OPT_NAME, false, false)
    181 
    182 static unsigned getBitExtrOpcode(MachineInstr &MI) {
    183   switch (MI.getOpcode()) {
    184   default:
    185     llvm_unreachable("Unexpected opcode.");
    186   case AArch64::LDRBBui:
    187   case AArch64::LDURBBi:
    188   case AArch64::LDRHHui:
    189   case AArch64::LDURHHi:
    190     return AArch64::UBFMWri;
    191   case AArch64::LDRSBWui:
    192   case AArch64::LDURSBWi:
    193   case AArch64::LDRSHWui:
    194   case AArch64::LDURSHWi:
    195     return AArch64::SBFMWri;
    196   }
    197 }
    198 
    199 static bool isNarrowStore(unsigned Opc) {
    200   switch (Opc) {
    201   default:
    202     return false;
    203   case AArch64::STRBBui:
    204   case AArch64::STURBBi:
    205   case AArch64::STRHHui:
    206   case AArch64::STURHHi:
    207     return true;
    208   }
    209 }
    210 
    211 static bool isNarrowLoad(unsigned Opc) {
    212   switch (Opc) {
    213   default:
    214     return false;
    215   case AArch64::LDRHHui:
    216   case AArch64::LDURHHi:
    217   case AArch64::LDRBBui:
    218   case AArch64::LDURBBi:
    219   case AArch64::LDRSHWui:
    220   case AArch64::LDURSHWi:
    221   case AArch64::LDRSBWui:
    222   case AArch64::LDURSBWi:
    223     return true;
    224   }
    225 }
    226 
    227 static bool isNarrowLoad(MachineInstr &MI) {
    228   return isNarrowLoad(MI.getOpcode());
    229 }
    230 
    231 static bool isNarrowLoadOrStore(unsigned Opc) {
    232   return isNarrowLoad(Opc) || isNarrowStore(Opc);
    233 }
    234 
    235 // Scaling factor for unscaled load or store.
    236 static int getMemScale(MachineInstr &MI) {
    237   switch (MI.getOpcode()) {
    238   default:
    239     llvm_unreachable("Opcode has unknown scale!");
    240   case AArch64::LDRBBui:
    241   case AArch64::LDURBBi:
    242   case AArch64::LDRSBWui:
    243   case AArch64::LDURSBWi:
    244   case AArch64::STRBBui:
    245   case AArch64::STURBBi:
    246     return 1;
    247   case AArch64::LDRHHui:
    248   case AArch64::LDURHHi:
    249   case AArch64::LDRSHWui:
    250   case AArch64::LDURSHWi:
    251   case AArch64::STRHHui:
    252   case AArch64::STURHHi:
    253     return 2;
    254   case AArch64::LDRSui:
    255   case AArch64::LDURSi:
    256   case AArch64::LDRSWui:
    257   case AArch64::LDURSWi:
    258   case AArch64::LDRWui:
    259   case AArch64::LDURWi:
    260   case AArch64::STRSui:
    261   case AArch64::STURSi:
    262   case AArch64::STRWui:
    263   case AArch64::STURWi:
    264   case AArch64::LDPSi:
    265   case AArch64::LDPSWi:
    266   case AArch64::LDPWi:
    267   case AArch64::STPSi:
    268   case AArch64::STPWi:
    269     return 4;
    270   case AArch64::LDRDui:
    271   case AArch64::LDURDi:
    272   case AArch64::LDRXui:
    273   case AArch64::LDURXi:
    274   case AArch64::STRDui:
    275   case AArch64::STURDi:
    276   case AArch64::STRXui:
    277   case AArch64::STURXi:
    278   case AArch64::LDPDi:
    279   case AArch64::LDPXi:
    280   case AArch64::STPDi:
    281   case AArch64::STPXi:
    282     return 8;
    283   case AArch64::LDRQui:
    284   case AArch64::LDURQi:
    285   case AArch64::STRQui:
    286   case AArch64::STURQi:
    287   case AArch64::LDPQi:
    288   case AArch64::STPQi:
    289     return 16;
    290   }
    291 }
    292 
    293 static unsigned getMatchingNonSExtOpcode(unsigned Opc,
    294                                          bool *IsValidLdStrOpc = nullptr) {
    295   if (IsValidLdStrOpc)
    296     *IsValidLdStrOpc = true;
    297   switch (Opc) {
    298   default:
    299     if (IsValidLdStrOpc)
    300       *IsValidLdStrOpc = false;
    301     return UINT_MAX;
    302   case AArch64::STRDui:
    303   case AArch64::STURDi:
    304   case AArch64::STRQui:
    305   case AArch64::STURQi:
    306   case AArch64::STRBBui:
    307   case AArch64::STURBBi:
    308   case AArch64::STRHHui:
    309   case AArch64::STURHHi:
    310   case AArch64::STRWui:
    311   case AArch64::STURWi:
    312   case AArch64::STRXui:
    313   case AArch64::STURXi:
    314   case AArch64::LDRDui:
    315   case AArch64::LDURDi:
    316   case AArch64::LDRQui:
    317   case AArch64::LDURQi:
    318   case AArch64::LDRWui:
    319   case AArch64::LDURWi:
    320   case AArch64::LDRXui:
    321   case AArch64::LDURXi:
    322   case AArch64::STRSui:
    323   case AArch64::STURSi:
    324   case AArch64::LDRSui:
    325   case AArch64::LDURSi:
    326   case AArch64::LDRHHui:
    327   case AArch64::LDURHHi:
    328   case AArch64::LDRBBui:
    329   case AArch64::LDURBBi:
    330     return Opc;
    331   case AArch64::LDRSWui:
    332     return AArch64::LDRWui;
    333   case AArch64::LDURSWi:
    334     return AArch64::LDURWi;
    335   case AArch64::LDRSBWui:
    336     return AArch64::LDRBBui;
    337   case AArch64::LDRSHWui:
    338     return AArch64::LDRHHui;
    339   case AArch64::LDURSBWi:
    340     return AArch64::LDURBBi;
    341   case AArch64::LDURSHWi:
    342     return AArch64::LDURHHi;
    343   }
    344 }
    345 
    346 static unsigned getMatchingWideOpcode(unsigned Opc) {
    347   switch (Opc) {
    348   default:
    349     llvm_unreachable("Opcode has no wide equivalent!");
    350   case AArch64::STRBBui:
    351     return AArch64::STRHHui;
    352   case AArch64::STRHHui:
    353     return AArch64::STRWui;
    354   case AArch64::STURBBi:
    355     return AArch64::STURHHi;
    356   case AArch64::STURHHi:
    357     return AArch64::STURWi;
    358   case AArch64::STURWi:
    359     return AArch64::STURXi;
    360   case AArch64::STRWui:
    361     return AArch64::STRXui;
    362   case AArch64::LDRHHui:
    363   case AArch64::LDRSHWui:
    364     return AArch64::LDRWui;
    365   case AArch64::LDURHHi:
    366   case AArch64::LDURSHWi:
    367     return AArch64::LDURWi;
    368   case AArch64::LDRBBui:
    369   case AArch64::LDRSBWui:
    370     return AArch64::LDRHHui;
    371   case AArch64::LDURBBi:
    372   case AArch64::LDURSBWi:
    373     return AArch64::LDURHHi;
    374   }
    375 }
    376 
    377 static unsigned getMatchingPairOpcode(unsigned Opc) {
    378   switch (Opc) {
    379   default:
    380     llvm_unreachable("Opcode has no pairwise equivalent!");
    381   case AArch64::STRSui:
    382   case AArch64::STURSi:
    383     return AArch64::STPSi;
    384   case AArch64::STRDui:
    385   case AArch64::STURDi:
    386     return AArch64::STPDi;
    387   case AArch64::STRQui:
    388   case AArch64::STURQi:
    389     return AArch64::STPQi;
    390   case AArch64::STRWui:
    391   case AArch64::STURWi:
    392     return AArch64::STPWi;
    393   case AArch64::STRXui:
    394   case AArch64::STURXi:
    395     return AArch64::STPXi;
    396   case AArch64::LDRSui:
    397   case AArch64::LDURSi:
    398     return AArch64::LDPSi;
    399   case AArch64::LDRDui:
    400   case AArch64::LDURDi:
    401     return AArch64::LDPDi;
    402   case AArch64::LDRQui:
    403   case AArch64::LDURQi:
    404     return AArch64::LDPQi;
    405   case AArch64::LDRWui:
    406   case AArch64::LDURWi:
    407     return AArch64::LDPWi;
    408   case AArch64::LDRXui:
    409   case AArch64::LDURXi:
    410     return AArch64::LDPXi;
    411   case AArch64::LDRSWui:
    412   case AArch64::LDURSWi:
    413     return AArch64::LDPSWi;
    414   }
    415 }
    416 
    417 static unsigned isMatchingStore(MachineInstr &LoadInst,
    418                                 MachineInstr &StoreInst) {
    419   unsigned LdOpc = LoadInst.getOpcode();
    420   unsigned StOpc = StoreInst.getOpcode();
    421   switch (LdOpc) {
    422   default:
    423     llvm_unreachable("Unsupported load instruction!");
    424   case AArch64::LDRBBui:
    425     return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
    426            StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
    427   case AArch64::LDURBBi:
    428     return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
    429            StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
