1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "MCTargetDesc/ARMAddressingModes.h" 19 #include "Thumb2InstrInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "arm-cp-islands" 39 40 STATISTIC(NumCPEs, "Number of constpool entries"); 41 STATISTIC(NumSplit, "Number of uncond branches inserted"); 42 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 43 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 44 STATISTIC(NumTBs, "Number of table branches generated"); 45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 47 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 48 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 50 51 52 static cl::opt<bool> 53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 54 cl::desc("Adjust basic block layout to better use TB[BH]")); 55 56 static cl::opt<unsigned> 57 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 58 cl::desc("The max number of iteration for converge")); 59 60 61 /// UnknownPadding - Return the worst case padding that could result from 62 /// unknown offset bits. This does not include alignment padding caused by 63 /// known offset bits. 64 /// 65 /// @param LogAlign log2(alignment) 66 /// @param KnownBits Number of known low offset bits. 67 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 68 if (KnownBits < LogAlign) 69 return (1u << LogAlign) - (1u << KnownBits); 70 return 0; 71 } 72 73 namespace { 74 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 75 /// requires constant pool entries to be scattered among the instructions 76 /// inside a function. To do this, it completely ignores the normal LLVM 77 /// constant pool; instead, it places constants wherever it feels like with 78 /// special instructions. 79 /// 80 /// The terminology used in this pass includes: 81 /// Islands - Clumps of constants placed in the function. 82 /// Water - Potential places where an island could be formed. 83 /// CPE - A constant pool entry that has been placed somewhere, which 84 /// tracks a list of users. 85 class ARMConstantIslands : public MachineFunctionPass { 86 /// BasicBlockInfo - Information about the offset and size of a single 87 /// basic block. 88 struct BasicBlockInfo { 89 /// Offset - Distance from the beginning of the function to the beginning 90 /// of this basic block. 91 /// 92 /// Offsets are computed assuming worst case padding before an aligned 93 /// block. This means that subtracting basic block offsets always gives a 94 /// conservative estimate of the real distance which may be smaller. 95 /// 96 /// Because worst case padding is used, the computed offset of an aligned 97 /// block may not actually be aligned. 98 unsigned Offset; 99 100 /// Size - Size of the basic block in bytes. If the block contains 101 /// inline assembly, this is a worst case estimate. 102 /// 103 /// The size does not include any alignment padding whether from the 104 /// beginning of the block, or from an aligned jump table at the end. 105 unsigned Size; 106 107 /// KnownBits - The number of low bits in Offset that are known to be 108 /// exact. The remaining bits of Offset are an upper bound. 109 uint8_t KnownBits; 110 111 /// Unalign - When non-zero, the block contains instructions (inline asm) 112 /// of unknown size. The real size may be smaller than Size bytes by a 113 /// multiple of 1 << Unalign. 114 uint8_t Unalign; 115 116 /// PostAlign - When non-zero, the block terminator contains a .align 117 /// directive, so the end of the block is aligned to 1 << PostAlign 118 /// bytes. 119 uint8_t PostAlign; 120 121 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 122 PostAlign(0) {} 123 124 /// Compute the number of known offset bits internally to this block. 125 /// This number should be used to predict worst case padding when 126 /// splitting the block. 127 unsigned internalKnownBits() const { 128 unsigned Bits = Unalign ? Unalign : KnownBits; 129 // If the block size isn't a multiple of the known bits, assume the 130 // worst case padding. 131 if (Size & ((1u << Bits) - 1)) 132 Bits = countTrailingZeros(Size); 133 return Bits; 134 } 135 136 /// Compute the offset immediately following this block. If LogAlign is 137 /// specified, return the offset the successor block will get if it has 138 /// this alignment. 139 unsigned postOffset(unsigned LogAlign = 0) const { 140 unsigned PO = Offset + Size; 141 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 142 if (!LA) 143 return PO; 144 // Add alignment padding from the terminator. 145 return PO + UnknownPadding(LA, internalKnownBits()); 146 } 147 148 /// Compute the number of known low bits of postOffset. If this block 149 /// contains inline asm, the number of known bits drops to the 150 /// instruction alignment. An aligned terminator may increase the number 151 /// of know bits. 152 /// If LogAlign is given, also consider the alignment of the next block. 153 unsigned postKnownBits(unsigned LogAlign = 0) const { 154 return std::max(std::max(unsigned(PostAlign), LogAlign), 155 internalKnownBits()); 156 } 157 }; 158 159 std::vector<BasicBlockInfo> BBInfo; 160 161 /// WaterList - A sorted list of basic blocks where islands could be placed 162 /// (i.e. blocks that don't fall through to the following block, due 163 /// to a return, unreachable, or unconditional branch). 164 std::vector<MachineBasicBlock*> WaterList; 165 166 /// NewWaterList - The subset of WaterList that was created since the 167 /// previous iteration by inserting unconditional branches. 168 SmallSet<MachineBasicBlock*, 4> NewWaterList; 169 170 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 171 172 /// CPUser - One user of a constant pool, keeping the machine instruction 173 /// pointer, the constant pool being referenced, and the max displacement 174 /// allowed from the instruction to the CP. The HighWaterMark records the 175 /// highest basic block where a new CPEntry can be placed. To ensure this 176 /// pass terminates, the CP entries are initially placed at the end of the 177 /// function and then move monotonically to lower addresses. The 178 /// exception to this rule is when the current CP entry for a particular 179 /// CPUser is out of range, but there is another CP entry for the same 180 /// constant value in range. We want to use the existing in-range CP 181 /// entry, but if it later moves out of range, the search for new water 182 /// should resume where it left off. The HighWaterMark is used to record 183 /// that point. 184 struct CPUser { 185 MachineInstr *MI; 186 MachineInstr *CPEMI; 187 MachineBasicBlock *HighWaterMark; 188 unsigned MaxDisp; 189 bool NegOk; 190 bool IsSoImm; 191 bool KnownAlignment; 192 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 193 bool neg, bool soimm) 194 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 195 KnownAlignment(false) { 196 HighWaterMark = CPEMI->getParent(); 197 } 198 /// getMaxDisp - Returns the maximum displacement supported by MI. 199 /// Correct for unknown alignment. 200 /// Conservatively subtract 2 bytes to handle weird alignment effects. 201 unsigned getMaxDisp() const { 202 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 203 } 204 }; 205 206 /// CPUsers - Keep track of all of the machine instructions that use various 207 /// constant pools and their max displacement. 208 std::vector<CPUser> CPUsers; 209 210 /// CPEntry - One per constant pool entry, keeping the machine instruction 211 /// pointer, the constpool index, and the number of CPUser's which 212 /// reference this entry. 213 struct CPEntry { 214 MachineInstr *CPEMI; 215 unsigned CPI; 216 unsigned RefCount; 217 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 218 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 219 }; 220 221 /// CPEntries - Keep track of all of the constant pool entry machine 222 /// instructions. For each original constpool index (i.e. those that existed 223 /// upon entry to this pass), it keeps a vector of entries. Original 224 /// elements are cloned as we go along; the clones are put in the vector of 225 /// the original element, but have distinct CPIs. 226 /// 227 /// The first half of CPEntries contains generic constants, the second half 228 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 229 /// which vector it will be in here. 230 std::vector<std::vector<CPEntry> > CPEntries; 231 232 /// Maps a JT index to the offset in CPEntries containing copies of that 233 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 234 DenseMap<int, int> JumpTableEntryIndices; 235 236 /// Maps a JT index to the LEA that actually uses the index to calculate its 237 /// base address. 238 DenseMap<int, int> JumpTableUserIndices; 239 240 /// ImmBranch - One per immediate branch, keeping the machine instruction 241 /// pointer, conditional or unconditional, the max displacement, 242 /// and (if isCond is true) the corresponding unconditional branch 243 /// opcode. 244 struct ImmBranch { 245 MachineInstr *MI; 246 unsigned MaxDisp : 31; 247 bool isCond : 1; 248 unsigned UncondBr; 249 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 250 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 251 }; 252 253 /// ImmBranches - Keep track of all the immediate branch instructions. 