1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 44 45 // The LdStLimit limits how far we search for load/store pairs. 46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 47 cl::init(20), cl::Hidden); 48 49 // The UpdateLimit limits how far we search for update instructions when we form 50 // pre-/post-index instructions. 51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 52 cl::Hidden); 53 54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden, 55 cl::init(false), 56 cl::desc("Enable narrow load merge")); 57 58 namespace llvm { 59 void initializeAArch64LoadStoreOptPass(PassRegistry &); 60 } 61 62 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 63 64 namespace { 65 66 typedef struct LdStPairFlags { 67 // If a matching instruction is found, MergeForward is set to true if the 68 // merge is to remove the first instruction and replace the second with 69 // a pair-wise insn, and false if the reverse is true. 70 bool MergeForward; 71 72 // SExtIdx gives the index of the result of the load pair that must be 73 // extended. The value of SExtIdx assumes that the paired load produces the 74 // value in this order: (I, returned iterator), i.e., -1 means no value has 75 // to be extended, 0 means I, and 1 means the returned iterator. 76 int SExtIdx; 77 78 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 79 80 void setMergeForward(bool V = true) { MergeForward = V; } 81 bool getMergeForward() const { return MergeForward; } 82 83 void setSExtIdx(int V) { SExtIdx = V; } 84 int getSExtIdx() const { return SExtIdx; } 85 86 } LdStPairFlags; 87 88 struct AArch64LoadStoreOpt : public MachineFunctionPass { 89 static char ID; 90 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 91 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 92 } 93 94 const AArch64InstrInfo *TII; 95 const TargetRegisterInfo *TRI; 96 const AArch64Subtarget *Subtarget; 97 98 // Track which registers have been modified and used. 99 BitVector ModifiedRegs, UsedRegs; 100 101 // Scan the instructions looking for a load/store that can be combined 102 // with the current instruction into a load/store pair. 103 // Return the matching instruction if one is found, else MBB->end(). 104 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 105 LdStPairFlags &Flags, 106 unsigned Limit, 107 bool FindNarrowMerge); 108 109 // Scan the instructions looking for a store that writes to the address from 110 // which the current load instruction reads. Return true if one is found. 111 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 112 MachineBasicBlock::iterator &StoreI); 113 114 // Merge the two instructions indicated into a wider instruction. 115 MachineBasicBlock::iterator 116 mergeNarrowInsns(MachineBasicBlock::iterator I, 117 MachineBasicBlock::iterator MergeMI, 118 const LdStPairFlags &Flags); 119 120 // Merge the two instructions indicated into a single pair-wise instruction. 121 MachineBasicBlock::iterator 122 mergePairedInsns(MachineBasicBlock::iterator I, 123 MachineBasicBlock::iterator Paired, 124 const LdStPairFlags &Flags); 125 126 // Promote the load that reads directly from the address stored to. 127 MachineBasicBlock::iterator 128 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 129 MachineBasicBlock::iterator StoreI); 130 131 // Scan the instruction list to find a base register update that can 132 // be combined with the current instruction (a load or store) using 133 // pre or post indexed addressing with writeback. Scan forwards. 134 MachineBasicBlock::iterator 135 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 136 int UnscaledOffset, unsigned Limit); 137 138 // Scan the instruction list to find a base register update that can 139 // be combined with the current instruction (a load or store) using 140 // pre or post indexed addressing with writeback. Scan backwards. 141 MachineBasicBlock::iterator 142 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 143 144 // Find an instruction that updates the base register of the ld/st 145 // instruction. 146 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 147 unsigned BaseReg, int Offset); 148 149 // Merge a pre- or post-index base register update into a ld/st instruction. 150 MachineBasicBlock::iterator 151 mergeUpdateInsn(MachineBasicBlock::iterator I, 152 MachineBasicBlock::iterator Update, bool IsPreIdx); 153 154 // Find and merge foldable ldr/str instructions. 155 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 156 157 // Find and pair ldr/str instructions. 158 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 159 160 // Find and promote load instructions which read directly from store. 161 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 162 163 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 164 165 bool runOnMachineFunction(MachineFunction &Fn) override; 166 167 MachineFunctionProperties getRequiredProperties() const override { 168 return MachineFunctionProperties().set( 169 MachineFunctionProperties::Property::AllVRegsAllocated); 170 } 171 172 const char *getPassName() const override { 173 return AARCH64_LOAD_STORE_OPT_NAME; 174 } 175 }; 176 char AArch64LoadStoreOpt::ID = 0; 177 } // namespace 178 179 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 180 AARCH64_LOAD_STORE_OPT_NAME, false, false) 181 182 static unsigned getBitExtrOpcode(MachineInstr &MI) { 183 switch (MI.getOpcode()) { 184 default: 185 llvm_unreachable("Unexpected opcode."); 186 case AArch64::LDRBBui: 187 case AArch64::LDURBBi: 188 case AArch64::LDRHHui: 189 case AArch64::LDURHHi: 190 return AArch64::UBFMWri; 191 case AArch64::LDRSBWui: 192 case AArch64::LDURSBWi: 193 case AArch64::LDRSHWui: 194 case AArch64::LDURSHWi: 195 return AArch64::SBFMWri; 196 } 197 } 198 199 static bool isNarrowStore(unsigned Opc) { 200 switch (Opc) { 201 default: 202 return false; 203 case AArch64::STRBBui: 204 case AArch64::STURBBi: 205 case AArch64::STRHHui: 206 case AArch64::STURHHi: 207 return true; 208 } 209 } 210 211 static bool isNarrowLoad(unsigned Opc) { 212 switch (Opc) { 213 default: 214 return false; 215 case AArch64::LDRHHui: 216 case AArch64::LDURHHi: 217 case AArch64::LDRBBui: 218 case AArch64::LDURBBi: 219 case AArch64::LDRSHWui: 220 case AArch64::LDURSHWi: 221 case AArch64::LDRSBWui: 222 case AArch64::LDURSBWi: 223 return true; 224 } 225 } 226 227 static bool isNarrowLoad(MachineInstr &MI) { 228 return isNarrowLoad(MI.getOpcode()); 229 } 230 231 static bool isNarrowLoadOrStore(unsigned Opc) { 232 return isNarrowLoad(Opc) || isNarrowStore(Opc); 233 } 234 235 // Scaling factor for unscaled load or store. 236 static int getMemScale(MachineInstr &MI) { 237 switch (MI.getOpcode()) { 238 default: 239 llvm_unreachable("Opcode has unknown scale!"); 240 case AArch64::LDRBBui: 241 case AArch64::LDURBBi: 242 case AArch64::LDRSBWui: 243 case AArch64::LDURSBWi: 244 case AArch64::STRBBui: 245 case AArch64::STURBBi: 246 return 1; 247 case AArch64::LDRHHui: 248 case AArch64::LDURHHi: 249 case AArch64::LDRSHWui: 250 case AArch64::LDURSHWi: 251 case AArch64::STRHHui: 252 case AArch64::STURHHi: 253 return 2; 254 case AArch64::LDRSui: 255 case AArch64::LDURSi: 256 case AArch64::LDRSWui: 257 case AArch64::LDURSWi: 258 case AArch64::LDRWui: 259 case AArch64::LDURWi: 260 case AArch64::STRSui: 261 case AArch64::STURSi: 262 case AArch64::STRWui: 263 case AArch64::STURWi: 264 case AArch64::LDPSi: 265 case AArch64::LDPSWi: 266 case AArch64::LDPWi: 267 case AArch64::STPSi: 268 case AArch64::STPWi: 269 return 4; 270 case AArch64::LDRDui: 271 case AArch64::LDURDi: 272 case AArch64::LDRXui: 273 case AArch64::LDURXi: 274 case AArch64::STRDui: 275 case AArch64::STURDi: 276 case AArch64::STRXui: 277 case AArch64::STURXi: 278 case AArch64::LDPDi: 279 case AArch64::LDPXi: 280 case AArch64::STPDi: 281 case AArch64::STPXi: 282 return 8; 283 case AArch64::LDRQui: 284 case AArch64::LDURQi: 285 case AArch64::STRQui: 286 case AArch64::STURQi: 287 case AArch64::LDPQi: 288 case AArch64::STPQi: 289 return 16; 290 } 291 } 292 293 