    430   case AArch64::LDRHHui:
    431     return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
    432            StOpc == AArch64::STRXui;
    433   case AArch64::LDURHHi:
    434     return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
    435            StOpc == AArch64::STURXi;
    436   case AArch64::LDRWui:
    437     return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
    438   case AArch64::LDURWi:
    439     return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
    440   case AArch64::LDRXui:
    441     return StOpc == AArch64::STRXui;
    442   case AArch64::LDURXi:
    443     return StOpc == AArch64::STURXi;
    444   }
    445 }
    446 
    447 static unsigned getPreIndexedOpcode(unsigned Opc) {
    448   switch (Opc) {
    449   default:
    450     llvm_unreachable("Opcode has no pre-indexed equivalent!");
    451   case AArch64::STRSui:
    452     return AArch64::STRSpre;
    453   case AArch64::STRDui:
    454     return AArch64::STRDpre;
    455   case AArch64::STRQui:
    456     return AArch64::STRQpre;
    457   case AArch64::STRBBui:
    458     return AArch64::STRBBpre;
    459   case AArch64::STRHHui:
    460     return AArch64::STRHHpre;
    461   case AArch64::STRWui:
    462     return AArch64::STRWpre;
    463   case AArch64::STRXui:
    464     return AArch64::STRXpre;
    465   case AArch64::LDRSui:
    466     return AArch64::LDRSpre;
    467   case AArch64::LDRDui:
    468     return AArch64::LDRDpre;
    469   case AArch64::LDRQui:
    470     return AArch64::LDRQpre;
    471   case AArch64::LDRBBui:
    472     return AArch64::LDRBBpre;
    473   case AArch64::LDRHHui:
    474     return AArch64::LDRHHpre;
    475   case AArch64::LDRWui:
    476     return AArch64::LDRWpre;
    477   case AArch64::LDRXui:
    478     return AArch64::LDRXpre;
    479   case AArch64::LDRSWui:
    480     return AArch64::LDRSWpre;
    481   case AArch64::LDPSi:
    482     return AArch64::LDPSpre;
    483   case AArch64::LDPSWi:
    484     return AArch64::LDPSWpre;
    485   case AArch64::LDPDi:
    486     return AArch64::LDPDpre;
    487   case AArch64::LDPQi:
    488     return AArch64::LDPQpre;
    489   case AArch64::LDPWi:
    490     return AArch64::LDPWpre;
    491   case AArch64::LDPXi:
    492     return AArch64::LDPXpre;
    493   case AArch64::STPSi:
    494     return AArch64::STPSpre;
    495   case AArch64::STPDi:
    496     return AArch64::STPDpre;
    497   case AArch64::STPQi:
    498     return AArch64::STPQpre;
    499   case AArch64::STPWi:
    500     return AArch64::STPWpre;
    501   case AArch64::STPXi:
    502     return AArch64::STPXpre;
    503   }
    504 }
    505 
    506 static unsigned getPostIndexedOpcode(unsigned Opc) {
    507   switch (Opc) {
    508   default:
    509     llvm_unreachable("Opcode has no post-indexed wise equivalent!");
    510   case AArch64::STRSui:
    511     return AArch64::STRSpost;
    512   case AArch64::STRDui:
    513     return AArch64::STRDpost;
    514   case AArch64::STRQui:
    515     return AArch64::STRQpost;
    516   case AArch64::STRBBui:
    517     return AArch64::STRBBpost;
    518   case AArch64::STRHHui:
    519     return AArch64::STRHHpost;
    520   case AArch64::STRWui:
    521     return AArch64::STRWpost;
    522   case AArch64::STRXui:
    523     return AArch64::STRXpost;
    524   case AArch64::LDRSui:
    525     return AArch64::LDRSpost;
    526   case AArch64::LDRDui:
    527     return AArch64::LDRDpost;
    528   case AArch64::LDRQui:
    529     return AArch64::LDRQpost;
    530   case AArch64::LDRBBui:
    531     return AArch64::LDRBBpost;
    532   case AArch64::LDRHHui:
    533     return AArch64::LDRHHpost;
    534   case AArch64::LDRWui:
    535     return AArch64::LDRWpost;
    536   case AArch64::LDRXui:
    537     return AArch64::LDRXpost;
    538   case AArch64::LDRSWui:
    539     return AArch64::LDRSWpost;
    540   case AArch64::LDPSi:
    541     return AArch64::LDPSpost;
    542   case AArch64::LDPSWi:
    543     return AArch64::LDPSWpost;
    544   case AArch64::LDPDi:
    545     return AArch64::LDPDpost;
    546   case AArch64::LDPQi:
    547     return AArch64::LDPQpost;
    548   case AArch64::LDPWi:
    549     return AArch64::LDPWpost;
    550   case AArch64::LDPXi:
    551     return AArch64::LDPXpost;
    552   case AArch64::STPSi:
    553     return AArch64::STPSpost;
    554   case AArch64::STPDi:
    555     return AArch64::STPDpost;
    556   case AArch64::STPQi:
    557     return AArch64::STPQpost;
    558   case AArch64::STPWi:
    559     return AArch64::STPWpost;
    560   case AArch64::STPXi:
    561     return AArch64::STPXpost;
    562   }
    563 }
    564 
    565 static bool isPairedLdSt(const MachineInstr &MI) {
    566   switch (MI.getOpcode()) {
    567   default:
    568     return false;
    569   case AArch64::LDPSi:
    570   case AArch64::LDPSWi:
    571   case AArch64::LDPDi:
    572   case AArch64::LDPQi:
    573   case AArch64::LDPWi:
    574   case AArch64::LDPXi:
    575   case AArch64::STPSi:
    576   case AArch64::STPDi:
    577   case AArch64::STPQi:
    578   case AArch64::STPWi:
    579   case AArch64::STPXi:
    580     return true;
    581   }
    582 }
    583 
    584 static const MachineOperand &getLdStRegOp(const MachineInstr &MI,
    585                                           unsigned PairedRegOp = 0) {
    586   assert(PairedRegOp < 2 && "Unexpected register operand idx.");
    587   unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0;
    588   return MI.getOperand(Idx);
    589 }
    590 
    591 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) {
    592   unsigned Idx = isPairedLdSt(MI) ? 2 : 1;
    593   return MI.getOperand(Idx);
    594 }
    595 
    596 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) {
    597   unsigned Idx = isPairedLdSt(MI) ? 3 : 2;
    598   return MI.getOperand(Idx);
    599 }
    600 
    601 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst,
    602                                   MachineInstr &StoreInst,
    603                                   const AArch64InstrInfo *TII) {
    604   assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
    605   int LoadSize = getMemScale(LoadInst);
    606   int StoreSize = getMemScale(StoreInst);
    607   int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst)
    608                              ? getLdStOffsetOp(StoreInst).getImm()
    609                              : getLdStOffsetOp(StoreInst).getImm() * StoreSize;
    610   int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst)
    611                              ? getLdStOffsetOp(LoadInst).getImm()
    612                              : getLdStOffsetOp(LoadInst).getImm() * LoadSize;
    613   return (UnscaledStOffset <= UnscaledLdOffset) &&
    614          (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
    615 }
    616 
    617 static bool isPromotableZeroStoreOpcode(unsigned Opc) {
    618   return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi;
    619 }
    620 
    621 static bool isPromotableZeroStoreOpcode(MachineInstr &MI) {
    622   return isPromotableZeroStoreOpcode(MI.getOpcode());
    623 }
    624 
    625 static bool isPromotableZeroStoreInst(MachineInstr &MI) {
    626   return (isPromotableZeroStoreOpcode(MI)) &&
    627          getLdStRegOp(MI).getReg() == AArch64::WZR;
    628 }
    629 
    630 MachineBasicBlock::iterator
    631 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I,
    632                                       MachineBasicBlock::iterator MergeMI,
    633                                       const LdStPairFlags &Flags) {
    634   MachineBasicBlock::iterator NextI = I;
    635   ++NextI;
    636   // If NextI is the second of the two instructions to be merged, we need
    637   // to skip one further. Either way we merge will invalidate the iterator,
    638   // and we don't need to scan the new instruction, as it's a pairwise
    639   // instruction, which we're not considering for further action anyway.