254 /// 255 std::vector<ImmBranch> ImmBranches; 256 257 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 258 /// 259 SmallVector<MachineInstr*, 4> PushPopMIs; 260 261 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 262 SmallVector<MachineInstr*, 4> T2JumpTables; 263 264 /// HasFarJump - True if any far jump instruction has been emitted during 265 /// the branch fix up pass. 266 bool HasFarJump; 267 268 MachineFunction *MF; 269 MachineConstantPool *MCP; 270 const ARMBaseInstrInfo *TII; 271 const ARMSubtarget *STI; 272 ARMFunctionInfo *AFI; 273 bool isThumb; 274 bool isThumb1; 275 bool isThumb2; 276 public: 277 static char ID; 278 ARMConstantIslands() : MachineFunctionPass(ID) {} 279 280 bool runOnMachineFunction(MachineFunction &MF) override; 281 282 MachineFunctionProperties getRequiredProperties() const override { 283 return MachineFunctionProperties().set( 284 MachineFunctionProperties::Property::AllVRegsAllocated); 285 } 286 287 const char *getPassName() const override { 288 return "ARM constant island placement and branch shortening pass"; 289 } 290 291 private: 292 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 293 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 294 bool BBHasFallthrough(MachineBasicBlock *MBB); 295 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 296 unsigned getCPELogAlign(const MachineInstr *CPEMI); 297 void scanFunctionJumpTables(); 298 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 299 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 300 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 301 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 302 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 303 unsigned getCombinedIndex(const MachineInstr *CPEMI); 304 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 305 bool findAvailableWater(CPUser&U, unsigned UserOffset, 306 water_iterator &WaterIter, bool CloserWater); 307 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 308 MachineBasicBlock *&NewMBB); 309 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 310 void removeDeadCPEMI(MachineInstr *CPEMI); 311 bool removeUnusedCPEntries(); 312 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 313 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 314 bool DoDump = false); 315 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 316 CPUser &U, unsigned &Growth); 317 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 318 bool fixupImmediateBr(ImmBranch &Br); 319 bool fixupConditionalBr(ImmBranch &Br); 320 bool fixupUnconditionalBr(ImmBranch &Br); 321 bool undoLRSpillRestore(); 322 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 323 bool optimizeThumb2Instructions(); 324 bool optimizeThumb2Branches(); 325 bool reorderThumb2JumpTables(); 326 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 327 unsigned &DeadSize, bool &CanDeleteLEA, 328 bool &BaseRegKill); 329 bool optimizeThumb2JumpTables(); 330 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 331 MachineBasicBlock *JTBB); 332 333 void computeBlockSize(MachineBasicBlock *MBB); 334 unsigned getOffsetOf(MachineInstr *MI) const; 335 unsigned getUserOffset(CPUser&) const; 336 void dumpBBs(); 337 void verify(); 338 339 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 340 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 341 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 342 const CPUser &U) { 343 return isOffsetInRange(UserOffset, TrialOffset, 344 U.getMaxDisp(), U.NegOk, U.IsSoImm); 345 } 346 }; 347 char ARMConstantIslands::ID = 0; 348 } 349 350 /// verify - check BBOffsets, BBSizes, alignment of islands 351 void ARMConstantIslands::verify() { 352 #ifndef NDEBUG 353 assert(std::is_sorted(MF->begin(), MF->end(), 354 [this](const MachineBasicBlock &LHS, 355 const MachineBasicBlock &RHS) { 356 return BBInfo[LHS.getNumber()].postOffset() < 357 BBInfo[RHS.getNumber()].postOffset(); 358 })); 359 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 360 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 361 CPUser &U = CPUsers[i]; 362 unsigned UserOffset = getUserOffset(U); 363 // Verify offset using the real max displacement without the safety 364 // adjustment. 365 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 366 /* DoDump = */ true)) { 367 DEBUG(dbgs() << "OK\n"); 368 continue; 369 } 370 DEBUG(dbgs() << "Out of range.\n"); 371 dumpBBs(); 372 DEBUG(MF->dump()); 373 llvm_unreachable("Constant pool entry out of range!"); 374 } 375 #endif 376 } 377 378 /// print block size and offset information - debugging 379 void ARMConstantIslands::dumpBBs() { 380 DEBUG({ 381 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 382 const BasicBlockInfo &BBI = BBInfo[J]; 383 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 384 << " kb=" << unsigned(BBI.KnownBits) 385 << " ua=" << unsigned(BBI.Unalign) 386 << " pa=" << unsigned(BBI.PostAlign) 387 << format(" size=%#x\n", BBInfo[J].Size); 388 } 389 }); 390 } 391 392 /// createARMConstantIslandPass - returns an instance of the constpool 393 /// island pass. 394 FunctionPass *llvm::createARMConstantIslandPass() { 395 return new ARMConstantIslands(); 396 } 397 398 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 399 MF = &mf; 400 MCP = mf.getConstantPool(); 401 402 DEBUG(dbgs() << "***** ARMConstantIslands: " 403 << MCP->getConstants().size() << " CP entries, aligned to " 404 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 405 406 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 407 TII = STI->getInstrInfo(); 408 AFI = MF->getInfo<ARMFunctionInfo>(); 409 410 isThumb = AFI->isThumbFunction(); 411 isThumb1 = AFI->isThumb1OnlyFunction(); 412 isThumb2 = AFI->isThumb2Function(); 413 414 HasFarJump = false; 415 416 // This pass invalidates liveness information when it splits basic blocks. 417 MF->getRegInfo().invalidateLiveness(); 418 419 // Renumber all of the machine basic blocks in the function, guaranteeing that 420 // the numbers agree with the position of the block in the function. 421 MF->RenumberBlocks(); 422 423 // Try to reorder and otherwise adjust the block layout to make good use 424 // of the TB[BH] instructions. 425 bool MadeChange = false; 426 if (isThumb2 && AdjustJumpTableBlocks) { 427 scanFunctionJumpTables(); 428 MadeChange |= reorderThumb2JumpTables(); 429 // Data is out of date, so clear it. It'll be re-computed later. 430 T2JumpTables.clear(); 431 // Blocks may have shifted around. Keep the numbering up to date. 432 MF->RenumberBlocks(); 433 } 434 435 // Perform the initial placement of the constant pool entries. To start with, 436 // we put them all at the end of the function. 437 std::vector<MachineInstr*> CPEMIs; 438 if (!MCP->isEmpty()) 439 doInitialConstPlacement(CPEMIs); 440 441 if (MF->getJumpTableInfo()) 442 doInitialJumpTablePlacement(CPEMIs); 443 444 /// The next UID to take is the first unused one. 445 AFI->initPICLabelUId(CPEMIs.size()); 446 447 // Do the initial scan of the function, building up information about the 448 // sizes of each block, the location of all the water, and finding all of the 449 // constant pool users. 450 initializeFunctionInfo(CPEMIs); 451 CPEMIs.clear(); 452 DEBUG(dumpBBs()); 453 454 // Functions with jump tables need an alignment of 4 because they use the ADR 455 // instruction, which aligns the PC to 4 bytes before adding an offset. 456 if (!T2JumpTables.empty()) 457 MF->ensureAlignment(2); 458 459 /// Remove dead constant pool entries. 460 MadeChange |= removeUnusedCPEntries(); 461 462 // Iteratively place constant pool entries and fix up branches until there 463 // is no change. 464 unsigned NoCPIters = 0, NoBRIters = 0; 465 while (true) { 466 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 467 bool CPChange = false; 468 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 469 // For most inputs, it converges in no more than 5 iterations. 470 // If it doesn't end in 10, the input may have huge BB or many CPEs. 471 // In this case, we will try different heuristics. 472 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 473 if (CPChange && ++NoCPIters > CPMaxIteration) 474 report_fatal_error("Constant Island pass failed to converge!"); 475 DEBUG(dumpBBs()); 476 477 // Clear NewWaterList now. If we split a block for branches, it should 478 // appear as "new water" for the next iteration of constant pool placement. 479 NewWaterList.clear(); 480 481 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 482 bool BRChange = false; 483 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 484 BRChange |= fixupImmediateBr(ImmBranches[i]); 485 if (BRChange && ++NoBRIters > 30) 486 report_fatal_error("Branch Fix Up pass failed to converge!"); 487 DEBUG(dumpBBs()); 488 489 if (!CPChange && !BRChange) 490 break; 491 MadeChange = true; 492 } 493 494 // Shrink 32-bit Thumb2 load and store instructions. 495 if (isThumb2 && !STI->prefers32BitThumb()) 496 MadeChange |= optimizeThumb2Instructions(); 497 498 // Shrink 32-bit branch instructions. 499 if (isThumb && STI->hasV8MBaselineOps()) 500 MadeChange |= optimizeThumb2Branches(); 501 502 // Optimize jump tables using TBB / TBH. 503 if (isThumb2) 504 MadeChange |= optimizeThumb2JumpTables(); 505 506 // After a while, this might be made debug-only, but it is not expensive. 507 verify(); 508 509 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 510 // undo the spill / restore of LR if possible. 511 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 512 MadeChange |= undoLRSpillRestore(); 513 514 // Save the mapping between original and cloned constpool entries. 515 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 516 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 517 const CPEntry & CPE = CPEntries[i][j]; 518 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 519 AFI->recordCPEClone(i, CPE.CPI); 520 } 521 } 522 523 DEBUG(dbgs() << '\n'; dumpBBs()); 524 525 BBInfo.clear(); 526 WaterList.clear(); 527 CPUsers.clear(); 528 CPEntries.clear(); 529 JumpTableEntryIndices.clear(); 530 JumpTableUserIndices.clear(); 531 ImmBranches.clear(); 532 PushPopMIs.clear(); 533 T2JumpTables.clear(); 534 535 return MadeChange; 536 } 537 538 /// \brief Perform the initial placement of the regular constant pool entries. 539 /// To start with, we put them all at the end of the function. 540 void 541 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 542 // Create the basic block to hold the CPE's. 543 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 544 MF->push_back(BB); 545 546 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 547 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 548 549 // Mark the basic block as required by the const-pool. 550 BB->setAlignment(MaxAlign); 551 552 // The function needs to be as aligned as the basic blocks. The linker may 553 // move functions around based on their alignment. 554 MF->ensureAlignment(BB->getAlignment()); 555 556 // Order the entries in BB by descending alignment. That ensures correct 557 // alignment of all entries as long as BB is sufficiently aligned. Keep 558 // track of the insertion point for each alignment. We are going to bucket 559 // sort the entries as they are created. 560 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 561 562 // Add all of the constants from the constant pool to the end block, use an 563 // identity mapping of CPI's to CPE's. 564 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 565 566 const DataLayout &TD = MF->getDataLayout(); 567 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 568 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 569 assert(Size >= 4 && "Too small constant pool entry"); 570 unsigned Align = CPs[i].getAlignment(); 571 assert(isPowerOf2_32(Align) && "Invalid alignment"); 572 // Verify that all constant pool entries are a multiple of their alignment. 573 // If not, we would have to pad them out so that instructions stay aligned. 