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 294 bool *IsValidLdStrOpc = nullptr) { 295 if (IsValidLdStrOpc) 296 *IsValidLdStrOpc = true; 297 switch (Opc) { 298 default: 299 if (IsValidLdStrOpc) 300 *IsValidLdStrOpc = false; 301 return UINT_MAX; 302 case AArch64::STRDui: 303 case AArch64::STURDi: 304 case AArch64::STRQui: 305 case AArch64::STURQi: 306 case AArch64::STRBBui: 307 case AArch64::STURBBi: 308 case AArch64::STRHHui: 309 case AArch64::STURHHi: 310 case AArch64::STRWui: 311 case AArch64::STURWi: 312 case AArch64::STRXui: 313 case AArch64::STURXi: 314 case AArch64::LDRDui: 315 case AArch64::LDURDi: 316 case AArch64::LDRQui: 317 case AArch64::LDURQi: 318 case AArch64::LDRWui: 319 case AArch64::LDURWi: 320 case AArch64::LDRXui: 321 case AArch64::LDURXi: 322 case AArch64::STRSui: 323 case AArch64::STURSi: 324 case AArch64::LDRSui: 325 case AArch64::LDURSi: 326 case AArch64::LDRHHui: 327 case AArch64::LDURHHi: 328 case AArch64::LDRBBui: 329 case AArch64::LDURBBi: 330 return Opc; 331 case AArch64::LDRSWui: 332 return AArch64::LDRWui; 333 case AArch64::LDURSWi: 334 return AArch64::LDURWi; 335 case AArch64::LDRSBWui: 336 return AArch64::LDRBBui; 337 case AArch64::LDRSHWui: 338 return AArch64::LDRHHui; 339 case AArch64::LDURSBWi: 340 return AArch64::LDURBBi; 341 case AArch64::LDURSHWi: 342 return AArch64::LDURHHi; 343 } 344 } 345 346 static unsigned getMatchingWideOpcode(unsigned Opc) { 347 switch (Opc) { 348 default: 349 llvm_unreachable("Opcode has no wide equivalent!"); 350 case AArch64::STRBBui: 351 return AArch64::STRHHui; 352 case AArch64::STRHHui: 353 return AArch64::STRWui; 354 case AArch64::STURBBi: 355 return AArch64::STURHHi; 356 case AArch64::STURHHi: 357 return AArch64::STURWi; 358 case AArch64::STURWi: 359 return AArch64::STURXi; 360 case AArch64::STRWui: 361 return AArch64::STRXui; 362 case AArch64::LDRHHui: 363 case AArch64::LDRSHWui: 364 return AArch64::LDRWui; 365 case AArch64::LDURHHi: 366 case AArch64::LDURSHWi: 367 return AArch64::LDURWi; 368 case AArch64::LDRBBui: 369 case AArch64::LDRSBWui: 370 return AArch64::LDRHHui; 371 case AArch64::LDURBBi: 372 case AArch64::LDURSBWi: 373 return AArch64::LDURHHi; 374 } 375 } 376 377 static unsigned getMatchingPairOpcode(unsigned Opc) { 378 switch (Opc) { 379 default: 380 llvm_unreachable("Opcode has no pairwise equivalent!"); 381 case AArch64::STRSui: 382 case AArch64::STURSi: 383 return AArch64::STPSi; 384 case AArch64::STRDui: 385 case AArch64::STURDi: 386 return AArch64::STPDi; 387 case AArch64::STRQui: 388 case AArch64::STURQi: 389 return AArch64::STPQi; 390 case AArch64::STRWui: 391 case AArch64::STURWi: 392 return AArch64::STPWi; 393 case AArch64::STRXui: 394 case AArch64::STURXi: 395 return AArch64::STPXi; 396 case AArch64::LDRSui: 397 case AArch64::LDURSi: 398 return AArch64::LDPSi; 399 case AArch64::LDRDui: 400 case AArch64::LDURDi: 401 return AArch64::LDPDi; 402 case AArch64::LDRQui: 403 case AArch64::LDURQi: 404 return AArch64::LDPQi; 405 case AArch64::LDRWui: 406 case AArch64::LDURWi: 407 return AArch64::LDPWi; 408 case AArch64::LDRXui: 409 case AArch64::LDURXi: 410 return AArch64::LDPXi; 411 case AArch64::LDRSWui: 412 case AArch64::LDURSWi: 413 return AArch64::LDPSWi; 414 } 415 } 416 417 static unsigned isMatchingStore(MachineInstr &LoadInst, 418 MachineInstr &StoreInst) { 419 unsigned LdOpc = LoadInst.getOpcode(); 420 unsigned StOpc = StoreInst.getOpcode(); 421 switch (LdOpc) { 422 default: 423 llvm_unreachable("Unsupported load instruction!"); 424 case AArch64::LDRBBui: 425 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 426 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 427 case AArch64::LDURBBi: 428 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 429 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 430 case AArch64::LDRHHui: 431 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 432 StOpc == AArch64::STRXui; 433 case AArch64::LDURHHi: 434 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 435 StOpc == AArch64::STURXi; 436 case AArch64::LDRWui: 437 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 438 case AArch64::LDURWi: 439 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 440 case AArch64::LDRXui: 441 return StOpc == AArch64::STRXui; 442 case AArch64::LDURXi: 443 return StOpc == AArch64::STURXi; 444 } 445 } 446 447 static unsigned getPreIndexedOpcode(unsigned Opc) { 448 switch (Opc) { 449 default: 450 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 451 case AArch64::STRSui: 452 return AArch64::STRSpre; 453 case AArch64::STRDui: 454 return AArch64::STRDpre; 455 case AArch64::STRQui: 456 return AArch64::STRQpre; 457 case AArch64::STRBBui: 458 return AArch64::STRBBpre; 459 case AArch64::STRHHui: 460 return AArch64::STRHHpre; 461 case AArch64::STRWui: 462 return AArch64::STRWpre; 463 case AArch64::STRXui: 464 return AArch64::STRXpre; 465 case AArch64::LDRSui: 466 return AArch64::LDRSpre; 467 case AArch64::LDRDui: 468 return AArch64::LDRDpre; 469 case AArch64::LDRQui: 470 return AArch64::LDRQpre; 471 case AArch64::LDRBBui: 472 return AArch64::LDRBBpre; 473 case AArch64::LDRHHui: 474 return AArch64::LDRHHpre; 475 case AArch64::LDRWui: 476 return AArch64::LDRWpre; 477 case AArch64::LDRXui: 478 return AArch64::LDRXpre; 479 case AArch64::LDRSWui: 480 return AArch64::LDRSWpre; 481 case AArch64::LDPSi: 482 return AArch64::LDPSpre; 483 case AArch64::LDPSWi: 484 return AArch64::LDPSWpre; 485 case AArch64::LDPDi: 486 return AArch64::LDPDpre; 487 case AArch64::LDPQi: 488 return AArch64::LDPQpre; 489 case AArch64::LDPWi: 490 return AArch64::LDPWpre; 491 case AArch64::LDPXi: 492 return AArch64::LDPXpre; 493 case AArch64::STPSi: 494 return AArch64::STPSpre; 495 case AArch64::STPDi: 496 return AArch64::STPDpre; 497 case AArch64::STPQi: 498 return AArch64::STPQpre; 499 case AArch64::STPWi: 500 return AArch64::STPWpre; 501 case AArch64::STPXi: 502 return AArch64::STPXpre; 503 } 504 } 505 506 static unsigned getPostIndexedOpcode(unsigned Opc) { 507 switch (Opc) { 508 default: 509 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 510 case AArch64::STRSui: 511 return AArch64::STRSpost; 512 case AArch64::STRDui: 513 return AArch64::STRDpost; 514 case AArch64::STRQui: 515 return AArch64::STRQpost; 516 case AArch64::STRBBui: 517 return AArch64::STRBBpost; 518 case AArch64::STRHHui: 519 return AArch64::STRHHpost; 520 case AArch64::STRWui: 521 return AArch64::STRWpost; 522 case AArch64::STRXui: 523 return AArch64::STRXpost; 524 case AArch64::LDRSui: 525 return AArch64::LDRSpost; 526 case AArch64::LDRDui: 527 return AArch64::LDRDpost; 528 case AArch64::LDRQui: 529 return AArch64::LDRQpost; 530 case AArch64::LDRBBui: 531 return AArch64::LDRBBpost; 532 case AArch64::LDRHHui: 533 return AArch64::LDRHHpost; 534 case AArch64::LDRWui: 535 return AArch64::LDRWpost; 536 case AArch64::LDRXui: 537 return AArch64::LDRXpost; 538 case AArch64::LDRSWui: 539 return AArch64::LDRSWpost; 540 case AArch64::LDPSi: 541 return AArch64::LDPSpost; 542 case AArch64::LDPSWi: 543 return AArch64::LDPSWpost; 544 case AArch64::LDPDi: 545 return AArch64::LDPDpost; 546 case AArch64::LDPQi: 547 return AArch64::LDPQpost; 548 case AArch64::LDPWi: 549 return AArch64::LDPWpost; 550 case AArch64::LDPXi: 551 return AArch64::LDPXpost; 552 case AArch64::STPSi: 553 return AArch64::STPSpost; 554 case AArch64::STPDi: 555 return AArch64::STPDpost; 556 case AArch64::STPQi: 557 return AArch64::STPQpost; 558 case AArch64::STPWi: 559 return AArch64::STPWpost; 560 case AArch64::STPXi: 561 return AArch64::STPXpost; 562 } 563 } 564 565 static bool isPairedLdSt(const MachineInstr &MI) { 566 switch (MI.getOpcode()) { 567 default: 568 return false; 569 case AArch64::LDPSi: 570 case AArch64::LDPSWi: 571 case AArch64::LDPDi: 572 case AArch64::LDPQi: 573 case AArch64::LDPWi: 574 case AArch64::LDPXi: 575 case AArch64::STPSi: 576 case AArch64::STPDi: 577 case AArch64::STPQi: 578 case AArch64::STPWi: 579 case AArch64::STPXi: 580 return true; 581 } 582 } 583 584 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 