    640   if (NextI == MergeMI)
    641     ++NextI;
    642 
    643   unsigned Opc = I->getOpcode();
    644   bool IsScaled = !TII->isUnscaledLdSt(Opc);
    645   int OffsetStride = IsScaled ? 1 : getMemScale(*I);
    646 
    647   bool MergeForward = Flags.getMergeForward();
    648   // Insert our new paired instruction after whichever of the paired
    649   // instructions MergeForward indicates.
    650   MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
    651   // Also based on MergeForward is from where we copy the base register operand
    652   // so we get the flags compatible with the input code.
    653   const MachineOperand &BaseRegOp =
    654       MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I);
    655 
    656   // Which register is Rt and which is Rt2 depends on the offset order.
    657   MachineInstr *RtMI, *Rt2MI;
    658   if (getLdStOffsetOp(*I).getImm() ==
    659       getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) {
    660     RtMI = &*MergeMI;
    661     Rt2MI = &*I;
    662   } else {
    663     RtMI = &*I;
    664     Rt2MI = &*MergeMI;
    665   }
    666 
    667   int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
    668   // Change the scaled offset from small to large type.
    669   if (IsScaled) {
    670     assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
    671     OffsetImm /= 2;
    672   }
    673 
    674   DebugLoc DL = I->getDebugLoc();
    675   MachineBasicBlock *MBB = I->getParent();
    676   if (isNarrowLoad(Opc)) {
    677     MachineInstr *RtNewDest = &*(MergeForward ? I : MergeMI);
    678     // When merging small (< 32 bit) loads for big-endian targets, the order of
    679     // the component parts gets swapped.
    680     if (!Subtarget->isLittleEndian())
    681       std::swap(RtMI, Rt2MI);
    682     // Construct the new load instruction.
    683     MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2;
    684     NewMemMI =
    685         BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
    686             .addOperand(getLdStRegOp(*RtNewDest))
    687             .addOperand(BaseRegOp)
    688             .addImm(OffsetImm)
    689             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
    690     (void)NewMemMI;
    691 
    692     DEBUG(
    693         dbgs()
    694         << "Creating the new load and extract. Replacing instructions:\n    ");
    695     DEBUG(I->print(dbgs()));
    696     DEBUG(dbgs() << "    ");
    697     DEBUG(MergeMI->print(dbgs()));
    698     DEBUG(dbgs() << "  with instructions:\n    ");
    699     DEBUG((NewMemMI)->print(dbgs()));
    700 
    701     int Width = getMemScale(*I) == 1 ? 8 : 16;
    702     int LSBLow = 0;
    703     int LSBHigh = Width;
    704     int ImmsLow = LSBLow + Width - 1;
    705     int ImmsHigh = LSBHigh + Width - 1;
    706     MachineInstr *ExtDestMI = &*(MergeForward ? MergeMI : I);
    707     if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) {
    708       // Create the bitfield extract for high bits.
    709       BitExtMI1 =
    710           BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI)))
    711               .addOperand(getLdStRegOp(*Rt2MI))
    712               .addReg(getLdStRegOp(*RtNewDest).getReg())
    713               .addImm(LSBHigh)
    714               .addImm(ImmsHigh);
    715       // Create the bitfield extract for low bits.
    716       if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) {
    717         // For unsigned, prefer to use AND for low bits.
    718         BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri))
    719                         .addOperand(getLdStRegOp(*RtMI))
    720                         .addReg(getLdStRegOp(*RtNewDest).getReg())
    721                         .addImm(ImmsLow);
    722       } else {
    723         BitExtMI2 =
    724             BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI)))
    725                 .addOperand(getLdStRegOp(*RtMI))
    726                 .addReg(getLdStRegOp(*RtNewDest).getReg())
    727                 .addImm(LSBLow)
    728                 .addImm(ImmsLow);
    729       }
    730     } else {
    731       // Create the bitfield extract for low bits.
    732       if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) {
    733         // For unsigned, prefer to use AND for low bits.
    734         BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri))
    735                         .addOperand(getLdStRegOp(*RtMI))
    736                         .addReg(getLdStRegOp(*RtNewDest).getReg())
    737                         .addImm(ImmsLow);
    738       } else {
    739         BitExtMI1 =
    740             BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI)))
    741                 .addOperand(getLdStRegOp(*RtMI))
    742                 .addReg(getLdStRegOp(*RtNewDest).getReg())
    743                 .addImm(LSBLow)
    744                 .addImm(ImmsLow);
    745       }
    746 
    747       // Create the bitfield extract for high bits.
    748       BitExtMI2 =
    749           BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI)))
    750               .addOperand(getLdStRegOp(*Rt2MI))
    751               .addReg(getLdStRegOp(*RtNewDest).getReg())
    752               .addImm(LSBHigh)
    753               .addImm(ImmsHigh);
    754     }
    755     (void)BitExtMI1;
    756     (void)BitExtMI2;
    757 
    758     DEBUG(dbgs() << "    ");
    759     DEBUG((BitExtMI1)->print(dbgs()));
    760     DEBUG(dbgs() << "    ");
    761     DEBUG((BitExtMI2)->print(dbgs()));
    762     DEBUG(dbgs() << "\n");
    763 
    764     // Erase the old instructions.
    765     I->eraseFromParent();
    766     MergeMI->eraseFromParent();
    767     return NextI;
    768   }
    769   assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) &&
    770          "Expected promotable zero store");
    771 
    772   // Construct the new instruction.
    773   MachineInstrBuilder MIB;
    774   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
    775             .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
    776             .addOperand(BaseRegOp)
    777             .addImm(OffsetImm)
    778             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
    779   (void)MIB;
    780 
    781   DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n    ");
    782   DEBUG(I->print(dbgs()));
    783   DEBUG(dbgs() << "    ");
    784   DEBUG(MergeMI->print(dbgs()));
    785   DEBUG(dbgs() << "  with instruction:\n    ");
    786   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
    787   DEBUG(dbgs() << "\n");
    788 
    789   // Erase the old instructions.
    790   I->eraseFromParent();
    791   MergeMI->eraseFromParent();
    792   return NextI;
    793 }
    794 
    795 MachineBasicBlock::iterator
    796 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
    797                                       MachineBasicBlock::iterator Paired,
    798                                       const LdStPairFlags &Flags) {
    799   MachineBasicBlock::iterator NextI = I;
    800   ++NextI;
    801   // If NextI is the second of the two instructions to be merged, we need
    802   // to skip one further. Either way we merge will invalidate the iterator,
    803   // and we don't need to scan the new instruction, as it's a pairwise
    804   // instruction, which we're not considering for further action anyway.
    805   if (NextI == Paired)
    806     ++NextI;
    807 
    808   int SExtIdx = Flags.getSExtIdx();
    809   unsigned Opc =
    810       SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
    811   bool IsUnscaled = TII->isUnscaledLdSt(Opc);
    812   int OffsetStride = IsUnscaled ? getMemScale(*I) : 1;
    813 
    814   bool MergeForward = Flags.getMergeForward();
    815   // Insert our new paired instruction after whichever of the paired
    816   // instructions MergeForward indicates.
    817   MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
    818   // Also based on MergeForward is from where we copy the base register operand
    819   // so we get the flags compatible with the input code.
    820   const MachineOperand &BaseRegOp =
    821       MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I);
    822 
    823   int Offset = getLdStOffsetOp(*I).getImm();
    824   int PairedOffset = getLdStOffsetOp(*Paired).getImm();
    825   bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode());
    826   if (IsUnscaled != PairedIsUnscaled) {
    827     // We're trying to pair instructions that differ in how they are scaled.  If
    828     // I is scaled then scale the offset of Paired accordingly.  Otherwise, do
    829     // the opposite (i.e., make Paired's offset unscaled).
    830     int MemSize = getMemScale(*Paired);
    831     if (PairedIsUnscaled) {
    832       // If the unscaled offset isn't a multiple of the MemSize, we can't
    833       // pair the operations together.
    834       assert(!(PairedOffset % getMemScale(*Paired)) &&
    835              "Offset should be a multiple of the stride!");
    836       PairedOffset /= MemSize;
    837     } else {
    838       PairedOffset *= MemSize;
    839     }
    840   }
    841 
    842   // Which register is Rt and which is Rt2 depends on the offset order.