574 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 575 576 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 577 unsigned LogAlign = Log2_32(Align); 578 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 579 MachineInstr *CPEMI = 580 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 581 .addImm(i).addConstantPoolIndex(i).addImm(Size); 582 CPEMIs.push_back(CPEMI); 583 584 // Ensure that future entries with higher alignment get inserted before 585 // CPEMI. This is bucket sort with iterators. 586 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 587 if (InsPoint[a] == InsAt) 588 InsPoint[a] = CPEMI; 589 590 // Add a new CPEntry, but no corresponding CPUser yet. 591 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 592 ++NumCPEs; 593 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 594 << Size << ", align = " << Align <<'\n'); 595 } 596 DEBUG(BB->dump()); 597 } 598 599 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 600 /// instructions can be made more efficient if the jump table immediately 601 /// follows the instruction, it's best to place them immediately next to their 602 /// jumps to begin with. In almost all cases they'll never be moved from that 603 /// position. 604 void ARMConstantIslands::doInitialJumpTablePlacement( 605 std::vector<MachineInstr *> &CPEMIs) { 606 unsigned i = CPEntries.size(); 607 auto MJTI = MF->getJumpTableInfo(); 608 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 609 610 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 611 for (MachineBasicBlock &MBB : *MF) { 612 auto MI = MBB.getLastNonDebugInstr(); 613 if (MI == MBB.end()) 614 continue; 615 616 unsigned JTOpcode; 617 switch (MI->getOpcode()) { 618 default: 619 continue; 620 case ARM::BR_JTadd: 621 case ARM::BR_JTr: 622 case ARM::tBR_JTr: 623 case ARM::BR_JTm: 624 JTOpcode = ARM::JUMPTABLE_ADDRS; 625 break; 626 case ARM::t2BR_JT: 627 JTOpcode = ARM::JUMPTABLE_INSTS; 628 break; 629 case ARM::t2TBB_JT: 630 JTOpcode = ARM::JUMPTABLE_TBB; 631 break; 632 case ARM::t2TBH_JT: 633 JTOpcode = ARM::JUMPTABLE_TBH; 634 break; 635 } 636 637 unsigned NumOps = MI->getDesc().getNumOperands(); 638 MachineOperand JTOp = 639 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 640 unsigned JTI = JTOp.getIndex(); 641 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 642 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 643 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 644 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 645 DebugLoc(), TII->get(JTOpcode)) 646 .addImm(i++) 647 .addJumpTableIndex(JTI) 648 .addImm(Size); 649 CPEMIs.push_back(CPEMI); 650 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 651 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 652 if (!LastCorrectlyNumberedBB) 653 LastCorrectlyNumberedBB = &MBB; 654 } 655 656 // If we did anything then we need to renumber the subsequent blocks. 657 if (LastCorrectlyNumberedBB) 658 MF->RenumberBlocks(LastCorrectlyNumberedBB); 659 } 660 661 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 662 /// into the block immediately after it. 663 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 664 // Get the next machine basic block in the function. 665 MachineFunction::iterator MBBI = MBB->getIterator(); 666 // Can't fall off end of function. 667 if (std::next(MBBI) == MBB->getParent()->end()) 668 return false; 669 670 MachineBasicBlock *NextBB = &*std::next(MBBI); 671 if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end()) 672 return false; 673 674 // Try to analyze the end of the block. A potential fallthrough may already 675 // have an unconditional branch for whatever reason. 676 MachineBasicBlock *TBB, *FBB; 677 SmallVector<MachineOperand, 4> Cond; 678 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 679 return TooDifficult || FBB == nullptr; 680 } 681 682 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 683 /// look up the corresponding CPEntry. 684 ARMConstantIslands::CPEntry 685 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 686 const MachineInstr *CPEMI) { 687 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 688 // Number of entries per constpool index should be small, just do a 689 // linear search. 690 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 691 if (CPEs[i].CPEMI == CPEMI) 692 return &CPEs[i]; 693 } 694 return nullptr; 695 } 696 697 /// getCPELogAlign - Returns the required alignment of the constant pool entry 698 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 699 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 700 switch (CPEMI->getOpcode()) { 701 case ARM::CONSTPOOL_ENTRY: 702 break; 703 case ARM::JUMPTABLE_TBB: 704 return 0; 705 case ARM::JUMPTABLE_TBH: 706 case ARM::JUMPTABLE_INSTS: 707 return 1; 708 case ARM::JUMPTABLE_ADDRS: 709 return 2; 710 default: 711 llvm_unreachable("unknown constpool entry kind"); 712 } 713 714 unsigned CPI = getCombinedIndex(CPEMI); 715 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 716 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 717 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 718 return Log2_32(Align); 719 } 720 721 /// scanFunctionJumpTables - Do a scan of the function, building up 722 /// information about the sizes of each block and the locations of all 723 /// the jump tables. 724 void ARMConstantIslands::scanFunctionJumpTables() { 725 for (MachineBasicBlock &MBB : *MF) { 726 for (MachineInstr &I : MBB) 727 if (I.isBranch() && I.getOpcode() == ARM::t2BR_JT) 728 T2JumpTables.push_back(&I); 729 } 730 } 731 732 /// initializeFunctionInfo - Do the initial scan of the function, building up 733 /// information about the sizes of each block, the location of all the water, 734 /// and finding all of the constant pool users. 735 void ARMConstantIslands:: 736 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 737 BBInfo.clear(); 738 BBInfo.resize(MF->getNumBlockIDs()); 739 740 // First thing, compute the size of all basic blocks, and see if the function 741 // has any inline assembly in it. If so, we have to be conservative about 742 // alignment assumptions, as we don't know for sure the size of any 743 // instructions in the inline assembly. 744 for (MachineBasicBlock &MBB : *MF) 745 computeBlockSize(&MBB); 746 747 // The known bits of the entry block offset are determined by the function 748 // alignment. 749 BBInfo.front().KnownBits = MF->getAlignment(); 750 751 // Compute block offsets and known bits. 752 adjustBBOffsetsAfter(&MF->front()); 753 754 // Now go back through the instructions and build up our data structures. 755 for (MachineBasicBlock &MBB : *MF) { 756 // If this block doesn't fall through into the next MBB, then this is 757 // 'water' that a constant pool island could be placed. 758 if (!BBHasFallthrough(&MBB)) 759 WaterList.push_back(&MBB); 760 761 for (MachineInstr &I : MBB) { 762 if (I.isDebugValue()) 763 continue; 764 765 unsigned Opc = I.getOpcode(); 766 if (I.isBranch()) { 767 bool isCond = false; 768 unsigned Bits = 0; 769 unsigned Scale = 1; 770 int UOpc = Opc; 771 switch (Opc) { 772 default: 773 continue; // Ignore other JT branches 774 case ARM::t2BR_JT: 775 T2JumpTables.push_back(&I); 776 continue; // Does not get an entry in ImmBranches 777 case ARM::Bcc: 778 isCond = true; 779 UOpc = ARM::B; 780 // Fallthrough 781 case ARM::B: 782 Bits = 24; 783 Scale = 4; 784 break; 785 case ARM::tBcc: 786 isCond = true; 787 UOpc = ARM::tB; 788 Bits = 8; 789 Scale = 2; 790 break; 791 case ARM::tB: 792 Bits = 11; 793 Scale = 2; 794 break; 795 case ARM::t2Bcc: 796 isCond = true; 797 UOpc = ARM::t2B; 798 Bits = 20; 799 Scale = 2; 800 break; 801 case ARM::t2B: 802 Bits = 24; 803 Scale = 2; 804 break; 805 } 806 807 // Record this immediate branch. 808 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 809 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 810 } 811 812 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 813 PushPopMIs.push_back(&I); 814 815 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 816 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 817 Opc == ARM::JUMPTABLE_TBH) 818 continue; 819 820 // Scan the instructions for constant pool operands. 821 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 822 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 823 // We found one. The addressing mode tells us the max displacement 824 // from the PC that this instruction permits. 825 826 // Basic size info comes from the TSFlags field. 827 unsigned Bits = 0; 828 unsigned Scale = 1; 829 bool NegOk = false; 830 bool IsSoImm = false; 831 832 switch (Opc) { 833 default: 834 llvm_unreachable("Unknown addressing mode for CP reference!"); 835 836 // Taking the address of a CP entry. 837 case ARM::LEApcrel: 838 case ARM::LEApcrelJT: 839 // This takes a SoImm, which is 8 bit immediate rotated. We'll 840 // pretend the maximum offset is 255 * 4. Since each instruction 841 // 4 byte wide, this is always correct. We'll check for other 842 // displacements that fits in a SoImm as well. 843 Bits = 8; 844 Scale = 4; 845 NegOk = true; 846 IsSoImm = true; 847 break; 848 case ARM::t2LEApcrel: 849 case ARM::t2LEApcrelJT: 850 Bits = 12; 851 NegOk = true; 852 break; 853 case ARM::tLEApcrel: 854 case ARM::tLEApcrelJT: 855 Bits = 8; 856 Scale = 4; 857 break; 858 859 case ARM::LDRBi12: 860 case ARM::LDRi12: 861 case ARM::LDRcp: 862 case ARM::t2LDRpci: 863 Bits = 12; // +-offset_12 864 NegOk = true; 865 break; 866 867 case ARM::tLDRpci: 868 Bits = 8; 869 Scale = 4; // +(offset_8*4) 870 break; 871 872 case ARM::VLDRD: 873 case ARM::VLDRS: 874 Bits = 8; 875 Scale = 4; // +-(offset_8*4) 876 NegOk = true; 877 break; 878 } 879 880 // Remember that this is a user of a CP entry. 881 unsigned CPI = I.getOperand(op).getIndex(); 882 if (I.getOperand(op).isJTI()) { 883 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 884 CPI = JumpTableEntryIndices[CPI]; 885 } 886 887 MachineInstr *CPEMI = CPEMIs[CPI]; 888 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 889 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 890 891 // Increment corresponding CPEntry reference count. 892 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 893 assert(CPE && "Cannot find a corresponding CPEntry!"); 894 CPE->RefCount++; 895 896 // Instructions can only use one CP entry, don't bother scanning the 897 // rest of the operands. 898 break; 899 } 900 } 901 } 902 } 903 904 /// computeBlockSize - Compute the size and some alignment information for MBB. 905 /// This function updates BBInfo directly. 906 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 907 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 908 BBI.Size = 0; 909 BBI.Unalign = 0; 910 BBI.PostAlign = 0; 911 912 for (MachineInstr &I : *MBB) { 913 BBI.Size += TII->GetInstSizeInBytes(I); 914 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 915 // The actual size may be smaller, but still a multiple of the instr size. 916 if (I.isInlineAsm()) 917 BBI.Unalign = isThumb ? 