585 unsigned PairedRegOp = 0) { 586 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 587 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 588 return MI.getOperand(Idx); 589 } 590 591 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 592 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 593 return MI.getOperand(Idx); 594 } 595 596 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 597 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 598 return MI.getOperand(Idx); 599 } 600 601 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 602 MachineInstr &StoreInst, 603 const AArch64InstrInfo *TII) { 604 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 605 int LoadSize = getMemScale(LoadInst); 606 int StoreSize = getMemScale(StoreInst); 607 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 608 ? getLdStOffsetOp(StoreInst).getImm() 609 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 610 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 611 ? getLdStOffsetOp(LoadInst).getImm() 612 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 613 return (UnscaledStOffset <= UnscaledLdOffset) && 614 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 615 } 616 617 static bool isPromotableZeroStoreOpcode(unsigned Opc) { 618 return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi; 619 } 620 621 static bool isPromotableZeroStoreOpcode(MachineInstr &MI) { 622 return isPromotableZeroStoreOpcode(MI.getOpcode()); 623 } 624 625 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 626 return (isPromotableZeroStoreOpcode(MI)) && 627 getLdStRegOp(MI).getReg() == AArch64::WZR; 628 } 629 630 MachineBasicBlock::iterator 631 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I, 632 MachineBasicBlock::iterator MergeMI, 633 const LdStPairFlags &Flags) { 634 MachineBasicBlock::iterator NextI = I; 635 ++NextI; 636 // If NextI is the second of the two instructions to be merged, we need 637 // to skip one further. Either way we merge will invalidate the iterator, 638 // and we don't need to scan the new instruction, as it's a pairwise 639 // instruction, which we're not considering for further action anyway. 640 if (NextI == MergeMI) 641 ++NextI; 642 643 unsigned Opc = I->getOpcode(); 644 bool IsScaled = !TII->isUnscaledLdSt(Opc); 645 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 646 647 bool MergeForward = Flags.getMergeForward(); 648 // Insert our new paired instruction after whichever of the paired 649 // instructions MergeForward indicates. 650 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 651 // Also based on MergeForward is from where we copy the base register operand 652 // so we get the flags compatible with the input code. 653 const MachineOperand &BaseRegOp = 654 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 655 656 // Which register is Rt and which is Rt2 depends on the offset order. 657 MachineInstr *RtMI, *Rt2MI; 658 if (getLdStOffsetOp(*I).getImm() == 659 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) { 660 RtMI = &*MergeMI; 661 Rt2MI = &*I; 662 } else { 663 RtMI = &*I; 664 Rt2MI = &*MergeMI; 665 } 666 667 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 668 // Change the scaled offset from small to large type. 669 if (IsScaled) { 670 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 671 OffsetImm /= 2; 672 } 673 674 DebugLoc DL = I->getDebugLoc(); 675 MachineBasicBlock *MBB = I->getParent(); 676 if (isNarrowLoad(Opc)) { 677 MachineInstr *RtNewDest = &*(MergeForward ? I : MergeMI); 678 // When merging small (< 32 bit) loads for big-endian targets, the order of 679 // the component parts gets swapped. 680 if (!Subtarget->isLittleEndian()) 681 std::swap(RtMI, Rt2MI); 682 // Construct the new load instruction. 683 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 684 NewMemMI = 685 BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 686 .addOperand(getLdStRegOp(*RtNewDest)) 687 .addOperand(BaseRegOp) 688 .addImm(OffsetImm) 689 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 690 (void)NewMemMI; 691 692 DEBUG( 693 dbgs() 694 << "Creating the new load and extract. Replacing instructions:\n "); 695 DEBUG(I->print(dbgs())); 696 DEBUG(dbgs() << " "); 697 DEBUG(MergeMI->print(dbgs())); 698 DEBUG(dbgs() << " with instructions:\n "); 699 DEBUG((NewMemMI)->print(dbgs())); 700 701 int Width = getMemScale(*I) == 1 ? 8 : 16; 702 int LSBLow = 0; 703 int LSBHigh = Width; 704 int ImmsLow = LSBLow + Width - 1; 705 int ImmsHigh = LSBHigh + Width - 1; 706 MachineInstr *ExtDestMI = &*(MergeForward ? MergeMI : I); 707 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 708 // Create the bitfield extract for high bits. 709 BitExtMI1 = 710 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI))) 711 .addOperand(getLdStRegOp(*Rt2MI)) 712 .addReg(getLdStRegOp(*RtNewDest).getReg()) 713 .addImm(LSBHigh) 714 .addImm(ImmsHigh); 715 // Create the bitfield extract for low bits. 716 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 717 // For unsigned, prefer to use AND for low bits. 718 BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 719 .addOperand(getLdStRegOp(*RtMI)) 720 .addReg(getLdStRegOp(*RtNewDest).getReg()) 721 .addImm(ImmsLow); 722 } else { 723 BitExtMI2 = 724 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI))) 725 .addOperand(getLdStRegOp(*RtMI)) 726 .addReg(getLdStRegOp(*RtNewDest).getReg()) 727 .addImm(LSBLow) 728 .addImm(ImmsLow); 729 } 730 } else { 731 // Create the bitfield extract for low bits. 732 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 733 // For unsigned, prefer to use AND for low bits. 734 BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 735 .addOperand(getLdStRegOp(*RtMI)) 736 .addReg(getLdStRegOp(*RtNewDest).getReg()) 737 .addImm(ImmsLow); 738 } else { 739 BitExtMI1 = 740 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*RtMI))) 741 .addOperand(getLdStRegOp(*RtMI)) 742 .addReg(getLdStRegOp(*RtNewDest).getReg()) 743 .addImm(LSBLow) 744 .addImm(ImmsLow); 745 } 746 747 // Create the bitfield extract for high bits. 748 BitExtMI2 = 749 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(*Rt2MI))) 750 .addOperand(getLdStRegOp(*Rt2MI)) 751 .addReg(getLdStRegOp(*RtNewDest).getReg()) 752 .addImm(LSBHigh) 753 .addImm(ImmsHigh); 754 } 755 (void)BitExtMI1; 756 (void)BitExtMI2; 757 758 DEBUG(dbgs() << " "); 759 DEBUG((BitExtMI1)->print(dbgs())); 760 DEBUG(dbgs() << " "); 761 DEBUG((BitExtMI2)->print(dbgs())); 762 DEBUG(dbgs() << "\n"); 763 764 // Erase the old instructions. 765 I->eraseFromParent(); 766 MergeMI->eraseFromParent(); 767 return NextI; 768 } 769 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 770 "Expected promotable zero store"); 771 772 // Construct the new instruction. 773 MachineInstrBuilder MIB; 774 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 775 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 776 .addOperand(BaseRegOp) 777 .addImm(OffsetImm) 778 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 779 (void)MIB; 780 781 DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n "); 782 DEBUG(I->print(dbgs())); 783 DEBUG(dbgs() << " "); 784 DEBUG(MergeMI->print(dbgs())); 785 DEBUG(dbgs() << " with instruction:\n "); 786 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 787 DEBUG(dbgs() << "\n"); 788 789 // Erase the old instructions. 790 I->eraseFromParent(); 791 MergeMI->eraseFromParent(); 792 return NextI; 793 } 794 795 MachineBasicBlock::iterator 796 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 797 MachineBasicBlock::iterator Paired, 798 const LdStPairFlags &Flags) { 799 MachineBasicBlock::iterator NextI = I; 800 ++NextI; 801 // If NextI is the second of the two instructions to be merged, we need 802 // to skip one further. Either way we merge will invalidate the iterator, 803 // and we don't need to scan the new instruction, as it's a pairwise 804 // instruction, which we're not considering for further action anyway. 