    843   MachineInstr *RtMI, *Rt2MI;
    844   if (Offset == PairedOffset + OffsetStride) {
    845     RtMI = &*Paired;
    846     Rt2MI = &*I;
    847     // Here we swapped the assumption made for SExtIdx.
    848     // I.e., we turn ldp I, Paired into ldp Paired, I.
    849     // Update the index accordingly.
    850     if (SExtIdx != -1)
    851       SExtIdx = (SExtIdx + 1) % 2;
    852   } else {
    853     RtMI = &*I;
    854     Rt2MI = &*Paired;
    855   }
    856   int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
    857   // Scale the immediate offset, if necessary.
    858   if (TII->isUnscaledLdSt(RtMI->getOpcode())) {
    859     assert(!(OffsetImm % getMemScale(*RtMI)) &&
    860            "Unscaled offset cannot be scaled.");
    861     OffsetImm /= getMemScale(*RtMI);
    862   }
    863 
    864   // Construct the new instruction.
    865   MachineInstrBuilder MIB;
    866   DebugLoc DL = I->getDebugLoc();
    867   MachineBasicBlock *MBB = I->getParent();
    868   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc)))
    869             .addOperand(getLdStRegOp(*RtMI))
    870             .addOperand(getLdStRegOp(*Rt2MI))
    871             .addOperand(BaseRegOp)
    872             .addImm(OffsetImm)
    873             .setMemRefs(I->mergeMemRefsWith(*Paired));
    874 
    875   (void)MIB;
    876 
    877   DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n    ");
    878   DEBUG(I->print(dbgs()));
    879   DEBUG(dbgs() << "    ");
    880   DEBUG(Paired->print(dbgs()));
    881   DEBUG(dbgs() << "  with instruction:\n    ");
    882   if (SExtIdx != -1) {
    883     // Generate the sign extension for the proper result of the ldp.
    884     // I.e., with X1, that would be:
    885     // %W1<def> = KILL %W1, %X1<imp-def>
    886     // %X1<def> = SBFMXri %X1<kill>, 0, 31
    887     MachineOperand &DstMO = MIB->getOperand(SExtIdx);
    888     // Right now, DstMO has the extended register, since it comes from an
    889     // extended opcode.
    890     unsigned DstRegX = DstMO.getReg();
    891     // Get the W variant of that register.
    892     unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
    893     // Update the result of LDP to use the W instead of the X variant.
    894     DstMO.setReg(DstRegW);
    895     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
    896     DEBUG(dbgs() << "\n");
    897     // Make the machine verifier happy by providing a definition for
    898     // the X register.
    899     // Insert this definition right after the generated LDP, i.e., before
    900     // InsertionPoint.
    901     MachineInstrBuilder MIBKill =
    902         BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
    903             .addReg(DstRegW)
    904             .addReg(DstRegX, RegState::Define);
    905     MIBKill->getOperand(2).setImplicit();
    906     // Create the sign extension.
    907     MachineInstrBuilder MIBSXTW =
    908         BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
    909             .addReg(DstRegX)
    910             .addImm(0)
    911             .addImm(31);
    912     (void)MIBSXTW;
    913     DEBUG(dbgs() << "  Extend operand:\n    ");
    914     DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
    915   } else {
    916     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
    917   }
    918   DEBUG(dbgs() << "\n");
    919 
    920   // Erase the old instructions.
    921   I->eraseFromParent();
    922   Paired->eraseFromParent();
    923 
    924   return NextI;
    925 }
    926 
    927 MachineBasicBlock::iterator
    928 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
    929                                           MachineBasicBlock::iterator StoreI) {
    930   MachineBasicBlock::iterator NextI = LoadI;
    931   ++NextI;
    932 
    933   int LoadSize = getMemScale(*LoadI);
    934   int StoreSize = getMemScale(*StoreI);
    935   unsigned LdRt = getLdStRegOp(*LoadI).getReg();
    936   unsigned StRt = getLdStRegOp(*StoreI).getReg();
    937   bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
    938 
    939   assert((IsStoreXReg ||
    940           TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
    941          "Unexpected RegClass");
    942 
    943   MachineInstr *BitExtMI;
    944   if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
    945     // Remove the load, if the destination register of the loads is the same
    946     // register for stored value.
    947     if (StRt == LdRt && LoadSize == 8) {
    948       DEBUG(dbgs() << "Remove load instruction:\n    ");
    949       DEBUG(LoadI->print(dbgs()));
    950       DEBUG(dbgs() << "\n");
    951       LoadI->eraseFromParent();
    952       return NextI;
    953     }
    954     // Replace the load with a mov if the load and store are in the same size.
    955     BitExtMI =
    956         BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
    957                 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
    958             .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
    959             .addReg(StRt)
    960             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
    961   } else {
    962     // FIXME: Currently we disable this transformation in big-endian targets as
    963     // performance and correctness are verified only in little-endian.
    964     if (!Subtarget->isLittleEndian())
    965       return NextI;
    966     bool IsUnscaled = TII->isUnscaledLdSt(*LoadI);
    967     assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) &&
    968            "Unsupported ld/st match");
    969     assert(LoadSize <= StoreSize && "Invalid load size");
    970     int UnscaledLdOffset = IsUnscaled
    971                                ? getLdStOffsetOp(*LoadI).getImm()
    972                                : getLdStOffsetOp(*LoadI).getImm() * LoadSize;
    973     int UnscaledStOffset = IsUnscaled
    974                                ? getLdStOffsetOp(*StoreI).getImm()
    975                                : getLdStOffsetOp(*StoreI).getImm() * StoreSize;
    976     int Width = LoadSize * 8;
    977     int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
    978     int Imms = Immr + Width - 1;
    979     unsigned DestReg = IsStoreXReg
    980                            ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32,
    981                                                       &AArch64::GPR64RegClass)
    982                            : LdRt;
    983 
    984     assert((UnscaledLdOffset >= UnscaledStOffset &&
    985             (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
    986            "Invalid offset");
    987 
    988     Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
    989     Imms = Immr + Width - 1;
    990     if (UnscaledLdOffset == UnscaledStOffset) {
    991       uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
    992                                 | ((Immr) << 6)               // immr
    993                                 | ((Imms) << 0)               // imms
    994           ;
    995 
    996       BitExtMI =
    997           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
    998                   TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
    999                   DestReg)
   1000               .addReg(StRt)
   1001               .addImm(AndMaskEncoded);
   1002     } else {
   1003       BitExtMI =
   1004           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
   1005                   TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
   1006                   DestReg)
   1007               .addReg(StRt)
   1008               .addImm(Immr)
   1009               .addImm(Imms);
   1010     }
   1011   }
   1012   (void)BitExtMI;
   1013 
   1014   DEBUG(dbgs() << "Promoting load by replacing :\n    ");
   1015   DEBUG(StoreI->print(dbgs()));
   1016   DEBUG(dbgs() << "    ");
   1017   DEBUG(LoadI->print(dbgs()));
   1018   DEBUG(dbgs() << "  with instructions:\n    ");
   1019   DEBUG(StoreI->print(dbgs()));
   1020   DEBUG(dbgs() << "    ");
   1021   DEBUG((BitExtMI)->print(dbgs()));
   1022   DEBUG(dbgs() << "\n");
   1023 
   1024   // Erase the old instructions.
   1025   LoadI->eraseFromParent();
   1026   return NextI;
   1027 }
   1028 
   1029 /// trackRegDefsUses - Remember what registers the specified instruction uses
   1030 /// and modifies.
   1031 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs,
   1032                              BitVector &UsedRegs,
   1033                              const TargetRegisterInfo *TRI) {
   1034   for (const MachineOperand &MO : MI.operands()) {
   1035     if (MO.isRegMask())
   1036       ModifiedRegs.setBitsNotInMask(MO.getRegMask());
   1037 
   1038     if (!MO.isReg())
   1039       continue;
   1040     unsigned Reg = MO.getReg();
   1041     if (!Reg)
   1042       continue;
   1043     if (MO.isDef()) {
   1044       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
   1045         ModifiedRegs.set(*AI);
   1046     } else {
   1047       assert(MO.isUse() && "Reg operand not a def and not a use?!?");
   1048       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
   1049         UsedRegs.set(*AI);
   1050     }
   1051   }
   1052 }
   1053 
   1054 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
   1055   // Convert the byte-offset used by unscaled into an "element" offset used
   1056   // by the scaled pair load/store instructions.
   1057   if (IsUnscaled) {
   1058     // If the byte-offset isn't a multiple of the stride, there's no point
   1059     // trying to match it.