1 : 2; 918 // Also consider instructions that may be shrunk later. 919 else if (isThumb && mayOptimizeThumb2Instruction(&I)) 920 BBI.Unalign = 1; 921 } 922 923 // tBR_JTr contains a .align 2 directive. 924 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 925 BBI.PostAlign = 2; 926 MBB->getParent()->ensureAlignment(2); 927 } 928 } 929 930 /// getOffsetOf - Return the current offset of the specified machine instruction 931 /// from the start of the function. This offset changes as stuff is moved 932 /// around inside the function. 933 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 934 MachineBasicBlock *MBB = MI->getParent(); 935 936 // The offset is composed of two things: the sum of the sizes of all MBB's 937 // before this instruction's block, and the offset from the start of the block 938 // it is in. 939 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 940 941 // Sum instructions before MI in MBB. 942 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 943 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 944 Offset += TII->GetInstSizeInBytes(*I); 945 } 946 return Offset; 947 } 948 949 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 950 /// ID. 951 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 952 const MachineBasicBlock *RHS) { 953 return LHS->getNumber() < RHS->getNumber(); 954 } 955 956 /// updateForInsertedWaterBlock - When a block is newly inserted into the 957 /// machine function, it upsets all of the block numbers. Renumber the blocks 958 /// and update the arrays that parallel this numbering. 959 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 960 // Renumber the MBB's to keep them consecutive. 961 NewBB->getParent()->RenumberBlocks(NewBB); 962 963 // Insert an entry into BBInfo to align it properly with the (newly 964 // renumbered) block numbers. 965 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 966 967 // Next, update WaterList. Specifically, we need to add NewMBB as having 968 // available water after it. 969 water_iterator IP = 970 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 971 CompareMBBNumbers); 972 WaterList.insert(IP, NewBB); 973 } 974 975 976 /// Split the basic block containing MI into two blocks, which are joined by 977 /// an unconditional branch. Update data structures and renumber blocks to 978 /// account for this change and returns the newly created block. 979 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 980 MachineBasicBlock *OrigBB = MI->getParent(); 981 982 // Create a new MBB for the code after the OrigBB. 983 MachineBasicBlock *NewBB = 984 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 985 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 986 MF->insert(MBBI, NewBB); 987 988 // Splice the instructions starting with MI over to NewBB. 989 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 990 991 // Add an unconditional branch from OrigBB to NewBB. 992 // Note the new unconditional branch is not being recorded. 993 // There doesn't seem to be meaningful DebugInfo available; this doesn't 994 // correspond to anything in the source. 995 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 996 if (!isThumb) 997 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 998 else 999 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 1000 .addImm(ARMCC::AL).addReg(0); 1001 ++NumSplit; 1002 1003 // Update the CFG. All succs of OrigBB are now succs of NewBB. 1004 NewBB->transferSuccessors(OrigBB); 1005 1006 // OrigBB branches to NewBB. 1007 OrigBB->addSuccessor(NewBB); 1008 1009 // Update internal data structures to account for the newly inserted MBB. 1010 // This is almost the same as updateForInsertedWaterBlock, except that 1011 // the Water goes after OrigBB, not NewBB. 1012 MF->RenumberBlocks(NewBB); 1013 1014 // Insert an entry into BBInfo to align it properly with the (newly 1015 // renumbered) block numbers. 1016 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 1017 1018 // Next, update WaterList. Specifically, we need to add OrigMBB as having 1019 // available water after it (but not if it's already there, which happens 1020 // when splitting before a conditional branch that is followed by an 1021 // unconditional branch - in that case we want to insert NewBB). 1022 water_iterator IP = 1023 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 1024 CompareMBBNumbers); 1025 MachineBasicBlock* WaterBB = *IP; 1026 if (WaterBB == OrigBB) 1027 WaterList.insert(std::next(IP), NewBB); 1028 else 1029 WaterList.insert(IP, OrigBB); 1030 NewWaterList.insert(OrigBB); 1031 1032 // Figure out how large the OrigBB is. As the first half of the original 1033 // block, it cannot contain a tablejump. The size includes 1034 // the new jump we added. (It should be possible to do this without 1035 // recounting everything, but it's very confusing, and this is rarely 1036 // executed.) 1037 computeBlockSize(OrigBB); 1038 1039 // Figure out how large the NewMBB is. As the second half of the original 1040 // block, it may contain a tablejump. 1041 computeBlockSize(NewBB); 1042 1043 // All BBOffsets following these blocks must be modified. 1044 adjustBBOffsetsAfter(OrigBB); 1045 1046 return NewBB; 1047 } 1048 1049 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1050 /// displacement computation. Update U.KnownAlignment to match its current 1051 /// basic block location. 1052 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1053 unsigned UserOffset = getOffsetOf(U.MI); 1054 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1055 unsigned KnownBits = BBI.internalKnownBits(); 1056 1057 // The value read from PC is offset from the actual instruction address. 1058 UserOffset += (isThumb ? 4 : 8); 1059 1060 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1061 // Make sure U.getMaxDisp() returns a constrained range. 1062 U.KnownAlignment = (KnownBits >= 2); 1063 1064 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1065 // purposes of the displacement computation; compensate for that here. 1066 // For unknown alignments, getMaxDisp() constrains the range instead. 1067 if (isThumb && U.KnownAlignment) 1068 UserOffset &= ~3u; 1069 1070 return UserOffset; 1071 } 1072 1073 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1074 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1075 /// constant pool entry). 1076 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1077 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1078 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1079 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1080 unsigned TrialOffset, unsigned MaxDisp, 1081 bool NegativeOK, bool IsSoImm) { 1082 if (UserOffset <= TrialOffset) { 1083 // User before the Trial. 1084 if (TrialOffset - UserOffset <= MaxDisp) 1085 return true; 1086 // FIXME: Make use full range of soimm values. 1087 } else if (NegativeOK) { 1088 if (UserOffset - TrialOffset <= MaxDisp) 1089 return true; 1090 // FIXME: Make use full range of soimm values. 1091 } 1092 return false; 1093 } 1094 1095 /// isWaterInRange - Returns true if a CPE placed after the specified 1096 /// Water (a basic block) will be in range for the specific MI. 1097 /// 1098 /// Compute how much the function will grow by inserting a CPE after Water. 1099 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1100 MachineBasicBlock* Water, CPUser &U, 1101 unsigned &Growth) { 1102 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1103 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1104 unsigned NextBlockOffset, NextBlockAlignment; 1105 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1106 if (++NextBlock == MF->end()) { 1107 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1108 NextBlockAlignment = 0; 1109 } else { 1110 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1111 NextBlockAlignment = NextBlock->getAlignment(); 1112 } 1113 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1114 unsigned CPEEnd = CPEOffset + Size; 1115 1116 // The CPE may be able to hide in the alignment padding before the next 1117 // block. It may also cause more padding to be required if it is more aligned 1118 // that the next block. 1119 if (CPEEnd > NextBlockOffset) { 1120 Growth = CPEEnd - NextBlockOffset; 1121 // Compute the padding that would go at the end of the CPE to align the next 1122 // block. 1123 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1124 1125 // If the CPE is to be inserted before the instruction, that will raise 1126 // the offset of the instruction. Also account for unknown alignment padding 1127 // in blocks between CPE and the user. 1128 if (CPEOffset < UserOffset) 1129 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1130 } else 1131 // CPE fits in existing padding. 1132 Growth = 0; 1133 1134 return isOffsetInRange(UserOffset, CPEOffset, U); 1135 } 1136 1137 /// isCPEntryInRange - Returns true if the distance between specific MI and 1138 /// specific ConstPool entry instruction can fit in MI's displacement field. 1139 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1140 MachineInstr *CPEMI, unsigned MaxDisp, 1141 bool NegOk, bool DoDump) { 1142 unsigned CPEOffset = getOffsetOf(CPEMI); 1143 1144 if (DoDump) { 1145 DEBUG({ 1146 unsigned Block = MI->getParent()->getNumber(); 1147 const BasicBlockInfo &BBI = BBInfo[Block]; 1148 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1149 << " max delta=" << MaxDisp 1150 << format(" insn address=%#x", UserOffset) 1151 << " in BB#" << Block << ": " 1152 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1153 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1154 int(CPEOffset-UserOffset)); 1155 }); 1156 } 1157 1158 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1159 } 1160 1161 #ifndef NDEBUG 1162 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1163 /// unconditionally branches to its only successor. 1164 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1165 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1166 return false; 1167 1168 MachineBasicBlock *Succ = *MBB->succ_begin(); 1169 MachineBasicBlock *Pred = *MBB->pred_begin(); 1170 MachineInstr *PredMI = &Pred->back(); 1171 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1172 || PredMI->getOpcode() == ARM::t2B) 1173 return PredMI->getOperand(0).getMBB() == Succ; 1174 return false; 1175 } 1176 #endif // NDEBUG 1177 1178 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1179 unsigned BBNum = BB->getNumber(); 1180 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1181 // Get the offset and known bits at the end of the layout predecessor. 1182 // Include the alignment of the current block. 