805 if (NextI == Paired) 806 ++NextI; 807 808 int SExtIdx = Flags.getSExtIdx(); 809 unsigned Opc = 810 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 811 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 812 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 813 814 bool MergeForward = Flags.getMergeForward(); 815 // Insert our new paired instruction after whichever of the paired 816 // instructions MergeForward indicates. 817 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 818 // Also based on MergeForward is from where we copy the base register operand 819 // so we get the flags compatible with the input code. 820 const MachineOperand &BaseRegOp = 821 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 822 823 int Offset = getLdStOffsetOp(*I).getImm(); 824 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 825 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 826 if (IsUnscaled != PairedIsUnscaled) { 827 // We're trying to pair instructions that differ in how they are scaled. If 828 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 829 // the opposite (i.e., make Paired's offset unscaled). 830 int MemSize = getMemScale(*Paired); 831 if (PairedIsUnscaled) { 832 // If the unscaled offset isn't a multiple of the MemSize, we can't 833 // pair the operations together. 834 assert(!(PairedOffset % getMemScale(*Paired)) && 835 "Offset should be a multiple of the stride!"); 836 PairedOffset /= MemSize; 837 } else { 838 PairedOffset *= MemSize; 839 } 840 } 841 842 // Which register is Rt and which is Rt2 depends on the offset order. 843 MachineInstr *RtMI, *Rt2MI; 844 if (Offset == PairedOffset + OffsetStride) { 845 RtMI = &*Paired; 846 Rt2MI = &*I; 847 // Here we swapped the assumption made for SExtIdx. 848 // I.e., we turn ldp I, Paired into ldp Paired, I. 849 // Update the index accordingly. 850 if (SExtIdx != -1) 851 SExtIdx = (SExtIdx + 1) % 2; 852 } else { 853 RtMI = &*I; 854 Rt2MI = &*Paired; 855 } 856 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 857 // Scale the immediate offset, if necessary. 858 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 859 assert(!(OffsetImm % getMemScale(*RtMI)) && 860 "Unscaled offset cannot be scaled."); 861 OffsetImm /= getMemScale(*RtMI); 862 } 863 864 // Construct the new instruction. 865 MachineInstrBuilder MIB; 866 DebugLoc DL = I->getDebugLoc(); 867 MachineBasicBlock *MBB = I->getParent(); 868 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 869 .addOperand(getLdStRegOp(*RtMI)) 870 .addOperand(getLdStRegOp(*Rt2MI)) 871 .addOperand(BaseRegOp) 872 .addImm(OffsetImm) 873 .setMemRefs(I->mergeMemRefsWith(*Paired)); 874 875 (void)MIB; 876 877 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 878 DEBUG(I->print(dbgs())); 879 DEBUG(dbgs() << " "); 880 DEBUG(Paired->print(dbgs())); 881 DEBUG(dbgs() << " with instruction:\n "); 882 if (SExtIdx != -1) { 883 // Generate the sign extension for the proper result of the ldp. 884 // I.e., with X1, that would be: 885 // %W1<def> = KILL %W1, %X1<imp-def> 886 // %X1<def> = SBFMXri %X1<kill>, 0, 31 887 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 888 // Right now, DstMO has the extended register, since it comes from an 889 // extended opcode. 890 unsigned DstRegX = DstMO.getReg(); 891 // Get the W variant of that register. 892 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 893 // Update the result of LDP to use the W instead of the X variant. 894 DstMO.setReg(DstRegW); 895 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 896 DEBUG(dbgs() << "\n"); 897 // Make the machine verifier happy by providing a definition for 898 // the X register. 899 // Insert this definition right after the generated LDP, i.e., before 900 // InsertionPoint. 901 MachineInstrBuilder MIBKill = 902 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 903 .addReg(DstRegW) 904 .addReg(DstRegX, RegState::Define); 905 MIBKill->getOperand(2).setImplicit(); 906 // Create the sign extension. 907 MachineInstrBuilder MIBSXTW = 908 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 909 .addReg(DstRegX) 910 .addImm(0) 911 .addImm(31); 912 (void)MIBSXTW; 913 DEBUG(dbgs() << " Extend operand:\n "); 914 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 915 } else { 916 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 917 } 918 DEBUG(dbgs() << "\n"); 919 920 // Erase the old instructions. 921 I->eraseFromParent(); 922 Paired->eraseFromParent(); 923 924 return NextI; 925 } 926 927 MachineBasicBlock::iterator 928 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 929 MachineBasicBlock::iterator StoreI) { 930 MachineBasicBlock::iterator NextI = LoadI; 931 ++NextI; 932 933 int LoadSize = getMemScale(*LoadI); 934 int StoreSize = getMemScale(*StoreI); 935 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 936 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 937 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 938 939 assert((IsStoreXReg || 940 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 941 "Unexpected RegClass"); 942 943 MachineInstr *BitExtMI; 944 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 945 // Remove the load, if the destination register of the loads is the same 946 // register for stored value. 947 if (StRt == LdRt && LoadSize == 8) { 948 DEBUG(dbgs() << "Remove load instruction:\n "); 949 DEBUG(LoadI->print(dbgs())); 950 DEBUG(dbgs() << "\n"); 951 LoadI->eraseFromParent(); 952 return NextI; 953 } 954 // Replace the load with a mov if the load and store are in the same size. 955 BitExtMI = 956 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 957 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 958 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 959 .addReg(StRt) 960 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 961 } else { 962 // FIXME: Currently we disable this transformation in big-endian targets as 963 // performance and correctness are verified only in little-endian. 964 if (!Subtarget->isLittleEndian()) 965 return NextI; 966 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 967 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 968 "Unsupported ld/st match"); 969 assert(LoadSize <= StoreSize && "Invalid load size"); 970 int UnscaledLdOffset = IsUnscaled 971 ? getLdStOffsetOp(*LoadI).getImm() 972 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 973 int UnscaledStOffset = IsUnscaled 974 ? getLdStOffsetOp(*StoreI).getImm() 975 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 976 int Width = LoadSize * 8; 977 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 978 int Imms = Immr + Width - 1; 979 unsigned DestReg = IsStoreXReg 980 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 981 &AArch64::GPR64RegClass) 982 : LdRt; 983 984 assert((UnscaledLdOffset >= UnscaledStOffset && 985 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 986 "Invalid offset"); 987 988 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 989 Imms = Immr + Width - 1; 990 if (UnscaledLdOffset == UnscaledStOffset) { 991 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 992 | ((Immr) << 6) // immr 993 | ((Imms) << 0) // imms 994 ; 995 996 BitExtMI = 997 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 998 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 999 DestReg) 1000 .addReg(StRt) 1001 .addImm(AndMaskEncoded); 1002 } else { 1003 BitExtMI = 1004 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1005 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1006 DestReg) 1007 .addReg(StRt) 1008 .addImm(Immr) 1009 .addImm(Imms); 1010 } 1011 } 1012 (void)BitExtMI; 1013 1014 DEBUG(dbgs() << "Promoting load by replacing :\n "); 1015 DEBUG(StoreI->print(dbgs())); 1016 DEBUG(dbgs() << " "); 1017 DEBUG(LoadI->print(dbgs())); 1018 DEBUG(dbgs() << " with instructions:\n "); 1019 DEBUG(StoreI->print(dbgs())); 1020 DEBUG(dbgs() << " "); 1021 DEBUG((BitExtMI)->print(dbgs())); 1022 DEBUG(dbgs() << "\n"); 1023 1024 // Erase the old instructions. 1025 LoadI->eraseFromParent(); 1026 return NextI; 1027 } 1028 1029 /// trackRegDefsUses - Remember what registers the specified instruction uses 1030 /// and modifies. 