   1060     if (Offset % OffsetStride)
   1061       return false;
   1062     Offset /= OffsetStride;
   1063   }
   1064   return Offset <= 63 && Offset >= -64;
   1065 }
   1066 
   1067 // Do alignment, specialized to power of 2 and for signed ints,
   1068 // avoiding having to do a C-style cast from uint_64t to int when
   1069 // using alignTo from include/llvm/Support/MathExtras.h.
   1070 // FIXME: Move this function to include/MathExtras.h?
   1071 static int alignTo(int Num, int PowOf2) {
   1072   return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
   1073 }
   1074 
   1075 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb,
   1076                      const AArch64InstrInfo *TII) {
   1077   // One of the instructions must modify memory.
   1078   if (!MIa.mayStore() && !MIb.mayStore())
   1079     return false;
   1080 
   1081   // Both instructions must be memory operations.
   1082   if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore())
   1083     return false;
   1084 
   1085   return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb);
   1086 }
   1087 
   1088 static bool mayAlias(MachineInstr &MIa,
   1089                      SmallVectorImpl<MachineInstr *> &MemInsns,
   1090                      const AArch64InstrInfo *TII) {
   1091   for (MachineInstr *MIb : MemInsns)
   1092     if (mayAlias(MIa, *MIb, TII))
   1093       return true;
   1094 
   1095   return false;
   1096 }
   1097 
   1098 bool AArch64LoadStoreOpt::findMatchingStore(
   1099     MachineBasicBlock::iterator I, unsigned Limit,
   1100     MachineBasicBlock::iterator &StoreI) {
   1101   MachineBasicBlock::iterator B = I->getParent()->begin();
   1102   MachineBasicBlock::iterator MBBI = I;
   1103   MachineInstr &LoadMI = *I;
   1104   unsigned BaseReg = getLdStBaseOp(LoadMI).getReg();
   1105 
   1106   // If the load is the first instruction in the block, there's obviously
   1107   // not any matching store.
   1108   if (MBBI == B)
   1109     return false;
   1110 
   1111   // Track which registers have been modified and used between the first insn
   1112   // and the second insn.
   1113   ModifiedRegs.reset();
   1114   UsedRegs.reset();
   1115 
   1116   unsigned Count = 0;
   1117   do {
   1118     --MBBI;
   1119     MachineInstr &MI = *MBBI;
   1120 
   1121     // Don't count DBG_VALUE instructions towards the search limit.
   1122     if (!MI.isDebugValue())
   1123       ++Count;
   1124 
   1125     // If the load instruction reads directly from the address to which the
   1126     // store instruction writes and the stored value is not modified, we can
   1127     // promote the load. Since we do not handle stores with pre-/post-index,
   1128     // it's unnecessary to check if BaseReg is modified by the store itself.
   1129     if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
   1130         BaseReg == getLdStBaseOp(MI).getReg() &&
   1131         isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
   1132         !ModifiedRegs[getLdStRegOp(MI).getReg()]) {
   1133       StoreI = MBBI;
   1134       return true;
   1135     }
   1136 
   1137     if (MI.isCall())
   1138       return false;
   1139 
   1140     // Update modified / uses register lists.
   1141     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1142 
   1143     // Otherwise, if the base register is modified, we have no match, so
   1144     // return early.
   1145     if (ModifiedRegs[BaseReg])
   1146       return false;
   1147 
   1148     // If we encounter a store aliased with the load, return early.
   1149     if (MI.mayStore() && mayAlias(LoadMI, MI, TII))
   1150       return false;
   1151   } while (MBBI != B && Count < Limit);
   1152   return false;
   1153 }
   1154 
   1155 // Returns true if FirstMI and MI are candidates for merging or pairing.
   1156 // Otherwise, returns false.
   1157 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI,
   1158                                        LdStPairFlags &Flags,
   1159                                        const AArch64InstrInfo *TII) {
   1160   // If this is volatile or if pairing is suppressed, not a candidate.
   1161   if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
   1162     return false;
   1163 
   1164   // We should have already checked FirstMI for pair suppression and volatility.
   1165   assert(!FirstMI.hasOrderedMemoryRef() &&
   1166          !TII->isLdStPairSuppressed(FirstMI) &&
   1167          "FirstMI shouldn't get here if either of these checks are true.");
   1168 
   1169   unsigned OpcA = FirstMI.getOpcode();
   1170   unsigned OpcB = MI.getOpcode();
   1171 
   1172   // Opcodes match: nothing more to check.
   1173   if (OpcA == OpcB)
   1174     return true;
   1175 
   1176   // Try to match a sign-extended load/store with a zero-extended load/store.
   1177   bool IsValidLdStrOpc, PairIsValidLdStrOpc;
   1178   unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
   1179   assert(IsValidLdStrOpc &&
   1180          "Given Opc should be a Load or Store with an immediate");
   1181   // OpcA will be the first instruction in the pair.
   1182   if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
   1183     Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
   1184     return true;
   1185   }
   1186 
   1187   // If the second instruction isn't even a load/store, bail out.
   1188   if (!PairIsValidLdStrOpc)
   1189     return false;
   1190 
   1191   // FIXME: We don't support merging narrow loads/stores with mixed
   1192   // scaled/unscaled offsets.
   1193   if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB))
   1194     return false;
   1195 
   1196   // Try to match an unscaled load/store with a scaled load/store.
   1197   return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) &&
   1198          getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
   1199 
   1200   // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
   1201 }
   1202 
   1203 /// Scan the instructions looking for a load/store that can be combined with the
   1204 /// current instruction into a wider equivalent or a load/store pair.
   1205 MachineBasicBlock::iterator
   1206 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
   1207                                       LdStPairFlags &Flags, unsigned Limit,
   1208                                       bool FindNarrowMerge) {
   1209   MachineBasicBlock::iterator E = I->getParent()->end();
   1210   MachineBasicBlock::iterator MBBI = I;
   1211   MachineInstr &FirstMI = *I;
   1212   ++MBBI;
   1213 
   1214   bool MayLoad = FirstMI.mayLoad();
   1215   bool IsUnscaled = TII->isUnscaledLdSt(FirstMI);
   1216   unsigned Reg = getLdStRegOp(FirstMI).getReg();
   1217   unsigned BaseReg = getLdStBaseOp(FirstMI).getReg();
   1218   int Offset = getLdStOffsetOp(FirstMI).getImm();
   1219   int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1;
   1220   bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
   1221 
   1222   // Track which registers have been modified and used between the first insn
   1223   // (inclusive) and the second insn.
   1224   ModifiedRegs.reset();
   1225   UsedRegs.reset();
   1226 
   1227   // Remember any instructions that read/write memory between FirstMI and MI.
   1228   SmallVector<MachineInstr *, 4> MemInsns;
   1229 
   1230   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
   1231     MachineInstr &MI = *MBBI;
   1232     // Skip DBG_VALUE instructions. Otherwise debug info can affect the
   1233     // optimization by changing how far we scan.
   1234     if (MI.isDebugValue())
   1235       continue;
   1236 
   1237     // Now that we know this is a real instruction, count it.
   1238     ++Count;
   1239 
   1240     Flags.setSExtIdx(-1);
   1241     if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
   1242         getLdStOffsetOp(MI).isImm()) {
   1243       assert(MI.mayLoadOrStore() && "Expected memory operation.");
   1244       // If we've found another instruction with the same opcode, check to see
   1245       // if the base and offset are compatible with our starting instruction.
   1246       // These instructions all have scaled immediate operands, so we just
   1247       // check for +1/-1. Make sure to check the new instruction offset is
   1248       // actually an immediate and not a symbolic reference destined for
   1249       // a relocation.
   1250       unsigned MIBaseReg = getLdStBaseOp(MI).getReg();
   1251       int MIOffset = getLdStOffsetOp(MI).getImm();
   1252       bool MIIsUnscaled = TII->isUnscaledLdSt(MI);
   1253       if (IsUnscaled != MIIsUnscaled) {
   1254         // We're trying to pair instructions that differ in how they are scaled.
   1255         // If FirstMI is scaled then scale the offset of MI accordingly.
   1256         // Otherwise, do the opposite (i.e., make MI's offset unscaled).
   1257         int MemSize = getMemScale(MI);
   1258         if (MIIsUnscaled) {
   1259           // If the unscaled offset isn't a multiple of the MemSize, we can't
   1260           // pair the operations together: bail and keep looking.