1183 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1184 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1185 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1186 1187 // This is where block i begins. Stop if the offset is already correct, 1188 // and we have updated 2 blocks. This is the maximum number of blocks 1189 // changed before calling this function. 1190 if (i > BBNum + 2 && 1191 BBInfo[i].Offset == Offset && 1192 BBInfo[i].KnownBits == KnownBits) 1193 break; 1194 1195 BBInfo[i].Offset = Offset; 1196 BBInfo[i].KnownBits = KnownBits; 1197 } 1198 } 1199 1200 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1201 /// and instruction CPEMI, and decrement its refcount. If the refcount 1202 /// becomes 0 remove the entry and instruction. Returns true if we removed 1203 /// the entry, false if we didn't. 1204 1205 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1206 MachineInstr *CPEMI) { 1207 // Find the old entry. Eliminate it if it is no longer used. 1208 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1209 assert(CPE && "Unexpected!"); 1210 if (--CPE->RefCount == 0) { 1211 removeDeadCPEMI(CPEMI); 1212 CPE->CPEMI = nullptr; 1213 --NumCPEs; 1214 return true; 1215 } 1216 return false; 1217 } 1218 1219 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1220 if (CPEMI->getOperand(1).isCPI()) 1221 return CPEMI->getOperand(1).getIndex(); 1222 1223 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1224 } 1225 1226 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1227 /// if not, see if an in-range clone of the CPE is in range, and if so, 1228 /// change the data structures so the user references the clone. Returns: 1229 /// 0 = no existing entry found 1230 /// 1 = entry found, and there were no code insertions or deletions 1231 /// 2 = entry found, and there were code insertions or deletions 1232 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1233 { 1234 MachineInstr *UserMI = U.MI; 1235 MachineInstr *CPEMI = U.CPEMI; 1236 1237 // Check to see if the CPE is already in-range. 1238 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1239 true)) { 1240 DEBUG(dbgs() << "In range\n"); 1241 return 1; 1242 } 1243 1244 // No. Look for previously created clones of the CPE that are in range. 1245 unsigned CPI = getCombinedIndex(CPEMI); 1246 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1247 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1248 // We already tried this one 1249 if (CPEs[i].CPEMI == CPEMI) 1250 continue; 1251 // Removing CPEs can leave empty entries, skip 1252 if (CPEs[i].CPEMI == nullptr) 1253 continue; 1254 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1255 U.NegOk)) { 1256 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1257 << CPEs[i].CPI << "\n"); 1258 // Point the CPUser node to the replacement 1259 U.CPEMI = CPEs[i].CPEMI; 1260 // Change the CPI in the instruction operand to refer to the clone. 1261 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1262 if (UserMI->getOperand(j).isCPI()) { 1263 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1264 break; 1265 } 1266 // Adjust the refcount of the clone... 1267 CPEs[i].RefCount++; 1268 // ...and the original. If we didn't remove the old entry, none of the 1269 // addresses changed, so we don't need another pass. 1270 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1271 } 1272 } 1273 return 0; 1274 } 1275 1276 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1277 /// the specific unconditional branch instruction. 1278 static inline unsigned getUnconditionalBrDisp(int Opc) { 1279 switch (Opc) { 1280 case ARM::tB: 1281 return ((1<<10)-1)*2; 1282 case ARM::t2B: 1283 return ((1<<23)-1)*2; 1284 default: 1285 break; 1286 } 1287 1288 return ((1<<23)-1)*4; 1289 } 1290 1291 /// findAvailableWater - Look for an existing entry in the WaterList in which 1292 /// we can place the CPE referenced from U so it's within range of U's MI. 1293 /// Returns true if found, false if not. If it returns true, WaterIter 1294 /// is set to the WaterList entry. For Thumb, prefer water that will not 1295 /// introduce padding to water that will. To ensure that this pass 1296 /// terminates, the CPE location for a particular CPUser is only allowed to 1297 /// move to a lower address, so search backward from the end of the list and 1298 /// prefer the first water that is in range. 1299 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1300 water_iterator &WaterIter, 1301 bool CloserWater) { 1302 if (WaterList.empty()) 1303 return false; 1304 1305 unsigned BestGrowth = ~0u; 1306 // The nearest water without splitting the UserBB is right after it. 1307 // If the distance is still large (we have a big BB), then we need to split it 1308 // if we don't converge after certain iterations. This helps the following 1309 // situation to converge: 1310 // BB0: 1311 // Big BB 1312 // BB1: 1313 // Constant Pool 1314 // When a CP access is out of range, BB0 may be used as water. However, 1315 // inserting islands between BB0 and BB1 makes other accesses out of range. 1316 MachineBasicBlock *UserBB = U.MI->getParent(); 1317 unsigned MinNoSplitDisp = 1318 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1319 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1320 return false; 1321 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1322 --IP) { 1323 MachineBasicBlock* WaterBB = *IP; 1324 // Check if water is in range and is either at a lower address than the 1325 // current "high water mark" or a new water block that was created since 1326 // the previous iteration by inserting an unconditional branch. In the 1327 // latter case, we want to allow resetting the high water mark back to 1328 // this new water since we haven't seen it before. Inserting branches 1329 // should be relatively uncommon and when it does happen, we want to be 1330 // sure to take advantage of it for all the CPEs near that block, so that 1331 // we don't insert more branches than necessary. 1332 // When CloserWater is true, we try to find the lowest address after (or 1333 // equal to) user MI's BB no matter of padding growth. 1334 unsigned Growth; 1335 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1336 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1337 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1338 Growth < BestGrowth) { 1339 // This is the least amount of required padding seen so far. 1340 BestGrowth = Growth; 1341 WaterIter = IP; 1342 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1343 << " Growth=" << Growth << '\n'); 1344 1345 if (CloserWater && WaterBB == U.MI->getParent()) 1346 return true; 1347 // Keep looking unless it is perfect and we're not looking for the lowest 1348 // possible address. 1349 if (!CloserWater && BestGrowth == 0) 1350 return true; 1351 } 1352 if (IP == B) 1353 break; 1354 } 1355 return BestGrowth != ~0u; 1356 } 1357 1358 /// createNewWater - No existing WaterList entry will work for 1359 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1360 /// block is used if in range, and the conditional branch munged so control 1361 /// flow is correct. Otherwise the block is split to create a hole with an 1362 /// unconditional branch around it. In either case NewMBB is set to a 1363 /// block following which the new island can be inserted (the WaterList 1364 /// is not adjusted). 1365 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1366 unsigned UserOffset, 1367 MachineBasicBlock *&NewMBB) { 1368 CPUser &U = CPUsers[CPUserIndex]; 1369 MachineInstr *UserMI = U.MI; 1370 MachineInstr *CPEMI = U.CPEMI; 1371 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1372 MachineBasicBlock *UserMBB = UserMI->getParent(); 1373 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1374 1375 // If the block does not end in an unconditional branch already, and if the 1376 // end of the block is within range, make new water there. (The addition 1377 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1378 // Thumb2, 2 on Thumb1. 1379 if (BBHasFallthrough(UserMBB)) { 1380 // Size of branch to insert. 1381 unsigned Delta = isThumb1 ? 2 : 4; 1382 // Compute the offset where the CPE will begin. 1383 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1384 1385 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1386 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1387 << format(", expected CPE offset %#x\n", CPEOffset)); 1388 NewMBB = &*++UserMBB->getIterator(); 1389 // Add an unconditional branch from UserMBB to fallthrough block. Record 1390 // it for branch lengthening; this new branch will not get out of range, 1391 // but if the preceding conditional branch is out of range, the targets 1392 // will be exchanged, and the altered branch may be out of range, so the 1393 // machinery has to know about it. 1394 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1395 if (!isThumb) 1396 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1397 else 1398 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1399 .addImm(ARMCC::AL).addReg(0); 1400 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1401 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1402 MaxDisp, false, UncondBr)); 1403 computeBlockSize(UserMBB); 1404 adjustBBOffsetsAfter(UserMBB); 1405 return; 1406 } 1407 } 1408 1409 // What a big block. Find a place within the block to split it. This is a 1410 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1411 // entries are 4 bytes: if instruction I references island CPE, and 1412 // instruction I+1 references CPE', it will not work well to put CPE as far 1413 // forward as possible, since then CPE' cannot immediately follow it (that 1414 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1415 // need to create a new island. So, we make a first guess, then walk through 1416 // the instructions between the one currently being looked at and the 1417 // possible insertion point, and make sure any other instructions that 1418 // reference CPEs will be able to use the same island area; if not, we back 1419 // up the insertion point. 1420 1421 // Try to split the block so it's fully aligned. Compute the latest split 1422 // point where we can add a 4-byte branch instruction, and then align to 1423 // LogAlign which is the largest possible alignment in the function. 1424 unsigned LogAlign = MF->getAlignment(); 1425 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1426 unsigned KnownBits = UserBBI.internalKnownBits(); 1427 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1428 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1429 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1430 BaseInsertOffset)); 1431 1432 // The 4 in the following is for the unconditional branch we'll be inserting 1433 // (allows for long branch on Thumb1). Alignment of the island is handled 1434 // inside isOffsetInRange. 