1031 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 1032 BitVector &UsedRegs, 1033 const TargetRegisterInfo *TRI) { 1034 for (const MachineOperand &MO : MI.operands()) { 1035 if (MO.isRegMask()) 1036 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1037 1038 if (!MO.isReg()) 1039 continue; 1040 unsigned Reg = MO.getReg(); 1041 if (!Reg) 1042 continue; 1043 if (MO.isDef()) { 1044 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1045 ModifiedRegs.set(*AI); 1046 } else { 1047 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1048 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1049 UsedRegs.set(*AI); 1050 } 1051 } 1052 } 1053 1054 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1055 // Convert the byte-offset used by unscaled into an "element" offset used 1056 // by the scaled pair load/store instructions. 1057 if (IsUnscaled) { 1058 // If the byte-offset isn't a multiple of the stride, there's no point 1059 // trying to match it. 1060 if (Offset % OffsetStride) 1061 return false; 1062 Offset /= OffsetStride; 1063 } 1064 return Offset <= 63 && Offset >= -64; 1065 } 1066 1067 // Do alignment, specialized to power of 2 and for signed ints, 1068 // avoiding having to do a C-style cast from uint_64t to int when 1069 // using alignTo from include/llvm/Support/MathExtras.h. 1070 // FIXME: Move this function to include/MathExtras.h? 1071 static int alignTo(int Num, int PowOf2) { 1072 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1073 } 1074 1075 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1076 const AArch64InstrInfo *TII) { 1077 // One of the instructions must modify memory. 1078 if (!MIa.mayStore() && !MIb.mayStore()) 1079 return false; 1080 1081 // Both instructions must be memory operations. 1082 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1083 return false; 1084 1085 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 1086 } 1087 1088 static bool mayAlias(MachineInstr &MIa, 1089 SmallVectorImpl<MachineInstr *> &MemInsns, 1090 const AArch64InstrInfo *TII) { 1091 for (MachineInstr *MIb : MemInsns) 1092 if (mayAlias(MIa, *MIb, TII)) 1093 return true; 1094 1095 return false; 1096 } 1097 1098 bool AArch64LoadStoreOpt::findMatchingStore( 1099 MachineBasicBlock::iterator I, unsigned Limit, 1100 MachineBasicBlock::iterator &StoreI) { 1101 MachineBasicBlock::iterator B = I->getParent()->begin(); 1102 MachineBasicBlock::iterator MBBI = I; 1103 MachineInstr &LoadMI = *I; 1104 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1105 1106 // If the load is the first instruction in the block, there's obviously 1107 // not any matching store. 1108 if (MBBI == B) 1109 return false; 1110 1111 // Track which registers have been modified and used between the first insn 1112 // and the second insn. 1113 ModifiedRegs.reset(); 1114 UsedRegs.reset(); 1115 1116 unsigned Count = 0; 1117 do { 1118 --MBBI; 1119 MachineInstr &MI = *MBBI; 1120 1121 // Don't count DBG_VALUE instructions towards the search limit. 1122 if (!MI.isDebugValue()) 1123 ++Count; 1124 1125 // If the load instruction reads directly from the address to which the 1126 // store instruction writes and the stored value is not modified, we can 1127 // promote the load. Since we do not handle stores with pre-/post-index, 1128 // it's unnecessary to check if BaseReg is modified by the store itself. 1129 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1130 BaseReg == getLdStBaseOp(MI).getReg() && 1131 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1132 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1133 StoreI = MBBI; 1134 return true; 1135 } 1136 1137 if (MI.isCall()) 1138 return false; 1139 1140 // Update modified / uses register lists. 1141 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1142 1143 // Otherwise, if the base register is modified, we have no match, so 1144 // return early. 1145 if (ModifiedRegs[BaseReg]) 1146 return false; 1147 1148 // If we encounter a store aliased with the load, return early. 1149 if (MI.mayStore() && mayAlias(LoadMI, MI, TII)) 1150 return false; 1151 } while (MBBI != B && Count < Limit); 1152 return false; 1153 } 1154 1155 // Returns true if FirstMI and MI are candidates for merging or pairing. 1156 // Otherwise, returns false. 1157 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1158 LdStPairFlags &Flags, 1159 const AArch64InstrInfo *TII) { 1160 // If this is volatile or if pairing is suppressed, not a candidate. 1161 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1162 return false; 1163 1164 // We should have already checked FirstMI for pair suppression and volatility. 1165 assert(!FirstMI.hasOrderedMemoryRef() && 1166 !TII->isLdStPairSuppressed(FirstMI) && 1167 "FirstMI shouldn't get here if either of these checks are true."); 1168 1169 unsigned OpcA = FirstMI.getOpcode(); 1170 unsigned OpcB = MI.getOpcode(); 1171 1172 // Opcodes match: nothing more to check. 1173 if (OpcA == OpcB) 1174 return true; 1175 1176 // Try to match a sign-extended load/store with a zero-extended load/store. 1177 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1178 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1179 assert(IsValidLdStrOpc && 1180 "Given Opc should be a Load or Store with an immediate"); 1181 // OpcA will be the first instruction in the pair. 1182 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1183 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1184 return true; 1185 } 1186 1187 // If the second instruction isn't even a load/store, bail out. 1188 if (!PairIsValidLdStrOpc) 1189 return false; 1190 1191 // FIXME: We don't support merging narrow loads/stores with mixed 1192 // scaled/unscaled offsets. 1193 if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB)) 1194 return false; 1195 1196 // Try to match an unscaled load/store with a scaled load/store. 1197 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1198 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1199 1200 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1201 } 1202 1203 /// Scan the instructions looking for a load/store that can be combined with the 1204 /// current instruction into a wider equivalent or a load/store pair. 1205 MachineBasicBlock::iterator 1206 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1207 LdStPairFlags &Flags, unsigned Limit, 1208 bool FindNarrowMerge) { 1209 MachineBasicBlock::iterator E = I->getParent()->end(); 1210 MachineBasicBlock::iterator MBBI = I; 1211 MachineInstr &FirstMI = *I; 1212 ++MBBI; 1213 1214 bool MayLoad = FirstMI.mayLoad(); 1215 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1216 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1217 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1218 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1219 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1220 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1221 1222 // Track which registers have been modified and used between the first insn 1223 // (inclusive) and the second insn. 1224 ModifiedRegs.reset(); 1225 UsedRegs.reset(); 1226 1227 // Remember any instructions that read/write memory between FirstMI and MI. 1228 SmallVector<MachineInstr *, 4> MemInsns; 1229 1230 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1231 MachineInstr &MI = *MBBI; 1232 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1233 // optimization by changing how far we scan. 1234 if (MI.isDebugValue()) 1235 continue; 1236 1237 // Now that we know this is a real instruction, count it. 1238 ++Count; 1239 1240 Flags.setSExtIdx(-1); 1241 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1242 getLdStOffsetOp(MI).isImm()) { 1243 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1244 // If we've found another instruction with the same opcode, check to see 1245 // if the base and offset are compatible with our starting instruction. 