   1261           if (MIOffset % MemSize)
   1262             continue;
   1263           MIOffset /= MemSize;
   1264         } else {
   1265           MIOffset *= MemSize;
   1266         }
   1267       }
   1268 
   1269       if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
   1270                                    (Offset + OffsetStride == MIOffset))) {
   1271         int MinOffset = Offset < MIOffset ? Offset : MIOffset;
   1272         if (FindNarrowMerge) {
   1273           // If the alignment requirements of the scaled wide load/store
   1274           // instruction can't express the offset of the scaled narrow input,
   1275           // bail and keep looking. For promotable zero stores, allow only when
   1276           // the stored value is the same (i.e., WZR).
   1277           if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
   1278               (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
   1279             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1280             MemInsns.push_back(&MI);
   1281             continue;
   1282           }
   1283         } else {
   1284           // Pairwise instructions have a 7-bit signed offset field. Single
   1285           // insns have a 12-bit unsigned offset field.  If the resultant
   1286           // immediate offset of merging these instructions is out of range for
   1287           // a pairwise instruction, bail and keep looking.
   1288           if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
   1289             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1290             MemInsns.push_back(&MI);
   1291             continue;
   1292           }
   1293           // If the alignment requirements of the paired (scaled) instruction
   1294           // can't express the offset of the unscaled input, bail and keep
   1295           // looking.
   1296           if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
   1297             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1298             MemInsns.push_back(&MI);
   1299             continue;
   1300           }
   1301         }
   1302         // If the destination register of the loads is the same register, bail
   1303         // and keep looking. A load-pair instruction with both destination
   1304         // registers the same is UNPREDICTABLE and will result in an exception.
   1305         if (MayLoad && Reg == getLdStRegOp(MI).getReg()) {
   1306           trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1307           MemInsns.push_back(&MI);
   1308           continue;
   1309         }
   1310 
   1311         // If the Rt of the second instruction was not modified or used between
   1312         // the two instructions and none of the instructions between the second
   1313         // and first alias with the second, we can combine the second into the
   1314         // first.
   1315         if (!ModifiedRegs[getLdStRegOp(MI).getReg()] &&
   1316             !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) &&
   1317             !mayAlias(MI, MemInsns, TII)) {
   1318           Flags.setMergeForward(false);
   1319           return MBBI;
   1320         }
   1321 
   1322         // Likewise, if the Rt of the first instruction is not modified or used
   1323         // between the two instructions and none of the instructions between the
   1324         // first and the second alias with the first, we can combine the first
   1325         // into the second.
   1326         if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] &&
   1327             !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) &&
   1328             !mayAlias(FirstMI, MemInsns, TII)) {
   1329           Flags.setMergeForward(true);
   1330           return MBBI;
   1331         }
   1332         // Unable to combine these instructions due to interference in between.
   1333         // Keep looking.
   1334       }
   1335     }
   1336 
   1337     // If the instruction wasn't a matching load or store.  Stop searching if we
   1338     // encounter a call instruction that might modify memory.
   1339     if (MI.isCall())
   1340       return E;
   1341 
   1342     // Update modified / uses register lists.
   1343     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1344 
   1345     // Otherwise, if the base register is modified, we have no match, so
   1346     // return early.
   1347     if (ModifiedRegs[BaseReg])
   1348       return E;
   1349 
   1350     // Update list of instructions that read/write memory.
   1351     if (MI.mayLoadOrStore())
   1352       MemInsns.push_back(&MI);
   1353   }
   1354   return E;
   1355 }
   1356 
   1357 MachineBasicBlock::iterator
   1358 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
   1359                                      MachineBasicBlock::iterator Update,
   1360                                      bool IsPreIdx) {
   1361   assert((Update->getOpcode() == AArch64::ADDXri ||
   1362           Update->getOpcode() == AArch64::SUBXri) &&
   1363          "Unexpected base register update instruction to merge!");
   1364   MachineBasicBlock::iterator NextI = I;
   1365   // Return the instruction following the merged instruction, which is
   1366   // the instruction following our unmerged load. Unless that's the add/sub
   1367   // instruction we're merging, in which case it's the one after that.
   1368   if (++NextI == Update)
   1369     ++NextI;
   1370 
   1371   int Value = Update->getOperand(2).getImm();
   1372   assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
   1373          "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
   1374   if (Update->getOpcode() == AArch64::SUBXri)
   1375     Value = -Value;
   1376 
   1377   unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
   1378                              : getPostIndexedOpcode(I->getOpcode());
   1379   MachineInstrBuilder MIB;
   1380   if (!isPairedLdSt(*I)) {
   1381     // Non-paired instruction.
   1382     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
   1383               .addOperand(getLdStRegOp(*Update))
   1384               .addOperand(getLdStRegOp(*I))
   1385               .addOperand(getLdStBaseOp(*I))
   1386               .addImm(Value)
   1387               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
   1388   } else {
   1389     // Paired instruction.
   1390     int Scale = getMemScale(*I);
   1391     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
   1392               .addOperand(getLdStRegOp(*Update))
   1393               .addOperand(getLdStRegOp(*I, 0))
   1394               .addOperand(getLdStRegOp(*I, 1))
   1395               .addOperand(getLdStBaseOp(*I))
   1396               .addImm(Value / Scale)
   1397               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
   1398   }
   1399   (void)MIB;
   1400 
   1401   if (IsPreIdx)
   1402     DEBUG(dbgs() << "Creating pre-indexed load/store.");
   1403   else
   1404     DEBUG(dbgs() << "Creating post-indexed load/store.");
   1405   DEBUG(dbgs() << "    Replacing instructions:\n    ");
   1406   DEBUG(I->print(dbgs()));
   1407   DEBUG(dbgs() << "    ");
   1408   DEBUG(Update->print(dbgs()));
   1409   DEBUG(dbgs() << "  with instruction:\n    ");
   1410   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
   1411   DEBUG(dbgs() << "\n");
   1412 
   1413   // Erase the old instructions for the block.
   1414   I->eraseFromParent();
   1415   Update->eraseFromParent();
   1416 
   1417   return NextI;
   1418 }
   1419 
   1420 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
   1421                                                MachineInstr &MI,
   1422                                                unsigned BaseReg, int Offset) {
   1423   switch (MI.getOpcode()) {
   1424   default:
   1425     break;
   1426   case AArch64::SUBXri:
   1427     // Negate the offset for a SUB instruction.
   1428     Offset *= -1;
   1429   // FALLTHROUGH
   1430   case AArch64::ADDXri:
   1431     // Make sure it's a vanilla immediate operand, not a relocation or
   1432     // anything else we can't handle.
   1433     if (!MI.getOperand(2).isImm())
   1434       break;
   1435     // Watch out for 1 << 12 shifted value.
   1436     if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
   1437       break;
   1438 
   1439     // The update instruction source and destination register must be the
   1440     // same as the load/store base register.
   1441     if (MI.getOperand(0).getReg() != BaseReg ||
   1442         MI.getOperand(1).getReg() != BaseReg)
   1443       break;
   1444 
   1445     bool IsPairedInsn = isPairedLdSt(MemMI);
   1446     int UpdateOffset = MI.getOperand(2).getImm();
   1447     // For non-paired load/store instructions, the immediate must fit in a
   1448     // signed 9-bit integer.
   1449     if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256))
   1450       break;
   1451 
   1452     // For paired load/store instructions, the immediate must be a multiple of
   1453     // the scaling factor.  The scaled offset must also fit into a signed 7-bit
   1454     // integer.
   1455     if (IsPairedInsn) {
   1456       int Scale = getMemScale(MemMI);
   1457       if (UpdateOffset % Scale != 0)
   1458         break;
   1459 
   1460       int ScaledOffset = UpdateOffset / Scale;
   1461       if (ScaledOffset > 64 || ScaledOffset < -64)
   1462         break;
   1463     }
   1464 
   1465     // If we have a non-zero Offset, we check that it matches the amount
   1466     // we're adding to the register.
   1467     if (!Offset || Offset == MI.getOperand(2).getImm())
   1468       return true;
   1469     break;
   1470   }
   1471   return false;
   1472 }
   1473 
   1474 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
   1475     MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
   1476   MachineBasicBlock::iterator E = I->getParent()->end();
   1477   MachineInstr &MemMI = *I;
   1478   MachineBasicBlock::iterator MBBI = I;
   1479 
   1480   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
   1481   int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI);
   1482 
   1483   // Scan forward looking for post-index opportunities.  Updating instructions
   1484   // can't be formed if the memory instruction doesn't have the offset we're
   1485   // looking for.
   1486   if (MIUnscaledOffset != UnscaledOffset)
   1487     return E;
   1488 
   1489   // If the base register overlaps a destination register, we can't
   1490   // merge the update.