1435 BaseInsertOffset -= 4; 1436 1437 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1438 << " la=" << LogAlign 1439 << " kb=" << KnownBits 1440 << " up=" << UPad << '\n'); 1441 1442 // This could point off the end of the block if we've already got constant 1443 // pool entries following this block; only the last one is in the water list. 1444 // Back past any possible branches (allow for a conditional and a maximally 1445 // long unconditional). 1446 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1447 // Ensure BaseInsertOffset is larger than the offset of the instruction 1448 // following UserMI so that the loop which searches for the split point 1449 // iterates at least once. 1450 BaseInsertOffset = 1451 std::max(UserBBI.postOffset() - UPad - 8, 1452 UserOffset + TII->GetInstSizeInBytes(*UserMI) + 1); 1453 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1454 } 1455 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1456 CPEMI->getOperand(2).getImm(); 1457 MachineBasicBlock::iterator MI = UserMI; 1458 ++MI; 1459 unsigned CPUIndex = CPUserIndex+1; 1460 unsigned NumCPUsers = CPUsers.size(); 1461 MachineInstr *LastIT = nullptr; 1462 for (unsigned Offset = UserOffset + TII->GetInstSizeInBytes(*UserMI); 1463 Offset < BaseInsertOffset; 1464 Offset += TII->GetInstSizeInBytes(*MI), MI = std::next(MI)) { 1465 assert(MI != UserMBB->end() && "Fell off end of block"); 1466 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1467 CPUser &U = CPUsers[CPUIndex]; 1468 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1469 // Shift intertion point by one unit of alignment so it is within reach. 1470 BaseInsertOffset -= 1u << LogAlign; 1471 EndInsertOffset -= 1u << LogAlign; 1472 } 1473 // This is overly conservative, as we don't account for CPEMIs being 1474 // reused within the block, but it doesn't matter much. Also assume CPEs 1475 // are added in order with alignment padding. We may eventually be able 1476 // to pack the aligned CPEs better. 1477 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1478 CPUIndex++; 1479 } 1480 1481 // Remember the last IT instruction. 1482 if (MI->getOpcode() == ARM::t2IT) 1483 LastIT = &*MI; 1484 } 1485 1486 --MI; 1487 1488 // Avoid splitting an IT block. 1489 if (LastIT) { 1490 unsigned PredReg = 0; 1491 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1492 if (CC != ARMCC::AL) 1493 MI = LastIT; 1494 } 1495 1496 // We really must not split an IT block. 1497 DEBUG(unsigned PredReg; 1498 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1499 1500 NewMBB = splitBlockBeforeInstr(&*MI); 1501 } 1502 1503 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1504 /// is out-of-range. If so, pick up the constant pool value and move it some 1505 /// place in-range. Return true if we changed any addresses (thus must run 1506 /// another pass of branch lengthening), false otherwise. 1507 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1508 bool CloserWater) { 1509 CPUser &U = CPUsers[CPUserIndex]; 1510 MachineInstr *UserMI = U.MI; 1511 MachineInstr *CPEMI = U.CPEMI; 1512 unsigned CPI = getCombinedIndex(CPEMI); 1513 unsigned Size = CPEMI->getOperand(2).getImm(); 1514 // Compute this only once, it's expensive. 1515 unsigned UserOffset = getUserOffset(U); 1516 1517 // See if the current entry is within range, or there is a clone of it 1518 // in range. 1519 int result = findInRangeCPEntry(U, UserOffset); 1520 if (result==1) return false; 1521 else if (result==2) return true; 1522 1523 // No existing clone of this CPE is within range. 1524 // We will be generating a new clone. Get a UID for it. 1525 unsigned ID = AFI->createPICLabelUId(); 1526 1527 // Look for water where we can place this CPE. 1528 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1529 MachineBasicBlock *NewMBB; 1530 water_iterator IP; 1531 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1532 DEBUG(dbgs() << "Found water in range\n"); 1533 MachineBasicBlock *WaterBB = *IP; 1534 1535 // If the original WaterList entry was "new water" on this iteration, 1536 // propagate that to the new island. This is just keeping NewWaterList 1537 // updated to match the WaterList, which will be updated below. 1538 if (NewWaterList.erase(WaterBB)) 1539 NewWaterList.insert(NewIsland); 1540 1541 // The new CPE goes before the following block (NewMBB). 1542 NewMBB = &*++WaterBB->getIterator(); 1543 } else { 1544 // No water found. 1545 DEBUG(dbgs() << "No water found\n"); 1546 createNewWater(CPUserIndex, UserOffset, NewMBB); 1547 1548 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1549 // called while handling branches so that the water will be seen on the 1550 // next iteration for constant pools, but in this context, we don't want 1551 // it. Check for this so it will be removed from the WaterList. 1552 // Also remove any entry from NewWaterList. 1553 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1554 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1555 if (IP != WaterList.end()) 1556 NewWaterList.erase(WaterBB); 1557 1558 // We are adding new water. Update NewWaterList. 1559 NewWaterList.insert(NewIsland); 1560 } 1561 1562 // Remove the original WaterList entry; we want subsequent insertions in 1563 // this vicinity to go after the one we're about to insert. This 1564 // considerably reduces the number of times we have to move the same CPE 1565 // more than once and is also important to ensure the algorithm terminates. 1566 if (IP != WaterList.end()) 1567 WaterList.erase(IP); 1568 1569 // Okay, we know we can put an island before NewMBB now, do it! 1570 MF->insert(NewMBB->getIterator(), NewIsland); 1571 1572 // Update internal data structures to account for the newly inserted MBB. 1573 updateForInsertedWaterBlock(NewIsland); 1574 1575 // Now that we have an island to add the CPE to, clone the original CPE and 1576 // add it to the island. 1577 U.HighWaterMark = NewIsland; 1578 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1579 .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size); 1580 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1581 ++NumCPEs; 1582 1583 // Decrement the old entry, and remove it if refcount becomes 0. 1584 decrementCPEReferenceCount(CPI, CPEMI); 1585 1586 // Mark the basic block as aligned as required by the const-pool entry. 1587 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1588 1589 // Increase the size of the island block to account for the new entry. 1590 BBInfo[NewIsland->getNumber()].Size += Size; 1591 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1592 1593 // Finally, change the CPI in the instruction operand to be ID. 1594 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1595 if (UserMI->getOperand(i).isCPI()) { 1596 UserMI->getOperand(i).setIndex(ID); 1597 break; 1598 } 1599 1600 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1601 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1602 1603 return true; 1604 } 1605 1606 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1607 /// sizes and offsets of impacted basic blocks. 1608 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1609 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1610 unsigned Size = CPEMI->getOperand(2).getImm(); 1611 CPEMI->eraseFromParent(); 1612 BBInfo[CPEBB->getNumber()].Size -= Size; 1613 // All succeeding offsets have the current size value added in, fix this. 1614 if (CPEBB->empty()) { 1615 BBInfo[CPEBB->getNumber()].Size = 0; 1616 1617 // This block no longer needs to be aligned. 1618 CPEBB->setAlignment(0); 1619 } else 1620 // Entries are sorted by descending alignment, so realign from the front. 1621 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1622 1623 adjustBBOffsetsAfter(CPEBB); 1624 // An island has only one predecessor BB and one successor BB. Check if 1625 // this BB's predecessor jumps directly to this BB's successor. This 1626 // shouldn't happen currently. 1627 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1628 // FIXME: remove the empty blocks after all the work is done? 1629 } 1630 1631 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1632 /// are zero. 1633 bool ARMConstantIslands::removeUnusedCPEntries() { 1634 unsigned MadeChange = false; 1635 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1636 std::vector<CPEntry> &CPEs = CPEntries[i]; 1637 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1638 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1639 removeDeadCPEMI(CPEs[j].CPEMI); 1640 CPEs[j].CPEMI = nullptr; 1641 MadeChange = true; 1642 } 1643 } 1644 } 1645 return MadeChange; 1646 } 1647 1648 /// isBBInRange - Returns true if the distance between specific MI and 1649 /// specific BB can fit in MI's displacement field. 1650 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1651 unsigned MaxDisp) { 1652 unsigned PCAdj = isThumb ? 4 : 8; 1653 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1654 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1655 1656 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1657 << " from BB#" << MI->getParent()->getNumber() 1658 << " max delta=" << MaxDisp 1659 << " from " << getOffsetOf(MI) << " to " << DestOffset 1660 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1661 1662 if (BrOffset <= DestOffset) { 1663 // Branch before the Dest. 1664 if (DestOffset-BrOffset <= MaxDisp) 1665 return true; 1666 } else { 1667 if (BrOffset-DestOffset <= MaxDisp) 1668 return true; 1669 } 1670 return false; 1671 } 1672 1673 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1674 /// away to fit in its displacement field. 1675 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1676 MachineInstr *MI = Br.MI; 1677 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1678 1679 // Check to see if the DestBB is already in-range. 1680 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1681 return false; 1682 1683 if (!Br.isCond) 1684 return fixupUnconditionalBr(Br); 1685 return fixupConditionalBr(Br); 1686 } 1687 1688 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1689 /// too far away to fit in its displacement field. If the LR register has been 1690 /// spilled in the epilogue, then we can use BL to implement a far jump. 1691 /// Otherwise, add an intermediate branch instruction to a branch. 