1246 // These instructions all have scaled immediate operands, so we just 1247 // check for +1/-1. Make sure to check the new instruction offset is 1248 // actually an immediate and not a symbolic reference destined for 1249 // a relocation. 1250 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1251 int MIOffset = getLdStOffsetOp(MI).getImm(); 1252 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1253 if (IsUnscaled != MIIsUnscaled) { 1254 // We're trying to pair instructions that differ in how they are scaled. 1255 // If FirstMI is scaled then scale the offset of MI accordingly. 1256 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1257 int MemSize = getMemScale(MI); 1258 if (MIIsUnscaled) { 1259 // If the unscaled offset isn't a multiple of the MemSize, we can't 1260 // pair the operations together: bail and keep looking. 1261 if (MIOffset % MemSize) 1262 continue; 1263 MIOffset /= MemSize; 1264 } else { 1265 MIOffset *= MemSize; 1266 } 1267 } 1268 1269 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1270 (Offset + OffsetStride == MIOffset))) { 1271 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1272 if (FindNarrowMerge) { 1273 // If the alignment requirements of the scaled wide load/store 1274 // instruction can't express the offset of the scaled narrow input, 1275 // bail and keep looking. For promotable zero stores, allow only when 1276 // the stored value is the same (i.e., WZR). 1277 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1278 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1279 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1280 MemInsns.push_back(&MI); 1281 continue; 1282 } 1283 } else { 1284 // Pairwise instructions have a 7-bit signed offset field. Single 1285 // insns have a 12-bit unsigned offset field. If the resultant 1286 // immediate offset of merging these instructions is out of range for 1287 // a pairwise instruction, bail and keep looking. 1288 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1289 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1290 MemInsns.push_back(&MI); 1291 continue; 1292 } 1293 // If the alignment requirements of the paired (scaled) instruction 1294 // can't express the offset of the unscaled input, bail and keep 1295 // looking. 1296 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1297 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1298 MemInsns.push_back(&MI); 1299 continue; 1300 } 1301 } 1302 // If the destination register of the loads is the same register, bail 1303 // and keep looking. A load-pair instruction with both destination 1304 // registers the same is UNPREDICTABLE and will result in an exception. 1305 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1306 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1307 MemInsns.push_back(&MI); 1308 continue; 1309 } 1310 1311 // If the Rt of the second instruction was not modified or used between 1312 // the two instructions and none of the instructions between the second 1313 // and first alias with the second, we can combine the second into the 1314 // first. 1315 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1316 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1317 !mayAlias(MI, MemInsns, TII)) { 1318 Flags.setMergeForward(false); 1319 return MBBI; 1320 } 1321 1322 // Likewise, if the Rt of the first instruction is not modified or used 1323 // between the two instructions and none of the instructions between the 1324 // first and the second alias with the first, we can combine the first 1325 // into the second. 1326 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1327 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1328 !mayAlias(FirstMI, MemInsns, TII)) { 1329 Flags.setMergeForward(true); 1330 return MBBI; 1331 } 1332 // Unable to combine these instructions due to interference in between. 1333 // Keep looking. 1334 } 1335 } 1336 1337 // If the instruction wasn't a matching load or store. Stop searching if we 1338 // encounter a call instruction that might modify memory. 1339 if (MI.isCall()) 1340 return E; 1341 1342 // Update modified / uses register lists. 1343 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1344 1345 // Otherwise, if the base register is modified, we have no match, so 1346 // return early. 1347 if (ModifiedRegs[BaseReg]) 1348 return E; 1349 1350 // Update list of instructions that read/write memory. 1351 if (MI.mayLoadOrStore()) 1352 MemInsns.push_back(&MI); 1353 } 1354 return E; 1355 } 1356 1357 MachineBasicBlock::iterator 1358 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1359 MachineBasicBlock::iterator Update, 1360 bool IsPreIdx) { 1361 assert((Update->getOpcode() == AArch64::ADDXri || 1362 Update->getOpcode() == AArch64::SUBXri) && 1363 "Unexpected base register update instruction to merge!"); 1364 MachineBasicBlock::iterator NextI = I; 1365 // Return the instruction following the merged instruction, which is 1366 // the instruction following our unmerged load. Unless that's the add/sub 1367 // instruction we're merging, in which case it's the one after that. 1368 if (++NextI == Update) 1369 ++NextI; 1370 1371 int Value = Update->getOperand(2).getImm(); 1372 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1373 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1374 if (Update->getOpcode() == AArch64::SUBXri) 1375 Value = -Value; 1376 1377 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1378 : getPostIndexedOpcode(I->getOpcode()); 1379 MachineInstrBuilder MIB; 1380 if (!isPairedLdSt(*I)) { 1381 // Non-paired instruction. 1382 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1383 .addOperand(getLdStRegOp(*Update)) 1384 .addOperand(getLdStRegOp(*I)) 1385 .addOperand(getLdStBaseOp(*I)) 1386 .addImm(Value) 1387 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1388 } else { 1389 // Paired instruction. 1390 int Scale = getMemScale(*I); 1391 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1392 .addOperand(getLdStRegOp(*Update)) 1393 .addOperand(getLdStRegOp(*I, 0)) 1394 .addOperand(getLdStRegOp(*I, 1)) 1395 .addOperand(getLdStBaseOp(*I)) 1396 .addImm(Value / Scale) 1397 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1398 } 1399 (void)MIB; 1400 1401 if (IsPreIdx) 1402 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1403 else 1404 DEBUG(dbgs() << "Creating post-indexed load/store."); 1405 DEBUG(dbgs() << " Replacing instructions:\n "); 1406 DEBUG(I->print(dbgs())); 1407 DEBUG(dbgs() << " "); 1408 DEBUG(Update->print(dbgs())); 1409 DEBUG(dbgs() << " with instruction:\n "); 1410 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1411 DEBUG(dbgs() << "\n"); 1412 1413 // Erase the old instructions for the block. 1414 I->eraseFromParent(); 1415 Update->eraseFromParent(); 1416 1417 return NextI; 1418 } 1419 1420 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1421 MachineInstr &MI, 1422 unsigned BaseReg, int Offset) { 1423 switch (MI.getOpcode()) { 1424 default: 1425 break; 1426 case AArch64::SUBXri: 1427 // Negate the offset for a SUB instruction. 1428 Offset *= -1; 1429 // FALLTHROUGH 1430 case AArch64::ADDXri: 1431 // Make sure it's a vanilla immediate operand, not a relocation or 1432 // anything else we can't handle. 1433 if (!MI.getOperand(2).isImm()) 1434 break; 1435 // Watch out for 1 << 12 shifted value. 1436 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1437 break; 1438 1439 // The update instruction source and destination register must be the 1440 // same as the load/store base register. 1441 if (MI.getOperand(0).getReg() != BaseReg || 1442 MI.getOperand(1).getReg() != BaseReg) 1443 break; 1444 1445 bool IsPairedInsn = isPairedLdSt(MemMI); 1446 int UpdateOffset = MI.getOperand(2).getImm(); 1447 // For non-paired load/store instructions, the immediate must fit in a 1448 // signed 9-bit integer. 1449 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1450 break; 1451 1452 // For paired load/store instructions, the immediate must be a multiple of 1453 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1454 // integer. 