   1491   bool IsPairedInsn = isPairedLdSt(MemMI);
   1492   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
   1493     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
   1494     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
   1495       return E;
   1496   }
   1497 
   1498   // Track which registers have been modified and used between the first insn
   1499   // (inclusive) and the second insn.
   1500   ModifiedRegs.reset();
   1501   UsedRegs.reset();
   1502   ++MBBI;
   1503   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
   1504     MachineInstr &MI = *MBBI;
   1505     // Skip DBG_VALUE instructions.
   1506     if (MI.isDebugValue())
   1507       continue;
   1508 
   1509     // Now that we know this is a real instruction, count it.
   1510     ++Count;
   1511 
   1512     // If we found a match, return it.
   1513     if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
   1514       return MBBI;
   1515 
   1516     // Update the status of what the instruction clobbered and used.
   1517     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1518 
   1519     // Otherwise, if the base register is used or modified, we have no match, so
   1520     // return early.
   1521     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
   1522       return E;
   1523   }
   1524   return E;
   1525 }
   1526 
   1527 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
   1528     MachineBasicBlock::iterator I, unsigned Limit) {
   1529   MachineBasicBlock::iterator B = I->getParent()->begin();
   1530   MachineBasicBlock::iterator E = I->getParent()->end();
   1531   MachineInstr &MemMI = *I;
   1532   MachineBasicBlock::iterator MBBI = I;
   1533 
   1534   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
   1535   int Offset = getLdStOffsetOp(MemMI).getImm();
   1536 
   1537   // If the load/store is the first instruction in the block, there's obviously
   1538   // not any matching update. Ditto if the memory offset isn't zero.
   1539   if (MBBI == B || Offset != 0)
   1540     return E;
   1541   // If the base register overlaps a destination register, we can't
   1542   // merge the update.
   1543   bool IsPairedInsn = isPairedLdSt(MemMI);
   1544   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
   1545     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
   1546     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
   1547       return E;
   1548   }
   1549 
   1550   // Track which registers have been modified and used between the first insn
   1551   // (inclusive) and the second insn.
   1552   ModifiedRegs.reset();
   1553   UsedRegs.reset();
   1554   unsigned Count = 0;
   1555   do {
   1556     --MBBI;
   1557     MachineInstr &MI = *MBBI;
   1558 
   1559     // Don't count DBG_VALUE instructions towards the search limit.
   1560     if (!MI.isDebugValue())
   1561       ++Count;
   1562 
   1563     // If we found a match, return it.
   1564     if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset))
   1565       return MBBI;
   1566 
   1567     // Update the status of what the instruction clobbered and used.
   1568     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
   1569 
   1570     // Otherwise, if the base register is used or modified, we have no match, so
   1571     // return early.
   1572     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
   1573       return E;
   1574   } while (MBBI != B && Count < Limit);
   1575   return E;
   1576 }
   1577 
   1578 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
   1579     MachineBasicBlock::iterator &MBBI) {
   1580   MachineInstr &MI = *MBBI;
   1581   // If this is a volatile load, don't mess with it.
   1582   if (MI.hasOrderedMemoryRef())
   1583     return false;
   1584 
   1585   // Make sure this is a reg+imm.
   1586   // FIXME: It is possible to extend it to handle reg+reg cases.
   1587   if (!getLdStOffsetOp(MI).isImm())
   1588     return false;
   1589 
   1590   // Look backward up to LdStLimit instructions.
   1591   MachineBasicBlock::iterator StoreI;
   1592   if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
   1593     ++NumLoadsFromStoresPromoted;
   1594     // Promote the load. Keeping the iterator straight is a
   1595     // pain, so we let the merge routine tell us what the next instruction
   1596     // is after it's done mucking about.
   1597     MBBI = promoteLoadFromStore(MBBI, StoreI);
   1598     return true;
   1599   }
   1600   return false;
   1601 }
   1602 
   1603 // Find narrow loads that can be converted into a single wider load with
   1604 // bitfield extract instructions.  Also merge adjacent zero stores into a wider
   1605 // store.
   1606 bool AArch64LoadStoreOpt::tryToMergeLdStInst(
   1607     MachineBasicBlock::iterator &MBBI) {
   1608   assert((isNarrowLoad(*MBBI) || isPromotableZeroStoreOpcode(*MBBI)) &&
   1609          "Expected narrow op.");
   1610   MachineInstr &MI = *MBBI;
   1611   MachineBasicBlock::iterator E = MI.getParent()->end();
   1612 
   1613   if (!TII->isCandidateToMergeOrPair(MI))
   1614     return false;
   1615 
   1616   // For promotable zero stores, the stored value should be WZR.
   1617   if (isPromotableZeroStoreOpcode(MI) &&
   1618       getLdStRegOp(MI).getReg() != AArch64::WZR)
   1619     return false;
   1620 
   1621   // Look ahead up to LdStLimit instructions for a mergable instruction.
   1622   LdStPairFlags Flags;
   1623   MachineBasicBlock::iterator MergeMI =
   1624       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
   1625   if (MergeMI != E) {
   1626     if (isNarrowLoad(MI)) {
   1627       ++NumNarrowLoadsPromoted;
   1628     } else if (isPromotableZeroStoreInst(MI)) {
   1629       ++NumZeroStoresPromoted;
   1630     }
   1631     // Keeping the iterator straight is a pain, so we let the merge routine tell
   1632     // us what the next instruction is after it's done mucking about.
   1633     MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags);
   1634     return true;
   1635   }
   1636   return false;
   1637 }
   1638 
   1639 // Find loads and stores that can be merged into a single load or store pair
   1640 // instruction.
   1641 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
   1642   MachineInstr &MI = *MBBI;
   1643   MachineBasicBlock::iterator E = MI.getParent()->end();
   1644 
   1645   if (!TII->isCandidateToMergeOrPair(MI))
   1646     return false;
   1647 
   1648   // Early exit if the offset is not possible to match. (6 bits of positive
   1649   // range, plus allow an extra one in case we find a later insn that matches
   1650   // with Offset-1)
   1651   bool IsUnscaled = TII->isUnscaledLdSt(MI);
   1652   int Offset = getLdStOffsetOp(MI).getImm();
   1653   int OffsetStride = IsUnscaled ? getMemScale(MI) : 1;
   1654   if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
   1655     return false;
   1656 
   1657   // Look ahead up to LdStLimit instructions for a pairable instruction.
   1658   LdStPairFlags Flags;
   1659   MachineBasicBlock::iterator Paired =
   1660       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
   1661   if (Paired != E) {
   1662     ++NumPairCreated;
   1663     if (TII->isUnscaledLdSt(MI))
   1664       ++NumUnscaledPairCreated;
   1665     // Keeping the iterator straight is a pain, so we let the merge routine tell
   1666     // us what the next instruction is after it's done mucking about.
   1667     MBBI = mergePairedInsns(MBBI, Paired, Flags);
   1668     return true;
   1669   }
   1670   return false;
   1671 }
   1672 
   1673 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
   1674                                         bool enableNarrowLdOpt) {
   1675   bool Modified = false;
   1676   // Four tranformations to do here:
   1677   // 1) Find loads that directly read from stores and promote them by
   1678   //    replacing with mov instructions. If the store is wider than the load,
   1679   //    the load will be replaced with a bitfield extract.
   1680   //      e.g.,
   1681   //        str w1, [x0, #4]
   1682   //        ldrh w2, [x0, #6]
   1683   //        ; becomes
   1684   //        str w1, [x0, #4]
   1685   //        lsr w2, w1, #16
   1686   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
   1687        MBBI != E;) {
   1688     MachineInstr &MI = *MBBI;
   1689     switch (MI.getOpcode()) {
   1690     default:
   1691       // Just move on to the next instruction.
   1692       ++MBBI;
   1693       break;
   1694     // Scaled instructions.
   1695     case AArch64::LDRBBui:
   1696     case AArch64::LDRHHui:
   1697     case AArch64::LDRWui:
   1698     case AArch64::LDRXui:
   1699     // Unscaled instructions.
   1700     case AArch64::LDURBBi:
   1701     case AArch64::LDURHHi:
   1702     case AArch64::LDURWi:
   1703     case AArch64::LDURXi: {
   1704       if (tryToPromoteLoadFromStore(MBBI)) {
   1705         Modified = true;
   1706         break;
   1707       }
   1708       ++MBBI;
   1709       break;
   1710     }
   1711     }
   1712   }
   1713   // 2) Find narrow loads that can be converted into a single wider load
   1714   //    with bitfield extract instructions.