1692 bool 1693 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1694 MachineInstr *MI = Br.MI; 1695 MachineBasicBlock *MBB = MI->getParent(); 1696 if (!isThumb1) 1697 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1698 1699 // Use BL to implement far jump. 1700 Br.MaxDisp = (1 << 21) * 2; 1701 MI->setDesc(TII->get(ARM::tBfar)); 1702 BBInfo[MBB->getNumber()].Size += 2; 1703 adjustBBOffsetsAfter(MBB); 1704 HasFarJump = true; 1705 ++NumUBrFixed; 1706 1707 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1708 1709 return true; 1710 } 1711 1712 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1713 /// far away to fit in its displacement field. It is converted to an inverse 1714 /// conditional branch + an unconditional branch to the destination. 1715 bool 1716 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1717 MachineInstr *MI = Br.MI; 1718 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1719 1720 // Add an unconditional branch to the destination and invert the branch 1721 // condition to jump over it: 1722 // blt L1 1723 // => 1724 // bge L2 1725 // b L1 1726 // L2: 1727 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1728 CC = ARMCC::getOppositeCondition(CC); 1729 unsigned CCReg = MI->getOperand(2).getReg(); 1730 1731 // If the branch is at the end of its MBB and that has a fall-through block, 1732 // direct the updated conditional branch to the fall-through block. Otherwise, 1733 // split the MBB before the next instruction. 1734 MachineBasicBlock *MBB = MI->getParent(); 1735 MachineInstr *BMI = &MBB->back(); 1736 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1737 1738 ++NumCBrFixed; 1739 if (BMI != MI) { 1740 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1741 BMI->getOpcode() == Br.UncondBr) { 1742 // Last MI in the BB is an unconditional branch. Can we simply invert the 1743 // condition and swap destinations: 1744 // beq L1 1745 // b L2 1746 // => 1747 // bne L2 1748 // b L1 1749 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1750 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1751 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1752 << *BMI); 1753 BMI->getOperand(0).setMBB(DestBB); 1754 MI->getOperand(0).setMBB(NewDest); 1755 MI->getOperand(1).setImm(CC); 1756 return true; 1757 } 1758 } 1759 } 1760 1761 if (NeedSplit) { 1762 splitBlockBeforeInstr(MI); 1763 // No need for the branch to the next block. We're adding an unconditional 1764 // branch to the destination. 1765 int delta = TII->GetInstSizeInBytes(MBB->back()); 1766 BBInfo[MBB->getNumber()].Size -= delta; 1767 MBB->back().eraseFromParent(); 1768 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1769 } 1770 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1771 1772 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1773 << " also invert condition and change dest. to BB#" 1774 << NextBB->getNumber() << "\n"); 1775 1776 // Insert a new conditional branch and a new unconditional branch. 1777 // Also update the ImmBranch as well as adding a new entry for the new branch. 1778 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1779 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1780 Br.MI = &MBB->back(); 1781 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back()); 1782 if (isThumb) 1783 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1784 .addImm(ARMCC::AL).addReg(0); 1785 else 1786 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1787 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back()); 1788 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1789 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1790 1791 // Remove the old conditional branch. It may or may not still be in MBB. 1792 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(*MI); 1793 MI->eraseFromParent(); 1794 adjustBBOffsetsAfter(MBB); 1795 return true; 1796 } 1797 1798 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1799 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1800 /// to do this if tBfar is not used. 1801 bool ARMConstantIslands::undoLRSpillRestore() { 1802 bool MadeChange = false; 1803 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1804 MachineInstr *MI = PushPopMIs[i]; 1805 // First two operands are predicates. 1806 if (MI->getOpcode() == ARM::tPOP_RET && 1807 MI->getOperand(2).getReg() == ARM::PC && 1808 MI->getNumExplicitOperands() == 3) { 1809 // Create the new insn and copy the predicate from the old. 1810 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1811 .addOperand(MI->getOperand(0)) 1812 .addOperand(MI->getOperand(1)); 1813 MI->eraseFromParent(); 1814 MadeChange = true; 1815 } 1816 } 1817 return MadeChange; 1818 } 1819 1820 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1821 // below may shrink MI. 1822 bool 1823 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1824 switch(MI->getOpcode()) { 1825 // optimizeThumb2Instructions. 1826 case ARM::t2LEApcrel: 1827 case ARM::t2LDRpci: 1828 // optimizeThumb2Branches. 1829 case ARM::t2B: 1830 case ARM::t2Bcc: 1831 case ARM::tBcc: 1832 // optimizeThumb2JumpTables. 1833 case ARM::t2BR_JT: 1834 return true; 1835 } 1836 return false; 1837 } 1838 1839 bool ARMConstantIslands::optimizeThumb2Instructions() { 1840 bool MadeChange = false; 1841 1842 // Shrink ADR and LDR from constantpool. 1843 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1844 CPUser &U = CPUsers[i]; 1845 unsigned Opcode = U.MI->getOpcode(); 1846 unsigned NewOpc = 0; 1847 unsigned Scale = 1; 1848 unsigned Bits = 0; 1849 switch (Opcode) { 1850 default: break; 1851 case ARM::t2LEApcrel: 1852 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1853 NewOpc = ARM::tLEApcrel; 1854 Bits = 8; 1855 Scale = 4; 1856 } 1857 break; 1858 case ARM::t2LDRpci: 1859 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1860 NewOpc = ARM::tLDRpci; 1861 Bits = 8; 1862 Scale = 4; 1863 } 1864 break; 1865 } 1866 1867 if (!NewOpc) 1868 continue; 1869 1870 unsigned UserOffset = getUserOffset(U); 1871 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1872 1873 // Be conservative with inline asm. 1874 if (!U.KnownAlignment) 1875 MaxOffs -= 2; 1876 1877 // FIXME: Check if offset is multiple of scale if scale is not 4. 1878 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1879 DEBUG(dbgs() << "Shrink: " << *U.MI); 1880 U.MI->setDesc(TII->get(NewOpc)); 1881 MachineBasicBlock *MBB = U.MI->getParent(); 1882 BBInfo[MBB->getNumber()].Size -= 2; 1883 adjustBBOffsetsAfter(MBB); 1884 ++NumT2CPShrunk; 1885 MadeChange = true; 1886 } 1887 } 1888 1889 return MadeChange; 1890 } 1891 1892 bool ARMConstantIslands::optimizeThumb2Branches() { 1893 bool MadeChange = false; 1894 1895 // The order in which branches appear in ImmBranches is approximately their 1896 // order within the function body. By visiting later branches first, we reduce 1897 // the distance between earlier forward branches and their targets, making it 1898 // more likely that the cbn?z optimization, which can only apply to forward 1899 // branches, will succeed. 1900 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1901 ImmBranch &Br = ImmBranches[i-1]; 1902 unsigned Opcode = Br.MI->getOpcode(); 1903 unsigned NewOpc = 0; 1904 unsigned Scale = 1; 1905 unsigned Bits = 0; 1906 switch (Opcode) { 1907 default: break; 1908 case ARM::t2B: 1909 NewOpc = ARM::tB; 1910 Bits = 11; 1911 Scale = 2; 1912 break; 1913 case ARM::t2Bcc: { 1914 NewOpc = ARM::tBcc; 1915 Bits = 8; 1916 Scale = 2; 1917 break; 1918 } 1919 } 1920 if (NewOpc) { 1921 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1922 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1923 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1924 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1925 Br.MI->setDesc(TII->get(NewOpc)); 1926 MachineBasicBlock *MBB = Br.MI->getParent(); 1927 BBInfo[MBB->getNumber()].Size -= 2; 1928 adjustBBOffsetsAfter(MBB); 1929 ++NumT2BrShrunk; 1930 MadeChange = true; 1931 } 1932 } 1933 1934 Opcode = Br.MI->getOpcode(); 1935 if (Opcode != ARM::tBcc) 1936 continue; 1937 1938 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1939 // so this transformation is not safe. 1940 if (!Br.MI->killsRegister(ARM::CPSR)) 1941 continue; 1942 1943 NewOpc = 0; 1944 unsigned PredReg = 0; 1945 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1946 if (Pred == ARMCC::EQ) 1947 NewOpc = ARM::tCBZ; 1948 else if (Pred == ARMCC::NE) 1949 NewOpc = ARM::tCBNZ; 1950 if (!NewOpc) 1951 continue; 1952 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1953 // Check if the distance is within 126. Subtract starting offset by 2 1954 // because the cmp will be eliminated. 1955 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1956 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1957 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1958 MachineBasicBlock::iterator CmpMI = Br.MI; 1959 if (CmpMI != Br.MI->getParent()->begin()) { 1960 --CmpMI; 1961 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1962 unsigned Reg = CmpMI->getOperand(0).getReg(); 1963 Pred = getInstrPredicate(*CmpMI, PredReg); 1964 if (Pred == ARMCC::AL && 1965 CmpMI->getOperand(1).getImm() == 0 && 1966 isARMLowRegister(Reg)) { 1967 MachineBasicBlock *MBB = Br.MI->getParent(); 1968 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1969 MachineInstr *NewBR = 1970 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1971 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1972 CmpMI->eraseFromParent(); 1973 Br.MI->eraseFromParent(); 1974 Br.MI = NewBR; 1975 BBInfo[MBB->getNumber()].Size -= 2; 1976 adjustBBOffsetsAfter(MBB); 1977 ++NumCBZ; 1978 MadeChange = true; 1979 } 1980 } 1981 } 1982 } 1983 } 1984 1985 return MadeChange; 1986 } 1987 1988 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1989 unsigned BaseReg) { 1990 if (I.getOpcode() != ARM::t2ADDrs) 1991 return false; 1992 1993 if (I.getOperand(0).getReg() != EntryReg) 1994 return false; 1995 1996 if (I.getOperand(1).getReg() != BaseReg) 1997 return false; 1998 1999 // FIXME: what about CC and IdxReg? 2000 return true; 2001 } 2002 2003 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 2004 /// doesn't immediately follow the BR_JT) need access to the start of the 2005 /// jump-table. We know one instruction that produces such a register; this 2006 /// function works out whether that definition can be preserved to the BR_JT, 2007 /// possibly by removing an intervening addition (which is usually needed to 2008 /// calculate the actual entry to jump to). 2009 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2010 MachineInstr *LEAMI, 2011 unsigned &DeadSize, 2012 bool &CanDeleteLEA, 2013 bool &BaseRegKill) { 2014 if (JumpMI->getParent() != LEAMI->getParent()) 2015 return false; 2016 2017 // Now we hope that we have at least these instructions in the basic block: 2018 // BaseReg = t2LEA ... 2019 // [...] 2020 // EntryReg = t2ADDrs BaseReg, ... 2021 // [...] 