1455 if (IsPairedInsn) { 1456 int Scale = getMemScale(MemMI); 1457 if (UpdateOffset % Scale != 0) 1458 break; 1459 1460 int ScaledOffset = UpdateOffset / Scale; 1461 if (ScaledOffset > 64 || ScaledOffset < -64) 1462 break; 1463 } 1464 1465 // If we have a non-zero Offset, we check that it matches the amount 1466 // we're adding to the register. 1467 if (!Offset || Offset == MI.getOperand(2).getImm()) 1468 return true; 1469 break; 1470 } 1471 return false; 1472 } 1473 1474 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1475 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1476 MachineBasicBlock::iterator E = I->getParent()->end(); 1477 MachineInstr &MemMI = *I; 1478 MachineBasicBlock::iterator MBBI = I; 1479 1480 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1481 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1482 1483 // Scan forward looking for post-index opportunities. Updating instructions 1484 // can't be formed if the memory instruction doesn't have the offset we're 1485 // looking for. 1486 if (MIUnscaledOffset != UnscaledOffset) 1487 return E; 1488 1489 // If the base register overlaps a destination register, we can't 1490 // merge the update. 1491 bool IsPairedInsn = isPairedLdSt(MemMI); 1492 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1493 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1494 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1495 return E; 1496 } 1497 1498 // Track which registers have been modified and used between the first insn 1499 // (inclusive) and the second insn. 1500 ModifiedRegs.reset(); 1501 UsedRegs.reset(); 1502 ++MBBI; 1503 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1504 MachineInstr &MI = *MBBI; 1505 // Skip DBG_VALUE instructions. 1506 if (MI.isDebugValue()) 1507 continue; 1508 1509 // Now that we know this is a real instruction, count it. 1510 ++Count; 1511 1512 // If we found a match, return it. 1513 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1514 return MBBI; 1515 1516 // Update the status of what the instruction clobbered and used. 1517 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1518 1519 // Otherwise, if the base register is used or modified, we have no match, so 1520 // return early. 1521 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1522 return E; 1523 } 1524 return E; 1525 } 1526 1527 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1528 MachineBasicBlock::iterator I, unsigned Limit) { 1529 MachineBasicBlock::iterator B = I->getParent()->begin(); 1530 MachineBasicBlock::iterator E = I->getParent()->end(); 1531 MachineInstr &MemMI = *I; 1532 MachineBasicBlock::iterator MBBI = I; 1533 1534 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1535 int Offset = getLdStOffsetOp(MemMI).getImm(); 1536 1537 // If the load/store is the first instruction in the block, there's obviously 1538 // not any matching update. Ditto if the memory offset isn't zero. 1539 if (MBBI == B || Offset != 0) 1540 return E; 1541 // If the base register overlaps a destination register, we can't 1542 // merge the update. 1543 bool IsPairedInsn = isPairedLdSt(MemMI); 1544 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1545 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1546 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1547 return E; 1548 } 1549 1550 // Track which registers have been modified and used between the first insn 1551 // (inclusive) and the second insn. 1552 ModifiedRegs.reset(); 1553 UsedRegs.reset(); 1554 unsigned Count = 0; 1555 do { 1556 --MBBI; 1557 MachineInstr &MI = *MBBI; 1558 1559 // Don't count DBG_VALUE instructions towards the search limit. 1560 if (!MI.isDebugValue()) 1561 ++Count; 1562 1563 // If we found a match, return it. 1564 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1565 return MBBI; 1566 1567 // Update the status of what the instruction clobbered and used. 1568 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1569 1570 // Otherwise, if the base register is used or modified, we have no match, so 1571 // return early. 1572 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1573 return E; 1574 } while (MBBI != B && Count < Limit); 1575 return E; 1576 } 1577 1578 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1579 MachineBasicBlock::iterator &MBBI) { 1580 MachineInstr &MI = *MBBI; 1581 // If this is a volatile load, don't mess with it. 1582 if (MI.hasOrderedMemoryRef()) 1583 return false; 1584 1585 // Make sure this is a reg+imm. 1586 // FIXME: It is possible to extend it to handle reg+reg cases. 1587 if (!getLdStOffsetOp(MI).isImm()) 1588 return false; 1589 1590 // Look backward up to LdStLimit instructions. 1591 MachineBasicBlock::iterator StoreI; 1592 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1593 ++NumLoadsFromStoresPromoted; 1594 // Promote the load. Keeping the iterator straight is a 1595 // pain, so we let the merge routine tell us what the next instruction 1596 // is after it's done mucking about. 1597 MBBI = promoteLoadFromStore(MBBI, StoreI); 1598 return true; 1599 } 1600 return false; 1601 } 1602 1603 // Find narrow loads that can be converted into a single wider load with 1604 // bitfield extract instructions. Also merge adjacent zero stores into a wider 1605 // store. 1606 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1607 MachineBasicBlock::iterator &MBBI) { 1608 assert((isNarrowLoad(*MBBI) || isPromotableZeroStoreOpcode(*MBBI)) && 1609 "Expected narrow op."); 1610 MachineInstr &MI = *MBBI; 1611 MachineBasicBlock::iterator E = MI.getParent()->end(); 1612 1613 if (!TII->isCandidateToMergeOrPair(MI)) 1614 return false; 1615 1616 // For promotable zero stores, the stored value should be WZR. 1617 if (isPromotableZeroStoreOpcode(MI) && 1618 getLdStRegOp(MI).getReg() != AArch64::WZR) 1619 return false; 1620 1621 // Look ahead up to LdStLimit instructions for a mergable instruction. 1622 LdStPairFlags Flags; 1623 MachineBasicBlock::iterator MergeMI = 1624 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1625 if (MergeMI != E) { 1626 if (isNarrowLoad(MI)) { 1627 ++NumNarrowLoadsPromoted; 1628 } else if (isPromotableZeroStoreInst(MI)) { 1629 ++NumZeroStoresPromoted; 1630 } 1631 // Keeping the iterator straight is a pain, so we let the merge routine tell 1632 // us what the next instruction is after it's done mucking about. 1633 MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags); 1634 return true; 1635 } 1636 return false; 1637 } 1638 1639 // Find loads and stores that can be merged into a single load or store pair 1640 // instruction. 1641 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1642 MachineInstr &MI = *MBBI; 1643 MachineBasicBlock::iterator E = MI.getParent()->end(); 1644 1645 if (!TII->isCandidateToMergeOrPair(MI)) 1646 return false; 1647 1648 // Early exit if the offset is not possible to match. (6 bits of positive 1649 // range, plus allow an extra one in case we find a later insn that matches 1650 // with Offset-1) 1651 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1652 int Offset = getLdStOffsetOp(MI).getImm(); 1653 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1654 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1655 return false; 1656 1657 // Look ahead up to LdStLimit instructions for a pairable instruction. 1658 LdStPairFlags Flags; 1659 MachineBasicBlock::iterator Paired = 1660 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1661 if (Paired != E) { 1662 ++NumPairCreated; 1663 if (TII->isUnscaledLdSt(MI)) 1664 ++NumUnscaledPairCreated; 1665 // Keeping the iterator straight is a pain, so we let the merge routine tell 1666 // us what the next instruction is after it's done mucking about. 1667 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1668 return true; 1669 } 1670 return false; 1671 } 1672 1673 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1674 bool enableNarrowLdOpt) { 1675 bool Modified = false; 1676 // Four tranformations to do here: 1677 // 1) Find loads that directly read from stores and promote them by 1678 // replacing with mov instructions. If the store is wider than the load, 1679 // the load will be replaced with a bitfield extract. 