   1715   //      e.g.,
   1716   //        ldrh w0, [x2]
   1717   //        ldrh w1, [x2, #2]
   1718   //        ; becomes
   1719   //        ldr w0, [x2]
   1720   //        ubfx w1, w0, #16, #16
   1721   //        and w0, w0, #ffff
   1722   //
   1723   //    Also merge adjacent zero stores into a wider store.
   1724   //      e.g.,
   1725   //        strh wzr, [x0]
   1726   //        strh wzr, [x0, #2]
   1727   //        ; becomes
   1728   //        str wzr, [x0]
   1729   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
   1730        enableNarrowLdOpt && MBBI != E;) {
   1731     MachineInstr &MI = *MBBI;
   1732     unsigned Opc = MI.getOpcode();
   1733     if (isPromotableZeroStoreOpcode(Opc) ||
   1734         (EnableNarrowLdMerge && isNarrowLoad(Opc))) {
   1735       if (tryToMergeLdStInst(MBBI)) {
   1736         Modified = true;
   1737       } else
   1738         ++MBBI;
   1739     } else
   1740       ++MBBI;
   1741   }
   1742 
   1743   // 3) Find loads and stores that can be merged into a single load or store
   1744   //    pair instruction.
   1745   //      e.g.,
   1746   //        ldr x0, [x2]
   1747   //        ldr x1, [x2, #8]
   1748   //        ; becomes
   1749   //        ldp x0, x1, [x2]
   1750   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
   1751        MBBI != E;) {
   1752     MachineInstr &MI = *MBBI;
   1753     switch (MI.getOpcode()) {
   1754     default:
   1755       // Just move on to the next instruction.
   1756       ++MBBI;
   1757       break;
   1758     // Scaled instructions.
   1759     case AArch64::STRSui:
   1760     case AArch64::STRDui:
   1761     case AArch64::STRQui:
   1762     case AArch64::STRXui:
   1763     case AArch64::STRWui:
   1764     case AArch64::LDRSui:
   1765     case AArch64::LDRDui:
   1766     case AArch64::LDRQui:
   1767     case AArch64::LDRXui:
   1768     case AArch64::LDRWui:
   1769     case AArch64::LDRSWui:
   1770     // Unscaled instructions.
   1771     case AArch64::STURSi:
   1772     case AArch64::STURDi:
   1773     case AArch64::STURQi:
   1774     case AArch64::STURWi:
   1775     case AArch64::STURXi:
   1776     case AArch64::LDURSi:
   1777     case AArch64::LDURDi:
   1778     case AArch64::LDURQi:
   1779     case AArch64::LDURWi:
   1780     case AArch64::LDURXi:
   1781     case AArch64::LDURSWi: {
   1782       if (tryToPairLdStInst(MBBI)) {
   1783         Modified = true;
   1784         break;
   1785       }
   1786       ++MBBI;
   1787       break;
   1788     }
   1789     }
   1790   }
   1791   // 4) Find base register updates that can be merged into the load or store
   1792   //    as a base-reg writeback.
   1793   //      e.g.,
   1794   //        ldr x0, [x2]
   1795   //        add x2, x2, #4
   1796   //        ; becomes
   1797   //        ldr x0, [x2], #4
   1798   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
   1799        MBBI != E;) {
   1800     MachineInstr &MI = *MBBI;
   1801     // Do update merging. It's simpler to keep this separate from the above
   1802     // switchs, though not strictly necessary.
   1803     unsigned Opc = MI.getOpcode();
   1804     switch (Opc) {
   1805     default:
   1806       // Just move on to the next instruction.
   1807       ++MBBI;
   1808       break;
   1809     // Scaled instructions.
   1810     case AArch64::STRSui:
   1811     case AArch64::STRDui:
   1812     case AArch64::STRQui:
   1813     case AArch64::STRXui:
   1814     case AArch64::STRWui:
   1815     case AArch64::STRHHui:
   1816     case AArch64::STRBBui:
   1817     case AArch64::LDRSui:
   1818     case AArch64::LDRDui:
   1819     case AArch64::LDRQui:
   1820     case AArch64::LDRXui:
   1821     case AArch64::LDRWui:
   1822     case AArch64::LDRHHui:
   1823     case AArch64::LDRBBui:
   1824     // Unscaled instructions.
   1825     case AArch64::STURSi:
   1826     case AArch64::STURDi:
   1827     case AArch64::STURQi:
   1828     case AArch64::STURWi:
   1829     case AArch64::STURXi:
   1830     case AArch64::LDURSi:
   1831     case AArch64::LDURDi:
   1832     case AArch64::LDURQi:
   1833     case AArch64::LDURWi:
   1834     case AArch64::LDURXi:
   1835     // Paired instructions.
   1836     case AArch64::LDPSi:
   1837     case AArch64::LDPSWi:
   1838     case AArch64::LDPDi:
   1839     case AArch64::LDPQi:
   1840     case AArch64::LDPWi:
   1841     case AArch64::LDPXi:
   1842     case AArch64::STPSi:
   1843     case AArch64::STPDi:
   1844     case AArch64::STPQi:
   1845     case AArch64::STPWi:
   1846     case AArch64::STPXi: {
   1847       // Make sure this is a reg+imm (as opposed to an address reloc).
   1848       if (!getLdStOffsetOp(MI).isImm()) {
   1849         ++MBBI;
   1850         break;
   1851       }
   1852       // Look forward to try to form a post-index instruction. For example,
   1853       // ldr x0, [x20]
   1854       // add x20, x20, #32
   1855       //   merged into:
   1856       // ldr x0, [x20], #32
   1857       MachineBasicBlock::iterator Update =
   1858           findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
   1859       if (Update != E) {
   1860         // Merge the update into the ld/st.
   1861         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
   1862         Modified = true;
   1863         ++NumPostFolded;
   1864         break;
   1865       }
   1866       // Don't know how to handle pre/post-index versions, so move to the next
   1867       // instruction.
   1868       if (TII->isUnscaledLdSt(Opc)) {
   1869         ++MBBI;
   1870         break;
   1871       }
   1872 
   1873       // Look back to try to find a pre-index instruction. For example,
   1874       // add x0, x0, #8
   1875       // ldr x1, [x0]
   1876       //   merged into:
   1877       // ldr x1, [x0, #8]!
   1878       Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
   1879       if (Update != E) {
   1880         // Merge the update into the ld/st.
   1881         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
   1882         Modified = true;
   1883         ++NumPreFolded;
   1884         break;
   1885       }
   1886       // The immediate in the load/store is scaled by the size of the memory
   1887       // operation. The immediate in the add we're looking for,
   1888       // however, is not, so adjust here.
   1889       int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI);
   1890 
   1891       // Look forward to try to find a post-index instruction. For example,
   1892       // ldr x1, [x0, #64]
   1893       // add x0, x0, #64
   1894       //   merged into:
   1895       // ldr x1, [x0, #64]!
   1896       Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
   1897       if (Update != E) {
   1898         // Merge the update into the ld/st.
   1899         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
   1900         Modified = true;
   1901         ++NumPreFolded;
   1902         break;
   1903       }
   1904 
   1905       // Nothing found. Just move to the next instruction.
   1906       ++MBBI;
   1907       break;
   1908     }
   1909     }
   1910   }
   1911 
   1912   return Modified;
   1913 }
   1914 
   1915 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
   1916   if (skipFunction(*Fn.getFunction()))
   1917     return false;
   1918 
   1919   Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
   1920   TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
   1921   TRI = Subtarget->getRegisterInfo();
   1922 
   1923   // Resize the modified and used register bitfield trackers.  We do this once
   1924   // per function and then clear the bitfield each time we optimize a load or
   1925   // store.
   1926   ModifiedRegs.resize(TRI->getNumRegs());
   1927   UsedRegs.resize(TRI->getNumRegs());
   1928 
   1929   bool Modified = false;
   1930   bool enableNarrowLdOpt =
   1931     Subtarget->mergeNarrowLoads() && !Subtarget->requiresStrictAlign();
   1932   for (auto &MBB : Fn)
   1933     Modified |= optimizeBlock(MBB, enableNarrowLdOpt);
   1934 
   1935   return Modified;
   1936 }
   1937 
   1938 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep
   1939 // loads and stores near one another?
   1940 
   1941 // FIXME: When pairing store instructions it's very possible for this pass to
   1942 // hoist a store with a KILL marker above another use (without a KILL marker).
   1943 // The resulting IR is invalid, but nothing uses the KILL markers after this
   1944 // pass, so it's never caused a problem in practice.
   1945 
   1946 /// createAArch64LoadStoreOptimizationPass - returns an instance of the
   1947 /// load / store optimization pass.
   1948 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
   1949   return new AArch64LoadStoreOpt();
   1950 }
   1951