2022 // t2BR_JT EntryReg 2023 // 2024 // We have to be very conservative about what we recognise here though. The 2025 // main perturbing factors to watch out for are: 2026 // + Spills at any point in the chain: not direct problems but we would 2027 // expect a blocking Def of the spilled register so in practice what we 2028 // can do is limited. 2029 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2030 // of BaseReg, but only if the t2ADDrs can be removed. 2031 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2032 // the wild, but we should be careful. 2033 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2034 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 2035 2036 CanDeleteLEA = true; 2037 BaseRegKill = false; 2038 MachineInstr *RemovableAdd = nullptr; 2039 MachineBasicBlock::iterator I(LEAMI); 2040 for (++I; &*I != JumpMI; ++I) { 2041 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2042 RemovableAdd = &*I; 2043 break; 2044 } 2045 2046 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2047 const MachineOperand &MO = I->getOperand(K); 2048 if (!MO.isReg() || !MO.getReg()) 2049 continue; 2050 if (MO.isDef() && MO.getReg() == BaseReg) 2051 return false; 2052 if (MO.isUse() && MO.getReg() == BaseReg) { 2053 BaseRegKill = BaseRegKill || MO.isKill(); 2054 CanDeleteLEA = false; 2055 } 2056 } 2057 } 2058 2059 if (!RemovableAdd) 2060 return true; 2061 2062 // Check the add really is removable, and that nothing else in the block 2063 // clobbers BaseReg. 2064 for (++I; &*I != JumpMI; ++I) { 2065 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2066 const MachineOperand &MO = I->getOperand(K); 2067 if (!MO.isReg() || !MO.getReg()) 2068 continue; 2069 if (MO.isDef() && MO.getReg() == BaseReg) 2070 return false; 2071 if (MO.isUse() && MO.getReg() == EntryReg) 2072 RemovableAdd = nullptr; 2073 } 2074 } 2075 2076 if (RemovableAdd) { 2077 RemovableAdd->eraseFromParent(); 2078 DeadSize += 4; 2079 } else if (BaseReg == EntryReg) { 2080 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2081 // preserve it. 2082 return false; 2083 } 2084 2085 // We reached the end of the block without seeing another definition of 2086 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2087 // used in the TBB/TBH if necessary. 2088 return true; 2089 } 2090 2091 /// \brief Returns whether CPEMI is the first instruction in the block 2092 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2093 /// we can switch the first register to PC and usually remove the address 2094 /// calculation that preceded it. 2095 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2096 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2097 MachineFunction *MF = MBB->getParent(); 2098 ++MBB; 2099 2100 return MBB != MF->end() && MBB->begin() != MBB->end() && 2101 &*MBB->begin() == CPEMI; 2102 } 2103 2104 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2105 /// jumptables when it's possible. 2106 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2107 bool MadeChange = false; 2108 2109 // FIXME: After the tables are shrunk, can we get rid some of the 2110 // constantpool tables? 2111 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2112 if (!MJTI) return false; 2113 2114 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2115 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2116 MachineInstr *MI = T2JumpTables[i]; 2117 const MCInstrDesc &MCID = MI->getDesc(); 2118 unsigned NumOps = MCID.getNumOperands(); 2119 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2120 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2121 unsigned JTI = JTOP.getIndex(); 2122 assert(JTI < JT.size()); 2123 2124 bool ByteOk = true; 2125 bool HalfWordOk = true; 2126 unsigned JTOffset = getOffsetOf(MI) + 4; 2127 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2128 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2129 MachineBasicBlock *MBB = JTBBs[j]; 2130 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2131 // Negative offset is not ok. FIXME: We should change BB layout to make 2132 // sure all the branches are forward. 2133 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2134 ByteOk = false; 2135 unsigned TBHLimit = ((1<<16)-1)*2; 2136 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2137 HalfWordOk = false; 2138 if (!ByteOk && !HalfWordOk) 2139 break; 2140 } 2141 2142 if (!ByteOk && !HalfWordOk) 2143 continue; 2144 2145 MachineBasicBlock *MBB = MI->getParent(); 2146 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2147 continue; 2148 unsigned IdxReg = MI->getOperand(1).getReg(); 2149 bool IdxRegKill = MI->getOperand(1).isKill(); 2150 2151 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2152 unsigned DeadSize = 0; 2153 bool CanDeleteLEA = false; 2154 bool BaseRegKill = false; 2155 bool PreservedBaseReg = 2156 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2157 2158 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2159 continue; 2160 2161 DEBUG(dbgs() << "Shrink JT: " << *MI); 2162 MachineInstr *CPEMI = User.CPEMI; 2163 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2164 MachineBasicBlock::iterator MI_JT = MI; 2165 MachineInstr *NewJTMI = 2166 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2167 .addReg(User.MI->getOperand(0).getReg(), 2168 getKillRegState(BaseRegKill)) 2169 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2170 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2171 .addImm(CPEMI->getOperand(0).getImm()); 2172 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 2173 2174 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2175 CPEMI->setDesc(TII->get(JTOpc)); 2176 2177 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2178 NewJTMI->getOperand(0).setReg(ARM::PC); 2179 NewJTMI->getOperand(0).setIsKill(false); 2180 2181 if (CanDeleteLEA) { 2182 User.MI->eraseFromParent(); 2183 DeadSize += 4; 2184 2185 // The LEA was eliminated, the TBB instruction becomes the only new user 2186 // of the jump table. 2187 User.MI = NewJTMI; 2188 User.MaxDisp = 4; 2189 User.NegOk = false; 2190 User.IsSoImm = false; 2191 User.KnownAlignment = false; 2192 } else { 2193 // The LEA couldn't be eliminated, so we must add another CPUser to 2194 // record the TBB or TBH use. 2195 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2196 auto &CPEs = CPEntries[CPEntryIdx]; 2197 auto Entry = std::find_if(CPEs.begin(), CPEs.end(), [&](CPEntry &E) { 2198 return E.CPEMI == User.CPEMI; 2199 }); 2200 ++Entry->RefCount; 2201 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2202 } 2203 } 2204 2205 unsigned NewSize = TII->GetInstSizeInBytes(*NewJTMI); 2206 unsigned OrigSize = TII->GetInstSizeInBytes(*MI); 2207 MI->eraseFromParent(); 2208 2209 int Delta = OrigSize - NewSize + DeadSize; 2210 BBInfo[MBB->getNumber()].Size -= Delta; 2211 adjustBBOffsetsAfter(MBB); 2212 2213 ++NumTBs; 2214 MadeChange = true; 2215 } 2216 2217 return MadeChange; 2218 } 2219 2220 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2221 /// jump tables always branch forwards, since that's what tbb and tbh need. 2222 bool ARMConstantIslands::reorderThumb2JumpTables() { 2223 bool MadeChange = false; 2224 2225 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2226 if (!MJTI) return false; 2227 2228 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2229 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2230 MachineInstr *MI = T2JumpTables[i]; 2231 const MCInstrDesc &MCID = MI->getDesc(); 2232 unsigned NumOps = MCID.getNumOperands(); 2233 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2234 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2235 unsigned JTI = JTOP.getIndex(); 2236 assert(JTI < JT.size()); 2237 2238 // We prefer if target blocks for the jump table come after the jump 2239 // instruction so we can use TB[BH]. Loop through the target blocks 2240 // and try to adjust them such that that's true. 2241 int JTNumber = MI->getParent()->getNumber(); 2242 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2243 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2244 MachineBasicBlock *MBB = JTBBs[j]; 2245 int DTNumber = MBB->getNumber(); 2246 2247 if (DTNumber < JTNumber) { 2248 // The destination precedes the switch. Try to move the block forward 2249 // so we have a positive offset. 2250 MachineBasicBlock *NewBB = 2251 adjustJTTargetBlockForward(MBB, MI->getParent()); 2252 if (NewBB) 2253 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2254 MadeChange = true; 2255 } 2256 } 2257 } 2258 2259 return MadeChange; 2260 } 2261 2262 MachineBasicBlock *ARMConstantIslands:: 2263 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2264 // If the destination block is terminated by an unconditional branch, 2265 // try to move it; otherwise, create a new block following the jump 2266 // table that branches back to the actual target. This is a very simple 2267 // heuristic. FIXME: We can definitely improve it. 2268 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2269 SmallVector<MachineOperand, 4> Cond; 2270 SmallVector<MachineOperand, 4> CondPrior; 2271 MachineFunction::iterator BBi = BB->getIterator(); 2272 MachineFunction::iterator OldPrior = std::prev(BBi); 2273 2274 // If the block terminator isn't analyzable, don't try to move the block 2275 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2276 2277 // If the block ends in an unconditional branch, move it. The prior block 2278 // has to have an analyzable terminator for us to move this one. Be paranoid 2279 // and make sure we're not trying to move the entry block of the function. 2280 if (!B && Cond.empty() && BB != &MF->front() && 2281 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2282 BB->moveAfter(JTBB); 2283 OldPrior->updateTerminator(); 2284 BB->updateTerminator(); 2285 // Update numbering to account for the block being moved. 2286 MF->RenumberBlocks(); 2287 ++NumJTMoved; 2288 return nullptr; 2289 } 2290 2291 // Create a new MBB for the code after the jump BB. 2292 MachineBasicBlock *NewBB = 2293 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2294 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2295 MF->insert(MBBI, NewBB); 2296 2297 // Add an unconditional branch from NewBB to BB. 2298 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2299 // correspond directly to anything in the source. 2300 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2301 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2302 .addImm(ARMCC::AL).addReg(0); 2303 2304 // Update internal data structures to account for the newly inserted MBB. 2305 MF->RenumberBlocks(NewBB); 2306 2307 // Update the CFG. 2308 NewBB->addSuccessor(BB); 2309 JTBB->replaceSuccessor(BB, NewBB); 2310 2311 ++NumJTInserted; 2312 return NewBB; 2313 } 2314