1680 // e.g., 1681 // str w1, [x0, #4] 1682 // ldrh w2, [x0, #6] 1683 // ; becomes 1684 // str w1, [x0, #4] 1685 // lsr w2, w1, #16 1686 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1687 MBBI != E;) { 1688 MachineInstr &MI = *MBBI; 1689 switch (MI.getOpcode()) { 1690 default: 1691 // Just move on to the next instruction. 1692 ++MBBI; 1693 break; 1694 // Scaled instructions. 1695 case AArch64::LDRBBui: 1696 case AArch64::LDRHHui: 1697 case AArch64::LDRWui: 1698 case AArch64::LDRXui: 1699 // Unscaled instructions. 1700 case AArch64::LDURBBi: 1701 case AArch64::LDURHHi: 1702 case AArch64::LDURWi: 1703 case AArch64::LDURXi: { 1704 if (tryToPromoteLoadFromStore(MBBI)) { 1705 Modified = true; 1706 break; 1707 } 1708 ++MBBI; 1709 break; 1710 } 1711 } 1712 } 1713 // 2) Find narrow loads that can be converted into a single wider load 1714 // with bitfield extract instructions. 1715 // e.g., 1716 // ldrh w0, [x2] 1717 // ldrh w1, [x2, #2] 1718 // ; becomes 1719 // ldr w0, [x2] 1720 // ubfx w1, w0, #16, #16 1721 // and w0, w0, #ffff 1722 // 1723 // Also merge adjacent zero stores into a wider store. 1724 // e.g., 1725 // strh wzr, [x0] 1726 // strh wzr, [x0, #2] 1727 // ; becomes 1728 // str wzr, [x0] 1729 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1730 enableNarrowLdOpt && MBBI != E;) { 1731 MachineInstr &MI = *MBBI; 1732 unsigned Opc = MI.getOpcode(); 1733 if (isPromotableZeroStoreOpcode(Opc) || 1734 (EnableNarrowLdMerge && isNarrowLoad(Opc))) { 1735 if (tryToMergeLdStInst(MBBI)) { 1736 Modified = true; 1737 } else 1738 ++MBBI; 1739 } else 1740 ++MBBI; 1741 } 1742 1743 // 3) Find loads and stores that can be merged into a single load or store 1744 // pair instruction. 1745 // e.g., 1746 // ldr x0, [x2] 1747 // ldr x1, [x2, #8] 1748 // ; becomes 1749 // ldp x0, x1, [x2] 1750 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1751 MBBI != E;) { 1752 MachineInstr &MI = *MBBI; 1753 switch (MI.getOpcode()) { 1754 default: 1755 // Just move on to the next instruction. 1756 ++MBBI; 1757 break; 1758 // Scaled instructions. 1759 case AArch64::STRSui: 1760 case AArch64::STRDui: 1761 case AArch64::STRQui: 1762 case AArch64::STRXui: 1763 case AArch64::STRWui: 1764 case AArch64::LDRSui: 1765 case AArch64::LDRDui: 1766 case AArch64::LDRQui: 1767 case AArch64::LDRXui: 1768 case AArch64::LDRWui: 1769 case AArch64::LDRSWui: 1770 // Unscaled instructions. 1771 case AArch64::STURSi: 1772 case AArch64::STURDi: 1773 case AArch64::STURQi: 1774 case AArch64::STURWi: 1775 case AArch64::STURXi: 1776 case AArch64::LDURSi: 1777 case AArch64::LDURDi: 1778 case AArch64::LDURQi: 1779 case AArch64::LDURWi: 1780 case AArch64::LDURXi: 1781 case AArch64::LDURSWi: { 1782 if (tryToPairLdStInst(MBBI)) { 1783 Modified = true; 1784 break; 1785 } 1786 ++MBBI; 1787 break; 1788 } 1789 } 1790 } 1791 // 4) Find base register updates that can be merged into the load or store 1792 // as a base-reg writeback. 1793 // e.g., 1794 // ldr x0, [x2] 1795 // add x2, x2, #4 1796 // ; becomes 1797 // ldr x0, [x2], #4 1798 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1799 MBBI != E;) { 1800 MachineInstr &MI = *MBBI; 1801 // Do update merging. It's simpler to keep this separate from the above 1802 // switchs, though not strictly necessary. 1803 unsigned Opc = MI.getOpcode(); 1804 switch (Opc) { 1805 default: 1806 // Just move on to the next instruction. 1807 ++MBBI; 1808 break; 1809 // Scaled instructions. 1810 case AArch64::STRSui: 1811 case AArch64::STRDui: 1812 case AArch64::STRQui: 1813 case AArch64::STRXui: 1814 case AArch64::STRWui: 1815 case AArch64::STRHHui: 1816 case AArch64::STRBBui: 1817 case AArch64::LDRSui: 1818 case AArch64::LDRDui: 1819 case AArch64::LDRQui: 1820 case AArch64::LDRXui: 1821 case AArch64::LDRWui: 1822 case AArch64::LDRHHui: 1823 case AArch64::LDRBBui: 1824 // Unscaled instructions. 1825 case AArch64::STURSi: 1826 case AArch64::STURDi: 1827 case AArch64::STURQi: 1828 case AArch64::STURWi: 1829 case AArch64::STURXi: 1830 case AArch64::LDURSi: 1831 case AArch64::LDURDi: 1832 case AArch64::LDURQi: 1833 case AArch64::LDURWi: 1834 case AArch64::LDURXi: 1835 // Paired instructions. 1836 case AArch64::LDPSi: 1837 case AArch64::LDPSWi: 1838 case AArch64::LDPDi: 1839 case AArch64::LDPQi: 1840 case AArch64::LDPWi: 1841 case AArch64::LDPXi: 1842 case AArch64::STPSi: 1843 case AArch64::STPDi: 1844 case AArch64::STPQi: 1845 case AArch64::STPWi: 1846 case AArch64::STPXi: { 1847 // Make sure this is a reg+imm (as opposed to an address reloc). 1848 if (!getLdStOffsetOp(MI).isImm()) { 1849 ++MBBI; 1850 break; 1851 } 1852 // Look forward to try to form a post-index instruction. For example, 1853 // ldr x0, [x20] 1854 // add x20, x20, #32 1855 // merged into: 1856 // ldr x0, [x20], #32 1857 MachineBasicBlock::iterator Update = 1858 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1859 if (Update != E) { 1860 // Merge the update into the ld/st. 1861 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1862 Modified = true; 1863 ++NumPostFolded; 1864 break; 1865 } 1866 // Don't know how to handle pre/post-index versions, so move to the next 1867 // instruction. 1868 if (TII->isUnscaledLdSt(Opc)) { 1869 ++MBBI; 1870 break; 1871 } 1872 1873 // Look back to try to find a pre-index instruction. For example, 1874 // add x0, x0, #8 1875 // ldr x1, [x0] 1876 // merged into: 1877 // ldr x1, [x0, #8]! 1878 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1879 if (Update != E) { 1880 // Merge the update into the ld/st. 1881 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1882 Modified = true; 1883 ++NumPreFolded; 1884 break; 1885 } 1886 // The immediate in the load/store is scaled by the size of the memory 1887 // operation. The immediate in the add we're looking for, 1888 // however, is not, so adjust here. 1889 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1890 1891 // Look forward to try to find a post-index instruction. For example, 1892 // ldr x1, [x0, #64] 1893 // add x0, x0, #64 1894 // merged into: 1895 // ldr x1, [x0, #64]! 1896 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1897 if (Update != E) { 1898 // Merge the update into the ld/st. 1899 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1900 Modified = true; 1901 ++NumPreFolded; 1902 break; 1903 } 1904 1905 // Nothing found. Just move to the next instruction. 1906 ++MBBI; 1907 break; 1908 } 1909 } 1910 } 1911 1912 return Modified; 1913 } 1914 1915 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1916 if (skipFunction(*Fn.getFunction())) 1917 return false; 1918 1919 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1920 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1921 TRI = Subtarget->getRegisterInfo(); 1922 1923 // Resize the modified and used register bitfield trackers. We do this once 1924 // per function and then clear the bitfield each time we optimize a load or 1925 // store. 1926 ModifiedRegs.resize(TRI->getNumRegs()); 1927 UsedRegs.resize(TRI->getNumRegs()); 1928 1929 bool Modified = false; 1930 bool enableNarrowLdOpt = 1931 Subtarget->mergeNarrowLoads() && !Subtarget->requiresStrictAlign(); 1932 for (auto &MBB : Fn) 1933 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1934 1935 return Modified; 1936 } 1937 1938 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1939 // loads and stores near one another? 1940 1941 // FIXME: When pairing store instructions it's very possible for this pass to 1942 // hoist a store with a KILL marker above another use (without a KILL marker). 1943 // The resulting IR is invalid, but nothing uses the KILL markers after this 1944 // pass, so it's never caused a problem in practice. 1945 1946 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1947 /// load / store optimization pass. 1948 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1949 return new AArch64LoadStoreOpt(); 1950 } 1951